]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
In zone_alloc_bucket() max argument was calculated based on uz_count.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
287         if (!pinit(vmspace_pmap(vm))) {
288                 uma_zfree(vmspace_zone, vm);
289                 return (NULL);
290         }
291         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293         vm->vm_refcnt = 1;
294         vm->vm_shm = NULL;
295         vm->vm_swrss = 0;
296         vm->vm_tsize = 0;
297         vm->vm_dsize = 0;
298         vm->vm_ssize = 0;
299         vm->vm_taddr = 0;
300         vm->vm_daddr = 0;
301         vm->vm_maxsaddr = 0;
302         return (vm);
303 }
304
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309
310         PROC_LOCK(p);
311         racct_set(p, RACCT_DATA, 0);
312         racct_set(p, RACCT_STACK, 0);
313         racct_set(p, RACCT_RSS, 0);
314         racct_set(p, RACCT_MEMLOCK, 0);
315         racct_set(p, RACCT_VMEM, 0);
316         PROC_UNLOCK(p);
317 }
318 #endif
319
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323
324         CTR1(KTR_VM, "vmspace_free: %p", vm);
325
326         /*
327          * Make sure any SysV shm is freed, it might not have been in
328          * exit1().
329          */
330         shmexit(vm);
331
332         /*
333          * Lock the map, to wait out all other references to it.
334          * Delete all of the mappings and pages they hold, then call
335          * the pmap module to reclaim anything left.
336          */
337         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
338             vm_map_max(&vm->vm_map));
339
340         pmap_release(vmspace_pmap(vm));
341         vm->vm_map.pmap = NULL;
342         uma_zfree(vmspace_zone, vm);
343 }
344
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348
349         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350             "vmspace_free() called");
351
352         if (vm->vm_refcnt == 0)
353                 panic("vmspace_free: attempt to free already freed vmspace");
354
355         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356                 vmspace_dofree(vm);
357 }
358
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362         struct vmspace *vm;
363
364         PROC_VMSPACE_LOCK(p);
365         vm = p->p_vmspace;
366         p->p_vmspace = NULL;
367         PROC_VMSPACE_UNLOCK(p);
368         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369         vmspace_free(vm);
370 }
371
372 void
373 vmspace_exit(struct thread *td)
374 {
375         int refcnt;
376         struct vmspace *vm;
377         struct proc *p;
378
379         /*
380          * Release user portion of address space.
381          * This releases references to vnodes,
382          * which could cause I/O if the file has been unlinked.
383          * Need to do this early enough that we can still sleep.
384          *
385          * The last exiting process to reach this point releases as
386          * much of the environment as it can. vmspace_dofree() is the
387          * slower fallback in case another process had a temporary
388          * reference to the vmspace.
389          */
390
391         p = td->td_proc;
392         vm = p->p_vmspace;
393         atomic_add_int(&vmspace0.vm_refcnt, 1);
394         refcnt = vm->vm_refcnt;
395         do {
396                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397                         /* Switch now since other proc might free vmspace */
398                         PROC_VMSPACE_LOCK(p);
399                         p->p_vmspace = &vmspace0;
400                         PROC_VMSPACE_UNLOCK(p);
401                         pmap_activate(td);
402                 }
403         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
404         if (refcnt == 1) {
405                 if (p->p_vmspace != vm) {
406                         /* vmspace not yet freed, switch back */
407                         PROC_VMSPACE_LOCK(p);
408                         p->p_vmspace = vm;
409                         PROC_VMSPACE_UNLOCK(p);
410                         pmap_activate(td);
411                 }
412                 pmap_remove_pages(vmspace_pmap(vm));
413                 /* Switch now since this proc will free vmspace */
414                 PROC_VMSPACE_LOCK(p);
415                 p->p_vmspace = &vmspace0;
416                 PROC_VMSPACE_UNLOCK(p);
417                 pmap_activate(td);
418                 vmspace_dofree(vm);
419         }
420 #ifdef RACCT
421         if (racct_enable)
422                 vmspace_container_reset(p);
423 #endif
424 }
425
426 /* Acquire reference to vmspace owned by another process. */
427
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431         struct vmspace *vm;
432         int refcnt;
433
434         PROC_VMSPACE_LOCK(p);
435         vm = p->p_vmspace;
436         if (vm == NULL) {
437                 PROC_VMSPACE_UNLOCK(p);
438                 return (NULL);
439         }
440         refcnt = vm->vm_refcnt;
441         do {
442                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
443                         PROC_VMSPACE_UNLOCK(p);
444                         return (NULL);
445                 }
446         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
447         if (vm != p->p_vmspace) {
448                 PROC_VMSPACE_UNLOCK(p);
449                 vmspace_free(vm);
450                 return (NULL);
451         }
452         PROC_VMSPACE_UNLOCK(p);
453         return (vm);
454 }
455
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475         struct vmspace *oldvm;
476
477         /* XXX: Need some way to assert that this is an aio daemon. */
478
479         KASSERT(newvm->vm_refcnt > 0,
480             ("vmspace_switch_aio: newvm unreferenced"));
481
482         oldvm = curproc->p_vmspace;
483         if (oldvm == newvm)
484                 return;
485
486         /*
487          * Point to the new address space and refer to it.
488          */
489         curproc->p_vmspace = newvm;
490         atomic_add_int(&newvm->vm_refcnt, 1);
491
492         /* Activate the new mapping. */
493         pmap_activate(curthread);
494
495         /* Remove the daemon's reference to the old address space. */
496         KASSERT(oldvm->vm_refcnt > 1,
497             ("vmspace_switch_aio: oldvm dropping last reference"));
498         vmspace_free(oldvm);
499 }
500
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504
505         if (map->system_map)
506                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
507         else
508                 sx_xlock_(&map->lock, file, line);
509         map->timestamp++;
510 }
511
512 static void
513 vm_map_process_deferred(void)
514 {
515         struct thread *td;
516         vm_map_entry_t entry, next;
517         vm_object_t object;
518
519         td = curthread;
520         entry = td->td_map_def_user;
521         td->td_map_def_user = NULL;
522         while (entry != NULL) {
523                 next = entry->next;
524                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525                         /*
526                          * Decrement the object's writemappings and
527                          * possibly the vnode's v_writecount.
528                          */
529                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530                             ("Submap with writecount"));
531                         object = entry->object.vm_object;
532                         KASSERT(object != NULL, ("No object for writecount"));
533                         vnode_pager_release_writecount(object, entry->start,
534                             entry->end);
535                 }
536                 vm_map_entry_deallocate(entry, FALSE);
537                 entry = next;
538         }
539 }
540
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544
545         if (map->system_map)
546                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547         else {
548                 sx_xunlock_(&map->lock, file, line);
549                 vm_map_process_deferred();
550         }
551 }
552
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556
557         if (map->system_map)
558                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
559         else
560                 sx_slock_(&map->lock, file, line);
561 }
562
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566
567         if (map->system_map)
568                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569         else {
570                 sx_sunlock_(&map->lock, file, line);
571                 vm_map_process_deferred();
572         }
573 }
574
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578         int error;
579
580         error = map->system_map ?
581             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582             !sx_try_xlock_(&map->lock, file, line);
583         if (error == 0)
584                 map->timestamp++;
585         return (error == 0);
586 }
587
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591         int error;
592
593         error = map->system_map ?
594             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595             !sx_try_slock_(&map->lock, file, line);
596         return (error == 0);
597 }
598
599 /*
600  *      _vm_map_lock_upgrade:   [ internal use only ]
601  *
602  *      Tries to upgrade a read (shared) lock on the specified map to a write
603  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *      returned without a read or write lock held.
606  *
607  *      Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612         unsigned int last_timestamp;
613
614         if (map->system_map) {
615                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616         } else {
617                 if (!sx_try_upgrade_(&map->lock, file, line)) {
618                         last_timestamp = map->timestamp;
619                         sx_sunlock_(&map->lock, file, line);
620                         vm_map_process_deferred();
621                         /*
622                          * If the map's timestamp does not change while the
623                          * map is unlocked, then the upgrade succeeds.
624                          */
625                         sx_xlock_(&map->lock, file, line);
626                         if (last_timestamp != map->timestamp) {
627                                 sx_xunlock_(&map->lock, file, line);
628                                 return (1);
629                         }
630                 }
631         }
632         map->timestamp++;
633         return (0);
634 }
635
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639
640         if (map->system_map) {
641                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642         } else
643                 sx_downgrade_(&map->lock, file, line);
644 }
645
646 /*
647  *      vm_map_locked:
648  *
649  *      Returns a non-zero value if the caller holds a write (exclusive) lock
650  *      on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655
656         if (map->system_map)
657                 return (mtx_owned(&map->system_mtx));
658         else
659                 return (sx_xlocked(&map->lock));
660 }
661
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666
667         if (map->system_map)
668                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669         else
670                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672
673 #define VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define VM_MAP_ASSERT_LOCKED(map)
677 #endif
678
679 /*
680  *      _vm_map_unlock_and_wait:
681  *
682  *      Atomically releases the lock on the specified map and puts the calling
683  *      thread to sleep.  The calling thread will remain asleep until either
684  *      vm_map_wakeup() is performed on the map or the specified timeout is
685  *      exceeded.
686  *
687  *      WARNING!  This function does not perform deferred deallocations of
688  *      objects and map entries.  Therefore, the calling thread is expected to
689  *      reacquire the map lock after reawakening and later perform an ordinary
690  *      unlock operation, such as vm_map_unlock(), before completing its
691  *      operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696
697         mtx_lock(&map_sleep_mtx);
698         if (map->system_map)
699                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700         else
701                 sx_xunlock_(&map->lock, file, line);
702         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703             timo));
704 }
705
706 /*
707  *      vm_map_wakeup:
708  *
709  *      Awaken any threads that have slept on the map using
710  *      vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715
716         /*
717          * Acquire and release map_sleep_mtx to prevent a wakeup()
718          * from being performed (and lost) between the map unlock
719          * and the msleep() in _vm_map_unlock_and_wait().
720          */
721         mtx_lock(&map_sleep_mtx);
722         mtx_unlock(&map_sleep_mtx);
723         wakeup(&map->root);
724 }
725
726 void
727 vm_map_busy(vm_map_t map)
728 {
729
730         VM_MAP_ASSERT_LOCKED(map);
731         map->busy++;
732 }
733
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737
738         VM_MAP_ASSERT_LOCKED(map);
739         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742                 wakeup(&map->busy);
743         }
744 }
745
746 void 
747 vm_map_wait_busy(vm_map_t map)
748 {
749
750         VM_MAP_ASSERT_LOCKED(map);
751         while (map->busy) {
752                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753                 if (map->system_map)
754                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755                 else
756                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757         }
758         map->timestamp++;
759 }
760
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764         return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766
767 /*
768  *      vm_map_create:
769  *
770  *      Creates and returns a new empty VM map with
771  *      the given physical map structure, and having
772  *      the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777         vm_map_t result;
778
779         result = uma_zalloc(mapzone, M_WAITOK);
780         CTR1(KTR_VM, "vm_map_create: %p", result);
781         _vm_map_init(result, pmap, min, max);
782         return (result);
783 }
784
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792
793         map->header.next = map->header.prev = &map->header;
794         map->header.eflags = MAP_ENTRY_HEADER;
795         map->needs_wakeup = FALSE;
796         map->system_map = 0;
797         map->pmap = pmap;
798         map->header.end = min;
799         map->header.start = max;
800         map->flags = 0;
801         map->root = NULL;
802         map->timestamp = 0;
803         map->busy = 0;
804 }
805
806 void
807 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
808 {
809
810         _vm_map_init(map, pmap, min, max);
811         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
812         sx_init(&map->lock, "user map");
813 }
814
815 /*
816  *      vm_map_entry_dispose:   [ internal use only ]
817  *
818  *      Inverse of vm_map_entry_create.
819  */
820 static void
821 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
822 {
823         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
824 }
825
826 /*
827  *      vm_map_entry_create:    [ internal use only ]
828  *
829  *      Allocates a VM map entry for insertion.
830  *      No entry fields are filled in.
831  */
832 static vm_map_entry_t
833 vm_map_entry_create(vm_map_t map)
834 {
835         vm_map_entry_t new_entry;
836
837         if (map->system_map)
838                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
839         else
840                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
841         if (new_entry == NULL)
842                 panic("vm_map_entry_create: kernel resources exhausted");
843         return (new_entry);
844 }
845
846 /*
847  *      vm_map_entry_set_behavior:
848  *
849  *      Set the expected access behavior, either normal, random, or
850  *      sequential.
851  */
852 static inline void
853 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
854 {
855         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
856             (behavior & MAP_ENTRY_BEHAV_MASK);
857 }
858
859 /*
860  *      vm_map_entry_set_max_free:
861  *
862  *      Set the max_free field in a vm_map_entry.
863  */
864 static inline void
865 vm_map_entry_set_max_free(vm_map_entry_t entry)
866 {
867
868         entry->max_free = entry->adj_free;
869         if (entry->left != NULL && entry->left->max_free > entry->max_free)
870                 entry->max_free = entry->left->max_free;
871         if (entry->right != NULL && entry->right->max_free > entry->max_free)
872                 entry->max_free = entry->right->max_free;
873 }
874
875 /*
876  *      vm_map_entry_splay:
877  *
878  *      The Sleator and Tarjan top-down splay algorithm with the
879  *      following variation.  Max_free must be computed bottom-up, so
880  *      on the downward pass, maintain the left and right spines in
881  *      reverse order.  Then, make a second pass up each side to fix
882  *      the pointers and compute max_free.  The time bound is O(log n)
883  *      amortized.
884  *
885  *      The new root is the vm_map_entry containing "addr", or else an
886  *      adjacent entry (lower or higher) if addr is not in the tree.
887  *
888  *      The map must be locked, and leaves it so.
889  *
890  *      Returns: the new root.
891  */
892 static vm_map_entry_t
893 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
894 {
895         vm_map_entry_t llist, rlist;
896         vm_map_entry_t ltree, rtree;
897         vm_map_entry_t y;
898
899         /* Special case of empty tree. */
900         if (root == NULL)
901                 return (root);
902
903         /*
904          * Pass One: Splay down the tree until we find addr or a NULL
905          * pointer where addr would go.  llist and rlist are the two
906          * sides in reverse order (bottom-up), with llist linked by
907          * the right pointer and rlist linked by the left pointer in
908          * the vm_map_entry.  Wait until Pass Two to set max_free on
909          * the two spines.
910          */
911         llist = NULL;
912         rlist = NULL;
913         for (;;) {
914                 /* root is never NULL in here. */
915                 if (addr < root->start) {
916                         y = root->left;
917                         if (y == NULL)
918                                 break;
919                         if (addr < y->start && y->left != NULL) {
920                                 /* Rotate right and put y on rlist. */
921                                 root->left = y->right;
922                                 y->right = root;
923                                 vm_map_entry_set_max_free(root);
924                                 root = y->left;
925                                 y->left = rlist;
926                                 rlist = y;
927                         } else {
928                                 /* Put root on rlist. */
929                                 root->left = rlist;
930                                 rlist = root;
931                                 root = y;
932                         }
933                 } else if (addr >= root->end) {
934                         y = root->right;
935                         if (y == NULL)
936                                 break;
937                         if (addr >= y->end && y->right != NULL) {
938                                 /* Rotate left and put y on llist. */
939                                 root->right = y->left;
940                                 y->left = root;
941                                 vm_map_entry_set_max_free(root);
942                                 root = y->right;
943                                 y->right = llist;
944                                 llist = y;
945                         } else {
946                                 /* Put root on llist. */
947                                 root->right = llist;
948                                 llist = root;
949                                 root = y;
950                         }
951                 } else
952                         break;
953         }
954
955         /*
956          * Pass Two: Walk back up the two spines, flip the pointers
957          * and set max_free.  The subtrees of the root go at the
958          * bottom of llist and rlist.
959          */
960         ltree = root->left;
961         while (llist != NULL) {
962                 y = llist->right;
963                 llist->right = ltree;
964                 vm_map_entry_set_max_free(llist);
965                 ltree = llist;
966                 llist = y;
967         }
968         rtree = root->right;
969         while (rlist != NULL) {
970                 y = rlist->left;
971                 rlist->left = rtree;
972                 vm_map_entry_set_max_free(rlist);
973                 rtree = rlist;
974                 rlist = y;
975         }
976
977         /*
978          * Final assembly: add ltree and rtree as subtrees of root.
979          */
980         root->left = ltree;
981         root->right = rtree;
982         vm_map_entry_set_max_free(root);
983
984         return (root);
985 }
986
987 /*
988  *      vm_map_entry_{un,}link:
989  *
990  *      Insert/remove entries from maps.
991  */
992 static void
993 vm_map_entry_link(vm_map_t map,
994                   vm_map_entry_t after_where,
995                   vm_map_entry_t entry)
996 {
997
998         CTR4(KTR_VM,
999             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1000             map->nentries, entry, after_where);
1001         VM_MAP_ASSERT_LOCKED(map);
1002         KASSERT(after_where->end <= entry->start,
1003             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1004             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1005         KASSERT(entry->end <= after_where->next->start,
1006             ("vm_map_entry_link: new end %jx next start %jx overlap",
1007             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1008
1009         map->nentries++;
1010         entry->prev = after_where;
1011         entry->next = after_where->next;
1012         entry->next->prev = entry;
1013         after_where->next = entry;
1014
1015         if (after_where != &map->header) {
1016                 if (after_where != map->root)
1017                         vm_map_entry_splay(after_where->start, map->root);
1018                 entry->right = after_where->right;
1019                 entry->left = after_where;
1020                 after_where->right = NULL;
1021                 after_where->adj_free = entry->start - after_where->end;
1022                 vm_map_entry_set_max_free(after_where);
1023         } else {
1024                 entry->right = map->root;
1025                 entry->left = NULL;
1026         }
1027         entry->adj_free = entry->next->start - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = entry->next->start - root->end;
1047                 vm_map_entry_set_max_free(root);
1048         }
1049         map->root = root;
1050
1051         prev = entry->prev;
1052         next = entry->next;
1053         next->prev = prev;
1054         prev->next = next;
1055         map->nentries--;
1056         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1057             map->nentries, entry);
1058 }
1059
1060 /*
1061  *      vm_map_entry_resize_free:
1062  *
1063  *      Recompute the amount of free space following a vm_map_entry
1064  *      and propagate that value up the tree.  Call this function after
1065  *      resizing a map entry in-place, that is, without a call to
1066  *      vm_map_entry_link() or _unlink().
1067  *
1068  *      The map must be locked, and leaves it so.
1069  */
1070 static void
1071 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1072 {
1073
1074         /*
1075          * Using splay trees without parent pointers, propagating
1076          * max_free up the tree is done by moving the entry to the
1077          * root and making the change there.
1078          */
1079         if (entry != map->root)
1080                 map->root = vm_map_entry_splay(entry->start, map->root);
1081
1082         entry->adj_free = entry->next->start - entry->end;
1083         vm_map_entry_set_max_free(entry);
1084 }
1085
1086 /*
1087  *      vm_map_lookup_entry:    [ internal use only ]
1088  *
1089  *      Finds the map entry containing (or
1090  *      immediately preceding) the specified address
1091  *      in the given map; the entry is returned
1092  *      in the "entry" parameter.  The boolean
1093  *      result indicates whether the address is
1094  *      actually contained in the map.
1095  */
1096 boolean_t
1097 vm_map_lookup_entry(
1098         vm_map_t map,
1099         vm_offset_t address,
1100         vm_map_entry_t *entry)  /* OUT */
1101 {
1102         vm_map_entry_t cur;
1103         boolean_t locked;
1104
1105         /*
1106          * If the map is empty, then the map entry immediately preceding
1107          * "address" is the map's header.
1108          */
1109         cur = map->root;
1110         if (cur == NULL)
1111                 *entry = &map->header;
1112         else if (address >= cur->start && cur->end > address) {
1113                 *entry = cur;
1114                 return (TRUE);
1115         } else if ((locked = vm_map_locked(map)) ||
1116             sx_try_upgrade(&map->lock)) {
1117                 /*
1118                  * Splay requires a write lock on the map.  However, it only
1119                  * restructures the binary search tree; it does not otherwise
1120                  * change the map.  Thus, the map's timestamp need not change
1121                  * on a temporary upgrade.
1122                  */
1123                 map->root = cur = vm_map_entry_splay(address, cur);
1124                 if (!locked)
1125                         sx_downgrade(&map->lock);
1126
1127                 /*
1128                  * If "address" is contained within a map entry, the new root
1129                  * is that map entry.  Otherwise, the new root is a map entry
1130                  * immediately before or after "address".
1131                  */
1132                 if (address >= cur->start) {
1133                         *entry = cur;
1134                         if (cur->end > address)
1135                                 return (TRUE);
1136                 } else
1137                         *entry = cur->prev;
1138         } else
1139                 /*
1140                  * Since the map is only locked for read access, perform a
1141                  * standard binary search tree lookup for "address".
1142                  */
1143                 for (;;) {
1144                         if (address < cur->start) {
1145                                 if (cur->left == NULL) {
1146                                         *entry = cur->prev;
1147                                         break;
1148                                 }
1149                                 cur = cur->left;
1150                         } else if (cur->end > address) {
1151                                 *entry = cur;
1152                                 return (TRUE);
1153                         } else {
1154                                 if (cur->right == NULL) {
1155                                         *entry = cur;
1156                                         break;
1157                                 }
1158                                 cur = cur->right;
1159                         }
1160                 }
1161         return (FALSE);
1162 }
1163
1164 /*
1165  *      vm_map_insert:
1166  *
1167  *      Inserts the given whole VM object into the target
1168  *      map at the specified address range.  The object's
1169  *      size should match that of the address range.
1170  *
1171  *      Requires that the map be locked, and leaves it so.
1172  *
1173  *      If object is non-NULL, ref count must be bumped by caller
1174  *      prior to making call to account for the new entry.
1175  */
1176 int
1177 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1178     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1179 {
1180         vm_map_entry_t new_entry, prev_entry, temp_entry;
1181         struct ucred *cred;
1182         vm_eflags_t protoeflags;
1183         vm_inherit_t inheritance;
1184
1185         VM_MAP_ASSERT_LOCKED(map);
1186         KASSERT(object != kernel_object ||
1187             (cow & MAP_COPY_ON_WRITE) == 0,
1188             ("vm_map_insert: kernel object and COW"));
1189         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1190             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1191         KASSERT((prot & ~max) == 0,
1192             ("prot %#x is not subset of max_prot %#x", prot, max));
1193
1194         /*
1195          * Check that the start and end points are not bogus.
1196          */
1197         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1198             start >= end)
1199                 return (KERN_INVALID_ADDRESS);
1200
1201         /*
1202          * Find the entry prior to the proposed starting address; if it's part
1203          * of an existing entry, this range is bogus.
1204          */
1205         if (vm_map_lookup_entry(map, start, &temp_entry))
1206                 return (KERN_NO_SPACE);
1207
1208         prev_entry = temp_entry;
1209
1210         /*
1211          * Assert that the next entry doesn't overlap the end point.
1212          */
1213         if (prev_entry->next->start < end)
1214                 return (KERN_NO_SPACE);
1215
1216         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1217             max != VM_PROT_NONE))
1218                 return (KERN_INVALID_ARGUMENT);
1219
1220         protoeflags = 0;
1221         if (cow & MAP_COPY_ON_WRITE)
1222                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1223         if (cow & MAP_NOFAULT)
1224                 protoeflags |= MAP_ENTRY_NOFAULT;
1225         if (cow & MAP_DISABLE_SYNCER)
1226                 protoeflags |= MAP_ENTRY_NOSYNC;
1227         if (cow & MAP_DISABLE_COREDUMP)
1228                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1229         if (cow & MAP_STACK_GROWS_DOWN)
1230                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1231         if (cow & MAP_STACK_GROWS_UP)
1232                 protoeflags |= MAP_ENTRY_GROWS_UP;
1233         if (cow & MAP_VN_WRITECOUNT)
1234                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1235         if ((cow & MAP_CREATE_GUARD) != 0)
1236                 protoeflags |= MAP_ENTRY_GUARD;
1237         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1238                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1239         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1240                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1241         if (cow & MAP_INHERIT_SHARE)
1242                 inheritance = VM_INHERIT_SHARE;
1243         else
1244                 inheritance = VM_INHERIT_DEFAULT;
1245
1246         cred = NULL;
1247         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1248                 goto charged;
1249         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1250             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1251                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1252                         return (KERN_RESOURCE_SHORTAGE);
1253                 KASSERT(object == NULL ||
1254                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1255                     object->cred == NULL,
1256                     ("overcommit: vm_map_insert o %p", object));
1257                 cred = curthread->td_ucred;
1258         }
1259
1260 charged:
1261         /* Expand the kernel pmap, if necessary. */
1262         if (map == kernel_map && end > kernel_vm_end)
1263                 pmap_growkernel(end);
1264         if (object != NULL) {
1265                 /*
1266                  * OBJ_ONEMAPPING must be cleared unless this mapping
1267                  * is trivially proven to be the only mapping for any
1268                  * of the object's pages.  (Object granularity
1269                  * reference counting is insufficient to recognize
1270                  * aliases with precision.)
1271                  */
1272                 VM_OBJECT_WLOCK(object);
1273                 if (object->ref_count > 1 || object->shadow_count != 0)
1274                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1275                 VM_OBJECT_WUNLOCK(object);
1276         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1277             protoeflags &&
1278             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1279             prev_entry->end == start && (prev_entry->cred == cred ||
1280             (prev_entry->object.vm_object != NULL &&
1281             prev_entry->object.vm_object->cred == cred)) &&
1282             vm_object_coalesce(prev_entry->object.vm_object,
1283             prev_entry->offset,
1284             (vm_size_t)(prev_entry->end - prev_entry->start),
1285             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1286             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1287                 /*
1288                  * We were able to extend the object.  Determine if we
1289                  * can extend the previous map entry to include the
1290                  * new range as well.
1291                  */
1292                 if (prev_entry->inheritance == inheritance &&
1293                     prev_entry->protection == prot &&
1294                     prev_entry->max_protection == max &&
1295                     prev_entry->wired_count == 0) {
1296                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1297                             0, ("prev_entry %p has incoherent wiring",
1298                             prev_entry));
1299                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300                                 map->size += end - prev_entry->end;
1301                         prev_entry->end = end;
1302                         vm_map_entry_resize_free(map, prev_entry);
1303                         vm_map_simplify_entry(map, prev_entry);
1304                         return (KERN_SUCCESS);
1305                 }
1306
1307                 /*
1308                  * If we can extend the object but cannot extend the
1309                  * map entry, we have to create a new map entry.  We
1310                  * must bump the ref count on the extended object to
1311                  * account for it.  object may be NULL.
1312                  */
1313                 object = prev_entry->object.vm_object;
1314                 offset = prev_entry->offset +
1315                     (prev_entry->end - prev_entry->start);
1316                 vm_object_reference(object);
1317                 if (cred != NULL && object != NULL && object->cred != NULL &&
1318                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319                         /* Object already accounts for this uid. */
1320                         cred = NULL;
1321                 }
1322         }
1323         if (cred != NULL)
1324                 crhold(cred);
1325
1326         /*
1327          * Create a new entry
1328          */
1329         new_entry = vm_map_entry_create(map);
1330         new_entry->start = start;
1331         new_entry->end = end;
1332         new_entry->cred = NULL;
1333
1334         new_entry->eflags = protoeflags;
1335         new_entry->object.vm_object = object;
1336         new_entry->offset = offset;
1337
1338         new_entry->inheritance = inheritance;
1339         new_entry->protection = prot;
1340         new_entry->max_protection = max;
1341         new_entry->wired_count = 0;
1342         new_entry->wiring_thread = NULL;
1343         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344         new_entry->next_read = start;
1345
1346         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348         new_entry->cred = cred;
1349
1350         /*
1351          * Insert the new entry into the list
1352          */
1353         vm_map_entry_link(map, prev_entry, new_entry);
1354         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355                 map->size += new_entry->end - new_entry->start;
1356
1357         /*
1358          * Try to coalesce the new entry with both the previous and next
1359          * entries in the list.  Previously, we only attempted to coalesce
1360          * with the previous entry when object is NULL.  Here, we handle the
1361          * other cases, which are less common.
1362          */
1363         vm_map_simplify_entry(map, new_entry);
1364
1365         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367                     end - start, cow & MAP_PREFAULT_PARTIAL);
1368         }
1369
1370         return (KERN_SUCCESS);
1371 }
1372
1373 /*
1374  *      vm_map_findspace:
1375  *
1376  *      Find the first fit (lowest VM address) for "length" free bytes
1377  *      beginning at address >= start in the given map.
1378  *
1379  *      In a vm_map_entry, "adj_free" is the amount of free space
1380  *      adjacent (higher address) to this entry, and "max_free" is the
1381  *      maximum amount of contiguous free space in its subtree.  This
1382  *      allows finding a free region in one path down the tree, so
1383  *      O(log n) amortized with splay trees.
1384  *
1385  *      The map must be locked, and leaves it so.
1386  *
1387  *      Returns: 0 on success, and starting address in *addr,
1388  *               1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)  /* OUT */
1393 {
1394         vm_map_entry_t entry;
1395         vm_offset_t st;
1396
1397         /*
1398          * Request must fit within min/max VM address and must avoid
1399          * address wrap.
1400          */
1401         start = MAX(start, vm_map_min(map));
1402         if (start + length > vm_map_max(map) || start + length < start)
1403                 return (1);
1404
1405         /* Empty tree means wide open address space. */
1406         if (map->root == NULL) {
1407                 *addr = start;
1408                 return (0);
1409         }
1410
1411         /*
1412          * After splay, if start comes before root node, then there
1413          * must be a gap from start to the root.
1414          */
1415         map->root = vm_map_entry_splay(start, map->root);
1416         if (start + length <= map->root->start) {
1417                 *addr = start;
1418                 return (0);
1419         }
1420
1421         /*
1422          * Root is the last node that might begin its gap before
1423          * start, and this is the last comparison where address
1424          * wrap might be a problem.
1425          */
1426         st = (start > map->root->end) ? start : map->root->end;
1427         if (length <= map->root->end + map->root->adj_free - st) {
1428                 *addr = st;
1429                 return (0);
1430         }
1431
1432         /* With max_free, can immediately tell if no solution. */
1433         entry = map->root->right;
1434         if (entry == NULL || length > entry->max_free)
1435                 return (1);
1436
1437         /*
1438          * Search the right subtree in the order: left subtree, root,
1439          * right subtree (first fit).  The previous splay implies that
1440          * all regions in the right subtree have addresses > start.
1441          */
1442         while (entry != NULL) {
1443                 if (entry->left != NULL && entry->left->max_free >= length)
1444                         entry = entry->left;
1445                 else if (entry->adj_free >= length) {
1446                         *addr = entry->end;
1447                         return (0);
1448                 } else
1449                         entry = entry->right;
1450         }
1451
1452         /* Can't get here, so panic if we do. */
1453         panic("vm_map_findspace: max_free corrupt");
1454 }
1455
1456 int
1457 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1458     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1459     vm_prot_t max, int cow)
1460 {
1461         vm_offset_t end;
1462         int result;
1463
1464         end = start + length;
1465         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1466             object == NULL,
1467             ("vm_map_fixed: non-NULL backing object for stack"));
1468         vm_map_lock(map);
1469         VM_MAP_RANGE_CHECK(map, start, end);
1470         if ((cow & MAP_CHECK_EXCL) == 0)
1471                 vm_map_delete(map, start, end);
1472         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1473                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1474                     prot, max, cow);
1475         } else {
1476                 result = vm_map_insert(map, object, offset, start, end,
1477                     prot, max, cow);
1478         }
1479         vm_map_unlock(map);
1480         return (result);
1481 }
1482
1483 /*
1484  * Searches for the specified amount of free space in the given map with the
1485  * specified alignment.  Performs an address-ordered, first-fit search from
1486  * the given address "*addr", with an optional upper bound "max_addr".  If the
1487  * parameter "alignment" is zero, then the alignment is computed from the
1488  * given (object, offset) pair so as to enable the greatest possible use of
1489  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1490  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1491  *
1492  * The map must be locked.  Initially, there must be at least "length" bytes
1493  * of free space at the given address.
1494  */
1495 static int
1496 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1497     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1498     vm_offset_t alignment)
1499 {
1500         vm_offset_t aligned_addr, free_addr;
1501
1502         VM_MAP_ASSERT_LOCKED(map);
1503         free_addr = *addr;
1504         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1505             free_addr == *addr, ("caller provided insufficient free space"));
1506         for (;;) {
1507                 /*
1508                  * At the start of every iteration, the free space at address
1509                  * "*addr" is at least "length" bytes.
1510                  */
1511                 if (alignment == 0)
1512                         pmap_align_superpage(object, offset, addr, length);
1513                 else if ((*addr & (alignment - 1)) != 0) {
1514                         *addr &= ~(alignment - 1);
1515                         *addr += alignment;
1516                 }
1517                 aligned_addr = *addr;
1518                 if (aligned_addr == free_addr) {
1519                         /*
1520                          * Alignment did not change "*addr", so "*addr" must
1521                          * still provide sufficient free space.
1522                          */
1523                         return (KERN_SUCCESS);
1524                 }
1525
1526                 /*
1527                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1528                  * be a valid address, in which case vm_map_findspace() cannot
1529                  * be relied upon to fail.
1530                  */
1531                 if (aligned_addr < free_addr ||
1532                     vm_map_findspace(map, aligned_addr, length, addr) ||
1533                     (max_addr != 0 && *addr + length > max_addr))
1534                         return (KERN_NO_SPACE);
1535                 free_addr = *addr;
1536                 if (free_addr == aligned_addr) {
1537                         /*
1538                          * If a successful call to vm_map_findspace() did not
1539                          * change "*addr", then "*addr" must still be aligned
1540                          * and provide sufficient free space.
1541                          */
1542                         return (KERN_SUCCESS);
1543                 }
1544         }
1545 }
1546
1547 /*
1548  *      vm_map_find finds an unallocated region in the target address
1549  *      map with the given length.  The search is defined to be
1550  *      first-fit from the specified address; the region found is
1551  *      returned in the same parameter.
1552  *
1553  *      If object is non-NULL, ref count must be bumped by caller
1554  *      prior to making call to account for the new entry.
1555  */
1556 int
1557 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1558             vm_offset_t *addr,  /* IN/OUT */
1559             vm_size_t length, vm_offset_t max_addr, int find_space,
1560             vm_prot_t prot, vm_prot_t max, int cow)
1561 {
1562         vm_offset_t alignment, min_addr;
1563         int rv;
1564
1565         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1566             object == NULL,
1567             ("vm_map_find: non-NULL backing object for stack"));
1568         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1569             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1570         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1571             (object->flags & OBJ_COLORED) == 0))
1572                 find_space = VMFS_ANY_SPACE;
1573         if (find_space >> 8 != 0) {
1574                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1575                 alignment = (vm_offset_t)1 << (find_space >> 8);
1576         } else
1577                 alignment = 0;
1578         vm_map_lock(map);
1579         if (find_space != VMFS_NO_SPACE) {
1580                 KASSERT(find_space == VMFS_ANY_SPACE ||
1581                     find_space == VMFS_OPTIMAL_SPACE ||
1582                     find_space == VMFS_SUPER_SPACE ||
1583                     alignment != 0, ("unexpected VMFS flag"));
1584                 min_addr = *addr;
1585 again:
1586                 if (vm_map_findspace(map, min_addr, length, addr) ||
1587                     (max_addr != 0 && *addr + length > max_addr)) {
1588                         rv = KERN_NO_SPACE;
1589                         goto done;
1590                 }
1591                 if (find_space != VMFS_ANY_SPACE &&
1592                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1593                     max_addr, alignment)) != KERN_SUCCESS) {
1594                         if (find_space == VMFS_OPTIMAL_SPACE) {
1595                                 find_space = VMFS_ANY_SPACE;
1596                                 goto again;
1597                         }
1598                         goto done;
1599                 }
1600         } else if ((cow & MAP_REMAP) != 0) {
1601                 if (*addr < vm_map_min(map) ||
1602                     *addr + length > vm_map_max(map) ||
1603                     *addr + length <= length) {
1604                         rv = KERN_INVALID_ADDRESS;
1605                         goto done;
1606                 }
1607                 vm_map_delete(map, *addr, *addr + length);
1608         }
1609         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1610                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1611                     max, cow);
1612         } else {
1613                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1614                     prot, max, cow);
1615         }
1616 done:
1617         vm_map_unlock(map);
1618         return (rv);
1619 }
1620
1621 /*
1622  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1623  *      additional parameter (min_addr) and treats the given address
1624  *      (*addr) differently.  Specifically, it treats *addr as a hint
1625  *      and not as the minimum address where the mapping is created.
1626  *
1627  *      This function works in two phases.  First, it tries to
1628  *      allocate above the hint.  If that fails and the hint is
1629  *      greater than min_addr, it performs a second pass, replacing
1630  *      the hint with min_addr as the minimum address for the
1631  *      allocation.
1632  */
1633 int
1634 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1635     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1636     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1637     int cow)
1638 {
1639         vm_offset_t hint;
1640         int rv;
1641
1642         hint = *addr;
1643         for (;;) {
1644                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1645                     find_space, prot, max, cow);
1646                 if (rv == KERN_SUCCESS || min_addr >= hint)
1647                         return (rv);
1648                 *addr = hint = min_addr;
1649         }
1650 }
1651
1652 /*
1653  * A map entry with any of the following flags set must not be merged with
1654  * another entry.
1655  */
1656 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1657             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1658
1659 static bool
1660 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1661 {
1662
1663         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1664             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1665             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1666             prev, entry));
1667         return (prev->end == entry->start &&
1668             prev->object.vm_object == entry->object.vm_object &&
1669             (prev->object.vm_object == NULL ||
1670             prev->offset + (prev->end - prev->start) == entry->offset) &&
1671             prev->eflags == entry->eflags &&
1672             prev->protection == entry->protection &&
1673             prev->max_protection == entry->max_protection &&
1674             prev->inheritance == entry->inheritance &&
1675             prev->wired_count == entry->wired_count &&
1676             prev->cred == entry->cred);
1677 }
1678
1679 static void
1680 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1681 {
1682
1683         /*
1684          * If the backing object is a vnode object, vm_object_deallocate()
1685          * calls vrele().  However, vrele() does not lock the vnode because
1686          * the vnode has additional references.  Thus, the map lock can be
1687          * kept without causing a lock-order reversal with the vnode lock.
1688          *
1689          * Since we count the number of virtual page mappings in
1690          * object->un_pager.vnp.writemappings, the writemappings value
1691          * should not be adjusted when the entry is disposed of.
1692          */
1693         if (entry->object.vm_object != NULL)
1694                 vm_object_deallocate(entry->object.vm_object);
1695         if (entry->cred != NULL)
1696                 crfree(entry->cred);
1697         vm_map_entry_dispose(map, entry);
1698 }
1699
1700 /*
1701  *      vm_map_simplify_entry:
1702  *
1703  *      Simplify the given map entry by merging with either neighbor.  This
1704  *      routine also has the ability to merge with both neighbors.
1705  *
1706  *      The map must be locked.
1707  *
1708  *      This routine guarantees that the passed entry remains valid (though
1709  *      possibly extended).  When merging, this routine may delete one or
1710  *      both neighbors.
1711  */
1712 void
1713 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1714 {
1715         vm_map_entry_t next, prev;
1716
1717         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1718                 return;
1719         prev = entry->prev;
1720         if (vm_map_mergeable_neighbors(prev, entry)) {
1721                 vm_map_entry_unlink(map, prev);
1722                 entry->start = prev->start;
1723                 entry->offset = prev->offset;
1724                 if (entry->prev != &map->header)
1725                         vm_map_entry_resize_free(map, entry->prev);
1726                 vm_map_merged_neighbor_dispose(map, prev);
1727         }
1728         next = entry->next;
1729         if (vm_map_mergeable_neighbors(entry, next)) {
1730                 vm_map_entry_unlink(map, next);
1731                 entry->end = next->end;
1732                 vm_map_entry_resize_free(map, entry);
1733                 vm_map_merged_neighbor_dispose(map, next);
1734         }
1735 }
1736
1737 /*
1738  *      vm_map_clip_start:      [ internal use only ]
1739  *
1740  *      Asserts that the given entry begins at or after
1741  *      the specified address; if necessary,
1742  *      it splits the entry into two.
1743  */
1744 #define vm_map_clip_start(map, entry, startaddr) \
1745 { \
1746         if (startaddr > entry->start) \
1747                 _vm_map_clip_start(map, entry, startaddr); \
1748 }
1749
1750 /*
1751  *      This routine is called only when it is known that
1752  *      the entry must be split.
1753  */
1754 static void
1755 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1756 {
1757         vm_map_entry_t new_entry;
1758
1759         VM_MAP_ASSERT_LOCKED(map);
1760         KASSERT(entry->end > start && entry->start < start,
1761             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1762
1763         /*
1764          * Split off the front portion -- note that we must insert the new
1765          * entry BEFORE this one, so that this entry has the specified
1766          * starting address.
1767          */
1768         vm_map_simplify_entry(map, entry);
1769
1770         /*
1771          * If there is no object backing this entry, we might as well create
1772          * one now.  If we defer it, an object can get created after the map
1773          * is clipped, and individual objects will be created for the split-up
1774          * map.  This is a bit of a hack, but is also about the best place to
1775          * put this improvement.
1776          */
1777         if (entry->object.vm_object == NULL && !map->system_map &&
1778             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1779                 vm_object_t object;
1780                 object = vm_object_allocate(OBJT_DEFAULT,
1781                                 atop(entry->end - entry->start));
1782                 entry->object.vm_object = object;
1783                 entry->offset = 0;
1784                 if (entry->cred != NULL) {
1785                         object->cred = entry->cred;
1786                         object->charge = entry->end - entry->start;
1787                         entry->cred = NULL;
1788                 }
1789         } else if (entry->object.vm_object != NULL &&
1790                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1791                    entry->cred != NULL) {
1792                 VM_OBJECT_WLOCK(entry->object.vm_object);
1793                 KASSERT(entry->object.vm_object->cred == NULL,
1794                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1795                 entry->object.vm_object->cred = entry->cred;
1796                 entry->object.vm_object->charge = entry->end - entry->start;
1797                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1798                 entry->cred = NULL;
1799         }
1800
1801         new_entry = vm_map_entry_create(map);
1802         *new_entry = *entry;
1803
1804         new_entry->end = start;
1805         entry->offset += (start - entry->start);
1806         entry->start = start;
1807         if (new_entry->cred != NULL)
1808                 crhold(entry->cred);
1809
1810         vm_map_entry_link(map, entry->prev, new_entry);
1811
1812         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1813                 vm_object_reference(new_entry->object.vm_object);
1814                 /*
1815                  * The object->un_pager.vnp.writemappings for the
1816                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1817                  * kept as is here.  The virtual pages are
1818                  * re-distributed among the clipped entries, so the sum is
1819                  * left the same.
1820                  */
1821         }
1822 }
1823
1824 /*
1825  *      vm_map_clip_end:        [ internal use only ]
1826  *
1827  *      Asserts that the given entry ends at or before
1828  *      the specified address; if necessary,
1829  *      it splits the entry into two.
1830  */
1831 #define vm_map_clip_end(map, entry, endaddr) \
1832 { \
1833         if ((endaddr) < (entry->end)) \
1834                 _vm_map_clip_end((map), (entry), (endaddr)); \
1835 }
1836
1837 /*
1838  *      This routine is called only when it is known that
1839  *      the entry must be split.
1840  */
1841 static void
1842 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1843 {
1844         vm_map_entry_t new_entry;
1845
1846         VM_MAP_ASSERT_LOCKED(map);
1847         KASSERT(entry->start < end && entry->end > end,
1848             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1849
1850         /*
1851          * If there is no object backing this entry, we might as well create
1852          * one now.  If we defer it, an object can get created after the map
1853          * is clipped, and individual objects will be created for the split-up
1854          * map.  This is a bit of a hack, but is also about the best place to
1855          * put this improvement.
1856          */
1857         if (entry->object.vm_object == NULL && !map->system_map &&
1858             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1859                 vm_object_t object;
1860                 object = vm_object_allocate(OBJT_DEFAULT,
1861                                 atop(entry->end - entry->start));
1862                 entry->object.vm_object = object;
1863                 entry->offset = 0;
1864                 if (entry->cred != NULL) {
1865                         object->cred = entry->cred;
1866                         object->charge = entry->end - entry->start;
1867                         entry->cred = NULL;
1868                 }
1869         } else if (entry->object.vm_object != NULL &&
1870                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1871                    entry->cred != NULL) {
1872                 VM_OBJECT_WLOCK(entry->object.vm_object);
1873                 KASSERT(entry->object.vm_object->cred == NULL,
1874                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1875                 entry->object.vm_object->cred = entry->cred;
1876                 entry->object.vm_object->charge = entry->end - entry->start;
1877                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1878                 entry->cred = NULL;
1879         }
1880
1881         /*
1882          * Create a new entry and insert it AFTER the specified entry
1883          */
1884         new_entry = vm_map_entry_create(map);
1885         *new_entry = *entry;
1886
1887         new_entry->start = entry->end = end;
1888         new_entry->offset += (end - entry->start);
1889         if (new_entry->cred != NULL)
1890                 crhold(entry->cred);
1891
1892         vm_map_entry_link(map, entry, new_entry);
1893
1894         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1895                 vm_object_reference(new_entry->object.vm_object);
1896         }
1897 }
1898
1899 /*
1900  *      vm_map_submap:          [ kernel use only ]
1901  *
1902  *      Mark the given range as handled by a subordinate map.
1903  *
1904  *      This range must have been created with vm_map_find,
1905  *      and no other operations may have been performed on this
1906  *      range prior to calling vm_map_submap.
1907  *
1908  *      Only a limited number of operations can be performed
1909  *      within this rage after calling vm_map_submap:
1910  *              vm_fault
1911  *      [Don't try vm_map_copy!]
1912  *
1913  *      To remove a submapping, one must first remove the
1914  *      range from the superior map, and then destroy the
1915  *      submap (if desired).  [Better yet, don't try it.]
1916  */
1917 int
1918 vm_map_submap(
1919         vm_map_t map,
1920         vm_offset_t start,
1921         vm_offset_t end,
1922         vm_map_t submap)
1923 {
1924         vm_map_entry_t entry;
1925         int result = KERN_INVALID_ARGUMENT;
1926
1927         vm_map_lock(map);
1928
1929         VM_MAP_RANGE_CHECK(map, start, end);
1930
1931         if (vm_map_lookup_entry(map, start, &entry)) {
1932                 vm_map_clip_start(map, entry, start);
1933         } else
1934                 entry = entry->next;
1935
1936         vm_map_clip_end(map, entry, end);
1937
1938         if ((entry->start == start) && (entry->end == end) &&
1939             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1940             (entry->object.vm_object == NULL)) {
1941                 entry->object.sub_map = submap;
1942                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1943                 result = KERN_SUCCESS;
1944         }
1945         vm_map_unlock(map);
1946
1947         return (result);
1948 }
1949
1950 /*
1951  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1952  */
1953 #define MAX_INIT_PT     96
1954
1955 /*
1956  *      vm_map_pmap_enter:
1957  *
1958  *      Preload the specified map's pmap with mappings to the specified
1959  *      object's memory-resident pages.  No further physical pages are
1960  *      allocated, and no further virtual pages are retrieved from secondary
1961  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1962  *      limited number of page mappings are created at the low-end of the
1963  *      specified address range.  (For this purpose, a superpage mapping
1964  *      counts as one page mapping.)  Otherwise, all resident pages within
1965  *      the specified address range are mapped.
1966  */
1967 static void
1968 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1969     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1970 {
1971         vm_offset_t start;
1972         vm_page_t p, p_start;
1973         vm_pindex_t mask, psize, threshold, tmpidx;
1974
1975         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1976                 return;
1977         VM_OBJECT_RLOCK(object);
1978         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979                 VM_OBJECT_RUNLOCK(object);
1980                 VM_OBJECT_WLOCK(object);
1981                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1982                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1983                             size);
1984                         VM_OBJECT_WUNLOCK(object);
1985                         return;
1986                 }
1987                 VM_OBJECT_LOCK_DOWNGRADE(object);
1988         }
1989
1990         psize = atop(size);
1991         if (psize + pindex > object->size) {
1992                 if (object->size < pindex) {
1993                         VM_OBJECT_RUNLOCK(object);
1994                         return;
1995                 }
1996                 psize = object->size - pindex;
1997         }
1998
1999         start = 0;
2000         p_start = NULL;
2001         threshold = MAX_INIT_PT;
2002
2003         p = vm_page_find_least(object, pindex);
2004         /*
2005          * Assert: the variable p is either (1) the page with the
2006          * least pindex greater than or equal to the parameter pindex
2007          * or (2) NULL.
2008          */
2009         for (;
2010              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2011              p = TAILQ_NEXT(p, listq)) {
2012                 /*
2013                  * don't allow an madvise to blow away our really
2014                  * free pages allocating pv entries.
2015                  */
2016                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2017                     vm_page_count_severe()) ||
2018                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2019                     tmpidx >= threshold)) {
2020                         psize = tmpidx;
2021                         break;
2022                 }
2023                 if (p->valid == VM_PAGE_BITS_ALL) {
2024                         if (p_start == NULL) {
2025                                 start = addr + ptoa(tmpidx);
2026                                 p_start = p;
2027                         }
2028                         /* Jump ahead if a superpage mapping is possible. */
2029                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2030                             (pagesizes[p->psind] - 1)) == 0) {
2031                                 mask = atop(pagesizes[p->psind]) - 1;
2032                                 if (tmpidx + mask < psize &&
2033                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2034                                         p += mask;
2035                                         threshold += mask;
2036                                 }
2037                         }
2038                 } else if (p_start != NULL) {
2039                         pmap_enter_object(map->pmap, start, addr +
2040                             ptoa(tmpidx), p_start, prot);
2041                         p_start = NULL;
2042                 }
2043         }
2044         if (p_start != NULL)
2045                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2046                     p_start, prot);
2047         VM_OBJECT_RUNLOCK(object);
2048 }
2049
2050 /*
2051  *      vm_map_protect:
2052  *
2053  *      Sets the protection of the specified address
2054  *      region in the target map.  If "set_max" is
2055  *      specified, the maximum protection is to be set;
2056  *      otherwise, only the current protection is affected.
2057  */
2058 int
2059 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2060                vm_prot_t new_prot, boolean_t set_max)
2061 {
2062         vm_map_entry_t current, entry;
2063         vm_object_t obj;
2064         struct ucred *cred;
2065         vm_prot_t old_prot;
2066
2067         if (start == end)
2068                 return (KERN_SUCCESS);
2069
2070         vm_map_lock(map);
2071
2072         /*
2073          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2074          * need to fault pages into the map and will drop the map lock while
2075          * doing so, and the VM object may end up in an inconsistent state if we
2076          * update the protection on the map entry in between faults.
2077          */
2078         vm_map_wait_busy(map);
2079
2080         VM_MAP_RANGE_CHECK(map, start, end);
2081
2082         if (vm_map_lookup_entry(map, start, &entry)) {
2083                 vm_map_clip_start(map, entry, start);
2084         } else {
2085                 entry = entry->next;
2086         }
2087
2088         /*
2089          * Make a first pass to check for protection violations.
2090          */
2091         for (current = entry; current->start < end; current = current->next) {
2092                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2093                         continue;
2094                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2095                         vm_map_unlock(map);
2096                         return (KERN_INVALID_ARGUMENT);
2097                 }
2098                 if ((new_prot & current->max_protection) != new_prot) {
2099                         vm_map_unlock(map);
2100                         return (KERN_PROTECTION_FAILURE);
2101                 }
2102         }
2103
2104         /*
2105          * Do an accounting pass for private read-only mappings that
2106          * now will do cow due to allowed write (e.g. debugger sets
2107          * breakpoint on text segment)
2108          */
2109         for (current = entry; current->start < end; current = current->next) {
2110
2111                 vm_map_clip_end(map, current, end);
2112
2113                 if (set_max ||
2114                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2115                     ENTRY_CHARGED(current) ||
2116                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2117                         continue;
2118                 }
2119
2120                 cred = curthread->td_ucred;
2121                 obj = current->object.vm_object;
2122
2123                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2124                         if (!swap_reserve(current->end - current->start)) {
2125                                 vm_map_unlock(map);
2126                                 return (KERN_RESOURCE_SHORTAGE);
2127                         }
2128                         crhold(cred);
2129                         current->cred = cred;
2130                         continue;
2131                 }
2132
2133                 VM_OBJECT_WLOCK(obj);
2134                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2135                         VM_OBJECT_WUNLOCK(obj);
2136                         continue;
2137                 }
2138
2139                 /*
2140                  * Charge for the whole object allocation now, since
2141                  * we cannot distinguish between non-charged and
2142                  * charged clipped mapping of the same object later.
2143                  */
2144                 KASSERT(obj->charge == 0,
2145                     ("vm_map_protect: object %p overcharged (entry %p)",
2146                     obj, current));
2147                 if (!swap_reserve(ptoa(obj->size))) {
2148                         VM_OBJECT_WUNLOCK(obj);
2149                         vm_map_unlock(map);
2150                         return (KERN_RESOURCE_SHORTAGE);
2151                 }
2152
2153                 crhold(cred);
2154                 obj->cred = cred;
2155                 obj->charge = ptoa(obj->size);
2156                 VM_OBJECT_WUNLOCK(obj);
2157         }
2158
2159         /*
2160          * Go back and fix up protections. [Note that clipping is not
2161          * necessary the second time.]
2162          */
2163         for (current = entry; current->start < end; current = current->next) {
2164                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2165                         continue;
2166
2167                 old_prot = current->protection;
2168
2169                 if (set_max)
2170                         current->protection =
2171                             (current->max_protection = new_prot) &
2172                             old_prot;
2173                 else
2174                         current->protection = new_prot;
2175
2176                 /*
2177                  * For user wired map entries, the normal lazy evaluation of
2178                  * write access upgrades through soft page faults is
2179                  * undesirable.  Instead, immediately copy any pages that are
2180                  * copy-on-write and enable write access in the physical map.
2181                  */
2182                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2183                     (current->protection & VM_PROT_WRITE) != 0 &&
2184                     (old_prot & VM_PROT_WRITE) == 0)
2185                         vm_fault_copy_entry(map, map, current, current, NULL);
2186
2187                 /*
2188                  * When restricting access, update the physical map.  Worry
2189                  * about copy-on-write here.
2190                  */
2191                 if ((old_prot & ~current->protection) != 0) {
2192 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2193                                                         VM_PROT_ALL)
2194                         pmap_protect(map->pmap, current->start,
2195                             current->end,
2196                             current->protection & MASK(current));
2197 #undef  MASK
2198                 }
2199                 vm_map_simplify_entry(map, current);
2200         }
2201         vm_map_unlock(map);
2202         return (KERN_SUCCESS);
2203 }
2204
2205 /*
2206  *      vm_map_madvise:
2207  *
2208  *      This routine traverses a processes map handling the madvise
2209  *      system call.  Advisories are classified as either those effecting
2210  *      the vm_map_entry structure, or those effecting the underlying
2211  *      objects.
2212  */
2213 int
2214 vm_map_madvise(
2215         vm_map_t map,
2216         vm_offset_t start,
2217         vm_offset_t end,
2218         int behav)
2219 {
2220         vm_map_entry_t current, entry;
2221         bool modify_map;
2222
2223         /*
2224          * Some madvise calls directly modify the vm_map_entry, in which case
2225          * we need to use an exclusive lock on the map and we need to perform
2226          * various clipping operations.  Otherwise we only need a read-lock
2227          * on the map.
2228          */
2229         switch(behav) {
2230         case MADV_NORMAL:
2231         case MADV_SEQUENTIAL:
2232         case MADV_RANDOM:
2233         case MADV_NOSYNC:
2234         case MADV_AUTOSYNC:
2235         case MADV_NOCORE:
2236         case MADV_CORE:
2237                 if (start == end)
2238                         return (0);
2239                 modify_map = true;
2240                 vm_map_lock(map);
2241                 break;
2242         case MADV_WILLNEED:
2243         case MADV_DONTNEED:
2244         case MADV_FREE:
2245                 if (start == end)
2246                         return (0);
2247                 modify_map = false;
2248                 vm_map_lock_read(map);
2249                 break;
2250         default:
2251                 return (EINVAL);
2252         }
2253
2254         /*
2255          * Locate starting entry and clip if necessary.
2256          */
2257         VM_MAP_RANGE_CHECK(map, start, end);
2258
2259         if (vm_map_lookup_entry(map, start, &entry)) {
2260                 if (modify_map)
2261                         vm_map_clip_start(map, entry, start);
2262         } else {
2263                 entry = entry->next;
2264         }
2265
2266         if (modify_map) {
2267                 /*
2268                  * madvise behaviors that are implemented in the vm_map_entry.
2269                  *
2270                  * We clip the vm_map_entry so that behavioral changes are
2271                  * limited to the specified address range.
2272                  */
2273                 for (current = entry; current->start < end;
2274                     current = current->next) {
2275                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2276                                 continue;
2277
2278                         vm_map_clip_end(map, current, end);
2279
2280                         switch (behav) {
2281                         case MADV_NORMAL:
2282                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2283                                 break;
2284                         case MADV_SEQUENTIAL:
2285                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2286                                 break;
2287                         case MADV_RANDOM:
2288                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2289                                 break;
2290                         case MADV_NOSYNC:
2291                                 current->eflags |= MAP_ENTRY_NOSYNC;
2292                                 break;
2293                         case MADV_AUTOSYNC:
2294                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2295                                 break;
2296                         case MADV_NOCORE:
2297                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2298                                 break;
2299                         case MADV_CORE:
2300                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2301                                 break;
2302                         default:
2303                                 break;
2304                         }
2305                         vm_map_simplify_entry(map, current);
2306                 }
2307                 vm_map_unlock(map);
2308         } else {
2309                 vm_pindex_t pstart, pend;
2310
2311                 /*
2312                  * madvise behaviors that are implemented in the underlying
2313                  * vm_object.
2314                  *
2315                  * Since we don't clip the vm_map_entry, we have to clip
2316                  * the vm_object pindex and count.
2317                  */
2318                 for (current = entry; current->start < end;
2319                     current = current->next) {
2320                         vm_offset_t useEnd, useStart;
2321
2322                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2323                                 continue;
2324
2325                         pstart = OFF_TO_IDX(current->offset);
2326                         pend = pstart + atop(current->end - current->start);
2327                         useStart = current->start;
2328                         useEnd = current->end;
2329
2330                         if (current->start < start) {
2331                                 pstart += atop(start - current->start);
2332                                 useStart = start;
2333                         }
2334                         if (current->end > end) {
2335                                 pend -= atop(current->end - end);
2336                                 useEnd = end;
2337                         }
2338
2339                         if (pstart >= pend)
2340                                 continue;
2341
2342                         /*
2343                          * Perform the pmap_advise() before clearing
2344                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2345                          * concurrent pmap operation, such as pmap_remove(),
2346                          * could clear a reference in the pmap and set
2347                          * PGA_REFERENCED on the page before the pmap_advise()
2348                          * had completed.  Consequently, the page would appear
2349                          * referenced based upon an old reference that
2350                          * occurred before this pmap_advise() ran.
2351                          */
2352                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2353                                 pmap_advise(map->pmap, useStart, useEnd,
2354                                     behav);
2355
2356                         vm_object_madvise(current->object.vm_object, pstart,
2357                             pend, behav);
2358
2359                         /*
2360                          * Pre-populate paging structures in the
2361                          * WILLNEED case.  For wired entries, the
2362                          * paging structures are already populated.
2363                          */
2364                         if (behav == MADV_WILLNEED &&
2365                             current->wired_count == 0) {
2366                                 vm_map_pmap_enter(map,
2367                                     useStart,
2368                                     current->protection,
2369                                     current->object.vm_object,
2370                                     pstart,
2371                                     ptoa(pend - pstart),
2372                                     MAP_PREFAULT_MADVISE
2373                                 );
2374                         }
2375                 }
2376                 vm_map_unlock_read(map);
2377         }
2378         return (0);
2379 }
2380
2381
2382 /*
2383  *      vm_map_inherit:
2384  *
2385  *      Sets the inheritance of the specified address
2386  *      range in the target map.  Inheritance
2387  *      affects how the map will be shared with
2388  *      child maps at the time of vmspace_fork.
2389  */
2390 int
2391 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2392                vm_inherit_t new_inheritance)
2393 {
2394         vm_map_entry_t entry;
2395         vm_map_entry_t temp_entry;
2396
2397         switch (new_inheritance) {
2398         case VM_INHERIT_NONE:
2399         case VM_INHERIT_COPY:
2400         case VM_INHERIT_SHARE:
2401         case VM_INHERIT_ZERO:
2402                 break;
2403         default:
2404                 return (KERN_INVALID_ARGUMENT);
2405         }
2406         if (start == end)
2407                 return (KERN_SUCCESS);
2408         vm_map_lock(map);
2409         VM_MAP_RANGE_CHECK(map, start, end);
2410         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2411                 entry = temp_entry;
2412                 vm_map_clip_start(map, entry, start);
2413         } else
2414                 entry = temp_entry->next;
2415         while (entry->start < end) {
2416                 vm_map_clip_end(map, entry, end);
2417                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2418                     new_inheritance != VM_INHERIT_ZERO)
2419                         entry->inheritance = new_inheritance;
2420                 vm_map_simplify_entry(map, entry);
2421                 entry = entry->next;
2422         }
2423         vm_map_unlock(map);
2424         return (KERN_SUCCESS);
2425 }
2426
2427 /*
2428  *      vm_map_unwire:
2429  *
2430  *      Implements both kernel and user unwiring.
2431  */
2432 int
2433 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2434     int flags)
2435 {
2436         vm_map_entry_t entry, first_entry, tmp_entry;
2437         vm_offset_t saved_start;
2438         unsigned int last_timestamp;
2439         int rv;
2440         boolean_t need_wakeup, result, user_unwire;
2441
2442         if (start == end)
2443                 return (KERN_SUCCESS);
2444         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2445         vm_map_lock(map);
2446         VM_MAP_RANGE_CHECK(map, start, end);
2447         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2448                 if (flags & VM_MAP_WIRE_HOLESOK)
2449                         first_entry = first_entry->next;
2450                 else {
2451                         vm_map_unlock(map);
2452                         return (KERN_INVALID_ADDRESS);
2453                 }
2454         }
2455         last_timestamp = map->timestamp;
2456         entry = first_entry;
2457         while (entry->start < end) {
2458                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2459                         /*
2460                          * We have not yet clipped the entry.
2461                          */
2462                         saved_start = (start >= entry->start) ? start :
2463                             entry->start;
2464                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2465                         if (vm_map_unlock_and_wait(map, 0)) {
2466                                 /*
2467                                  * Allow interruption of user unwiring?
2468                                  */
2469                         }
2470                         vm_map_lock(map);
2471                         if (last_timestamp+1 != map->timestamp) {
2472                                 /*
2473                                  * Look again for the entry because the map was
2474                                  * modified while it was unlocked.
2475                                  * Specifically, the entry may have been
2476                                  * clipped, merged, or deleted.
2477                                  */
2478                                 if (!vm_map_lookup_entry(map, saved_start,
2479                                     &tmp_entry)) {
2480                                         if (flags & VM_MAP_WIRE_HOLESOK)
2481                                                 tmp_entry = tmp_entry->next;
2482                                         else {
2483                                                 if (saved_start == start) {
2484                                                         /*
2485                                                          * First_entry has been deleted.
2486                                                          */
2487                                                         vm_map_unlock(map);
2488                                                         return (KERN_INVALID_ADDRESS);
2489                                                 }
2490                                                 end = saved_start;
2491                                                 rv = KERN_INVALID_ADDRESS;
2492                                                 goto done;
2493                                         }
2494                                 }
2495                                 if (entry == first_entry)
2496                                         first_entry = tmp_entry;
2497                                 else
2498                                         first_entry = NULL;
2499                                 entry = tmp_entry;
2500                         }
2501                         last_timestamp = map->timestamp;
2502                         continue;
2503                 }
2504                 vm_map_clip_start(map, entry, start);
2505                 vm_map_clip_end(map, entry, end);
2506                 /*
2507                  * Mark the entry in case the map lock is released.  (See
2508                  * above.)
2509                  */
2510                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2511                     entry->wiring_thread == NULL,
2512                     ("owned map entry %p", entry));
2513                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2514                 entry->wiring_thread = curthread;
2515                 /*
2516                  * Check the map for holes in the specified region.
2517                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2518                  */
2519                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2520                     (entry->end < end && entry->next->start > entry->end)) {
2521                         end = entry->end;
2522                         rv = KERN_INVALID_ADDRESS;
2523                         goto done;
2524                 }
2525                 /*
2526                  * If system unwiring, require that the entry is system wired.
2527                  */
2528                 if (!user_unwire &&
2529                     vm_map_entry_system_wired_count(entry) == 0) {
2530                         end = entry->end;
2531                         rv = KERN_INVALID_ARGUMENT;
2532                         goto done;
2533                 }
2534                 entry = entry->next;
2535         }
2536         rv = KERN_SUCCESS;
2537 done:
2538         need_wakeup = FALSE;
2539         if (first_entry == NULL) {
2540                 result = vm_map_lookup_entry(map, start, &first_entry);
2541                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2542                         first_entry = first_entry->next;
2543                 else
2544                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2545         }
2546         for (entry = first_entry; entry->start < end; entry = entry->next) {
2547                 /*
2548                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2549                  * space in the unwired region could have been mapped
2550                  * while the map lock was dropped for draining
2551                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2552                  * could be simultaneously wiring this new mapping
2553                  * entry.  Detect these cases and skip any entries
2554                  * marked as in transition by us.
2555                  */
2556                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2557                     entry->wiring_thread != curthread) {
2558                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2559                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2560                         continue;
2561                 }
2562
2563                 if (rv == KERN_SUCCESS && (!user_unwire ||
2564                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2565                         if (user_unwire)
2566                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2567                         if (entry->wired_count == 1)
2568                                 vm_map_entry_unwire(map, entry);
2569                         else
2570                                 entry->wired_count--;
2571                 }
2572                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2573                     ("vm_map_unwire: in-transition flag missing %p", entry));
2574                 KASSERT(entry->wiring_thread == curthread,
2575                     ("vm_map_unwire: alien wire %p", entry));
2576                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2577                 entry->wiring_thread = NULL;
2578                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2579                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2580                         need_wakeup = TRUE;
2581                 }
2582                 vm_map_simplify_entry(map, entry);
2583         }
2584         vm_map_unlock(map);
2585         if (need_wakeup)
2586                 vm_map_wakeup(map);
2587         return (rv);
2588 }
2589
2590 /*
2591  *      vm_map_wire_entry_failure:
2592  *
2593  *      Handle a wiring failure on the given entry.
2594  *
2595  *      The map should be locked.
2596  */
2597 static void
2598 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2599     vm_offset_t failed_addr)
2600 {
2601
2602         VM_MAP_ASSERT_LOCKED(map);
2603         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2604             entry->wired_count == 1,
2605             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2606         KASSERT(failed_addr < entry->end,
2607             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2608
2609         /*
2610          * If any pages at the start of this entry were successfully wired,
2611          * then unwire them.
2612          */
2613         if (failed_addr > entry->start) {
2614                 pmap_unwire(map->pmap, entry->start, failed_addr);
2615                 vm_object_unwire(entry->object.vm_object, entry->offset,
2616                     failed_addr - entry->start, PQ_ACTIVE);
2617         }
2618
2619         /*
2620          * Assign an out-of-range value to represent the failure to wire this
2621          * entry.
2622          */
2623         entry->wired_count = -1;
2624 }
2625
2626 /*
2627  *      vm_map_wire:
2628  *
2629  *      Implements both kernel and user wiring.
2630  */
2631 int
2632 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2633     int flags)
2634 {
2635         vm_map_entry_t entry, first_entry, tmp_entry;
2636         vm_offset_t faddr, saved_end, saved_start;
2637         unsigned int last_timestamp;
2638         int rv;
2639         boolean_t need_wakeup, result, user_wire;
2640         vm_prot_t prot;
2641
2642         if (start == end)
2643                 return (KERN_SUCCESS);
2644         prot = 0;
2645         if (flags & VM_MAP_WIRE_WRITE)
2646                 prot |= VM_PROT_WRITE;
2647         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2648         vm_map_lock(map);
2649         VM_MAP_RANGE_CHECK(map, start, end);
2650         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2651                 if (flags & VM_MAP_WIRE_HOLESOK)
2652                         first_entry = first_entry->next;
2653                 else {
2654                         vm_map_unlock(map);
2655                         return (KERN_INVALID_ADDRESS);
2656                 }
2657         }
2658         last_timestamp = map->timestamp;
2659         entry = first_entry;
2660         while (entry->start < end) {
2661                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2662                         /*
2663                          * We have not yet clipped the entry.
2664                          */
2665                         saved_start = (start >= entry->start) ? start :
2666                             entry->start;
2667                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2668                         if (vm_map_unlock_and_wait(map, 0)) {
2669                                 /*
2670                                  * Allow interruption of user wiring?
2671                                  */
2672                         }
2673                         vm_map_lock(map);
2674                         if (last_timestamp + 1 != map->timestamp) {
2675                                 /*
2676                                  * Look again for the entry because the map was
2677                                  * modified while it was unlocked.
2678                                  * Specifically, the entry may have been
2679                                  * clipped, merged, or deleted.
2680                                  */
2681                                 if (!vm_map_lookup_entry(map, saved_start,
2682                                     &tmp_entry)) {
2683                                         if (flags & VM_MAP_WIRE_HOLESOK)
2684                                                 tmp_entry = tmp_entry->next;
2685                                         else {
2686                                                 if (saved_start == start) {
2687                                                         /*
2688                                                          * first_entry has been deleted.
2689                                                          */
2690                                                         vm_map_unlock(map);
2691                                                         return (KERN_INVALID_ADDRESS);
2692                                                 }
2693                                                 end = saved_start;
2694                                                 rv = KERN_INVALID_ADDRESS;
2695                                                 goto done;
2696                                         }
2697                                 }
2698                                 if (entry == first_entry)
2699                                         first_entry = tmp_entry;
2700                                 else
2701                                         first_entry = NULL;
2702                                 entry = tmp_entry;
2703                         }
2704                         last_timestamp = map->timestamp;
2705                         continue;
2706                 }
2707                 vm_map_clip_start(map, entry, start);
2708                 vm_map_clip_end(map, entry, end);
2709                 /*
2710                  * Mark the entry in case the map lock is released.  (See
2711                  * above.)
2712                  */
2713                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2714                     entry->wiring_thread == NULL,
2715                     ("owned map entry %p", entry));
2716                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2717                 entry->wiring_thread = curthread;
2718                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2719                     || (entry->protection & prot) != prot) {
2720                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2721                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2722                                 end = entry->end;
2723                                 rv = KERN_INVALID_ADDRESS;
2724                                 goto done;
2725                         }
2726                         goto next_entry;
2727                 }
2728                 if (entry->wired_count == 0) {
2729                         entry->wired_count++;
2730                         saved_start = entry->start;
2731                         saved_end = entry->end;
2732
2733                         /*
2734                          * Release the map lock, relying on the in-transition
2735                          * mark.  Mark the map busy for fork.
2736                          */
2737                         vm_map_busy(map);
2738                         vm_map_unlock(map);
2739
2740                         faddr = saved_start;
2741                         do {
2742                                 /*
2743                                  * Simulate a fault to get the page and enter
2744                                  * it into the physical map.
2745                                  */
2746                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2747                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2748                                         break;
2749                         } while ((faddr += PAGE_SIZE) < saved_end);
2750                         vm_map_lock(map);
2751                         vm_map_unbusy(map);
2752                         if (last_timestamp + 1 != map->timestamp) {
2753                                 /*
2754                                  * Look again for the entry because the map was
2755                                  * modified while it was unlocked.  The entry
2756                                  * may have been clipped, but NOT merged or
2757                                  * deleted.
2758                                  */
2759                                 result = vm_map_lookup_entry(map, saved_start,
2760                                     &tmp_entry);
2761                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2762                                 if (entry == first_entry)
2763                                         first_entry = tmp_entry;
2764                                 else
2765                                         first_entry = NULL;
2766                                 entry = tmp_entry;
2767                                 while (entry->end < saved_end) {
2768                                         /*
2769                                          * In case of failure, handle entries
2770                                          * that were not fully wired here;
2771                                          * fully wired entries are handled
2772                                          * later.
2773                                          */
2774                                         if (rv != KERN_SUCCESS &&
2775                                             faddr < entry->end)
2776                                                 vm_map_wire_entry_failure(map,
2777                                                     entry, faddr);
2778                                         entry = entry->next;
2779                                 }
2780                         }
2781                         last_timestamp = map->timestamp;
2782                         if (rv != KERN_SUCCESS) {
2783                                 vm_map_wire_entry_failure(map, entry, faddr);
2784                                 end = entry->end;
2785                                 goto done;
2786                         }
2787                 } else if (!user_wire ||
2788                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2789                         entry->wired_count++;
2790                 }
2791                 /*
2792                  * Check the map for holes in the specified region.
2793                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2794                  */
2795         next_entry:
2796                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2797                     entry->end < end && entry->next->start > entry->end) {
2798                         end = entry->end;
2799                         rv = KERN_INVALID_ADDRESS;
2800                         goto done;
2801                 }
2802                 entry = entry->next;
2803         }
2804         rv = KERN_SUCCESS;
2805 done:
2806         need_wakeup = FALSE;
2807         if (first_entry == NULL) {
2808                 result = vm_map_lookup_entry(map, start, &first_entry);
2809                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2810                         first_entry = first_entry->next;
2811                 else
2812                         KASSERT(result, ("vm_map_wire: lookup failed"));
2813         }
2814         for (entry = first_entry; entry->start < end; entry = entry->next) {
2815                 /*
2816                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2817                  * space in the unwired region could have been mapped
2818                  * while the map lock was dropped for faulting in the
2819                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2820                  * Moreover, another thread could be simultaneously
2821                  * wiring this new mapping entry.  Detect these cases
2822                  * and skip any entries marked as in transition not by us.
2823                  */
2824                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2825                     entry->wiring_thread != curthread) {
2826                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2827                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2828                         continue;
2829                 }
2830
2831                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2832                         goto next_entry_done;
2833
2834                 if (rv == KERN_SUCCESS) {
2835                         if (user_wire)
2836                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2837                 } else if (entry->wired_count == -1) {
2838                         /*
2839                          * Wiring failed on this entry.  Thus, unwiring is
2840                          * unnecessary.
2841                          */
2842                         entry->wired_count = 0;
2843                 } else if (!user_wire ||
2844                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2845                         /*
2846                          * Undo the wiring.  Wiring succeeded on this entry
2847                          * but failed on a later entry.  
2848                          */
2849                         if (entry->wired_count == 1)
2850                                 vm_map_entry_unwire(map, entry);
2851                         else
2852                                 entry->wired_count--;
2853                 }
2854         next_entry_done:
2855                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2856                     ("vm_map_wire: in-transition flag missing %p", entry));
2857                 KASSERT(entry->wiring_thread == curthread,
2858                     ("vm_map_wire: alien wire %p", entry));
2859                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2860                     MAP_ENTRY_WIRE_SKIPPED);
2861                 entry->wiring_thread = NULL;
2862                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2863                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2864                         need_wakeup = TRUE;
2865                 }
2866                 vm_map_simplify_entry(map, entry);
2867         }
2868         vm_map_unlock(map);
2869         if (need_wakeup)
2870                 vm_map_wakeup(map);
2871         return (rv);
2872 }
2873
2874 /*
2875  * vm_map_sync
2876  *
2877  * Push any dirty cached pages in the address range to their pager.
2878  * If syncio is TRUE, dirty pages are written synchronously.
2879  * If invalidate is TRUE, any cached pages are freed as well.
2880  *
2881  * If the size of the region from start to end is zero, we are
2882  * supposed to flush all modified pages within the region containing
2883  * start.  Unfortunately, a region can be split or coalesced with
2884  * neighboring regions, making it difficult to determine what the
2885  * original region was.  Therefore, we approximate this requirement by
2886  * flushing the current region containing start.
2887  *
2888  * Returns an error if any part of the specified range is not mapped.
2889  */
2890 int
2891 vm_map_sync(
2892         vm_map_t map,
2893         vm_offset_t start,
2894         vm_offset_t end,
2895         boolean_t syncio,
2896         boolean_t invalidate)
2897 {
2898         vm_map_entry_t current;
2899         vm_map_entry_t entry;
2900         vm_size_t size;
2901         vm_object_t object;
2902         vm_ooffset_t offset;
2903         unsigned int last_timestamp;
2904         boolean_t failed;
2905
2906         vm_map_lock_read(map);
2907         VM_MAP_RANGE_CHECK(map, start, end);
2908         if (!vm_map_lookup_entry(map, start, &entry)) {
2909                 vm_map_unlock_read(map);
2910                 return (KERN_INVALID_ADDRESS);
2911         } else if (start == end) {
2912                 start = entry->start;
2913                 end = entry->end;
2914         }
2915         /*
2916          * Make a first pass to check for user-wired memory and holes.
2917          */
2918         for (current = entry; current->start < end; current = current->next) {
2919                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2920                         vm_map_unlock_read(map);
2921                         return (KERN_INVALID_ARGUMENT);
2922                 }
2923                 if (end > current->end &&
2924                     current->end != current->next->start) {
2925                         vm_map_unlock_read(map);
2926                         return (KERN_INVALID_ADDRESS);
2927                 }
2928         }
2929
2930         if (invalidate)
2931                 pmap_remove(map->pmap, start, end);
2932         failed = FALSE;
2933
2934         /*
2935          * Make a second pass, cleaning/uncaching pages from the indicated
2936          * objects as we go.
2937          */
2938         for (current = entry; current->start < end;) {
2939                 offset = current->offset + (start - current->start);
2940                 size = (end <= current->end ? end : current->end) - start;
2941                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2942                         vm_map_t smap;
2943                         vm_map_entry_t tentry;
2944                         vm_size_t tsize;
2945
2946                         smap = current->object.sub_map;
2947                         vm_map_lock_read(smap);
2948                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2949                         tsize = tentry->end - offset;
2950                         if (tsize < size)
2951                                 size = tsize;
2952                         object = tentry->object.vm_object;
2953                         offset = tentry->offset + (offset - tentry->start);
2954                         vm_map_unlock_read(smap);
2955                 } else {
2956                         object = current->object.vm_object;
2957                 }
2958                 vm_object_reference(object);
2959                 last_timestamp = map->timestamp;
2960                 vm_map_unlock_read(map);
2961                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2962                         failed = TRUE;
2963                 start += size;
2964                 vm_object_deallocate(object);
2965                 vm_map_lock_read(map);
2966                 if (last_timestamp == map->timestamp ||
2967                     !vm_map_lookup_entry(map, start, &current))
2968                         current = current->next;
2969         }
2970
2971         vm_map_unlock_read(map);
2972         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2973 }
2974
2975 /*
2976  *      vm_map_entry_unwire:    [ internal use only ]
2977  *
2978  *      Make the region specified by this entry pageable.
2979  *
2980  *      The map in question should be locked.
2981  *      [This is the reason for this routine's existence.]
2982  */
2983 static void
2984 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2985 {
2986
2987         VM_MAP_ASSERT_LOCKED(map);
2988         KASSERT(entry->wired_count > 0,
2989             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2990         pmap_unwire(map->pmap, entry->start, entry->end);
2991         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2992             entry->start, PQ_ACTIVE);
2993         entry->wired_count = 0;
2994 }
2995
2996 static void
2997 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2998 {
2999
3000         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3001                 vm_object_deallocate(entry->object.vm_object);
3002         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3003 }
3004
3005 /*
3006  *      vm_map_entry_delete:    [ internal use only ]
3007  *
3008  *      Deallocate the given entry from the target map.
3009  */
3010 static void
3011 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3012 {
3013         vm_object_t object;
3014         vm_pindex_t offidxstart, offidxend, count, size1;
3015         vm_size_t size;
3016
3017         vm_map_entry_unlink(map, entry);
3018         object = entry->object.vm_object;
3019
3020         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3021                 MPASS(entry->cred == NULL);
3022                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3023                 MPASS(object == NULL);
3024                 vm_map_entry_deallocate(entry, map->system_map);
3025                 return;
3026         }
3027
3028         size = entry->end - entry->start;
3029         map->size -= size;
3030
3031         if (entry->cred != NULL) {
3032                 swap_release_by_cred(size, entry->cred);
3033                 crfree(entry->cred);
3034         }
3035
3036         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3037             (object != NULL)) {
3038                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3039                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3040                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3041                 count = atop(size);
3042                 offidxstart = OFF_TO_IDX(entry->offset);
3043                 offidxend = offidxstart + count;
3044                 VM_OBJECT_WLOCK(object);
3045                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3046                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3047                     object == kernel_object)) {
3048                         vm_object_collapse(object);
3049
3050                         /*
3051                          * The option OBJPR_NOTMAPPED can be passed here
3052                          * because vm_map_delete() already performed
3053                          * pmap_remove() on the only mapping to this range
3054                          * of pages. 
3055                          */
3056                         vm_object_page_remove(object, offidxstart, offidxend,
3057                             OBJPR_NOTMAPPED);
3058                         if (object->type == OBJT_SWAP)
3059                                 swap_pager_freespace(object, offidxstart,
3060                                     count);
3061                         if (offidxend >= object->size &&
3062                             offidxstart < object->size) {
3063                                 size1 = object->size;
3064                                 object->size = offidxstart;
3065                                 if (object->cred != NULL) {
3066                                         size1 -= object->size;
3067                                         KASSERT(object->charge >= ptoa(size1),
3068                                             ("object %p charge < 0", object));
3069                                         swap_release_by_cred(ptoa(size1),
3070                                             object->cred);
3071                                         object->charge -= ptoa(size1);
3072                                 }
3073                         }
3074                 }
3075                 VM_OBJECT_WUNLOCK(object);
3076         } else
3077                 entry->object.vm_object = NULL;
3078         if (map->system_map)
3079                 vm_map_entry_deallocate(entry, TRUE);
3080         else {
3081                 entry->next = curthread->td_map_def_user;
3082                 curthread->td_map_def_user = entry;
3083         }
3084 }
3085
3086 /*
3087  *      vm_map_delete:  [ internal use only ]
3088  *
3089  *      Deallocates the given address range from the target
3090  *      map.
3091  */
3092 int
3093 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3094 {
3095         vm_map_entry_t entry;
3096         vm_map_entry_t first_entry;
3097
3098         VM_MAP_ASSERT_LOCKED(map);
3099         if (start == end)
3100                 return (KERN_SUCCESS);
3101
3102         /*
3103          * Find the start of the region, and clip it
3104          */
3105         if (!vm_map_lookup_entry(map, start, &first_entry))
3106                 entry = first_entry->next;
3107         else {
3108                 entry = first_entry;
3109                 vm_map_clip_start(map, entry, start);
3110         }
3111
3112         /*
3113          * Step through all entries in this region
3114          */
3115         while (entry->start < end) {
3116                 vm_map_entry_t next;
3117
3118                 /*
3119                  * Wait for wiring or unwiring of an entry to complete.
3120                  * Also wait for any system wirings to disappear on
3121                  * user maps.
3122                  */
3123                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3124                     (vm_map_pmap(map) != kernel_pmap &&
3125                     vm_map_entry_system_wired_count(entry) != 0)) {
3126                         unsigned int last_timestamp;
3127                         vm_offset_t saved_start;
3128                         vm_map_entry_t tmp_entry;
3129
3130                         saved_start = entry->start;
3131                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3132                         last_timestamp = map->timestamp;
3133                         (void) vm_map_unlock_and_wait(map, 0);
3134                         vm_map_lock(map);
3135                         if (last_timestamp + 1 != map->timestamp) {
3136                                 /*
3137                                  * Look again for the entry because the map was
3138                                  * modified while it was unlocked.
3139                                  * Specifically, the entry may have been
3140                                  * clipped, merged, or deleted.
3141                                  */
3142                                 if (!vm_map_lookup_entry(map, saved_start,
3143                                                          &tmp_entry))
3144                                         entry = tmp_entry->next;
3145                                 else {
3146                                         entry = tmp_entry;
3147                                         vm_map_clip_start(map, entry,
3148                                                           saved_start);
3149                                 }
3150                         }
3151                         continue;
3152                 }
3153                 vm_map_clip_end(map, entry, end);
3154
3155                 next = entry->next;
3156
3157                 /*
3158                  * Unwire before removing addresses from the pmap; otherwise,
3159                  * unwiring will put the entries back in the pmap.
3160                  */
3161                 if (entry->wired_count != 0)
3162                         vm_map_entry_unwire(map, entry);
3163
3164                 /*
3165                  * Remove mappings for the pages, but only if the
3166                  * mappings could exist.  For instance, it does not
3167                  * make sense to call pmap_remove() for guard entries.
3168                  */
3169                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3170                     entry->object.vm_object != NULL)
3171                         pmap_remove(map->pmap, entry->start, entry->end);
3172
3173                 /*
3174                  * Delete the entry only after removing all pmap
3175                  * entries pointing to its pages.  (Otherwise, its
3176                  * page frames may be reallocated, and any modify bits
3177                  * will be set in the wrong object!)
3178                  */
3179                 vm_map_entry_delete(map, entry);
3180                 entry = next;
3181         }
3182         return (KERN_SUCCESS);
3183 }
3184
3185 /*
3186  *      vm_map_remove:
3187  *
3188  *      Remove the given address range from the target map.
3189  *      This is the exported form of vm_map_delete.
3190  */
3191 int
3192 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3193 {
3194         int result;
3195
3196         vm_map_lock(map);
3197         VM_MAP_RANGE_CHECK(map, start, end);
3198         result = vm_map_delete(map, start, end);
3199         vm_map_unlock(map);
3200         return (result);
3201 }
3202
3203 /*
3204  *      vm_map_check_protection:
3205  *
3206  *      Assert that the target map allows the specified privilege on the
3207  *      entire address region given.  The entire region must be allocated.
3208  *
3209  *      WARNING!  This code does not and should not check whether the
3210  *      contents of the region is accessible.  For example a smaller file
3211  *      might be mapped into a larger address space.
3212  *
3213  *      NOTE!  This code is also called by munmap().
3214  *
3215  *      The map must be locked.  A read lock is sufficient.
3216  */
3217 boolean_t
3218 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3219                         vm_prot_t protection)
3220 {
3221         vm_map_entry_t entry;
3222         vm_map_entry_t tmp_entry;
3223
3224         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3225                 return (FALSE);
3226         entry = tmp_entry;
3227
3228         while (start < end) {
3229                 /*
3230                  * No holes allowed!
3231                  */
3232                 if (start < entry->start)
3233                         return (FALSE);
3234                 /*
3235                  * Check protection associated with entry.
3236                  */
3237                 if ((entry->protection & protection) != protection)
3238                         return (FALSE);
3239                 /* go to next entry */
3240                 start = entry->end;
3241                 entry = entry->next;
3242         }
3243         return (TRUE);
3244 }
3245
3246 /*
3247  *      vm_map_copy_entry:
3248  *
3249  *      Copies the contents of the source entry to the destination
3250  *      entry.  The entries *must* be aligned properly.
3251  */
3252 static void
3253 vm_map_copy_entry(
3254         vm_map_t src_map,
3255         vm_map_t dst_map,
3256         vm_map_entry_t src_entry,
3257         vm_map_entry_t dst_entry,
3258         vm_ooffset_t *fork_charge)
3259 {
3260         vm_object_t src_object;
3261         vm_map_entry_t fake_entry;
3262         vm_offset_t size;
3263         struct ucred *cred;
3264         int charged;
3265
3266         VM_MAP_ASSERT_LOCKED(dst_map);
3267
3268         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3269                 return;
3270
3271         if (src_entry->wired_count == 0 ||
3272             (src_entry->protection & VM_PROT_WRITE) == 0) {
3273                 /*
3274                  * If the source entry is marked needs_copy, it is already
3275                  * write-protected.
3276                  */
3277                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3278                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3279                         pmap_protect(src_map->pmap,
3280                             src_entry->start,
3281                             src_entry->end,
3282                             src_entry->protection & ~VM_PROT_WRITE);
3283                 }
3284
3285                 /*
3286                  * Make a copy of the object.
3287                  */
3288                 size = src_entry->end - src_entry->start;
3289                 if ((src_object = src_entry->object.vm_object) != NULL) {
3290                         VM_OBJECT_WLOCK(src_object);
3291                         charged = ENTRY_CHARGED(src_entry);
3292                         if (src_object->handle == NULL &&
3293                             (src_object->type == OBJT_DEFAULT ||
3294                             src_object->type == OBJT_SWAP)) {
3295                                 vm_object_collapse(src_object);
3296                                 if ((src_object->flags & (OBJ_NOSPLIT |
3297                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3298                                         vm_object_split(src_entry);
3299                                         src_object =
3300                                             src_entry->object.vm_object;
3301                                 }
3302                         }
3303                         vm_object_reference_locked(src_object);
3304                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3305                         if (src_entry->cred != NULL &&
3306                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3307                                 KASSERT(src_object->cred == NULL,
3308                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3309                                      src_object));
3310                                 src_object->cred = src_entry->cred;
3311                                 src_object->charge = size;
3312                         }
3313                         VM_OBJECT_WUNLOCK(src_object);
3314                         dst_entry->object.vm_object = src_object;
3315                         if (charged) {
3316                                 cred = curthread->td_ucred;
3317                                 crhold(cred);
3318                                 dst_entry->cred = cred;
3319                                 *fork_charge += size;
3320                                 if (!(src_entry->eflags &
3321                                       MAP_ENTRY_NEEDS_COPY)) {
3322                                         crhold(cred);
3323                                         src_entry->cred = cred;
3324                                         *fork_charge += size;
3325                                 }
3326                         }
3327                         src_entry->eflags |= MAP_ENTRY_COW |
3328                             MAP_ENTRY_NEEDS_COPY;
3329                         dst_entry->eflags |= MAP_ENTRY_COW |
3330                             MAP_ENTRY_NEEDS_COPY;
3331                         dst_entry->offset = src_entry->offset;
3332                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3333                                 /*
3334                                  * MAP_ENTRY_VN_WRITECNT cannot
3335                                  * indicate write reference from
3336                                  * src_entry, since the entry is
3337                                  * marked as needs copy.  Allocate a
3338                                  * fake entry that is used to
3339                                  * decrement object->un_pager.vnp.writecount
3340                                  * at the appropriate time.  Attach
3341                                  * fake_entry to the deferred list.
3342                                  */
3343                                 fake_entry = vm_map_entry_create(dst_map);
3344                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3345                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3346                                 vm_object_reference(src_object);
3347                                 fake_entry->object.vm_object = src_object;
3348                                 fake_entry->start = src_entry->start;
3349                                 fake_entry->end = src_entry->end;
3350                                 fake_entry->next = curthread->td_map_def_user;
3351                                 curthread->td_map_def_user = fake_entry;
3352                         }
3353
3354                         pmap_copy(dst_map->pmap, src_map->pmap,
3355                             dst_entry->start, dst_entry->end - dst_entry->start,
3356                             src_entry->start);
3357                 } else {
3358                         dst_entry->object.vm_object = NULL;
3359                         dst_entry->offset = 0;
3360                         if (src_entry->cred != NULL) {
3361                                 dst_entry->cred = curthread->td_ucred;
3362                                 crhold(dst_entry->cred);
3363                                 *fork_charge += size;
3364                         }
3365                 }
3366         } else {
3367                 /*
3368                  * We don't want to make writeable wired pages copy-on-write.
3369                  * Immediately copy these pages into the new map by simulating
3370                  * page faults.  The new pages are pageable.
3371                  */
3372                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3373                     fork_charge);
3374         }
3375 }
3376
3377 /*
3378  * vmspace_map_entry_forked:
3379  * Update the newly-forked vmspace each time a map entry is inherited
3380  * or copied.  The values for vm_dsize and vm_tsize are approximate
3381  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3382  */
3383 static void
3384 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3385     vm_map_entry_t entry)
3386 {
3387         vm_size_t entrysize;
3388         vm_offset_t newend;
3389
3390         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3391                 return;
3392         entrysize = entry->end - entry->start;
3393         vm2->vm_map.size += entrysize;
3394         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3395                 vm2->vm_ssize += btoc(entrysize);
3396         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3397             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3398                 newend = MIN(entry->end,
3399                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3400                 vm2->vm_dsize += btoc(newend - entry->start);
3401         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3402             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3403                 newend = MIN(entry->end,
3404                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3405                 vm2->vm_tsize += btoc(newend - entry->start);
3406         }
3407 }
3408
3409 /*
3410  * vmspace_fork:
3411  * Create a new process vmspace structure and vm_map
3412  * based on those of an existing process.  The new map
3413  * is based on the old map, according to the inheritance
3414  * values on the regions in that map.
3415  *
3416  * XXX It might be worth coalescing the entries added to the new vmspace.
3417  *
3418  * The source map must not be locked.
3419  */
3420 struct vmspace *
3421 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3422 {
3423         struct vmspace *vm2;
3424         vm_map_t new_map, old_map;
3425         vm_map_entry_t new_entry, old_entry;
3426         vm_object_t object;
3427         int locked;
3428         vm_inherit_t inh;
3429
3430         old_map = &vm1->vm_map;
3431         /* Copy immutable fields of vm1 to vm2. */
3432         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3433             pmap_pinit);
3434         if (vm2 == NULL)
3435                 return (NULL);
3436         vm2->vm_taddr = vm1->vm_taddr;
3437         vm2->vm_daddr = vm1->vm_daddr;
3438         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3439         vm_map_lock(old_map);
3440         if (old_map->busy)
3441                 vm_map_wait_busy(old_map);
3442         new_map = &vm2->vm_map;
3443         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3444         KASSERT(locked, ("vmspace_fork: lock failed"));
3445
3446         old_entry = old_map->header.next;
3447
3448         while (old_entry != &old_map->header) {
3449                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3450                         panic("vm_map_fork: encountered a submap");
3451
3452                 inh = old_entry->inheritance;
3453                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3454                     inh != VM_INHERIT_NONE)
3455                         inh = VM_INHERIT_COPY;
3456
3457                 switch (inh) {
3458                 case VM_INHERIT_NONE:
3459                         break;
3460
3461                 case VM_INHERIT_SHARE:
3462                         /*
3463                          * Clone the entry, creating the shared object if necessary.
3464                          */
3465                         object = old_entry->object.vm_object;
3466                         if (object == NULL) {
3467                                 object = vm_object_allocate(OBJT_DEFAULT,
3468                                         atop(old_entry->end - old_entry->start));
3469                                 old_entry->object.vm_object = object;
3470                                 old_entry->offset = 0;
3471                                 if (old_entry->cred != NULL) {
3472                                         object->cred = old_entry->cred;
3473                                         object->charge = old_entry->end -
3474                                             old_entry->start;
3475                                         old_entry->cred = NULL;
3476                                 }
3477                         }
3478
3479                         /*
3480                          * Add the reference before calling vm_object_shadow
3481                          * to insure that a shadow object is created.
3482                          */
3483                         vm_object_reference(object);
3484                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3485                                 vm_object_shadow(&old_entry->object.vm_object,
3486                                     &old_entry->offset,
3487                                     old_entry->end - old_entry->start);
3488                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3489                                 /* Transfer the second reference too. */
3490                                 vm_object_reference(
3491                                     old_entry->object.vm_object);
3492
3493                                 /*
3494                                  * As in vm_map_simplify_entry(), the
3495                                  * vnode lock will not be acquired in
3496                                  * this call to vm_object_deallocate().
3497                                  */
3498                                 vm_object_deallocate(object);
3499                                 object = old_entry->object.vm_object;
3500                         }
3501                         VM_OBJECT_WLOCK(object);
3502                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3503                         if (old_entry->cred != NULL) {
3504                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3505                                 object->cred = old_entry->cred;
3506                                 object->charge = old_entry->end - old_entry->start;
3507                                 old_entry->cred = NULL;
3508                         }
3509
3510                         /*
3511                          * Assert the correct state of the vnode
3512                          * v_writecount while the object is locked, to
3513                          * not relock it later for the assertion
3514                          * correctness.
3515                          */
3516                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3517                             object->type == OBJT_VNODE) {
3518                                 KASSERT(((struct vnode *)object->handle)->
3519                                     v_writecount > 0,
3520                                     ("vmspace_fork: v_writecount %p", object));
3521                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3522                                     ("vmspace_fork: vnp.writecount %p",
3523                                     object));
3524                         }
3525                         VM_OBJECT_WUNLOCK(object);
3526
3527                         /*
3528                          * Clone the entry, referencing the shared object.
3529                          */
3530                         new_entry = vm_map_entry_create(new_map);
3531                         *new_entry = *old_entry;
3532                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3533                             MAP_ENTRY_IN_TRANSITION);
3534                         new_entry->wiring_thread = NULL;
3535                         new_entry->wired_count = 0;
3536                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3537                                 vnode_pager_update_writecount(object,
3538                                     new_entry->start, new_entry->end);
3539                         }
3540
3541                         /*
3542                          * Insert the entry into the new map -- we know we're
3543                          * inserting at the end of the new map.
3544                          */
3545                         vm_map_entry_link(new_map, new_map->header.prev,
3546                             new_entry);
3547                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3548
3549                         /*
3550                          * Update the physical map
3551                          */
3552                         pmap_copy(new_map->pmap, old_map->pmap,
3553                             new_entry->start,
3554                             (old_entry->end - old_entry->start),
3555                             old_entry->start);
3556                         break;
3557
3558                 case VM_INHERIT_COPY:
3559                         /*
3560                          * Clone the entry and link into the map.
3561                          */
3562                         new_entry = vm_map_entry_create(new_map);
3563                         *new_entry = *old_entry;
3564                         /*
3565                          * Copied entry is COW over the old object.
3566                          */
3567                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3568                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3569                         new_entry->wiring_thread = NULL;
3570                         new_entry->wired_count = 0;
3571                         new_entry->object.vm_object = NULL;
3572                         new_entry->cred = NULL;
3573                         vm_map_entry_link(new_map, new_map->header.prev,
3574                             new_entry);
3575                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3576                         vm_map_copy_entry(old_map, new_map, old_entry,
3577                             new_entry, fork_charge);
3578                         break;
3579
3580                 case VM_INHERIT_ZERO:
3581                         /*
3582                          * Create a new anonymous mapping entry modelled from
3583                          * the old one.
3584                          */
3585                         new_entry = vm_map_entry_create(new_map);
3586                         memset(new_entry, 0, sizeof(*new_entry));
3587
3588                         new_entry->start = old_entry->start;
3589                         new_entry->end = old_entry->end;
3590                         new_entry->eflags = old_entry->eflags &
3591                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3592                             MAP_ENTRY_VN_WRITECNT);
3593                         new_entry->protection = old_entry->protection;
3594                         new_entry->max_protection = old_entry->max_protection;
3595                         new_entry->inheritance = VM_INHERIT_ZERO;
3596
3597                         vm_map_entry_link(new_map, new_map->header.prev,
3598                             new_entry);
3599                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3600
3601                         new_entry->cred = curthread->td_ucred;
3602                         crhold(new_entry->cred);
3603                         *fork_charge += (new_entry->end - new_entry->start);
3604
3605                         break;
3606                 }
3607                 old_entry = old_entry->next;
3608         }
3609         /*
3610          * Use inlined vm_map_unlock() to postpone handling the deferred
3611          * map entries, which cannot be done until both old_map and
3612          * new_map locks are released.
3613          */
3614         sx_xunlock(&old_map->lock);
3615         sx_xunlock(&new_map->lock);
3616         vm_map_process_deferred();
3617
3618         return (vm2);
3619 }
3620
3621 /*
3622  * Create a process's stack for exec_new_vmspace().  This function is never
3623  * asked to wire the newly created stack.
3624  */
3625 int
3626 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3627     vm_prot_t prot, vm_prot_t max, int cow)
3628 {
3629         vm_size_t growsize, init_ssize;
3630         rlim_t vmemlim;
3631         int rv;
3632
3633         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3634         growsize = sgrowsiz;
3635         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3636         vm_map_lock(map);
3637         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3638         /* If we would blow our VMEM resource limit, no go */
3639         if (map->size + init_ssize > vmemlim) {
3640                 rv = KERN_NO_SPACE;
3641                 goto out;
3642         }
3643         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3644             max, cow);
3645 out:
3646         vm_map_unlock(map);
3647         return (rv);
3648 }
3649
3650 static int stack_guard_page = 1;
3651 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3652     &stack_guard_page, 0,
3653     "Specifies the number of guard pages for a stack that grows");
3654
3655 static int
3656 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3657     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3658 {
3659         vm_map_entry_t new_entry, prev_entry;
3660         vm_offset_t bot, gap_bot, gap_top, top;
3661         vm_size_t init_ssize, sgp;
3662         int orient, rv;
3663
3664         /*
3665          * The stack orientation is piggybacked with the cow argument.
3666          * Extract it into orient and mask the cow argument so that we
3667          * don't pass it around further.
3668          */
3669         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3670         KASSERT(orient != 0, ("No stack grow direction"));
3671         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3672             ("bi-dir stack"));
3673
3674         if (addrbos < vm_map_min(map) ||
3675             addrbos + max_ssize > vm_map_max(map) ||
3676             addrbos + max_ssize <= addrbos)
3677                 return (KERN_INVALID_ADDRESS);
3678         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3679         if (sgp >= max_ssize)
3680                 return (KERN_INVALID_ARGUMENT);
3681
3682         init_ssize = growsize;
3683         if (max_ssize < init_ssize + sgp)
3684                 init_ssize = max_ssize - sgp;
3685
3686         /* If addr is already mapped, no go */
3687         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3688                 return (KERN_NO_SPACE);
3689
3690         /*
3691          * If we can't accommodate max_ssize in the current mapping, no go.
3692          */
3693         if (prev_entry->next->start < addrbos + max_ssize)
3694                 return (KERN_NO_SPACE);
3695
3696         /*
3697          * We initially map a stack of only init_ssize.  We will grow as
3698          * needed later.  Depending on the orientation of the stack (i.e.
3699          * the grow direction) we either map at the top of the range, the
3700          * bottom of the range or in the middle.
3701          *
3702          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3703          * and cow to be 0.  Possibly we should eliminate these as input
3704          * parameters, and just pass these values here in the insert call.
3705          */
3706         if (orient == MAP_STACK_GROWS_DOWN) {
3707                 bot = addrbos + max_ssize - init_ssize;
3708                 top = bot + init_ssize;
3709                 gap_bot = addrbos;
3710                 gap_top = bot;
3711         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3712                 bot = addrbos;
3713                 top = bot + init_ssize;
3714                 gap_bot = top;
3715                 gap_top = addrbos + max_ssize;
3716         }
3717         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3718         if (rv != KERN_SUCCESS)
3719                 return (rv);
3720         new_entry = prev_entry->next;
3721         KASSERT(new_entry->end == top || new_entry->start == bot,
3722             ("Bad entry start/end for new stack entry"));
3723         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3724             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3725             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3726         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3727             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3728             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3729         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3730             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3731             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3732         if (rv != KERN_SUCCESS)
3733                 (void)vm_map_delete(map, bot, top);
3734         return (rv);
3735 }
3736
3737 /*
3738  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3739  * successfully grow the stack.
3740  */
3741 static int
3742 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3743 {
3744         vm_map_entry_t stack_entry;
3745         struct proc *p;
3746         struct vmspace *vm;
3747         struct ucred *cred;
3748         vm_offset_t gap_end, gap_start, grow_start;
3749         size_t grow_amount, guard, max_grow;
3750         rlim_t lmemlim, stacklim, vmemlim;
3751         int rv, rv1;
3752         bool gap_deleted, grow_down, is_procstack;
3753 #ifdef notyet
3754         uint64_t limit;
3755 #endif
3756 #ifdef RACCT
3757         int error;
3758 #endif
3759
3760         p = curproc;
3761         vm = p->p_vmspace;
3762
3763         /*
3764          * Disallow stack growth when the access is performed by a
3765          * debugger or AIO daemon.  The reason is that the wrong
3766          * resource limits are applied.
3767          */
3768         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3769                 return (KERN_FAILURE);
3770
3771         MPASS(!map->system_map);
3772
3773         guard = stack_guard_page * PAGE_SIZE;
3774         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3775         stacklim = lim_cur(curthread, RLIMIT_STACK);
3776         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3777 retry:
3778         /* If addr is not in a hole for a stack grow area, no need to grow. */
3779         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3780                 return (KERN_FAILURE);
3781         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3782                 return (KERN_SUCCESS);
3783         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3784                 stack_entry = gap_entry->next;
3785                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3786                     stack_entry->start != gap_entry->end)
3787                         return (KERN_FAILURE);
3788                 grow_amount = round_page(stack_entry->start - addr);
3789                 grow_down = true;
3790         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3791                 stack_entry = gap_entry->prev;
3792                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3793                     stack_entry->end != gap_entry->start)
3794                         return (KERN_FAILURE);
3795                 grow_amount = round_page(addr + 1 - stack_entry->end);
3796                 grow_down = false;
3797         } else {
3798                 return (KERN_FAILURE);
3799         }
3800         max_grow = gap_entry->end - gap_entry->start;
3801         if (guard > max_grow)
3802                 return (KERN_NO_SPACE);
3803         max_grow -= guard;
3804         if (grow_amount > max_grow)
3805                 return (KERN_NO_SPACE);
3806
3807         /*
3808          * If this is the main process stack, see if we're over the stack
3809          * limit.
3810          */
3811         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3812             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3813         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3814                 return (KERN_NO_SPACE);
3815
3816 #ifdef RACCT
3817         if (racct_enable) {
3818                 PROC_LOCK(p);
3819                 if (is_procstack && racct_set(p, RACCT_STACK,
3820                     ctob(vm->vm_ssize) + grow_amount)) {
3821                         PROC_UNLOCK(p);
3822                         return (KERN_NO_SPACE);
3823                 }
3824                 PROC_UNLOCK(p);
3825         }
3826 #endif
3827
3828         grow_amount = roundup(grow_amount, sgrowsiz);
3829         if (grow_amount > max_grow)
3830                 grow_amount = max_grow;
3831         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3832                 grow_amount = trunc_page((vm_size_t)stacklim) -
3833                     ctob(vm->vm_ssize);
3834         }
3835
3836 #ifdef notyet
3837         PROC_LOCK(p);
3838         limit = racct_get_available(p, RACCT_STACK);
3839         PROC_UNLOCK(p);
3840         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3841                 grow_amount = limit - ctob(vm->vm_ssize);
3842 #endif
3843
3844         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3845                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3846                         rv = KERN_NO_SPACE;
3847                         goto out;
3848                 }
3849 #ifdef RACCT
3850                 if (racct_enable) {
3851                         PROC_LOCK(p);
3852                         if (racct_set(p, RACCT_MEMLOCK,
3853                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3854                                 PROC_UNLOCK(p);
3855                                 rv = KERN_NO_SPACE;
3856                                 goto out;
3857                         }
3858                         PROC_UNLOCK(p);
3859                 }
3860 #endif
3861         }
3862
3863         /* If we would blow our VMEM resource limit, no go */
3864         if (map->size + grow_amount > vmemlim) {
3865                 rv = KERN_NO_SPACE;
3866                 goto out;
3867         }
3868 #ifdef RACCT
3869         if (racct_enable) {
3870                 PROC_LOCK(p);
3871                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3872                         PROC_UNLOCK(p);
3873                         rv = KERN_NO_SPACE;
3874                         goto out;
3875                 }
3876                 PROC_UNLOCK(p);
3877         }
3878 #endif
3879
3880         if (vm_map_lock_upgrade(map)) {
3881                 gap_entry = NULL;
3882                 vm_map_lock_read(map);
3883                 goto retry;
3884         }
3885
3886         if (grow_down) {
3887                 grow_start = gap_entry->end - grow_amount;
3888                 if (gap_entry->start + grow_amount == gap_entry->end) {
3889                         gap_start = gap_entry->start;
3890                         gap_end = gap_entry->end;
3891                         vm_map_entry_delete(map, gap_entry);
3892                         gap_deleted = true;
3893                 } else {
3894                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3895                         gap_entry->end -= grow_amount;
3896                         vm_map_entry_resize_free(map, gap_entry);
3897                         gap_deleted = false;
3898                 }
3899                 rv = vm_map_insert(map, NULL, 0, grow_start,
3900                     grow_start + grow_amount,
3901                     stack_entry->protection, stack_entry->max_protection,
3902                     MAP_STACK_GROWS_DOWN);
3903                 if (rv != KERN_SUCCESS) {
3904                         if (gap_deleted) {
3905                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3906                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3907                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3908                                 MPASS(rv1 == KERN_SUCCESS);
3909                         } else {
3910                                 gap_entry->end += grow_amount;
3911                                 vm_map_entry_resize_free(map, gap_entry);
3912                         }
3913                 }
3914         } else {
3915                 grow_start = stack_entry->end;
3916                 cred = stack_entry->cred;
3917                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3918                         cred = stack_entry->object.vm_object->cred;
3919                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3920                         rv = KERN_NO_SPACE;
3921                 /* Grow the underlying object if applicable. */
3922                 else if (stack_entry->object.vm_object == NULL ||
3923                     vm_object_coalesce(stack_entry->object.vm_object,
3924                     stack_entry->offset,
3925                     (vm_size_t)(stack_entry->end - stack_entry->start),
3926                     (vm_size_t)grow_amount, cred != NULL)) {
3927                         if (gap_entry->start + grow_amount == gap_entry->end)
3928                                 vm_map_entry_delete(map, gap_entry);
3929                         else
3930                                 gap_entry->start += grow_amount;
3931                         stack_entry->end += grow_amount;
3932                         map->size += grow_amount;
3933                         vm_map_entry_resize_free(map, stack_entry);
3934                         rv = KERN_SUCCESS;
3935                 } else
3936                         rv = KERN_FAILURE;
3937         }
3938         if (rv == KERN_SUCCESS && is_procstack)
3939                 vm->vm_ssize += btoc(grow_amount);
3940
3941         /*
3942          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3943          */
3944         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3945                 vm_map_unlock(map);
3946                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3947                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3948                 vm_map_lock_read(map);
3949         } else
3950                 vm_map_lock_downgrade(map);
3951
3952 out:
3953 #ifdef RACCT
3954         if (racct_enable && rv != KERN_SUCCESS) {
3955                 PROC_LOCK(p);
3956                 error = racct_set(p, RACCT_VMEM, map->size);
3957                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3958                 if (!old_mlock) {
3959                         error = racct_set(p, RACCT_MEMLOCK,
3960                             ptoa(pmap_wired_count(map->pmap)));
3961                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3962                 }
3963                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3964                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3965                 PROC_UNLOCK(p);
3966         }
3967 #endif
3968
3969         return (rv);
3970 }
3971
3972 /*
3973  * Unshare the specified VM space for exec.  If other processes are
3974  * mapped to it, then create a new one.  The new vmspace is null.
3975  */
3976 int
3977 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3978 {
3979         struct vmspace *oldvmspace = p->p_vmspace;
3980         struct vmspace *newvmspace;
3981
3982         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3983             ("vmspace_exec recursed"));
3984         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
3985         if (newvmspace == NULL)
3986                 return (ENOMEM);
3987         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3988         /*
3989          * This code is written like this for prototype purposes.  The
3990          * goal is to avoid running down the vmspace here, but let the
3991          * other process's that are still using the vmspace to finally
3992          * run it down.  Even though there is little or no chance of blocking
3993          * here, it is a good idea to keep this form for future mods.
3994          */
3995         PROC_VMSPACE_LOCK(p);
3996         p->p_vmspace = newvmspace;
3997         PROC_VMSPACE_UNLOCK(p);
3998         if (p == curthread->td_proc)
3999                 pmap_activate(curthread);
4000         curthread->td_pflags |= TDP_EXECVMSPC;
4001         return (0);
4002 }
4003
4004 /*
4005  * Unshare the specified VM space for forcing COW.  This
4006  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4007  */
4008 int
4009 vmspace_unshare(struct proc *p)
4010 {
4011         struct vmspace *oldvmspace = p->p_vmspace;
4012         struct vmspace *newvmspace;
4013         vm_ooffset_t fork_charge;
4014
4015         if (oldvmspace->vm_refcnt == 1)
4016                 return (0);
4017         fork_charge = 0;
4018         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4019         if (newvmspace == NULL)
4020                 return (ENOMEM);
4021         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4022                 vmspace_free(newvmspace);
4023                 return (ENOMEM);
4024         }
4025         PROC_VMSPACE_LOCK(p);
4026         p->p_vmspace = newvmspace;
4027         PROC_VMSPACE_UNLOCK(p);
4028         if (p == curthread->td_proc)
4029                 pmap_activate(curthread);
4030         vmspace_free(oldvmspace);
4031         return (0);
4032 }
4033
4034 /*
4035  *      vm_map_lookup:
4036  *
4037  *      Finds the VM object, offset, and
4038  *      protection for a given virtual address in the
4039  *      specified map, assuming a page fault of the
4040  *      type specified.
4041  *
4042  *      Leaves the map in question locked for read; return
4043  *      values are guaranteed until a vm_map_lookup_done
4044  *      call is performed.  Note that the map argument
4045  *      is in/out; the returned map must be used in
4046  *      the call to vm_map_lookup_done.
4047  *
4048  *      A handle (out_entry) is returned for use in
4049  *      vm_map_lookup_done, to make that fast.
4050  *
4051  *      If a lookup is requested with "write protection"
4052  *      specified, the map may be changed to perform virtual
4053  *      copying operations, although the data referenced will
4054  *      remain the same.
4055  */
4056 int
4057 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4058               vm_offset_t vaddr,
4059               vm_prot_t fault_typea,
4060               vm_map_entry_t *out_entry,        /* OUT */
4061               vm_object_t *object,              /* OUT */
4062               vm_pindex_t *pindex,              /* OUT */
4063               vm_prot_t *out_prot,              /* OUT */
4064               boolean_t *wired)                 /* OUT */
4065 {
4066         vm_map_entry_t entry;
4067         vm_map_t map = *var_map;
4068         vm_prot_t prot;
4069         vm_prot_t fault_type = fault_typea;
4070         vm_object_t eobject;
4071         vm_size_t size;
4072         struct ucred *cred;
4073
4074 RetryLookup:
4075
4076         vm_map_lock_read(map);
4077
4078 RetryLookupLocked:
4079         /*
4080          * Lookup the faulting address.
4081          */
4082         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4083                 vm_map_unlock_read(map);
4084                 return (KERN_INVALID_ADDRESS);
4085         }
4086
4087         entry = *out_entry;
4088
4089         /*
4090          * Handle submaps.
4091          */
4092         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4093                 vm_map_t old_map = map;
4094
4095                 *var_map = map = entry->object.sub_map;
4096                 vm_map_unlock_read(old_map);
4097                 goto RetryLookup;
4098         }
4099
4100         /*
4101          * Check whether this task is allowed to have this page.
4102          */
4103         prot = entry->protection;
4104         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4105                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4106                 if (prot == VM_PROT_NONE && map != kernel_map &&
4107                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4108                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4109                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4110                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4111                         goto RetryLookupLocked;
4112         }
4113         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4114         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4115                 vm_map_unlock_read(map);
4116                 return (KERN_PROTECTION_FAILURE);
4117         }
4118         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4119             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4120             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4121             ("entry %p flags %x", entry, entry->eflags));
4122         if ((fault_typea & VM_PROT_COPY) != 0 &&
4123             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4124             (entry->eflags & MAP_ENTRY_COW) == 0) {
4125                 vm_map_unlock_read(map);
4126                 return (KERN_PROTECTION_FAILURE);
4127         }
4128
4129         /*
4130          * If this page is not pageable, we have to get it for all possible
4131          * accesses.
4132          */
4133         *wired = (entry->wired_count != 0);
4134         if (*wired)
4135                 fault_type = entry->protection;
4136         size = entry->end - entry->start;
4137         /*
4138          * If the entry was copy-on-write, we either ...
4139          */
4140         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4141                 /*
4142                  * If we want to write the page, we may as well handle that
4143                  * now since we've got the map locked.
4144                  *
4145                  * If we don't need to write the page, we just demote the
4146                  * permissions allowed.
4147                  */
4148                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4149                     (fault_typea & VM_PROT_COPY) != 0) {
4150                         /*
4151                          * Make a new object, and place it in the object
4152                          * chain.  Note that no new references have appeared
4153                          * -- one just moved from the map to the new
4154                          * object.
4155                          */
4156                         if (vm_map_lock_upgrade(map))
4157                                 goto RetryLookup;
4158
4159                         if (entry->cred == NULL) {
4160                                 /*
4161                                  * The debugger owner is charged for
4162                                  * the memory.
4163                                  */
4164                                 cred = curthread->td_ucred;
4165                                 crhold(cred);
4166                                 if (!swap_reserve_by_cred(size, cred)) {
4167                                         crfree(cred);
4168                                         vm_map_unlock(map);
4169                                         return (KERN_RESOURCE_SHORTAGE);
4170                                 }
4171                                 entry->cred = cred;
4172                         }
4173                         vm_object_shadow(&entry->object.vm_object,
4174                             &entry->offset, size);
4175                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4176                         eobject = entry->object.vm_object;
4177                         if (eobject->cred != NULL) {
4178                                 /*
4179                                  * The object was not shadowed.
4180                                  */
4181                                 swap_release_by_cred(size, entry->cred);
4182                                 crfree(entry->cred);
4183                                 entry->cred = NULL;
4184                         } else if (entry->cred != NULL) {
4185                                 VM_OBJECT_WLOCK(eobject);
4186                                 eobject->cred = entry->cred;
4187                                 eobject->charge = size;
4188                                 VM_OBJECT_WUNLOCK(eobject);
4189                                 entry->cred = NULL;
4190                         }
4191
4192                         vm_map_lock_downgrade(map);
4193                 } else {
4194                         /*
4195                          * We're attempting to read a copy-on-write page --
4196                          * don't allow writes.
4197                          */
4198                         prot &= ~VM_PROT_WRITE;
4199                 }
4200         }
4201
4202         /*
4203          * Create an object if necessary.
4204          */
4205         if (entry->object.vm_object == NULL &&
4206             !map->system_map) {
4207                 if (vm_map_lock_upgrade(map))
4208                         goto RetryLookup;
4209                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4210                     atop(size));
4211                 entry->offset = 0;
4212                 if (entry->cred != NULL) {
4213                         VM_OBJECT_WLOCK(entry->object.vm_object);
4214                         entry->object.vm_object->cred = entry->cred;
4215                         entry->object.vm_object->charge = size;
4216                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4217                         entry->cred = NULL;
4218                 }
4219                 vm_map_lock_downgrade(map);
4220         }
4221
4222         /*
4223          * Return the object/offset from this entry.  If the entry was
4224          * copy-on-write or empty, it has been fixed up.
4225          */
4226         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4227         *object = entry->object.vm_object;
4228
4229         *out_prot = prot;
4230         return (KERN_SUCCESS);
4231 }
4232
4233 /*
4234  *      vm_map_lookup_locked:
4235  *
4236  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4237  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4238  */
4239 int
4240 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4241                      vm_offset_t vaddr,
4242                      vm_prot_t fault_typea,
4243                      vm_map_entry_t *out_entry, /* OUT */
4244                      vm_object_t *object,       /* OUT */
4245                      vm_pindex_t *pindex,       /* OUT */
4246                      vm_prot_t *out_prot,       /* OUT */
4247                      boolean_t *wired)          /* OUT */
4248 {
4249         vm_map_entry_t entry;
4250         vm_map_t map = *var_map;
4251         vm_prot_t prot;
4252         vm_prot_t fault_type = fault_typea;
4253
4254         /*
4255          * Lookup the faulting address.
4256          */
4257         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4258                 return (KERN_INVALID_ADDRESS);
4259
4260         entry = *out_entry;
4261
4262         /*
4263          * Fail if the entry refers to a submap.
4264          */
4265         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4266                 return (KERN_FAILURE);
4267
4268         /*
4269          * Check whether this task is allowed to have this page.
4270          */
4271         prot = entry->protection;
4272         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4273         if ((fault_type & prot) != fault_type)
4274                 return (KERN_PROTECTION_FAILURE);
4275
4276         /*
4277          * If this page is not pageable, we have to get it for all possible
4278          * accesses.
4279          */
4280         *wired = (entry->wired_count != 0);
4281         if (*wired)
4282                 fault_type = entry->protection;
4283
4284         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4285                 /*
4286                  * Fail if the entry was copy-on-write for a write fault.
4287                  */
4288                 if (fault_type & VM_PROT_WRITE)
4289                         return (KERN_FAILURE);
4290                 /*
4291                  * We're attempting to read a copy-on-write page --
4292                  * don't allow writes.
4293                  */
4294                 prot &= ~VM_PROT_WRITE;
4295         }
4296
4297         /*
4298          * Fail if an object should be created.
4299          */
4300         if (entry->object.vm_object == NULL && !map->system_map)
4301                 return (KERN_FAILURE);
4302
4303         /*
4304          * Return the object/offset from this entry.  If the entry was
4305          * copy-on-write or empty, it has been fixed up.
4306          */
4307         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4308         *object = entry->object.vm_object;
4309
4310         *out_prot = prot;
4311         return (KERN_SUCCESS);
4312 }
4313
4314 /*
4315  *      vm_map_lookup_done:
4316  *
4317  *      Releases locks acquired by a vm_map_lookup
4318  *      (according to the handle returned by that lookup).
4319  */
4320 void
4321 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4322 {
4323         /*
4324          * Unlock the main-level map
4325          */
4326         vm_map_unlock_read(map);
4327 }
4328
4329 vm_offset_t
4330 vm_map_max_KBI(const struct vm_map *map)
4331 {
4332
4333         return (vm_map_max(map));
4334 }
4335
4336 vm_offset_t
4337 vm_map_min_KBI(const struct vm_map *map)
4338 {
4339
4340         return (vm_map_min(map));
4341 }
4342
4343 pmap_t
4344 vm_map_pmap_KBI(vm_map_t map)
4345 {
4346
4347         return (map->pmap);
4348 }
4349
4350 #include "opt_ddb.h"
4351 #ifdef DDB
4352 #include <sys/kernel.h>
4353
4354 #include <ddb/ddb.h>
4355
4356 static void
4357 vm_map_print(vm_map_t map)
4358 {
4359         vm_map_entry_t entry;
4360
4361         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4362             (void *)map,
4363             (void *)map->pmap, map->nentries, map->timestamp);
4364
4365         db_indent += 2;
4366         for (entry = map->header.next; entry != &map->header;
4367             entry = entry->next) {
4368                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4369                     (void *)entry, (void *)entry->start, (void *)entry->end,
4370                     entry->eflags);
4371                 {
4372                         static char *inheritance_name[4] =
4373                         {"share", "copy", "none", "donate_copy"};
4374
4375                         db_iprintf(" prot=%x/%x/%s",
4376                             entry->protection,
4377                             entry->max_protection,
4378                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4379                         if (entry->wired_count != 0)
4380                                 db_printf(", wired");
4381                 }
4382                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4383                         db_printf(", share=%p, offset=0x%jx\n",
4384                             (void *)entry->object.sub_map,
4385                             (uintmax_t)entry->offset);
4386                         if ((entry->prev == &map->header) ||
4387                             (entry->prev->object.sub_map !=
4388                                 entry->object.sub_map)) {
4389                                 db_indent += 2;
4390                                 vm_map_print((vm_map_t)entry->object.sub_map);
4391                                 db_indent -= 2;
4392                         }
4393                 } else {
4394                         if (entry->cred != NULL)
4395                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4396                         db_printf(", object=%p, offset=0x%jx",
4397                             (void *)entry->object.vm_object,
4398                             (uintmax_t)entry->offset);
4399                         if (entry->object.vm_object && entry->object.vm_object->cred)
4400                                 db_printf(", obj ruid %d charge %jx",
4401                                     entry->object.vm_object->cred->cr_ruid,
4402                                     (uintmax_t)entry->object.vm_object->charge);
4403                         if (entry->eflags & MAP_ENTRY_COW)
4404                                 db_printf(", copy (%s)",
4405                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4406                         db_printf("\n");
4407
4408                         if ((entry->prev == &map->header) ||
4409                             (entry->prev->object.vm_object !=
4410                                 entry->object.vm_object)) {
4411                                 db_indent += 2;
4412                                 vm_object_print((db_expr_t)(intptr_t)
4413                                                 entry->object.vm_object,
4414                                                 0, 0, (char *)0);
4415                                 db_indent -= 2;
4416                         }
4417                 }
4418         }
4419         db_indent -= 2;
4420 }
4421
4422 DB_SHOW_COMMAND(map, map)
4423 {
4424
4425         if (!have_addr) {
4426                 db_printf("usage: show map <addr>\n");
4427                 return;
4428         }
4429         vm_map_print((vm_map_t)addr);
4430 }
4431
4432 DB_SHOW_COMMAND(procvm, procvm)
4433 {
4434         struct proc *p;
4435
4436         if (have_addr) {
4437                 p = db_lookup_proc(addr);
4438         } else {
4439                 p = curproc;
4440         }
4441
4442         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4443             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4444             (void *)vmspace_pmap(p->p_vmspace));
4445
4446         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4447 }
4448
4449 #endif /* DDB */