]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Fix a typo.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101
102 /*
103  *      Virtual memory maps provide for the mapping, protection,
104  *      and sharing of virtual memory objects.  In addition,
105  *      this module provides for an efficient virtual copy of
106  *      memory from one map to another.
107  *
108  *      Synchronization is required prior to most operations.
109  *
110  *      Maps consist of an ordered doubly-linked list of simple
111  *      entries; a self-adjusting binary search tree of these
112  *      entries is used to speed up lookups.
113  *
114  *      Since portions of maps are specified by start/end addresses,
115  *      which may not align with existing map entries, all
116  *      routines merely "clip" entries to these start/end values.
117  *      [That is, an entry is split into two, bordering at a
118  *      start or end value.]  Note that these clippings may not
119  *      always be necessary (as the two resulting entries are then
120  *      not changed); however, the clipping is done for convenience.
121  *
122  *      As mentioned above, virtual copy operations are performed
123  *      by copying VM object references from one map to
124  *      another, and then marking both regions as copy-on-write.
125  */
126
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152
153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156
157 /* 
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163
164 /*
165  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
166  *
167  *      Asserts that the starting and ending region
168  *      addresses fall within the valid range of the map.
169  */
170 #define VM_MAP_RANGE_CHECK(map, start, end)             \
171                 {                                       \
172                 if (start < vm_map_min(map))            \
173                         start = vm_map_min(map);        \
174                 if (end > vm_map_max(map))              \
175                         end = vm_map_max(map);          \
176                 if (start > end)                        \
177                         start = end;                    \
178                 }
179
180 /*
181  *      vm_map_startup:
182  *
183  *      Initialize the vm_map module.  Must be called before
184  *      any other vm_map routines.
185  *
186  *      Map and entry structures are allocated from the general
187  *      purpose memory pool with some exceptions:
188  *
189  *      - The kernel map and kmem submap are allocated statically.
190  *      - Kernel map entries are allocated out of a static pool.
191  *
192  *      These restrictions are necessary since malloc() uses the
193  *      maps and requires map entries.
194  */
195
196 void
197 vm_map_startup(void)
198 {
199         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202             vm_map_zdtor,
203 #else
204             NULL,
205 #endif
206             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207         uma_prealloc(mapzone, MAX_KMAP);
208         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215             vmspace_zdtor,
216 #else
217             NULL,
218 #endif
219             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225         struct vmspace *vm;
226
227         vm = (struct vmspace *)mem;
228
229         vm->vm_map.pmap = NULL;
230         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231         PMAP_LOCK_INIT(vmspace_pmap(vm));
232         return (0);
233 }
234
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238         vm_map_t map;
239
240         map = (vm_map_t)mem;
241         memset(map, 0, sizeof(*map));
242         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243         sx_init(&map->lock, "vm map (user)");
244         return (0);
245 }
246
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251         struct vmspace *vm;
252
253         vm = (struct vmspace *)mem;
254
255         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260         vm_map_t map;
261
262         map = (vm_map_t)mem;
263         KASSERT(map->nentries == 0,
264             ("map %p nentries == %d on free.",
265             map, map->nentries));
266         KASSERT(map->size == 0,
267             ("map %p size == %lu on free.",
268             map, (unsigned long)map->size));
269 }
270 #endif  /* INVARIANTS */
271
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281         struct vmspace *vm;
282
283         vm = uma_zalloc(vmspace_zone, M_WAITOK);
284         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336             vm_map_max(&vm->vm_map));
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         refcnt = vm->vm_refcnt;
393         do {
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         refcnt = vm->vm_refcnt;
439         do {
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The new vmspace is either the vmspace of a user process obtained
458  * from an active AIO request or the initial vmspace of the AIO kernel
459  * process (when it is idling).  Because user processes will block to
460  * drain any active AIO requests before proceeding in exit() or
461  * execve(), the reference count for vmspaces from AIO requests can
462  * never be 0.  Similarly, AIO kernel processes hold an extra
463  * reference on their initial vmspace for the life of the process.  As
464  * a result, the 'newvm' vmspace always has a non-zero reference
465  * count.  This permits an additional reference on 'newvm' to be
466  * acquired via a simple atomic increment rather than the loop in
467  * vmspace_acquire_ref() above.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472         struct vmspace *oldvm;
473
474         /* XXX: Need some way to assert that this is an aio daemon. */
475
476         KASSERT(newvm->vm_refcnt > 0,
477             ("vmspace_switch_aio: newvm unreferenced"));
478
479         oldvm = curproc->p_vmspace;
480         if (oldvm == newvm)
481                 return;
482
483         /*
484          * Point to the new address space and refer to it.
485          */
486         curproc->p_vmspace = newvm;
487         atomic_add_int(&newvm->vm_refcnt, 1);
488
489         /* Activate the new mapping. */
490         pmap_activate(curthread);
491
492         vmspace_free(oldvm);
493 }
494
495 void
496 _vm_map_lock(vm_map_t map, const char *file, int line)
497 {
498
499         if (map->system_map)
500                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
501         else
502                 sx_xlock_(&map->lock, file, line);
503         map->timestamp++;
504 }
505
506 void
507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
508 {
509         vm_object_t object, object1;
510         struct vnode *vp;
511
512         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
513                 return;
514         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
515             ("Submap with execs"));
516         object = entry->object.vm_object;
517         KASSERT(object != NULL, ("No object for text, entry %p", entry));
518         VM_OBJECT_RLOCK(object);
519         while ((object1 = object->backing_object) != NULL) {
520                 VM_OBJECT_RLOCK(object1);
521                 VM_OBJECT_RUNLOCK(object);
522                 object = object1;
523         }
524
525         vp = NULL;
526         if (object->type == OBJT_DEAD) {
527                 /*
528                  * For OBJT_DEAD objects, v_writecount was handled in
529                  * vnode_pager_dealloc().
530                  */
531         } else if (object->type == OBJT_VNODE) {
532                 vp = object->handle;
533         } else if (object->type == OBJT_SWAP) {
534                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
535                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
536                     "entry %p, object %p, add %d", entry, object, add));
537                 /*
538                  * Tmpfs VREG node, which was reclaimed, has
539                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
540                  * this case there is no v_writecount to adjust.
541                  */
542                 if ((object->flags & OBJ_TMPFS) != 0)
543                         vp = object->un_pager.swp.swp_tmpfs;
544         } else {
545                 KASSERT(0,
546                     ("vm_map_entry_set_vnode_text: wrong object type, "
547                     "entry %p, object %p, add %d", entry, object, add));
548         }
549         if (vp != NULL) {
550                 if (add)
551                         VOP_SET_TEXT_CHECKED(vp);
552                 else
553                         VOP_UNSET_TEXT_CHECKED(vp);
554         }
555         VM_OBJECT_RUNLOCK(object);
556 }
557
558 static void
559 vm_map_process_deferred(void)
560 {
561         struct thread *td;
562         vm_map_entry_t entry, next;
563         vm_object_t object;
564
565         td = curthread;
566         entry = td->td_map_def_user;
567         td->td_map_def_user = NULL;
568         while (entry != NULL) {
569                 next = entry->next;
570                 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
571                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
572                     MAP_ENTRY_VN_EXEC));
573                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
574                         /*
575                          * Decrement the object's writemappings and
576                          * possibly the vnode's v_writecount.
577                          */
578                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
579                             ("Submap with writecount"));
580                         object = entry->object.vm_object;
581                         KASSERT(object != NULL, ("No object for writecount"));
582                         vnode_pager_release_writecount(object, entry->start,
583                             entry->end);
584                 }
585                 vm_map_entry_set_vnode_text(entry, false);
586                 vm_map_entry_deallocate(entry, FALSE);
587                 entry = next;
588         }
589 }
590
591 void
592 _vm_map_unlock(vm_map_t map, const char *file, int line)
593 {
594
595         if (map->system_map)
596                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
597         else {
598                 sx_xunlock_(&map->lock, file, line);
599                 vm_map_process_deferred();
600         }
601 }
602
603 void
604 _vm_map_lock_read(vm_map_t map, const char *file, int line)
605 {
606
607         if (map->system_map)
608                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
609         else
610                 sx_slock_(&map->lock, file, line);
611 }
612
613 void
614 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
615 {
616
617         if (map->system_map)
618                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
619         else {
620                 sx_sunlock_(&map->lock, file, line);
621                 vm_map_process_deferred();
622         }
623 }
624
625 int
626 _vm_map_trylock(vm_map_t map, const char *file, int line)
627 {
628         int error;
629
630         error = map->system_map ?
631             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
632             !sx_try_xlock_(&map->lock, file, line);
633         if (error == 0)
634                 map->timestamp++;
635         return (error == 0);
636 }
637
638 int
639 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
640 {
641         int error;
642
643         error = map->system_map ?
644             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
645             !sx_try_slock_(&map->lock, file, line);
646         return (error == 0);
647 }
648
649 /*
650  *      _vm_map_lock_upgrade:   [ internal use only ]
651  *
652  *      Tries to upgrade a read (shared) lock on the specified map to a write
653  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
654  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
655  *      returned without a read or write lock held.
656  *
657  *      Requires that the map be read locked.
658  */
659 int
660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
661 {
662         unsigned int last_timestamp;
663
664         if (map->system_map) {
665                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
666         } else {
667                 if (!sx_try_upgrade_(&map->lock, file, line)) {
668                         last_timestamp = map->timestamp;
669                         sx_sunlock_(&map->lock, file, line);
670                         vm_map_process_deferred();
671                         /*
672                          * If the map's timestamp does not change while the
673                          * map is unlocked, then the upgrade succeeds.
674                          */
675                         sx_xlock_(&map->lock, file, line);
676                         if (last_timestamp != map->timestamp) {
677                                 sx_xunlock_(&map->lock, file, line);
678                                 return (1);
679                         }
680                 }
681         }
682         map->timestamp++;
683         return (0);
684 }
685
686 void
687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
688 {
689
690         if (map->system_map) {
691                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
692         } else
693                 sx_downgrade_(&map->lock, file, line);
694 }
695
696 /*
697  *      vm_map_locked:
698  *
699  *      Returns a non-zero value if the caller holds a write (exclusive) lock
700  *      on the specified map and the value "0" otherwise.
701  */
702 int
703 vm_map_locked(vm_map_t map)
704 {
705
706         if (map->system_map)
707                 return (mtx_owned(&map->system_mtx));
708         else
709                 return (sx_xlocked(&map->lock));
710 }
711
712 #ifdef INVARIANTS
713 static void
714 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
715 {
716
717         if (map->system_map)
718                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
719         else
720                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
721 }
722
723 #define VM_MAP_ASSERT_LOCKED(map) \
724     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
725
726 #ifdef DIAGNOSTIC
727 static int enable_vmmap_check = 1;
728 #else
729 static int enable_vmmap_check = 0;
730 #endif
731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
732     &enable_vmmap_check, 0, "Enable vm map consistency checking");
733
734 static void
735 _vm_map_assert_consistent(vm_map_t map)
736 {
737         vm_map_entry_t child, entry, prev;
738         vm_size_t max_left, max_right;
739
740         if (!enable_vmmap_check)
741                 return;
742
743         for (prev = &map->header; (entry = prev->next) != &map->header;
744             prev = entry) {
745                 KASSERT(prev->end <= entry->start,
746                     ("map %p prev->end = %jx, start = %jx", map,
747                     (uintmax_t)prev->end, (uintmax_t)entry->start));
748                 KASSERT(entry->start < entry->end,
749                     ("map %p start = %jx, end = %jx", map,
750                     (uintmax_t)entry->start, (uintmax_t)entry->end));
751                 KASSERT(entry->end <= entry->next->start,
752                     ("map %p end = %jx, next->start = %jx", map,
753                     (uintmax_t)entry->end, (uintmax_t)entry->next->start));
754                 KASSERT(entry->left == NULL ||
755                     entry->left->start < entry->start,
756                     ("map %p left->start = %jx, start = %jx", map,
757                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
758                 KASSERT(entry->right == NULL ||
759                     entry->start < entry->right->start,
760                     ("map %p start = %jx, right->start = %jx", map,
761                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
762                 child = entry->left;
763                 max_left = (child != NULL) ? child->max_free :
764                         entry->start - prev->end;
765                 child = entry->right;
766                 max_right = (child != NULL) ? child->max_free :
767                         entry->next->start - entry->end;
768                 KASSERT(entry->max_free == MAX(max_left, max_right),
769                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
770                      (uintmax_t)entry->max_free,
771                      (uintmax_t)max_left, (uintmax_t)max_right));
772         }       
773 }
774
775 #define VM_MAP_ASSERT_CONSISTENT(map) \
776     _vm_map_assert_consistent(map)
777 #else
778 #define VM_MAP_ASSERT_LOCKED(map)
779 #define VM_MAP_ASSERT_CONSISTENT(map)
780 #endif /* INVARIANTS */
781
782 /*
783  *      _vm_map_unlock_and_wait:
784  *
785  *      Atomically releases the lock on the specified map and puts the calling
786  *      thread to sleep.  The calling thread will remain asleep until either
787  *      vm_map_wakeup() is performed on the map or the specified timeout is
788  *      exceeded.
789  *
790  *      WARNING!  This function does not perform deferred deallocations of
791  *      objects and map entries.  Therefore, the calling thread is expected to
792  *      reacquire the map lock after reawakening and later perform an ordinary
793  *      unlock operation, such as vm_map_unlock(), before completing its
794  *      operation on the map.
795  */
796 int
797 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
798 {
799
800         mtx_lock(&map_sleep_mtx);
801         if (map->system_map)
802                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
803         else
804                 sx_xunlock_(&map->lock, file, line);
805         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
806             timo));
807 }
808
809 /*
810  *      vm_map_wakeup:
811  *
812  *      Awaken any threads that have slept on the map using
813  *      vm_map_unlock_and_wait().
814  */
815 void
816 vm_map_wakeup(vm_map_t map)
817 {
818
819         /*
820          * Acquire and release map_sleep_mtx to prevent a wakeup()
821          * from being performed (and lost) between the map unlock
822          * and the msleep() in _vm_map_unlock_and_wait().
823          */
824         mtx_lock(&map_sleep_mtx);
825         mtx_unlock(&map_sleep_mtx);
826         wakeup(&map->root);
827 }
828
829 void
830 vm_map_busy(vm_map_t map)
831 {
832
833         VM_MAP_ASSERT_LOCKED(map);
834         map->busy++;
835 }
836
837 void
838 vm_map_unbusy(vm_map_t map)
839 {
840
841         VM_MAP_ASSERT_LOCKED(map);
842         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
843         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
844                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
845                 wakeup(&map->busy);
846         }
847 }
848
849 void 
850 vm_map_wait_busy(vm_map_t map)
851 {
852
853         VM_MAP_ASSERT_LOCKED(map);
854         while (map->busy) {
855                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
856                 if (map->system_map)
857                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
858                 else
859                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
860         }
861         map->timestamp++;
862 }
863
864 long
865 vmspace_resident_count(struct vmspace *vmspace)
866 {
867         return pmap_resident_count(vmspace_pmap(vmspace));
868 }
869
870 /*
871  *      vm_map_create:
872  *
873  *      Creates and returns a new empty VM map with
874  *      the given physical map structure, and having
875  *      the given lower and upper address bounds.
876  */
877 vm_map_t
878 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
879 {
880         vm_map_t result;
881
882         result = uma_zalloc(mapzone, M_WAITOK);
883         CTR1(KTR_VM, "vm_map_create: %p", result);
884         _vm_map_init(result, pmap, min, max);
885         return (result);
886 }
887
888 /*
889  * Initialize an existing vm_map structure
890  * such as that in the vmspace structure.
891  */
892 static void
893 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
894 {
895
896         map->header.next = map->header.prev = &map->header;
897         map->header.eflags = MAP_ENTRY_HEADER;
898         map->needs_wakeup = FALSE;
899         map->system_map = 0;
900         map->pmap = pmap;
901         map->header.end = min;
902         map->header.start = max;
903         map->flags = 0;
904         map->root = NULL;
905         map->timestamp = 0;
906         map->busy = 0;
907         map->anon_loc = 0;
908 }
909
910 void
911 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
912 {
913
914         _vm_map_init(map, pmap, min, max);
915         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
916         sx_init(&map->lock, "user map");
917 }
918
919 /*
920  *      vm_map_entry_dispose:   [ internal use only ]
921  *
922  *      Inverse of vm_map_entry_create.
923  */
924 static void
925 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
926 {
927         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
928 }
929
930 /*
931  *      vm_map_entry_create:    [ internal use only ]
932  *
933  *      Allocates a VM map entry for insertion.
934  *      No entry fields are filled in.
935  */
936 static vm_map_entry_t
937 vm_map_entry_create(vm_map_t map)
938 {
939         vm_map_entry_t new_entry;
940
941         if (map->system_map)
942                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
943         else
944                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
945         if (new_entry == NULL)
946                 panic("vm_map_entry_create: kernel resources exhausted");
947         return (new_entry);
948 }
949
950 /*
951  *      vm_map_entry_set_behavior:
952  *
953  *      Set the expected access behavior, either normal, random, or
954  *      sequential.
955  */
956 static inline void
957 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
958 {
959         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
960             (behavior & MAP_ENTRY_BEHAV_MASK);
961 }
962
963 /*
964  *      vm_map_entry_max_free_{left,right}:
965  *
966  *      Compute the size of the largest free gap between two entries,
967  *      one the root of a tree and the other the ancestor of that root
968  *      that is the least or greatest ancestor found on the search path.
969  */
970 static inline vm_size_t
971 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
972 {
973
974         return (root->left != NULL ?
975             root->left->max_free : root->start - left_ancestor->end);
976 }
977
978 static inline vm_size_t
979 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
980 {
981
982         return (root->right != NULL ?
983             root->right->max_free : right_ancestor->start - root->end);
984 }
985
986 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {                      \
987         vm_size_t max_free;                                             \
988                                                                         \
989         /*                                                              \
990          * Infer root->right->max_free == root->max_free when           \
991          * y->max_free < root->max_free || root->max_free == 0.         \
992          * Otherwise, look right to find it.                            \
993          */                                                             \
994         y = root->left;                                                 \
995         max_free = root->max_free;                                      \
996         KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),   \
997             ("%s: max_free invariant fails", __func__));                \
998         if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)      \
999                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1000         if (y != NULL && (test)) {                                      \
1001                 /* Rotate right and make y root. */                     \
1002                 root->left = y->right;                                  \
1003                 y->right = root;                                        \
1004                 if (max_free < y->max_free)                             \
1005                         root->max_free = max_free = MAX(max_free,       \
1006                             vm_map_entry_max_free_left(root, y));       \
1007                 root = y;                                               \
1008                 y = root->left;                                         \
1009         }                                                               \
1010         /* Copy right->max_free.  Put root on rlist. */                 \
1011         root->max_free = max_free;                                      \
1012         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1013             ("%s: max_free not copied from right", __func__));          \
1014         root->left = rlist;                                             \
1015         rlist = root;                                                   \
1016         root = y;                                                       \
1017 } while (0)
1018
1019 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {                     \
1020         vm_size_t max_free;                                             \
1021                                                                         \
1022         /*                                                              \
1023          * Infer root->left->max_free == root->max_free when            \
1024          * y->max_free < root->max_free || root->max_free == 0.         \
1025          * Otherwise, look left to find it.                             \
1026          */                                                             \
1027         y = root->right;                                                \
1028         max_free = root->max_free;                                      \
1029         KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),    \
1030             ("%s: max_free invariant fails", __func__));                \
1031         if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)      \
1032                 max_free = vm_map_entry_max_free_left(root, llist);     \
1033         if (y != NULL && (test)) {                                      \
1034                 /* Rotate left and make y root. */                      \
1035                 root->right = y->left;                                  \
1036                 y->left = root;                                         \
1037                 if (max_free < y->max_free)                             \
1038                         root->max_free = max_free = MAX(max_free,       \
1039                             vm_map_entry_max_free_right(root, y));      \
1040                 root = y;                                               \
1041                 y = root->right;                                        \
1042         }                                                               \
1043         /* Copy left->max_free.  Put root on llist. */                  \
1044         root->max_free = max_free;                                      \
1045         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1046             ("%s: max_free not copied from left", __func__));           \
1047         root->right = llist;                                            \
1048         llist = root;                                                   \
1049         root = y;                                                       \
1050 } while (0)
1051
1052 /*
1053  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1054  * breaking off left and right subtrees of nodes less than, or greater than
1055  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1056  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1057  * linked by the right pointer and rlist linked by the left pointer in the
1058  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1059  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1060  * values in &map->header.
1061  */
1062 static vm_map_entry_t
1063 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1064     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1065 {
1066         vm_map_entry_t llist, rlist, root, y;
1067
1068         llist = rlist = &map->header;
1069         root = map->root;
1070         while (root != NULL && root->max_free >= length) {
1071                 KASSERT(llist->end <= root->start && root->end <= rlist->start,
1072                     ("%s: root not within tree bounds", __func__));
1073                 if (addr < root->start) {
1074                         SPLAY_LEFT_STEP(root, y, rlist,
1075                             y->max_free >= length && addr < y->start);
1076                 } else if (addr >= root->end) {
1077                         SPLAY_RIGHT_STEP(root, y, llist,
1078                             y->max_free >= length && addr >= y->end);
1079                 } else
1080                         break;
1081         }
1082         *out_llist = llist;
1083         *out_rlist = rlist;
1084         return (root);
1085 }
1086
1087 static void
1088 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1089 {
1090         vm_map_entry_t rlist, y;
1091
1092         root = root->right;
1093         rlist = *iolist;
1094         while (root != NULL)
1095                 SPLAY_LEFT_STEP(root, y, rlist, true);
1096         *iolist = rlist;
1097 }
1098
1099 static void
1100 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1101 {
1102         vm_map_entry_t llist, y;
1103
1104         root = root->left;
1105         llist = *iolist;
1106         while (root != NULL)
1107                 SPLAY_RIGHT_STEP(root, y, llist, true);
1108         *iolist = llist;
1109 }
1110
1111 static inline void
1112 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1113 {
1114         vm_map_entry_t tmp;
1115
1116         tmp = *b;
1117         *b = *a;
1118         *a = tmp;
1119 }
1120
1121 /*
1122  * Walk back up the two spines, flip the pointers and set max_free.  The
1123  * subtrees of the root go at the bottom of llist and rlist.
1124  */
1125 static void
1126 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1127     vm_map_entry_t llist, vm_map_entry_t rlist)
1128 {
1129         vm_map_entry_t prev;
1130         vm_size_t max_free_left, max_free_right;
1131
1132         max_free_left = vm_map_entry_max_free_left(root, llist);
1133         if (llist != &map->header) {
1134                 prev = root->left;
1135                 do {
1136                         /*
1137                          * The max_free values of the children of llist are in
1138                          * llist->max_free and max_free_left.  Update with the
1139                          * max value.
1140                          */
1141                         llist->max_free = max_free_left =
1142                             MAX(llist->max_free, max_free_left);
1143                         vm_map_entry_swap(&llist->right, &prev);
1144                         vm_map_entry_swap(&prev, &llist);
1145                 } while (llist != &map->header);
1146                 root->left = prev;
1147         }
1148         max_free_right = vm_map_entry_max_free_right(root, rlist);
1149         if (rlist != &map->header) {
1150                 prev = root->right;
1151                 do {
1152                         /*
1153                          * The max_free values of the children of rlist are in
1154                          * rlist->max_free and max_free_right.  Update with the
1155                          * max value.
1156                          */
1157                         rlist->max_free = max_free_right =
1158                             MAX(rlist->max_free, max_free_right);
1159                         vm_map_entry_swap(&rlist->left, &prev);
1160                         vm_map_entry_swap(&prev, &rlist);
1161                 } while (rlist != &map->header);
1162                 root->right = prev;
1163         }               
1164         root->max_free = MAX(max_free_left, max_free_right);
1165         map->root = root;
1166 }
1167
1168 /*
1169  *      vm_map_splay:
1170  *
1171  *      The Sleator and Tarjan top-down splay algorithm with the
1172  *      following variation.  Max_free must be computed bottom-up, so
1173  *      on the downward pass, maintain the left and right spines in
1174  *      reverse order.  Then, make a second pass up each side to fix
1175  *      the pointers and compute max_free.  The time bound is O(log n)
1176  *      amortized.
1177  *
1178  *      The new root is the vm_map_entry containing "addr", or else an
1179  *      adjacent entry (lower if possible) if addr is not in the tree.
1180  *
1181  *      The map must be locked, and leaves it so.
1182  *
1183  *      Returns: the new root.
1184  */
1185 static vm_map_entry_t
1186 vm_map_splay(vm_map_t map, vm_offset_t addr)
1187 {
1188         vm_map_entry_t llist, rlist, root;
1189
1190         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1191         if (root != NULL) {
1192                 /* do nothing */
1193         } else if (llist != &map->header) {
1194                 /*
1195                  * Recover the greatest node in the left
1196                  * subtree and make it the root.
1197                  */
1198                 root = llist;
1199                 llist = root->right;
1200                 root->right = NULL;
1201         } else if (rlist != &map->header) {
1202                 /*
1203                  * Recover the least node in the right
1204                  * subtree and make it the root.
1205                  */
1206                 root = rlist;
1207                 rlist = root->left;
1208                 root->left = NULL;
1209         } else {
1210                 /* There is no root. */
1211                 return (NULL);
1212         }
1213         vm_map_splay_merge(map, root, llist, rlist);
1214         VM_MAP_ASSERT_CONSISTENT(map);
1215         return (root);
1216 }
1217
1218 /*
1219  *      vm_map_entry_{un,}link:
1220  *
1221  *      Insert/remove entries from maps.
1222  */
1223 static void
1224 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1225 {
1226         vm_map_entry_t llist, rlist, root;
1227
1228         CTR3(KTR_VM,
1229             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1230             map->nentries, entry);
1231         VM_MAP_ASSERT_LOCKED(map);
1232         map->nentries++;
1233         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1234         KASSERT(root == NULL,
1235             ("vm_map_entry_link: link object already mapped"));
1236         entry->prev = llist;
1237         entry->next = rlist;
1238         llist->next = rlist->prev = entry;
1239         entry->left = entry->right = NULL;
1240         vm_map_splay_merge(map, entry, llist, rlist);
1241         VM_MAP_ASSERT_CONSISTENT(map);
1242 }
1243
1244 enum unlink_merge_type {
1245         UNLINK_MERGE_PREV,
1246         UNLINK_MERGE_NONE,
1247         UNLINK_MERGE_NEXT
1248 };
1249
1250 static void
1251 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1252     enum unlink_merge_type op)
1253 {
1254         vm_map_entry_t llist, rlist, root, y;
1255
1256         VM_MAP_ASSERT_LOCKED(map);
1257         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1258         KASSERT(root != NULL,
1259             ("vm_map_entry_unlink: unlink object not mapped"));
1260
1261         switch (op) {
1262         case UNLINK_MERGE_PREV:
1263                 vm_map_splay_findprev(root, &llist);
1264                 llist->end = root->end;
1265                 y = root->right;
1266                 root = llist;
1267                 llist = root->right;
1268                 root->right = y;
1269                 break;
1270         case UNLINK_MERGE_NEXT:
1271                 vm_map_splay_findnext(root, &rlist);
1272                 rlist->start = root->start;
1273                 rlist->offset = root->offset;
1274                 y = root->left;
1275                 root = rlist;
1276                 rlist = root->left;
1277                 root->left = y;
1278                 break;
1279         case UNLINK_MERGE_NONE:
1280                 vm_map_splay_findprev(root, &llist);
1281                 vm_map_splay_findnext(root, &rlist);
1282                 if (llist != &map->header) {
1283                         root = llist;
1284                         llist = root->right;
1285                         root->right = NULL;
1286                 } else if (rlist != &map->header) {
1287                         root = rlist;
1288                         rlist = root->left;
1289                         root->left = NULL;
1290                 } else
1291                         root = NULL;
1292                 break;
1293         }
1294         y = entry->next;
1295         y->prev = entry->prev;
1296         y->prev->next = y;
1297         if (root != NULL)
1298                 vm_map_splay_merge(map, root, llist, rlist);
1299         else
1300                 map->root = NULL;
1301         VM_MAP_ASSERT_CONSISTENT(map);
1302         map->nentries--;
1303         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1304             map->nentries, entry);
1305 }
1306
1307 /*
1308  *      vm_map_entry_resize:
1309  *
1310  *      Resize a vm_map_entry, recompute the amount of free space that
1311  *      follows it and propagate that value up the tree.
1312  *
1313  *      The map must be locked, and leaves it so.
1314  */
1315 static void
1316 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1317 {
1318         vm_map_entry_t llist, rlist, root;
1319
1320         VM_MAP_ASSERT_LOCKED(map);
1321         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1322         KASSERT(root != NULL,
1323             ("%s: resize object not mapped", __func__));
1324         vm_map_splay_findnext(root, &rlist);
1325         root->right = NULL;
1326         entry->end += grow_amount;
1327         vm_map_splay_merge(map, root, llist, rlist);
1328         VM_MAP_ASSERT_CONSISTENT(map);
1329         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1330             __func__, map, map->nentries, entry);
1331 }
1332
1333 /*
1334  *      vm_map_lookup_entry:    [ internal use only ]
1335  *
1336  *      Finds the map entry containing (or
1337  *      immediately preceding) the specified address
1338  *      in the given map; the entry is returned
1339  *      in the "entry" parameter.  The boolean
1340  *      result indicates whether the address is
1341  *      actually contained in the map.
1342  */
1343 boolean_t
1344 vm_map_lookup_entry(
1345         vm_map_t map,
1346         vm_offset_t address,
1347         vm_map_entry_t *entry)  /* OUT */
1348 {
1349         vm_map_entry_t cur, lbound;
1350         boolean_t locked;
1351
1352         /*
1353          * If the map is empty, then the map entry immediately preceding
1354          * "address" is the map's header.
1355          */
1356         cur = map->root;
1357         if (cur == NULL) {
1358                 *entry = &map->header;
1359                 return (FALSE);
1360         }
1361         if (address >= cur->start && cur->end > address) {
1362                 *entry = cur;
1363                 return (TRUE);
1364         }
1365         if ((locked = vm_map_locked(map)) ||
1366             sx_try_upgrade(&map->lock)) {
1367                 /*
1368                  * Splay requires a write lock on the map.  However, it only
1369                  * restructures the binary search tree; it does not otherwise
1370                  * change the map.  Thus, the map's timestamp need not change
1371                  * on a temporary upgrade.
1372                  */
1373                 cur = vm_map_splay(map, address);
1374                 if (!locked)
1375                         sx_downgrade(&map->lock);
1376
1377                 /*
1378                  * If "address" is contained within a map entry, the new root
1379                  * is that map entry.  Otherwise, the new root is a map entry
1380                  * immediately before or after "address".
1381                  */
1382                 if (address < cur->start) {
1383                         *entry = &map->header;
1384                         return (FALSE);
1385                 }
1386                 *entry = cur;
1387                 return (address < cur->end);
1388         }
1389         /*
1390          * Since the map is only locked for read access, perform a
1391          * standard binary search tree lookup for "address".
1392          */
1393         lbound = &map->header;
1394         do {
1395                 if (address < cur->start) {
1396                         cur = cur->left;
1397                 } else if (cur->end <= address) {
1398                         lbound = cur;
1399                         cur = cur->right;
1400                 } else {
1401                         *entry = cur;
1402                         return (TRUE);
1403                 }
1404         } while (cur != NULL);
1405         *entry = lbound;
1406         return (FALSE);
1407 }
1408
1409 /*
1410  *      vm_map_insert:
1411  *
1412  *      Inserts the given whole VM object into the target
1413  *      map at the specified address range.  The object's
1414  *      size should match that of the address range.
1415  *
1416  *      Requires that the map be locked, and leaves it so.
1417  *
1418  *      If object is non-NULL, ref count must be bumped by caller
1419  *      prior to making call to account for the new entry.
1420  */
1421 int
1422 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1423     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1424 {
1425         vm_map_entry_t new_entry, prev_entry;
1426         struct ucred *cred;
1427         vm_eflags_t protoeflags;
1428         vm_inherit_t inheritance;
1429
1430         VM_MAP_ASSERT_LOCKED(map);
1431         KASSERT(object != kernel_object ||
1432             (cow & MAP_COPY_ON_WRITE) == 0,
1433             ("vm_map_insert: kernel object and COW"));
1434         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1435             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1436         KASSERT((prot & ~max) == 0,
1437             ("prot %#x is not subset of max_prot %#x", prot, max));
1438
1439         /*
1440          * Check that the start and end points are not bogus.
1441          */
1442         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1443             start >= end)
1444                 return (KERN_INVALID_ADDRESS);
1445
1446         /*
1447          * Find the entry prior to the proposed starting address; if it's part
1448          * of an existing entry, this range is bogus.
1449          */
1450         if (vm_map_lookup_entry(map, start, &prev_entry))
1451                 return (KERN_NO_SPACE);
1452
1453         /*
1454          * Assert that the next entry doesn't overlap the end point.
1455          */
1456         if (prev_entry->next->start < end)
1457                 return (KERN_NO_SPACE);
1458
1459         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1460             max != VM_PROT_NONE))
1461                 return (KERN_INVALID_ARGUMENT);
1462
1463         protoeflags = 0;
1464         if (cow & MAP_COPY_ON_WRITE)
1465                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1466         if (cow & MAP_NOFAULT)
1467                 protoeflags |= MAP_ENTRY_NOFAULT;
1468         if (cow & MAP_DISABLE_SYNCER)
1469                 protoeflags |= MAP_ENTRY_NOSYNC;
1470         if (cow & MAP_DISABLE_COREDUMP)
1471                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1472         if (cow & MAP_STACK_GROWS_DOWN)
1473                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1474         if (cow & MAP_STACK_GROWS_UP)
1475                 protoeflags |= MAP_ENTRY_GROWS_UP;
1476         if (cow & MAP_VN_WRITECOUNT)
1477                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1478         if (cow & MAP_VN_EXEC)
1479                 protoeflags |= MAP_ENTRY_VN_EXEC;
1480         if ((cow & MAP_CREATE_GUARD) != 0)
1481                 protoeflags |= MAP_ENTRY_GUARD;
1482         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1483                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1484         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1485                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1486         if (cow & MAP_INHERIT_SHARE)
1487                 inheritance = VM_INHERIT_SHARE;
1488         else
1489                 inheritance = VM_INHERIT_DEFAULT;
1490
1491         cred = NULL;
1492         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1493                 goto charged;
1494         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1495             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1496                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1497                         return (KERN_RESOURCE_SHORTAGE);
1498                 KASSERT(object == NULL ||
1499                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1500                     object->cred == NULL,
1501                     ("overcommit: vm_map_insert o %p", object));
1502                 cred = curthread->td_ucred;
1503         }
1504
1505 charged:
1506         /* Expand the kernel pmap, if necessary. */
1507         if (map == kernel_map && end > kernel_vm_end)
1508                 pmap_growkernel(end);
1509         if (object != NULL) {
1510                 /*
1511                  * OBJ_ONEMAPPING must be cleared unless this mapping
1512                  * is trivially proven to be the only mapping for any
1513                  * of the object's pages.  (Object granularity
1514                  * reference counting is insufficient to recognize
1515                  * aliases with precision.)
1516                  */
1517                 VM_OBJECT_WLOCK(object);
1518                 if (object->ref_count > 1 || object->shadow_count != 0)
1519                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1520                 VM_OBJECT_WUNLOCK(object);
1521         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1522             protoeflags &&
1523             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1524             MAP_VN_EXEC)) == 0 &&
1525             prev_entry->end == start && (prev_entry->cred == cred ||
1526             (prev_entry->object.vm_object != NULL &&
1527             prev_entry->object.vm_object->cred == cred)) &&
1528             vm_object_coalesce(prev_entry->object.vm_object,
1529             prev_entry->offset,
1530             (vm_size_t)(prev_entry->end - prev_entry->start),
1531             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1532             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1533                 /*
1534                  * We were able to extend the object.  Determine if we
1535                  * can extend the previous map entry to include the
1536                  * new range as well.
1537                  */
1538                 if (prev_entry->inheritance == inheritance &&
1539                     prev_entry->protection == prot &&
1540                     prev_entry->max_protection == max &&
1541                     prev_entry->wired_count == 0) {
1542                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1543                             0, ("prev_entry %p has incoherent wiring",
1544                             prev_entry));
1545                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1546                                 map->size += end - prev_entry->end;
1547                         vm_map_entry_resize(map, prev_entry,
1548                             end - prev_entry->end);
1549                         vm_map_simplify_entry(map, prev_entry);
1550                         return (KERN_SUCCESS);
1551                 }
1552
1553                 /*
1554                  * If we can extend the object but cannot extend the
1555                  * map entry, we have to create a new map entry.  We
1556                  * must bump the ref count on the extended object to
1557                  * account for it.  object may be NULL.
1558                  */
1559                 object = prev_entry->object.vm_object;
1560                 offset = prev_entry->offset +
1561                     (prev_entry->end - prev_entry->start);
1562                 vm_object_reference(object);
1563                 if (cred != NULL && object != NULL && object->cred != NULL &&
1564                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1565                         /* Object already accounts for this uid. */
1566                         cred = NULL;
1567                 }
1568         }
1569         if (cred != NULL)
1570                 crhold(cred);
1571
1572         /*
1573          * Create a new entry
1574          */
1575         new_entry = vm_map_entry_create(map);
1576         new_entry->start = start;
1577         new_entry->end = end;
1578         new_entry->cred = NULL;
1579
1580         new_entry->eflags = protoeflags;
1581         new_entry->object.vm_object = object;
1582         new_entry->offset = offset;
1583
1584         new_entry->inheritance = inheritance;
1585         new_entry->protection = prot;
1586         new_entry->max_protection = max;
1587         new_entry->wired_count = 0;
1588         new_entry->wiring_thread = NULL;
1589         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1590         new_entry->next_read = start;
1591
1592         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1593             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1594         new_entry->cred = cred;
1595
1596         /*
1597          * Insert the new entry into the list
1598          */
1599         vm_map_entry_link(map, new_entry);
1600         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1601                 map->size += new_entry->end - new_entry->start;
1602
1603         /*
1604          * Try to coalesce the new entry with both the previous and next
1605          * entries in the list.  Previously, we only attempted to coalesce
1606          * with the previous entry when object is NULL.  Here, we handle the
1607          * other cases, which are less common.
1608          */
1609         vm_map_simplify_entry(map, new_entry);
1610
1611         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1612                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1613                     end - start, cow & MAP_PREFAULT_PARTIAL);
1614         }
1615
1616         return (KERN_SUCCESS);
1617 }
1618
1619 /*
1620  *      vm_map_findspace:
1621  *
1622  *      Find the first fit (lowest VM address) for "length" free bytes
1623  *      beginning at address >= start in the given map.
1624  *
1625  *      In a vm_map_entry, "max_free" is the maximum amount of
1626  *      contiguous free space between an entry in its subtree and a
1627  *      neighbor of that entry.  This allows finding a free region in
1628  *      one path down the tree, so O(log n) amortized with splay
1629  *      trees.
1630  *
1631  *      The map must be locked, and leaves it so.
1632  *
1633  *      Returns: starting address if sufficient space,
1634  *               vm_map_max(map)-length+1 if insufficient space.
1635  */
1636 vm_offset_t
1637 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1638 {
1639         vm_map_entry_t llist, rlist, root, y;
1640         vm_size_t left_length;
1641         vm_offset_t gap_end;
1642
1643         /*
1644          * Request must fit within min/max VM address and must avoid
1645          * address wrap.
1646          */
1647         start = MAX(start, vm_map_min(map));
1648         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1649                 return (vm_map_max(map) - length + 1);
1650
1651         /* Empty tree means wide open address space. */
1652         if (map->root == NULL)
1653                 return (start);
1654
1655         /*
1656          * After splay_split, if start is within an entry, push it to the start
1657          * of the following gap.  If rlist is at the end of the gap containing
1658          * start, save the end of that gap in gap_end to see if the gap is big
1659          * enough; otherwise set gap_end to start skip gap-checking and move
1660          * directly to a search of the right subtree.
1661          */
1662         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1663         gap_end = rlist->start;
1664         if (root != NULL) {
1665                 start = root->end;
1666                 if (root->right != NULL)
1667                         gap_end = start;
1668         } else if (rlist != &map->header) {
1669                 root = rlist;
1670                 rlist = root->left;
1671                 root->left = NULL;
1672         } else {
1673                 root = llist;
1674                 llist = root->right;
1675                 root->right = NULL;
1676         }
1677         vm_map_splay_merge(map, root, llist, rlist);
1678         VM_MAP_ASSERT_CONSISTENT(map);
1679         if (length <= gap_end - start)
1680                 return (start);
1681
1682         /* With max_free, can immediately tell if no solution. */
1683         if (root->right == NULL || length > root->right->max_free)
1684                 return (vm_map_max(map) - length + 1);
1685
1686         /*
1687          * Splay for the least large-enough gap in the right subtree.
1688          */
1689         llist = rlist = &map->header;
1690         for (left_length = 0;;
1691             left_length = vm_map_entry_max_free_left(root, llist)) {
1692                 if (length <= left_length)
1693                         SPLAY_LEFT_STEP(root, y, rlist,
1694                             length <= vm_map_entry_max_free_left(y, llist));
1695                 else
1696                         SPLAY_RIGHT_STEP(root, y, llist,
1697                             length > vm_map_entry_max_free_left(y, root));
1698                 if (root == NULL)
1699                         break;
1700         }
1701         root = llist;
1702         llist = root->right;
1703         root->right = NULL;
1704         if (rlist != &map->header) {
1705                 y = rlist;
1706                 rlist = y->left;
1707                 y->left = NULL;
1708                 vm_map_splay_merge(map, y, &map->header, rlist);
1709                 y->max_free = MAX(
1710                     vm_map_entry_max_free_left(y, root),
1711                     vm_map_entry_max_free_right(y, &map->header));
1712                 root->right = y;
1713         }
1714         vm_map_splay_merge(map, root, llist, &map->header);
1715         VM_MAP_ASSERT_CONSISTENT(map);
1716         return (root->end);
1717 }
1718
1719 int
1720 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1721     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1722     vm_prot_t max, int cow)
1723 {
1724         vm_offset_t end;
1725         int result;
1726
1727         end = start + length;
1728         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1729             object == NULL,
1730             ("vm_map_fixed: non-NULL backing object for stack"));
1731         vm_map_lock(map);
1732         VM_MAP_RANGE_CHECK(map, start, end);
1733         if ((cow & MAP_CHECK_EXCL) == 0)
1734                 vm_map_delete(map, start, end);
1735         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1736                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1737                     prot, max, cow);
1738         } else {
1739                 result = vm_map_insert(map, object, offset, start, end,
1740                     prot, max, cow);
1741         }
1742         vm_map_unlock(map);
1743         return (result);
1744 }
1745
1746 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1747 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1748
1749 static int cluster_anon = 1;
1750 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1751     &cluster_anon, 0,
1752     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1753
1754 static bool
1755 clustering_anon_allowed(vm_offset_t addr)
1756 {
1757
1758         switch (cluster_anon) {
1759         case 0:
1760                 return (false);
1761         case 1:
1762                 return (addr == 0);
1763         case 2:
1764         default:
1765                 return (true);
1766         }
1767 }
1768
1769 static long aslr_restarts;
1770 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1771     &aslr_restarts, 0,
1772     "Number of aslr failures");
1773
1774 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1775
1776 /*
1777  * Searches for the specified amount of free space in the given map with the
1778  * specified alignment.  Performs an address-ordered, first-fit search from
1779  * the given address "*addr", with an optional upper bound "max_addr".  If the
1780  * parameter "alignment" is zero, then the alignment is computed from the
1781  * given (object, offset) pair so as to enable the greatest possible use of
1782  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1783  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1784  *
1785  * The map must be locked.  Initially, there must be at least "length" bytes
1786  * of free space at the given address.
1787  */
1788 static int
1789 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1790     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1791     vm_offset_t alignment)
1792 {
1793         vm_offset_t aligned_addr, free_addr;
1794
1795         VM_MAP_ASSERT_LOCKED(map);
1796         free_addr = *addr;
1797         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1798             ("caller failed to provide space %#jx at address %p",
1799              (uintmax_t)length, (void *)free_addr));
1800         for (;;) {
1801                 /*
1802                  * At the start of every iteration, the free space at address
1803                  * "*addr" is at least "length" bytes.
1804                  */
1805                 if (alignment == 0)
1806                         pmap_align_superpage(object, offset, addr, length);
1807                 else if ((*addr & (alignment - 1)) != 0) {
1808                         *addr &= ~(alignment - 1);
1809                         *addr += alignment;
1810                 }
1811                 aligned_addr = *addr;
1812                 if (aligned_addr == free_addr) {
1813                         /*
1814                          * Alignment did not change "*addr", so "*addr" must
1815                          * still provide sufficient free space.
1816                          */
1817                         return (KERN_SUCCESS);
1818                 }
1819
1820                 /*
1821                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1822                  * be a valid address, in which case vm_map_findspace() cannot
1823                  * be relied upon to fail.
1824                  */
1825                 if (aligned_addr < free_addr)
1826                         return (KERN_NO_SPACE);
1827                 *addr = vm_map_findspace(map, aligned_addr, length);
1828                 if (*addr + length > vm_map_max(map) ||
1829                     (max_addr != 0 && *addr + length > max_addr))
1830                         return (KERN_NO_SPACE);
1831                 free_addr = *addr;
1832                 if (free_addr == aligned_addr) {
1833                         /*
1834                          * If a successful call to vm_map_findspace() did not
1835                          * change "*addr", then "*addr" must still be aligned
1836                          * and provide sufficient free space.
1837                          */
1838                         return (KERN_SUCCESS);
1839                 }
1840         }
1841 }
1842
1843 /*
1844  *      vm_map_find finds an unallocated region in the target address
1845  *      map with the given length.  The search is defined to be
1846  *      first-fit from the specified address; the region found is
1847  *      returned in the same parameter.
1848  *
1849  *      If object is non-NULL, ref count must be bumped by caller
1850  *      prior to making call to account for the new entry.
1851  */
1852 int
1853 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1854             vm_offset_t *addr,  /* IN/OUT */
1855             vm_size_t length, vm_offset_t max_addr, int find_space,
1856             vm_prot_t prot, vm_prot_t max, int cow)
1857 {
1858         vm_offset_t alignment, curr_min_addr, min_addr;
1859         int gap, pidx, rv, try;
1860         bool cluster, en_aslr, update_anon;
1861
1862         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1863             object == NULL,
1864             ("vm_map_find: non-NULL backing object for stack"));
1865         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1866             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1867         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1868             (object->flags & OBJ_COLORED) == 0))
1869                 find_space = VMFS_ANY_SPACE;
1870         if (find_space >> 8 != 0) {
1871                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1872                 alignment = (vm_offset_t)1 << (find_space >> 8);
1873         } else
1874                 alignment = 0;
1875         en_aslr = (map->flags & MAP_ASLR) != 0;
1876         update_anon = cluster = clustering_anon_allowed(*addr) &&
1877             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1878             find_space != VMFS_NO_SPACE && object == NULL &&
1879             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1880             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1881         curr_min_addr = min_addr = *addr;
1882         if (en_aslr && min_addr == 0 && !cluster &&
1883             find_space != VMFS_NO_SPACE &&
1884             (map->flags & MAP_ASLR_IGNSTART) != 0)
1885                 curr_min_addr = min_addr = vm_map_min(map);
1886         try = 0;
1887         vm_map_lock(map);
1888         if (cluster) {
1889                 curr_min_addr = map->anon_loc;
1890                 if (curr_min_addr == 0)
1891                         cluster = false;
1892         }
1893         if (find_space != VMFS_NO_SPACE) {
1894                 KASSERT(find_space == VMFS_ANY_SPACE ||
1895                     find_space == VMFS_OPTIMAL_SPACE ||
1896                     find_space == VMFS_SUPER_SPACE ||
1897                     alignment != 0, ("unexpected VMFS flag"));
1898 again:
1899                 /*
1900                  * When creating an anonymous mapping, try clustering
1901                  * with an existing anonymous mapping first.
1902                  *
1903                  * We make up to two attempts to find address space
1904                  * for a given find_space value. The first attempt may
1905                  * apply randomization or may cluster with an existing
1906                  * anonymous mapping. If this first attempt fails,
1907                  * perform a first-fit search of the available address
1908                  * space.
1909                  *
1910                  * If all tries failed, and find_space is
1911                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1912                  * Again enable clustering and randomization.
1913                  */
1914                 try++;
1915                 MPASS(try <= 2);
1916
1917                 if (try == 2) {
1918                         /*
1919                          * Second try: we failed either to find a
1920                          * suitable region for randomizing the
1921                          * allocation, or to cluster with an existing
1922                          * mapping.  Retry with free run.
1923                          */
1924                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1925                             vm_map_min(map) : min_addr;
1926                         atomic_add_long(&aslr_restarts, 1);
1927                 }
1928
1929                 if (try == 1 && en_aslr && !cluster) {
1930                         /*
1931                          * Find space for allocation, including
1932                          * gap needed for later randomization.
1933                          */
1934                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1935                             (find_space == VMFS_SUPER_SPACE || find_space ==
1936                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1937                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1938                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1939                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1940                         *addr = vm_map_findspace(map, curr_min_addr,
1941                             length + gap * pagesizes[pidx]);
1942                         if (*addr + length + gap * pagesizes[pidx] >
1943                             vm_map_max(map))
1944                                 goto again;
1945                         /* And randomize the start address. */
1946                         *addr += (arc4random() % gap) * pagesizes[pidx];
1947                         if (max_addr != 0 && *addr + length > max_addr)
1948                                 goto again;
1949                 } else {
1950                         *addr = vm_map_findspace(map, curr_min_addr, length);
1951                         if (*addr + length > vm_map_max(map) ||
1952                             (max_addr != 0 && *addr + length > max_addr)) {
1953                                 if (cluster) {
1954                                         cluster = false;
1955                                         MPASS(try == 1);
1956                                         goto again;
1957                                 }
1958                                 rv = KERN_NO_SPACE;
1959                                 goto done;
1960                         }
1961                 }
1962
1963                 if (find_space != VMFS_ANY_SPACE &&
1964                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1965                     max_addr, alignment)) != KERN_SUCCESS) {
1966                         if (find_space == VMFS_OPTIMAL_SPACE) {
1967                                 find_space = VMFS_ANY_SPACE;
1968                                 curr_min_addr = min_addr;
1969                                 cluster = update_anon;
1970                                 try = 0;
1971                                 goto again;
1972                         }
1973                         goto done;
1974                 }
1975         } else if ((cow & MAP_REMAP) != 0) {
1976                 if (*addr < vm_map_min(map) ||
1977                     *addr + length > vm_map_max(map) ||
1978                     *addr + length <= length) {
1979                         rv = KERN_INVALID_ADDRESS;
1980                         goto done;
1981                 }
1982                 vm_map_delete(map, *addr, *addr + length);
1983         }
1984         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1985                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1986                     max, cow);
1987         } else {
1988                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1989                     prot, max, cow);
1990         }
1991         if (rv == KERN_SUCCESS && update_anon)
1992                 map->anon_loc = *addr + length;
1993 done:
1994         vm_map_unlock(map);
1995         return (rv);
1996 }
1997
1998 /*
1999  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2000  *      additional parameter (min_addr) and treats the given address
2001  *      (*addr) differently.  Specifically, it treats *addr as a hint
2002  *      and not as the minimum address where the mapping is created.
2003  *
2004  *      This function works in two phases.  First, it tries to
2005  *      allocate above the hint.  If that fails and the hint is
2006  *      greater than min_addr, it performs a second pass, replacing
2007  *      the hint with min_addr as the minimum address for the
2008  *      allocation.
2009  */
2010 int
2011 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2012     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2013     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2014     int cow)
2015 {
2016         vm_offset_t hint;
2017         int rv;
2018
2019         hint = *addr;
2020         for (;;) {
2021                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2022                     find_space, prot, max, cow);
2023                 if (rv == KERN_SUCCESS || min_addr >= hint)
2024                         return (rv);
2025                 *addr = hint = min_addr;
2026         }
2027 }
2028
2029 /*
2030  * A map entry with any of the following flags set must not be merged with
2031  * another entry.
2032  */
2033 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2034             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2035
2036 static bool
2037 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2038 {
2039
2040         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2041             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2042             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2043             prev, entry));
2044         return (prev->end == entry->start &&
2045             prev->object.vm_object == entry->object.vm_object &&
2046             (prev->object.vm_object == NULL ||
2047             prev->offset + (prev->end - prev->start) == entry->offset) &&
2048             prev->eflags == entry->eflags &&
2049             prev->protection == entry->protection &&
2050             prev->max_protection == entry->max_protection &&
2051             prev->inheritance == entry->inheritance &&
2052             prev->wired_count == entry->wired_count &&
2053             prev->cred == entry->cred);
2054 }
2055
2056 static void
2057 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2058 {
2059
2060         /*
2061          * If the backing object is a vnode object, vm_object_deallocate()
2062          * calls vrele().  However, vrele() does not lock the vnode because
2063          * the vnode has additional references.  Thus, the map lock can be
2064          * kept without causing a lock-order reversal with the vnode lock.
2065          *
2066          * Since we count the number of virtual page mappings in
2067          * object->un_pager.vnp.writemappings, the writemappings value
2068          * should not be adjusted when the entry is disposed of.
2069          */
2070         if (entry->object.vm_object != NULL)
2071                 vm_object_deallocate(entry->object.vm_object);
2072         if (entry->cred != NULL)
2073                 crfree(entry->cred);
2074         vm_map_entry_dispose(map, entry);
2075 }
2076
2077 /*
2078  *      vm_map_simplify_entry:
2079  *
2080  *      Simplify the given map entry by merging with either neighbor.  This
2081  *      routine also has the ability to merge with both neighbors.
2082  *
2083  *      The map must be locked.
2084  *
2085  *      This routine guarantees that the passed entry remains valid (though
2086  *      possibly extended).  When merging, this routine may delete one or
2087  *      both neighbors.
2088  */
2089 void
2090 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2091 {
2092         vm_map_entry_t next, prev;
2093
2094         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2095                 return;
2096         prev = entry->prev;
2097         if (vm_map_mergeable_neighbors(prev, entry)) {
2098                 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2099                 vm_map_merged_neighbor_dispose(map, prev);
2100         }
2101         next = entry->next;
2102         if (vm_map_mergeable_neighbors(entry, next)) {
2103                 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2104                 vm_map_merged_neighbor_dispose(map, next);
2105         }
2106 }
2107
2108 /*
2109  *      vm_map_entry_back:
2110  *
2111  *      Allocate an object to back a map entry.
2112  */
2113 static inline void
2114 vm_map_entry_back(vm_map_entry_t entry)
2115 {
2116         vm_object_t object;
2117
2118         KASSERT(entry->object.vm_object == NULL,
2119             ("map entry %p has backing object", entry));
2120         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2121             ("map entry %p is a submap", entry));
2122         object = vm_object_allocate(OBJT_DEFAULT,
2123             atop(entry->end - entry->start));
2124         entry->object.vm_object = object;
2125         entry->offset = 0;
2126         if (entry->cred != NULL) {
2127                 object->cred = entry->cred;
2128                 object->charge = entry->end - entry->start;
2129                 entry->cred = NULL;
2130         }
2131 }
2132
2133 /*
2134  *      vm_map_entry_charge_object
2135  *
2136  *      If there is no object backing this entry, create one.  Otherwise, if
2137  *      the entry has cred, give it to the backing object.
2138  */
2139 static inline void
2140 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2141 {
2142
2143         VM_MAP_ASSERT_LOCKED(map);
2144         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2145             ("map entry %p is a submap", entry));
2146         if (entry->object.vm_object == NULL && !map->system_map &&
2147             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2148                 vm_map_entry_back(entry);
2149         else if (entry->object.vm_object != NULL &&
2150             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2151             entry->cred != NULL) {
2152                 VM_OBJECT_WLOCK(entry->object.vm_object);
2153                 KASSERT(entry->object.vm_object->cred == NULL,
2154                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2155                 entry->object.vm_object->cred = entry->cred;
2156                 entry->object.vm_object->charge = entry->end - entry->start;
2157                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2158                 entry->cred = NULL;
2159         }
2160 }
2161
2162 /*
2163  *      vm_map_clip_start:      [ internal use only ]
2164  *
2165  *      Asserts that the given entry begins at or after
2166  *      the specified address; if necessary,
2167  *      it splits the entry into two.
2168  */
2169 #define vm_map_clip_start(map, entry, startaddr) \
2170 { \
2171         if (startaddr > entry->start) \
2172                 _vm_map_clip_start(map, entry, startaddr); \
2173 }
2174
2175 /*
2176  *      This routine is called only when it is known that
2177  *      the entry must be split.
2178  */
2179 static void
2180 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2181 {
2182         vm_map_entry_t new_entry;
2183
2184         VM_MAP_ASSERT_LOCKED(map);
2185         KASSERT(entry->end > start && entry->start < start,
2186             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2187
2188         /*
2189          * Create a backing object now, if none exists, so that more individual
2190          * objects won't be created after the map entry is split.
2191          */
2192         vm_map_entry_charge_object(map, entry);
2193
2194         /* Clone the entry. */
2195         new_entry = vm_map_entry_create(map);
2196         *new_entry = *entry;
2197
2198         /*
2199          * Split off the front portion.  Insert the new entry BEFORE this one,
2200          * so that this entry has the specified starting address.
2201          */
2202         new_entry->end = start;
2203         entry->offset += (start - entry->start);
2204         entry->start = start;
2205         if (new_entry->cred != NULL)
2206                 crhold(entry->cred);
2207
2208         vm_map_entry_link(map, new_entry);
2209
2210         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2211                 vm_object_reference(new_entry->object.vm_object);
2212                 vm_map_entry_set_vnode_text(new_entry, true);
2213                 /*
2214                  * The object->un_pager.vnp.writemappings for the
2215                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2216                  * kept as is here.  The virtual pages are
2217                  * re-distributed among the clipped entries, so the sum is
2218                  * left the same.
2219                  */
2220         }
2221 }
2222
2223 /*
2224  *      vm_map_clip_end:        [ internal use only ]
2225  *
2226  *      Asserts that the given entry ends at or before
2227  *      the specified address; if necessary,
2228  *      it splits the entry into two.
2229  */
2230 #define vm_map_clip_end(map, entry, endaddr) \
2231 { \
2232         if ((endaddr) < (entry->end)) \
2233                 _vm_map_clip_end((map), (entry), (endaddr)); \
2234 }
2235
2236 /*
2237  *      This routine is called only when it is known that
2238  *      the entry must be split.
2239  */
2240 static void
2241 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2242 {
2243         vm_map_entry_t new_entry;
2244
2245         VM_MAP_ASSERT_LOCKED(map);
2246         KASSERT(entry->start < end && entry->end > end,
2247             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2248
2249         /*
2250          * Create a backing object now, if none exists, so that more individual
2251          * objects won't be created after the map entry is split.
2252          */
2253         vm_map_entry_charge_object(map, entry);
2254
2255         /* Clone the entry. */
2256         new_entry = vm_map_entry_create(map);
2257         *new_entry = *entry;
2258
2259         /*
2260          * Split off the back portion.  Insert the new entry AFTER this one,
2261          * so that this entry has the specified ending address.
2262          */
2263         new_entry->start = entry->end = end;
2264         new_entry->offset += (end - entry->start);
2265         if (new_entry->cred != NULL)
2266                 crhold(entry->cred);
2267
2268         vm_map_entry_link(map, new_entry);
2269
2270         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2271                 vm_object_reference(new_entry->object.vm_object);
2272                 vm_map_entry_set_vnode_text(new_entry, true);
2273         }
2274 }
2275
2276 /*
2277  *      vm_map_submap:          [ kernel use only ]
2278  *
2279  *      Mark the given range as handled by a subordinate map.
2280  *
2281  *      This range must have been created with vm_map_find,
2282  *      and no other operations may have been performed on this
2283  *      range prior to calling vm_map_submap.
2284  *
2285  *      Only a limited number of operations can be performed
2286  *      within this rage after calling vm_map_submap:
2287  *              vm_fault
2288  *      [Don't try vm_map_copy!]
2289  *
2290  *      To remove a submapping, one must first remove the
2291  *      range from the superior map, and then destroy the
2292  *      submap (if desired).  [Better yet, don't try it.]
2293  */
2294 int
2295 vm_map_submap(
2296         vm_map_t map,
2297         vm_offset_t start,
2298         vm_offset_t end,
2299         vm_map_t submap)
2300 {
2301         vm_map_entry_t entry;
2302         int result;
2303
2304         result = KERN_INVALID_ARGUMENT;
2305
2306         vm_map_lock(submap);
2307         submap->flags |= MAP_IS_SUB_MAP;
2308         vm_map_unlock(submap);
2309
2310         vm_map_lock(map);
2311
2312         VM_MAP_RANGE_CHECK(map, start, end);
2313
2314         if (vm_map_lookup_entry(map, start, &entry)) {
2315                 vm_map_clip_start(map, entry, start);
2316         } else
2317                 entry = entry->next;
2318
2319         vm_map_clip_end(map, entry, end);
2320
2321         if ((entry->start == start) && (entry->end == end) &&
2322             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2323             (entry->object.vm_object == NULL)) {
2324                 entry->object.sub_map = submap;
2325                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2326                 result = KERN_SUCCESS;
2327         }
2328         vm_map_unlock(map);
2329
2330         if (result != KERN_SUCCESS) {
2331                 vm_map_lock(submap);
2332                 submap->flags &= ~MAP_IS_SUB_MAP;
2333                 vm_map_unlock(submap);
2334         }
2335         return (result);
2336 }
2337
2338 /*
2339  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2340  */
2341 #define MAX_INIT_PT     96
2342
2343 /*
2344  *      vm_map_pmap_enter:
2345  *
2346  *      Preload the specified map's pmap with mappings to the specified
2347  *      object's memory-resident pages.  No further physical pages are
2348  *      allocated, and no further virtual pages are retrieved from secondary
2349  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2350  *      limited number of page mappings are created at the low-end of the
2351  *      specified address range.  (For this purpose, a superpage mapping
2352  *      counts as one page mapping.)  Otherwise, all resident pages within
2353  *      the specified address range are mapped.
2354  */
2355 static void
2356 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2357     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2358 {
2359         vm_offset_t start;
2360         vm_page_t p, p_start;
2361         vm_pindex_t mask, psize, threshold, tmpidx;
2362
2363         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2364                 return;
2365         VM_OBJECT_RLOCK(object);
2366         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2367                 VM_OBJECT_RUNLOCK(object);
2368                 VM_OBJECT_WLOCK(object);
2369                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2370                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2371                             size);
2372                         VM_OBJECT_WUNLOCK(object);
2373                         return;
2374                 }
2375                 VM_OBJECT_LOCK_DOWNGRADE(object);
2376         }
2377
2378         psize = atop(size);
2379         if (psize + pindex > object->size) {
2380                 if (object->size < pindex) {
2381                         VM_OBJECT_RUNLOCK(object);
2382                         return;
2383                 }
2384                 psize = object->size - pindex;
2385         }
2386
2387         start = 0;
2388         p_start = NULL;
2389         threshold = MAX_INIT_PT;
2390
2391         p = vm_page_find_least(object, pindex);
2392         /*
2393          * Assert: the variable p is either (1) the page with the
2394          * least pindex greater than or equal to the parameter pindex
2395          * or (2) NULL.
2396          */
2397         for (;
2398              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2399              p = TAILQ_NEXT(p, listq)) {
2400                 /*
2401                  * don't allow an madvise to blow away our really
2402                  * free pages allocating pv entries.
2403                  */
2404                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2405                     vm_page_count_severe()) ||
2406                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2407                     tmpidx >= threshold)) {
2408                         psize = tmpidx;
2409                         break;
2410                 }
2411                 if (p->valid == VM_PAGE_BITS_ALL) {
2412                         if (p_start == NULL) {
2413                                 start = addr + ptoa(tmpidx);
2414                                 p_start = p;
2415                         }
2416                         /* Jump ahead if a superpage mapping is possible. */
2417                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2418                             (pagesizes[p->psind] - 1)) == 0) {
2419                                 mask = atop(pagesizes[p->psind]) - 1;
2420                                 if (tmpidx + mask < psize &&
2421                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2422                                         p += mask;
2423                                         threshold += mask;
2424                                 }
2425                         }
2426                 } else if (p_start != NULL) {
2427                         pmap_enter_object(map->pmap, start, addr +
2428                             ptoa(tmpidx), p_start, prot);
2429                         p_start = NULL;
2430                 }
2431         }
2432         if (p_start != NULL)
2433                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2434                     p_start, prot);
2435         VM_OBJECT_RUNLOCK(object);
2436 }
2437
2438 /*
2439  *      vm_map_protect:
2440  *
2441  *      Sets the protection of the specified address
2442  *      region in the target map.  If "set_max" is
2443  *      specified, the maximum protection is to be set;
2444  *      otherwise, only the current protection is affected.
2445  */
2446 int
2447 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2448                vm_prot_t new_prot, boolean_t set_max)
2449 {
2450         vm_map_entry_t current, entry, in_tran;
2451         vm_object_t obj;
2452         struct ucred *cred;
2453         vm_prot_t old_prot;
2454         int rv;
2455
2456         if (start == end)
2457                 return (KERN_SUCCESS);
2458
2459 again:
2460         in_tran = NULL;
2461         vm_map_lock(map);
2462
2463         /*
2464          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2465          * need to fault pages into the map and will drop the map lock while
2466          * doing so, and the VM object may end up in an inconsistent state if we
2467          * update the protection on the map entry in between faults.
2468          */
2469         vm_map_wait_busy(map);
2470
2471         VM_MAP_RANGE_CHECK(map, start, end);
2472
2473         if (!vm_map_lookup_entry(map, start, &entry))
2474                 entry = entry->next;
2475
2476         /*
2477          * Make a first pass to check for protection violations.
2478          */
2479         for (current = entry; current->start < end; current = current->next) {
2480                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2481                         continue;
2482                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2483                         vm_map_unlock(map);
2484                         return (KERN_INVALID_ARGUMENT);
2485                 }
2486                 if ((new_prot & current->max_protection) != new_prot) {
2487                         vm_map_unlock(map);
2488                         return (KERN_PROTECTION_FAILURE);
2489                 }
2490                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2491                         in_tran = entry;
2492         }
2493
2494         /*
2495          * Postpone the operation until all in transition map entries
2496          * are stabilized.  In-transition entry might already have its
2497          * pages wired and wired_count incremented, but
2498          * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2499          * threads because the map lock is dropped.  In this case we
2500          * would miss our call to vm_fault_copy_entry().
2501          */
2502         if (in_tran != NULL) {
2503                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2504                 vm_map_unlock_and_wait(map, 0);
2505                 goto again;
2506         }
2507
2508         /*
2509          * Before changing the protections, try to reserve swap space for any
2510          * private (i.e., copy-on-write) mappings that are transitioning from
2511          * read-only to read/write access.  If a reservation fails, break out
2512          * of this loop early and let the next loop simplify the entries, since
2513          * some may now be mergeable.
2514          */
2515         rv = KERN_SUCCESS;
2516         vm_map_clip_start(map, entry, start);
2517         for (current = entry; current->start < end; current = current->next) {
2518
2519                 vm_map_clip_end(map, current, end);
2520
2521                 if (set_max ||
2522                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2523                     ENTRY_CHARGED(current) ||
2524                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2525                         continue;
2526                 }
2527
2528                 cred = curthread->td_ucred;
2529                 obj = current->object.vm_object;
2530
2531                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2532                         if (!swap_reserve(current->end - current->start)) {
2533                                 rv = KERN_RESOURCE_SHORTAGE;
2534                                 end = current->end;
2535                                 break;
2536                         }
2537                         crhold(cred);
2538                         current->cred = cred;
2539                         continue;
2540                 }
2541
2542                 VM_OBJECT_WLOCK(obj);
2543                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2544                         VM_OBJECT_WUNLOCK(obj);
2545                         continue;
2546                 }
2547
2548                 /*
2549                  * Charge for the whole object allocation now, since
2550                  * we cannot distinguish between non-charged and
2551                  * charged clipped mapping of the same object later.
2552                  */
2553                 KASSERT(obj->charge == 0,
2554                     ("vm_map_protect: object %p overcharged (entry %p)",
2555                     obj, current));
2556                 if (!swap_reserve(ptoa(obj->size))) {
2557                         VM_OBJECT_WUNLOCK(obj);
2558                         rv = KERN_RESOURCE_SHORTAGE;
2559                         end = current->end;
2560                         break;
2561                 }
2562
2563                 crhold(cred);
2564                 obj->cred = cred;
2565                 obj->charge = ptoa(obj->size);
2566                 VM_OBJECT_WUNLOCK(obj);
2567         }
2568
2569         /*
2570          * If enough swap space was available, go back and fix up protections.
2571          * Otherwise, just simplify entries, since some may have been modified.
2572          * [Note that clipping is not necessary the second time.]
2573          */
2574         for (current = entry; current->start < end;
2575             vm_map_simplify_entry(map, current), current = current->next) {
2576                 if (rv != KERN_SUCCESS ||
2577                     (current->eflags & MAP_ENTRY_GUARD) != 0)
2578                         continue;
2579
2580                 old_prot = current->protection;
2581
2582                 if (set_max)
2583                         current->protection =
2584                             (current->max_protection = new_prot) &
2585                             old_prot;
2586                 else
2587                         current->protection = new_prot;
2588
2589                 /*
2590                  * For user wired map entries, the normal lazy evaluation of
2591                  * write access upgrades through soft page faults is
2592                  * undesirable.  Instead, immediately copy any pages that are
2593                  * copy-on-write and enable write access in the physical map.
2594                  */
2595                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2596                     (current->protection & VM_PROT_WRITE) != 0 &&
2597                     (old_prot & VM_PROT_WRITE) == 0)
2598                         vm_fault_copy_entry(map, map, current, current, NULL);
2599
2600                 /*
2601                  * When restricting access, update the physical map.  Worry
2602                  * about copy-on-write here.
2603                  */
2604                 if ((old_prot & ~current->protection) != 0) {
2605 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2606                                                         VM_PROT_ALL)
2607                         pmap_protect(map->pmap, current->start,
2608                             current->end,
2609                             current->protection & MASK(current));
2610 #undef  MASK
2611                 }
2612         }
2613         vm_map_unlock(map);
2614         return (rv);
2615 }
2616
2617 /*
2618  *      vm_map_madvise:
2619  *
2620  *      This routine traverses a processes map handling the madvise
2621  *      system call.  Advisories are classified as either those effecting
2622  *      the vm_map_entry structure, or those effecting the underlying
2623  *      objects.
2624  */
2625 int
2626 vm_map_madvise(
2627         vm_map_t map,
2628         vm_offset_t start,
2629         vm_offset_t end,
2630         int behav)
2631 {
2632         vm_map_entry_t current, entry;
2633         bool modify_map;
2634
2635         /*
2636          * Some madvise calls directly modify the vm_map_entry, in which case
2637          * we need to use an exclusive lock on the map and we need to perform
2638          * various clipping operations.  Otherwise we only need a read-lock
2639          * on the map.
2640          */
2641         switch(behav) {
2642         case MADV_NORMAL:
2643         case MADV_SEQUENTIAL:
2644         case MADV_RANDOM:
2645         case MADV_NOSYNC:
2646         case MADV_AUTOSYNC:
2647         case MADV_NOCORE:
2648         case MADV_CORE:
2649                 if (start == end)
2650                         return (0);
2651                 modify_map = true;
2652                 vm_map_lock(map);
2653                 break;
2654         case MADV_WILLNEED:
2655         case MADV_DONTNEED:
2656         case MADV_FREE:
2657                 if (start == end)
2658                         return (0);
2659                 modify_map = false;
2660                 vm_map_lock_read(map);
2661                 break;
2662         default:
2663                 return (EINVAL);
2664         }
2665
2666         /*
2667          * Locate starting entry and clip if necessary.
2668          */
2669         VM_MAP_RANGE_CHECK(map, start, end);
2670
2671         if (vm_map_lookup_entry(map, start, &entry)) {
2672                 if (modify_map)
2673                         vm_map_clip_start(map, entry, start);
2674         } else {
2675                 entry = entry->next;
2676         }
2677
2678         if (modify_map) {
2679                 /*
2680                  * madvise behaviors that are implemented in the vm_map_entry.
2681                  *
2682                  * We clip the vm_map_entry so that behavioral changes are
2683                  * limited to the specified address range.
2684                  */
2685                 for (current = entry; current->start < end;
2686                     current = current->next) {
2687                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2688                                 continue;
2689
2690                         vm_map_clip_end(map, current, end);
2691
2692                         switch (behav) {
2693                         case MADV_NORMAL:
2694                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2695                                 break;
2696                         case MADV_SEQUENTIAL:
2697                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2698                                 break;
2699                         case MADV_RANDOM:
2700                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2701                                 break;
2702                         case MADV_NOSYNC:
2703                                 current->eflags |= MAP_ENTRY_NOSYNC;
2704                                 break;
2705                         case MADV_AUTOSYNC:
2706                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2707                                 break;
2708                         case MADV_NOCORE:
2709                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2710                                 break;
2711                         case MADV_CORE:
2712                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2713                                 break;
2714                         default:
2715                                 break;
2716                         }
2717                         vm_map_simplify_entry(map, current);
2718                 }
2719                 vm_map_unlock(map);
2720         } else {
2721                 vm_pindex_t pstart, pend;
2722
2723                 /*
2724                  * madvise behaviors that are implemented in the underlying
2725                  * vm_object.
2726                  *
2727                  * Since we don't clip the vm_map_entry, we have to clip
2728                  * the vm_object pindex and count.
2729                  */
2730                 for (current = entry; current->start < end;
2731                     current = current->next) {
2732                         vm_offset_t useEnd, useStart;
2733
2734                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2735                                 continue;
2736
2737                         pstart = OFF_TO_IDX(current->offset);
2738                         pend = pstart + atop(current->end - current->start);
2739                         useStart = current->start;
2740                         useEnd = current->end;
2741
2742                         if (current->start < start) {
2743                                 pstart += atop(start - current->start);
2744                                 useStart = start;
2745                         }
2746                         if (current->end > end) {
2747                                 pend -= atop(current->end - end);
2748                                 useEnd = end;
2749                         }
2750
2751                         if (pstart >= pend)
2752                                 continue;
2753
2754                         /*
2755                          * Perform the pmap_advise() before clearing
2756                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2757                          * concurrent pmap operation, such as pmap_remove(),
2758                          * could clear a reference in the pmap and set
2759                          * PGA_REFERENCED on the page before the pmap_advise()
2760                          * had completed.  Consequently, the page would appear
2761                          * referenced based upon an old reference that
2762                          * occurred before this pmap_advise() ran.
2763                          */
2764                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2765                                 pmap_advise(map->pmap, useStart, useEnd,
2766                                     behav);
2767
2768                         vm_object_madvise(current->object.vm_object, pstart,
2769                             pend, behav);
2770
2771                         /*
2772                          * Pre-populate paging structures in the
2773                          * WILLNEED case.  For wired entries, the
2774                          * paging structures are already populated.
2775                          */
2776                         if (behav == MADV_WILLNEED &&
2777                             current->wired_count == 0) {
2778                                 vm_map_pmap_enter(map,
2779                                     useStart,
2780                                     current->protection,
2781                                     current->object.vm_object,
2782                                     pstart,
2783                                     ptoa(pend - pstart),
2784                                     MAP_PREFAULT_MADVISE
2785                                 );
2786                         }
2787                 }
2788                 vm_map_unlock_read(map);
2789         }
2790         return (0);
2791 }
2792
2793
2794 /*
2795  *      vm_map_inherit:
2796  *
2797  *      Sets the inheritance of the specified address
2798  *      range in the target map.  Inheritance
2799  *      affects how the map will be shared with
2800  *      child maps at the time of vmspace_fork.
2801  */
2802 int
2803 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2804                vm_inherit_t new_inheritance)
2805 {
2806         vm_map_entry_t entry;
2807         vm_map_entry_t temp_entry;
2808
2809         switch (new_inheritance) {
2810         case VM_INHERIT_NONE:
2811         case VM_INHERIT_COPY:
2812         case VM_INHERIT_SHARE:
2813         case VM_INHERIT_ZERO:
2814                 break;
2815         default:
2816                 return (KERN_INVALID_ARGUMENT);
2817         }
2818         if (start == end)
2819                 return (KERN_SUCCESS);
2820         vm_map_lock(map);
2821         VM_MAP_RANGE_CHECK(map, start, end);
2822         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2823                 entry = temp_entry;
2824                 vm_map_clip_start(map, entry, start);
2825         } else
2826                 entry = temp_entry->next;
2827         while (entry->start < end) {
2828                 vm_map_clip_end(map, entry, end);
2829                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2830                     new_inheritance != VM_INHERIT_ZERO)
2831                         entry->inheritance = new_inheritance;
2832                 vm_map_simplify_entry(map, entry);
2833                 entry = entry->next;
2834         }
2835         vm_map_unlock(map);
2836         return (KERN_SUCCESS);
2837 }
2838
2839 /*
2840  *      vm_map_entry_in_transition:
2841  *
2842  *      Release the map lock, and sleep until the entry is no longer in
2843  *      transition.  Awake and acquire the map lock.  If the map changed while
2844  *      another held the lock, lookup a possibly-changed entry at or after the
2845  *      'start' position of the old entry.
2846  */
2847 static vm_map_entry_t
2848 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2849     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2850 {
2851         vm_map_entry_t entry;
2852         vm_offset_t start;
2853         u_int last_timestamp;
2854
2855         VM_MAP_ASSERT_LOCKED(map);
2856         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2857             ("not in-tranition map entry %p", in_entry));
2858         /*
2859          * We have not yet clipped the entry.
2860          */
2861         start = MAX(in_start, in_entry->start);
2862         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2863         last_timestamp = map->timestamp;
2864         if (vm_map_unlock_and_wait(map, 0)) {
2865                 /*
2866                  * Allow interruption of user wiring/unwiring?
2867                  */
2868         }
2869         vm_map_lock(map);
2870         if (last_timestamp + 1 == map->timestamp)
2871                 return (in_entry);
2872
2873         /*
2874          * Look again for the entry because the map was modified while it was
2875          * unlocked.  Specifically, the entry may have been clipped, merged, or
2876          * deleted.
2877          */
2878         if (!vm_map_lookup_entry(map, start, &entry)) {
2879                 if (!holes_ok) {
2880                         *io_end = start;
2881                         return (NULL);
2882                 }
2883                 entry = entry->next;
2884         }
2885         return (entry);
2886 }
2887
2888 /*
2889  *      vm_map_unwire:
2890  *
2891  *      Implements both kernel and user unwiring.
2892  */
2893 int
2894 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2895     int flags)
2896 {
2897         vm_map_entry_t entry, first_entry;
2898         int rv;
2899         bool first_iteration, holes_ok, need_wakeup, user_unwire;
2900
2901         if (start == end)
2902                 return (KERN_SUCCESS);
2903         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
2904         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
2905         vm_map_lock(map);
2906         VM_MAP_RANGE_CHECK(map, start, end);
2907         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2908                 if (holes_ok)
2909                         first_entry = first_entry->next;
2910                 else {
2911                         vm_map_unlock(map);
2912                         return (KERN_INVALID_ADDRESS);
2913                 }
2914         }
2915         first_iteration = true;
2916         entry = first_entry;
2917         rv = KERN_SUCCESS;
2918         while (entry->start < end) {
2919                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2920                         /*
2921                          * We have not yet clipped the entry.
2922                          */
2923                         entry = vm_map_entry_in_transition(map, start, &end,
2924                             holes_ok, entry);
2925                         if (entry == NULL) {
2926                                 if (first_iteration) {
2927                                         vm_map_unlock(map);
2928                                         return (KERN_INVALID_ADDRESS);
2929                                 }
2930                                 rv = KERN_INVALID_ADDRESS;
2931                                 break;
2932                         }
2933                         first_entry = first_iteration ? entry : NULL;
2934                         continue;
2935                 }
2936                 first_iteration = false;
2937                 vm_map_clip_start(map, entry, start);
2938                 vm_map_clip_end(map, entry, end);
2939                 /*
2940                  * Mark the entry in case the map lock is released.  (See
2941                  * above.)
2942                  */
2943                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2944                     entry->wiring_thread == NULL,
2945                     ("owned map entry %p", entry));
2946                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2947                 entry->wiring_thread = curthread;
2948                 /*
2949                  * Check the map for holes in the specified region.
2950                  * If holes_ok, skip this check.
2951                  */
2952                 if (!holes_ok &&
2953                     (entry->end < end && entry->next->start > entry->end)) {
2954                         end = entry->end;
2955                         rv = KERN_INVALID_ADDRESS;
2956                         break;
2957                 }
2958                 /*
2959                  * If system unwiring, require that the entry is system wired.
2960                  */
2961                 if (!user_unwire &&
2962                     vm_map_entry_system_wired_count(entry) == 0) {
2963                         end = entry->end;
2964                         rv = KERN_INVALID_ARGUMENT;
2965                         break;
2966                 }
2967                 entry = entry->next;
2968         }
2969         need_wakeup = false;
2970         if (first_entry == NULL &&
2971             !vm_map_lookup_entry(map, start, &first_entry)) {
2972                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
2973                 first_entry = first_entry->next;
2974         }
2975         for (entry = first_entry; entry->start < end; entry = entry->next) {
2976                 /*
2977                  * If holes_ok was specified, an empty
2978                  * space in the unwired region could have been mapped
2979                  * while the map lock was dropped for draining
2980                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2981                  * could be simultaneously wiring this new mapping
2982                  * entry.  Detect these cases and skip any entries
2983                  * marked as in transition by us.
2984                  */
2985                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2986                     entry->wiring_thread != curthread) {
2987                         KASSERT(holes_ok,
2988                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2989                         continue;
2990                 }
2991
2992                 if (rv == KERN_SUCCESS && (!user_unwire ||
2993                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2994                         if (entry->wired_count == 1)
2995                                 vm_map_entry_unwire(map, entry);
2996                         else
2997                                 entry->wired_count--;
2998                         if (user_unwire)
2999                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3000                 }
3001                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3002                     ("vm_map_unwire: in-transition flag missing %p", entry));
3003                 KASSERT(entry->wiring_thread == curthread,
3004                     ("vm_map_unwire: alien wire %p", entry));
3005                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3006                 entry->wiring_thread = NULL;
3007                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3008                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3009                         need_wakeup = true;
3010                 }
3011                 vm_map_simplify_entry(map, entry);
3012         }
3013         vm_map_unlock(map);
3014         if (need_wakeup)
3015                 vm_map_wakeup(map);
3016         return (rv);
3017 }
3018
3019 static void
3020 vm_map_wire_user_count_sub(u_long npages)
3021 {
3022
3023         atomic_subtract_long(&vm_user_wire_count, npages);
3024 }
3025
3026 static bool
3027 vm_map_wire_user_count_add(u_long npages)
3028 {
3029         u_long wired;
3030
3031         wired = vm_user_wire_count;
3032         do {
3033                 if (npages + wired > vm_page_max_user_wired)
3034                         return (false);
3035         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3036             npages + wired));
3037
3038         return (true);
3039 }
3040
3041 /*
3042  *      vm_map_wire_entry_failure:
3043  *
3044  *      Handle a wiring failure on the given entry.
3045  *
3046  *      The map should be locked.
3047  */
3048 static void
3049 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3050     vm_offset_t failed_addr)
3051 {
3052
3053         VM_MAP_ASSERT_LOCKED(map);
3054         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3055             entry->wired_count == 1,
3056             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3057         KASSERT(failed_addr < entry->end,
3058             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3059
3060         /*
3061          * If any pages at the start of this entry were successfully wired,
3062          * then unwire them.
3063          */
3064         if (failed_addr > entry->start) {
3065                 pmap_unwire(map->pmap, entry->start, failed_addr);
3066                 vm_object_unwire(entry->object.vm_object, entry->offset,
3067                     failed_addr - entry->start, PQ_ACTIVE);
3068         }
3069
3070         /*
3071          * Assign an out-of-range value to represent the failure to wire this
3072          * entry.
3073          */
3074         entry->wired_count = -1;
3075 }
3076
3077 int
3078 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3079 {
3080         int rv;
3081
3082         vm_map_lock(map);
3083         rv = vm_map_wire_locked(map, start, end, flags);
3084         vm_map_unlock(map);
3085         return (rv);
3086 }
3087
3088
3089 /*
3090  *      vm_map_wire_locked:
3091  *
3092  *      Implements both kernel and user wiring.  Returns with the map locked,
3093  *      the map lock may be dropped.
3094  */
3095 int
3096 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3097 {
3098         vm_map_entry_t entry, first_entry, tmp_entry;
3099         vm_offset_t faddr, saved_end, saved_start;
3100         u_long npages;
3101         u_int last_timestamp;
3102         int rv;
3103         bool first_iteration, holes_ok, need_wakeup, user_wire;
3104         vm_prot_t prot;
3105
3106         VM_MAP_ASSERT_LOCKED(map);
3107
3108         if (start == end)
3109                 return (KERN_SUCCESS);
3110         prot = 0;
3111         if (flags & VM_MAP_WIRE_WRITE)
3112                 prot |= VM_PROT_WRITE;
3113         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3114         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3115         VM_MAP_RANGE_CHECK(map, start, end);
3116         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3117                 if (holes_ok)
3118                         first_entry = first_entry->next;
3119                 else
3120                         return (KERN_INVALID_ADDRESS);
3121         }
3122         first_iteration = true;
3123         entry = first_entry;
3124         while (entry->start < end) {
3125                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3126                         /*
3127                          * We have not yet clipped the entry.
3128                          */
3129                         entry = vm_map_entry_in_transition(map, start, &end,
3130                             holes_ok, entry);
3131                         if (entry == NULL) {
3132                                 if (first_iteration)
3133                                         return (KERN_INVALID_ADDRESS);
3134                                 rv = KERN_INVALID_ADDRESS;
3135                                 goto done;
3136                         }
3137                         first_entry = first_iteration ? entry : NULL;
3138                         continue;
3139                 }
3140                 first_iteration = false;
3141                 vm_map_clip_start(map, entry, start);
3142                 vm_map_clip_end(map, entry, end);
3143                 /*
3144                  * Mark the entry in case the map lock is released.  (See
3145                  * above.)
3146                  */
3147                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3148                     entry->wiring_thread == NULL,
3149                     ("owned map entry %p", entry));
3150                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3151                 entry->wiring_thread = curthread;
3152                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3153                     || (entry->protection & prot) != prot) {
3154                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3155                         if (!holes_ok) {
3156                                 end = entry->end;
3157                                 rv = KERN_INVALID_ADDRESS;
3158                                 goto done;
3159                         }
3160                 } else if (entry->wired_count == 0) {
3161                         entry->wired_count++;
3162
3163                         npages = atop(entry->end - entry->start);
3164                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3165                                 vm_map_wire_entry_failure(map, entry,
3166                                     entry->start);
3167                                 end = entry->end;
3168                                 rv = KERN_RESOURCE_SHORTAGE;
3169                                 goto done;
3170                         }
3171
3172                         /*
3173                          * Release the map lock, relying on the in-transition
3174                          * mark.  Mark the map busy for fork.
3175                          */
3176                         saved_start = entry->start;
3177                         saved_end = entry->end;
3178                         last_timestamp = map->timestamp;
3179                         vm_map_busy(map);
3180                         vm_map_unlock(map);
3181
3182                         faddr = saved_start;
3183                         do {
3184                                 /*
3185                                  * Simulate a fault to get the page and enter
3186                                  * it into the physical map.
3187                                  */
3188                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3189                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
3190                                         break;
3191                         } while ((faddr += PAGE_SIZE) < saved_end);
3192                         vm_map_lock(map);
3193                         vm_map_unbusy(map);
3194                         if (last_timestamp + 1 != map->timestamp) {
3195                                 /*
3196                                  * Look again for the entry because the map was
3197                                  * modified while it was unlocked.  The entry
3198                                  * may have been clipped, but NOT merged or
3199                                  * deleted.
3200                                  */
3201                                 if (!vm_map_lookup_entry(map, saved_start,
3202                                     &tmp_entry))
3203                                         KASSERT(false,
3204                                             ("vm_map_wire: lookup failed"));
3205                                 if (entry == first_entry)
3206                                         first_entry = tmp_entry;
3207                                 else
3208                                         first_entry = NULL;
3209                                 entry = tmp_entry;
3210                                 while (entry->end < saved_end) {
3211                                         /*
3212                                          * In case of failure, handle entries
3213                                          * that were not fully wired here;
3214                                          * fully wired entries are handled
3215                                          * later.
3216                                          */
3217                                         if (rv != KERN_SUCCESS &&
3218                                             faddr < entry->end)
3219                                                 vm_map_wire_entry_failure(map,
3220                                                     entry, faddr);
3221                                         entry = entry->next;
3222                                 }
3223                         }
3224                         if (rv != KERN_SUCCESS) {
3225                                 vm_map_wire_entry_failure(map, entry, faddr);
3226                                 if (user_wire)
3227                                         vm_map_wire_user_count_sub(npages);
3228                                 end = entry->end;
3229                                 goto done;
3230                         }
3231                 } else if (!user_wire ||
3232                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3233                         entry->wired_count++;
3234                 }
3235                 /*
3236                  * Check the map for holes in the specified region.
3237                  * If holes_ok was specified, skip this check.
3238                  */
3239                 if (!holes_ok &&
3240                     entry->end < end && entry->next->start > entry->end) {
3241                         end = entry->end;
3242                         rv = KERN_INVALID_ADDRESS;
3243                         goto done;
3244                 }
3245                 entry = entry->next;
3246         }
3247         rv = KERN_SUCCESS;
3248 done:
3249         need_wakeup = false;
3250         if (first_entry == NULL &&
3251             !vm_map_lookup_entry(map, start, &first_entry)) {
3252                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3253                 first_entry = first_entry->next;
3254         }
3255         for (entry = first_entry; entry->start < end; entry = entry->next) {
3256                 /*
3257                  * If holes_ok was specified, an empty
3258                  * space in the unwired region could have been mapped
3259                  * while the map lock was dropped for faulting in the
3260                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3261                  * Moreover, another thread could be simultaneously
3262                  * wiring this new mapping entry.  Detect these cases
3263                  * and skip any entries marked as in transition not by us.
3264                  */
3265                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3266                     entry->wiring_thread != curthread) {
3267                         KASSERT(holes_ok,
3268                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3269                         continue;
3270                 }
3271
3272                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3273                         /* do nothing */
3274                 } else if (rv == KERN_SUCCESS) {
3275                         if (user_wire)
3276                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3277                 } else if (entry->wired_count == -1) {
3278                         /*
3279                          * Wiring failed on this entry.  Thus, unwiring is
3280                          * unnecessary.
3281                          */
3282                         entry->wired_count = 0;
3283                 } else if (!user_wire ||
3284                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3285                         /*
3286                          * Undo the wiring.  Wiring succeeded on this entry
3287                          * but failed on a later entry.  
3288                          */
3289                         if (entry->wired_count == 1) {
3290                                 vm_map_entry_unwire(map, entry);
3291                                 if (user_wire)
3292                                         vm_map_wire_user_count_sub(
3293                                             atop(entry->end - entry->start));
3294                         } else
3295                                 entry->wired_count--;
3296                 }
3297                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3298                     ("vm_map_wire: in-transition flag missing %p", entry));
3299                 KASSERT(entry->wiring_thread == curthread,
3300                     ("vm_map_wire: alien wire %p", entry));
3301                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3302                     MAP_ENTRY_WIRE_SKIPPED);
3303                 entry->wiring_thread = NULL;
3304                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3305                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3306                         need_wakeup = true;
3307                 }
3308                 vm_map_simplify_entry(map, entry);
3309         }
3310         if (need_wakeup)
3311                 vm_map_wakeup(map);
3312         return (rv);
3313 }
3314
3315 /*
3316  * vm_map_sync
3317  *
3318  * Push any dirty cached pages in the address range to their pager.
3319  * If syncio is TRUE, dirty pages are written synchronously.
3320  * If invalidate is TRUE, any cached pages are freed as well.
3321  *
3322  * If the size of the region from start to end is zero, we are
3323  * supposed to flush all modified pages within the region containing
3324  * start.  Unfortunately, a region can be split or coalesced with
3325  * neighboring regions, making it difficult to determine what the
3326  * original region was.  Therefore, we approximate this requirement by
3327  * flushing the current region containing start.
3328  *
3329  * Returns an error if any part of the specified range is not mapped.
3330  */
3331 int
3332 vm_map_sync(
3333         vm_map_t map,
3334         vm_offset_t start,
3335         vm_offset_t end,
3336         boolean_t syncio,
3337         boolean_t invalidate)
3338 {
3339         vm_map_entry_t current;
3340         vm_map_entry_t entry;
3341         vm_size_t size;
3342         vm_object_t object;
3343         vm_ooffset_t offset;
3344         unsigned int last_timestamp;
3345         boolean_t failed;
3346
3347         vm_map_lock_read(map);
3348         VM_MAP_RANGE_CHECK(map, start, end);
3349         if (!vm_map_lookup_entry(map, start, &entry)) {
3350                 vm_map_unlock_read(map);
3351                 return (KERN_INVALID_ADDRESS);
3352         } else if (start == end) {
3353                 start = entry->start;
3354                 end = entry->end;
3355         }
3356         /*
3357          * Make a first pass to check for user-wired memory and holes.
3358          */
3359         for (current = entry; current->start < end; current = current->next) {
3360                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3361                         vm_map_unlock_read(map);
3362                         return (KERN_INVALID_ARGUMENT);
3363                 }
3364                 if (end > current->end &&
3365                     current->end != current->next->start) {
3366                         vm_map_unlock_read(map);
3367                         return (KERN_INVALID_ADDRESS);
3368                 }
3369         }
3370
3371         if (invalidate)
3372                 pmap_remove(map->pmap, start, end);
3373         failed = FALSE;
3374
3375         /*
3376          * Make a second pass, cleaning/uncaching pages from the indicated
3377          * objects as we go.
3378          */
3379         for (current = entry; current->start < end;) {
3380                 offset = current->offset + (start - current->start);
3381                 size = (end <= current->end ? end : current->end) - start;
3382                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3383                         vm_map_t smap;
3384                         vm_map_entry_t tentry;
3385                         vm_size_t tsize;
3386
3387                         smap = current->object.sub_map;
3388                         vm_map_lock_read(smap);
3389                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3390                         tsize = tentry->end - offset;
3391                         if (tsize < size)
3392                                 size = tsize;
3393                         object = tentry->object.vm_object;
3394                         offset = tentry->offset + (offset - tentry->start);
3395                         vm_map_unlock_read(smap);
3396                 } else {
3397                         object = current->object.vm_object;
3398                 }
3399                 vm_object_reference(object);
3400                 last_timestamp = map->timestamp;
3401                 vm_map_unlock_read(map);
3402                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3403                         failed = TRUE;
3404                 start += size;
3405                 vm_object_deallocate(object);
3406                 vm_map_lock_read(map);
3407                 if (last_timestamp == map->timestamp ||
3408                     !vm_map_lookup_entry(map, start, &current))
3409                         current = current->next;
3410         }
3411
3412         vm_map_unlock_read(map);
3413         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3414 }
3415
3416 /*
3417  *      vm_map_entry_unwire:    [ internal use only ]
3418  *
3419  *      Make the region specified by this entry pageable.
3420  *
3421  *      The map in question should be locked.
3422  *      [This is the reason for this routine's existence.]
3423  */
3424 static void
3425 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3426 {
3427         vm_size_t size;
3428
3429         VM_MAP_ASSERT_LOCKED(map);
3430         KASSERT(entry->wired_count > 0,
3431             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3432
3433         size = entry->end - entry->start;
3434         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3435                 vm_map_wire_user_count_sub(atop(size));
3436         pmap_unwire(map->pmap, entry->start, entry->end);
3437         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3438             PQ_ACTIVE);
3439         entry->wired_count = 0;
3440 }
3441
3442 static void
3443 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3444 {
3445
3446         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3447                 vm_object_deallocate(entry->object.vm_object);
3448         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3449 }
3450
3451 /*
3452  *      vm_map_entry_delete:    [ internal use only ]
3453  *
3454  *      Deallocate the given entry from the target map.
3455  */
3456 static void
3457 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3458 {
3459         vm_object_t object;
3460         vm_pindex_t offidxstart, offidxend, count, size1;
3461         vm_size_t size;
3462
3463         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3464         object = entry->object.vm_object;
3465
3466         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3467                 MPASS(entry->cred == NULL);
3468                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3469                 MPASS(object == NULL);
3470                 vm_map_entry_deallocate(entry, map->system_map);
3471                 return;
3472         }
3473
3474         size = entry->end - entry->start;
3475         map->size -= size;
3476
3477         if (entry->cred != NULL) {
3478                 swap_release_by_cred(size, entry->cred);
3479                 crfree(entry->cred);
3480         }
3481
3482         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3483             (object != NULL)) {
3484                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3485                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3486                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3487                 count = atop(size);
3488                 offidxstart = OFF_TO_IDX(entry->offset);
3489                 offidxend = offidxstart + count;
3490                 VM_OBJECT_WLOCK(object);
3491                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3492                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3493                     object == kernel_object)) {
3494                         vm_object_collapse(object);
3495
3496                         /*
3497                          * The option OBJPR_NOTMAPPED can be passed here
3498                          * because vm_map_delete() already performed
3499                          * pmap_remove() on the only mapping to this range
3500                          * of pages. 
3501                          */
3502                         vm_object_page_remove(object, offidxstart, offidxend,
3503                             OBJPR_NOTMAPPED);
3504                         if (object->type == OBJT_SWAP)
3505                                 swap_pager_freespace(object, offidxstart,
3506                                     count);
3507                         if (offidxend >= object->size &&
3508                             offidxstart < object->size) {
3509                                 size1 = object->size;
3510                                 object->size = offidxstart;
3511                                 if (object->cred != NULL) {
3512                                         size1 -= object->size;
3513                                         KASSERT(object->charge >= ptoa(size1),
3514                                             ("object %p charge < 0", object));
3515                                         swap_release_by_cred(ptoa(size1),
3516                                             object->cred);
3517                                         object->charge -= ptoa(size1);
3518                                 }
3519                         }
3520                 }
3521                 VM_OBJECT_WUNLOCK(object);
3522         } else
3523                 entry->object.vm_object = NULL;
3524         if (map->system_map)
3525                 vm_map_entry_deallocate(entry, TRUE);
3526         else {
3527                 entry->next = curthread->td_map_def_user;
3528                 curthread->td_map_def_user = entry;
3529         }
3530 }
3531
3532 /*
3533  *      vm_map_delete:  [ internal use only ]
3534  *
3535  *      Deallocates the given address range from the target
3536  *      map.
3537  */
3538 int
3539 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3540 {
3541         vm_map_entry_t entry;
3542         vm_map_entry_t first_entry;
3543
3544         VM_MAP_ASSERT_LOCKED(map);
3545         if (start == end)
3546                 return (KERN_SUCCESS);
3547
3548         /*
3549          * Find the start of the region, and clip it
3550          */
3551         if (!vm_map_lookup_entry(map, start, &first_entry))
3552                 entry = first_entry->next;
3553         else {
3554                 entry = first_entry;
3555                 vm_map_clip_start(map, entry, start);
3556         }
3557
3558         /*
3559          * Step through all entries in this region
3560          */
3561         while (entry->start < end) {
3562                 vm_map_entry_t next;
3563
3564                 /*
3565                  * Wait for wiring or unwiring of an entry to complete.
3566                  * Also wait for any system wirings to disappear on
3567                  * user maps.
3568                  */
3569                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3570                     (vm_map_pmap(map) != kernel_pmap &&
3571                     vm_map_entry_system_wired_count(entry) != 0)) {
3572                         unsigned int last_timestamp;
3573                         vm_offset_t saved_start;
3574                         vm_map_entry_t tmp_entry;
3575
3576                         saved_start = entry->start;
3577                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3578                         last_timestamp = map->timestamp;
3579                         (void) vm_map_unlock_and_wait(map, 0);
3580                         vm_map_lock(map);
3581                         if (last_timestamp + 1 != map->timestamp) {
3582                                 /*
3583                                  * Look again for the entry because the map was
3584                                  * modified while it was unlocked.
3585                                  * Specifically, the entry may have been
3586                                  * clipped, merged, or deleted.
3587                                  */
3588                                 if (!vm_map_lookup_entry(map, saved_start,
3589                                                          &tmp_entry))
3590                                         entry = tmp_entry->next;
3591                                 else {
3592                                         entry = tmp_entry;
3593                                         vm_map_clip_start(map, entry,
3594                                                           saved_start);
3595                                 }
3596                         }
3597                         continue;
3598                 }
3599                 vm_map_clip_end(map, entry, end);
3600
3601                 next = entry->next;
3602
3603                 /*
3604                  * Unwire before removing addresses from the pmap; otherwise,
3605                  * unwiring will put the entries back in the pmap.
3606                  */
3607                 if (entry->wired_count != 0)
3608                         vm_map_entry_unwire(map, entry);
3609
3610                 /*
3611                  * Remove mappings for the pages, but only if the
3612                  * mappings could exist.  For instance, it does not
3613                  * make sense to call pmap_remove() for guard entries.
3614                  */
3615                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3616                     entry->object.vm_object != NULL)
3617                         pmap_remove(map->pmap, entry->start, entry->end);
3618
3619                 if (entry->end == map->anon_loc)
3620                         map->anon_loc = entry->start;
3621
3622                 /*
3623                  * Delete the entry only after removing all pmap
3624                  * entries pointing to its pages.  (Otherwise, its
3625                  * page frames may be reallocated, and any modify bits
3626                  * will be set in the wrong object!)
3627                  */
3628                 vm_map_entry_delete(map, entry);
3629                 entry = next;
3630         }
3631         return (KERN_SUCCESS);
3632 }
3633
3634 /*
3635  *      vm_map_remove:
3636  *
3637  *      Remove the given address range from the target map.
3638  *      This is the exported form of vm_map_delete.
3639  */
3640 int
3641 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3642 {
3643         int result;
3644
3645         vm_map_lock(map);
3646         VM_MAP_RANGE_CHECK(map, start, end);
3647         result = vm_map_delete(map, start, end);
3648         vm_map_unlock(map);
3649         return (result);
3650 }
3651
3652 /*
3653  *      vm_map_check_protection:
3654  *
3655  *      Assert that the target map allows the specified privilege on the
3656  *      entire address region given.  The entire region must be allocated.
3657  *
3658  *      WARNING!  This code does not and should not check whether the
3659  *      contents of the region is accessible.  For example a smaller file
3660  *      might be mapped into a larger address space.
3661  *
3662  *      NOTE!  This code is also called by munmap().
3663  *
3664  *      The map must be locked.  A read lock is sufficient.
3665  */
3666 boolean_t
3667 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3668                         vm_prot_t protection)
3669 {
3670         vm_map_entry_t entry;
3671         vm_map_entry_t tmp_entry;
3672
3673         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3674                 return (FALSE);
3675         entry = tmp_entry;
3676
3677         while (start < end) {
3678                 /*
3679                  * No holes allowed!
3680                  */
3681                 if (start < entry->start)
3682                         return (FALSE);
3683                 /*
3684                  * Check protection associated with entry.
3685                  */
3686                 if ((entry->protection & protection) != protection)
3687                         return (FALSE);
3688                 /* go to next entry */
3689                 start = entry->end;
3690                 entry = entry->next;
3691         }
3692         return (TRUE);
3693 }
3694
3695 /*
3696  *      vm_map_copy_entry:
3697  *
3698  *      Copies the contents of the source entry to the destination
3699  *      entry.  The entries *must* be aligned properly.
3700  */
3701 static void
3702 vm_map_copy_entry(
3703         vm_map_t src_map,
3704         vm_map_t dst_map,
3705         vm_map_entry_t src_entry,
3706         vm_map_entry_t dst_entry,
3707         vm_ooffset_t *fork_charge)
3708 {
3709         vm_object_t src_object;
3710         vm_map_entry_t fake_entry;
3711         vm_offset_t size;
3712         struct ucred *cred;
3713         int charged;
3714
3715         VM_MAP_ASSERT_LOCKED(dst_map);
3716
3717         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3718                 return;
3719
3720         if (src_entry->wired_count == 0 ||
3721             (src_entry->protection & VM_PROT_WRITE) == 0) {
3722                 /*
3723                  * If the source entry is marked needs_copy, it is already
3724                  * write-protected.
3725                  */
3726                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3727                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3728                         pmap_protect(src_map->pmap,
3729                             src_entry->start,
3730                             src_entry->end,
3731                             src_entry->protection & ~VM_PROT_WRITE);
3732                 }
3733
3734                 /*
3735                  * Make a copy of the object.
3736                  */
3737                 size = src_entry->end - src_entry->start;
3738                 if ((src_object = src_entry->object.vm_object) != NULL) {
3739                         VM_OBJECT_WLOCK(src_object);
3740                         charged = ENTRY_CHARGED(src_entry);
3741                         if (src_object->handle == NULL &&
3742                             (src_object->type == OBJT_DEFAULT ||
3743                             src_object->type == OBJT_SWAP)) {
3744                                 vm_object_collapse(src_object);
3745                                 if ((src_object->flags & (OBJ_NOSPLIT |
3746                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3747                                         vm_object_split(src_entry);
3748                                         src_object =
3749                                             src_entry->object.vm_object;
3750                                 }
3751                         }
3752                         vm_object_reference_locked(src_object);
3753                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3754                         if (src_entry->cred != NULL &&
3755                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3756                                 KASSERT(src_object->cred == NULL,
3757                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3758                                      src_object));
3759                                 src_object->cred = src_entry->cred;
3760                                 src_object->charge = size;
3761                         }
3762                         VM_OBJECT_WUNLOCK(src_object);
3763                         dst_entry->object.vm_object = src_object;
3764                         if (charged) {
3765                                 cred = curthread->td_ucred;
3766                                 crhold(cred);
3767                                 dst_entry->cred = cred;
3768                                 *fork_charge += size;
3769                                 if (!(src_entry->eflags &
3770                                       MAP_ENTRY_NEEDS_COPY)) {
3771                                         crhold(cred);
3772                                         src_entry->cred = cred;
3773                                         *fork_charge += size;
3774                                 }
3775                         }
3776                         src_entry->eflags |= MAP_ENTRY_COW |
3777                             MAP_ENTRY_NEEDS_COPY;
3778                         dst_entry->eflags |= MAP_ENTRY_COW |
3779                             MAP_ENTRY_NEEDS_COPY;
3780                         dst_entry->offset = src_entry->offset;
3781                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3782                                 /*
3783                                  * MAP_ENTRY_VN_WRITECNT cannot
3784                                  * indicate write reference from
3785                                  * src_entry, since the entry is
3786                                  * marked as needs copy.  Allocate a
3787                                  * fake entry that is used to
3788                                  * decrement object->un_pager.vnp.writecount
3789                                  * at the appropriate time.  Attach
3790                                  * fake_entry to the deferred list.
3791                                  */
3792                                 fake_entry = vm_map_entry_create(dst_map);
3793                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3794                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3795                                 vm_object_reference(src_object);
3796                                 fake_entry->object.vm_object = src_object;
3797                                 fake_entry->start = src_entry->start;
3798                                 fake_entry->end = src_entry->end;
3799                                 fake_entry->next = curthread->td_map_def_user;
3800                                 curthread->td_map_def_user = fake_entry;
3801                         }
3802
3803                         pmap_copy(dst_map->pmap, src_map->pmap,
3804                             dst_entry->start, dst_entry->end - dst_entry->start,
3805                             src_entry->start);
3806                 } else {
3807                         dst_entry->object.vm_object = NULL;
3808                         dst_entry->offset = 0;
3809                         if (src_entry->cred != NULL) {
3810                                 dst_entry->cred = curthread->td_ucred;
3811                                 crhold(dst_entry->cred);
3812                                 *fork_charge += size;
3813                         }
3814                 }
3815         } else {
3816                 /*
3817                  * We don't want to make writeable wired pages copy-on-write.
3818                  * Immediately copy these pages into the new map by simulating
3819                  * page faults.  The new pages are pageable.
3820                  */
3821                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3822                     fork_charge);
3823         }
3824 }
3825
3826 /*
3827  * vmspace_map_entry_forked:
3828  * Update the newly-forked vmspace each time a map entry is inherited
3829  * or copied.  The values for vm_dsize and vm_tsize are approximate
3830  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3831  */
3832 static void
3833 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3834     vm_map_entry_t entry)
3835 {
3836         vm_size_t entrysize;
3837         vm_offset_t newend;
3838
3839         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3840                 return;
3841         entrysize = entry->end - entry->start;
3842         vm2->vm_map.size += entrysize;
3843         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3844                 vm2->vm_ssize += btoc(entrysize);
3845         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3846             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3847                 newend = MIN(entry->end,
3848                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3849                 vm2->vm_dsize += btoc(newend - entry->start);
3850         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3851             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3852                 newend = MIN(entry->end,
3853                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3854                 vm2->vm_tsize += btoc(newend - entry->start);
3855         }
3856 }
3857
3858 /*
3859  * vmspace_fork:
3860  * Create a new process vmspace structure and vm_map
3861  * based on those of an existing process.  The new map
3862  * is based on the old map, according to the inheritance
3863  * values on the regions in that map.
3864  *
3865  * XXX It might be worth coalescing the entries added to the new vmspace.
3866  *
3867  * The source map must not be locked.
3868  */
3869 struct vmspace *
3870 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3871 {
3872         struct vmspace *vm2;
3873         vm_map_t new_map, old_map;
3874         vm_map_entry_t new_entry, old_entry;
3875         vm_object_t object;
3876         int error, locked;
3877         vm_inherit_t inh;
3878
3879         old_map = &vm1->vm_map;
3880         /* Copy immutable fields of vm1 to vm2. */
3881         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3882             pmap_pinit);
3883         if (vm2 == NULL)
3884                 return (NULL);
3885
3886         vm2->vm_taddr = vm1->vm_taddr;
3887         vm2->vm_daddr = vm1->vm_daddr;
3888         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3889         vm_map_lock(old_map);
3890         if (old_map->busy)
3891                 vm_map_wait_busy(old_map);
3892         new_map = &vm2->vm_map;
3893         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3894         KASSERT(locked, ("vmspace_fork: lock failed"));
3895
3896         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3897         if (error != 0) {
3898                 sx_xunlock(&old_map->lock);
3899                 sx_xunlock(&new_map->lock);
3900                 vm_map_process_deferred();
3901                 vmspace_free(vm2);
3902                 return (NULL);
3903         }
3904
3905         new_map->anon_loc = old_map->anon_loc;
3906
3907         old_entry = old_map->header.next;
3908
3909         while (old_entry != &old_map->header) {
3910                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3911                         panic("vm_map_fork: encountered a submap");
3912
3913                 inh = old_entry->inheritance;
3914                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3915                     inh != VM_INHERIT_NONE)
3916                         inh = VM_INHERIT_COPY;
3917
3918                 switch (inh) {
3919                 case VM_INHERIT_NONE:
3920                         break;
3921
3922                 case VM_INHERIT_SHARE:
3923                         /*
3924                          * Clone the entry, creating the shared object if necessary.
3925                          */
3926                         object = old_entry->object.vm_object;
3927                         if (object == NULL) {
3928                                 vm_map_entry_back(old_entry);
3929                                 object = old_entry->object.vm_object;
3930                         }
3931
3932                         /*
3933                          * Add the reference before calling vm_object_shadow
3934                          * to insure that a shadow object is created.
3935                          */
3936                         vm_object_reference(object);
3937                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3938                                 vm_object_shadow(&old_entry->object.vm_object,
3939                                     &old_entry->offset,
3940                                     old_entry->end - old_entry->start);
3941                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3942                                 /* Transfer the second reference too. */
3943                                 vm_object_reference(
3944                                     old_entry->object.vm_object);
3945
3946                                 /*
3947                                  * As in vm_map_simplify_entry(), the
3948                                  * vnode lock will not be acquired in
3949                                  * this call to vm_object_deallocate().
3950                                  */
3951                                 vm_object_deallocate(object);
3952                                 object = old_entry->object.vm_object;
3953                         }
3954                         VM_OBJECT_WLOCK(object);
3955                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3956                         if (old_entry->cred != NULL) {
3957                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3958                                 object->cred = old_entry->cred;
3959                                 object->charge = old_entry->end - old_entry->start;
3960                                 old_entry->cred = NULL;
3961                         }
3962
3963                         /*
3964                          * Assert the correct state of the vnode
3965                          * v_writecount while the object is locked, to
3966                          * not relock it later for the assertion
3967                          * correctness.
3968                          */
3969                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3970                             object->type == OBJT_VNODE) {
3971                                 KASSERT(((struct vnode *)object->handle)->
3972                                     v_writecount > 0,
3973                                     ("vmspace_fork: v_writecount %p", object));
3974                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3975                                     ("vmspace_fork: vnp.writecount %p",
3976                                     object));
3977                         }
3978                         VM_OBJECT_WUNLOCK(object);
3979
3980                         /*
3981                          * Clone the entry, referencing the shared object.
3982                          */
3983                         new_entry = vm_map_entry_create(new_map);
3984                         *new_entry = *old_entry;
3985                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3986                             MAP_ENTRY_IN_TRANSITION);
3987                         new_entry->wiring_thread = NULL;
3988                         new_entry->wired_count = 0;
3989                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3990                                 vnode_pager_update_writecount(object,
3991                                     new_entry->start, new_entry->end);
3992                         }
3993                         vm_map_entry_set_vnode_text(new_entry, true);
3994
3995                         /*
3996                          * Insert the entry into the new map -- we know we're
3997                          * inserting at the end of the new map.
3998                          */
3999                         vm_map_entry_link(new_map, new_entry);
4000                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4001
4002                         /*
4003                          * Update the physical map
4004                          */
4005                         pmap_copy(new_map->pmap, old_map->pmap,
4006                             new_entry->start,
4007                             (old_entry->end - old_entry->start),
4008                             old_entry->start);
4009                         break;
4010
4011                 case VM_INHERIT_COPY:
4012                         /*
4013                          * Clone the entry and link into the map.
4014                          */
4015                         new_entry = vm_map_entry_create(new_map);
4016                         *new_entry = *old_entry;
4017                         /*
4018                          * Copied entry is COW over the old object.
4019                          */
4020                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4021                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
4022                         new_entry->wiring_thread = NULL;
4023                         new_entry->wired_count = 0;
4024                         new_entry->object.vm_object = NULL;
4025                         new_entry->cred = NULL;
4026                         vm_map_entry_link(new_map, new_entry);
4027                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4028                         vm_map_copy_entry(old_map, new_map, old_entry,
4029                             new_entry, fork_charge);
4030                         vm_map_entry_set_vnode_text(new_entry, true);
4031                         break;
4032
4033                 case VM_INHERIT_ZERO:
4034                         /*
4035                          * Create a new anonymous mapping entry modelled from
4036                          * the old one.
4037                          */
4038                         new_entry = vm_map_entry_create(new_map);
4039                         memset(new_entry, 0, sizeof(*new_entry));
4040
4041                         new_entry->start = old_entry->start;
4042                         new_entry->end = old_entry->end;
4043                         new_entry->eflags = old_entry->eflags &
4044                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4045                             MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4046                         new_entry->protection = old_entry->protection;
4047                         new_entry->max_protection = old_entry->max_protection;
4048                         new_entry->inheritance = VM_INHERIT_ZERO;
4049
4050                         vm_map_entry_link(new_map, new_entry);
4051                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4052
4053                         new_entry->cred = curthread->td_ucred;
4054                         crhold(new_entry->cred);
4055                         *fork_charge += (new_entry->end - new_entry->start);
4056
4057                         break;
4058                 }
4059                 old_entry = old_entry->next;
4060         }
4061         /*
4062          * Use inlined vm_map_unlock() to postpone handling the deferred
4063          * map entries, which cannot be done until both old_map and
4064          * new_map locks are released.
4065          */
4066         sx_xunlock(&old_map->lock);
4067         sx_xunlock(&new_map->lock);
4068         vm_map_process_deferred();
4069
4070         return (vm2);
4071 }
4072
4073 /*
4074  * Create a process's stack for exec_new_vmspace().  This function is never
4075  * asked to wire the newly created stack.
4076  */
4077 int
4078 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4079     vm_prot_t prot, vm_prot_t max, int cow)
4080 {
4081         vm_size_t growsize, init_ssize;
4082         rlim_t vmemlim;
4083         int rv;
4084
4085         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4086         growsize = sgrowsiz;
4087         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4088         vm_map_lock(map);
4089         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4090         /* If we would blow our VMEM resource limit, no go */
4091         if (map->size + init_ssize > vmemlim) {
4092                 rv = KERN_NO_SPACE;
4093                 goto out;
4094         }
4095         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4096             max, cow);
4097 out:
4098         vm_map_unlock(map);
4099         return (rv);
4100 }
4101
4102 static int stack_guard_page = 1;
4103 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4104     &stack_guard_page, 0,
4105     "Specifies the number of guard pages for a stack that grows");
4106
4107 static int
4108 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4109     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4110 {
4111         vm_map_entry_t new_entry, prev_entry;
4112         vm_offset_t bot, gap_bot, gap_top, top;
4113         vm_size_t init_ssize, sgp;
4114         int orient, rv;
4115
4116         /*
4117          * The stack orientation is piggybacked with the cow argument.
4118          * Extract it into orient and mask the cow argument so that we
4119          * don't pass it around further.
4120          */
4121         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4122         KASSERT(orient != 0, ("No stack grow direction"));
4123         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4124             ("bi-dir stack"));
4125
4126         if (addrbos < vm_map_min(map) ||
4127             addrbos + max_ssize > vm_map_max(map) ||
4128             addrbos + max_ssize <= addrbos)
4129                 return (KERN_INVALID_ADDRESS);
4130         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4131         if (sgp >= max_ssize)
4132                 return (KERN_INVALID_ARGUMENT);
4133
4134         init_ssize = growsize;
4135         if (max_ssize < init_ssize + sgp)
4136                 init_ssize = max_ssize - sgp;
4137
4138         /* If addr is already mapped, no go */
4139         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4140                 return (KERN_NO_SPACE);
4141
4142         /*
4143          * If we can't accommodate max_ssize in the current mapping, no go.
4144          */
4145         if (prev_entry->next->start < addrbos + max_ssize)
4146                 return (KERN_NO_SPACE);
4147
4148         /*
4149          * We initially map a stack of only init_ssize.  We will grow as
4150          * needed later.  Depending on the orientation of the stack (i.e.
4151          * the grow direction) we either map at the top of the range, the
4152          * bottom of the range or in the middle.
4153          *
4154          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4155          * and cow to be 0.  Possibly we should eliminate these as input
4156          * parameters, and just pass these values here in the insert call.
4157          */
4158         if (orient == MAP_STACK_GROWS_DOWN) {
4159                 bot = addrbos + max_ssize - init_ssize;
4160                 top = bot + init_ssize;
4161                 gap_bot = addrbos;
4162                 gap_top = bot;
4163         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4164                 bot = addrbos;
4165                 top = bot + init_ssize;
4166                 gap_bot = top;
4167                 gap_top = addrbos + max_ssize;
4168         }
4169         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4170         if (rv != KERN_SUCCESS)
4171                 return (rv);
4172         new_entry = prev_entry->next;
4173         KASSERT(new_entry->end == top || new_entry->start == bot,
4174             ("Bad entry start/end for new stack entry"));
4175         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4176             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4177             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4178         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4179             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4180             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4181         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4182             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4183             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4184         if (rv != KERN_SUCCESS)
4185                 (void)vm_map_delete(map, bot, top);
4186         return (rv);
4187 }
4188
4189 /*
4190  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4191  * successfully grow the stack.
4192  */
4193 static int
4194 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4195 {
4196         vm_map_entry_t stack_entry;
4197         struct proc *p;
4198         struct vmspace *vm;
4199         struct ucred *cred;
4200         vm_offset_t gap_end, gap_start, grow_start;
4201         vm_size_t grow_amount, guard, max_grow;
4202         rlim_t lmemlim, stacklim, vmemlim;
4203         int rv, rv1;
4204         bool gap_deleted, grow_down, is_procstack;
4205 #ifdef notyet
4206         uint64_t limit;
4207 #endif
4208 #ifdef RACCT
4209         int error;
4210 #endif
4211
4212         p = curproc;
4213         vm = p->p_vmspace;
4214
4215         /*
4216          * Disallow stack growth when the access is performed by a
4217          * debugger or AIO daemon.  The reason is that the wrong
4218          * resource limits are applied.
4219          */
4220         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4221                 return (KERN_FAILURE);
4222
4223         MPASS(!map->system_map);
4224
4225         guard = stack_guard_page * PAGE_SIZE;
4226         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4227         stacklim = lim_cur(curthread, RLIMIT_STACK);
4228         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4229 retry:
4230         /* If addr is not in a hole for a stack grow area, no need to grow. */
4231         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4232                 return (KERN_FAILURE);
4233         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4234                 return (KERN_SUCCESS);
4235         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4236                 stack_entry = gap_entry->next;
4237                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4238                     stack_entry->start != gap_entry->end)
4239                         return (KERN_FAILURE);
4240                 grow_amount = round_page(stack_entry->start - addr);
4241                 grow_down = true;
4242         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4243                 stack_entry = gap_entry->prev;
4244                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4245                     stack_entry->end != gap_entry->start)
4246                         return (KERN_FAILURE);
4247                 grow_amount = round_page(addr + 1 - stack_entry->end);
4248                 grow_down = false;
4249         } else {
4250                 return (KERN_FAILURE);
4251         }
4252         max_grow = gap_entry->end - gap_entry->start;
4253         if (guard > max_grow)
4254                 return (KERN_NO_SPACE);
4255         max_grow -= guard;
4256         if (grow_amount > max_grow)
4257                 return (KERN_NO_SPACE);
4258
4259         /*
4260          * If this is the main process stack, see if we're over the stack
4261          * limit.
4262          */
4263         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4264             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4265         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4266                 return (KERN_NO_SPACE);
4267
4268 #ifdef RACCT
4269         if (racct_enable) {
4270                 PROC_LOCK(p);
4271                 if (is_procstack && racct_set(p, RACCT_STACK,
4272                     ctob(vm->vm_ssize) + grow_amount)) {
4273                         PROC_UNLOCK(p);
4274                         return (KERN_NO_SPACE);
4275                 }
4276                 PROC_UNLOCK(p);
4277         }
4278 #endif
4279
4280         grow_amount = roundup(grow_amount, sgrowsiz);
4281         if (grow_amount > max_grow)
4282                 grow_amount = max_grow;
4283         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4284                 grow_amount = trunc_page((vm_size_t)stacklim) -
4285                     ctob(vm->vm_ssize);
4286         }
4287
4288 #ifdef notyet
4289         PROC_LOCK(p);
4290         limit = racct_get_available(p, RACCT_STACK);
4291         PROC_UNLOCK(p);
4292         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4293                 grow_amount = limit - ctob(vm->vm_ssize);
4294 #endif
4295
4296         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4297                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4298                         rv = KERN_NO_SPACE;
4299                         goto out;
4300                 }
4301 #ifdef RACCT
4302                 if (racct_enable) {
4303                         PROC_LOCK(p);
4304                         if (racct_set(p, RACCT_MEMLOCK,
4305                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4306                                 PROC_UNLOCK(p);
4307                                 rv = KERN_NO_SPACE;
4308                                 goto out;
4309                         }
4310                         PROC_UNLOCK(p);
4311                 }
4312 #endif
4313         }
4314
4315         /* If we would blow our VMEM resource limit, no go */
4316         if (map->size + grow_amount > vmemlim) {
4317                 rv = KERN_NO_SPACE;
4318                 goto out;
4319         }
4320 #ifdef RACCT
4321         if (racct_enable) {
4322                 PROC_LOCK(p);
4323                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4324                         PROC_UNLOCK(p);
4325                         rv = KERN_NO_SPACE;
4326                         goto out;
4327                 }
4328                 PROC_UNLOCK(p);
4329         }
4330 #endif
4331
4332         if (vm_map_lock_upgrade(map)) {
4333                 gap_entry = NULL;
4334                 vm_map_lock_read(map);
4335                 goto retry;
4336         }
4337
4338         if (grow_down) {
4339                 grow_start = gap_entry->end - grow_amount;
4340                 if (gap_entry->start + grow_amount == gap_entry->end) {
4341                         gap_start = gap_entry->start;
4342                         gap_end = gap_entry->end;
4343                         vm_map_entry_delete(map, gap_entry);
4344                         gap_deleted = true;
4345                 } else {
4346                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4347                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4348                         gap_deleted = false;
4349                 }
4350                 rv = vm_map_insert(map, NULL, 0, grow_start,
4351                     grow_start + grow_amount,
4352                     stack_entry->protection, stack_entry->max_protection,
4353                     MAP_STACK_GROWS_DOWN);
4354                 if (rv != KERN_SUCCESS) {
4355                         if (gap_deleted) {
4356                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4357                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4358                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4359                                 MPASS(rv1 == KERN_SUCCESS);
4360                         } else
4361                                 vm_map_entry_resize(map, gap_entry,
4362                                     grow_amount);
4363                 }
4364         } else {
4365                 grow_start = stack_entry->end;
4366                 cred = stack_entry->cred;
4367                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4368                         cred = stack_entry->object.vm_object->cred;
4369                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4370                         rv = KERN_NO_SPACE;
4371                 /* Grow the underlying object if applicable. */
4372                 else if (stack_entry->object.vm_object == NULL ||
4373                     vm_object_coalesce(stack_entry->object.vm_object,
4374                     stack_entry->offset,
4375                     (vm_size_t)(stack_entry->end - stack_entry->start),
4376                     grow_amount, cred != NULL)) {
4377                         if (gap_entry->start + grow_amount == gap_entry->end) {
4378                                 vm_map_entry_delete(map, gap_entry);
4379                                 vm_map_entry_resize(map, stack_entry,
4380                                     grow_amount);
4381                         } else {
4382                                 gap_entry->start += grow_amount;
4383                                 stack_entry->end += grow_amount;
4384                         }
4385                         map->size += grow_amount;
4386                         rv = KERN_SUCCESS;
4387                 } else
4388                         rv = KERN_FAILURE;
4389         }
4390         if (rv == KERN_SUCCESS && is_procstack)
4391                 vm->vm_ssize += btoc(grow_amount);
4392
4393         /*
4394          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4395          */
4396         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4397                 rv = vm_map_wire_locked(map, grow_start,
4398                     grow_start + grow_amount,
4399                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4400         }
4401         vm_map_lock_downgrade(map);
4402
4403 out:
4404 #ifdef RACCT
4405         if (racct_enable && rv != KERN_SUCCESS) {
4406                 PROC_LOCK(p);
4407                 error = racct_set(p, RACCT_VMEM, map->size);
4408                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4409                 if (!old_mlock) {
4410                         error = racct_set(p, RACCT_MEMLOCK,
4411                             ptoa(pmap_wired_count(map->pmap)));
4412                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4413                 }
4414                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4415                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4416                 PROC_UNLOCK(p);
4417         }
4418 #endif
4419
4420         return (rv);
4421 }
4422
4423 /*
4424  * Unshare the specified VM space for exec.  If other processes are
4425  * mapped to it, then create a new one.  The new vmspace is null.
4426  */
4427 int
4428 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4429 {
4430         struct vmspace *oldvmspace = p->p_vmspace;
4431         struct vmspace *newvmspace;
4432
4433         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4434             ("vmspace_exec recursed"));
4435         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4436         if (newvmspace == NULL)
4437                 return (ENOMEM);
4438         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4439         /*
4440          * This code is written like this for prototype purposes.  The
4441          * goal is to avoid running down the vmspace here, but let the
4442          * other process's that are still using the vmspace to finally
4443          * run it down.  Even though there is little or no chance of blocking
4444          * here, it is a good idea to keep this form for future mods.
4445          */
4446         PROC_VMSPACE_LOCK(p);
4447         p->p_vmspace = newvmspace;
4448         PROC_VMSPACE_UNLOCK(p);
4449         if (p == curthread->td_proc)
4450                 pmap_activate(curthread);
4451         curthread->td_pflags |= TDP_EXECVMSPC;
4452         return (0);
4453 }
4454
4455 /*
4456  * Unshare the specified VM space for forcing COW.  This
4457  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4458  */
4459 int
4460 vmspace_unshare(struct proc *p)
4461 {
4462         struct vmspace *oldvmspace = p->p_vmspace;
4463         struct vmspace *newvmspace;
4464         vm_ooffset_t fork_charge;
4465
4466         if (oldvmspace->vm_refcnt == 1)
4467                 return (0);
4468         fork_charge = 0;
4469         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4470         if (newvmspace == NULL)
4471                 return (ENOMEM);
4472         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4473                 vmspace_free(newvmspace);
4474                 return (ENOMEM);
4475         }
4476         PROC_VMSPACE_LOCK(p);
4477         p->p_vmspace = newvmspace;
4478         PROC_VMSPACE_UNLOCK(p);
4479         if (p == curthread->td_proc)
4480                 pmap_activate(curthread);
4481         vmspace_free(oldvmspace);
4482         return (0);
4483 }
4484
4485 /*
4486  *      vm_map_lookup:
4487  *
4488  *      Finds the VM object, offset, and
4489  *      protection for a given virtual address in the
4490  *      specified map, assuming a page fault of the
4491  *      type specified.
4492  *
4493  *      Leaves the map in question locked for read; return
4494  *      values are guaranteed until a vm_map_lookup_done
4495  *      call is performed.  Note that the map argument
4496  *      is in/out; the returned map must be used in
4497  *      the call to vm_map_lookup_done.
4498  *
4499  *      A handle (out_entry) is returned for use in
4500  *      vm_map_lookup_done, to make that fast.
4501  *
4502  *      If a lookup is requested with "write protection"
4503  *      specified, the map may be changed to perform virtual
4504  *      copying operations, although the data referenced will
4505  *      remain the same.
4506  */
4507 int
4508 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4509               vm_offset_t vaddr,
4510               vm_prot_t fault_typea,
4511               vm_map_entry_t *out_entry,        /* OUT */
4512               vm_object_t *object,              /* OUT */
4513               vm_pindex_t *pindex,              /* OUT */
4514               vm_prot_t *out_prot,              /* OUT */
4515               boolean_t *wired)                 /* OUT */
4516 {
4517         vm_map_entry_t entry;
4518         vm_map_t map = *var_map;
4519         vm_prot_t prot;
4520         vm_prot_t fault_type = fault_typea;
4521         vm_object_t eobject;
4522         vm_size_t size;
4523         struct ucred *cred;
4524
4525 RetryLookup:
4526
4527         vm_map_lock_read(map);
4528
4529 RetryLookupLocked:
4530         /*
4531          * Lookup the faulting address.
4532          */
4533         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4534                 vm_map_unlock_read(map);
4535                 return (KERN_INVALID_ADDRESS);
4536         }
4537
4538         entry = *out_entry;
4539
4540         /*
4541          * Handle submaps.
4542          */
4543         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4544                 vm_map_t old_map = map;
4545
4546                 *var_map = map = entry->object.sub_map;
4547                 vm_map_unlock_read(old_map);
4548                 goto RetryLookup;
4549         }
4550
4551         /*
4552          * Check whether this task is allowed to have this page.
4553          */
4554         prot = entry->protection;
4555         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4556                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4557                 if (prot == VM_PROT_NONE && map != kernel_map &&
4558                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4559                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4560                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4561                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4562                         goto RetryLookupLocked;
4563         }
4564         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4565         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4566                 vm_map_unlock_read(map);
4567                 return (KERN_PROTECTION_FAILURE);
4568         }
4569         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4570             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4571             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4572             ("entry %p flags %x", entry, entry->eflags));
4573         if ((fault_typea & VM_PROT_COPY) != 0 &&
4574             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4575             (entry->eflags & MAP_ENTRY_COW) == 0) {
4576                 vm_map_unlock_read(map);
4577                 return (KERN_PROTECTION_FAILURE);
4578         }
4579
4580         /*
4581          * If this page is not pageable, we have to get it for all possible
4582          * accesses.
4583          */
4584         *wired = (entry->wired_count != 0);
4585         if (*wired)
4586                 fault_type = entry->protection;
4587         size = entry->end - entry->start;
4588         /*
4589          * If the entry was copy-on-write, we either ...
4590          */
4591         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4592                 /*
4593                  * If we want to write the page, we may as well handle that
4594                  * now since we've got the map locked.
4595                  *
4596                  * If we don't need to write the page, we just demote the
4597                  * permissions allowed.
4598                  */
4599                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4600                     (fault_typea & VM_PROT_COPY) != 0) {
4601                         /*
4602                          * Make a new object, and place it in the object
4603                          * chain.  Note that no new references have appeared
4604                          * -- one just moved from the map to the new
4605                          * object.
4606                          */
4607                         if (vm_map_lock_upgrade(map))
4608                                 goto RetryLookup;
4609
4610                         if (entry->cred == NULL) {
4611                                 /*
4612                                  * The debugger owner is charged for
4613                                  * the memory.
4614                                  */
4615                                 cred = curthread->td_ucred;
4616                                 crhold(cred);
4617                                 if (!swap_reserve_by_cred(size, cred)) {
4618                                         crfree(cred);
4619                                         vm_map_unlock(map);
4620                                         return (KERN_RESOURCE_SHORTAGE);
4621                                 }
4622                                 entry->cred = cred;
4623                         }
4624                         vm_object_shadow(&entry->object.vm_object,
4625                             &entry->offset, size);
4626                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4627                         eobject = entry->object.vm_object;
4628                         if (eobject->cred != NULL) {
4629                                 /*
4630                                  * The object was not shadowed.
4631                                  */
4632                                 swap_release_by_cred(size, entry->cred);
4633                                 crfree(entry->cred);
4634                                 entry->cred = NULL;
4635                         } else if (entry->cred != NULL) {
4636                                 VM_OBJECT_WLOCK(eobject);
4637                                 eobject->cred = entry->cred;
4638                                 eobject->charge = size;
4639                                 VM_OBJECT_WUNLOCK(eobject);
4640                                 entry->cred = NULL;
4641                         }
4642
4643                         vm_map_lock_downgrade(map);
4644                 } else {
4645                         /*
4646                          * We're attempting to read a copy-on-write page --
4647                          * don't allow writes.
4648                          */
4649                         prot &= ~VM_PROT_WRITE;
4650                 }
4651         }
4652
4653         /*
4654          * Create an object if necessary.
4655          */
4656         if (entry->object.vm_object == NULL &&
4657             !map->system_map) {
4658                 if (vm_map_lock_upgrade(map))
4659                         goto RetryLookup;
4660                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4661                     atop(size));
4662                 entry->offset = 0;
4663                 if (entry->cred != NULL) {
4664                         VM_OBJECT_WLOCK(entry->object.vm_object);
4665                         entry->object.vm_object->cred = entry->cred;
4666                         entry->object.vm_object->charge = size;
4667                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4668                         entry->cred = NULL;
4669                 }
4670                 vm_map_lock_downgrade(map);
4671         }
4672
4673         /*
4674          * Return the object/offset from this entry.  If the entry was
4675          * copy-on-write or empty, it has been fixed up.
4676          */
4677         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4678         *object = entry->object.vm_object;
4679
4680         *out_prot = prot;
4681         return (KERN_SUCCESS);
4682 }
4683
4684 /*
4685  *      vm_map_lookup_locked:
4686  *
4687  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4688  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4689  */
4690 int
4691 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4692                      vm_offset_t vaddr,
4693                      vm_prot_t fault_typea,
4694                      vm_map_entry_t *out_entry, /* OUT */
4695                      vm_object_t *object,       /* OUT */
4696                      vm_pindex_t *pindex,       /* OUT */
4697                      vm_prot_t *out_prot,       /* OUT */
4698                      boolean_t *wired)          /* OUT */
4699 {
4700         vm_map_entry_t entry;
4701         vm_map_t map = *var_map;
4702         vm_prot_t prot;
4703         vm_prot_t fault_type = fault_typea;
4704
4705         /*
4706          * Lookup the faulting address.
4707          */
4708         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4709                 return (KERN_INVALID_ADDRESS);
4710
4711         entry = *out_entry;
4712
4713         /*
4714          * Fail if the entry refers to a submap.
4715          */
4716         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4717                 return (KERN_FAILURE);
4718
4719         /*
4720          * Check whether this task is allowed to have this page.
4721          */
4722         prot = entry->protection;
4723         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4724         if ((fault_type & prot) != fault_type)
4725                 return (KERN_PROTECTION_FAILURE);
4726
4727         /*
4728          * If this page is not pageable, we have to get it for all possible
4729          * accesses.
4730          */
4731         *wired = (entry->wired_count != 0);
4732         if (*wired)
4733                 fault_type = entry->protection;
4734
4735         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4736                 /*
4737                  * Fail if the entry was copy-on-write for a write fault.
4738                  */
4739                 if (fault_type & VM_PROT_WRITE)
4740                         return (KERN_FAILURE);
4741                 /*
4742                  * We're attempting to read a copy-on-write page --
4743                  * don't allow writes.
4744                  */
4745                 prot &= ~VM_PROT_WRITE;
4746         }
4747
4748         /*
4749          * Fail if an object should be created.
4750          */
4751         if (entry->object.vm_object == NULL && !map->system_map)
4752                 return (KERN_FAILURE);
4753
4754         /*
4755          * Return the object/offset from this entry.  If the entry was
4756          * copy-on-write or empty, it has been fixed up.
4757          */
4758         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4759         *object = entry->object.vm_object;
4760
4761         *out_prot = prot;
4762         return (KERN_SUCCESS);
4763 }
4764
4765 /*
4766  *      vm_map_lookup_done:
4767  *
4768  *      Releases locks acquired by a vm_map_lookup
4769  *      (according to the handle returned by that lookup).
4770  */
4771 void
4772 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4773 {
4774         /*
4775          * Unlock the main-level map
4776          */
4777         vm_map_unlock_read(map);
4778 }
4779
4780 vm_offset_t
4781 vm_map_max_KBI(const struct vm_map *map)
4782 {
4783
4784         return (vm_map_max(map));
4785 }
4786
4787 vm_offset_t
4788 vm_map_min_KBI(const struct vm_map *map)
4789 {
4790
4791         return (vm_map_min(map));
4792 }
4793
4794 pmap_t
4795 vm_map_pmap_KBI(vm_map_t map)
4796 {
4797
4798         return (map->pmap);
4799 }
4800
4801 #include "opt_ddb.h"
4802 #ifdef DDB
4803 #include <sys/kernel.h>
4804
4805 #include <ddb/ddb.h>
4806
4807 static void
4808 vm_map_print(vm_map_t map)
4809 {
4810         vm_map_entry_t entry, prev;
4811
4812         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4813             (void *)map,
4814             (void *)map->pmap, map->nentries, map->timestamp);
4815
4816         db_indent += 2;
4817         for (prev = &map->header; (entry = prev->next) != &map->header;
4818             prev = entry) {
4819                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4820                     (void *)entry, (void *)entry->start, (void *)entry->end,
4821                     entry->eflags);
4822                 {
4823                         static char *inheritance_name[4] =
4824                         {"share", "copy", "none", "donate_copy"};
4825
4826                         db_iprintf(" prot=%x/%x/%s",
4827                             entry->protection,
4828                             entry->max_protection,
4829                             inheritance_name[(int)(unsigned char)
4830                             entry->inheritance]);
4831                         if (entry->wired_count != 0)
4832                                 db_printf(", wired");
4833                 }
4834                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4835                         db_printf(", share=%p, offset=0x%jx\n",
4836                             (void *)entry->object.sub_map,
4837                             (uintmax_t)entry->offset);
4838                         if (prev == &map->header ||
4839                             prev->object.sub_map !=
4840                                 entry->object.sub_map) {
4841                                 db_indent += 2;
4842                                 vm_map_print((vm_map_t)entry->object.sub_map);
4843                                 db_indent -= 2;
4844                         }
4845                 } else {
4846                         if (entry->cred != NULL)
4847                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4848                         db_printf(", object=%p, offset=0x%jx",
4849                             (void *)entry->object.vm_object,
4850                             (uintmax_t)entry->offset);
4851                         if (entry->object.vm_object && entry->object.vm_object->cred)
4852                                 db_printf(", obj ruid %d charge %jx",
4853                                     entry->object.vm_object->cred->cr_ruid,
4854                                     (uintmax_t)entry->object.vm_object->charge);
4855                         if (entry->eflags & MAP_ENTRY_COW)
4856                                 db_printf(", copy (%s)",
4857                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4858                         db_printf("\n");
4859
4860                         if (prev == &map->header ||
4861                             prev->object.vm_object !=
4862                                 entry->object.vm_object) {
4863                                 db_indent += 2;
4864                                 vm_object_print((db_expr_t)(intptr_t)
4865                                                 entry->object.vm_object,
4866                                                 0, 0, (char *)0);
4867                                 db_indent -= 2;
4868                         }
4869                 }
4870         }
4871         db_indent -= 2;
4872 }
4873
4874 DB_SHOW_COMMAND(map, map)
4875 {
4876
4877         if (!have_addr) {
4878                 db_printf("usage: show map <addr>\n");
4879                 return;
4880         }
4881         vm_map_print((vm_map_t)addr);
4882 }
4883
4884 DB_SHOW_COMMAND(procvm, procvm)
4885 {
4886         struct proc *p;
4887
4888         if (have_addr) {
4889                 p = db_lookup_proc(addr);
4890         } else {
4891                 p = curproc;
4892         }
4893
4894         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4895             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4896             (void *)vmspace_pmap(p->p_vmspace));
4897
4898         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4899 }
4900
4901 #endif /* DDB */