]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Fix argument type and microoptimize swp_pager_meta_free().
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100  *      Virtual memory maps provide for the mapping, protection,
101  *      and sharing of virtual memory objects.  In addition,
102  *      this module provides for an efficient virtual copy of
103  *      memory from one map to another.
104  *
105  *      Synchronization is required prior to most operations.
106  *
107  *      Maps consist of an ordered doubly-linked list of simple
108  *      entries; a self-adjusting binary search tree of these
109  *      entries is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /* 
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
161  *
162  *      Asserts that the starting and ending region
163  *      addresses fall within the valid range of the map.
164  */
165 #define VM_MAP_RANGE_CHECK(map, start, end)             \
166                 {                                       \
167                 if (start < vm_map_min(map))            \
168                         start = vm_map_min(map);        \
169                 if (end > vm_map_max(map))              \
170                         end = vm_map_max(map);          \
171                 if (start > end)                        \
172                         start = end;                    \
173                 }
174
175 /*
176  *      vm_map_startup:
177  *
178  *      Initialize the vm_map module.  Must be called before
179  *      any other vm_map routines.
180  *
181  *      Map and entry structures are allocated from the general
182  *      purpose memory pool with some exceptions:
183  *
184  *      - The kernel map and kmem submap are allocated statically.
185  *      - Kernel map entries are allocated out of a static pool.
186  *
187  *      These restrictions are necessary since malloc() uses the
188  *      maps and requires map entries.
189  */
190
191 void
192 vm_map_startup(void)
193 {
194         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197             vm_map_zdtor,
198 #else
199             NULL,
200 #endif
201             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202         uma_prealloc(mapzone, MAX_KMAP);
203         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210             vmspace_zdtor,
211 #else
212             NULL,
213 #endif
214             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220         struct vmspace *vm;
221
222         vm = (struct vmspace *)mem;
223
224         vm->vm_map.pmap = NULL;
225         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226         PMAP_LOCK_INIT(vmspace_pmap(vm));
227         return (0);
228 }
229
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233         vm_map_t map;
234
235         map = (vm_map_t)mem;
236         memset(map, 0, sizeof(*map));
237         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238         sx_init(&map->lock, "vm map (user)");
239         return (0);
240 }
241
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246         struct vmspace *vm;
247
248         vm = (struct vmspace *)mem;
249
250         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255         vm_map_t map;
256
257         map = (vm_map_t)mem;
258         KASSERT(map->nentries == 0,
259             ("map %p nentries == %d on free.",
260             map, map->nentries));
261         KASSERT(map->size == 0,
262             ("map %p size == %lu on free.",
263             map, (unsigned long)map->size));
264 }
265 #endif  /* INVARIANTS */
266
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276         struct vmspace *vm;
277
278         vm = uma_zalloc(vmspace_zone, M_WAITOK);
279
280         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281
282         if (pinit == NULL)
283                 pinit = &pmap_pinit;
284
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336             vm->vm_map.max_offset);
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         do {
393                 refcnt = vm->vm_refcnt;
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         do {
439                 refcnt = vm->vm_refcnt;
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         /* Remove the daemon's reference to the old address space. */
494         KASSERT(oldvm->vm_refcnt > 1,
495             ("vmspace_switch_aio: oldvm dropping last reference"));
496         vmspace_free(oldvm);
497 }
498
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502
503         if (map->system_map)
504                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
505         else
506                 sx_xlock_(&map->lock, file, line);
507         map->timestamp++;
508 }
509
510 static void
511 vm_map_process_deferred(void)
512 {
513         struct thread *td;
514         vm_map_entry_t entry, next;
515         vm_object_t object;
516
517         td = curthread;
518         entry = td->td_map_def_user;
519         td->td_map_def_user = NULL;
520         while (entry != NULL) {
521                 next = entry->next;
522                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523                         /*
524                          * Decrement the object's writemappings and
525                          * possibly the vnode's v_writecount.
526                          */
527                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528                             ("Submap with writecount"));
529                         object = entry->object.vm_object;
530                         KASSERT(object != NULL, ("No object for writecount"));
531                         vnode_pager_release_writecount(object, entry->start,
532                             entry->end);
533                 }
534                 vm_map_entry_deallocate(entry, FALSE);
535                 entry = next;
536         }
537 }
538
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542
543         if (map->system_map)
544                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545         else {
546                 sx_xunlock_(&map->lock, file, line);
547                 vm_map_process_deferred();
548         }
549 }
550
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554
555         if (map->system_map)
556                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
557         else
558                 sx_slock_(&map->lock, file, line);
559 }
560
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564
565         if (map->system_map)
566                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567         else {
568                 sx_sunlock_(&map->lock, file, line);
569                 vm_map_process_deferred();
570         }
571 }
572
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576         int error;
577
578         error = map->system_map ?
579             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580             !sx_try_xlock_(&map->lock, file, line);
581         if (error == 0)
582                 map->timestamp++;
583         return (error == 0);
584 }
585
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589         int error;
590
591         error = map->system_map ?
592             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593             !sx_try_slock_(&map->lock, file, line);
594         return (error == 0);
595 }
596
597 /*
598  *      _vm_map_lock_upgrade:   [ internal use only ]
599  *
600  *      Tries to upgrade a read (shared) lock on the specified map to a write
601  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *      returned without a read or write lock held.
604  *
605  *      Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610         unsigned int last_timestamp;
611
612         if (map->system_map) {
613                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614         } else {
615                 if (!sx_try_upgrade_(&map->lock, file, line)) {
616                         last_timestamp = map->timestamp;
617                         sx_sunlock_(&map->lock, file, line);
618                         vm_map_process_deferred();
619                         /*
620                          * If the map's timestamp does not change while the
621                          * map is unlocked, then the upgrade succeeds.
622                          */
623                         sx_xlock_(&map->lock, file, line);
624                         if (last_timestamp != map->timestamp) {
625                                 sx_xunlock_(&map->lock, file, line);
626                                 return (1);
627                         }
628                 }
629         }
630         map->timestamp++;
631         return (0);
632 }
633
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637
638         if (map->system_map) {
639                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640         } else
641                 sx_downgrade_(&map->lock, file, line);
642 }
643
644 /*
645  *      vm_map_locked:
646  *
647  *      Returns a non-zero value if the caller holds a write (exclusive) lock
648  *      on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653
654         if (map->system_map)
655                 return (mtx_owned(&map->system_mtx));
656         else
657                 return (sx_xlocked(&map->lock));
658 }
659
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664
665         if (map->system_map)
666                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667         else
668                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670
671 #define VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define VM_MAP_ASSERT_LOCKED(map)
675 #endif
676
677 /*
678  *      _vm_map_unlock_and_wait:
679  *
680  *      Atomically releases the lock on the specified map and puts the calling
681  *      thread to sleep.  The calling thread will remain asleep until either
682  *      vm_map_wakeup() is performed on the map or the specified timeout is
683  *      exceeded.
684  *
685  *      WARNING!  This function does not perform deferred deallocations of
686  *      objects and map entries.  Therefore, the calling thread is expected to
687  *      reacquire the map lock after reawakening and later perform an ordinary
688  *      unlock operation, such as vm_map_unlock(), before completing its
689  *      operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694
695         mtx_lock(&map_sleep_mtx);
696         if (map->system_map)
697                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698         else
699                 sx_xunlock_(&map->lock, file, line);
700         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701             timo));
702 }
703
704 /*
705  *      vm_map_wakeup:
706  *
707  *      Awaken any threads that have slept on the map using
708  *      vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713
714         /*
715          * Acquire and release map_sleep_mtx to prevent a wakeup()
716          * from being performed (and lost) between the map unlock
717          * and the msleep() in _vm_map_unlock_and_wait().
718          */
719         mtx_lock(&map_sleep_mtx);
720         mtx_unlock(&map_sleep_mtx);
721         wakeup(&map->root);
722 }
723
724 void
725 vm_map_busy(vm_map_t map)
726 {
727
728         VM_MAP_ASSERT_LOCKED(map);
729         map->busy++;
730 }
731
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735
736         VM_MAP_ASSERT_LOCKED(map);
737         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740                 wakeup(&map->busy);
741         }
742 }
743
744 void 
745 vm_map_wait_busy(vm_map_t map)
746 {
747
748         VM_MAP_ASSERT_LOCKED(map);
749         while (map->busy) {
750                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751                 if (map->system_map)
752                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753                 else
754                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755         }
756         map->timestamp++;
757 }
758
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762         return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764
765 /*
766  *      vm_map_create:
767  *
768  *      Creates and returns a new empty VM map with
769  *      the given physical map structure, and having
770  *      the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775         vm_map_t result;
776
777         result = uma_zalloc(mapzone, M_WAITOK);
778         CTR1(KTR_VM, "vm_map_create: %p", result);
779         _vm_map_init(result, pmap, min, max);
780         return (result);
781 }
782
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790
791         map->header.next = map->header.prev = &map->header;
792         map->needs_wakeup = FALSE;
793         map->system_map = 0;
794         map->pmap = pmap;
795         map->min_offset = min;
796         map->max_offset = max;
797         map->flags = 0;
798         map->root = NULL;
799         map->timestamp = 0;
800         map->busy = 0;
801 }
802
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806
807         _vm_map_init(map, pmap, min, max);
808         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809         sx_init(&map->lock, "user map");
810 }
811
812 /*
813  *      vm_map_entry_dispose:   [ internal use only ]
814  *
815  *      Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822
823 /*
824  *      vm_map_entry_create:    [ internal use only ]
825  *
826  *      Allocates a VM map entry for insertion.
827  *      No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832         vm_map_entry_t new_entry;
833
834         if (map->system_map)
835                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836         else
837                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
838         if (new_entry == NULL)
839                 panic("vm_map_entry_create: kernel resources exhausted");
840         return (new_entry);
841 }
842
843 /*
844  *      vm_map_entry_set_behavior:
845  *
846  *      Set the expected access behavior, either normal, random, or
847  *      sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853             (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855
856 /*
857  *      vm_map_entry_set_max_free:
858  *
859  *      Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864
865         entry->max_free = entry->adj_free;
866         if (entry->left != NULL && entry->left->max_free > entry->max_free)
867                 entry->max_free = entry->left->max_free;
868         if (entry->right != NULL && entry->right->max_free > entry->max_free)
869                 entry->max_free = entry->right->max_free;
870 }
871
872 /*
873  *      vm_map_entry_splay:
874  *
875  *      The Sleator and Tarjan top-down splay algorithm with the
876  *      following variation.  Max_free must be computed bottom-up, so
877  *      on the downward pass, maintain the left and right spines in
878  *      reverse order.  Then, make a second pass up each side to fix
879  *      the pointers and compute max_free.  The time bound is O(log n)
880  *      amortized.
881  *
882  *      The new root is the vm_map_entry containing "addr", or else an
883  *      adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *      The map must be locked, and leaves it so.
886  *
887  *      Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892         vm_map_entry_t llist, rlist;
893         vm_map_entry_t ltree, rtree;
894         vm_map_entry_t y;
895
896         /* Special case of empty tree. */
897         if (root == NULL)
898                 return (root);
899
900         /*
901          * Pass One: Splay down the tree until we find addr or a NULL
902          * pointer where addr would go.  llist and rlist are the two
903          * sides in reverse order (bottom-up), with llist linked by
904          * the right pointer and rlist linked by the left pointer in
905          * the vm_map_entry.  Wait until Pass Two to set max_free on
906          * the two spines.
907          */
908         llist = NULL;
909         rlist = NULL;
910         for (;;) {
911                 /* root is never NULL in here. */
912                 if (addr < root->start) {
913                         y = root->left;
914                         if (y == NULL)
915                                 break;
916                         if (addr < y->start && y->left != NULL) {
917                                 /* Rotate right and put y on rlist. */
918                                 root->left = y->right;
919                                 y->right = root;
920                                 vm_map_entry_set_max_free(root);
921                                 root = y->left;
922                                 y->left = rlist;
923                                 rlist = y;
924                         } else {
925                                 /* Put root on rlist. */
926                                 root->left = rlist;
927                                 rlist = root;
928                                 root = y;
929                         }
930                 } else if (addr >= root->end) {
931                         y = root->right;
932                         if (y == NULL)
933                                 break;
934                         if (addr >= y->end && y->right != NULL) {
935                                 /* Rotate left and put y on llist. */
936                                 root->right = y->left;
937                                 y->left = root;
938                                 vm_map_entry_set_max_free(root);
939                                 root = y->right;
940                                 y->right = llist;
941                                 llist = y;
942                         } else {
943                                 /* Put root on llist. */
944                                 root->right = llist;
945                                 llist = root;
946                                 root = y;
947                         }
948                 } else
949                         break;
950         }
951
952         /*
953          * Pass Two: Walk back up the two spines, flip the pointers
954          * and set max_free.  The subtrees of the root go at the
955          * bottom of llist and rlist.
956          */
957         ltree = root->left;
958         while (llist != NULL) {
959                 y = llist->right;
960                 llist->right = ltree;
961                 vm_map_entry_set_max_free(llist);
962                 ltree = llist;
963                 llist = y;
964         }
965         rtree = root->right;
966         while (rlist != NULL) {
967                 y = rlist->left;
968                 rlist->left = rtree;
969                 vm_map_entry_set_max_free(rlist);
970                 rtree = rlist;
971                 rlist = y;
972         }
973
974         /*
975          * Final assembly: add ltree and rtree as subtrees of root.
976          */
977         root->left = ltree;
978         root->right = rtree;
979         vm_map_entry_set_max_free(root);
980
981         return (root);
982 }
983
984 /*
985  *      vm_map_entry_{un,}link:
986  *
987  *      Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991                   vm_map_entry_t after_where,
992                   vm_map_entry_t entry)
993 {
994
995         CTR4(KTR_VM,
996             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997             map->nentries, entry, after_where);
998         VM_MAP_ASSERT_LOCKED(map);
999         KASSERT(after_where == &map->header ||
1000             after_where->end <= entry->start,
1001             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003         KASSERT(after_where->next == &map->header ||
1004             entry->end <= after_where->next->start,
1005             ("vm_map_entry_link: new end %jx next start %jx overlap",
1006             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007
1008         map->nentries++;
1009         entry->prev = after_where;
1010         entry->next = after_where->next;
1011         entry->next->prev = entry;
1012         after_where->next = entry;
1013
1014         if (after_where != &map->header) {
1015                 if (after_where != map->root)
1016                         vm_map_entry_splay(after_where->start, map->root);
1017                 entry->right = after_where->right;
1018                 entry->left = after_where;
1019                 after_where->right = NULL;
1020                 after_where->adj_free = entry->start - after_where->end;
1021                 vm_map_entry_set_max_free(after_where);
1022         } else {
1023                 entry->right = map->root;
1024                 entry->left = NULL;
1025         }
1026         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027             entry->next->start) - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1047                     entry->next->start) - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084             entry->next->start) - entry->end;
1085         vm_map_entry_set_max_free(entry);
1086 }
1087
1088 /*
1089  *      vm_map_lookup_entry:    [ internal use only ]
1090  *
1091  *      Finds the map entry containing (or
1092  *      immediately preceding) the specified address
1093  *      in the given map; the entry is returned
1094  *      in the "entry" parameter.  The boolean
1095  *      result indicates whether the address is
1096  *      actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100         vm_map_t map,
1101         vm_offset_t address,
1102         vm_map_entry_t *entry)  /* OUT */
1103 {
1104         vm_map_entry_t cur;
1105         boolean_t locked;
1106
1107         /*
1108          * If the map is empty, then the map entry immediately preceding
1109          * "address" is the map's header.
1110          */
1111         cur = map->root;
1112         if (cur == NULL)
1113                 *entry = &map->header;
1114         else if (address >= cur->start && cur->end > address) {
1115                 *entry = cur;
1116                 return (TRUE);
1117         } else if ((locked = vm_map_locked(map)) ||
1118             sx_try_upgrade(&map->lock)) {
1119                 /*
1120                  * Splay requires a write lock on the map.  However, it only
1121                  * restructures the binary search tree; it does not otherwise
1122                  * change the map.  Thus, the map's timestamp need not change
1123                  * on a temporary upgrade.
1124                  */
1125                 map->root = cur = vm_map_entry_splay(address, cur);
1126                 if (!locked)
1127                         sx_downgrade(&map->lock);
1128
1129                 /*
1130                  * If "address" is contained within a map entry, the new root
1131                  * is that map entry.  Otherwise, the new root is a map entry
1132                  * immediately before or after "address".
1133                  */
1134                 if (address >= cur->start) {
1135                         *entry = cur;
1136                         if (cur->end > address)
1137                                 return (TRUE);
1138                 } else
1139                         *entry = cur->prev;
1140         } else
1141                 /*
1142                  * Since the map is only locked for read access, perform a
1143                  * standard binary search tree lookup for "address".
1144                  */
1145                 for (;;) {
1146                         if (address < cur->start) {
1147                                 if (cur->left == NULL) {
1148                                         *entry = cur->prev;
1149                                         break;
1150                                 }
1151                                 cur = cur->left;
1152                         } else if (cur->end > address) {
1153                                 *entry = cur;
1154                                 return (TRUE);
1155                         } else {
1156                                 if (cur->right == NULL) {
1157                                         *entry = cur;
1158                                         break;
1159                                 }
1160                                 cur = cur->right;
1161                         }
1162                 }
1163         return (FALSE);
1164 }
1165
1166 /*
1167  *      vm_map_insert:
1168  *
1169  *      Inserts the given whole VM object into the target
1170  *      map at the specified address range.  The object's
1171  *      size should match that of the address range.
1172  *
1173  *      Requires that the map be locked, and leaves it so.
1174  *
1175  *      If object is non-NULL, ref count must be bumped by caller
1176  *      prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182         vm_map_entry_t new_entry, prev_entry, temp_entry;
1183         vm_eflags_t protoeflags;
1184         struct ucred *cred;
1185         vm_inherit_t inheritance;
1186
1187         VM_MAP_ASSERT_LOCKED(map);
1188         KASSERT((object != kmem_object && object != kernel_object) ||
1189             (cow & MAP_COPY_ON_WRITE) == 0,
1190             ("vm_map_insert: kmem or kernel object and COW"));
1191         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193
1194         /*
1195          * Check that the start and end points are not bogus.
1196          */
1197         if ((start < map->min_offset) || (end > map->max_offset) ||
1198             (start >= end))
1199                 return (KERN_INVALID_ADDRESS);
1200
1201         /*
1202          * Find the entry prior to the proposed starting address; if it's part
1203          * of an existing entry, this range is bogus.
1204          */
1205         if (vm_map_lookup_entry(map, start, &temp_entry))
1206                 return (KERN_NO_SPACE);
1207
1208         prev_entry = temp_entry;
1209
1210         /*
1211          * Assert that the next entry doesn't overlap the end point.
1212          */
1213         if ((prev_entry->next != &map->header) &&
1214             (prev_entry->next->start < end))
1215                 return (KERN_NO_SPACE);
1216
1217         protoeflags = 0;
1218         if (cow & MAP_COPY_ON_WRITE)
1219                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1220         if (cow & MAP_NOFAULT)
1221                 protoeflags |= MAP_ENTRY_NOFAULT;
1222         if (cow & MAP_DISABLE_SYNCER)
1223                 protoeflags |= MAP_ENTRY_NOSYNC;
1224         if (cow & MAP_DISABLE_COREDUMP)
1225                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1226         if (cow & MAP_STACK_GROWS_DOWN)
1227                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1228         if (cow & MAP_STACK_GROWS_UP)
1229                 protoeflags |= MAP_ENTRY_GROWS_UP;
1230         if (cow & MAP_VN_WRITECOUNT)
1231                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1232         if (cow & MAP_INHERIT_SHARE)
1233                 inheritance = VM_INHERIT_SHARE;
1234         else
1235                 inheritance = VM_INHERIT_DEFAULT;
1236
1237         cred = NULL;
1238         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1239                 goto charged;
1240         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1241             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1242                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1243                         return (KERN_RESOURCE_SHORTAGE);
1244                 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1245                     object->cred == NULL,
1246                     ("OVERCOMMIT: vm_map_insert o %p", object));
1247                 cred = curthread->td_ucred;
1248         }
1249
1250 charged:
1251         /* Expand the kernel pmap, if necessary. */
1252         if (map == kernel_map && end > kernel_vm_end)
1253                 pmap_growkernel(end);
1254         if (object != NULL) {
1255                 /*
1256                  * OBJ_ONEMAPPING must be cleared unless this mapping
1257                  * is trivially proven to be the only mapping for any
1258                  * of the object's pages.  (Object granularity
1259                  * reference counting is insufficient to recognize
1260                  * aliases with precision.)
1261                  */
1262                 VM_OBJECT_WLOCK(object);
1263                 if (object->ref_count > 1 || object->shadow_count != 0)
1264                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1265                 VM_OBJECT_WUNLOCK(object);
1266         }
1267         else if ((prev_entry != &map->header) &&
1268                  (prev_entry->eflags == protoeflags) &&
1269                  (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1270                  (prev_entry->end == start) &&
1271                  (prev_entry->wired_count == 0) &&
1272                  (prev_entry->cred == cred ||
1273                   (prev_entry->object.vm_object != NULL &&
1274                    (prev_entry->object.vm_object->cred == cred))) &&
1275                    vm_object_coalesce(prev_entry->object.vm_object,
1276                        prev_entry->offset,
1277                        (vm_size_t)(prev_entry->end - prev_entry->start),
1278                        (vm_size_t)(end - prev_entry->end), cred != NULL &&
1279                        (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1280                 /*
1281                  * We were able to extend the object.  Determine if we
1282                  * can extend the previous map entry to include the
1283                  * new range as well.
1284                  */
1285                 if ((prev_entry->inheritance == inheritance) &&
1286                     (prev_entry->protection == prot) &&
1287                     (prev_entry->max_protection == max)) {
1288                         map->size += (end - prev_entry->end);
1289                         prev_entry->end = end;
1290                         vm_map_entry_resize_free(map, prev_entry);
1291                         vm_map_simplify_entry(map, prev_entry);
1292                         return (KERN_SUCCESS);
1293                 }
1294
1295                 /*
1296                  * If we can extend the object but cannot extend the
1297                  * map entry, we have to create a new map entry.  We
1298                  * must bump the ref count on the extended object to
1299                  * account for it.  object may be NULL.
1300                  */
1301                 object = prev_entry->object.vm_object;
1302                 offset = prev_entry->offset +
1303                         (prev_entry->end - prev_entry->start);
1304                 vm_object_reference(object);
1305                 if (cred != NULL && object != NULL && object->cred != NULL &&
1306                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1307                         /* Object already accounts for this uid. */
1308                         cred = NULL;
1309                 }
1310         }
1311         if (cred != NULL)
1312                 crhold(cred);
1313
1314         /*
1315          * Create a new entry
1316          */
1317         new_entry = vm_map_entry_create(map);
1318         new_entry->start = start;
1319         new_entry->end = end;
1320         new_entry->cred = NULL;
1321
1322         new_entry->eflags = protoeflags;
1323         new_entry->object.vm_object = object;
1324         new_entry->offset = offset;
1325         new_entry->avail_ssize = 0;
1326
1327         new_entry->inheritance = inheritance;
1328         new_entry->protection = prot;
1329         new_entry->max_protection = max;
1330         new_entry->wired_count = 0;
1331         new_entry->wiring_thread = NULL;
1332         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1333         new_entry->next_read = start;
1334
1335         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1336             ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1337         new_entry->cred = cred;
1338
1339         /*
1340          * Insert the new entry into the list
1341          */
1342         vm_map_entry_link(map, prev_entry, new_entry);
1343         map->size += new_entry->end - new_entry->start;
1344
1345         /*
1346          * Try to coalesce the new entry with both the previous and next
1347          * entries in the list.  Previously, we only attempted to coalesce
1348          * with the previous entry when object is NULL.  Here, we handle the
1349          * other cases, which are less common.
1350          */
1351         vm_map_simplify_entry(map, new_entry);
1352
1353         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1354                 vm_map_pmap_enter(map, start, prot,
1355                                     object, OFF_TO_IDX(offset), end - start,
1356                                     cow & MAP_PREFAULT_PARTIAL);
1357         }
1358
1359         return (KERN_SUCCESS);
1360 }
1361
1362 /*
1363  *      vm_map_findspace:
1364  *
1365  *      Find the first fit (lowest VM address) for "length" free bytes
1366  *      beginning at address >= start in the given map.
1367  *
1368  *      In a vm_map_entry, "adj_free" is the amount of free space
1369  *      adjacent (higher address) to this entry, and "max_free" is the
1370  *      maximum amount of contiguous free space in its subtree.  This
1371  *      allows finding a free region in one path down the tree, so
1372  *      O(log n) amortized with splay trees.
1373  *
1374  *      The map must be locked, and leaves it so.
1375  *
1376  *      Returns: 0 on success, and starting address in *addr,
1377  *               1 if insufficient space.
1378  */
1379 int
1380 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1381     vm_offset_t *addr)  /* OUT */
1382 {
1383         vm_map_entry_t entry;
1384         vm_offset_t st;
1385
1386         /*
1387          * Request must fit within min/max VM address and must avoid
1388          * address wrap.
1389          */
1390         if (start < map->min_offset)
1391                 start = map->min_offset;
1392         if (start + length > map->max_offset || start + length < start)
1393                 return (1);
1394
1395         /* Empty tree means wide open address space. */
1396         if (map->root == NULL) {
1397                 *addr = start;
1398                 return (0);
1399         }
1400
1401         /*
1402          * After splay, if start comes before root node, then there
1403          * must be a gap from start to the root.
1404          */
1405         map->root = vm_map_entry_splay(start, map->root);
1406         if (start + length <= map->root->start) {
1407                 *addr = start;
1408                 return (0);
1409         }
1410
1411         /*
1412          * Root is the last node that might begin its gap before
1413          * start, and this is the last comparison where address
1414          * wrap might be a problem.
1415          */
1416         st = (start > map->root->end) ? start : map->root->end;
1417         if (length <= map->root->end + map->root->adj_free - st) {
1418                 *addr = st;
1419                 return (0);
1420         }
1421
1422         /* With max_free, can immediately tell if no solution. */
1423         entry = map->root->right;
1424         if (entry == NULL || length > entry->max_free)
1425                 return (1);
1426
1427         /*
1428          * Search the right subtree in the order: left subtree, root,
1429          * right subtree (first fit).  The previous splay implies that
1430          * all regions in the right subtree have addresses > start.
1431          */
1432         while (entry != NULL) {
1433                 if (entry->left != NULL && entry->left->max_free >= length)
1434                         entry = entry->left;
1435                 else if (entry->adj_free >= length) {
1436                         *addr = entry->end;
1437                         return (0);
1438                 } else
1439                         entry = entry->right;
1440         }
1441
1442         /* Can't get here, so panic if we do. */
1443         panic("vm_map_findspace: max_free corrupt");
1444 }
1445
1446 int
1447 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1448     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1449     vm_prot_t max, int cow)
1450 {
1451         vm_offset_t end;
1452         int result;
1453
1454         end = start + length;
1455         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1456             object == NULL,
1457             ("vm_map_fixed: non-NULL backing object for stack"));
1458         vm_map_lock(map);
1459         VM_MAP_RANGE_CHECK(map, start, end);
1460         if ((cow & MAP_CHECK_EXCL) == 0)
1461                 vm_map_delete(map, start, end);
1462         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1463                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1464                     prot, max, cow);
1465         } else {
1466                 result = vm_map_insert(map, object, offset, start, end,
1467                     prot, max, cow);
1468         }
1469         vm_map_unlock(map);
1470         return (result);
1471 }
1472
1473 /*
1474  *      vm_map_find finds an unallocated region in the target address
1475  *      map with the given length.  The search is defined to be
1476  *      first-fit from the specified address; the region found is
1477  *      returned in the same parameter.
1478  *
1479  *      If object is non-NULL, ref count must be bumped by caller
1480  *      prior to making call to account for the new entry.
1481  */
1482 int
1483 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1484             vm_offset_t *addr,  /* IN/OUT */
1485             vm_size_t length, vm_offset_t max_addr, int find_space,
1486             vm_prot_t prot, vm_prot_t max, int cow)
1487 {
1488         vm_offset_t alignment, initial_addr, start;
1489         int result;
1490
1491         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1492             object == NULL,
1493             ("vm_map_find: non-NULL backing object for stack"));
1494         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1495             (object->flags & OBJ_COLORED) == 0))
1496                 find_space = VMFS_ANY_SPACE;
1497         if (find_space >> 8 != 0) {
1498                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1499                 alignment = (vm_offset_t)1 << (find_space >> 8);
1500         } else
1501                 alignment = 0;
1502         initial_addr = *addr;
1503 again:
1504         start = initial_addr;
1505         vm_map_lock(map);
1506         do {
1507                 if (find_space != VMFS_NO_SPACE) {
1508                         if (vm_map_findspace(map, start, length, addr) ||
1509                             (max_addr != 0 && *addr + length > max_addr)) {
1510                                 vm_map_unlock(map);
1511                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1512                                         find_space = VMFS_ANY_SPACE;
1513                                         goto again;
1514                                 }
1515                                 return (KERN_NO_SPACE);
1516                         }
1517                         switch (find_space) {
1518                         case VMFS_SUPER_SPACE:
1519                         case VMFS_OPTIMAL_SPACE:
1520                                 pmap_align_superpage(object, offset, addr,
1521                                     length);
1522                                 break;
1523                         case VMFS_ANY_SPACE:
1524                                 break;
1525                         default:
1526                                 if ((*addr & (alignment - 1)) != 0) {
1527                                         *addr &= ~(alignment - 1);
1528                                         *addr += alignment;
1529                                 }
1530                                 break;
1531                         }
1532
1533                         start = *addr;
1534                 }
1535                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1536                         result = vm_map_stack_locked(map, start, length,
1537                             sgrowsiz, prot, max, cow);
1538                 } else {
1539                         result = vm_map_insert(map, object, offset, start,
1540                             start + length, prot, max, cow);
1541                 }
1542         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1543             find_space != VMFS_ANY_SPACE);
1544         vm_map_unlock(map);
1545         return (result);
1546 }
1547
1548 /*
1549  *      vm_map_simplify_entry:
1550  *
1551  *      Simplify the given map entry by merging with either neighbor.  This
1552  *      routine also has the ability to merge with both neighbors.
1553  *
1554  *      The map must be locked.
1555  *
1556  *      This routine guarantees that the passed entry remains valid (though
1557  *      possibly extended).  When merging, this routine may delete one or
1558  *      both neighbors.
1559  */
1560 void
1561 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1562 {
1563         vm_map_entry_t next, prev;
1564         vm_size_t prevsize, esize;
1565
1566         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1567             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1568                 return;
1569
1570         prev = entry->prev;
1571         if (prev != &map->header) {
1572                 prevsize = prev->end - prev->start;
1573                 if ( (prev->end == entry->start) &&
1574                      (prev->object.vm_object == entry->object.vm_object) &&
1575                      (!prev->object.vm_object ||
1576                         (prev->offset + prevsize == entry->offset)) &&
1577                      (prev->eflags == entry->eflags) &&
1578                      (prev->protection == entry->protection) &&
1579                      (prev->max_protection == entry->max_protection) &&
1580                      (prev->inheritance == entry->inheritance) &&
1581                      (prev->wired_count == entry->wired_count) &&
1582                      (prev->cred == entry->cred)) {
1583                         vm_map_entry_unlink(map, prev);
1584                         entry->start = prev->start;
1585                         entry->offset = prev->offset;
1586                         if (entry->prev != &map->header)
1587                                 vm_map_entry_resize_free(map, entry->prev);
1588
1589                         /*
1590                          * If the backing object is a vnode object,
1591                          * vm_object_deallocate() calls vrele().
1592                          * However, vrele() does not lock the vnode
1593                          * because the vnode has additional
1594                          * references.  Thus, the map lock can be kept
1595                          * without causing a lock-order reversal with
1596                          * the vnode lock.
1597                          *
1598                          * Since we count the number of virtual page
1599                          * mappings in object->un_pager.vnp.writemappings,
1600                          * the writemappings value should not be adjusted
1601                          * when the entry is disposed of.
1602                          */
1603                         if (prev->object.vm_object)
1604                                 vm_object_deallocate(prev->object.vm_object);
1605                         if (prev->cred != NULL)
1606                                 crfree(prev->cred);
1607                         vm_map_entry_dispose(map, prev);
1608                 }
1609         }
1610
1611         next = entry->next;
1612         if (next != &map->header) {
1613                 esize = entry->end - entry->start;
1614                 if ((entry->end == next->start) &&
1615                     (next->object.vm_object == entry->object.vm_object) &&
1616                      (!entry->object.vm_object ||
1617                         (entry->offset + esize == next->offset)) &&
1618                     (next->eflags == entry->eflags) &&
1619                     (next->protection == entry->protection) &&
1620                     (next->max_protection == entry->max_protection) &&
1621                     (next->inheritance == entry->inheritance) &&
1622                     (next->wired_count == entry->wired_count) &&
1623                     (next->cred == entry->cred)) {
1624                         vm_map_entry_unlink(map, next);
1625                         entry->end = next->end;
1626                         vm_map_entry_resize_free(map, entry);
1627
1628                         /*
1629                          * See comment above.
1630                          */
1631                         if (next->object.vm_object)
1632                                 vm_object_deallocate(next->object.vm_object);
1633                         if (next->cred != NULL)
1634                                 crfree(next->cred);
1635                         vm_map_entry_dispose(map, next);
1636                 }
1637         }
1638 }
1639 /*
1640  *      vm_map_clip_start:      [ internal use only ]
1641  *
1642  *      Asserts that the given entry begins at or after
1643  *      the specified address; if necessary,
1644  *      it splits the entry into two.
1645  */
1646 #define vm_map_clip_start(map, entry, startaddr) \
1647 { \
1648         if (startaddr > entry->start) \
1649                 _vm_map_clip_start(map, entry, startaddr); \
1650 }
1651
1652 /*
1653  *      This routine is called only when it is known that
1654  *      the entry must be split.
1655  */
1656 static void
1657 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1658 {
1659         vm_map_entry_t new_entry;
1660
1661         VM_MAP_ASSERT_LOCKED(map);
1662
1663         /*
1664          * Split off the front portion -- note that we must insert the new
1665          * entry BEFORE this one, so that this entry has the specified
1666          * starting address.
1667          */
1668         vm_map_simplify_entry(map, entry);
1669
1670         /*
1671          * If there is no object backing this entry, we might as well create
1672          * one now.  If we defer it, an object can get created after the map
1673          * is clipped, and individual objects will be created for the split-up
1674          * map.  This is a bit of a hack, but is also about the best place to
1675          * put this improvement.
1676          */
1677         if (entry->object.vm_object == NULL && !map->system_map) {
1678                 vm_object_t object;
1679                 object = vm_object_allocate(OBJT_DEFAULT,
1680                                 atop(entry->end - entry->start));
1681                 entry->object.vm_object = object;
1682                 entry->offset = 0;
1683                 if (entry->cred != NULL) {
1684                         object->cred = entry->cred;
1685                         object->charge = entry->end - entry->start;
1686                         entry->cred = NULL;
1687                 }
1688         } else if (entry->object.vm_object != NULL &&
1689                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1690                    entry->cred != NULL) {
1691                 VM_OBJECT_WLOCK(entry->object.vm_object);
1692                 KASSERT(entry->object.vm_object->cred == NULL,
1693                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1694                 entry->object.vm_object->cred = entry->cred;
1695                 entry->object.vm_object->charge = entry->end - entry->start;
1696                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1697                 entry->cred = NULL;
1698         }
1699
1700         new_entry = vm_map_entry_create(map);
1701         *new_entry = *entry;
1702
1703         new_entry->end = start;
1704         entry->offset += (start - entry->start);
1705         entry->start = start;
1706         if (new_entry->cred != NULL)
1707                 crhold(entry->cred);
1708
1709         vm_map_entry_link(map, entry->prev, new_entry);
1710
1711         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1712                 vm_object_reference(new_entry->object.vm_object);
1713                 /*
1714                  * The object->un_pager.vnp.writemappings for the
1715                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1716                  * kept as is here.  The virtual pages are
1717                  * re-distributed among the clipped entries, so the sum is
1718                  * left the same.
1719                  */
1720         }
1721 }
1722
1723 /*
1724  *      vm_map_clip_end:        [ internal use only ]
1725  *
1726  *      Asserts that the given entry ends at or before
1727  *      the specified address; if necessary,
1728  *      it splits the entry into two.
1729  */
1730 #define vm_map_clip_end(map, entry, endaddr) \
1731 { \
1732         if ((endaddr) < (entry->end)) \
1733                 _vm_map_clip_end((map), (entry), (endaddr)); \
1734 }
1735
1736 /*
1737  *      This routine is called only when it is known that
1738  *      the entry must be split.
1739  */
1740 static void
1741 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1742 {
1743         vm_map_entry_t new_entry;
1744
1745         VM_MAP_ASSERT_LOCKED(map);
1746
1747         /*
1748          * If there is no object backing this entry, we might as well create
1749          * one now.  If we defer it, an object can get created after the map
1750          * is clipped, and individual objects will be created for the split-up
1751          * map.  This is a bit of a hack, but is also about the best place to
1752          * put this improvement.
1753          */
1754         if (entry->object.vm_object == NULL && !map->system_map) {
1755                 vm_object_t object;
1756                 object = vm_object_allocate(OBJT_DEFAULT,
1757                                 atop(entry->end - entry->start));
1758                 entry->object.vm_object = object;
1759                 entry->offset = 0;
1760                 if (entry->cred != NULL) {
1761                         object->cred = entry->cred;
1762                         object->charge = entry->end - entry->start;
1763                         entry->cred = NULL;
1764                 }
1765         } else if (entry->object.vm_object != NULL &&
1766                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1767                    entry->cred != NULL) {
1768                 VM_OBJECT_WLOCK(entry->object.vm_object);
1769                 KASSERT(entry->object.vm_object->cred == NULL,
1770                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1771                 entry->object.vm_object->cred = entry->cred;
1772                 entry->object.vm_object->charge = entry->end - entry->start;
1773                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1774                 entry->cred = NULL;
1775         }
1776
1777         /*
1778          * Create a new entry and insert it AFTER the specified entry
1779          */
1780         new_entry = vm_map_entry_create(map);
1781         *new_entry = *entry;
1782
1783         new_entry->start = entry->end = end;
1784         new_entry->offset += (end - entry->start);
1785         if (new_entry->cred != NULL)
1786                 crhold(entry->cred);
1787
1788         vm_map_entry_link(map, entry, new_entry);
1789
1790         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1791                 vm_object_reference(new_entry->object.vm_object);
1792         }
1793 }
1794
1795 /*
1796  *      vm_map_submap:          [ kernel use only ]
1797  *
1798  *      Mark the given range as handled by a subordinate map.
1799  *
1800  *      This range must have been created with vm_map_find,
1801  *      and no other operations may have been performed on this
1802  *      range prior to calling vm_map_submap.
1803  *
1804  *      Only a limited number of operations can be performed
1805  *      within this rage after calling vm_map_submap:
1806  *              vm_fault
1807  *      [Don't try vm_map_copy!]
1808  *
1809  *      To remove a submapping, one must first remove the
1810  *      range from the superior map, and then destroy the
1811  *      submap (if desired).  [Better yet, don't try it.]
1812  */
1813 int
1814 vm_map_submap(
1815         vm_map_t map,
1816         vm_offset_t start,
1817         vm_offset_t end,
1818         vm_map_t submap)
1819 {
1820         vm_map_entry_t entry;
1821         int result = KERN_INVALID_ARGUMENT;
1822
1823         vm_map_lock(map);
1824
1825         VM_MAP_RANGE_CHECK(map, start, end);
1826
1827         if (vm_map_lookup_entry(map, start, &entry)) {
1828                 vm_map_clip_start(map, entry, start);
1829         } else
1830                 entry = entry->next;
1831
1832         vm_map_clip_end(map, entry, end);
1833
1834         if ((entry->start == start) && (entry->end == end) &&
1835             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1836             (entry->object.vm_object == NULL)) {
1837                 entry->object.sub_map = submap;
1838                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1839                 result = KERN_SUCCESS;
1840         }
1841         vm_map_unlock(map);
1842
1843         return (result);
1844 }
1845
1846 /*
1847  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1848  */
1849 #define MAX_INIT_PT     96
1850
1851 /*
1852  *      vm_map_pmap_enter:
1853  *
1854  *      Preload the specified map's pmap with mappings to the specified
1855  *      object's memory-resident pages.  No further physical pages are
1856  *      allocated, and no further virtual pages are retrieved from secondary
1857  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1858  *      limited number of page mappings are created at the low-end of the
1859  *      specified address range.  (For this purpose, a superpage mapping
1860  *      counts as one page mapping.)  Otherwise, all resident pages within
1861  *      the specified address range are mapped.
1862  */
1863 static void
1864 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1865     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1866 {
1867         vm_offset_t start;
1868         vm_page_t p, p_start;
1869         vm_pindex_t mask, psize, threshold, tmpidx;
1870
1871         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1872                 return;
1873         VM_OBJECT_RLOCK(object);
1874         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1875                 VM_OBJECT_RUNLOCK(object);
1876                 VM_OBJECT_WLOCK(object);
1877                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1878                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1879                             size);
1880                         VM_OBJECT_WUNLOCK(object);
1881                         return;
1882                 }
1883                 VM_OBJECT_LOCK_DOWNGRADE(object);
1884         }
1885
1886         psize = atop(size);
1887         if (psize + pindex > object->size) {
1888                 if (object->size < pindex) {
1889                         VM_OBJECT_RUNLOCK(object);
1890                         return;
1891                 }
1892                 psize = object->size - pindex;
1893         }
1894
1895         start = 0;
1896         p_start = NULL;
1897         threshold = MAX_INIT_PT;
1898
1899         p = vm_page_find_least(object, pindex);
1900         /*
1901          * Assert: the variable p is either (1) the page with the
1902          * least pindex greater than or equal to the parameter pindex
1903          * or (2) NULL.
1904          */
1905         for (;
1906              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1907              p = TAILQ_NEXT(p, listq)) {
1908                 /*
1909                  * don't allow an madvise to blow away our really
1910                  * free pages allocating pv entries.
1911                  */
1912                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1913                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1914                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1915                     tmpidx >= threshold)) {
1916                         psize = tmpidx;
1917                         break;
1918                 }
1919                 if (p->valid == VM_PAGE_BITS_ALL) {
1920                         if (p_start == NULL) {
1921                                 start = addr + ptoa(tmpidx);
1922                                 p_start = p;
1923                         }
1924                         /* Jump ahead if a superpage mapping is possible. */
1925                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1926                             (pagesizes[p->psind] - 1)) == 0) {
1927                                 mask = atop(pagesizes[p->psind]) - 1;
1928                                 if (tmpidx + mask < psize &&
1929                                     vm_page_ps_is_valid(p)) {
1930                                         p += mask;
1931                                         threshold += mask;
1932                                 }
1933                         }
1934                 } else if (p_start != NULL) {
1935                         pmap_enter_object(map->pmap, start, addr +
1936                             ptoa(tmpidx), p_start, prot);
1937                         p_start = NULL;
1938                 }
1939         }
1940         if (p_start != NULL)
1941                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1942                     p_start, prot);
1943         VM_OBJECT_RUNLOCK(object);
1944 }
1945
1946 /*
1947  *      vm_map_protect:
1948  *
1949  *      Sets the protection of the specified address
1950  *      region in the target map.  If "set_max" is
1951  *      specified, the maximum protection is to be set;
1952  *      otherwise, only the current protection is affected.
1953  */
1954 int
1955 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1956                vm_prot_t new_prot, boolean_t set_max)
1957 {
1958         vm_map_entry_t current, entry;
1959         vm_object_t obj;
1960         struct ucred *cred;
1961         vm_prot_t old_prot;
1962
1963         if (start == end)
1964                 return (KERN_SUCCESS);
1965
1966         vm_map_lock(map);
1967
1968         VM_MAP_RANGE_CHECK(map, start, end);
1969
1970         if (vm_map_lookup_entry(map, start, &entry)) {
1971                 vm_map_clip_start(map, entry, start);
1972         } else {
1973                 entry = entry->next;
1974         }
1975
1976         /*
1977          * Make a first pass to check for protection violations.
1978          */
1979         current = entry;
1980         while ((current != &map->header) && (current->start < end)) {
1981                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1982                         vm_map_unlock(map);
1983                         return (KERN_INVALID_ARGUMENT);
1984                 }
1985                 if ((new_prot & current->max_protection) != new_prot) {
1986                         vm_map_unlock(map);
1987                         return (KERN_PROTECTION_FAILURE);
1988                 }
1989                 current = current->next;
1990         }
1991
1992
1993         /*
1994          * Do an accounting pass for private read-only mappings that
1995          * now will do cow due to allowed write (e.g. debugger sets
1996          * breakpoint on text segment)
1997          */
1998         for (current = entry; (current != &map->header) &&
1999              (current->start < end); current = current->next) {
2000
2001                 vm_map_clip_end(map, current, end);
2002
2003                 if (set_max ||
2004                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2005                     ENTRY_CHARGED(current)) {
2006                         continue;
2007                 }
2008
2009                 cred = curthread->td_ucred;
2010                 obj = current->object.vm_object;
2011
2012                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2013                         if (!swap_reserve(current->end - current->start)) {
2014                                 vm_map_unlock(map);
2015                                 return (KERN_RESOURCE_SHORTAGE);
2016                         }
2017                         crhold(cred);
2018                         current->cred = cred;
2019                         continue;
2020                 }
2021
2022                 VM_OBJECT_WLOCK(obj);
2023                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2024                         VM_OBJECT_WUNLOCK(obj);
2025                         continue;
2026                 }
2027
2028                 /*
2029                  * Charge for the whole object allocation now, since
2030                  * we cannot distinguish between non-charged and
2031                  * charged clipped mapping of the same object later.
2032                  */
2033                 KASSERT(obj->charge == 0,
2034                     ("vm_map_protect: object %p overcharged (entry %p)",
2035                     obj, current));
2036                 if (!swap_reserve(ptoa(obj->size))) {
2037                         VM_OBJECT_WUNLOCK(obj);
2038                         vm_map_unlock(map);
2039                         return (KERN_RESOURCE_SHORTAGE);
2040                 }
2041
2042                 crhold(cred);
2043                 obj->cred = cred;
2044                 obj->charge = ptoa(obj->size);
2045                 VM_OBJECT_WUNLOCK(obj);
2046         }
2047
2048         /*
2049          * Go back and fix up protections. [Note that clipping is not
2050          * necessary the second time.]
2051          */
2052         current = entry;
2053         while ((current != &map->header) && (current->start < end)) {
2054                 old_prot = current->protection;
2055
2056                 if (set_max)
2057                         current->protection =
2058                             (current->max_protection = new_prot) &
2059                             old_prot;
2060                 else
2061                         current->protection = new_prot;
2062
2063                 /*
2064                  * For user wired map entries, the normal lazy evaluation of
2065                  * write access upgrades through soft page faults is
2066                  * undesirable.  Instead, immediately copy any pages that are
2067                  * copy-on-write and enable write access in the physical map.
2068                  */
2069                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2070                     (current->protection & VM_PROT_WRITE) != 0 &&
2071                     (old_prot & VM_PROT_WRITE) == 0)
2072                         vm_fault_copy_entry(map, map, current, current, NULL);
2073
2074                 /*
2075                  * When restricting access, update the physical map.  Worry
2076                  * about copy-on-write here.
2077                  */
2078                 if ((old_prot & ~current->protection) != 0) {
2079 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2080                                                         VM_PROT_ALL)
2081                         pmap_protect(map->pmap, current->start,
2082                             current->end,
2083                             current->protection & MASK(current));
2084 #undef  MASK
2085                 }
2086                 vm_map_simplify_entry(map, current);
2087                 current = current->next;
2088         }
2089         vm_map_unlock(map);
2090         return (KERN_SUCCESS);
2091 }
2092
2093 /*
2094  *      vm_map_madvise:
2095  *
2096  *      This routine traverses a processes map handling the madvise
2097  *      system call.  Advisories are classified as either those effecting
2098  *      the vm_map_entry structure, or those effecting the underlying
2099  *      objects.
2100  */
2101 int
2102 vm_map_madvise(
2103         vm_map_t map,
2104         vm_offset_t start,
2105         vm_offset_t end,
2106         int behav)
2107 {
2108         vm_map_entry_t current, entry;
2109         int modify_map = 0;
2110
2111         /*
2112          * Some madvise calls directly modify the vm_map_entry, in which case
2113          * we need to use an exclusive lock on the map and we need to perform
2114          * various clipping operations.  Otherwise we only need a read-lock
2115          * on the map.
2116          */
2117         switch(behav) {
2118         case MADV_NORMAL:
2119         case MADV_SEQUENTIAL:
2120         case MADV_RANDOM:
2121         case MADV_NOSYNC:
2122         case MADV_AUTOSYNC:
2123         case MADV_NOCORE:
2124         case MADV_CORE:
2125                 if (start == end)
2126                         return (KERN_SUCCESS);
2127                 modify_map = 1;
2128                 vm_map_lock(map);
2129                 break;
2130         case MADV_WILLNEED:
2131         case MADV_DONTNEED:
2132         case MADV_FREE:
2133                 if (start == end)
2134                         return (KERN_SUCCESS);
2135                 vm_map_lock_read(map);
2136                 break;
2137         default:
2138                 return (KERN_INVALID_ARGUMENT);
2139         }
2140
2141         /*
2142          * Locate starting entry and clip if necessary.
2143          */
2144         VM_MAP_RANGE_CHECK(map, start, end);
2145
2146         if (vm_map_lookup_entry(map, start, &entry)) {
2147                 if (modify_map)
2148                         vm_map_clip_start(map, entry, start);
2149         } else {
2150                 entry = entry->next;
2151         }
2152
2153         if (modify_map) {
2154                 /*
2155                  * madvise behaviors that are implemented in the vm_map_entry.
2156                  *
2157                  * We clip the vm_map_entry so that behavioral changes are
2158                  * limited to the specified address range.
2159                  */
2160                 for (current = entry;
2161                      (current != &map->header) && (current->start < end);
2162                      current = current->next
2163                 ) {
2164                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2165                                 continue;
2166
2167                         vm_map_clip_end(map, current, end);
2168
2169                         switch (behav) {
2170                         case MADV_NORMAL:
2171                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2172                                 break;
2173                         case MADV_SEQUENTIAL:
2174                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2175                                 break;
2176                         case MADV_RANDOM:
2177                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2178                                 break;
2179                         case MADV_NOSYNC:
2180                                 current->eflags |= MAP_ENTRY_NOSYNC;
2181                                 break;
2182                         case MADV_AUTOSYNC:
2183                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2184                                 break;
2185                         case MADV_NOCORE:
2186                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2187                                 break;
2188                         case MADV_CORE:
2189                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2190                                 break;
2191                         default:
2192                                 break;
2193                         }
2194                         vm_map_simplify_entry(map, current);
2195                 }
2196                 vm_map_unlock(map);
2197         } else {
2198                 vm_pindex_t pstart, pend;
2199
2200                 /*
2201                  * madvise behaviors that are implemented in the underlying
2202                  * vm_object.
2203                  *
2204                  * Since we don't clip the vm_map_entry, we have to clip
2205                  * the vm_object pindex and count.
2206                  */
2207                 for (current = entry;
2208                      (current != &map->header) && (current->start < end);
2209                      current = current->next
2210                 ) {
2211                         vm_offset_t useEnd, useStart;
2212
2213                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2214                                 continue;
2215
2216                         pstart = OFF_TO_IDX(current->offset);
2217                         pend = pstart + atop(current->end - current->start);
2218                         useStart = current->start;
2219                         useEnd = current->end;
2220
2221                         if (current->start < start) {
2222                                 pstart += atop(start - current->start);
2223                                 useStart = start;
2224                         }
2225                         if (current->end > end) {
2226                                 pend -= atop(current->end - end);
2227                                 useEnd = end;
2228                         }
2229
2230                         if (pstart >= pend)
2231                                 continue;
2232
2233                         /*
2234                          * Perform the pmap_advise() before clearing
2235                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2236                          * concurrent pmap operation, such as pmap_remove(),
2237                          * could clear a reference in the pmap and set
2238                          * PGA_REFERENCED on the page before the pmap_advise()
2239                          * had completed.  Consequently, the page would appear
2240                          * referenced based upon an old reference that
2241                          * occurred before this pmap_advise() ran.
2242                          */
2243                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2244                                 pmap_advise(map->pmap, useStart, useEnd,
2245                                     behav);
2246
2247                         vm_object_madvise(current->object.vm_object, pstart,
2248                             pend, behav);
2249
2250                         /*
2251                          * Pre-populate paging structures in the
2252                          * WILLNEED case.  For wired entries, the
2253                          * paging structures are already populated.
2254                          */
2255                         if (behav == MADV_WILLNEED &&
2256                             current->wired_count == 0) {
2257                                 vm_map_pmap_enter(map,
2258                                     useStart,
2259                                     current->protection,
2260                                     current->object.vm_object,
2261                                     pstart,
2262                                     ptoa(pend - pstart),
2263                                     MAP_PREFAULT_MADVISE
2264                                 );
2265                         }
2266                 }
2267                 vm_map_unlock_read(map);
2268         }
2269         return (0);
2270 }
2271
2272
2273 /*
2274  *      vm_map_inherit:
2275  *
2276  *      Sets the inheritance of the specified address
2277  *      range in the target map.  Inheritance
2278  *      affects how the map will be shared with
2279  *      child maps at the time of vmspace_fork.
2280  */
2281 int
2282 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2283                vm_inherit_t new_inheritance)
2284 {
2285         vm_map_entry_t entry;
2286         vm_map_entry_t temp_entry;
2287
2288         switch (new_inheritance) {
2289         case VM_INHERIT_NONE:
2290         case VM_INHERIT_COPY:
2291         case VM_INHERIT_SHARE:
2292                 break;
2293         default:
2294                 return (KERN_INVALID_ARGUMENT);
2295         }
2296         if (start == end)
2297                 return (KERN_SUCCESS);
2298         vm_map_lock(map);
2299         VM_MAP_RANGE_CHECK(map, start, end);
2300         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2301                 entry = temp_entry;
2302                 vm_map_clip_start(map, entry, start);
2303         } else
2304                 entry = temp_entry->next;
2305         while ((entry != &map->header) && (entry->start < end)) {
2306                 vm_map_clip_end(map, entry, end);
2307                 entry->inheritance = new_inheritance;
2308                 vm_map_simplify_entry(map, entry);
2309                 entry = entry->next;
2310         }
2311         vm_map_unlock(map);
2312         return (KERN_SUCCESS);
2313 }
2314
2315 /*
2316  *      vm_map_unwire:
2317  *
2318  *      Implements both kernel and user unwiring.
2319  */
2320 int
2321 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2322     int flags)
2323 {
2324         vm_map_entry_t entry, first_entry, tmp_entry;
2325         vm_offset_t saved_start;
2326         unsigned int last_timestamp;
2327         int rv;
2328         boolean_t need_wakeup, result, user_unwire;
2329
2330         if (start == end)
2331                 return (KERN_SUCCESS);
2332         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2333         vm_map_lock(map);
2334         VM_MAP_RANGE_CHECK(map, start, end);
2335         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2336                 if (flags & VM_MAP_WIRE_HOLESOK)
2337                         first_entry = first_entry->next;
2338                 else {
2339                         vm_map_unlock(map);
2340                         return (KERN_INVALID_ADDRESS);
2341                 }
2342         }
2343         last_timestamp = map->timestamp;
2344         entry = first_entry;
2345         while (entry != &map->header && entry->start < end) {
2346                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2347                         /*
2348                          * We have not yet clipped the entry.
2349                          */
2350                         saved_start = (start >= entry->start) ? start :
2351                             entry->start;
2352                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2353                         if (vm_map_unlock_and_wait(map, 0)) {
2354                                 /*
2355                                  * Allow interruption of user unwiring?
2356                                  */
2357                         }
2358                         vm_map_lock(map);
2359                         if (last_timestamp+1 != map->timestamp) {
2360                                 /*
2361                                  * Look again for the entry because the map was
2362                                  * modified while it was unlocked.
2363                                  * Specifically, the entry may have been
2364                                  * clipped, merged, or deleted.
2365                                  */
2366                                 if (!vm_map_lookup_entry(map, saved_start,
2367                                     &tmp_entry)) {
2368                                         if (flags & VM_MAP_WIRE_HOLESOK)
2369                                                 tmp_entry = tmp_entry->next;
2370                                         else {
2371                                                 if (saved_start == start) {
2372                                                         /*
2373                                                          * First_entry has been deleted.
2374                                                          */
2375                                                         vm_map_unlock(map);
2376                                                         return (KERN_INVALID_ADDRESS);
2377                                                 }
2378                                                 end = saved_start;
2379                                                 rv = KERN_INVALID_ADDRESS;
2380                                                 goto done;
2381                                         }
2382                                 }
2383                                 if (entry == first_entry)
2384                                         first_entry = tmp_entry;
2385                                 else
2386                                         first_entry = NULL;
2387                                 entry = tmp_entry;
2388                         }
2389                         last_timestamp = map->timestamp;
2390                         continue;
2391                 }
2392                 vm_map_clip_start(map, entry, start);
2393                 vm_map_clip_end(map, entry, end);
2394                 /*
2395                  * Mark the entry in case the map lock is released.  (See
2396                  * above.)
2397                  */
2398                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2399                     entry->wiring_thread == NULL,
2400                     ("owned map entry %p", entry));
2401                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2402                 entry->wiring_thread = curthread;
2403                 /*
2404                  * Check the map for holes in the specified region.
2405                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2406                  */
2407                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2408                     (entry->end < end && (entry->next == &map->header ||
2409                     entry->next->start > entry->end))) {
2410                         end = entry->end;
2411                         rv = KERN_INVALID_ADDRESS;
2412                         goto done;
2413                 }
2414                 /*
2415                  * If system unwiring, require that the entry is system wired.
2416                  */
2417                 if (!user_unwire &&
2418                     vm_map_entry_system_wired_count(entry) == 0) {
2419                         end = entry->end;
2420                         rv = KERN_INVALID_ARGUMENT;
2421                         goto done;
2422                 }
2423                 entry = entry->next;
2424         }
2425         rv = KERN_SUCCESS;
2426 done:
2427         need_wakeup = FALSE;
2428         if (first_entry == NULL) {
2429                 result = vm_map_lookup_entry(map, start, &first_entry);
2430                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2431                         first_entry = first_entry->next;
2432                 else
2433                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2434         }
2435         for (entry = first_entry; entry != &map->header && entry->start < end;
2436             entry = entry->next) {
2437                 /*
2438                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2439                  * space in the unwired region could have been mapped
2440                  * while the map lock was dropped for draining
2441                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2442                  * could be simultaneously wiring this new mapping
2443                  * entry.  Detect these cases and skip any entries
2444                  * marked as in transition by us.
2445                  */
2446                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2447                     entry->wiring_thread != curthread) {
2448                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2449                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2450                         continue;
2451                 }
2452
2453                 if (rv == KERN_SUCCESS && (!user_unwire ||
2454                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2455                         if (user_unwire)
2456                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2457                         if (entry->wired_count == 1)
2458                                 vm_map_entry_unwire(map, entry);
2459                         else
2460                                 entry->wired_count--;
2461                 }
2462                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2463                     ("vm_map_unwire: in-transition flag missing %p", entry));
2464                 KASSERT(entry->wiring_thread == curthread,
2465                     ("vm_map_unwire: alien wire %p", entry));
2466                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2467                 entry->wiring_thread = NULL;
2468                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2469                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2470                         need_wakeup = TRUE;
2471                 }
2472                 vm_map_simplify_entry(map, entry);
2473         }
2474         vm_map_unlock(map);
2475         if (need_wakeup)
2476                 vm_map_wakeup(map);
2477         return (rv);
2478 }
2479
2480 /*
2481  *      vm_map_wire_entry_failure:
2482  *
2483  *      Handle a wiring failure on the given entry.
2484  *
2485  *      The map should be locked.
2486  */
2487 static void
2488 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2489     vm_offset_t failed_addr)
2490 {
2491
2492         VM_MAP_ASSERT_LOCKED(map);
2493         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2494             entry->wired_count == 1,
2495             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2496         KASSERT(failed_addr < entry->end,
2497             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2498
2499         /*
2500          * If any pages at the start of this entry were successfully wired,
2501          * then unwire them.
2502          */
2503         if (failed_addr > entry->start) {
2504                 pmap_unwire(map->pmap, entry->start, failed_addr);
2505                 vm_object_unwire(entry->object.vm_object, entry->offset,
2506                     failed_addr - entry->start, PQ_ACTIVE);
2507         }
2508
2509         /*
2510          * Assign an out-of-range value to represent the failure to wire this
2511          * entry.
2512          */
2513         entry->wired_count = -1;
2514 }
2515
2516 /*
2517  *      vm_map_wire:
2518  *
2519  *      Implements both kernel and user wiring.
2520  */
2521 int
2522 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2523     int flags)
2524 {
2525         vm_map_entry_t entry, first_entry, tmp_entry;
2526         vm_offset_t faddr, saved_end, saved_start;
2527         unsigned int last_timestamp;
2528         int rv;
2529         boolean_t need_wakeup, result, user_wire;
2530         vm_prot_t prot;
2531
2532         if (start == end)
2533                 return (KERN_SUCCESS);
2534         prot = 0;
2535         if (flags & VM_MAP_WIRE_WRITE)
2536                 prot |= VM_PROT_WRITE;
2537         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2538         vm_map_lock(map);
2539         VM_MAP_RANGE_CHECK(map, start, end);
2540         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2541                 if (flags & VM_MAP_WIRE_HOLESOK)
2542                         first_entry = first_entry->next;
2543                 else {
2544                         vm_map_unlock(map);
2545                         return (KERN_INVALID_ADDRESS);
2546                 }
2547         }
2548         last_timestamp = map->timestamp;
2549         entry = first_entry;
2550         while (entry != &map->header && entry->start < end) {
2551                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2552                         /*
2553                          * We have not yet clipped the entry.
2554                          */
2555                         saved_start = (start >= entry->start) ? start :
2556                             entry->start;
2557                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2558                         if (vm_map_unlock_and_wait(map, 0)) {
2559                                 /*
2560                                  * Allow interruption of user wiring?
2561                                  */
2562                         }
2563                         vm_map_lock(map);
2564                         if (last_timestamp + 1 != map->timestamp) {
2565                                 /*
2566                                  * Look again for the entry because the map was
2567                                  * modified while it was unlocked.
2568                                  * Specifically, the entry may have been
2569                                  * clipped, merged, or deleted.
2570                                  */
2571                                 if (!vm_map_lookup_entry(map, saved_start,
2572                                     &tmp_entry)) {
2573                                         if (flags & VM_MAP_WIRE_HOLESOK)
2574                                                 tmp_entry = tmp_entry->next;
2575                                         else {
2576                                                 if (saved_start == start) {
2577                                                         /*
2578                                                          * first_entry has been deleted.
2579                                                          */
2580                                                         vm_map_unlock(map);
2581                                                         return (KERN_INVALID_ADDRESS);
2582                                                 }
2583                                                 end = saved_start;
2584                                                 rv = KERN_INVALID_ADDRESS;
2585                                                 goto done;
2586                                         }
2587                                 }
2588                                 if (entry == first_entry)
2589                                         first_entry = tmp_entry;
2590                                 else
2591                                         first_entry = NULL;
2592                                 entry = tmp_entry;
2593                         }
2594                         last_timestamp = map->timestamp;
2595                         continue;
2596                 }
2597                 vm_map_clip_start(map, entry, start);
2598                 vm_map_clip_end(map, entry, end);
2599                 /*
2600                  * Mark the entry in case the map lock is released.  (See
2601                  * above.)
2602                  */
2603                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2604                     entry->wiring_thread == NULL,
2605                     ("owned map entry %p", entry));
2606                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2607                 entry->wiring_thread = curthread;
2608                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2609                     || (entry->protection & prot) != prot) {
2610                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2611                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2612                                 end = entry->end;
2613                                 rv = KERN_INVALID_ADDRESS;
2614                                 goto done;
2615                         }
2616                         goto next_entry;
2617                 }
2618                 if (entry->wired_count == 0) {
2619                         entry->wired_count++;
2620                         saved_start = entry->start;
2621                         saved_end = entry->end;
2622
2623                         /*
2624                          * Release the map lock, relying on the in-transition
2625                          * mark.  Mark the map busy for fork.
2626                          */
2627                         vm_map_busy(map);
2628                         vm_map_unlock(map);
2629
2630                         faddr = saved_start;
2631                         do {
2632                                 /*
2633                                  * Simulate a fault to get the page and enter
2634                                  * it into the physical map.
2635                                  */
2636                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2637                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2638                                         break;
2639                         } while ((faddr += PAGE_SIZE) < saved_end);
2640                         vm_map_lock(map);
2641                         vm_map_unbusy(map);
2642                         if (last_timestamp + 1 != map->timestamp) {
2643                                 /*
2644                                  * Look again for the entry because the map was
2645                                  * modified while it was unlocked.  The entry
2646                                  * may have been clipped, but NOT merged or
2647                                  * deleted.
2648                                  */
2649                                 result = vm_map_lookup_entry(map, saved_start,
2650                                     &tmp_entry);
2651                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2652                                 if (entry == first_entry)
2653                                         first_entry = tmp_entry;
2654                                 else
2655                                         first_entry = NULL;
2656                                 entry = tmp_entry;
2657                                 while (entry->end < saved_end) {
2658                                         /*
2659                                          * In case of failure, handle entries
2660                                          * that were not fully wired here;
2661                                          * fully wired entries are handled
2662                                          * later.
2663                                          */
2664                                         if (rv != KERN_SUCCESS &&
2665                                             faddr < entry->end)
2666                                                 vm_map_wire_entry_failure(map,
2667                                                     entry, faddr);
2668                                         entry = entry->next;
2669                                 }
2670                         }
2671                         last_timestamp = map->timestamp;
2672                         if (rv != KERN_SUCCESS) {
2673                                 vm_map_wire_entry_failure(map, entry, faddr);
2674                                 end = entry->end;
2675                                 goto done;
2676                         }
2677                 } else if (!user_wire ||
2678                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2679                         entry->wired_count++;
2680                 }
2681                 /*
2682                  * Check the map for holes in the specified region.
2683                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2684                  */
2685         next_entry:
2686                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2687                     (entry->end < end && (entry->next == &map->header ||
2688                     entry->next->start > entry->end))) {
2689                         end = entry->end;
2690                         rv = KERN_INVALID_ADDRESS;
2691                         goto done;
2692                 }
2693                 entry = entry->next;
2694         }
2695         rv = KERN_SUCCESS;
2696 done:
2697         need_wakeup = FALSE;
2698         if (first_entry == NULL) {
2699                 result = vm_map_lookup_entry(map, start, &first_entry);
2700                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2701                         first_entry = first_entry->next;
2702                 else
2703                         KASSERT(result, ("vm_map_wire: lookup failed"));
2704         }
2705         for (entry = first_entry; entry != &map->header && entry->start < end;
2706             entry = entry->next) {
2707                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2708                         goto next_entry_done;
2709
2710                 /*
2711                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2712                  * space in the unwired region could have been mapped
2713                  * while the map lock was dropped for faulting in the
2714                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2715                  * Moreover, another thread could be simultaneously
2716                  * wiring this new mapping entry.  Detect these cases
2717                  * and skip any entries marked as in transition by us.
2718                  */
2719                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2720                     entry->wiring_thread != curthread) {
2721                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2722                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2723                         continue;
2724                 }
2725
2726                 if (rv == KERN_SUCCESS) {
2727                         if (user_wire)
2728                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2729                 } else if (entry->wired_count == -1) {
2730                         /*
2731                          * Wiring failed on this entry.  Thus, unwiring is
2732                          * unnecessary.
2733                          */
2734                         entry->wired_count = 0;
2735                 } else if (!user_wire ||
2736                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2737                         /*
2738                          * Undo the wiring.  Wiring succeeded on this entry
2739                          * but failed on a later entry.  
2740                          */
2741                         if (entry->wired_count == 1)
2742                                 vm_map_entry_unwire(map, entry);
2743                         else
2744                                 entry->wired_count--;
2745                 }
2746         next_entry_done:
2747                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2748                     ("vm_map_wire: in-transition flag missing %p", entry));
2749                 KASSERT(entry->wiring_thread == curthread,
2750                     ("vm_map_wire: alien wire %p", entry));
2751                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2752                     MAP_ENTRY_WIRE_SKIPPED);
2753                 entry->wiring_thread = NULL;
2754                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2755                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2756                         need_wakeup = TRUE;
2757                 }
2758                 vm_map_simplify_entry(map, entry);
2759         }
2760         vm_map_unlock(map);
2761         if (need_wakeup)
2762                 vm_map_wakeup(map);
2763         return (rv);
2764 }
2765
2766 /*
2767  * vm_map_sync
2768  *
2769  * Push any dirty cached pages in the address range to their pager.
2770  * If syncio is TRUE, dirty pages are written synchronously.
2771  * If invalidate is TRUE, any cached pages are freed as well.
2772  *
2773  * If the size of the region from start to end is zero, we are
2774  * supposed to flush all modified pages within the region containing
2775  * start.  Unfortunately, a region can be split or coalesced with
2776  * neighboring regions, making it difficult to determine what the
2777  * original region was.  Therefore, we approximate this requirement by
2778  * flushing the current region containing start.
2779  *
2780  * Returns an error if any part of the specified range is not mapped.
2781  */
2782 int
2783 vm_map_sync(
2784         vm_map_t map,
2785         vm_offset_t start,
2786         vm_offset_t end,
2787         boolean_t syncio,
2788         boolean_t invalidate)
2789 {
2790         vm_map_entry_t current;
2791         vm_map_entry_t entry;
2792         vm_size_t size;
2793         vm_object_t object;
2794         vm_ooffset_t offset;
2795         unsigned int last_timestamp;
2796         boolean_t failed;
2797
2798         vm_map_lock_read(map);
2799         VM_MAP_RANGE_CHECK(map, start, end);
2800         if (!vm_map_lookup_entry(map, start, &entry)) {
2801                 vm_map_unlock_read(map);
2802                 return (KERN_INVALID_ADDRESS);
2803         } else if (start == end) {
2804                 start = entry->start;
2805                 end = entry->end;
2806         }
2807         /*
2808          * Make a first pass to check for user-wired memory and holes.
2809          */
2810         for (current = entry; current != &map->header && current->start < end;
2811             current = current->next) {
2812                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2813                         vm_map_unlock_read(map);
2814                         return (KERN_INVALID_ARGUMENT);
2815                 }
2816                 if (end > current->end &&
2817                     (current->next == &map->header ||
2818                         current->end != current->next->start)) {
2819                         vm_map_unlock_read(map);
2820                         return (KERN_INVALID_ADDRESS);
2821                 }
2822         }
2823
2824         if (invalidate)
2825                 pmap_remove(map->pmap, start, end);
2826         failed = FALSE;
2827
2828         /*
2829          * Make a second pass, cleaning/uncaching pages from the indicated
2830          * objects as we go.
2831          */
2832         for (current = entry; current != &map->header && current->start < end;) {
2833                 offset = current->offset + (start - current->start);
2834                 size = (end <= current->end ? end : current->end) - start;
2835                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2836                         vm_map_t smap;
2837                         vm_map_entry_t tentry;
2838                         vm_size_t tsize;
2839
2840                         smap = current->object.sub_map;
2841                         vm_map_lock_read(smap);
2842                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2843                         tsize = tentry->end - offset;
2844                         if (tsize < size)
2845                                 size = tsize;
2846                         object = tentry->object.vm_object;
2847                         offset = tentry->offset + (offset - tentry->start);
2848                         vm_map_unlock_read(smap);
2849                 } else {
2850                         object = current->object.vm_object;
2851                 }
2852                 vm_object_reference(object);
2853                 last_timestamp = map->timestamp;
2854                 vm_map_unlock_read(map);
2855                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2856                         failed = TRUE;
2857                 start += size;
2858                 vm_object_deallocate(object);
2859                 vm_map_lock_read(map);
2860                 if (last_timestamp == map->timestamp ||
2861                     !vm_map_lookup_entry(map, start, &current))
2862                         current = current->next;
2863         }
2864
2865         vm_map_unlock_read(map);
2866         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2867 }
2868
2869 /*
2870  *      vm_map_entry_unwire:    [ internal use only ]
2871  *
2872  *      Make the region specified by this entry pageable.
2873  *
2874  *      The map in question should be locked.
2875  *      [This is the reason for this routine's existence.]
2876  */
2877 static void
2878 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2879 {
2880
2881         VM_MAP_ASSERT_LOCKED(map);
2882         KASSERT(entry->wired_count > 0,
2883             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2884         pmap_unwire(map->pmap, entry->start, entry->end);
2885         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2886             entry->start, PQ_ACTIVE);
2887         entry->wired_count = 0;
2888 }
2889
2890 static void
2891 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2892 {
2893
2894         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2895                 vm_object_deallocate(entry->object.vm_object);
2896         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2897 }
2898
2899 /*
2900  *      vm_map_entry_delete:    [ internal use only ]
2901  *
2902  *      Deallocate the given entry from the target map.
2903  */
2904 static void
2905 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2906 {
2907         vm_object_t object;
2908         vm_pindex_t offidxstart, offidxend, count, size1;
2909         vm_ooffset_t size;
2910
2911         vm_map_entry_unlink(map, entry);
2912         object = entry->object.vm_object;
2913         size = entry->end - entry->start;
2914         map->size -= size;
2915
2916         if (entry->cred != NULL) {
2917                 swap_release_by_cred(size, entry->cred);
2918                 crfree(entry->cred);
2919         }
2920
2921         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2922             (object != NULL)) {
2923                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2924                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2925                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2926                 count = OFF_TO_IDX(size);
2927                 offidxstart = OFF_TO_IDX(entry->offset);
2928                 offidxend = offidxstart + count;
2929                 VM_OBJECT_WLOCK(object);
2930                 if (object->ref_count != 1 &&
2931                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2932                     object == kernel_object || object == kmem_object)) {
2933                         vm_object_collapse(object);
2934
2935                         /*
2936                          * The option OBJPR_NOTMAPPED can be passed here
2937                          * because vm_map_delete() already performed
2938                          * pmap_remove() on the only mapping to this range
2939                          * of pages. 
2940                          */
2941                         vm_object_page_remove(object, offidxstart, offidxend,
2942                             OBJPR_NOTMAPPED);
2943                         if (object->type == OBJT_SWAP)
2944                                 swap_pager_freespace(object, offidxstart, count);
2945                         if (offidxend >= object->size &&
2946                             offidxstart < object->size) {
2947                                 size1 = object->size;
2948                                 object->size = offidxstart;
2949                                 if (object->cred != NULL) {
2950                                         size1 -= object->size;
2951                                         KASSERT(object->charge >= ptoa(size1),
2952                                             ("vm_map_entry_delete: object->charge < 0"));
2953                                         swap_release_by_cred(ptoa(size1), object->cred);
2954                                         object->charge -= ptoa(size1);
2955                                 }
2956                         }
2957                 }
2958                 VM_OBJECT_WUNLOCK(object);
2959         } else
2960                 entry->object.vm_object = NULL;
2961         if (map->system_map)
2962                 vm_map_entry_deallocate(entry, TRUE);
2963         else {
2964                 entry->next = curthread->td_map_def_user;
2965                 curthread->td_map_def_user = entry;
2966         }
2967 }
2968
2969 /*
2970  *      vm_map_delete:  [ internal use only ]
2971  *
2972  *      Deallocates the given address range from the target
2973  *      map.
2974  */
2975 int
2976 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2977 {
2978         vm_map_entry_t entry;
2979         vm_map_entry_t first_entry;
2980
2981         VM_MAP_ASSERT_LOCKED(map);
2982         if (start == end)
2983                 return (KERN_SUCCESS);
2984
2985         /*
2986          * Find the start of the region, and clip it
2987          */
2988         if (!vm_map_lookup_entry(map, start, &first_entry))
2989                 entry = first_entry->next;
2990         else {
2991                 entry = first_entry;
2992                 vm_map_clip_start(map, entry, start);
2993         }
2994
2995         /*
2996          * Step through all entries in this region
2997          */
2998         while ((entry != &map->header) && (entry->start < end)) {
2999                 vm_map_entry_t next;
3000
3001                 /*
3002                  * Wait for wiring or unwiring of an entry to complete.
3003                  * Also wait for any system wirings to disappear on
3004                  * user maps.
3005                  */
3006                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3007                     (vm_map_pmap(map) != kernel_pmap &&
3008                     vm_map_entry_system_wired_count(entry) != 0)) {
3009                         unsigned int last_timestamp;
3010                         vm_offset_t saved_start;
3011                         vm_map_entry_t tmp_entry;
3012
3013                         saved_start = entry->start;
3014                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3015                         last_timestamp = map->timestamp;
3016                         (void) vm_map_unlock_and_wait(map, 0);
3017                         vm_map_lock(map);
3018                         if (last_timestamp + 1 != map->timestamp) {
3019                                 /*
3020                                  * Look again for the entry because the map was
3021                                  * modified while it was unlocked.
3022                                  * Specifically, the entry may have been
3023                                  * clipped, merged, or deleted.
3024                                  */
3025                                 if (!vm_map_lookup_entry(map, saved_start,
3026                                                          &tmp_entry))
3027                                         entry = tmp_entry->next;
3028                                 else {
3029                                         entry = tmp_entry;
3030                                         vm_map_clip_start(map, entry,
3031                                                           saved_start);
3032                                 }
3033                         }
3034                         continue;
3035                 }
3036                 vm_map_clip_end(map, entry, end);
3037
3038                 next = entry->next;
3039
3040                 /*
3041                  * Unwire before removing addresses from the pmap; otherwise,
3042                  * unwiring will put the entries back in the pmap.
3043                  */
3044                 if (entry->wired_count != 0) {
3045                         vm_map_entry_unwire(map, entry);
3046                 }
3047
3048                 pmap_remove(map->pmap, entry->start, entry->end);
3049
3050                 /*
3051                  * Delete the entry only after removing all pmap
3052                  * entries pointing to its pages.  (Otherwise, its
3053                  * page frames may be reallocated, and any modify bits
3054                  * will be set in the wrong object!)
3055                  */
3056                 vm_map_entry_delete(map, entry);
3057                 entry = next;
3058         }
3059         return (KERN_SUCCESS);
3060 }
3061
3062 /*
3063  *      vm_map_remove:
3064  *
3065  *      Remove the given address range from the target map.
3066  *      This is the exported form of vm_map_delete.
3067  */
3068 int
3069 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3070 {
3071         int result;
3072
3073         vm_map_lock(map);
3074         VM_MAP_RANGE_CHECK(map, start, end);
3075         result = vm_map_delete(map, start, end);
3076         vm_map_unlock(map);
3077         return (result);
3078 }
3079
3080 /*
3081  *      vm_map_check_protection:
3082  *
3083  *      Assert that the target map allows the specified privilege on the
3084  *      entire address region given.  The entire region must be allocated.
3085  *
3086  *      WARNING!  This code does not and should not check whether the
3087  *      contents of the region is accessible.  For example a smaller file
3088  *      might be mapped into a larger address space.
3089  *
3090  *      NOTE!  This code is also called by munmap().
3091  *
3092  *      The map must be locked.  A read lock is sufficient.
3093  */
3094 boolean_t
3095 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3096                         vm_prot_t protection)
3097 {
3098         vm_map_entry_t entry;
3099         vm_map_entry_t tmp_entry;
3100
3101         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3102                 return (FALSE);
3103         entry = tmp_entry;
3104
3105         while (start < end) {
3106                 if (entry == &map->header)
3107                         return (FALSE);
3108                 /*
3109                  * No holes allowed!
3110                  */
3111                 if (start < entry->start)
3112                         return (FALSE);
3113                 /*
3114                  * Check protection associated with entry.
3115                  */
3116                 if ((entry->protection & protection) != protection)
3117                         return (FALSE);
3118                 /* go to next entry */
3119                 start = entry->end;
3120                 entry = entry->next;
3121         }
3122         return (TRUE);
3123 }
3124
3125 /*
3126  *      vm_map_copy_entry:
3127  *
3128  *      Copies the contents of the source entry to the destination
3129  *      entry.  The entries *must* be aligned properly.
3130  */
3131 static void
3132 vm_map_copy_entry(
3133         vm_map_t src_map,
3134         vm_map_t dst_map,
3135         vm_map_entry_t src_entry,
3136         vm_map_entry_t dst_entry,
3137         vm_ooffset_t *fork_charge)
3138 {
3139         vm_object_t src_object;
3140         vm_map_entry_t fake_entry;
3141         vm_offset_t size;
3142         struct ucred *cred;
3143         int charged;
3144
3145         VM_MAP_ASSERT_LOCKED(dst_map);
3146
3147         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3148                 return;
3149
3150         if (src_entry->wired_count == 0 ||
3151             (src_entry->protection & VM_PROT_WRITE) == 0) {
3152                 /*
3153                  * If the source entry is marked needs_copy, it is already
3154                  * write-protected.
3155                  */
3156                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3157                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3158                         pmap_protect(src_map->pmap,
3159                             src_entry->start,
3160                             src_entry->end,
3161                             src_entry->protection & ~VM_PROT_WRITE);
3162                 }
3163
3164                 /*
3165                  * Make a copy of the object.
3166                  */
3167                 size = src_entry->end - src_entry->start;
3168                 if ((src_object = src_entry->object.vm_object) != NULL) {
3169                         VM_OBJECT_WLOCK(src_object);
3170                         charged = ENTRY_CHARGED(src_entry);
3171                         if ((src_object->handle == NULL) &&
3172                                 (src_object->type == OBJT_DEFAULT ||
3173                                  src_object->type == OBJT_SWAP)) {
3174                                 vm_object_collapse(src_object);
3175                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3176                                         vm_object_split(src_entry);
3177                                         src_object = src_entry->object.vm_object;
3178                                 }
3179                         }
3180                         vm_object_reference_locked(src_object);
3181                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3182                         if (src_entry->cred != NULL &&
3183                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3184                                 KASSERT(src_object->cred == NULL,
3185                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3186                                      src_object));
3187                                 src_object->cred = src_entry->cred;
3188                                 src_object->charge = size;
3189                         }
3190                         VM_OBJECT_WUNLOCK(src_object);
3191                         dst_entry->object.vm_object = src_object;
3192                         if (charged) {
3193                                 cred = curthread->td_ucred;
3194                                 crhold(cred);
3195                                 dst_entry->cred = cred;
3196                                 *fork_charge += size;
3197                                 if (!(src_entry->eflags &
3198                                       MAP_ENTRY_NEEDS_COPY)) {
3199                                         crhold(cred);
3200                                         src_entry->cred = cred;
3201                                         *fork_charge += size;
3202                                 }
3203                         }
3204                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3205                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3206                         dst_entry->offset = src_entry->offset;
3207                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3208                                 /*
3209                                  * MAP_ENTRY_VN_WRITECNT cannot
3210                                  * indicate write reference from
3211                                  * src_entry, since the entry is
3212                                  * marked as needs copy.  Allocate a
3213                                  * fake entry that is used to
3214                                  * decrement object->un_pager.vnp.writecount
3215                                  * at the appropriate time.  Attach
3216                                  * fake_entry to the deferred list.
3217                                  */
3218                                 fake_entry = vm_map_entry_create(dst_map);
3219                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3220                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3221                                 vm_object_reference(src_object);
3222                                 fake_entry->object.vm_object = src_object;
3223                                 fake_entry->start = src_entry->start;
3224                                 fake_entry->end = src_entry->end;
3225                                 fake_entry->next = curthread->td_map_def_user;
3226                                 curthread->td_map_def_user = fake_entry;
3227                         }
3228                 } else {
3229                         dst_entry->object.vm_object = NULL;
3230                         dst_entry->offset = 0;
3231                         if (src_entry->cred != NULL) {
3232                                 dst_entry->cred = curthread->td_ucred;
3233                                 crhold(dst_entry->cred);
3234                                 *fork_charge += size;
3235                         }
3236                 }
3237
3238                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3239                     dst_entry->end - dst_entry->start, src_entry->start);
3240         } else {
3241                 /*
3242                  * We don't want to make writeable wired pages copy-on-write.
3243                  * Immediately copy these pages into the new map by simulating
3244                  * page faults.  The new pages are pageable.
3245                  */
3246                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3247                     fork_charge);
3248         }
3249 }
3250
3251 /*
3252  * vmspace_map_entry_forked:
3253  * Update the newly-forked vmspace each time a map entry is inherited
3254  * or copied.  The values for vm_dsize and vm_tsize are approximate
3255  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3256  */
3257 static void
3258 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3259     vm_map_entry_t entry)
3260 {
3261         vm_size_t entrysize;
3262         vm_offset_t newend;
3263
3264         entrysize = entry->end - entry->start;
3265         vm2->vm_map.size += entrysize;
3266         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3267                 vm2->vm_ssize += btoc(entrysize);
3268         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3269             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3270                 newend = MIN(entry->end,
3271                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3272                 vm2->vm_dsize += btoc(newend - entry->start);
3273         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3274             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3275                 newend = MIN(entry->end,
3276                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3277                 vm2->vm_tsize += btoc(newend - entry->start);
3278         }
3279 }
3280
3281 /*
3282  * vmspace_fork:
3283  * Create a new process vmspace structure and vm_map
3284  * based on those of an existing process.  The new map
3285  * is based on the old map, according to the inheritance
3286  * values on the regions in that map.
3287  *
3288  * XXX It might be worth coalescing the entries added to the new vmspace.
3289  *
3290  * The source map must not be locked.
3291  */
3292 struct vmspace *
3293 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3294 {
3295         struct vmspace *vm2;
3296         vm_map_t new_map, old_map;
3297         vm_map_entry_t new_entry, old_entry;
3298         vm_object_t object;
3299         int locked;
3300
3301         old_map = &vm1->vm_map;
3302         /* Copy immutable fields of vm1 to vm2. */
3303         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3304         if (vm2 == NULL)
3305                 return (NULL);
3306         vm2->vm_taddr = vm1->vm_taddr;
3307         vm2->vm_daddr = vm1->vm_daddr;
3308         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3309         vm_map_lock(old_map);
3310         if (old_map->busy)
3311                 vm_map_wait_busy(old_map);
3312         new_map = &vm2->vm_map;
3313         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3314         KASSERT(locked, ("vmspace_fork: lock failed"));
3315
3316         old_entry = old_map->header.next;
3317
3318         while (old_entry != &old_map->header) {
3319                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3320                         panic("vm_map_fork: encountered a submap");
3321
3322                 switch (old_entry->inheritance) {
3323                 case VM_INHERIT_NONE:
3324                         break;
3325
3326                 case VM_INHERIT_SHARE:
3327                         /*
3328                          * Clone the entry, creating the shared object if necessary.
3329                          */
3330                         object = old_entry->object.vm_object;
3331                         if (object == NULL) {
3332                                 object = vm_object_allocate(OBJT_DEFAULT,
3333                                         atop(old_entry->end - old_entry->start));
3334                                 old_entry->object.vm_object = object;
3335                                 old_entry->offset = 0;
3336                                 if (old_entry->cred != NULL) {
3337                                         object->cred = old_entry->cred;
3338                                         object->charge = old_entry->end -
3339                                             old_entry->start;
3340                                         old_entry->cred = NULL;
3341                                 }
3342                         }
3343
3344                         /*
3345                          * Add the reference before calling vm_object_shadow
3346                          * to insure that a shadow object is created.
3347                          */
3348                         vm_object_reference(object);
3349                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3350                                 vm_object_shadow(&old_entry->object.vm_object,
3351                                     &old_entry->offset,
3352                                     old_entry->end - old_entry->start);
3353                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3354                                 /* Transfer the second reference too. */
3355                                 vm_object_reference(
3356                                     old_entry->object.vm_object);
3357
3358                                 /*
3359                                  * As in vm_map_simplify_entry(), the
3360                                  * vnode lock will not be acquired in
3361                                  * this call to vm_object_deallocate().
3362                                  */
3363                                 vm_object_deallocate(object);
3364                                 object = old_entry->object.vm_object;
3365                         }
3366                         VM_OBJECT_WLOCK(object);
3367                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3368                         if (old_entry->cred != NULL) {
3369                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3370                                 object->cred = old_entry->cred;
3371                                 object->charge = old_entry->end - old_entry->start;
3372                                 old_entry->cred = NULL;
3373                         }
3374
3375                         /*
3376                          * Assert the correct state of the vnode
3377                          * v_writecount while the object is locked, to
3378                          * not relock it later for the assertion
3379                          * correctness.
3380                          */
3381                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3382                             object->type == OBJT_VNODE) {
3383                                 KASSERT(((struct vnode *)object->handle)->
3384                                     v_writecount > 0,
3385                                     ("vmspace_fork: v_writecount %p", object));
3386                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3387                                     ("vmspace_fork: vnp.writecount %p",
3388                                     object));
3389                         }
3390                         VM_OBJECT_WUNLOCK(object);
3391
3392                         /*
3393                          * Clone the entry, referencing the shared object.
3394                          */
3395                         new_entry = vm_map_entry_create(new_map);
3396                         *new_entry = *old_entry;
3397                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3398                             MAP_ENTRY_IN_TRANSITION);
3399                         new_entry->wiring_thread = NULL;
3400                         new_entry->wired_count = 0;
3401                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3402                                 vnode_pager_update_writecount(object,
3403                                     new_entry->start, new_entry->end);
3404                         }
3405
3406                         /*
3407                          * Insert the entry into the new map -- we know we're
3408                          * inserting at the end of the new map.
3409                          */
3410                         vm_map_entry_link(new_map, new_map->header.prev,
3411                             new_entry);
3412                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3413
3414                         /*
3415                          * Update the physical map
3416                          */
3417                         pmap_copy(new_map->pmap, old_map->pmap,
3418                             new_entry->start,
3419                             (old_entry->end - old_entry->start),
3420                             old_entry->start);
3421                         break;
3422
3423                 case VM_INHERIT_COPY:
3424                         /*
3425                          * Clone the entry and link into the map.
3426                          */
3427                         new_entry = vm_map_entry_create(new_map);
3428                         *new_entry = *old_entry;
3429                         /*
3430                          * Copied entry is COW over the old object.
3431                          */
3432                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3433                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3434                         new_entry->wiring_thread = NULL;
3435                         new_entry->wired_count = 0;
3436                         new_entry->object.vm_object = NULL;
3437                         new_entry->cred = NULL;
3438                         vm_map_entry_link(new_map, new_map->header.prev,
3439                             new_entry);
3440                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3441                         vm_map_copy_entry(old_map, new_map, old_entry,
3442                             new_entry, fork_charge);
3443                         break;
3444                 }
3445                 old_entry = old_entry->next;
3446         }
3447         /*
3448          * Use inlined vm_map_unlock() to postpone handling the deferred
3449          * map entries, which cannot be done until both old_map and
3450          * new_map locks are released.
3451          */
3452         sx_xunlock(&old_map->lock);
3453         sx_xunlock(&new_map->lock);
3454         vm_map_process_deferred();
3455
3456         return (vm2);
3457 }
3458
3459 int
3460 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3461     vm_prot_t prot, vm_prot_t max, int cow)
3462 {
3463         vm_size_t growsize, init_ssize;
3464         rlim_t lmemlim, vmemlim;
3465         int rv;
3466
3467         growsize = sgrowsiz;
3468         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3469         vm_map_lock(map);
3470         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3471         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3472         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3473                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3474                         rv = KERN_NO_SPACE;
3475                         goto out;
3476                 }
3477         }
3478         /* If we would blow our VMEM resource limit, no go */
3479         if (map->size + init_ssize > vmemlim) {
3480                 rv = KERN_NO_SPACE;
3481                 goto out;
3482         }
3483         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3484             max, cow);
3485 out:
3486         vm_map_unlock(map);
3487         return (rv);
3488 }
3489
3490 static int
3491 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3492     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3493 {
3494         vm_map_entry_t new_entry, prev_entry;
3495         vm_offset_t bot, top;
3496         vm_size_t init_ssize;
3497         int orient, rv;
3498
3499         /*
3500          * The stack orientation is piggybacked with the cow argument.
3501          * Extract it into orient and mask the cow argument so that we
3502          * don't pass it around further.
3503          * NOTE: We explicitly allow bi-directional stacks.
3504          */
3505         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3506         KASSERT(orient != 0, ("No stack grow direction"));
3507
3508         if (addrbos < vm_map_min(map) ||
3509             addrbos > vm_map_max(map) ||
3510             addrbos + max_ssize < addrbos)
3511                 return (KERN_NO_SPACE);
3512
3513         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3514
3515         /* If addr is already mapped, no go */
3516         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3517                 return (KERN_NO_SPACE);
3518
3519         /*
3520          * If we can't accommodate max_ssize in the current mapping, no go.
3521          * However, we need to be aware that subsequent user mappings might
3522          * map into the space we have reserved for stack, and currently this
3523          * space is not protected.
3524          *
3525          * Hopefully we will at least detect this condition when we try to
3526          * grow the stack.
3527          */
3528         if ((prev_entry->next != &map->header) &&
3529             (prev_entry->next->start < addrbos + max_ssize))
3530                 return (KERN_NO_SPACE);
3531
3532         /*
3533          * We initially map a stack of only init_ssize.  We will grow as
3534          * needed later.  Depending on the orientation of the stack (i.e.
3535          * the grow direction) we either map at the top of the range, the
3536          * bottom of the range or in the middle.
3537          *
3538          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3539          * and cow to be 0.  Possibly we should eliminate these as input
3540          * parameters, and just pass these values here in the insert call.
3541          */
3542         if (orient == MAP_STACK_GROWS_DOWN)
3543                 bot = addrbos + max_ssize - init_ssize;
3544         else if (orient == MAP_STACK_GROWS_UP)
3545                 bot = addrbos;
3546         else
3547                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3548         top = bot + init_ssize;
3549         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3550
3551         /* Now set the avail_ssize amount. */
3552         if (rv == KERN_SUCCESS) {
3553                 new_entry = prev_entry->next;
3554                 if (new_entry->end != top || new_entry->start != bot)
3555                         panic("Bad entry start/end for new stack entry");
3556
3557                 new_entry->avail_ssize = max_ssize - init_ssize;
3558                 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3559                     (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3560                     ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3561                 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3562                     (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3563                     ("new entry lacks MAP_ENTRY_GROWS_UP"));
3564         }
3565
3566         return (rv);
3567 }
3568
3569 static int stack_guard_page = 0;
3570 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3571     &stack_guard_page, 0,
3572     "Insert stack guard page ahead of the growable segments.");
3573
3574 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3575  * desired address is already mapped, or if we successfully grow
3576  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3577  * stack range (this is strange, but preserves compatibility with
3578  * the grow function in vm_machdep.c).
3579  */
3580 int
3581 vm_map_growstack(struct proc *p, vm_offset_t addr)
3582 {
3583         vm_map_entry_t next_entry, prev_entry;
3584         vm_map_entry_t new_entry, stack_entry;
3585         struct vmspace *vm = p->p_vmspace;
3586         vm_map_t map = &vm->vm_map;
3587         vm_offset_t end;
3588         vm_size_t growsize;
3589         size_t grow_amount, max_grow;
3590         rlim_t lmemlim, stacklim, vmemlim;
3591         int is_procstack, rv;
3592         struct ucred *cred;
3593 #ifdef notyet
3594         uint64_t limit;
3595 #endif
3596 #ifdef RACCT
3597         int error;
3598 #endif
3599
3600         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3601         stacklim = lim_cur(curthread, RLIMIT_STACK);
3602         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3603 Retry:
3604
3605         vm_map_lock_read(map);
3606
3607         /* If addr is already in the entry range, no need to grow.*/
3608         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3609                 vm_map_unlock_read(map);
3610                 return (KERN_SUCCESS);
3611         }
3612
3613         next_entry = prev_entry->next;
3614         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3615                 /*
3616                  * This entry does not grow upwards. Since the address lies
3617                  * beyond this entry, the next entry (if one exists) has to
3618                  * be a downward growable entry. The entry list header is
3619                  * never a growable entry, so it suffices to check the flags.
3620                  */
3621                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3622                         vm_map_unlock_read(map);
3623                         return (KERN_SUCCESS);
3624                 }
3625                 stack_entry = next_entry;
3626         } else {
3627                 /*
3628                  * This entry grows upward. If the next entry does not at
3629                  * least grow downwards, this is the entry we need to grow.
3630                  * otherwise we have two possible choices and we have to
3631                  * select one.
3632                  */
3633                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3634                         /*
3635                          * We have two choices; grow the entry closest to
3636                          * the address to minimize the amount of growth.
3637                          */
3638                         if (addr - prev_entry->end <= next_entry->start - addr)
3639                                 stack_entry = prev_entry;
3640                         else
3641                                 stack_entry = next_entry;
3642                 } else
3643                         stack_entry = prev_entry;
3644         }
3645
3646         if (stack_entry == next_entry) {
3647                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3648                 KASSERT(addr < stack_entry->start, ("foo"));
3649                 end = (prev_entry != &map->header) ? prev_entry->end :
3650                     stack_entry->start - stack_entry->avail_ssize;
3651                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3652                 max_grow = stack_entry->start - end;
3653         } else {
3654                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3655                 KASSERT(addr >= stack_entry->end, ("foo"));
3656                 end = (next_entry != &map->header) ? next_entry->start :
3657                     stack_entry->end + stack_entry->avail_ssize;
3658                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3659                 max_grow = end - stack_entry->end;
3660         }
3661
3662         if (grow_amount > stack_entry->avail_ssize) {
3663                 vm_map_unlock_read(map);
3664                 return (KERN_NO_SPACE);
3665         }
3666
3667         /*
3668          * If there is no longer enough space between the entries nogo, and
3669          * adjust the available space.  Note: this  should only happen if the
3670          * user has mapped into the stack area after the stack was created,
3671          * and is probably an error.
3672          *
3673          * This also effectively destroys any guard page the user might have
3674          * intended by limiting the stack size.
3675          */
3676         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3677                 if (vm_map_lock_upgrade(map))
3678                         goto Retry;
3679
3680                 stack_entry->avail_ssize = max_grow;
3681
3682                 vm_map_unlock(map);
3683                 return (KERN_NO_SPACE);
3684         }
3685
3686         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3687             addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3688
3689         /*
3690          * If this is the main process stack, see if we're over the stack
3691          * limit.
3692          */
3693         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3694                 vm_map_unlock_read(map);
3695                 return (KERN_NO_SPACE);
3696         }
3697 #ifdef RACCT
3698         if (racct_enable) {
3699                 PROC_LOCK(p);
3700                 if (is_procstack && racct_set(p, RACCT_STACK,
3701                     ctob(vm->vm_ssize) + grow_amount)) {
3702                         PROC_UNLOCK(p);
3703                         vm_map_unlock_read(map);
3704                         return (KERN_NO_SPACE);
3705                 }
3706                 PROC_UNLOCK(p);
3707         }
3708 #endif
3709
3710         /* Round up the grow amount modulo sgrowsiz */
3711         growsize = sgrowsiz;
3712         grow_amount = roundup(grow_amount, growsize);
3713         if (grow_amount > stack_entry->avail_ssize)
3714                 grow_amount = stack_entry->avail_ssize;
3715         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3716                 grow_amount = trunc_page((vm_size_t)stacklim) -
3717                     ctob(vm->vm_ssize);
3718         }
3719 #ifdef notyet
3720         PROC_LOCK(p);
3721         limit = racct_get_available(p, RACCT_STACK);
3722         PROC_UNLOCK(p);
3723         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3724                 grow_amount = limit - ctob(vm->vm_ssize);
3725 #endif
3726         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3727                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3728                         vm_map_unlock_read(map);
3729                         rv = KERN_NO_SPACE;
3730                         goto out;
3731                 }
3732 #ifdef RACCT
3733                 if (racct_enable) {
3734                         PROC_LOCK(p);
3735                         if (racct_set(p, RACCT_MEMLOCK,
3736                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3737                                 PROC_UNLOCK(p);
3738                                 vm_map_unlock_read(map);
3739                                 rv = KERN_NO_SPACE;
3740                                 goto out;
3741                         }
3742                         PROC_UNLOCK(p);
3743                 }
3744 #endif
3745         }
3746         /* If we would blow our VMEM resource limit, no go */
3747         if (map->size + grow_amount > vmemlim) {
3748                 vm_map_unlock_read(map);
3749                 rv = KERN_NO_SPACE;
3750                 goto out;
3751         }
3752 #ifdef RACCT
3753         if (racct_enable) {
3754                 PROC_LOCK(p);
3755                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3756                         PROC_UNLOCK(p);
3757                         vm_map_unlock_read(map);
3758                         rv = KERN_NO_SPACE;
3759                         goto out;
3760                 }
3761                 PROC_UNLOCK(p);
3762         }
3763 #endif
3764
3765         if (vm_map_lock_upgrade(map))
3766                 goto Retry;
3767
3768         if (stack_entry == next_entry) {
3769                 /*
3770                  * Growing downward.
3771                  */
3772                 /* Get the preliminary new entry start value */
3773                 addr = stack_entry->start - grow_amount;
3774
3775                 /*
3776                  * If this puts us into the previous entry, cut back our
3777                  * growth to the available space. Also, see the note above.
3778                  */
3779                 if (addr < end) {
3780                         stack_entry->avail_ssize = max_grow;
3781                         addr = end;
3782                         if (stack_guard_page)
3783                                 addr += PAGE_SIZE;
3784                 }
3785
3786                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3787                     next_entry->protection, next_entry->max_protection,
3788                     MAP_STACK_GROWS_DOWN);
3789
3790                 /* Adjust the available stack space by the amount we grew. */
3791                 if (rv == KERN_SUCCESS) {
3792                         new_entry = prev_entry->next;
3793                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3794                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3795                         KASSERT(new_entry->start == addr, ("foo"));
3796                         KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3797                             0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3798                         grow_amount = new_entry->end - new_entry->start;
3799                         new_entry->avail_ssize = stack_entry->avail_ssize -
3800                             grow_amount;
3801                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3802                 }
3803         } else {
3804                 /*
3805                  * Growing upward.
3806                  */
3807                 addr = stack_entry->end + grow_amount;
3808
3809                 /*
3810                  * If this puts us into the next entry, cut back our growth
3811                  * to the available space. Also, see the note above.
3812                  */
3813                 if (addr > end) {
3814                         stack_entry->avail_ssize = end - stack_entry->end;
3815                         addr = end;
3816                         if (stack_guard_page)
3817                                 addr -= PAGE_SIZE;
3818                 }
3819
3820                 grow_amount = addr - stack_entry->end;
3821                 cred = stack_entry->cred;
3822                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3823                         cred = stack_entry->object.vm_object->cred;
3824                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3825                         rv = KERN_NO_SPACE;
3826                 /* Grow the underlying object if applicable. */
3827                 else if (stack_entry->object.vm_object == NULL ||
3828                          vm_object_coalesce(stack_entry->object.vm_object,
3829                          stack_entry->offset,
3830                          (vm_size_t)(stack_entry->end - stack_entry->start),
3831                          (vm_size_t)grow_amount, cred != NULL)) {
3832                         map->size += (addr - stack_entry->end);
3833                         /* Update the current entry. */
3834                         stack_entry->end = addr;
3835                         stack_entry->avail_ssize -= grow_amount;
3836                         vm_map_entry_resize_free(map, stack_entry);
3837                         rv = KERN_SUCCESS;
3838                 } else
3839                         rv = KERN_FAILURE;
3840         }
3841
3842         if (rv == KERN_SUCCESS && is_procstack)
3843                 vm->vm_ssize += btoc(grow_amount);
3844
3845         vm_map_unlock(map);
3846
3847         /*
3848          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3849          */
3850         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3851                 vm_map_wire(map,
3852                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3853                     (stack_entry == next_entry) ? stack_entry->start : addr,
3854                     (p->p_flag & P_SYSTEM)
3855                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3856                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3857         }
3858
3859 out:
3860 #ifdef RACCT
3861         if (racct_enable && rv != KERN_SUCCESS) {
3862                 PROC_LOCK(p);
3863                 error = racct_set(p, RACCT_VMEM, map->size);
3864                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3865                 if (!old_mlock) {
3866                         error = racct_set(p, RACCT_MEMLOCK,
3867                             ptoa(pmap_wired_count(map->pmap)));
3868                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3869                 }
3870                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3871                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3872                 PROC_UNLOCK(p);
3873         }
3874 #endif
3875
3876         return (rv);
3877 }
3878
3879 /*
3880  * Unshare the specified VM space for exec.  If other processes are
3881  * mapped to it, then create a new one.  The new vmspace is null.
3882  */
3883 int
3884 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3885 {
3886         struct vmspace *oldvmspace = p->p_vmspace;
3887         struct vmspace *newvmspace;
3888
3889         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3890             ("vmspace_exec recursed"));
3891         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3892         if (newvmspace == NULL)
3893                 return (ENOMEM);
3894         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3895         /*
3896          * This code is written like this for prototype purposes.  The
3897          * goal is to avoid running down the vmspace here, but let the
3898          * other process's that are still using the vmspace to finally
3899          * run it down.  Even though there is little or no chance of blocking
3900          * here, it is a good idea to keep this form for future mods.
3901          */
3902         PROC_VMSPACE_LOCK(p);
3903         p->p_vmspace = newvmspace;
3904         PROC_VMSPACE_UNLOCK(p);
3905         if (p == curthread->td_proc)
3906                 pmap_activate(curthread);
3907         curthread->td_pflags |= TDP_EXECVMSPC;
3908         return (0);
3909 }
3910
3911 /*
3912  * Unshare the specified VM space for forcing COW.  This
3913  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3914  */
3915 int
3916 vmspace_unshare(struct proc *p)
3917 {
3918         struct vmspace *oldvmspace = p->p_vmspace;
3919         struct vmspace *newvmspace;
3920         vm_ooffset_t fork_charge;
3921
3922         if (oldvmspace->vm_refcnt == 1)
3923                 return (0);
3924         fork_charge = 0;
3925         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3926         if (newvmspace == NULL)
3927                 return (ENOMEM);
3928         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3929                 vmspace_free(newvmspace);
3930                 return (ENOMEM);
3931         }
3932         PROC_VMSPACE_LOCK(p);
3933         p->p_vmspace = newvmspace;
3934         PROC_VMSPACE_UNLOCK(p);
3935         if (p == curthread->td_proc)
3936                 pmap_activate(curthread);
3937         vmspace_free(oldvmspace);
3938         return (0);
3939 }
3940
3941 /*
3942  *      vm_map_lookup:
3943  *
3944  *      Finds the VM object, offset, and
3945  *      protection for a given virtual address in the
3946  *      specified map, assuming a page fault of the
3947  *      type specified.
3948  *
3949  *      Leaves the map in question locked for read; return
3950  *      values are guaranteed until a vm_map_lookup_done
3951  *      call is performed.  Note that the map argument
3952  *      is in/out; the returned map must be used in
3953  *      the call to vm_map_lookup_done.
3954  *
3955  *      A handle (out_entry) is returned for use in
3956  *      vm_map_lookup_done, to make that fast.
3957  *
3958  *      If a lookup is requested with "write protection"
3959  *      specified, the map may be changed to perform virtual
3960  *      copying operations, although the data referenced will
3961  *      remain the same.
3962  */
3963 int
3964 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3965               vm_offset_t vaddr,
3966               vm_prot_t fault_typea,
3967               vm_map_entry_t *out_entry,        /* OUT */
3968               vm_object_t *object,              /* OUT */
3969               vm_pindex_t *pindex,              /* OUT */
3970               vm_prot_t *out_prot,              /* OUT */
3971               boolean_t *wired)                 /* OUT */
3972 {
3973         vm_map_entry_t entry;
3974         vm_map_t map = *var_map;
3975         vm_prot_t prot;
3976         vm_prot_t fault_type = fault_typea;
3977         vm_object_t eobject;
3978         vm_size_t size;
3979         struct ucred *cred;
3980
3981 RetryLookup:;
3982
3983         vm_map_lock_read(map);
3984
3985         /*
3986          * Lookup the faulting address.
3987          */
3988         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3989                 vm_map_unlock_read(map);
3990                 return (KERN_INVALID_ADDRESS);
3991         }
3992
3993         entry = *out_entry;
3994
3995         /*
3996          * Handle submaps.
3997          */
3998         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3999                 vm_map_t old_map = map;
4000
4001                 *var_map = map = entry->object.sub_map;
4002                 vm_map_unlock_read(old_map);
4003                 goto RetryLookup;
4004         }
4005
4006         /*
4007          * Check whether this task is allowed to have this page.
4008          */
4009         prot = entry->protection;
4010         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4011         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4012                 vm_map_unlock_read(map);
4013                 return (KERN_PROTECTION_FAILURE);
4014         }
4015         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4016             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4017             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4018             ("entry %p flags %x", entry, entry->eflags));
4019         if ((fault_typea & VM_PROT_COPY) != 0 &&
4020             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4021             (entry->eflags & MAP_ENTRY_COW) == 0) {
4022                 vm_map_unlock_read(map);
4023                 return (KERN_PROTECTION_FAILURE);
4024         }
4025
4026         /*
4027          * If this page is not pageable, we have to get it for all possible
4028          * accesses.
4029          */
4030         *wired = (entry->wired_count != 0);
4031         if (*wired)
4032                 fault_type = entry->protection;
4033         size = entry->end - entry->start;
4034         /*
4035          * If the entry was copy-on-write, we either ...
4036          */
4037         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4038                 /*
4039                  * If we want to write the page, we may as well handle that
4040                  * now since we've got the map locked.
4041                  *
4042                  * If we don't need to write the page, we just demote the
4043                  * permissions allowed.
4044                  */
4045                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4046                     (fault_typea & VM_PROT_COPY) != 0) {
4047                         /*
4048                          * Make a new object, and place it in the object
4049                          * chain.  Note that no new references have appeared
4050                          * -- one just moved from the map to the new
4051                          * object.
4052                          */
4053                         if (vm_map_lock_upgrade(map))
4054                                 goto RetryLookup;
4055
4056                         if (entry->cred == NULL) {
4057                                 /*
4058                                  * The debugger owner is charged for
4059                                  * the memory.
4060                                  */
4061                                 cred = curthread->td_ucred;
4062                                 crhold(cred);
4063                                 if (!swap_reserve_by_cred(size, cred)) {
4064                                         crfree(cred);
4065                                         vm_map_unlock(map);
4066                                         return (KERN_RESOURCE_SHORTAGE);
4067                                 }
4068                                 entry->cred = cred;
4069                         }
4070                         vm_object_shadow(&entry->object.vm_object,
4071                             &entry->offset, size);
4072                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4073                         eobject = entry->object.vm_object;
4074                         if (eobject->cred != NULL) {
4075                                 /*
4076                                  * The object was not shadowed.
4077                                  */
4078                                 swap_release_by_cred(size, entry->cred);
4079                                 crfree(entry->cred);
4080                                 entry->cred = NULL;
4081                         } else if (entry->cred != NULL) {
4082                                 VM_OBJECT_WLOCK(eobject);
4083                                 eobject->cred = entry->cred;
4084                                 eobject->charge = size;
4085                                 VM_OBJECT_WUNLOCK(eobject);
4086                                 entry->cred = NULL;
4087                         }
4088
4089                         vm_map_lock_downgrade(map);
4090                 } else {
4091                         /*
4092                          * We're attempting to read a copy-on-write page --
4093                          * don't allow writes.
4094                          */
4095                         prot &= ~VM_PROT_WRITE;
4096                 }
4097         }
4098
4099         /*
4100          * Create an object if necessary.
4101          */
4102         if (entry->object.vm_object == NULL &&
4103             !map->system_map) {
4104                 if (vm_map_lock_upgrade(map))
4105                         goto RetryLookup;
4106                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4107                     atop(size));
4108                 entry->offset = 0;
4109                 if (entry->cred != NULL) {
4110                         VM_OBJECT_WLOCK(entry->object.vm_object);
4111                         entry->object.vm_object->cred = entry->cred;
4112                         entry->object.vm_object->charge = size;
4113                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4114                         entry->cred = NULL;
4115                 }
4116                 vm_map_lock_downgrade(map);
4117         }
4118
4119         /*
4120          * Return the object/offset from this entry.  If the entry was
4121          * copy-on-write or empty, it has been fixed up.
4122          */
4123         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4124         *object = entry->object.vm_object;
4125
4126         *out_prot = prot;
4127         return (KERN_SUCCESS);
4128 }
4129
4130 /*
4131  *      vm_map_lookup_locked:
4132  *
4133  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4134  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4135  */
4136 int
4137 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4138                      vm_offset_t vaddr,
4139                      vm_prot_t fault_typea,
4140                      vm_map_entry_t *out_entry, /* OUT */
4141                      vm_object_t *object,       /* OUT */
4142                      vm_pindex_t *pindex,       /* OUT */
4143                      vm_prot_t *out_prot,       /* OUT */
4144                      boolean_t *wired)          /* OUT */
4145 {
4146         vm_map_entry_t entry;
4147         vm_map_t map = *var_map;
4148         vm_prot_t prot;
4149         vm_prot_t fault_type = fault_typea;
4150
4151         /*
4152          * Lookup the faulting address.
4153          */
4154         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4155                 return (KERN_INVALID_ADDRESS);
4156
4157         entry = *out_entry;
4158
4159         /*
4160          * Fail if the entry refers to a submap.
4161          */
4162         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4163                 return (KERN_FAILURE);
4164
4165         /*
4166          * Check whether this task is allowed to have this page.
4167          */
4168         prot = entry->protection;
4169         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4170         if ((fault_type & prot) != fault_type)
4171                 return (KERN_PROTECTION_FAILURE);
4172
4173         /*
4174          * If this page is not pageable, we have to get it for all possible
4175          * accesses.
4176          */
4177         *wired = (entry->wired_count != 0);
4178         if (*wired)
4179                 fault_type = entry->protection;
4180
4181         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4182                 /*
4183                  * Fail if the entry was copy-on-write for a write fault.
4184                  */
4185                 if (fault_type & VM_PROT_WRITE)
4186                         return (KERN_FAILURE);
4187                 /*
4188                  * We're attempting to read a copy-on-write page --
4189                  * don't allow writes.
4190                  */
4191                 prot &= ~VM_PROT_WRITE;
4192         }
4193
4194         /*
4195          * Fail if an object should be created.
4196          */
4197         if (entry->object.vm_object == NULL && !map->system_map)
4198                 return (KERN_FAILURE);
4199
4200         /*
4201          * Return the object/offset from this entry.  If the entry was
4202          * copy-on-write or empty, it has been fixed up.
4203          */
4204         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4205         *object = entry->object.vm_object;
4206
4207         *out_prot = prot;
4208         return (KERN_SUCCESS);
4209 }
4210
4211 /*
4212  *      vm_map_lookup_done:
4213  *
4214  *      Releases locks acquired by a vm_map_lookup
4215  *      (according to the handle returned by that lookup).
4216  */
4217 void
4218 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4219 {
4220         /*
4221          * Unlock the main-level map
4222          */
4223         vm_map_unlock_read(map);
4224 }
4225
4226 #include "opt_ddb.h"
4227 #ifdef DDB
4228 #include <sys/kernel.h>
4229
4230 #include <ddb/ddb.h>
4231
4232 static void
4233 vm_map_print(vm_map_t map)
4234 {
4235         vm_map_entry_t entry;
4236
4237         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4238             (void *)map,
4239             (void *)map->pmap, map->nentries, map->timestamp);
4240
4241         db_indent += 2;
4242         for (entry = map->header.next; entry != &map->header;
4243             entry = entry->next) {
4244                 db_iprintf("map entry %p: start=%p, end=%p\n",
4245                     (void *)entry, (void *)entry->start, (void *)entry->end);
4246                 {
4247                         static char *inheritance_name[4] =
4248                         {"share", "copy", "none", "donate_copy"};
4249
4250                         db_iprintf(" prot=%x/%x/%s",
4251                             entry->protection,
4252                             entry->max_protection,
4253                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4254                         if (entry->wired_count != 0)
4255                                 db_printf(", wired");
4256                 }
4257                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4258                         db_printf(", share=%p, offset=0x%jx\n",
4259                             (void *)entry->object.sub_map,
4260                             (uintmax_t)entry->offset);
4261                         if ((entry->prev == &map->header) ||
4262                             (entry->prev->object.sub_map !=
4263                                 entry->object.sub_map)) {
4264                                 db_indent += 2;
4265                                 vm_map_print((vm_map_t)entry->object.sub_map);
4266                                 db_indent -= 2;
4267                         }
4268                 } else {
4269                         if (entry->cred != NULL)
4270                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4271                         db_printf(", object=%p, offset=0x%jx",
4272                             (void *)entry->object.vm_object,
4273                             (uintmax_t)entry->offset);
4274                         if (entry->object.vm_object && entry->object.vm_object->cred)
4275                                 db_printf(", obj ruid %d charge %jx",
4276                                     entry->object.vm_object->cred->cr_ruid,
4277                                     (uintmax_t)entry->object.vm_object->charge);
4278                         if (entry->eflags & MAP_ENTRY_COW)
4279                                 db_printf(", copy (%s)",
4280                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4281                         db_printf("\n");
4282
4283                         if ((entry->prev == &map->header) ||
4284                             (entry->prev->object.vm_object !=
4285                                 entry->object.vm_object)) {
4286                                 db_indent += 2;
4287                                 vm_object_print((db_expr_t)(intptr_t)
4288                                                 entry->object.vm_object,
4289                                                 0, 0, (char *)0);
4290                                 db_indent -= 2;
4291                         }
4292                 }
4293         }
4294         db_indent -= 2;
4295 }
4296
4297 DB_SHOW_COMMAND(map, map)
4298 {
4299
4300         if (!have_addr) {
4301                 db_printf("usage: show map <addr>\n");
4302                 return;
4303         }
4304         vm_map_print((vm_map_t)addr);
4305 }
4306
4307 DB_SHOW_COMMAND(procvm, procvm)
4308 {
4309         struct proc *p;
4310
4311         if (have_addr) {
4312                 p = db_lookup_proc(addr);
4313         } else {
4314                 p = curproc;
4315         }
4316
4317         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4318             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4319             (void *)vmspace_pmap(p->p_vmspace));
4320
4321         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4322 }
4323
4324 #endif /* DDB */