]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge bmake-20211212
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150
151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154
155 /* 
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161
162 /*
163  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
164  *
165  *      Asserts that the starting and ending region
166  *      addresses fall within the valid range of the map.
167  */
168 #define VM_MAP_RANGE_CHECK(map, start, end)             \
169                 {                                       \
170                 if (start < vm_map_min(map))            \
171                         start = vm_map_min(map);        \
172                 if (end > vm_map_max(map))              \
173                         end = vm_map_max(map);          \
174                 if (start > end)                        \
175                         start = end;                    \
176                 }
177
178 #ifndef UMA_MD_SMALL_ALLOC
179
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192         vm_offset_t addr;
193         int error, locked;
194
195         *pflag = UMA_SLAB_PRIV;
196
197         if (!(locked = vm_map_locked(kernel_map)))
198                 vm_map_lock(kernel_map);
199         addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200         if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201                 panic("%s: kernel map is exhausted", __func__);
202         error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204         if (error != KERN_SUCCESS)
205                 panic("%s: vm_map_insert() failed: %d", __func__, error);
206         if (!locked)
207                 vm_map_unlock(kernel_map);
208         error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209             M_USE_RESERVE | (wait & M_ZERO));
210         if (error == KERN_SUCCESS) {
211                 return ((void *)addr);
212         } else {
213                 if (!locked)
214                         vm_map_lock(kernel_map);
215                 vm_map_delete(kernel_map, addr, bytes);
216                 if (!locked)
217                         vm_map_unlock(kernel_map);
218                 return (NULL);
219         }
220 }
221
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225         vm_offset_t addr;
226         int error;
227
228         if ((pflag & UMA_SLAB_PRIV) == 0)
229                 /* XXX leaked */
230                 return;
231
232         addr = (vm_offset_t)item;
233         kmem_unback(kernel_object, addr, size);
234         error = vm_map_remove(kernel_map, addr, addr + size);
235         KASSERT(error == KERN_SUCCESS,
236             ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define KMAPENT_RESERVE         1
244
245 #endif /* !UMD_MD_SMALL_ALLOC */
246
247 /*
248  *      vm_map_startup:
249  *
250  *      Initialize the vm_map module.  Must be called before any other vm_map
251  *      routines.
252  *
253  *      User map and entry structures are allocated from the general purpose
254  *      memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *      require special handling to avoid recursion; see the comments above
256  *      kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262
263         /*
264          * Disable the use of per-CPU buckets: map entry allocation is
265          * serialized by the kernel map lock.
266          */
267         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269             UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271         /* Reserve an extra map entry for use when replenishing the reserve. */
272         uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273         uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274         uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275         uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277
278         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282             vmspace_zdtor,
283 #else
284             NULL,
285 #endif
286             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292         struct vmspace *vm;
293         vm_map_t map;
294
295         vm = (struct vmspace *)mem;
296         map = &vm->vm_map;
297
298         memset(map, 0, sizeof(*map));
299         mtx_init(&map->system_mtx, "vm map (system)", NULL,
300             MTX_DEF | MTX_DUPOK);
301         sx_init(&map->lock, "vm map (user)");
302         PMAP_LOCK_INIT(vmspace_pmap(vm));
303         return (0);
304 }
305
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310         struct vmspace *vm;
311
312         vm = (struct vmspace *)mem;
313         KASSERT(vm->vm_map.nentries == 0,
314             ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315         KASSERT(vm->vm_map.size == 0,
316             ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif  /* INVARIANTS */
319
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327         struct vmspace *vm;
328
329         vm = uma_zalloc(vmspace_zone, M_WAITOK);
330         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331         if (!pinit(vmspace_pmap(vm))) {
332                 uma_zfree(vmspace_zone, vm);
333                 return (NULL);
334         }
335         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337         refcount_init(&vm->vm_refcnt, 1);
338         vm->vm_shm = NULL;
339         vm->vm_swrss = 0;
340         vm->vm_tsize = 0;
341         vm->vm_dsize = 0;
342         vm->vm_ssize = 0;
343         vm->vm_taddr = 0;
344         vm->vm_daddr = 0;
345         vm->vm_maxsaddr = 0;
346         vm->vm_stkgap = 0;
347         return (vm);
348 }
349
350 #ifdef RACCT
351 static void
352 vmspace_container_reset(struct proc *p)
353 {
354
355         PROC_LOCK(p);
356         racct_set(p, RACCT_DATA, 0);
357         racct_set(p, RACCT_STACK, 0);
358         racct_set(p, RACCT_RSS, 0);
359         racct_set(p, RACCT_MEMLOCK, 0);
360         racct_set(p, RACCT_VMEM, 0);
361         PROC_UNLOCK(p);
362 }
363 #endif
364
365 static inline void
366 vmspace_dofree(struct vmspace *vm)
367 {
368
369         CTR1(KTR_VM, "vmspace_free: %p", vm);
370
371         /*
372          * Make sure any SysV shm is freed, it might not have been in
373          * exit1().
374          */
375         shmexit(vm);
376
377         /*
378          * Lock the map, to wait out all other references to it.
379          * Delete all of the mappings and pages they hold, then call
380          * the pmap module to reclaim anything left.
381          */
382         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
383             vm_map_max(&vm->vm_map));
384
385         pmap_release(vmspace_pmap(vm));
386         vm->vm_map.pmap = NULL;
387         uma_zfree(vmspace_zone, vm);
388 }
389
390 void
391 vmspace_free(struct vmspace *vm)
392 {
393
394         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
395             "vmspace_free() called");
396
397         if (refcount_release(&vm->vm_refcnt))
398                 vmspace_dofree(vm);
399 }
400
401 void
402 vmspace_exitfree(struct proc *p)
403 {
404         struct vmspace *vm;
405
406         PROC_VMSPACE_LOCK(p);
407         vm = p->p_vmspace;
408         p->p_vmspace = NULL;
409         PROC_VMSPACE_UNLOCK(p);
410         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
411         vmspace_free(vm);
412 }
413
414 void
415 vmspace_exit(struct thread *td)
416 {
417         struct vmspace *vm;
418         struct proc *p;
419         bool released;
420
421         p = td->td_proc;
422         vm = p->p_vmspace;
423
424         /*
425          * Prepare to release the vmspace reference.  The thread that releases
426          * the last reference is responsible for tearing down the vmspace.
427          * However, threads not releasing the final reference must switch to the
428          * kernel's vmspace0 before the decrement so that the subsequent pmap
429          * deactivation does not modify a freed vmspace.
430          */
431         refcount_acquire(&vmspace0.vm_refcnt);
432         if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
433                 if (p->p_vmspace != &vmspace0) {
434                         PROC_VMSPACE_LOCK(p);
435                         p->p_vmspace = &vmspace0;
436                         PROC_VMSPACE_UNLOCK(p);
437                         pmap_activate(td);
438                 }
439                 released = refcount_release(&vm->vm_refcnt);
440         }
441         if (released) {
442                 /*
443                  * pmap_remove_pages() expects the pmap to be active, so switch
444                  * back first if necessary.
445                  */
446                 if (p->p_vmspace != vm) {
447                         PROC_VMSPACE_LOCK(p);
448                         p->p_vmspace = vm;
449                         PROC_VMSPACE_UNLOCK(p);
450                         pmap_activate(td);
451                 }
452                 pmap_remove_pages(vmspace_pmap(vm));
453                 PROC_VMSPACE_LOCK(p);
454                 p->p_vmspace = &vmspace0;
455                 PROC_VMSPACE_UNLOCK(p);
456                 pmap_activate(td);
457                 vmspace_dofree(vm);
458         }
459 #ifdef RACCT
460         if (racct_enable)
461                 vmspace_container_reset(p);
462 #endif
463 }
464
465 /* Acquire reference to vmspace owned by another process. */
466
467 struct vmspace *
468 vmspace_acquire_ref(struct proc *p)
469 {
470         struct vmspace *vm;
471
472         PROC_VMSPACE_LOCK(p);
473         vm = p->p_vmspace;
474         if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
475                 PROC_VMSPACE_UNLOCK(p);
476                 return (NULL);
477         }
478         if (vm != p->p_vmspace) {
479                 PROC_VMSPACE_UNLOCK(p);
480                 vmspace_free(vm);
481                 return (NULL);
482         }
483         PROC_VMSPACE_UNLOCK(p);
484         return (vm);
485 }
486
487 /*
488  * Switch between vmspaces in an AIO kernel process.
489  *
490  * The new vmspace is either the vmspace of a user process obtained
491  * from an active AIO request or the initial vmspace of the AIO kernel
492  * process (when it is idling).  Because user processes will block to
493  * drain any active AIO requests before proceeding in exit() or
494  * execve(), the reference count for vmspaces from AIO requests can
495  * never be 0.  Similarly, AIO kernel processes hold an extra
496  * reference on their initial vmspace for the life of the process.  As
497  * a result, the 'newvm' vmspace always has a non-zero reference
498  * count.  This permits an additional reference on 'newvm' to be
499  * acquired via a simple atomic increment rather than the loop in
500  * vmspace_acquire_ref() above.
501  */
502 void
503 vmspace_switch_aio(struct vmspace *newvm)
504 {
505         struct vmspace *oldvm;
506
507         /* XXX: Need some way to assert that this is an aio daemon. */
508
509         KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
510             ("vmspace_switch_aio: newvm unreferenced"));
511
512         oldvm = curproc->p_vmspace;
513         if (oldvm == newvm)
514                 return;
515
516         /*
517          * Point to the new address space and refer to it.
518          */
519         curproc->p_vmspace = newvm;
520         refcount_acquire(&newvm->vm_refcnt);
521
522         /* Activate the new mapping. */
523         pmap_activate(curthread);
524
525         vmspace_free(oldvm);
526 }
527
528 void
529 _vm_map_lock(vm_map_t map, const char *file, int line)
530 {
531
532         if (map->system_map)
533                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
534         else
535                 sx_xlock_(&map->lock, file, line);
536         map->timestamp++;
537 }
538
539 void
540 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
541 {
542         vm_object_t object;
543         struct vnode *vp;
544         bool vp_held;
545
546         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
547                 return;
548         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
549             ("Submap with execs"));
550         object = entry->object.vm_object;
551         KASSERT(object != NULL, ("No object for text, entry %p", entry));
552         if ((object->flags & OBJ_ANON) != 0)
553                 object = object->handle;
554         else
555                 KASSERT(object->backing_object == NULL,
556                     ("non-anon object %p shadows", object));
557         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
558             entry, entry->object.vm_object));
559
560         /*
561          * Mostly, we do not lock the backing object.  It is
562          * referenced by the entry we are processing, so it cannot go
563          * away.
564          */
565         vm_pager_getvp(object, &vp, &vp_held);
566         if (vp != NULL) {
567                 if (add) {
568                         VOP_SET_TEXT_CHECKED(vp);
569                 } else {
570                         vn_lock(vp, LK_SHARED | LK_RETRY);
571                         VOP_UNSET_TEXT_CHECKED(vp);
572                         VOP_UNLOCK(vp);
573                 }
574                 if (vp_held)
575                         vdrop(vp);
576         }
577 }
578
579 /*
580  * Use a different name for this vm_map_entry field when it's use
581  * is not consistent with its use as part of an ordered search tree.
582  */
583 #define defer_next right
584
585 static void
586 vm_map_process_deferred(void)
587 {
588         struct thread *td;
589         vm_map_entry_t entry, next;
590         vm_object_t object;
591
592         td = curthread;
593         entry = td->td_map_def_user;
594         td->td_map_def_user = NULL;
595         while (entry != NULL) {
596                 next = entry->defer_next;
597                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
599                     MAP_ENTRY_VN_EXEC));
600                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
601                         /*
602                          * Decrement the object's writemappings and
603                          * possibly the vnode's v_writecount.
604                          */
605                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
606                             ("Submap with writecount"));
607                         object = entry->object.vm_object;
608                         KASSERT(object != NULL, ("No object for writecount"));
609                         vm_pager_release_writecount(object, entry->start,
610                             entry->end);
611                 }
612                 vm_map_entry_set_vnode_text(entry, false);
613                 vm_map_entry_deallocate(entry, FALSE);
614                 entry = next;
615         }
616 }
617
618 #ifdef INVARIANTS
619 static void
620 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
621 {
622
623         if (map->system_map)
624                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
625         else
626                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
627 }
628
629 #define VM_MAP_ASSERT_LOCKED(map) \
630     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
631
632 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
633 #ifdef DIAGNOSTIC
634 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
635 #else
636 static int enable_vmmap_check = VMMAP_CHECK_NONE;
637 #endif
638 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
639     &enable_vmmap_check, 0, "Enable vm map consistency checking");
640
641 static void _vm_map_assert_consistent(vm_map_t map, int check);
642
643 #define VM_MAP_ASSERT_CONSISTENT(map) \
644     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
645 #ifdef DIAGNOSTIC
646 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
647         if (map->nupdates > map->nentries) {                            \
648                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
649                 map->nupdates = 0;                                      \
650         }                                                               \
651 } while (0)
652 #else
653 #define VM_MAP_UNLOCK_CONSISTENT(map)
654 #endif
655 #else
656 #define VM_MAP_ASSERT_LOCKED(map)
657 #define VM_MAP_ASSERT_CONSISTENT(map)
658 #define VM_MAP_UNLOCK_CONSISTENT(map)
659 #endif /* INVARIANTS */
660
661 void
662 _vm_map_unlock(vm_map_t map, const char *file, int line)
663 {
664
665         VM_MAP_UNLOCK_CONSISTENT(map);
666         if (map->system_map) {
667 #ifndef UMA_MD_SMALL_ALLOC
668                 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
669                         uma_prealloc(kmapentzone, 1);
670                         map->flags &= ~MAP_REPLENISH;
671                 }
672 #endif
673                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
674         } else {
675                 sx_xunlock_(&map->lock, file, line);
676                 vm_map_process_deferred();
677         }
678 }
679
680 void
681 _vm_map_lock_read(vm_map_t map, const char *file, int line)
682 {
683
684         if (map->system_map)
685                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
686         else
687                 sx_slock_(&map->lock, file, line);
688 }
689
690 void
691 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
692 {
693
694         if (map->system_map) {
695                 KASSERT((map->flags & MAP_REPLENISH) == 0,
696                     ("%s: MAP_REPLENISH leaked", __func__));
697                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698         } else {
699                 sx_sunlock_(&map->lock, file, line);
700                 vm_map_process_deferred();
701         }
702 }
703
704 int
705 _vm_map_trylock(vm_map_t map, const char *file, int line)
706 {
707         int error;
708
709         error = map->system_map ?
710             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
711             !sx_try_xlock_(&map->lock, file, line);
712         if (error == 0)
713                 map->timestamp++;
714         return (error == 0);
715 }
716
717 int
718 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
719 {
720         int error;
721
722         error = map->system_map ?
723             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
724             !sx_try_slock_(&map->lock, file, line);
725         return (error == 0);
726 }
727
728 /*
729  *      _vm_map_lock_upgrade:   [ internal use only ]
730  *
731  *      Tries to upgrade a read (shared) lock on the specified map to a write
732  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
733  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
734  *      returned without a read or write lock held.
735  *
736  *      Requires that the map be read locked.
737  */
738 int
739 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
740 {
741         unsigned int last_timestamp;
742
743         if (map->system_map) {
744                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
745         } else {
746                 if (!sx_try_upgrade_(&map->lock, file, line)) {
747                         last_timestamp = map->timestamp;
748                         sx_sunlock_(&map->lock, file, line);
749                         vm_map_process_deferred();
750                         /*
751                          * If the map's timestamp does not change while the
752                          * map is unlocked, then the upgrade succeeds.
753                          */
754                         sx_xlock_(&map->lock, file, line);
755                         if (last_timestamp != map->timestamp) {
756                                 sx_xunlock_(&map->lock, file, line);
757                                 return (1);
758                         }
759                 }
760         }
761         map->timestamp++;
762         return (0);
763 }
764
765 void
766 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
767 {
768
769         if (map->system_map) {
770                 KASSERT((map->flags & MAP_REPLENISH) == 0,
771                     ("%s: MAP_REPLENISH leaked", __func__));
772                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
773         } else {
774                 VM_MAP_UNLOCK_CONSISTENT(map);
775                 sx_downgrade_(&map->lock, file, line);
776         }
777 }
778
779 /*
780  *      vm_map_locked:
781  *
782  *      Returns a non-zero value if the caller holds a write (exclusive) lock
783  *      on the specified map and the value "0" otherwise.
784  */
785 int
786 vm_map_locked(vm_map_t map)
787 {
788
789         if (map->system_map)
790                 return (mtx_owned(&map->system_mtx));
791         else
792                 return (sx_xlocked(&map->lock));
793 }
794
795 /*
796  *      _vm_map_unlock_and_wait:
797  *
798  *      Atomically releases the lock on the specified map and puts the calling
799  *      thread to sleep.  The calling thread will remain asleep until either
800  *      vm_map_wakeup() is performed on the map or the specified timeout is
801  *      exceeded.
802  *
803  *      WARNING!  This function does not perform deferred deallocations of
804  *      objects and map entries.  Therefore, the calling thread is expected to
805  *      reacquire the map lock after reawakening and later perform an ordinary
806  *      unlock operation, such as vm_map_unlock(), before completing its
807  *      operation on the map.
808  */
809 int
810 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
811 {
812
813         VM_MAP_UNLOCK_CONSISTENT(map);
814         mtx_lock(&map_sleep_mtx);
815         if (map->system_map) {
816                 KASSERT((map->flags & MAP_REPLENISH) == 0,
817                     ("%s: MAP_REPLENISH leaked", __func__));
818                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
819         } else {
820                 sx_xunlock_(&map->lock, file, line);
821         }
822         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
823             timo));
824 }
825
826 /*
827  *      vm_map_wakeup:
828  *
829  *      Awaken any threads that have slept on the map using
830  *      vm_map_unlock_and_wait().
831  */
832 void
833 vm_map_wakeup(vm_map_t map)
834 {
835
836         /*
837          * Acquire and release map_sleep_mtx to prevent a wakeup()
838          * from being performed (and lost) between the map unlock
839          * and the msleep() in _vm_map_unlock_and_wait().
840          */
841         mtx_lock(&map_sleep_mtx);
842         mtx_unlock(&map_sleep_mtx);
843         wakeup(&map->root);
844 }
845
846 void
847 vm_map_busy(vm_map_t map)
848 {
849
850         VM_MAP_ASSERT_LOCKED(map);
851         map->busy++;
852 }
853
854 void
855 vm_map_unbusy(vm_map_t map)
856 {
857
858         VM_MAP_ASSERT_LOCKED(map);
859         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
860         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
861                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
862                 wakeup(&map->busy);
863         }
864 }
865
866 void 
867 vm_map_wait_busy(vm_map_t map)
868 {
869
870         VM_MAP_ASSERT_LOCKED(map);
871         while (map->busy) {
872                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
873                 if (map->system_map)
874                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
875                 else
876                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
877         }
878         map->timestamp++;
879 }
880
881 long
882 vmspace_resident_count(struct vmspace *vmspace)
883 {
884         return pmap_resident_count(vmspace_pmap(vmspace));
885 }
886
887 /*
888  * Initialize an existing vm_map structure
889  * such as that in the vmspace structure.
890  */
891 static void
892 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
893 {
894
895         map->header.eflags = MAP_ENTRY_HEADER;
896         map->needs_wakeup = FALSE;
897         map->system_map = 0;
898         map->pmap = pmap;
899         map->header.end = min;
900         map->header.start = max;
901         map->flags = 0;
902         map->header.left = map->header.right = &map->header;
903         map->root = NULL;
904         map->timestamp = 0;
905         map->busy = 0;
906         map->anon_loc = 0;
907 #ifdef DIAGNOSTIC
908         map->nupdates = 0;
909 #endif
910 }
911
912 void
913 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
914 {
915
916         _vm_map_init(map, pmap, min, max);
917         mtx_init(&map->system_mtx, "vm map (system)", NULL,
918             MTX_DEF | MTX_DUPOK);
919         sx_init(&map->lock, "vm map (user)");
920 }
921
922 /*
923  *      vm_map_entry_dispose:   [ internal use only ]
924  *
925  *      Inverse of vm_map_entry_create.
926  */
927 static void
928 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
929 {
930         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
931 }
932
933 /*
934  *      vm_map_entry_create:    [ internal use only ]
935  *
936  *      Allocates a VM map entry for insertion.
937  *      No entry fields are filled in.
938  */
939 static vm_map_entry_t
940 vm_map_entry_create(vm_map_t map)
941 {
942         vm_map_entry_t new_entry;
943
944 #ifndef UMA_MD_SMALL_ALLOC
945         if (map == kernel_map) {
946                 VM_MAP_ASSERT_LOCKED(map);
947
948                 /*
949                  * A new slab of kernel map entries cannot be allocated at this
950                  * point because the kernel map has not yet been updated to
951                  * reflect the caller's request.  Therefore, we allocate a new
952                  * map entry, dipping into the reserve if necessary, and set a
953                  * flag indicating that the reserve must be replenished before
954                  * the map is unlocked.
955                  */
956                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
957                 if (new_entry == NULL) {
958                         new_entry = uma_zalloc(kmapentzone,
959                             M_NOWAIT | M_NOVM | M_USE_RESERVE);
960                         kernel_map->flags |= MAP_REPLENISH;
961                 }
962         } else
963 #endif
964         if (map->system_map) {
965                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
966         } else {
967                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
968         }
969         KASSERT(new_entry != NULL,
970             ("vm_map_entry_create: kernel resources exhausted"));
971         return (new_entry);
972 }
973
974 /*
975  *      vm_map_entry_set_behavior:
976  *
977  *      Set the expected access behavior, either normal, random, or
978  *      sequential.
979  */
980 static inline void
981 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
982 {
983         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
984             (behavior & MAP_ENTRY_BEHAV_MASK);
985 }
986
987 /*
988  *      vm_map_entry_max_free_{left,right}:
989  *
990  *      Compute the size of the largest free gap between two entries,
991  *      one the root of a tree and the other the ancestor of that root
992  *      that is the least or greatest ancestor found on the search path.
993  */
994 static inline vm_size_t
995 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
996 {
997
998         return (root->left != left_ancestor ?
999             root->left->max_free : root->start - left_ancestor->end);
1000 }
1001
1002 static inline vm_size_t
1003 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1004 {
1005
1006         return (root->right != right_ancestor ?
1007             root->right->max_free : right_ancestor->start - root->end);
1008 }
1009
1010 /*
1011  *      vm_map_entry_{pred,succ}:
1012  *
1013  *      Find the {predecessor, successor} of the entry by taking one step
1014  *      in the appropriate direction and backtracking as much as necessary.
1015  *      vm_map_entry_succ is defined in vm_map.h.
1016  */
1017 static inline vm_map_entry_t
1018 vm_map_entry_pred(vm_map_entry_t entry)
1019 {
1020         vm_map_entry_t prior;
1021
1022         prior = entry->left;
1023         if (prior->right->start < entry->start) {
1024                 do
1025                         prior = prior->right;
1026                 while (prior->right != entry);
1027         }
1028         return (prior);
1029 }
1030
1031 static inline vm_size_t
1032 vm_size_max(vm_size_t a, vm_size_t b)
1033 {
1034
1035         return (a > b ? a : b);
1036 }
1037
1038 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1039         vm_map_entry_t z;                                               \
1040         vm_size_t max_free;                                             \
1041                                                                         \
1042         /*                                                              \
1043          * Infer root->right->max_free == root->max_free when           \
1044          * y->max_free < root->max_free || root->max_free == 0.         \
1045          * Otherwise, look right to find it.                            \
1046          */                                                             \
1047         y = root->left;                                                 \
1048         max_free = root->max_free;                                      \
1049         KASSERT(max_free == vm_size_max(                                \
1050             vm_map_entry_max_free_left(root, llist),                    \
1051             vm_map_entry_max_free_right(root, rlist)),                  \
1052             ("%s: max_free invariant fails", __func__));                \
1053         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1054                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1055         if (y != llist && (test)) {                                     \
1056                 /* Rotate right and make y root. */                     \
1057                 z = y->right;                                           \
1058                 if (z != root) {                                        \
1059                         root->left = z;                                 \
1060                         y->right = root;                                \
1061                         if (max_free < y->max_free)                     \
1062                             root->max_free = max_free =                 \
1063                             vm_size_max(max_free, z->max_free);         \
1064                 } else if (max_free < y->max_free)                      \
1065                         root->max_free = max_free =                     \
1066                             vm_size_max(max_free, root->start - y->end);\
1067                 root = y;                                               \
1068                 y = root->left;                                         \
1069         }                                                               \
1070         /* Copy right->max_free.  Put root on rlist. */                 \
1071         root->max_free = max_free;                                      \
1072         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1073             ("%s: max_free not copied from right", __func__));          \
1074         root->left = rlist;                                             \
1075         rlist = root;                                                   \
1076         root = y != llist ? y : NULL;                                   \
1077 } while (0)
1078
1079 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1080         vm_map_entry_t z;                                               \
1081         vm_size_t max_free;                                             \
1082                                                                         \
1083         /*                                                              \
1084          * Infer root->left->max_free == root->max_free when            \
1085          * y->max_free < root->max_free || root->max_free == 0.         \
1086          * Otherwise, look left to find it.                             \
1087          */                                                             \
1088         y = root->right;                                                \
1089         max_free = root->max_free;                                      \
1090         KASSERT(max_free == vm_size_max(                                \
1091             vm_map_entry_max_free_left(root, llist),                    \
1092             vm_map_entry_max_free_right(root, rlist)),                  \
1093             ("%s: max_free invariant fails", __func__));                \
1094         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1095                 max_free = vm_map_entry_max_free_left(root, llist);     \
1096         if (y != rlist && (test)) {                                     \
1097                 /* Rotate left and make y root. */                      \
1098                 z = y->left;                                            \
1099                 if (z != root) {                                        \
1100                         root->right = z;                                \
1101                         y->left = root;                                 \
1102                         if (max_free < y->max_free)                     \
1103                             root->max_free = max_free =                 \
1104                             vm_size_max(max_free, z->max_free);         \
1105                 } else if (max_free < y->max_free)                      \
1106                         root->max_free = max_free =                     \
1107                             vm_size_max(max_free, y->start - root->end);\
1108                 root = y;                                               \
1109                 y = root->right;                                        \
1110         }                                                               \
1111         /* Copy left->max_free.  Put root on llist. */                  \
1112         root->max_free = max_free;                                      \
1113         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1114             ("%s: max_free not copied from left", __func__));           \
1115         root->right = llist;                                            \
1116         llist = root;                                                   \
1117         root = y != rlist ? y : NULL;                                   \
1118 } while (0)
1119
1120 /*
1121  * Walk down the tree until we find addr or a gap where addr would go, breaking
1122  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1123  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1124  * the two sides in reverse order (bottom-up), with llist linked by the right
1125  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1126  * lists terminated by &map->header.  This function, and the subsequent call to
1127  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1128  * values in &map->header.
1129  */
1130 static __always_inline vm_map_entry_t
1131 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1132     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1133 {
1134         vm_map_entry_t left, right, root, y;
1135
1136         left = right = &map->header;
1137         root = map->root;
1138         while (root != NULL && root->max_free >= length) {
1139                 KASSERT(left->end <= root->start &&
1140                     root->end <= right->start,
1141                     ("%s: root not within tree bounds", __func__));
1142                 if (addr < root->start) {
1143                         SPLAY_LEFT_STEP(root, y, left, right,
1144                             y->max_free >= length && addr < y->start);
1145                 } else if (addr >= root->end) {
1146                         SPLAY_RIGHT_STEP(root, y, left, right,
1147                             y->max_free >= length && addr >= y->end);
1148                 } else
1149                         break;
1150         }
1151         *llist = left;
1152         *rlist = right;
1153         return (root);
1154 }
1155
1156 static __always_inline void
1157 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1158 {
1159         vm_map_entry_t hi, right, y;
1160
1161         right = *rlist;
1162         hi = root->right == right ? NULL : root->right;
1163         if (hi == NULL)
1164                 return;
1165         do
1166                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1167         while (hi != NULL);
1168         *rlist = right;
1169 }
1170
1171 static __always_inline void
1172 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1173 {
1174         vm_map_entry_t left, lo, y;
1175
1176         left = *llist;
1177         lo = root->left == left ? NULL : root->left;
1178         if (lo == NULL)
1179                 return;
1180         do
1181                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1182         while (lo != NULL);
1183         *llist = left;
1184 }
1185
1186 static inline void
1187 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1188 {
1189         vm_map_entry_t tmp;
1190
1191         tmp = *b;
1192         *b = *a;
1193         *a = tmp;
1194 }
1195
1196 /*
1197  * Walk back up the two spines, flip the pointers and set max_free.  The
1198  * subtrees of the root go at the bottom of llist and rlist.
1199  */
1200 static vm_size_t
1201 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1202     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1203 {
1204         do {
1205                 /*
1206                  * The max_free values of the children of llist are in
1207                  * llist->max_free and max_free.  Update with the
1208                  * max value.
1209                  */
1210                 llist->max_free = max_free =
1211                     vm_size_max(llist->max_free, max_free);
1212                 vm_map_entry_swap(&llist->right, &tail);
1213                 vm_map_entry_swap(&tail, &llist);
1214         } while (llist != header);
1215         root->left = tail;
1216         return (max_free);
1217 }
1218
1219 /*
1220  * When llist is known to be the predecessor of root.
1221  */
1222 static inline vm_size_t
1223 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1224     vm_map_entry_t llist)
1225 {
1226         vm_size_t max_free;
1227
1228         max_free = root->start - llist->end;
1229         if (llist != header) {
1230                 max_free = vm_map_splay_merge_left_walk(header, root,
1231                     root, max_free, llist);
1232         } else {
1233                 root->left = header;
1234                 header->right = root;
1235         }
1236         return (max_free);
1237 }
1238
1239 /*
1240  * When llist may or may not be the predecessor of root.
1241  */
1242 static inline vm_size_t
1243 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1244     vm_map_entry_t llist)
1245 {
1246         vm_size_t max_free;
1247
1248         max_free = vm_map_entry_max_free_left(root, llist);
1249         if (llist != header) {
1250                 max_free = vm_map_splay_merge_left_walk(header, root,
1251                     root->left == llist ? root : root->left,
1252                     max_free, llist);
1253         }
1254         return (max_free);
1255 }
1256
1257 static vm_size_t
1258 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1259     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1260 {
1261         do {
1262                 /*
1263                  * The max_free values of the children of rlist are in
1264                  * rlist->max_free and max_free.  Update with the
1265                  * max value.
1266                  */
1267                 rlist->max_free = max_free =
1268                     vm_size_max(rlist->max_free, max_free);
1269                 vm_map_entry_swap(&rlist->left, &tail);
1270                 vm_map_entry_swap(&tail, &rlist);
1271         } while (rlist != header);
1272         root->right = tail;
1273         return (max_free);
1274 }
1275
1276 /*
1277  * When rlist is known to be the succecessor of root.
1278  */
1279 static inline vm_size_t
1280 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1281     vm_map_entry_t rlist)
1282 {
1283         vm_size_t max_free;
1284
1285         max_free = rlist->start - root->end;
1286         if (rlist != header) {
1287                 max_free = vm_map_splay_merge_right_walk(header, root,
1288                     root, max_free, rlist);
1289         } else {
1290                 root->right = header;
1291                 header->left = root;
1292         }
1293         return (max_free);
1294 }
1295
1296 /*
1297  * When rlist may or may not be the succecessor of root.
1298  */
1299 static inline vm_size_t
1300 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1301     vm_map_entry_t rlist)
1302 {
1303         vm_size_t max_free;
1304
1305         max_free = vm_map_entry_max_free_right(root, rlist);
1306         if (rlist != header) {
1307                 max_free = vm_map_splay_merge_right_walk(header, root,
1308                     root->right == rlist ? root : root->right,
1309                     max_free, rlist);
1310         }
1311         return (max_free);
1312 }
1313
1314 /*
1315  *      vm_map_splay:
1316  *
1317  *      The Sleator and Tarjan top-down splay algorithm with the
1318  *      following variation.  Max_free must be computed bottom-up, so
1319  *      on the downward pass, maintain the left and right spines in
1320  *      reverse order.  Then, make a second pass up each side to fix
1321  *      the pointers and compute max_free.  The time bound is O(log n)
1322  *      amortized.
1323  *
1324  *      The tree is threaded, which means that there are no null pointers.
1325  *      When a node has no left child, its left pointer points to its
1326  *      predecessor, which the last ancestor on the search path from the root
1327  *      where the search branched right.  Likewise, when a node has no right
1328  *      child, its right pointer points to its successor.  The map header node
1329  *      is the predecessor of the first map entry, and the successor of the
1330  *      last.
1331  *
1332  *      The new root is the vm_map_entry containing "addr", or else an
1333  *      adjacent entry (lower if possible) if addr is not in the tree.
1334  *
1335  *      The map must be locked, and leaves it so.
1336  *
1337  *      Returns: the new root.
1338  */
1339 static vm_map_entry_t
1340 vm_map_splay(vm_map_t map, vm_offset_t addr)
1341 {
1342         vm_map_entry_t header, llist, rlist, root;
1343         vm_size_t max_free_left, max_free_right;
1344
1345         header = &map->header;
1346         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1347         if (root != NULL) {
1348                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1349                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1350         } else if (llist != header) {
1351                 /*
1352                  * Recover the greatest node in the left
1353                  * subtree and make it the root.
1354                  */
1355                 root = llist;
1356                 llist = root->right;
1357                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1358                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1359         } else if (rlist != header) {
1360                 /*
1361                  * Recover the least node in the right
1362                  * subtree and make it the root.
1363                  */
1364                 root = rlist;
1365                 rlist = root->left;
1366                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1367                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1368         } else {
1369                 /* There is no root. */
1370                 return (NULL);
1371         }
1372         root->max_free = vm_size_max(max_free_left, max_free_right);
1373         map->root = root;
1374         VM_MAP_ASSERT_CONSISTENT(map);
1375         return (root);
1376 }
1377
1378 /*
1379  *      vm_map_entry_{un,}link:
1380  *
1381  *      Insert/remove entries from maps.  On linking, if new entry clips
1382  *      existing entry, trim existing entry to avoid overlap, and manage
1383  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1384  *      called for, and manage offsets.  Callers should not modify fields in
1385  *      entries already mapped.
1386  */
1387 static void
1388 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1389 {
1390         vm_map_entry_t header, llist, rlist, root;
1391         vm_size_t max_free_left, max_free_right;
1392
1393         CTR3(KTR_VM,
1394             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1395             map->nentries, entry);
1396         VM_MAP_ASSERT_LOCKED(map);
1397         map->nentries++;
1398         header = &map->header;
1399         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1400         if (root == NULL) {
1401                 /*
1402                  * The new entry does not overlap any existing entry in the
1403                  * map, so it becomes the new root of the map tree.
1404                  */
1405                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1406                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1407         } else if (entry->start == root->start) {
1408                 /*
1409                  * The new entry is a clone of root, with only the end field
1410                  * changed.  The root entry will be shrunk to abut the new
1411                  * entry, and will be the right child of the new root entry in
1412                  * the modified map.
1413                  */
1414                 KASSERT(entry->end < root->end,
1415                     ("%s: clip_start not within entry", __func__));
1416                 vm_map_splay_findprev(root, &llist);
1417                 root->offset += entry->end - root->start;
1418                 root->start = entry->end;
1419                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1420                 max_free_right = root->max_free = vm_size_max(
1421                     vm_map_splay_merge_pred(entry, root, entry),
1422                     vm_map_splay_merge_right(header, root, rlist));
1423         } else {
1424                 /*
1425                  * The new entry is a clone of root, with only the start field
1426                  * changed.  The root entry will be shrunk to abut the new
1427                  * entry, and will be the left child of the new root entry in
1428                  * the modified map.
1429                  */
1430                 KASSERT(entry->end == root->end,
1431                     ("%s: clip_start not within entry", __func__));
1432                 vm_map_splay_findnext(root, &rlist);
1433                 entry->offset += entry->start - root->start;
1434                 root->end = entry->start;
1435                 max_free_left = root->max_free = vm_size_max(
1436                     vm_map_splay_merge_left(header, root, llist),
1437                     vm_map_splay_merge_succ(entry, root, entry));
1438                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439         }
1440         entry->max_free = vm_size_max(max_free_left, max_free_right);
1441         map->root = entry;
1442         VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444
1445 enum unlink_merge_type {
1446         UNLINK_MERGE_NONE,
1447         UNLINK_MERGE_NEXT
1448 };
1449
1450 static void
1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452     enum unlink_merge_type op)
1453 {
1454         vm_map_entry_t header, llist, rlist, root;
1455         vm_size_t max_free_left, max_free_right;
1456
1457         VM_MAP_ASSERT_LOCKED(map);
1458         header = &map->header;
1459         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460         KASSERT(root != NULL,
1461             ("vm_map_entry_unlink: unlink object not mapped"));
1462
1463         vm_map_splay_findprev(root, &llist);
1464         vm_map_splay_findnext(root, &rlist);
1465         if (op == UNLINK_MERGE_NEXT) {
1466                 rlist->start = root->start;
1467                 rlist->offset = root->offset;
1468         }
1469         if (llist != header) {
1470                 root = llist;
1471                 llist = root->right;
1472                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1473                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1474         } else if (rlist != header) {
1475                 root = rlist;
1476                 rlist = root->left;
1477                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1478                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1479         } else {
1480                 header->left = header->right = header;
1481                 root = NULL;
1482         }
1483         if (root != NULL)
1484                 root->max_free = vm_size_max(max_free_left, max_free_right);
1485         map->root = root;
1486         VM_MAP_ASSERT_CONSISTENT(map);
1487         map->nentries--;
1488         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1489             map->nentries, entry);
1490 }
1491
1492 /*
1493  *      vm_map_entry_resize:
1494  *
1495  *      Resize a vm_map_entry, recompute the amount of free space that
1496  *      follows it and propagate that value up the tree.
1497  *
1498  *      The map must be locked, and leaves it so.
1499  */
1500 static void
1501 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1502 {
1503         vm_map_entry_t header, llist, rlist, root;
1504
1505         VM_MAP_ASSERT_LOCKED(map);
1506         header = &map->header;
1507         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1508         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1509         vm_map_splay_findnext(root, &rlist);
1510         entry->end += grow_amount;
1511         root->max_free = vm_size_max(
1512             vm_map_splay_merge_left(header, root, llist),
1513             vm_map_splay_merge_succ(header, root, rlist));
1514         map->root = root;
1515         VM_MAP_ASSERT_CONSISTENT(map);
1516         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1517             __func__, map, map->nentries, entry);
1518 }
1519
1520 /*
1521  *      vm_map_lookup_entry:    [ internal use only ]
1522  *
1523  *      Finds the map entry containing (or
1524  *      immediately preceding) the specified address
1525  *      in the given map; the entry is returned
1526  *      in the "entry" parameter.  The boolean
1527  *      result indicates whether the address is
1528  *      actually contained in the map.
1529  */
1530 boolean_t
1531 vm_map_lookup_entry(
1532         vm_map_t map,
1533         vm_offset_t address,
1534         vm_map_entry_t *entry)  /* OUT */
1535 {
1536         vm_map_entry_t cur, header, lbound, ubound;
1537         boolean_t locked;
1538
1539         /*
1540          * If the map is empty, then the map entry immediately preceding
1541          * "address" is the map's header.
1542          */
1543         header = &map->header;
1544         cur = map->root;
1545         if (cur == NULL) {
1546                 *entry = header;
1547                 return (FALSE);
1548         }
1549         if (address >= cur->start && cur->end > address) {
1550                 *entry = cur;
1551                 return (TRUE);
1552         }
1553         if ((locked = vm_map_locked(map)) ||
1554             sx_try_upgrade(&map->lock)) {
1555                 /*
1556                  * Splay requires a write lock on the map.  However, it only
1557                  * restructures the binary search tree; it does not otherwise
1558                  * change the map.  Thus, the map's timestamp need not change
1559                  * on a temporary upgrade.
1560                  */
1561                 cur = vm_map_splay(map, address);
1562                 if (!locked) {
1563                         VM_MAP_UNLOCK_CONSISTENT(map);
1564                         sx_downgrade(&map->lock);
1565                 }
1566
1567                 /*
1568                  * If "address" is contained within a map entry, the new root
1569                  * is that map entry.  Otherwise, the new root is a map entry
1570                  * immediately before or after "address".
1571                  */
1572                 if (address < cur->start) {
1573                         *entry = header;
1574                         return (FALSE);
1575                 }
1576                 *entry = cur;
1577                 return (address < cur->end);
1578         }
1579         /*
1580          * Since the map is only locked for read access, perform a
1581          * standard binary search tree lookup for "address".
1582          */
1583         lbound = ubound = header;
1584         for (;;) {
1585                 if (address < cur->start) {
1586                         ubound = cur;
1587                         cur = cur->left;
1588                         if (cur == lbound)
1589                                 break;
1590                 } else if (cur->end <= address) {
1591                         lbound = cur;
1592                         cur = cur->right;
1593                         if (cur == ubound)
1594                                 break;
1595                 } else {
1596                         *entry = cur;
1597                         return (TRUE);
1598                 }
1599         }
1600         *entry = lbound;
1601         return (FALSE);
1602 }
1603
1604 /*
1605  *      vm_map_insert:
1606  *
1607  *      Inserts the given whole VM object into the target
1608  *      map at the specified address range.  The object's
1609  *      size should match that of the address range.
1610  *
1611  *      Requires that the map be locked, and leaves it so.
1612  *
1613  *      If object is non-NULL, ref count must be bumped by caller
1614  *      prior to making call to account for the new entry.
1615  */
1616 int
1617 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1618     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1619 {
1620         vm_map_entry_t new_entry, next_entry, prev_entry;
1621         struct ucred *cred;
1622         vm_eflags_t protoeflags;
1623         vm_inherit_t inheritance;
1624         u_long bdry;
1625         u_int bidx;
1626
1627         VM_MAP_ASSERT_LOCKED(map);
1628         KASSERT(object != kernel_object ||
1629             (cow & MAP_COPY_ON_WRITE) == 0,
1630             ("vm_map_insert: kernel object and COW"));
1631         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1632             (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1633             ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1634             object, cow));
1635         KASSERT((prot & ~max) == 0,
1636             ("prot %#x is not subset of max_prot %#x", prot, max));
1637
1638         /*
1639          * Check that the start and end points are not bogus.
1640          */
1641         if (start == end || !vm_map_range_valid(map, start, end))
1642                 return (KERN_INVALID_ADDRESS);
1643
1644         if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1645             VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1646                 return (KERN_PROTECTION_FAILURE);
1647
1648         /*
1649          * Find the entry prior to the proposed starting address; if it's part
1650          * of an existing entry, this range is bogus.
1651          */
1652         if (vm_map_lookup_entry(map, start, &prev_entry))
1653                 return (KERN_NO_SPACE);
1654
1655         /*
1656          * Assert that the next entry doesn't overlap the end point.
1657          */
1658         next_entry = vm_map_entry_succ(prev_entry);
1659         if (next_entry->start < end)
1660                 return (KERN_NO_SPACE);
1661
1662         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1663             max != VM_PROT_NONE))
1664                 return (KERN_INVALID_ARGUMENT);
1665
1666         protoeflags = 0;
1667         if (cow & MAP_COPY_ON_WRITE)
1668                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1669         if (cow & MAP_NOFAULT)
1670                 protoeflags |= MAP_ENTRY_NOFAULT;
1671         if (cow & MAP_DISABLE_SYNCER)
1672                 protoeflags |= MAP_ENTRY_NOSYNC;
1673         if (cow & MAP_DISABLE_COREDUMP)
1674                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1675         if (cow & MAP_STACK_GROWS_DOWN)
1676                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1677         if (cow & MAP_STACK_GROWS_UP)
1678                 protoeflags |= MAP_ENTRY_GROWS_UP;
1679         if (cow & MAP_WRITECOUNT)
1680                 protoeflags |= MAP_ENTRY_WRITECNT;
1681         if (cow & MAP_VN_EXEC)
1682                 protoeflags |= MAP_ENTRY_VN_EXEC;
1683         if ((cow & MAP_CREATE_GUARD) != 0)
1684                 protoeflags |= MAP_ENTRY_GUARD;
1685         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1686                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1687         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1688                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1689         if (cow & MAP_INHERIT_SHARE)
1690                 inheritance = VM_INHERIT_SHARE;
1691         else
1692                 inheritance = VM_INHERIT_DEFAULT;
1693         if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1694                 /* This magically ignores index 0, for usual page size. */
1695                 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1696                     MAP_SPLIT_BOUNDARY_SHIFT;
1697                 if (bidx >= MAXPAGESIZES)
1698                         return (KERN_INVALID_ARGUMENT);
1699                 bdry = pagesizes[bidx] - 1;
1700                 if ((start & bdry) != 0 || (end & bdry) != 0)
1701                         return (KERN_INVALID_ARGUMENT);
1702                 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1703         }
1704
1705         cred = NULL;
1706         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1707                 goto charged;
1708         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1709             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1710                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1711                         return (KERN_RESOURCE_SHORTAGE);
1712                 KASSERT(object == NULL ||
1713                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1714                     object->cred == NULL,
1715                     ("overcommit: vm_map_insert o %p", object));
1716                 cred = curthread->td_ucred;
1717         }
1718
1719 charged:
1720         /* Expand the kernel pmap, if necessary. */
1721         if (map == kernel_map && end > kernel_vm_end)
1722                 pmap_growkernel(end);
1723         if (object != NULL) {
1724                 /*
1725                  * OBJ_ONEMAPPING must be cleared unless this mapping
1726                  * is trivially proven to be the only mapping for any
1727                  * of the object's pages.  (Object granularity
1728                  * reference counting is insufficient to recognize
1729                  * aliases with precision.)
1730                  */
1731                 if ((object->flags & OBJ_ANON) != 0) {
1732                         VM_OBJECT_WLOCK(object);
1733                         if (object->ref_count > 1 || object->shadow_count != 0)
1734                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1735                         VM_OBJECT_WUNLOCK(object);
1736                 }
1737         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1738             protoeflags &&
1739             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1740             MAP_VN_EXEC)) == 0 &&
1741             prev_entry->end == start && (prev_entry->cred == cred ||
1742             (prev_entry->object.vm_object != NULL &&
1743             prev_entry->object.vm_object->cred == cred)) &&
1744             vm_object_coalesce(prev_entry->object.vm_object,
1745             prev_entry->offset,
1746             (vm_size_t)(prev_entry->end - prev_entry->start),
1747             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1748             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1749                 /*
1750                  * We were able to extend the object.  Determine if we
1751                  * can extend the previous map entry to include the
1752                  * new range as well.
1753                  */
1754                 if (prev_entry->inheritance == inheritance &&
1755                     prev_entry->protection == prot &&
1756                     prev_entry->max_protection == max &&
1757                     prev_entry->wired_count == 0) {
1758                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1759                             0, ("prev_entry %p has incoherent wiring",
1760                             prev_entry));
1761                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1762                                 map->size += end - prev_entry->end;
1763                         vm_map_entry_resize(map, prev_entry,
1764                             end - prev_entry->end);
1765                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1766                         return (KERN_SUCCESS);
1767                 }
1768
1769                 /*
1770                  * If we can extend the object but cannot extend the
1771                  * map entry, we have to create a new map entry.  We
1772                  * must bump the ref count on the extended object to
1773                  * account for it.  object may be NULL.
1774                  */
1775                 object = prev_entry->object.vm_object;
1776                 offset = prev_entry->offset +
1777                     (prev_entry->end - prev_entry->start);
1778                 vm_object_reference(object);
1779                 if (cred != NULL && object != NULL && object->cred != NULL &&
1780                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1781                         /* Object already accounts for this uid. */
1782                         cred = NULL;
1783                 }
1784         }
1785         if (cred != NULL)
1786                 crhold(cred);
1787
1788         /*
1789          * Create a new entry
1790          */
1791         new_entry = vm_map_entry_create(map);
1792         new_entry->start = start;
1793         new_entry->end = end;
1794         new_entry->cred = NULL;
1795
1796         new_entry->eflags = protoeflags;
1797         new_entry->object.vm_object = object;
1798         new_entry->offset = offset;
1799
1800         new_entry->inheritance = inheritance;
1801         new_entry->protection = prot;
1802         new_entry->max_protection = max;
1803         new_entry->wired_count = 0;
1804         new_entry->wiring_thread = NULL;
1805         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1806         new_entry->next_read = start;
1807
1808         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1809             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1810         new_entry->cred = cred;
1811
1812         /*
1813          * Insert the new entry into the list
1814          */
1815         vm_map_entry_link(map, new_entry);
1816         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1817                 map->size += new_entry->end - new_entry->start;
1818
1819         /*
1820          * Try to coalesce the new entry with both the previous and next
1821          * entries in the list.  Previously, we only attempted to coalesce
1822          * with the previous entry when object is NULL.  Here, we handle the
1823          * other cases, which are less common.
1824          */
1825         vm_map_try_merge_entries(map, prev_entry, new_entry);
1826         vm_map_try_merge_entries(map, new_entry, next_entry);
1827
1828         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1829                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1830                     end - start, cow & MAP_PREFAULT_PARTIAL);
1831         }
1832
1833         return (KERN_SUCCESS);
1834 }
1835
1836 /*
1837  *      vm_map_findspace:
1838  *
1839  *      Find the first fit (lowest VM address) for "length" free bytes
1840  *      beginning at address >= start in the given map.
1841  *
1842  *      In a vm_map_entry, "max_free" is the maximum amount of
1843  *      contiguous free space between an entry in its subtree and a
1844  *      neighbor of that entry.  This allows finding a free region in
1845  *      one path down the tree, so O(log n) amortized with splay
1846  *      trees.
1847  *
1848  *      The map must be locked, and leaves it so.
1849  *
1850  *      Returns: starting address if sufficient space,
1851  *               vm_map_max(map)-length+1 if insufficient space.
1852  */
1853 vm_offset_t
1854 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1855 {
1856         vm_map_entry_t header, llist, rlist, root, y;
1857         vm_size_t left_length, max_free_left, max_free_right;
1858         vm_offset_t gap_end;
1859
1860         VM_MAP_ASSERT_LOCKED(map);
1861
1862         /*
1863          * Request must fit within min/max VM address and must avoid
1864          * address wrap.
1865          */
1866         start = MAX(start, vm_map_min(map));
1867         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1868                 return (vm_map_max(map) - length + 1);
1869
1870         /* Empty tree means wide open address space. */
1871         if (map->root == NULL)
1872                 return (start);
1873
1874         /*
1875          * After splay_split, if start is within an entry, push it to the start
1876          * of the following gap.  If rlist is at the end of the gap containing
1877          * start, save the end of that gap in gap_end to see if the gap is big
1878          * enough; otherwise set gap_end to start skip gap-checking and move
1879          * directly to a search of the right subtree.
1880          */
1881         header = &map->header;
1882         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1883         gap_end = rlist->start;
1884         if (root != NULL) {
1885                 start = root->end;
1886                 if (root->right != rlist)
1887                         gap_end = start;
1888                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1889                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1890         } else if (rlist != header) {
1891                 root = rlist;
1892                 rlist = root->left;
1893                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1894                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1895         } else {
1896                 root = llist;
1897                 llist = root->right;
1898                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1899                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1900         }
1901         root->max_free = vm_size_max(max_free_left, max_free_right);
1902         map->root = root;
1903         VM_MAP_ASSERT_CONSISTENT(map);
1904         if (length <= gap_end - start)
1905                 return (start);
1906
1907         /* With max_free, can immediately tell if no solution. */
1908         if (root->right == header || length > root->right->max_free)
1909                 return (vm_map_max(map) - length + 1);
1910
1911         /*
1912          * Splay for the least large-enough gap in the right subtree.
1913          */
1914         llist = rlist = header;
1915         for (left_length = 0;;
1916             left_length = vm_map_entry_max_free_left(root, llist)) {
1917                 if (length <= left_length)
1918                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1919                             length <= vm_map_entry_max_free_left(y, llist));
1920                 else
1921                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1922                             length > vm_map_entry_max_free_left(y, root));
1923                 if (root == NULL)
1924                         break;
1925         }
1926         root = llist;
1927         llist = root->right;
1928         max_free_left = vm_map_splay_merge_left(header, root, llist);
1929         if (rlist == header) {
1930                 root->max_free = vm_size_max(max_free_left,
1931                     vm_map_splay_merge_succ(header, root, rlist));
1932         } else {
1933                 y = rlist;
1934                 rlist = y->left;
1935                 y->max_free = vm_size_max(
1936                     vm_map_splay_merge_pred(root, y, root),
1937                     vm_map_splay_merge_right(header, y, rlist));
1938                 root->max_free = vm_size_max(max_free_left, y->max_free);
1939         }
1940         map->root = root;
1941         VM_MAP_ASSERT_CONSISTENT(map);
1942         return (root->end);
1943 }
1944
1945 int
1946 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1947     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1948     vm_prot_t max, int cow)
1949 {
1950         vm_offset_t end;
1951         int result;
1952
1953         end = start + length;
1954         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1955             object == NULL,
1956             ("vm_map_fixed: non-NULL backing object for stack"));
1957         vm_map_lock(map);
1958         VM_MAP_RANGE_CHECK(map, start, end);
1959         if ((cow & MAP_CHECK_EXCL) == 0) {
1960                 result = vm_map_delete(map, start, end);
1961                 if (result != KERN_SUCCESS)
1962                         goto out;
1963         }
1964         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1965                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1966                     prot, max, cow);
1967         } else {
1968                 result = vm_map_insert(map, object, offset, start, end,
1969                     prot, max, cow);
1970         }
1971 out:
1972         vm_map_unlock(map);
1973         return (result);
1974 }
1975
1976 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1977 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1978
1979 static int cluster_anon = 1;
1980 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1981     &cluster_anon, 0,
1982     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1983
1984 static bool
1985 clustering_anon_allowed(vm_offset_t addr)
1986 {
1987
1988         switch (cluster_anon) {
1989         case 0:
1990                 return (false);
1991         case 1:
1992                 return (addr == 0);
1993         case 2:
1994         default:
1995                 return (true);
1996         }
1997 }
1998
1999 static long aslr_restarts;
2000 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2001     &aslr_restarts, 0,
2002     "Number of aslr failures");
2003
2004 /*
2005  * Searches for the specified amount of free space in the given map with the
2006  * specified alignment.  Performs an address-ordered, first-fit search from
2007  * the given address "*addr", with an optional upper bound "max_addr".  If the
2008  * parameter "alignment" is zero, then the alignment is computed from the
2009  * given (object, offset) pair so as to enable the greatest possible use of
2010  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2011  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2012  *
2013  * The map must be locked.  Initially, there must be at least "length" bytes
2014  * of free space at the given address.
2015  */
2016 static int
2017 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2018     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2019     vm_offset_t alignment)
2020 {
2021         vm_offset_t aligned_addr, free_addr;
2022
2023         VM_MAP_ASSERT_LOCKED(map);
2024         free_addr = *addr;
2025         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2026             ("caller failed to provide space %#jx at address %p",
2027              (uintmax_t)length, (void *)free_addr));
2028         for (;;) {
2029                 /*
2030                  * At the start of every iteration, the free space at address
2031                  * "*addr" is at least "length" bytes.
2032                  */
2033                 if (alignment == 0)
2034                         pmap_align_superpage(object, offset, addr, length);
2035                 else if ((*addr & (alignment - 1)) != 0) {
2036                         *addr &= ~(alignment - 1);
2037                         *addr += alignment;
2038                 }
2039                 aligned_addr = *addr;
2040                 if (aligned_addr == free_addr) {
2041                         /*
2042                          * Alignment did not change "*addr", so "*addr" must
2043                          * still provide sufficient free space.
2044                          */
2045                         return (KERN_SUCCESS);
2046                 }
2047
2048                 /*
2049                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2050                  * be a valid address, in which case vm_map_findspace() cannot
2051                  * be relied upon to fail.
2052                  */
2053                 if (aligned_addr < free_addr)
2054                         return (KERN_NO_SPACE);
2055                 *addr = vm_map_findspace(map, aligned_addr, length);
2056                 if (*addr + length > vm_map_max(map) ||
2057                     (max_addr != 0 && *addr + length > max_addr))
2058                         return (KERN_NO_SPACE);
2059                 free_addr = *addr;
2060                 if (free_addr == aligned_addr) {
2061                         /*
2062                          * If a successful call to vm_map_findspace() did not
2063                          * change "*addr", then "*addr" must still be aligned
2064                          * and provide sufficient free space.
2065                          */
2066                         return (KERN_SUCCESS);
2067                 }
2068         }
2069 }
2070
2071 int
2072 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2073     vm_offset_t max_addr, vm_offset_t alignment)
2074 {
2075         /* XXXKIB ASLR eh ? */
2076         *addr = vm_map_findspace(map, *addr, length);
2077         if (*addr + length > vm_map_max(map) ||
2078             (max_addr != 0 && *addr + length > max_addr))
2079                 return (KERN_NO_SPACE);
2080         return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2081             alignment));
2082 }
2083
2084 /*
2085  *      vm_map_find finds an unallocated region in the target address
2086  *      map with the given length.  The search is defined to be
2087  *      first-fit from the specified address; the region found is
2088  *      returned in the same parameter.
2089  *
2090  *      If object is non-NULL, ref count must be bumped by caller
2091  *      prior to making call to account for the new entry.
2092  */
2093 int
2094 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2095             vm_offset_t *addr,  /* IN/OUT */
2096             vm_size_t length, vm_offset_t max_addr, int find_space,
2097             vm_prot_t prot, vm_prot_t max, int cow)
2098 {
2099         vm_offset_t alignment, curr_min_addr, min_addr;
2100         int gap, pidx, rv, try;
2101         bool cluster, en_aslr, update_anon;
2102
2103         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2104             object == NULL,
2105             ("vm_map_find: non-NULL backing object for stack"));
2106         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2107             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2108         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2109             (object->flags & OBJ_COLORED) == 0))
2110                 find_space = VMFS_ANY_SPACE;
2111         if (find_space >> 8 != 0) {
2112                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2113                 alignment = (vm_offset_t)1 << (find_space >> 8);
2114         } else
2115                 alignment = 0;
2116         en_aslr = (map->flags & MAP_ASLR) != 0;
2117         update_anon = cluster = clustering_anon_allowed(*addr) &&
2118             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2119             find_space != VMFS_NO_SPACE && object == NULL &&
2120             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2121             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2122         curr_min_addr = min_addr = *addr;
2123         if (en_aslr && min_addr == 0 && !cluster &&
2124             find_space != VMFS_NO_SPACE &&
2125             (map->flags & MAP_ASLR_IGNSTART) != 0)
2126                 curr_min_addr = min_addr = vm_map_min(map);
2127         try = 0;
2128         vm_map_lock(map);
2129         if (cluster) {
2130                 curr_min_addr = map->anon_loc;
2131                 if (curr_min_addr == 0)
2132                         cluster = false;
2133         }
2134         if (find_space != VMFS_NO_SPACE) {
2135                 KASSERT(find_space == VMFS_ANY_SPACE ||
2136                     find_space == VMFS_OPTIMAL_SPACE ||
2137                     find_space == VMFS_SUPER_SPACE ||
2138                     alignment != 0, ("unexpected VMFS flag"));
2139 again:
2140                 /*
2141                  * When creating an anonymous mapping, try clustering
2142                  * with an existing anonymous mapping first.
2143                  *
2144                  * We make up to two attempts to find address space
2145                  * for a given find_space value. The first attempt may
2146                  * apply randomization or may cluster with an existing
2147                  * anonymous mapping. If this first attempt fails,
2148                  * perform a first-fit search of the available address
2149                  * space.
2150                  *
2151                  * If all tries failed, and find_space is
2152                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2153                  * Again enable clustering and randomization.
2154                  */
2155                 try++;
2156                 MPASS(try <= 2);
2157
2158                 if (try == 2) {
2159                         /*
2160                          * Second try: we failed either to find a
2161                          * suitable region for randomizing the
2162                          * allocation, or to cluster with an existing
2163                          * mapping.  Retry with free run.
2164                          */
2165                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2166                             vm_map_min(map) : min_addr;
2167                         atomic_add_long(&aslr_restarts, 1);
2168                 }
2169
2170                 if (try == 1 && en_aslr && !cluster) {
2171                         /*
2172                          * Find space for allocation, including
2173                          * gap needed for later randomization.
2174                          */
2175                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2176                             (find_space == VMFS_SUPER_SPACE || find_space ==
2177                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2178                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2179                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2180                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2181                         *addr = vm_map_findspace(map, curr_min_addr,
2182                             length + gap * pagesizes[pidx]);
2183                         if (*addr + length + gap * pagesizes[pidx] >
2184                             vm_map_max(map))
2185                                 goto again;
2186                         /* And randomize the start address. */
2187                         *addr += (arc4random() % gap) * pagesizes[pidx];
2188                         if (max_addr != 0 && *addr + length > max_addr)
2189                                 goto again;
2190                 } else {
2191                         *addr = vm_map_findspace(map, curr_min_addr, length);
2192                         if (*addr + length > vm_map_max(map) ||
2193                             (max_addr != 0 && *addr + length > max_addr)) {
2194                                 if (cluster) {
2195                                         cluster = false;
2196                                         MPASS(try == 1);
2197                                         goto again;
2198                                 }
2199                                 rv = KERN_NO_SPACE;
2200                                 goto done;
2201                         }
2202                 }
2203
2204                 if (find_space != VMFS_ANY_SPACE &&
2205                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2206                     max_addr, alignment)) != KERN_SUCCESS) {
2207                         if (find_space == VMFS_OPTIMAL_SPACE) {
2208                                 find_space = VMFS_ANY_SPACE;
2209                                 curr_min_addr = min_addr;
2210                                 cluster = update_anon;
2211                                 try = 0;
2212                                 goto again;
2213                         }
2214                         goto done;
2215                 }
2216         } else if ((cow & MAP_REMAP) != 0) {
2217                 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2218                         rv = KERN_INVALID_ADDRESS;
2219                         goto done;
2220                 }
2221                 rv = vm_map_delete(map, *addr, *addr + length);
2222                 if (rv != KERN_SUCCESS)
2223                         goto done;
2224         }
2225         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2226                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2227                     max, cow);
2228         } else {
2229                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2230                     prot, max, cow);
2231         }
2232         if (rv == KERN_SUCCESS && update_anon)
2233                 map->anon_loc = *addr + length;
2234 done:
2235         vm_map_unlock(map);
2236         return (rv);
2237 }
2238
2239 /*
2240  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2241  *      additional parameter (min_addr) and treats the given address
2242  *      (*addr) differently.  Specifically, it treats *addr as a hint
2243  *      and not as the minimum address where the mapping is created.
2244  *
2245  *      This function works in two phases.  First, it tries to
2246  *      allocate above the hint.  If that fails and the hint is
2247  *      greater than min_addr, it performs a second pass, replacing
2248  *      the hint with min_addr as the minimum address for the
2249  *      allocation.
2250  */
2251 int
2252 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2253     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2254     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2255     int cow)
2256 {
2257         vm_offset_t hint;
2258         int rv;
2259
2260         hint = *addr;
2261         for (;;) {
2262                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2263                     find_space, prot, max, cow);
2264                 if (rv == KERN_SUCCESS || min_addr >= hint)
2265                         return (rv);
2266                 *addr = hint = min_addr;
2267         }
2268 }
2269
2270 /*
2271  * A map entry with any of the following flags set must not be merged with
2272  * another entry.
2273  */
2274 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2275             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2276
2277 static bool
2278 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2279 {
2280
2281         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2282             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2283             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2284             prev, entry));
2285         return (prev->end == entry->start &&
2286             prev->object.vm_object == entry->object.vm_object &&
2287             (prev->object.vm_object == NULL ||
2288             prev->offset + (prev->end - prev->start) == entry->offset) &&
2289             prev->eflags == entry->eflags &&
2290             prev->protection == entry->protection &&
2291             prev->max_protection == entry->max_protection &&
2292             prev->inheritance == entry->inheritance &&
2293             prev->wired_count == entry->wired_count &&
2294             prev->cred == entry->cred);
2295 }
2296
2297 static void
2298 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2299 {
2300
2301         /*
2302          * If the backing object is a vnode object, vm_object_deallocate()
2303          * calls vrele().  However, vrele() does not lock the vnode because
2304          * the vnode has additional references.  Thus, the map lock can be
2305          * kept without causing a lock-order reversal with the vnode lock.
2306          *
2307          * Since we count the number of virtual page mappings in
2308          * object->un_pager.vnp.writemappings, the writemappings value
2309          * should not be adjusted when the entry is disposed of.
2310          */
2311         if (entry->object.vm_object != NULL)
2312                 vm_object_deallocate(entry->object.vm_object);
2313         if (entry->cred != NULL)
2314                 crfree(entry->cred);
2315         vm_map_entry_dispose(map, entry);
2316 }
2317
2318 /*
2319  *      vm_map_try_merge_entries:
2320  *
2321  *      Compare the given map entry to its predecessor, and merge its precessor
2322  *      into it if possible.  The entry remains valid, and may be extended.
2323  *      The predecessor may be deleted.
2324  *
2325  *      The map must be locked.
2326  */
2327 void
2328 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2329     vm_map_entry_t entry)
2330 {
2331
2332         VM_MAP_ASSERT_LOCKED(map);
2333         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2334             vm_map_mergeable_neighbors(prev_entry, entry)) {
2335                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2336                 vm_map_merged_neighbor_dispose(map, prev_entry);
2337         }
2338 }
2339
2340 /*
2341  *      vm_map_entry_back:
2342  *
2343  *      Allocate an object to back a map entry.
2344  */
2345 static inline void
2346 vm_map_entry_back(vm_map_entry_t entry)
2347 {
2348         vm_object_t object;
2349
2350         KASSERT(entry->object.vm_object == NULL,
2351             ("map entry %p has backing object", entry));
2352         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2353             ("map entry %p is a submap", entry));
2354         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2355             entry->cred, entry->end - entry->start);
2356         entry->object.vm_object = object;
2357         entry->offset = 0;
2358         entry->cred = NULL;
2359 }
2360
2361 /*
2362  *      vm_map_entry_charge_object
2363  *
2364  *      If there is no object backing this entry, create one.  Otherwise, if
2365  *      the entry has cred, give it to the backing object.
2366  */
2367 static inline void
2368 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2369 {
2370
2371         VM_MAP_ASSERT_LOCKED(map);
2372         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2373             ("map entry %p is a submap", entry));
2374         if (entry->object.vm_object == NULL && !map->system_map &&
2375             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2376                 vm_map_entry_back(entry);
2377         else if (entry->object.vm_object != NULL &&
2378             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2379             entry->cred != NULL) {
2380                 VM_OBJECT_WLOCK(entry->object.vm_object);
2381                 KASSERT(entry->object.vm_object->cred == NULL,
2382                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2383                 entry->object.vm_object->cred = entry->cred;
2384                 entry->object.vm_object->charge = entry->end - entry->start;
2385                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2386                 entry->cred = NULL;
2387         }
2388 }
2389
2390 /*
2391  *      vm_map_entry_clone
2392  *
2393  *      Create a duplicate map entry for clipping.
2394  */
2395 static vm_map_entry_t
2396 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2397 {
2398         vm_map_entry_t new_entry;
2399
2400         VM_MAP_ASSERT_LOCKED(map);
2401
2402         /*
2403          * Create a backing object now, if none exists, so that more individual
2404          * objects won't be created after the map entry is split.
2405          */
2406         vm_map_entry_charge_object(map, entry);
2407
2408         /* Clone the entry. */
2409         new_entry = vm_map_entry_create(map);
2410         *new_entry = *entry;
2411         if (new_entry->cred != NULL)
2412                 crhold(entry->cred);
2413         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2414                 vm_object_reference(new_entry->object.vm_object);
2415                 vm_map_entry_set_vnode_text(new_entry, true);
2416                 /*
2417                  * The object->un_pager.vnp.writemappings for the object of
2418                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2419                  * virtual pages are re-distributed among the clipped entries,
2420                  * so the sum is left the same.
2421                  */
2422         }
2423         return (new_entry);
2424 }
2425
2426 /*
2427  *      vm_map_clip_start:      [ internal use only ]
2428  *
2429  *      Asserts that the given entry begins at or after
2430  *      the specified address; if necessary,
2431  *      it splits the entry into two.
2432  */
2433 static int
2434 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2435 {
2436         vm_map_entry_t new_entry;
2437         int bdry_idx;
2438
2439         if (!map->system_map)
2440                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2441                     "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2442                     (uintmax_t)startaddr);
2443
2444         if (startaddr <= entry->start)
2445                 return (KERN_SUCCESS);
2446
2447         VM_MAP_ASSERT_LOCKED(map);
2448         KASSERT(entry->end > startaddr && entry->start < startaddr,
2449             ("%s: invalid clip of entry %p", __func__, entry));
2450
2451         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2452             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2453         if (bdry_idx != 0) {
2454                 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2455                         return (KERN_INVALID_ARGUMENT);
2456         }
2457
2458         new_entry = vm_map_entry_clone(map, entry);
2459
2460         /*
2461          * Split off the front portion.  Insert the new entry BEFORE this one,
2462          * so that this entry has the specified starting address.
2463          */
2464         new_entry->end = startaddr;
2465         vm_map_entry_link(map, new_entry);
2466         return (KERN_SUCCESS);
2467 }
2468
2469 /*
2470  *      vm_map_lookup_clip_start:
2471  *
2472  *      Find the entry at or just after 'start', and clip it if 'start' is in
2473  *      the interior of the entry.  Return entry after 'start', and in
2474  *      prev_entry set the entry before 'start'.
2475  */
2476 static int
2477 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2478     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2479 {
2480         vm_map_entry_t entry;
2481         int rv;
2482
2483         if (!map->system_map)
2484                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2485                     "%s: map %p start 0x%jx prev %p", __func__, map,
2486                     (uintmax_t)start, prev_entry);
2487
2488         if (vm_map_lookup_entry(map, start, prev_entry)) {
2489                 entry = *prev_entry;
2490                 rv = vm_map_clip_start(map, entry, start);
2491                 if (rv != KERN_SUCCESS)
2492                         return (rv);
2493                 *prev_entry = vm_map_entry_pred(entry);
2494         } else
2495                 entry = vm_map_entry_succ(*prev_entry);
2496         *res_entry = entry;
2497         return (KERN_SUCCESS);
2498 }
2499
2500 /*
2501  *      vm_map_clip_end:        [ internal use only ]
2502  *
2503  *      Asserts that the given entry ends at or before
2504  *      the specified address; if necessary,
2505  *      it splits the entry into two.
2506  */
2507 static int
2508 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2509 {
2510         vm_map_entry_t new_entry;
2511         int bdry_idx;
2512
2513         if (!map->system_map)
2514                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2515                     "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2516                     (uintmax_t)endaddr);
2517
2518         if (endaddr >= entry->end)
2519                 return (KERN_SUCCESS);
2520
2521         VM_MAP_ASSERT_LOCKED(map);
2522         KASSERT(entry->start < endaddr && entry->end > endaddr,
2523             ("%s: invalid clip of entry %p", __func__, entry));
2524
2525         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2526             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2527         if (bdry_idx != 0) {
2528                 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2529                         return (KERN_INVALID_ARGUMENT);
2530         }
2531
2532         new_entry = vm_map_entry_clone(map, entry);
2533
2534         /*
2535          * Split off the back portion.  Insert the new entry AFTER this one,
2536          * so that this entry has the specified ending address.
2537          */
2538         new_entry->start = endaddr;
2539         vm_map_entry_link(map, new_entry);
2540
2541         return (KERN_SUCCESS);
2542 }
2543
2544 /*
2545  *      vm_map_submap:          [ kernel use only ]
2546  *
2547  *      Mark the given range as handled by a subordinate map.
2548  *
2549  *      This range must have been created with vm_map_find,
2550  *      and no other operations may have been performed on this
2551  *      range prior to calling vm_map_submap.
2552  *
2553  *      Only a limited number of operations can be performed
2554  *      within this rage after calling vm_map_submap:
2555  *              vm_fault
2556  *      [Don't try vm_map_copy!]
2557  *
2558  *      To remove a submapping, one must first remove the
2559  *      range from the superior map, and then destroy the
2560  *      submap (if desired).  [Better yet, don't try it.]
2561  */
2562 int
2563 vm_map_submap(
2564         vm_map_t map,
2565         vm_offset_t start,
2566         vm_offset_t end,
2567         vm_map_t submap)
2568 {
2569         vm_map_entry_t entry;
2570         int result;
2571
2572         result = KERN_INVALID_ARGUMENT;
2573
2574         vm_map_lock(submap);
2575         submap->flags |= MAP_IS_SUB_MAP;
2576         vm_map_unlock(submap);
2577
2578         vm_map_lock(map);
2579         VM_MAP_RANGE_CHECK(map, start, end);
2580         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2581             (entry->eflags & MAP_ENTRY_COW) == 0 &&
2582             entry->object.vm_object == NULL) {
2583                 result = vm_map_clip_start(map, entry, start);
2584                 if (result != KERN_SUCCESS)
2585                         goto unlock;
2586                 result = vm_map_clip_end(map, entry, end);
2587                 if (result != KERN_SUCCESS)
2588                         goto unlock;
2589                 entry->object.sub_map = submap;
2590                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2591                 result = KERN_SUCCESS;
2592         }
2593 unlock:
2594         vm_map_unlock(map);
2595
2596         if (result != KERN_SUCCESS) {
2597                 vm_map_lock(submap);
2598                 submap->flags &= ~MAP_IS_SUB_MAP;
2599                 vm_map_unlock(submap);
2600         }
2601         return (result);
2602 }
2603
2604 /*
2605  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2606  */
2607 #define MAX_INIT_PT     96
2608
2609 /*
2610  *      vm_map_pmap_enter:
2611  *
2612  *      Preload the specified map's pmap with mappings to the specified
2613  *      object's memory-resident pages.  No further physical pages are
2614  *      allocated, and no further virtual pages are retrieved from secondary
2615  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2616  *      limited number of page mappings are created at the low-end of the
2617  *      specified address range.  (For this purpose, a superpage mapping
2618  *      counts as one page mapping.)  Otherwise, all resident pages within
2619  *      the specified address range are mapped.
2620  */
2621 static void
2622 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2623     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2624 {
2625         vm_offset_t start;
2626         vm_page_t p, p_start;
2627         vm_pindex_t mask, psize, threshold, tmpidx;
2628
2629         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2630                 return;
2631         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2632                 VM_OBJECT_WLOCK(object);
2633                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2634                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2635                             size);
2636                         VM_OBJECT_WUNLOCK(object);
2637                         return;
2638                 }
2639                 VM_OBJECT_LOCK_DOWNGRADE(object);
2640         } else
2641                 VM_OBJECT_RLOCK(object);
2642
2643         psize = atop(size);
2644         if (psize + pindex > object->size) {
2645                 if (pindex >= object->size) {
2646                         VM_OBJECT_RUNLOCK(object);
2647                         return;
2648                 }
2649                 psize = object->size - pindex;
2650         }
2651
2652         start = 0;
2653         p_start = NULL;
2654         threshold = MAX_INIT_PT;
2655
2656         p = vm_page_find_least(object, pindex);
2657         /*
2658          * Assert: the variable p is either (1) the page with the
2659          * least pindex greater than or equal to the parameter pindex
2660          * or (2) NULL.
2661          */
2662         for (;
2663              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2664              p = TAILQ_NEXT(p, listq)) {
2665                 /*
2666                  * don't allow an madvise to blow away our really
2667                  * free pages allocating pv entries.
2668                  */
2669                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2670                     vm_page_count_severe()) ||
2671                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2672                     tmpidx >= threshold)) {
2673                         psize = tmpidx;
2674                         break;
2675                 }
2676                 if (vm_page_all_valid(p)) {
2677                         if (p_start == NULL) {
2678                                 start = addr + ptoa(tmpidx);
2679                                 p_start = p;
2680                         }
2681                         /* Jump ahead if a superpage mapping is possible. */
2682                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2683                             (pagesizes[p->psind] - 1)) == 0) {
2684                                 mask = atop(pagesizes[p->psind]) - 1;
2685                                 if (tmpidx + mask < psize &&
2686                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2687                                         p += mask;
2688                                         threshold += mask;
2689                                 }
2690                         }
2691                 } else if (p_start != NULL) {
2692                         pmap_enter_object(map->pmap, start, addr +
2693                             ptoa(tmpidx), p_start, prot);
2694                         p_start = NULL;
2695                 }
2696         }
2697         if (p_start != NULL)
2698                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2699                     p_start, prot);
2700         VM_OBJECT_RUNLOCK(object);
2701 }
2702
2703 /*
2704  *      vm_map_protect:
2705  *
2706  *      Sets the protection and/or the maximum protection of the
2707  *      specified address region in the target map.
2708  */
2709 int
2710 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2711     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2712 {
2713         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2714         vm_object_t obj;
2715         struct ucred *cred;
2716         vm_prot_t old_prot;
2717         int rv;
2718
2719         if (start == end)
2720                 return (KERN_SUCCESS);
2721
2722         if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
2723             (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
2724             (new_prot & new_maxprot) != new_prot)
2725                 return (KERN_OUT_OF_BOUNDS);
2726
2727 again:
2728         in_tran = NULL;
2729         vm_map_lock(map);
2730
2731         if ((map->flags & MAP_WXORX) != 0 &&
2732             (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2733             (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2734             VM_PROT_EXECUTE)) {
2735                 vm_map_unlock(map);
2736                 return (KERN_PROTECTION_FAILURE);
2737         }
2738
2739         /*
2740          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2741          * need to fault pages into the map and will drop the map lock while
2742          * doing so, and the VM object may end up in an inconsistent state if we
2743          * update the protection on the map entry in between faults.
2744          */
2745         vm_map_wait_busy(map);
2746
2747         VM_MAP_RANGE_CHECK(map, start, end);
2748
2749         if (!vm_map_lookup_entry(map, start, &first_entry))
2750                 first_entry = vm_map_entry_succ(first_entry);
2751
2752         /*
2753          * Make a first pass to check for protection violations.
2754          */
2755         for (entry = first_entry; entry->start < end;
2756             entry = vm_map_entry_succ(entry)) {
2757                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2758                         continue;
2759                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2760                         vm_map_unlock(map);
2761                         return (KERN_INVALID_ARGUMENT);
2762                 }
2763                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2764                         new_prot = entry->protection;
2765                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2766                         new_maxprot = entry->max_protection;
2767                 if ((new_prot & entry->max_protection) != new_prot ||
2768                     (new_maxprot & entry->max_protection) != new_maxprot) {
2769                         vm_map_unlock(map);
2770                         return (KERN_PROTECTION_FAILURE);
2771                 }
2772                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2773                         in_tran = entry;
2774         }
2775
2776         /*
2777          * Postpone the operation until all in-transition map entries have
2778          * stabilized.  An in-transition entry might already have its pages
2779          * wired and wired_count incremented, but not yet have its
2780          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2781          * vm_fault_copy_entry() in the final loop below.
2782          */
2783         if (in_tran != NULL) {
2784                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2785                 vm_map_unlock_and_wait(map, 0);
2786                 goto again;
2787         }
2788
2789         /*
2790          * Before changing the protections, try to reserve swap space for any
2791          * private (i.e., copy-on-write) mappings that are transitioning from
2792          * read-only to read/write access.  If a reservation fails, break out
2793          * of this loop early and let the next loop simplify the entries, since
2794          * some may now be mergeable.
2795          */
2796         rv = vm_map_clip_start(map, first_entry, start);
2797         if (rv != KERN_SUCCESS) {
2798                 vm_map_unlock(map);
2799                 return (rv);
2800         }
2801         for (entry = first_entry; entry->start < end;
2802             entry = vm_map_entry_succ(entry)) {
2803                 rv = vm_map_clip_end(map, entry, end);
2804                 if (rv != KERN_SUCCESS) {
2805                         vm_map_unlock(map);
2806                         return (rv);
2807                 }
2808
2809                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2810                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2811                     ENTRY_CHARGED(entry) ||
2812                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2813                         continue;
2814
2815                 cred = curthread->td_ucred;
2816                 obj = entry->object.vm_object;
2817
2818                 if (obj == NULL ||
2819                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2820                         if (!swap_reserve(entry->end - entry->start)) {
2821                                 rv = KERN_RESOURCE_SHORTAGE;
2822                                 end = entry->end;
2823                                 break;
2824                         }
2825                         crhold(cred);
2826                         entry->cred = cred;
2827                         continue;
2828                 }
2829
2830                 if (obj->type != OBJT_DEFAULT &&
2831                     (obj->flags & OBJ_SWAP) == 0)
2832                         continue;
2833                 VM_OBJECT_WLOCK(obj);
2834                 if (obj->type != OBJT_DEFAULT &&
2835                     (obj->flags & OBJ_SWAP) == 0) {
2836                         VM_OBJECT_WUNLOCK(obj);
2837                         continue;
2838                 }
2839
2840                 /*
2841                  * Charge for the whole object allocation now, since
2842                  * we cannot distinguish between non-charged and
2843                  * charged clipped mapping of the same object later.
2844                  */
2845                 KASSERT(obj->charge == 0,
2846                     ("vm_map_protect: object %p overcharged (entry %p)",
2847                     obj, entry));
2848                 if (!swap_reserve(ptoa(obj->size))) {
2849                         VM_OBJECT_WUNLOCK(obj);
2850                         rv = KERN_RESOURCE_SHORTAGE;
2851                         end = entry->end;
2852                         break;
2853                 }
2854
2855                 crhold(cred);
2856                 obj->cred = cred;
2857                 obj->charge = ptoa(obj->size);
2858                 VM_OBJECT_WUNLOCK(obj);
2859         }
2860
2861         /*
2862          * If enough swap space was available, go back and fix up protections.
2863          * Otherwise, just simplify entries, since some may have been modified.
2864          * [Note that clipping is not necessary the second time.]
2865          */
2866         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2867             entry->start < end;
2868             vm_map_try_merge_entries(map, prev_entry, entry),
2869             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2870                 if (rv != KERN_SUCCESS ||
2871                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2872                         continue;
2873
2874                 old_prot = entry->protection;
2875
2876                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2877                         entry->max_protection = new_maxprot;
2878                         entry->protection = new_maxprot & old_prot;
2879                 }
2880                 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2881                         entry->protection = new_prot;
2882
2883                 /*
2884                  * For user wired map entries, the normal lazy evaluation of
2885                  * write access upgrades through soft page faults is
2886                  * undesirable.  Instead, immediately copy any pages that are
2887                  * copy-on-write and enable write access in the physical map.
2888                  */
2889                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2890                     (entry->protection & VM_PROT_WRITE) != 0 &&
2891                     (old_prot & VM_PROT_WRITE) == 0)
2892                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2893
2894                 /*
2895                  * When restricting access, update the physical map.  Worry
2896                  * about copy-on-write here.
2897                  */
2898                 if ((old_prot & ~entry->protection) != 0) {
2899 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2900                                                         VM_PROT_ALL)
2901                         pmap_protect(map->pmap, entry->start,
2902                             entry->end,
2903                             entry->protection & MASK(entry));
2904 #undef  MASK
2905                 }
2906         }
2907         vm_map_try_merge_entries(map, prev_entry, entry);
2908         vm_map_unlock(map);
2909         return (rv);
2910 }
2911
2912 /*
2913  *      vm_map_madvise:
2914  *
2915  *      This routine traverses a processes map handling the madvise
2916  *      system call.  Advisories are classified as either those effecting
2917  *      the vm_map_entry structure, or those effecting the underlying
2918  *      objects.
2919  */
2920 int
2921 vm_map_madvise(
2922         vm_map_t map,
2923         vm_offset_t start,
2924         vm_offset_t end,
2925         int behav)
2926 {
2927         vm_map_entry_t entry, prev_entry;
2928         int rv;
2929         bool modify_map;
2930
2931         /*
2932          * Some madvise calls directly modify the vm_map_entry, in which case
2933          * we need to use an exclusive lock on the map and we need to perform
2934          * various clipping operations.  Otherwise we only need a read-lock
2935          * on the map.
2936          */
2937         switch(behav) {
2938         case MADV_NORMAL:
2939         case MADV_SEQUENTIAL:
2940         case MADV_RANDOM:
2941         case MADV_NOSYNC:
2942         case MADV_AUTOSYNC:
2943         case MADV_NOCORE:
2944         case MADV_CORE:
2945                 if (start == end)
2946                         return (0);
2947                 modify_map = true;
2948                 vm_map_lock(map);
2949                 break;
2950         case MADV_WILLNEED:
2951         case MADV_DONTNEED:
2952         case MADV_FREE:
2953                 if (start == end)
2954                         return (0);
2955                 modify_map = false;
2956                 vm_map_lock_read(map);
2957                 break;
2958         default:
2959                 return (EINVAL);
2960         }
2961
2962         /*
2963          * Locate starting entry and clip if necessary.
2964          */
2965         VM_MAP_RANGE_CHECK(map, start, end);
2966
2967         if (modify_map) {
2968                 /*
2969                  * madvise behaviors that are implemented in the vm_map_entry.
2970                  *
2971                  * We clip the vm_map_entry so that behavioral changes are
2972                  * limited to the specified address range.
2973                  */
2974                 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2975                 if (rv != KERN_SUCCESS) {
2976                         vm_map_unlock(map);
2977                         return (vm_mmap_to_errno(rv));
2978                 }
2979
2980                 for (; entry->start < end; prev_entry = entry,
2981                     entry = vm_map_entry_succ(entry)) {
2982                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2983                                 continue;
2984
2985                         rv = vm_map_clip_end(map, entry, end);
2986                         if (rv != KERN_SUCCESS) {
2987                                 vm_map_unlock(map);
2988                                 return (vm_mmap_to_errno(rv));
2989                         }
2990
2991                         switch (behav) {
2992                         case MADV_NORMAL:
2993                                 vm_map_entry_set_behavior(entry,
2994                                     MAP_ENTRY_BEHAV_NORMAL);
2995                                 break;
2996                         case MADV_SEQUENTIAL:
2997                                 vm_map_entry_set_behavior(entry,
2998                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2999                                 break;
3000                         case MADV_RANDOM:
3001                                 vm_map_entry_set_behavior(entry,
3002                                     MAP_ENTRY_BEHAV_RANDOM);
3003                                 break;
3004                         case MADV_NOSYNC:
3005                                 entry->eflags |= MAP_ENTRY_NOSYNC;
3006                                 break;
3007                         case MADV_AUTOSYNC:
3008                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3009                                 break;
3010                         case MADV_NOCORE:
3011                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3012                                 break;
3013                         case MADV_CORE:
3014                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3015                                 break;
3016                         default:
3017                                 break;
3018                         }
3019                         vm_map_try_merge_entries(map, prev_entry, entry);
3020                 }
3021                 vm_map_try_merge_entries(map, prev_entry, entry);
3022                 vm_map_unlock(map);
3023         } else {
3024                 vm_pindex_t pstart, pend;
3025
3026                 /*
3027                  * madvise behaviors that are implemented in the underlying
3028                  * vm_object.
3029                  *
3030                  * Since we don't clip the vm_map_entry, we have to clip
3031                  * the vm_object pindex and count.
3032                  */
3033                 if (!vm_map_lookup_entry(map, start, &entry))
3034                         entry = vm_map_entry_succ(entry);
3035                 for (; entry->start < end;
3036                     entry = vm_map_entry_succ(entry)) {
3037                         vm_offset_t useEnd, useStart;
3038
3039                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3040                                 continue;
3041
3042                         /*
3043                          * MADV_FREE would otherwise rewind time to
3044                          * the creation of the shadow object.  Because
3045                          * we hold the VM map read-locked, neither the
3046                          * entry's object nor the presence of a
3047                          * backing object can change.
3048                          */
3049                         if (behav == MADV_FREE &&
3050                             entry->object.vm_object != NULL &&
3051                             entry->object.vm_object->backing_object != NULL)
3052                                 continue;
3053
3054                         pstart = OFF_TO_IDX(entry->offset);
3055                         pend = pstart + atop(entry->end - entry->start);
3056                         useStart = entry->start;
3057                         useEnd = entry->end;
3058
3059                         if (entry->start < start) {
3060                                 pstart += atop(start - entry->start);
3061                                 useStart = start;
3062                         }
3063                         if (entry->end > end) {
3064                                 pend -= atop(entry->end - end);
3065                                 useEnd = end;
3066                         }
3067
3068                         if (pstart >= pend)
3069                                 continue;
3070
3071                         /*
3072                          * Perform the pmap_advise() before clearing
3073                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3074                          * concurrent pmap operation, such as pmap_remove(),
3075                          * could clear a reference in the pmap and set
3076                          * PGA_REFERENCED on the page before the pmap_advise()
3077                          * had completed.  Consequently, the page would appear
3078                          * referenced based upon an old reference that
3079                          * occurred before this pmap_advise() ran.
3080                          */
3081                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
3082                                 pmap_advise(map->pmap, useStart, useEnd,
3083                                     behav);
3084
3085                         vm_object_madvise(entry->object.vm_object, pstart,
3086                             pend, behav);
3087
3088                         /*
3089                          * Pre-populate paging structures in the
3090                          * WILLNEED case.  For wired entries, the
3091                          * paging structures are already populated.
3092                          */
3093                         if (behav == MADV_WILLNEED &&
3094                             entry->wired_count == 0) {
3095                                 vm_map_pmap_enter(map,
3096                                     useStart,
3097                                     entry->protection,
3098                                     entry->object.vm_object,
3099                                     pstart,
3100                                     ptoa(pend - pstart),
3101                                     MAP_PREFAULT_MADVISE
3102                                 );
3103                         }
3104                 }
3105                 vm_map_unlock_read(map);
3106         }
3107         return (0);
3108 }
3109
3110 /*
3111  *      vm_map_inherit:
3112  *
3113  *      Sets the inheritance of the specified address
3114  *      range in the target map.  Inheritance
3115  *      affects how the map will be shared with
3116  *      child maps at the time of vmspace_fork.
3117  */
3118 int
3119 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3120                vm_inherit_t new_inheritance)
3121 {
3122         vm_map_entry_t entry, lentry, prev_entry, start_entry;
3123         int rv;
3124
3125         switch (new_inheritance) {
3126         case VM_INHERIT_NONE:
3127         case VM_INHERIT_COPY:
3128         case VM_INHERIT_SHARE:
3129         case VM_INHERIT_ZERO:
3130                 break;
3131         default:
3132                 return (KERN_INVALID_ARGUMENT);
3133         }
3134         if (start == end)
3135                 return (KERN_SUCCESS);
3136         vm_map_lock(map);
3137         VM_MAP_RANGE_CHECK(map, start, end);
3138         rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3139         if (rv != KERN_SUCCESS)
3140                 goto unlock;
3141         if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3142                 rv = vm_map_clip_end(map, lentry, end);
3143                 if (rv != KERN_SUCCESS)
3144                         goto unlock;
3145         }
3146         if (new_inheritance == VM_INHERIT_COPY) {
3147                 for (entry = start_entry; entry->start < end;
3148                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3149                         if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3150                             != 0) {
3151                                 rv = KERN_INVALID_ARGUMENT;
3152                                 goto unlock;
3153                         }
3154                 }
3155         }
3156         for (entry = start_entry; entry->start < end; prev_entry = entry,
3157             entry = vm_map_entry_succ(entry)) {
3158                 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3159                     entry, (uintmax_t)entry->end, (uintmax_t)end));
3160                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3161                     new_inheritance != VM_INHERIT_ZERO)
3162                         entry->inheritance = new_inheritance;
3163                 vm_map_try_merge_entries(map, prev_entry, entry);
3164         }
3165         vm_map_try_merge_entries(map, prev_entry, entry);
3166 unlock:
3167         vm_map_unlock(map);
3168         return (rv);
3169 }
3170
3171 /*
3172  *      vm_map_entry_in_transition:
3173  *
3174  *      Release the map lock, and sleep until the entry is no longer in
3175  *      transition.  Awake and acquire the map lock.  If the map changed while
3176  *      another held the lock, lookup a possibly-changed entry at or after the
3177  *      'start' position of the old entry.
3178  */
3179 static vm_map_entry_t
3180 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3181     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3182 {
3183         vm_map_entry_t entry;
3184         vm_offset_t start;
3185         u_int last_timestamp;
3186
3187         VM_MAP_ASSERT_LOCKED(map);
3188         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3189             ("not in-tranition map entry %p", in_entry));
3190         /*
3191          * We have not yet clipped the entry.
3192          */
3193         start = MAX(in_start, in_entry->start);
3194         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3195         last_timestamp = map->timestamp;
3196         if (vm_map_unlock_and_wait(map, 0)) {
3197                 /*
3198                  * Allow interruption of user wiring/unwiring?
3199                  */
3200         }
3201         vm_map_lock(map);
3202         if (last_timestamp + 1 == map->timestamp)
3203                 return (in_entry);
3204
3205         /*
3206          * Look again for the entry because the map was modified while it was
3207          * unlocked.  Specifically, the entry may have been clipped, merged, or
3208          * deleted.
3209          */
3210         if (!vm_map_lookup_entry(map, start, &entry)) {
3211                 if (!holes_ok) {
3212                         *io_end = start;
3213                         return (NULL);
3214                 }
3215                 entry = vm_map_entry_succ(entry);
3216         }
3217         return (entry);
3218 }
3219
3220 /*
3221  *      vm_map_unwire:
3222  *
3223  *      Implements both kernel and user unwiring.
3224  */
3225 int
3226 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3227     int flags)
3228 {
3229         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3230         int rv;
3231         bool holes_ok, need_wakeup, user_unwire;
3232
3233         if (start == end)
3234                 return (KERN_SUCCESS);
3235         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3236         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3237         vm_map_lock(map);
3238         VM_MAP_RANGE_CHECK(map, start, end);
3239         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3240                 if (holes_ok)
3241                         first_entry = vm_map_entry_succ(first_entry);
3242                 else {
3243                         vm_map_unlock(map);
3244                         return (KERN_INVALID_ADDRESS);
3245                 }
3246         }
3247         rv = KERN_SUCCESS;
3248         for (entry = first_entry; entry->start < end; entry = next_entry) {
3249                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3250                         /*
3251                          * We have not yet clipped the entry.
3252                          */
3253                         next_entry = vm_map_entry_in_transition(map, start,
3254                             &end, holes_ok, entry);
3255                         if (next_entry == NULL) {
3256                                 if (entry == first_entry) {
3257                                         vm_map_unlock(map);
3258                                         return (KERN_INVALID_ADDRESS);
3259                                 }
3260                                 rv = KERN_INVALID_ADDRESS;
3261                                 break;
3262                         }
3263                         first_entry = (entry == first_entry) ?
3264                             next_entry : NULL;
3265                         continue;
3266                 }
3267                 rv = vm_map_clip_start(map, entry, start);
3268                 if (rv != KERN_SUCCESS)
3269                         break;
3270                 rv = vm_map_clip_end(map, entry, end);
3271                 if (rv != KERN_SUCCESS)
3272                         break;
3273
3274                 /*
3275                  * Mark the entry in case the map lock is released.  (See
3276                  * above.)
3277                  */
3278                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3279                     entry->wiring_thread == NULL,
3280                     ("owned map entry %p", entry));
3281                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3282                 entry->wiring_thread = curthread;
3283                 next_entry = vm_map_entry_succ(entry);
3284                 /*
3285                  * Check the map for holes in the specified region.
3286                  * If holes_ok, skip this check.
3287                  */
3288                 if (!holes_ok &&
3289                     entry->end < end && next_entry->start > entry->end) {
3290                         end = entry->end;
3291                         rv = KERN_INVALID_ADDRESS;
3292                         break;
3293                 }
3294                 /*
3295                  * If system unwiring, require that the entry is system wired.
3296                  */
3297                 if (!user_unwire &&
3298                     vm_map_entry_system_wired_count(entry) == 0) {
3299                         end = entry->end;
3300                         rv = KERN_INVALID_ARGUMENT;
3301                         break;
3302                 }
3303         }
3304         need_wakeup = false;
3305         if (first_entry == NULL &&
3306             !vm_map_lookup_entry(map, start, &first_entry)) {
3307                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3308                 prev_entry = first_entry;
3309                 entry = vm_map_entry_succ(first_entry);
3310         } else {
3311                 prev_entry = vm_map_entry_pred(first_entry);
3312                 entry = first_entry;
3313         }
3314         for (; entry->start < end;
3315             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3316                 /*
3317                  * If holes_ok was specified, an empty
3318                  * space in the unwired region could have been mapped
3319                  * while the map lock was dropped for draining
3320                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3321                  * could be simultaneously wiring this new mapping
3322                  * entry.  Detect these cases and skip any entries
3323                  * marked as in transition by us.
3324                  */
3325                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3326                     entry->wiring_thread != curthread) {
3327                         KASSERT(holes_ok,
3328                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3329                         continue;
3330                 }
3331
3332                 if (rv == KERN_SUCCESS && (!user_unwire ||
3333                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3334                         if (entry->wired_count == 1)
3335                                 vm_map_entry_unwire(map, entry);
3336                         else
3337                                 entry->wired_count--;
3338                         if (user_unwire)
3339                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3340                 }
3341                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3342                     ("vm_map_unwire: in-transition flag missing %p", entry));
3343                 KASSERT(entry->wiring_thread == curthread,
3344                     ("vm_map_unwire: alien wire %p", entry));
3345                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3346                 entry->wiring_thread = NULL;
3347                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3348                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3349                         need_wakeup = true;
3350                 }
3351                 vm_map_try_merge_entries(map, prev_entry, entry);
3352         }
3353         vm_map_try_merge_entries(map, prev_entry, entry);
3354         vm_map_unlock(map);
3355         if (need_wakeup)
3356                 vm_map_wakeup(map);
3357         return (rv);
3358 }
3359
3360 static void
3361 vm_map_wire_user_count_sub(u_long npages)
3362 {
3363
3364         atomic_subtract_long(&vm_user_wire_count, npages);
3365 }
3366
3367 static bool
3368 vm_map_wire_user_count_add(u_long npages)
3369 {
3370         u_long wired;
3371
3372         wired = vm_user_wire_count;
3373         do {
3374                 if (npages + wired > vm_page_max_user_wired)
3375                         return (false);
3376         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3377             npages + wired));
3378
3379         return (true);
3380 }
3381
3382 /*
3383  *      vm_map_wire_entry_failure:
3384  *
3385  *      Handle a wiring failure on the given entry.
3386  *
3387  *      The map should be locked.
3388  */
3389 static void
3390 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3391     vm_offset_t failed_addr)
3392 {
3393
3394         VM_MAP_ASSERT_LOCKED(map);
3395         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3396             entry->wired_count == 1,
3397             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3398         KASSERT(failed_addr < entry->end,
3399             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3400
3401         /*
3402          * If any pages at the start of this entry were successfully wired,
3403          * then unwire them.
3404          */
3405         if (failed_addr > entry->start) {
3406                 pmap_unwire(map->pmap, entry->start, failed_addr);
3407                 vm_object_unwire(entry->object.vm_object, entry->offset,
3408                     failed_addr - entry->start, PQ_ACTIVE);
3409         }
3410
3411         /*
3412          * Assign an out-of-range value to represent the failure to wire this
3413          * entry.
3414          */
3415         entry->wired_count = -1;
3416 }
3417
3418 int
3419 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3420 {
3421         int rv;
3422
3423         vm_map_lock(map);
3424         rv = vm_map_wire_locked(map, start, end, flags);
3425         vm_map_unlock(map);
3426         return (rv);
3427 }
3428
3429 /*
3430  *      vm_map_wire_locked:
3431  *
3432  *      Implements both kernel and user wiring.  Returns with the map locked,
3433  *      the map lock may be dropped.
3434  */
3435 int
3436 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3437 {
3438         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3439         vm_offset_t faddr, saved_end, saved_start;
3440         u_long incr, npages;
3441         u_int bidx, last_timestamp;
3442         int rv;
3443         bool holes_ok, need_wakeup, user_wire;
3444         vm_prot_t prot;
3445
3446         VM_MAP_ASSERT_LOCKED(map);
3447
3448         if (start == end)
3449                 return (KERN_SUCCESS);
3450         prot = 0;
3451         if (flags & VM_MAP_WIRE_WRITE)
3452                 prot |= VM_PROT_WRITE;
3453         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3454         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3455         VM_MAP_RANGE_CHECK(map, start, end);
3456         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3457                 if (holes_ok)
3458                         first_entry = vm_map_entry_succ(first_entry);
3459                 else
3460                         return (KERN_INVALID_ADDRESS);
3461         }
3462         for (entry = first_entry; entry->start < end; entry = next_entry) {
3463                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3464                         /*
3465                          * We have not yet clipped the entry.
3466                          */
3467                         next_entry = vm_map_entry_in_transition(map, start,
3468                             &end, holes_ok, entry);
3469                         if (next_entry == NULL) {
3470                                 if (entry == first_entry)
3471                                         return (KERN_INVALID_ADDRESS);
3472                                 rv = KERN_INVALID_ADDRESS;
3473                                 goto done;
3474                         }
3475                         first_entry = (entry == first_entry) ?
3476                             next_entry : NULL;
3477                         continue;
3478                 }
3479                 rv = vm_map_clip_start(map, entry, start);
3480                 if (rv != KERN_SUCCESS)
3481                         goto done;
3482                 rv = vm_map_clip_end(map, entry, end);
3483                 if (rv != KERN_SUCCESS)
3484                         goto done;
3485
3486                 /*
3487                  * Mark the entry in case the map lock is released.  (See
3488                  * above.)
3489                  */
3490                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3491                     entry->wiring_thread == NULL,
3492                     ("owned map entry %p", entry));
3493                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3494                 entry->wiring_thread = curthread;
3495                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3496                     || (entry->protection & prot) != prot) {
3497                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3498                         if (!holes_ok) {
3499                                 end = entry->end;
3500                                 rv = KERN_INVALID_ADDRESS;
3501                                 goto done;
3502                         }
3503                 } else if (entry->wired_count == 0) {
3504                         entry->wired_count++;
3505
3506                         npages = atop(entry->end - entry->start);
3507                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3508                                 vm_map_wire_entry_failure(map, entry,
3509                                     entry->start);
3510                                 end = entry->end;
3511                                 rv = KERN_RESOURCE_SHORTAGE;
3512                                 goto done;
3513                         }
3514
3515                         /*
3516                          * Release the map lock, relying on the in-transition
3517                          * mark.  Mark the map busy for fork.
3518                          */
3519                         saved_start = entry->start;
3520                         saved_end = entry->end;
3521                         last_timestamp = map->timestamp;
3522                         bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3523                             >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3524                         incr =  pagesizes[bidx];
3525                         vm_map_busy(map);
3526                         vm_map_unlock(map);
3527
3528                         for (faddr = saved_start; faddr < saved_end;
3529                             faddr += incr) {
3530                                 /*
3531                                  * Simulate a fault to get the page and enter
3532                                  * it into the physical map.
3533                                  */
3534                                 rv = vm_fault(map, faddr, VM_PROT_NONE,
3535                                     VM_FAULT_WIRE, NULL);
3536                                 if (rv != KERN_SUCCESS)
3537                                         break;
3538                         }
3539                         vm_map_lock(map);
3540                         vm_map_unbusy(map);
3541                         if (last_timestamp + 1 != map->timestamp) {
3542                                 /*
3543                                  * Look again for the entry because the map was
3544                                  * modified while it was unlocked.  The entry
3545                                  * may have been clipped, but NOT merged or
3546                                  * deleted.
3547                                  */
3548                                 if (!vm_map_lookup_entry(map, saved_start,
3549                                     &next_entry))
3550                                         KASSERT(false,
3551                                             ("vm_map_wire: lookup failed"));
3552                                 first_entry = (entry == first_entry) ?
3553                                     next_entry : NULL;
3554                                 for (entry = next_entry; entry->end < saved_end;
3555                                     entry = vm_map_entry_succ(entry)) {
3556                                         /*
3557                                          * In case of failure, handle entries
3558                                          * that were not fully wired here;
3559                                          * fully wired entries are handled
3560                                          * later.
3561                                          */
3562                                         if (rv != KERN_SUCCESS &&
3563                                             faddr < entry->end)
3564                                                 vm_map_wire_entry_failure(map,
3565                                                     entry, faddr);
3566                                 }
3567                         }
3568                         if (rv != KERN_SUCCESS) {
3569                                 vm_map_wire_entry_failure(map, entry, faddr);
3570                                 if (user_wire)
3571                                         vm_map_wire_user_count_sub(npages);
3572                                 end = entry->end;
3573                                 goto done;
3574                         }
3575                 } else if (!user_wire ||
3576                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3577                         entry->wired_count++;
3578                 }
3579                 /*
3580                  * Check the map for holes in the specified region.
3581                  * If holes_ok was specified, skip this check.
3582                  */
3583                 next_entry = vm_map_entry_succ(entry);
3584                 if (!holes_ok &&
3585                     entry->end < end && next_entry->start > entry->end) {
3586                         end = entry->end;
3587                         rv = KERN_INVALID_ADDRESS;
3588                         goto done;
3589                 }
3590         }
3591         rv = KERN_SUCCESS;
3592 done:
3593         need_wakeup = false;
3594         if (first_entry == NULL &&
3595             !vm_map_lookup_entry(map, start, &first_entry)) {
3596                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3597                 prev_entry = first_entry;
3598                 entry = vm_map_entry_succ(first_entry);
3599         } else {
3600                 prev_entry = vm_map_entry_pred(first_entry);
3601                 entry = first_entry;
3602         }
3603         for (; entry->start < end;
3604             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3605                 /*
3606                  * If holes_ok was specified, an empty
3607                  * space in the unwired region could have been mapped
3608                  * while the map lock was dropped for faulting in the
3609                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3610                  * Moreover, another thread could be simultaneously
3611                  * wiring this new mapping entry.  Detect these cases
3612                  * and skip any entries marked as in transition not by us.
3613                  *
3614                  * Another way to get an entry not marked with
3615                  * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3616                  * which set rv to KERN_INVALID_ARGUMENT.
3617                  */
3618                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3619                     entry->wiring_thread != curthread) {
3620                         KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3621                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3622                         continue;
3623                 }
3624
3625                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3626                         /* do nothing */
3627                 } else if (rv == KERN_SUCCESS) {
3628                         if (user_wire)
3629                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3630                 } else if (entry->wired_count == -1) {
3631                         /*
3632                          * Wiring failed on this entry.  Thus, unwiring is
3633                          * unnecessary.
3634                          */
3635                         entry->wired_count = 0;
3636                 } else if (!user_wire ||
3637                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3638                         /*
3639                          * Undo the wiring.  Wiring succeeded on this entry
3640                          * but failed on a later entry.  
3641                          */
3642                         if (entry->wired_count == 1) {
3643                                 vm_map_entry_unwire(map, entry);
3644                                 if (user_wire)
3645                                         vm_map_wire_user_count_sub(
3646                                             atop(entry->end - entry->start));
3647                         } else
3648                                 entry->wired_count--;
3649                 }
3650                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3651                     ("vm_map_wire: in-transition flag missing %p", entry));
3652                 KASSERT(entry->wiring_thread == curthread,
3653                     ("vm_map_wire: alien wire %p", entry));
3654                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3655                     MAP_ENTRY_WIRE_SKIPPED);
3656                 entry->wiring_thread = NULL;
3657                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3658                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3659                         need_wakeup = true;
3660                 }
3661                 vm_map_try_merge_entries(map, prev_entry, entry);
3662         }
3663         vm_map_try_merge_entries(map, prev_entry, entry);
3664         if (need_wakeup)
3665                 vm_map_wakeup(map);
3666         return (rv);
3667 }
3668
3669 /*
3670  * vm_map_sync
3671  *
3672  * Push any dirty cached pages in the address range to their pager.
3673  * If syncio is TRUE, dirty pages are written synchronously.
3674  * If invalidate is TRUE, any cached pages are freed as well.
3675  *
3676  * If the size of the region from start to end is zero, we are
3677  * supposed to flush all modified pages within the region containing
3678  * start.  Unfortunately, a region can be split or coalesced with
3679  * neighboring regions, making it difficult to determine what the
3680  * original region was.  Therefore, we approximate this requirement by
3681  * flushing the current region containing start.
3682  *
3683  * Returns an error if any part of the specified range is not mapped.
3684  */
3685 int
3686 vm_map_sync(
3687         vm_map_t map,
3688         vm_offset_t start,
3689         vm_offset_t end,
3690         boolean_t syncio,
3691         boolean_t invalidate)
3692 {
3693         vm_map_entry_t entry, first_entry, next_entry;
3694         vm_size_t size;
3695         vm_object_t object;
3696         vm_ooffset_t offset;
3697         unsigned int last_timestamp;
3698         int bdry_idx;
3699         boolean_t failed;
3700
3701         vm_map_lock_read(map);
3702         VM_MAP_RANGE_CHECK(map, start, end);
3703         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3704                 vm_map_unlock_read(map);
3705                 return (KERN_INVALID_ADDRESS);
3706         } else if (start == end) {
3707                 start = first_entry->start;
3708                 end = first_entry->end;
3709         }
3710
3711         /*
3712          * Make a first pass to check for user-wired memory, holes,
3713          * and partial invalidation of largepage mappings.
3714          */
3715         for (entry = first_entry; entry->start < end; entry = next_entry) {
3716                 if (invalidate) {
3717                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3718                                 vm_map_unlock_read(map);
3719                                 return (KERN_INVALID_ARGUMENT);
3720                         }
3721                         bdry_idx = (entry->eflags &
3722                             MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3723                             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3724                         if (bdry_idx != 0 &&
3725                             ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3726                             (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3727                                 vm_map_unlock_read(map);
3728                                 return (KERN_INVALID_ARGUMENT);
3729                         }
3730                 }
3731                 next_entry = vm_map_entry_succ(entry);
3732                 if (end > entry->end &&
3733                     entry->end != next_entry->start) {
3734                         vm_map_unlock_read(map);
3735                         return (KERN_INVALID_ADDRESS);
3736                 }
3737         }
3738
3739         if (invalidate)
3740                 pmap_remove(map->pmap, start, end);
3741         failed = FALSE;
3742
3743         /*
3744          * Make a second pass, cleaning/uncaching pages from the indicated
3745          * objects as we go.
3746          */
3747         for (entry = first_entry; entry->start < end;) {
3748                 offset = entry->offset + (start - entry->start);
3749                 size = (end <= entry->end ? end : entry->end) - start;
3750                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3751                         vm_map_t smap;
3752                         vm_map_entry_t tentry;
3753                         vm_size_t tsize;
3754
3755                         smap = entry->object.sub_map;
3756                         vm_map_lock_read(smap);
3757                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3758                         tsize = tentry->end - offset;
3759                         if (tsize < size)
3760                                 size = tsize;
3761                         object = tentry->object.vm_object;
3762                         offset = tentry->offset + (offset - tentry->start);
3763                         vm_map_unlock_read(smap);
3764                 } else {
3765                         object = entry->object.vm_object;
3766                 }
3767                 vm_object_reference(object);
3768                 last_timestamp = map->timestamp;
3769                 vm_map_unlock_read(map);
3770                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3771                         failed = TRUE;
3772                 start += size;
3773                 vm_object_deallocate(object);
3774                 vm_map_lock_read(map);
3775                 if (last_timestamp == map->timestamp ||
3776                     !vm_map_lookup_entry(map, start, &entry))
3777                         entry = vm_map_entry_succ(entry);
3778         }
3779
3780         vm_map_unlock_read(map);
3781         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3782 }
3783
3784 /*
3785  *      vm_map_entry_unwire:    [ internal use only ]
3786  *
3787  *      Make the region specified by this entry pageable.
3788  *
3789  *      The map in question should be locked.
3790  *      [This is the reason for this routine's existence.]
3791  */
3792 static void
3793 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3794 {
3795         vm_size_t size;
3796
3797         VM_MAP_ASSERT_LOCKED(map);
3798         KASSERT(entry->wired_count > 0,
3799             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3800
3801         size = entry->end - entry->start;
3802         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3803                 vm_map_wire_user_count_sub(atop(size));
3804         pmap_unwire(map->pmap, entry->start, entry->end);
3805         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3806             PQ_ACTIVE);
3807         entry->wired_count = 0;
3808 }
3809
3810 static void
3811 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3812 {
3813
3814         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3815                 vm_object_deallocate(entry->object.vm_object);
3816         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3817 }
3818
3819 /*
3820  *      vm_map_entry_delete:    [ internal use only ]
3821  *
3822  *      Deallocate the given entry from the target map.
3823  */
3824 static void
3825 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3826 {
3827         vm_object_t object;
3828         vm_pindex_t offidxstart, offidxend, size1;
3829         vm_size_t size;
3830
3831         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3832         object = entry->object.vm_object;
3833
3834         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3835                 MPASS(entry->cred == NULL);
3836                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3837                 MPASS(object == NULL);
3838                 vm_map_entry_deallocate(entry, map->system_map);
3839                 return;
3840         }
3841
3842         size = entry->end - entry->start;
3843         map->size -= size;
3844
3845         if (entry->cred != NULL) {
3846                 swap_release_by_cred(size, entry->cred);
3847                 crfree(entry->cred);
3848         }
3849
3850         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3851                 entry->object.vm_object = NULL;
3852         } else if ((object->flags & OBJ_ANON) != 0 ||
3853             object == kernel_object) {
3854                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3855                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3856                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3857                 offidxstart = OFF_TO_IDX(entry->offset);
3858                 offidxend = offidxstart + atop(size);
3859                 VM_OBJECT_WLOCK(object);
3860                 if (object->ref_count != 1 &&
3861                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3862                     object == kernel_object)) {
3863                         vm_object_collapse(object);
3864
3865                         /*
3866                          * The option OBJPR_NOTMAPPED can be passed here
3867                          * because vm_map_delete() already performed
3868                          * pmap_remove() on the only mapping to this range
3869                          * of pages. 
3870                          */
3871                         vm_object_page_remove(object, offidxstart, offidxend,
3872                             OBJPR_NOTMAPPED);
3873                         if (offidxend >= object->size &&
3874                             offidxstart < object->size) {
3875                                 size1 = object->size;
3876                                 object->size = offidxstart;
3877                                 if (object->cred != NULL) {
3878                                         size1 -= object->size;
3879                                         KASSERT(object->charge >= ptoa(size1),
3880                                             ("object %p charge < 0", object));
3881                                         swap_release_by_cred(ptoa(size1),
3882                                             object->cred);
3883                                         object->charge -= ptoa(size1);
3884                                 }
3885                         }
3886                 }
3887                 VM_OBJECT_WUNLOCK(object);
3888         }
3889         if (map->system_map)
3890                 vm_map_entry_deallocate(entry, TRUE);
3891         else {
3892                 entry->defer_next = curthread->td_map_def_user;
3893                 curthread->td_map_def_user = entry;
3894         }
3895 }
3896
3897 /*
3898  *      vm_map_delete:  [ internal use only ]
3899  *
3900  *      Deallocates the given address range from the target
3901  *      map.
3902  */
3903 int
3904 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3905 {
3906         vm_map_entry_t entry, next_entry, scratch_entry;
3907         int rv;
3908
3909         VM_MAP_ASSERT_LOCKED(map);
3910
3911         if (start == end)
3912                 return (KERN_SUCCESS);
3913
3914         /*
3915          * Find the start of the region, and clip it.
3916          * Step through all entries in this region.
3917          */
3918         rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3919         if (rv != KERN_SUCCESS)
3920                 return (rv);
3921         for (; entry->start < end; entry = next_entry) {
3922                 /*
3923                  * Wait for wiring or unwiring of an entry to complete.
3924                  * Also wait for any system wirings to disappear on
3925                  * user maps.
3926                  */
3927                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3928                     (vm_map_pmap(map) != kernel_pmap &&
3929                     vm_map_entry_system_wired_count(entry) != 0)) {
3930                         unsigned int last_timestamp;
3931                         vm_offset_t saved_start;
3932
3933                         saved_start = entry->start;
3934                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3935                         last_timestamp = map->timestamp;
3936                         (void) vm_map_unlock_and_wait(map, 0);
3937                         vm_map_lock(map);
3938                         if (last_timestamp + 1 != map->timestamp) {
3939                                 /*
3940                                  * Look again for the entry because the map was
3941                                  * modified while it was unlocked.
3942                                  * Specifically, the entry may have been
3943                                  * clipped, merged, or deleted.
3944                                  */
3945                                 rv = vm_map_lookup_clip_start(map, saved_start,
3946                                     &next_entry, &scratch_entry);
3947                                 if (rv != KERN_SUCCESS)
3948                                         break;
3949                         } else
3950                                 next_entry = entry;
3951                         continue;
3952                 }
3953
3954                 /* XXXKIB or delete to the upper superpage boundary ? */
3955                 rv = vm_map_clip_end(map, entry, end);
3956                 if (rv != KERN_SUCCESS)
3957                         break;
3958                 next_entry = vm_map_entry_succ(entry);
3959
3960                 /*
3961                  * Unwire before removing addresses from the pmap; otherwise,
3962                  * unwiring will put the entries back in the pmap.
3963                  */
3964                 if (entry->wired_count != 0)
3965                         vm_map_entry_unwire(map, entry);
3966
3967                 /*
3968                  * Remove mappings for the pages, but only if the
3969                  * mappings could exist.  For instance, it does not
3970                  * make sense to call pmap_remove() for guard entries.
3971                  */
3972                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3973                     entry->object.vm_object != NULL)
3974                         pmap_remove(map->pmap, entry->start, entry->end);
3975
3976                 if (entry->end == map->anon_loc)
3977                         map->anon_loc = entry->start;
3978
3979                 /*
3980                  * Delete the entry only after removing all pmap
3981                  * entries pointing to its pages.  (Otherwise, its
3982                  * page frames may be reallocated, and any modify bits
3983                  * will be set in the wrong object!)
3984                  */
3985                 vm_map_entry_delete(map, entry);
3986         }
3987         return (rv);
3988 }
3989
3990 /*
3991  *      vm_map_remove:
3992  *
3993  *      Remove the given address range from the target map.
3994  *      This is the exported form of vm_map_delete.
3995  */
3996 int
3997 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3998 {
3999         int result;
4000
4001         vm_map_lock(map);
4002         VM_MAP_RANGE_CHECK(map, start, end);
4003         result = vm_map_delete(map, start, end);
4004         vm_map_unlock(map);
4005         return (result);
4006 }
4007
4008 /*
4009  *      vm_map_check_protection:
4010  *
4011  *      Assert that the target map allows the specified privilege on the
4012  *      entire address region given.  The entire region must be allocated.
4013  *
4014  *      WARNING!  This code does not and should not check whether the
4015  *      contents of the region is accessible.  For example a smaller file
4016  *      might be mapped into a larger address space.
4017  *
4018  *      NOTE!  This code is also called by munmap().
4019  *
4020  *      The map must be locked.  A read lock is sufficient.
4021  */
4022 boolean_t
4023 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4024                         vm_prot_t protection)
4025 {
4026         vm_map_entry_t entry;
4027         vm_map_entry_t tmp_entry;
4028
4029         if (!vm_map_lookup_entry(map, start, &tmp_entry))
4030                 return (FALSE);
4031         entry = tmp_entry;
4032
4033         while (start < end) {
4034                 /*
4035                  * No holes allowed!
4036                  */
4037                 if (start < entry->start)
4038                         return (FALSE);
4039                 /*
4040                  * Check protection associated with entry.
4041                  */
4042                 if ((entry->protection & protection) != protection)
4043                         return (FALSE);
4044                 /* go to next entry */
4045                 start = entry->end;
4046                 entry = vm_map_entry_succ(entry);
4047         }
4048         return (TRUE);
4049 }
4050
4051 /*
4052  *
4053  *      vm_map_copy_swap_object:
4054  *
4055  *      Copies a swap-backed object from an existing map entry to a
4056  *      new one.  Carries forward the swap charge.  May change the
4057  *      src object on return.
4058  */
4059 static void
4060 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4061     vm_offset_t size, vm_ooffset_t *fork_charge)
4062 {
4063         vm_object_t src_object;
4064         struct ucred *cred;
4065         int charged;
4066
4067         src_object = src_entry->object.vm_object;
4068         charged = ENTRY_CHARGED(src_entry);
4069         if ((src_object->flags & OBJ_ANON) != 0) {
4070                 VM_OBJECT_WLOCK(src_object);
4071                 vm_object_collapse(src_object);
4072                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4073                         vm_object_split(src_entry);
4074                         src_object = src_entry->object.vm_object;
4075                 }
4076                 vm_object_reference_locked(src_object);
4077                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4078                 VM_OBJECT_WUNLOCK(src_object);
4079         } else
4080                 vm_object_reference(src_object);
4081         if (src_entry->cred != NULL &&
4082             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4083                 KASSERT(src_object->cred == NULL,
4084                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4085                      src_object));
4086                 src_object->cred = src_entry->cred;
4087                 src_object->charge = size;
4088         }
4089         dst_entry->object.vm_object = src_object;
4090         if (charged) {
4091                 cred = curthread->td_ucred;
4092                 crhold(cred);
4093                 dst_entry->cred = cred;
4094                 *fork_charge += size;
4095                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4096                         crhold(cred);
4097                         src_entry->cred = cred;
4098                         *fork_charge += size;
4099                 }
4100         }
4101 }
4102
4103 /*
4104  *      vm_map_copy_entry:
4105  *
4106  *      Copies the contents of the source entry to the destination
4107  *      entry.  The entries *must* be aligned properly.
4108  */
4109 static void
4110 vm_map_copy_entry(
4111         vm_map_t src_map,
4112         vm_map_t dst_map,
4113         vm_map_entry_t src_entry,
4114         vm_map_entry_t dst_entry,
4115         vm_ooffset_t *fork_charge)
4116 {
4117         vm_object_t src_object;
4118         vm_map_entry_t fake_entry;
4119         vm_offset_t size;
4120
4121         VM_MAP_ASSERT_LOCKED(dst_map);
4122
4123         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4124                 return;
4125
4126         if (src_entry->wired_count == 0 ||
4127             (src_entry->protection & VM_PROT_WRITE) == 0) {
4128                 /*
4129                  * If the source entry is marked needs_copy, it is already
4130                  * write-protected.
4131                  */
4132                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4133                     (src_entry->protection & VM_PROT_WRITE) != 0) {
4134                         pmap_protect(src_map->pmap,
4135                             src_entry->start,
4136                             src_entry->end,
4137                             src_entry->protection & ~VM_PROT_WRITE);
4138                 }
4139
4140                 /*
4141                  * Make a copy of the object.
4142                  */
4143                 size = src_entry->end - src_entry->start;
4144                 if ((src_object = src_entry->object.vm_object) != NULL) {
4145                         if (src_object->type == OBJT_DEFAULT ||
4146                             (src_object->flags & OBJ_SWAP) != 0) {
4147                                 vm_map_copy_swap_object(src_entry, dst_entry,
4148                                     size, fork_charge);
4149                                 /* May have split/collapsed, reload obj. */
4150                                 src_object = src_entry->object.vm_object;
4151                         } else {
4152                                 vm_object_reference(src_object);
4153                                 dst_entry->object.vm_object = src_object;
4154                         }
4155                         src_entry->eflags |= MAP_ENTRY_COW |
4156                             MAP_ENTRY_NEEDS_COPY;
4157                         dst_entry->eflags |= MAP_ENTRY_COW |
4158                             MAP_ENTRY_NEEDS_COPY;
4159                         dst_entry->offset = src_entry->offset;
4160                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4161                                 /*
4162                                  * MAP_ENTRY_WRITECNT cannot
4163                                  * indicate write reference from
4164                                  * src_entry, since the entry is
4165                                  * marked as needs copy.  Allocate a
4166                                  * fake entry that is used to
4167                                  * decrement object->un_pager writecount
4168                                  * at the appropriate time.  Attach
4169                                  * fake_entry to the deferred list.
4170                                  */
4171                                 fake_entry = vm_map_entry_create(dst_map);
4172                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4173                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4174                                 vm_object_reference(src_object);
4175                                 fake_entry->object.vm_object = src_object;
4176                                 fake_entry->start = src_entry->start;
4177                                 fake_entry->end = src_entry->end;
4178                                 fake_entry->defer_next =
4179                                     curthread->td_map_def_user;
4180                                 curthread->td_map_def_user = fake_entry;
4181                         }
4182
4183                         pmap_copy(dst_map->pmap, src_map->pmap,
4184                             dst_entry->start, dst_entry->end - dst_entry->start,
4185                             src_entry->start);
4186                 } else {
4187                         dst_entry->object.vm_object = NULL;
4188                         dst_entry->offset = 0;
4189                         if (src_entry->cred != NULL) {
4190                                 dst_entry->cred = curthread->td_ucred;
4191                                 crhold(dst_entry->cred);
4192                                 *fork_charge += size;
4193                         }
4194                 }
4195         } else {
4196                 /*
4197                  * We don't want to make writeable wired pages copy-on-write.
4198                  * Immediately copy these pages into the new map by simulating
4199                  * page faults.  The new pages are pageable.
4200                  */
4201                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4202                     fork_charge);
4203         }
4204 }
4205
4206 /*
4207  * vmspace_map_entry_forked:
4208  * Update the newly-forked vmspace each time a map entry is inherited
4209  * or copied.  The values for vm_dsize and vm_tsize are approximate
4210  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4211  */
4212 static void
4213 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4214     vm_map_entry_t entry)
4215 {
4216         vm_size_t entrysize;
4217         vm_offset_t newend;
4218
4219         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4220                 return;
4221         entrysize = entry->end - entry->start;
4222         vm2->vm_map.size += entrysize;
4223         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4224                 vm2->vm_ssize += btoc(entrysize);
4225         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4226             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4227                 newend = MIN(entry->end,
4228                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4229                 vm2->vm_dsize += btoc(newend - entry->start);
4230         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4231             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4232                 newend = MIN(entry->end,
4233                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4234                 vm2->vm_tsize += btoc(newend - entry->start);
4235         }
4236 }
4237
4238 /*
4239  * vmspace_fork:
4240  * Create a new process vmspace structure and vm_map
4241  * based on those of an existing process.  The new map
4242  * is based on the old map, according to the inheritance
4243  * values on the regions in that map.
4244  *
4245  * XXX It might be worth coalescing the entries added to the new vmspace.
4246  *
4247  * The source map must not be locked.
4248  */
4249 struct vmspace *
4250 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4251 {
4252         struct vmspace *vm2;
4253         vm_map_t new_map, old_map;
4254         vm_map_entry_t new_entry, old_entry;
4255         vm_object_t object;
4256         int error, locked;
4257         vm_inherit_t inh;
4258
4259         old_map = &vm1->vm_map;
4260         /* Copy immutable fields of vm1 to vm2. */
4261         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4262             pmap_pinit);
4263         if (vm2 == NULL)
4264                 return (NULL);
4265
4266         vm2->vm_taddr = vm1->vm_taddr;
4267         vm2->vm_daddr = vm1->vm_daddr;
4268         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4269         vm2->vm_stkgap = vm1->vm_stkgap;
4270         vm_map_lock(old_map);
4271         if (old_map->busy)
4272                 vm_map_wait_busy(old_map);
4273         new_map = &vm2->vm_map;
4274         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4275         KASSERT(locked, ("vmspace_fork: lock failed"));
4276
4277         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4278         if (error != 0) {
4279                 sx_xunlock(&old_map->lock);
4280                 sx_xunlock(&new_map->lock);
4281                 vm_map_process_deferred();
4282                 vmspace_free(vm2);
4283                 return (NULL);
4284         }
4285
4286         new_map->anon_loc = old_map->anon_loc;
4287         new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4288             MAP_WXORX);
4289
4290         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4291                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4292                         panic("vm_map_fork: encountered a submap");
4293
4294                 inh = old_entry->inheritance;
4295                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4296                     inh != VM_INHERIT_NONE)
4297                         inh = VM_INHERIT_COPY;
4298
4299                 switch (inh) {
4300                 case VM_INHERIT_NONE:
4301                         break;
4302
4303                 case VM_INHERIT_SHARE:
4304                         /*
4305                          * Clone the entry, creating the shared object if
4306                          * necessary.
4307                          */
4308                         object = old_entry->object.vm_object;
4309                         if (object == NULL) {
4310                                 vm_map_entry_back(old_entry);
4311                                 object = old_entry->object.vm_object;
4312                         }
4313
4314                         /*
4315                          * Add the reference before calling vm_object_shadow
4316                          * to insure that a shadow object is created.
4317                          */
4318                         vm_object_reference(object);
4319                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4320                                 vm_object_shadow(&old_entry->object.vm_object,
4321                                     &old_entry->offset,
4322                                     old_entry->end - old_entry->start,
4323                                     old_entry->cred,
4324                                     /* Transfer the second reference too. */
4325                                     true);
4326                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4327                                 old_entry->cred = NULL;
4328
4329                                 /*
4330                                  * As in vm_map_merged_neighbor_dispose(),
4331                                  * the vnode lock will not be acquired in
4332                                  * this call to vm_object_deallocate().
4333                                  */
4334                                 vm_object_deallocate(object);
4335                                 object = old_entry->object.vm_object;
4336                         } else {
4337                                 VM_OBJECT_WLOCK(object);
4338                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4339                                 if (old_entry->cred != NULL) {
4340                                         KASSERT(object->cred == NULL,
4341                                             ("vmspace_fork both cred"));
4342                                         object->cred = old_entry->cred;
4343                                         object->charge = old_entry->end -
4344                                             old_entry->start;
4345                                         old_entry->cred = NULL;
4346                                 }
4347
4348                                 /*
4349                                  * Assert the correct state of the vnode
4350                                  * v_writecount while the object is locked, to
4351                                  * not relock it later for the assertion
4352                                  * correctness.
4353                                  */
4354                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4355                                     object->type == OBJT_VNODE) {
4356                                         KASSERT(((struct vnode *)object->
4357                                             handle)->v_writecount > 0,
4358                                             ("vmspace_fork: v_writecount %p",
4359                                             object));
4360                                         KASSERT(object->un_pager.vnp.
4361                                             writemappings > 0,
4362                                             ("vmspace_fork: vnp.writecount %p",
4363                                             object));
4364                                 }
4365                                 VM_OBJECT_WUNLOCK(object);
4366                         }
4367
4368                         /*
4369                          * Clone the entry, referencing the shared object.
4370                          */
4371                         new_entry = vm_map_entry_create(new_map);
4372                         *new_entry = *old_entry;
4373                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4374                             MAP_ENTRY_IN_TRANSITION);
4375                         new_entry->wiring_thread = NULL;
4376                         new_entry->wired_count = 0;
4377                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4378                                 vm_pager_update_writecount(object,
4379                                     new_entry->start, new_entry->end);
4380                         }
4381                         vm_map_entry_set_vnode_text(new_entry, true);
4382
4383                         /*
4384                          * Insert the entry into the new map -- we know we're
4385                          * inserting at the end of the new map.
4386                          */
4387                         vm_map_entry_link(new_map, new_entry);
4388                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4389
4390                         /*
4391                          * Update the physical map
4392                          */
4393                         pmap_copy(new_map->pmap, old_map->pmap,
4394                             new_entry->start,
4395                             (old_entry->end - old_entry->start),
4396                             old_entry->start);
4397                         break;
4398
4399                 case VM_INHERIT_COPY:
4400                         /*
4401                          * Clone the entry and link into the map.
4402                          */
4403                         new_entry = vm_map_entry_create(new_map);
4404                         *new_entry = *old_entry;
4405                         /*
4406                          * Copied entry is COW over the old object.
4407                          */
4408                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4409                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4410                         new_entry->wiring_thread = NULL;
4411                         new_entry->wired_count = 0;
4412                         new_entry->object.vm_object = NULL;
4413                         new_entry->cred = NULL;
4414                         vm_map_entry_link(new_map, new_entry);
4415                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4416                         vm_map_copy_entry(old_map, new_map, old_entry,
4417                             new_entry, fork_charge);
4418                         vm_map_entry_set_vnode_text(new_entry, true);
4419                         break;
4420
4421                 case VM_INHERIT_ZERO:
4422                         /*
4423                          * Create a new anonymous mapping entry modelled from
4424                          * the old one.
4425                          */
4426                         new_entry = vm_map_entry_create(new_map);
4427                         memset(new_entry, 0, sizeof(*new_entry));
4428
4429                         new_entry->start = old_entry->start;
4430                         new_entry->end = old_entry->end;
4431                         new_entry->eflags = old_entry->eflags &
4432                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4433                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4434                             MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4435                         new_entry->protection = old_entry->protection;
4436                         new_entry->max_protection = old_entry->max_protection;
4437                         new_entry->inheritance = VM_INHERIT_ZERO;
4438
4439                         vm_map_entry_link(new_map, new_entry);
4440                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4441
4442                         new_entry->cred = curthread->td_ucred;
4443                         crhold(new_entry->cred);
4444                         *fork_charge += (new_entry->end - new_entry->start);
4445
4446                         break;
4447                 }
4448         }
4449         /*
4450          * Use inlined vm_map_unlock() to postpone handling the deferred
4451          * map entries, which cannot be done until both old_map and
4452          * new_map locks are released.
4453          */
4454         sx_xunlock(&old_map->lock);
4455         sx_xunlock(&new_map->lock);
4456         vm_map_process_deferred();
4457
4458         return (vm2);
4459 }
4460
4461 /*
4462  * Create a process's stack for exec_new_vmspace().  This function is never
4463  * asked to wire the newly created stack.
4464  */
4465 int
4466 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4467     vm_prot_t prot, vm_prot_t max, int cow)
4468 {
4469         vm_size_t growsize, init_ssize;
4470         rlim_t vmemlim;
4471         int rv;
4472
4473         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4474         growsize = sgrowsiz;
4475         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4476         vm_map_lock(map);
4477         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4478         /* If we would blow our VMEM resource limit, no go */
4479         if (map->size + init_ssize > vmemlim) {
4480                 rv = KERN_NO_SPACE;
4481                 goto out;
4482         }
4483         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4484             max, cow);
4485 out:
4486         vm_map_unlock(map);
4487         return (rv);
4488 }
4489
4490 static int stack_guard_page = 1;
4491 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4492     &stack_guard_page, 0,
4493     "Specifies the number of guard pages for a stack that grows");
4494
4495 static int
4496 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4497     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4498 {
4499         vm_map_entry_t new_entry, prev_entry;
4500         vm_offset_t bot, gap_bot, gap_top, top;
4501         vm_size_t init_ssize, sgp;
4502         int orient, rv;
4503
4504         /*
4505          * The stack orientation is piggybacked with the cow argument.
4506          * Extract it into orient and mask the cow argument so that we
4507          * don't pass it around further.
4508          */
4509         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4510         KASSERT(orient != 0, ("No stack grow direction"));
4511         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4512             ("bi-dir stack"));
4513
4514         if (max_ssize == 0 ||
4515             !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4516                 return (KERN_INVALID_ADDRESS);
4517         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4518             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4519             (vm_size_t)stack_guard_page * PAGE_SIZE;
4520         if (sgp >= max_ssize)
4521                 return (KERN_INVALID_ARGUMENT);
4522
4523         init_ssize = growsize;
4524         if (max_ssize < init_ssize + sgp)
4525                 init_ssize = max_ssize - sgp;
4526
4527         /* If addr is already mapped, no go */
4528         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4529                 return (KERN_NO_SPACE);
4530
4531         /*
4532          * If we can't accommodate max_ssize in the current mapping, no go.
4533          */
4534         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4535                 return (KERN_NO_SPACE);
4536
4537         /*
4538          * We initially map a stack of only init_ssize.  We will grow as
4539          * needed later.  Depending on the orientation of the stack (i.e.
4540          * the grow direction) we either map at the top of the range, the
4541          * bottom of the range or in the middle.
4542          *
4543          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4544          * and cow to be 0.  Possibly we should eliminate these as input
4545          * parameters, and just pass these values here in the insert call.
4546          */
4547         if (orient == MAP_STACK_GROWS_DOWN) {
4548                 bot = addrbos + max_ssize - init_ssize;
4549                 top = bot + init_ssize;
4550                 gap_bot = addrbos;
4551                 gap_top = bot;
4552         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4553                 bot = addrbos;
4554                 top = bot + init_ssize;
4555                 gap_bot = top;
4556                 gap_top = addrbos + max_ssize;
4557         }
4558         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4559         if (rv != KERN_SUCCESS)
4560                 return (rv);
4561         new_entry = vm_map_entry_succ(prev_entry);
4562         KASSERT(new_entry->end == top || new_entry->start == bot,
4563             ("Bad entry start/end for new stack entry"));
4564         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4565             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4566             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4567         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4568             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4569             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4570         if (gap_bot == gap_top)
4571                 return (KERN_SUCCESS);
4572         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4573             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4574             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4575         if (rv == KERN_SUCCESS) {
4576                 /*
4577                  * Gap can never successfully handle a fault, so
4578                  * read-ahead logic is never used for it.  Re-use
4579                  * next_read of the gap entry to store
4580                  * stack_guard_page for vm_map_growstack().
4581                  */
4582                 if (orient == MAP_STACK_GROWS_DOWN)
4583                         vm_map_entry_pred(new_entry)->next_read = sgp;
4584                 else
4585                         vm_map_entry_succ(new_entry)->next_read = sgp;
4586         } else {
4587                 (void)vm_map_delete(map, bot, top);
4588         }
4589         return (rv);
4590 }
4591
4592 /*
4593  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4594  * successfully grow the stack.
4595  */
4596 static int
4597 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4598 {
4599         vm_map_entry_t stack_entry;
4600         struct proc *p;
4601         struct vmspace *vm;
4602         struct ucred *cred;
4603         vm_offset_t gap_end, gap_start, grow_start;
4604         vm_size_t grow_amount, guard, max_grow;
4605         rlim_t lmemlim, stacklim, vmemlim;
4606         int rv, rv1;
4607         bool gap_deleted, grow_down, is_procstack;
4608 #ifdef notyet
4609         uint64_t limit;
4610 #endif
4611 #ifdef RACCT
4612         int error;
4613 #endif
4614
4615         p = curproc;
4616         vm = p->p_vmspace;
4617
4618         /*
4619          * Disallow stack growth when the access is performed by a
4620          * debugger or AIO daemon.  The reason is that the wrong
4621          * resource limits are applied.
4622          */
4623         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4624             p->p_textvp == NULL))
4625                 return (KERN_FAILURE);
4626
4627         MPASS(!map->system_map);
4628
4629         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4630         stacklim = lim_cur(curthread, RLIMIT_STACK);
4631         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4632 retry:
4633         /* If addr is not in a hole for a stack grow area, no need to grow. */
4634         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4635                 return (KERN_FAILURE);
4636         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4637                 return (KERN_SUCCESS);
4638         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4639                 stack_entry = vm_map_entry_succ(gap_entry);
4640                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4641                     stack_entry->start != gap_entry->end)
4642                         return (KERN_FAILURE);
4643                 grow_amount = round_page(stack_entry->start - addr);
4644                 grow_down = true;
4645         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4646                 stack_entry = vm_map_entry_pred(gap_entry);
4647                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4648                     stack_entry->end != gap_entry->start)
4649                         return (KERN_FAILURE);
4650                 grow_amount = round_page(addr + 1 - stack_entry->end);
4651                 grow_down = false;
4652         } else {
4653                 return (KERN_FAILURE);
4654         }
4655         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4656             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4657             gap_entry->next_read;
4658         max_grow = gap_entry->end - gap_entry->start;
4659         if (guard > max_grow)
4660                 return (KERN_NO_SPACE);
4661         max_grow -= guard;
4662         if (grow_amount > max_grow)
4663                 return (KERN_NO_SPACE);
4664
4665         /*
4666          * If this is the main process stack, see if we're over the stack
4667          * limit.
4668          */
4669         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4670             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4671         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4672                 return (KERN_NO_SPACE);
4673
4674 #ifdef RACCT
4675         if (racct_enable) {
4676                 PROC_LOCK(p);
4677                 if (is_procstack && racct_set(p, RACCT_STACK,
4678                     ctob(vm->vm_ssize) + grow_amount)) {
4679                         PROC_UNLOCK(p);
4680                         return (KERN_NO_SPACE);
4681                 }
4682                 PROC_UNLOCK(p);
4683         }
4684 #endif
4685
4686         grow_amount = roundup(grow_amount, sgrowsiz);
4687         if (grow_amount > max_grow)
4688                 grow_amount = max_grow;
4689         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4690                 grow_amount = trunc_page((vm_size_t)stacklim) -
4691                     ctob(vm->vm_ssize);
4692         }
4693
4694 #ifdef notyet
4695         PROC_LOCK(p);
4696         limit = racct_get_available(p, RACCT_STACK);
4697         PROC_UNLOCK(p);
4698         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4699                 grow_amount = limit - ctob(vm->vm_ssize);
4700 #endif
4701
4702         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4703                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4704                         rv = KERN_NO_SPACE;
4705                         goto out;
4706                 }
4707 #ifdef RACCT
4708                 if (racct_enable) {
4709                         PROC_LOCK(p);
4710                         if (racct_set(p, RACCT_MEMLOCK,
4711                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4712                                 PROC_UNLOCK(p);
4713                                 rv = KERN_NO_SPACE;
4714                                 goto out;
4715                         }
4716                         PROC_UNLOCK(p);
4717                 }
4718 #endif
4719         }
4720
4721         /* If we would blow our VMEM resource limit, no go */
4722         if (map->size + grow_amount > vmemlim) {
4723                 rv = KERN_NO_SPACE;
4724                 goto out;
4725         }
4726 #ifdef RACCT
4727         if (racct_enable) {
4728                 PROC_LOCK(p);
4729                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4730                         PROC_UNLOCK(p);
4731                         rv = KERN_NO_SPACE;
4732                         goto out;
4733                 }
4734                 PROC_UNLOCK(p);
4735         }
4736 #endif
4737
4738         if (vm_map_lock_upgrade(map)) {
4739                 gap_entry = NULL;
4740                 vm_map_lock_read(map);
4741                 goto retry;
4742         }
4743
4744         if (grow_down) {
4745                 grow_start = gap_entry->end - grow_amount;
4746                 if (gap_entry->start + grow_amount == gap_entry->end) {
4747                         gap_start = gap_entry->start;
4748                         gap_end = gap_entry->end;
4749                         vm_map_entry_delete(map, gap_entry);
4750                         gap_deleted = true;
4751                 } else {
4752                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4753                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4754                         gap_deleted = false;
4755                 }
4756                 rv = vm_map_insert(map, NULL, 0, grow_start,
4757                     grow_start + grow_amount,
4758                     stack_entry->protection, stack_entry->max_protection,
4759                     MAP_STACK_GROWS_DOWN);
4760                 if (rv != KERN_SUCCESS) {
4761                         if (gap_deleted) {
4762                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4763                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4764                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4765                                 MPASS(rv1 == KERN_SUCCESS);
4766                         } else
4767                                 vm_map_entry_resize(map, gap_entry,
4768                                     grow_amount);
4769                 }
4770         } else {
4771                 grow_start = stack_entry->end;
4772                 cred = stack_entry->cred;
4773                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4774                         cred = stack_entry->object.vm_object->cred;
4775                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4776                         rv = KERN_NO_SPACE;
4777                 /* Grow the underlying object if applicable. */
4778                 else if (stack_entry->object.vm_object == NULL ||
4779                     vm_object_coalesce(stack_entry->object.vm_object,
4780                     stack_entry->offset,
4781                     (vm_size_t)(stack_entry->end - stack_entry->start),
4782                     grow_amount, cred != NULL)) {
4783                         if (gap_entry->start + grow_amount == gap_entry->end) {
4784                                 vm_map_entry_delete(map, gap_entry);
4785                                 vm_map_entry_resize(map, stack_entry,
4786                                     grow_amount);
4787                         } else {
4788                                 gap_entry->start += grow_amount;
4789                                 stack_entry->end += grow_amount;
4790                         }
4791                         map->size += grow_amount;
4792                         rv = KERN_SUCCESS;
4793                 } else
4794                         rv = KERN_FAILURE;
4795         }
4796         if (rv == KERN_SUCCESS && is_procstack)
4797                 vm->vm_ssize += btoc(grow_amount);
4798
4799         /*
4800          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4801          */
4802         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4803                 rv = vm_map_wire_locked(map, grow_start,
4804                     grow_start + grow_amount,
4805                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4806         }
4807         vm_map_lock_downgrade(map);
4808
4809 out:
4810 #ifdef RACCT
4811         if (racct_enable && rv != KERN_SUCCESS) {
4812                 PROC_LOCK(p);
4813                 error = racct_set(p, RACCT_VMEM, map->size);
4814                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4815                 if (!old_mlock) {
4816                         error = racct_set(p, RACCT_MEMLOCK,
4817                             ptoa(pmap_wired_count(map->pmap)));
4818                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4819                 }
4820                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4821                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4822                 PROC_UNLOCK(p);
4823         }
4824 #endif
4825
4826         return (rv);
4827 }
4828
4829 /*
4830  * Unshare the specified VM space for exec.  If other processes are
4831  * mapped to it, then create a new one.  The new vmspace is null.
4832  */
4833 int
4834 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4835 {
4836         struct vmspace *oldvmspace = p->p_vmspace;
4837         struct vmspace *newvmspace;
4838
4839         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4840             ("vmspace_exec recursed"));
4841         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4842         if (newvmspace == NULL)
4843                 return (ENOMEM);
4844         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4845         /*
4846          * This code is written like this for prototype purposes.  The
4847          * goal is to avoid running down the vmspace here, but let the
4848          * other process's that are still using the vmspace to finally
4849          * run it down.  Even though there is little or no chance of blocking
4850          * here, it is a good idea to keep this form for future mods.
4851          */
4852         PROC_VMSPACE_LOCK(p);
4853         p->p_vmspace = newvmspace;
4854         PROC_VMSPACE_UNLOCK(p);
4855         if (p == curthread->td_proc)
4856                 pmap_activate(curthread);
4857         curthread->td_pflags |= TDP_EXECVMSPC;
4858         return (0);
4859 }
4860
4861 /*
4862  * Unshare the specified VM space for forcing COW.  This
4863  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4864  */
4865 int
4866 vmspace_unshare(struct proc *p)
4867 {
4868         struct vmspace *oldvmspace = p->p_vmspace;
4869         struct vmspace *newvmspace;
4870         vm_ooffset_t fork_charge;
4871
4872         /*
4873          * The caller is responsible for ensuring that the reference count
4874          * cannot concurrently transition 1 -> 2.
4875          */
4876         if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4877                 return (0);
4878         fork_charge = 0;
4879         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4880         if (newvmspace == NULL)
4881                 return (ENOMEM);
4882         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4883                 vmspace_free(newvmspace);
4884                 return (ENOMEM);
4885         }
4886         PROC_VMSPACE_LOCK(p);
4887         p->p_vmspace = newvmspace;
4888         PROC_VMSPACE_UNLOCK(p);
4889         if (p == curthread->td_proc)
4890                 pmap_activate(curthread);
4891         vmspace_free(oldvmspace);
4892         return (0);
4893 }
4894
4895 /*
4896  *      vm_map_lookup:
4897  *
4898  *      Finds the VM object, offset, and
4899  *      protection for a given virtual address in the
4900  *      specified map, assuming a page fault of the
4901  *      type specified.
4902  *
4903  *      Leaves the map in question locked for read; return
4904  *      values are guaranteed until a vm_map_lookup_done
4905  *      call is performed.  Note that the map argument
4906  *      is in/out; the returned map must be used in
4907  *      the call to vm_map_lookup_done.
4908  *
4909  *      A handle (out_entry) is returned for use in
4910  *      vm_map_lookup_done, to make that fast.
4911  *
4912  *      If a lookup is requested with "write protection"
4913  *      specified, the map may be changed to perform virtual
4914  *      copying operations, although the data referenced will
4915  *      remain the same.
4916  */
4917 int
4918 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4919               vm_offset_t vaddr,
4920               vm_prot_t fault_typea,
4921               vm_map_entry_t *out_entry,        /* OUT */
4922               vm_object_t *object,              /* OUT */
4923               vm_pindex_t *pindex,              /* OUT */
4924               vm_prot_t *out_prot,              /* OUT */
4925               boolean_t *wired)                 /* OUT */
4926 {
4927         vm_map_entry_t entry;
4928         vm_map_t map = *var_map;
4929         vm_prot_t prot;
4930         vm_prot_t fault_type;
4931         vm_object_t eobject;
4932         vm_size_t size;
4933         struct ucred *cred;
4934
4935 RetryLookup:
4936
4937         vm_map_lock_read(map);
4938
4939 RetryLookupLocked:
4940         /*
4941          * Lookup the faulting address.
4942          */
4943         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4944                 vm_map_unlock_read(map);
4945                 return (KERN_INVALID_ADDRESS);
4946         }
4947
4948         entry = *out_entry;
4949
4950         /*
4951          * Handle submaps.
4952          */
4953         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4954                 vm_map_t old_map = map;
4955
4956                 *var_map = map = entry->object.sub_map;
4957                 vm_map_unlock_read(old_map);
4958                 goto RetryLookup;
4959         }
4960
4961         /*
4962          * Check whether this task is allowed to have this page.
4963          */
4964         prot = entry->protection;
4965         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4966                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4967                 if (prot == VM_PROT_NONE && map != kernel_map &&
4968                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4969                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4970                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4971                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4972                         goto RetryLookupLocked;
4973         }
4974         fault_type = fault_typea & VM_PROT_ALL;
4975         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4976                 vm_map_unlock_read(map);
4977                 return (KERN_PROTECTION_FAILURE);
4978         }
4979         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4980             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4981             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4982             ("entry %p flags %x", entry, entry->eflags));
4983         if ((fault_typea & VM_PROT_COPY) != 0 &&
4984             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4985             (entry->eflags & MAP_ENTRY_COW) == 0) {
4986                 vm_map_unlock_read(map);
4987                 return (KERN_PROTECTION_FAILURE);
4988         }
4989
4990         /*
4991          * If this page is not pageable, we have to get it for all possible
4992          * accesses.
4993          */
4994         *wired = (entry->wired_count != 0);
4995         if (*wired)
4996                 fault_type = entry->protection;
4997         size = entry->end - entry->start;
4998
4999         /*
5000          * If the entry was copy-on-write, we either ...
5001          */
5002         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5003                 /*
5004                  * If we want to write the page, we may as well handle that
5005                  * now since we've got the map locked.
5006                  *
5007                  * If we don't need to write the page, we just demote the
5008                  * permissions allowed.
5009                  */
5010                 if ((fault_type & VM_PROT_WRITE) != 0 ||
5011                     (fault_typea & VM_PROT_COPY) != 0) {
5012                         /*
5013                          * Make a new object, and place it in the object
5014                          * chain.  Note that no new references have appeared
5015                          * -- one just moved from the map to the new
5016                          * object.
5017                          */
5018                         if (vm_map_lock_upgrade(map))
5019                                 goto RetryLookup;
5020
5021                         if (entry->cred == NULL) {
5022                                 /*
5023                                  * The debugger owner is charged for
5024                                  * the memory.
5025                                  */
5026                                 cred = curthread->td_ucred;
5027                                 crhold(cred);
5028                                 if (!swap_reserve_by_cred(size, cred)) {
5029                                         crfree(cred);
5030                                         vm_map_unlock(map);
5031                                         return (KERN_RESOURCE_SHORTAGE);
5032                                 }
5033                                 entry->cred = cred;
5034                         }
5035                         eobject = entry->object.vm_object;
5036                         vm_object_shadow(&entry->object.vm_object,
5037                             &entry->offset, size, entry->cred, false);
5038                         if (eobject == entry->object.vm_object) {
5039                                 /*
5040                                  * The object was not shadowed.
5041                                  */
5042                                 swap_release_by_cred(size, entry->cred);
5043                                 crfree(entry->cred);
5044                         }
5045                         entry->cred = NULL;
5046                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5047
5048                         vm_map_lock_downgrade(map);
5049                 } else {
5050                         /*
5051                          * We're attempting to read a copy-on-write page --
5052                          * don't allow writes.
5053                          */
5054                         prot &= ~VM_PROT_WRITE;
5055                 }
5056         }
5057
5058         /*
5059          * Create an object if necessary.
5060          */
5061         if (entry->object.vm_object == NULL && !map->system_map) {
5062                 if (vm_map_lock_upgrade(map))
5063                         goto RetryLookup;
5064                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5065                     NULL, entry->cred, entry->cred != NULL ? size : 0);
5066                 entry->offset = 0;
5067                 entry->cred = NULL;
5068                 vm_map_lock_downgrade(map);
5069         }
5070
5071         /*
5072          * Return the object/offset from this entry.  If the entry was
5073          * copy-on-write or empty, it has been fixed up.
5074          */
5075         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5076         *object = entry->object.vm_object;
5077
5078         *out_prot = prot;
5079         return (KERN_SUCCESS);
5080 }
5081
5082 /*
5083  *      vm_map_lookup_locked:
5084  *
5085  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
5086  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5087  */
5088 int
5089 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
5090                      vm_offset_t vaddr,
5091                      vm_prot_t fault_typea,
5092                      vm_map_entry_t *out_entry, /* OUT */
5093                      vm_object_t *object,       /* OUT */
5094                      vm_pindex_t *pindex,       /* OUT */
5095                      vm_prot_t *out_prot,       /* OUT */
5096                      boolean_t *wired)          /* OUT */
5097 {
5098         vm_map_entry_t entry;
5099         vm_map_t map = *var_map;
5100         vm_prot_t prot;
5101         vm_prot_t fault_type = fault_typea;
5102
5103         /*
5104          * Lookup the faulting address.
5105          */
5106         if (!vm_map_lookup_entry(map, vaddr, out_entry))
5107                 return (KERN_INVALID_ADDRESS);
5108
5109         entry = *out_entry;
5110
5111         /*
5112          * Fail if the entry refers to a submap.
5113          */
5114         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5115                 return (KERN_FAILURE);
5116
5117         /*
5118          * Check whether this task is allowed to have this page.
5119          */
5120         prot = entry->protection;
5121         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5122         if ((fault_type & prot) != fault_type)
5123                 return (KERN_PROTECTION_FAILURE);
5124
5125         /*
5126          * If this page is not pageable, we have to get it for all possible
5127          * accesses.
5128          */
5129         *wired = (entry->wired_count != 0);
5130         if (*wired)
5131                 fault_type = entry->protection;
5132
5133         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5134                 /*
5135                  * Fail if the entry was copy-on-write for a write fault.
5136                  */
5137                 if (fault_type & VM_PROT_WRITE)
5138                         return (KERN_FAILURE);
5139                 /*
5140                  * We're attempting to read a copy-on-write page --
5141                  * don't allow writes.
5142                  */
5143                 prot &= ~VM_PROT_WRITE;
5144         }
5145
5146         /*
5147          * Fail if an object should be created.
5148          */
5149         if (entry->object.vm_object == NULL && !map->system_map)
5150                 return (KERN_FAILURE);
5151
5152         /*
5153          * Return the object/offset from this entry.  If the entry was
5154          * copy-on-write or empty, it has been fixed up.
5155          */
5156         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5157         *object = entry->object.vm_object;
5158
5159         *out_prot = prot;
5160         return (KERN_SUCCESS);
5161 }
5162
5163 /*
5164  *      vm_map_lookup_done:
5165  *
5166  *      Releases locks acquired by a vm_map_lookup
5167  *      (according to the handle returned by that lookup).
5168  */
5169 void
5170 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5171 {
5172         /*
5173          * Unlock the main-level map
5174          */
5175         vm_map_unlock_read(map);
5176 }
5177
5178 vm_offset_t
5179 vm_map_max_KBI(const struct vm_map *map)
5180 {
5181
5182         return (vm_map_max(map));
5183 }
5184
5185 vm_offset_t
5186 vm_map_min_KBI(const struct vm_map *map)
5187 {
5188
5189         return (vm_map_min(map));
5190 }
5191
5192 pmap_t
5193 vm_map_pmap_KBI(vm_map_t map)
5194 {
5195
5196         return (map->pmap);
5197 }
5198
5199 bool
5200 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5201 {
5202
5203         return (vm_map_range_valid(map, start, end));
5204 }
5205
5206 #ifdef INVARIANTS
5207 static void
5208 _vm_map_assert_consistent(vm_map_t map, int check)
5209 {
5210         vm_map_entry_t entry, prev;
5211         vm_map_entry_t cur, header, lbound, ubound;
5212         vm_size_t max_left, max_right;
5213
5214 #ifdef DIAGNOSTIC
5215         ++map->nupdates;
5216 #endif
5217         if (enable_vmmap_check != check)
5218                 return;
5219
5220         header = prev = &map->header;
5221         VM_MAP_ENTRY_FOREACH(entry, map) {
5222                 KASSERT(prev->end <= entry->start,
5223                     ("map %p prev->end = %jx, start = %jx", map,
5224                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5225                 KASSERT(entry->start < entry->end,
5226                     ("map %p start = %jx, end = %jx", map,
5227                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5228                 KASSERT(entry->left == header ||
5229                     entry->left->start < entry->start,
5230                     ("map %p left->start = %jx, start = %jx", map,
5231                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5232                 KASSERT(entry->right == header ||
5233                     entry->start < entry->right->start,
5234                     ("map %p start = %jx, right->start = %jx", map,
5235                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5236                 cur = map->root;
5237                 lbound = ubound = header;
5238                 for (;;) {
5239                         if (entry->start < cur->start) {
5240                                 ubound = cur;
5241                                 cur = cur->left;
5242                                 KASSERT(cur != lbound,
5243                                     ("map %p cannot find %jx",
5244                                     map, (uintmax_t)entry->start));
5245                         } else if (cur->end <= entry->start) {
5246                                 lbound = cur;
5247                                 cur = cur->right;
5248                                 KASSERT(cur != ubound,
5249                                     ("map %p cannot find %jx",
5250                                     map, (uintmax_t)entry->start));
5251                         } else {
5252                                 KASSERT(cur == entry,
5253                                     ("map %p cannot find %jx",
5254                                     map, (uintmax_t)entry->start));
5255                                 break;
5256                         }
5257                 }
5258                 max_left = vm_map_entry_max_free_left(entry, lbound);
5259                 max_right = vm_map_entry_max_free_right(entry, ubound);
5260                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5261                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5262                     (uintmax_t)entry->max_free,
5263                     (uintmax_t)max_left, (uintmax_t)max_right));
5264                 prev = entry;
5265         }
5266         KASSERT(prev->end <= entry->start,
5267             ("map %p prev->end = %jx, start = %jx", map,
5268             (uintmax_t)prev->end, (uintmax_t)entry->start));
5269 }
5270 #endif
5271
5272 #include "opt_ddb.h"
5273 #ifdef DDB
5274 #include <sys/kernel.h>
5275
5276 #include <ddb/ddb.h>
5277
5278 static void
5279 vm_map_print(vm_map_t map)
5280 {
5281         vm_map_entry_t entry, prev;
5282
5283         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5284             (void *)map,
5285             (void *)map->pmap, map->nentries, map->timestamp);
5286
5287         db_indent += 2;
5288         prev = &map->header;
5289         VM_MAP_ENTRY_FOREACH(entry, map) {
5290                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5291                     (void *)entry, (void *)entry->start, (void *)entry->end,
5292                     entry->eflags);
5293                 {
5294                         static const char * const inheritance_name[4] =
5295                         {"share", "copy", "none", "donate_copy"};
5296
5297                         db_iprintf(" prot=%x/%x/%s",
5298                             entry->protection,
5299                             entry->max_protection,
5300                             inheritance_name[(int)(unsigned char)
5301                             entry->inheritance]);
5302                         if (entry->wired_count != 0)
5303                                 db_printf(", wired");
5304                 }
5305                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5306                         db_printf(", share=%p, offset=0x%jx\n",
5307                             (void *)entry->object.sub_map,
5308                             (uintmax_t)entry->offset);
5309                         if (prev == &map->header ||
5310                             prev->object.sub_map !=
5311                                 entry->object.sub_map) {
5312                                 db_indent += 2;
5313                                 vm_map_print((vm_map_t)entry->object.sub_map);
5314                                 db_indent -= 2;
5315                         }
5316                 } else {
5317                         if (entry->cred != NULL)
5318                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5319                         db_printf(", object=%p, offset=0x%jx",
5320                             (void *)entry->object.vm_object,
5321                             (uintmax_t)entry->offset);
5322                         if (entry->object.vm_object && entry->object.vm_object->cred)
5323                                 db_printf(", obj ruid %d charge %jx",
5324                                     entry->object.vm_object->cred->cr_ruid,
5325                                     (uintmax_t)entry->object.vm_object->charge);
5326                         if (entry->eflags & MAP_ENTRY_COW)
5327                                 db_printf(", copy (%s)",
5328                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5329                         db_printf("\n");
5330
5331                         if (prev == &map->header ||
5332                             prev->object.vm_object !=
5333                                 entry->object.vm_object) {
5334                                 db_indent += 2;
5335                                 vm_object_print((db_expr_t)(intptr_t)
5336                                                 entry->object.vm_object,
5337                                                 0, 0, (char *)0);
5338                                 db_indent -= 2;
5339                         }
5340                 }
5341                 prev = entry;
5342         }
5343         db_indent -= 2;
5344 }
5345
5346 DB_SHOW_COMMAND(map, map)
5347 {
5348
5349         if (!have_addr) {
5350                 db_printf("usage: show map <addr>\n");
5351                 return;
5352         }
5353         vm_map_print((vm_map_t)addr);
5354 }
5355
5356 DB_SHOW_COMMAND(procvm, procvm)
5357 {
5358         struct proc *p;
5359
5360         if (have_addr) {
5361                 p = db_lookup_proc(addr);
5362         } else {
5363                 p = curproc;
5364         }
5365
5366         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5367             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5368             (void *)vmspace_pmap(p->p_vmspace));
5369
5370         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5371 }
5372
5373 #endif /* DDB */