]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Add elf image flag to disable stack gap.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153
154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157
158 /* 
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164
165 /*
166  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
167  *
168  *      Asserts that the starting and ending region
169  *      addresses fall within the valid range of the map.
170  */
171 #define VM_MAP_RANGE_CHECK(map, start, end)             \
172                 {                                       \
173                 if (start < vm_map_min(map))            \
174                         start = vm_map_min(map);        \
175                 if (end > vm_map_max(map))              \
176                         end = vm_map_max(map);          \
177                 if (start > end)                        \
178                         start = end;                    \
179                 }
180
181 /*
182  *      vm_map_startup:
183  *
184  *      Initialize the vm_map module.  Must be called before
185  *      any other vm_map routines.
186  *
187  *      Map and entry structures are allocated from the general
188  *      purpose memory pool with some exceptions:
189  *
190  *      - The kernel map and kmem submap are allocated statically.
191  *      - Kernel map entries are allocated out of a static pool.
192  *
193  *      These restrictions are necessary since malloc() uses the
194  *      maps and requires map entries.
195  */
196
197 void
198 vm_map_startup(void)
199 {
200         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203             vm_map_zdtor,
204 #else
205             NULL,
206 #endif
207             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208         uma_prealloc(mapzone, MAX_KMAP);
209         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216             vmspace_zdtor,
217 #else
218             NULL,
219 #endif
220             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226         struct vmspace *vm;
227
228         vm = (struct vmspace *)mem;
229
230         vm->vm_map.pmap = NULL;
231         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232         PMAP_LOCK_INIT(vmspace_pmap(vm));
233         return (0);
234 }
235
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239         vm_map_t map;
240
241         map = (vm_map_t)mem;
242         memset(map, 0, sizeof(*map));
243         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244         sx_init(&map->lock, "vm map (user)");
245         return (0);
246 }
247
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252         struct vmspace *vm;
253
254         vm = (struct vmspace *)mem;
255
256         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261         vm_map_t map;
262
263         map = (vm_map_t)mem;
264         KASSERT(map->nentries == 0,
265             ("map %p nentries == %d on free.",
266             map, map->nentries));
267         KASSERT(map->size == 0,
268             ("map %p size == %lu on free.",
269             map, (unsigned long)map->size));
270 }
271 #endif  /* INVARIANTS */
272
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282         struct vmspace *vm;
283
284         vm = uma_zalloc(vmspace_zone, M_WAITOK);
285         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286         if (!pinit(vmspace_pmap(vm))) {
287                 uma_zfree(vmspace_zone, vm);
288                 return (NULL);
289         }
290         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292         vm->vm_refcnt = 1;
293         vm->vm_shm = NULL;
294         vm->vm_swrss = 0;
295         vm->vm_tsize = 0;
296         vm->vm_dsize = 0;
297         vm->vm_ssize = 0;
298         vm->vm_taddr = 0;
299         vm->vm_daddr = 0;
300         vm->vm_maxsaddr = 0;
301         return (vm);
302 }
303
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308
309         PROC_LOCK(p);
310         racct_set(p, RACCT_DATA, 0);
311         racct_set(p, RACCT_STACK, 0);
312         racct_set(p, RACCT_RSS, 0);
313         racct_set(p, RACCT_MEMLOCK, 0);
314         racct_set(p, RACCT_VMEM, 0);
315         PROC_UNLOCK(p);
316 }
317 #endif
318
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322
323         CTR1(KTR_VM, "vmspace_free: %p", vm);
324
325         /*
326          * Make sure any SysV shm is freed, it might not have been in
327          * exit1().
328          */
329         shmexit(vm);
330
331         /*
332          * Lock the map, to wait out all other references to it.
333          * Delete all of the mappings and pages they hold, then call
334          * the pmap module to reclaim anything left.
335          */
336         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337             vm_map_max(&vm->vm_map));
338
339         pmap_release(vmspace_pmap(vm));
340         vm->vm_map.pmap = NULL;
341         uma_zfree(vmspace_zone, vm);
342 }
343
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347
348         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349             "vmspace_free() called");
350
351         if (vm->vm_refcnt == 0)
352                 panic("vmspace_free: attempt to free already freed vmspace");
353
354         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355                 vmspace_dofree(vm);
356 }
357
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361         struct vmspace *vm;
362
363         PROC_VMSPACE_LOCK(p);
364         vm = p->p_vmspace;
365         p->p_vmspace = NULL;
366         PROC_VMSPACE_UNLOCK(p);
367         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368         vmspace_free(vm);
369 }
370
371 void
372 vmspace_exit(struct thread *td)
373 {
374         int refcnt;
375         struct vmspace *vm;
376         struct proc *p;
377
378         /*
379          * Release user portion of address space.
380          * This releases references to vnodes,
381          * which could cause I/O if the file has been unlinked.
382          * Need to do this early enough that we can still sleep.
383          *
384          * The last exiting process to reach this point releases as
385          * much of the environment as it can. vmspace_dofree() is the
386          * slower fallback in case another process had a temporary
387          * reference to the vmspace.
388          */
389
390         p = td->td_proc;
391         vm = p->p_vmspace;
392         atomic_add_int(&vmspace0.vm_refcnt, 1);
393         refcnt = vm->vm_refcnt;
394         do {
395                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396                         /* Switch now since other proc might free vmspace */
397                         PROC_VMSPACE_LOCK(p);
398                         p->p_vmspace = &vmspace0;
399                         PROC_VMSPACE_UNLOCK(p);
400                         pmap_activate(td);
401                 }
402         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403         if (refcnt == 1) {
404                 if (p->p_vmspace != vm) {
405                         /* vmspace not yet freed, switch back */
406                         PROC_VMSPACE_LOCK(p);
407                         p->p_vmspace = vm;
408                         PROC_VMSPACE_UNLOCK(p);
409                         pmap_activate(td);
410                 }
411                 pmap_remove_pages(vmspace_pmap(vm));
412                 /* Switch now since this proc will free vmspace */
413                 PROC_VMSPACE_LOCK(p);
414                 p->p_vmspace = &vmspace0;
415                 PROC_VMSPACE_UNLOCK(p);
416                 pmap_activate(td);
417                 vmspace_dofree(vm);
418         }
419 #ifdef RACCT
420         if (racct_enable)
421                 vmspace_container_reset(p);
422 #endif
423 }
424
425 /* Acquire reference to vmspace owned by another process. */
426
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430         struct vmspace *vm;
431         int refcnt;
432
433         PROC_VMSPACE_LOCK(p);
434         vm = p->p_vmspace;
435         if (vm == NULL) {
436                 PROC_VMSPACE_UNLOCK(p);
437                 return (NULL);
438         }
439         refcnt = vm->vm_refcnt;
440         do {
441                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
442                         PROC_VMSPACE_UNLOCK(p);
443                         return (NULL);
444                 }
445         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446         if (vm != p->p_vmspace) {
447                 PROC_VMSPACE_UNLOCK(p);
448                 vmspace_free(vm);
449                 return (NULL);
450         }
451         PROC_VMSPACE_UNLOCK(p);
452         return (vm);
453 }
454
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         vmspace_free(oldvm);
494 }
495
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499
500         if (map->system_map)
501                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
502         else
503                 sx_xlock_(&map->lock, file, line);
504         map->timestamp++;
505 }
506
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510         vm_object_t object, object1;
511         struct vnode *vp;
512
513         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
514                 return;
515         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
516             ("Submap with execs"));
517         object = entry->object.vm_object;
518         KASSERT(object != NULL, ("No object for text, entry %p", entry));
519         VM_OBJECT_RLOCK(object);
520         while ((object1 = object->backing_object) != NULL) {
521                 VM_OBJECT_RLOCK(object1);
522                 VM_OBJECT_RUNLOCK(object);
523                 object = object1;
524         }
525
526         vp = NULL;
527         if (object->type == OBJT_DEAD) {
528                 /*
529                  * For OBJT_DEAD objects, v_writecount was handled in
530                  * vnode_pager_dealloc().
531                  */
532         } else if (object->type == OBJT_VNODE) {
533                 vp = object->handle;
534         } else if (object->type == OBJT_SWAP) {
535                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
536                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
537                     "entry %p, object %p, add %d", entry, object, add));
538                 /*
539                  * Tmpfs VREG node, which was reclaimed, has
540                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
541                  * this case there is no v_writecount to adjust.
542                  */
543                 if ((object->flags & OBJ_TMPFS) != 0)
544                         vp = object->un_pager.swp.swp_tmpfs;
545         } else {
546                 KASSERT(0,
547                     ("vm_map_entry_set_vnode_text: wrong object type, "
548                     "entry %p, object %p, add %d", entry, object, add));
549         }
550         if (vp != NULL) {
551                 if (add) {
552                         VOP_SET_TEXT_CHECKED(vp);
553                         VM_OBJECT_RUNLOCK(object);
554                 } else {
555                         vhold(vp);
556                         VM_OBJECT_RUNLOCK(object);
557                         vn_lock(vp, LK_SHARED | LK_RETRY);
558                         VOP_UNSET_TEXT_CHECKED(vp);
559                         VOP_UNLOCK(vp, 0);
560                         vdrop(vp);
561                 }
562         } else {
563                 VM_OBJECT_RUNLOCK(object);
564         }
565 }
566
567 /*
568  * Use a different name for this vm_map_entry field when it's use
569  * is not consistent with its use as part of an ordered search tree.
570  */
571 #define defer_next right
572
573 static void
574 vm_map_process_deferred(void)
575 {
576         struct thread *td;
577         vm_map_entry_t entry, next;
578         vm_object_t object;
579
580         td = curthread;
581         entry = td->td_map_def_user;
582         td->td_map_def_user = NULL;
583         while (entry != NULL) {
584                 next = entry->defer_next;
585                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
586                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
587                     MAP_ENTRY_VN_EXEC));
588                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
589                         /*
590                          * Decrement the object's writemappings and
591                          * possibly the vnode's v_writecount.
592                          */
593                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
594                             ("Submap with writecount"));
595                         object = entry->object.vm_object;
596                         KASSERT(object != NULL, ("No object for writecount"));
597                         vm_pager_release_writecount(object, entry->start,
598                             entry->end);
599                 }
600                 vm_map_entry_set_vnode_text(entry, false);
601                 vm_map_entry_deallocate(entry, FALSE);
602                 entry = next;
603         }
604 }
605
606 #ifdef INVARIANTS
607 static void
608 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
609 {
610
611         if (map->system_map)
612                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
613         else
614                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
615 }
616
617 #define VM_MAP_ASSERT_LOCKED(map) \
618     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
619
620 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
621 #ifdef DIAGNOSTIC
622 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
623 #else
624 static int enable_vmmap_check = VMMAP_CHECK_NONE;
625 #endif
626 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
627     &enable_vmmap_check, 0, "Enable vm map consistency checking");
628
629 static void _vm_map_assert_consistent(vm_map_t map, int check);
630
631 #define VM_MAP_ASSERT_CONSISTENT(map) \
632     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
633 #ifdef DIAGNOSTIC
634 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
635         if (map->nupdates > map->nentries) {                            \
636                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
637                 map->nupdates = 0;                                      \
638         }                                                               \
639 } while (0)
640 #else
641 #define VM_MAP_UNLOCK_CONSISTENT(map)
642 #endif
643 #else
644 #define VM_MAP_ASSERT_LOCKED(map)
645 #define VM_MAP_ASSERT_CONSISTENT(map)
646 #define VM_MAP_UNLOCK_CONSISTENT(map)
647 #endif /* INVARIANTS */
648
649 void
650 _vm_map_unlock(vm_map_t map, const char *file, int line)
651 {
652
653         VM_MAP_UNLOCK_CONSISTENT(map);
654         if (map->system_map)
655                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
656         else {
657                 sx_xunlock_(&map->lock, file, line);
658                 vm_map_process_deferred();
659         }
660 }
661
662 void
663 _vm_map_lock_read(vm_map_t map, const char *file, int line)
664 {
665
666         if (map->system_map)
667                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
668         else
669                 sx_slock_(&map->lock, file, line);
670 }
671
672 void
673 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
674 {
675
676         if (map->system_map)
677                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
678         else {
679                 sx_sunlock_(&map->lock, file, line);
680                 vm_map_process_deferred();
681         }
682 }
683
684 int
685 _vm_map_trylock(vm_map_t map, const char *file, int line)
686 {
687         int error;
688
689         error = map->system_map ?
690             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
691             !sx_try_xlock_(&map->lock, file, line);
692         if (error == 0)
693                 map->timestamp++;
694         return (error == 0);
695 }
696
697 int
698 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
699 {
700         int error;
701
702         error = map->system_map ?
703             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
704             !sx_try_slock_(&map->lock, file, line);
705         return (error == 0);
706 }
707
708 /*
709  *      _vm_map_lock_upgrade:   [ internal use only ]
710  *
711  *      Tries to upgrade a read (shared) lock on the specified map to a write
712  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
713  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
714  *      returned without a read or write lock held.
715  *
716  *      Requires that the map be read locked.
717  */
718 int
719 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
720 {
721         unsigned int last_timestamp;
722
723         if (map->system_map) {
724                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
725         } else {
726                 if (!sx_try_upgrade_(&map->lock, file, line)) {
727                         last_timestamp = map->timestamp;
728                         sx_sunlock_(&map->lock, file, line);
729                         vm_map_process_deferred();
730                         /*
731                          * If the map's timestamp does not change while the
732                          * map is unlocked, then the upgrade succeeds.
733                          */
734                         sx_xlock_(&map->lock, file, line);
735                         if (last_timestamp != map->timestamp) {
736                                 sx_xunlock_(&map->lock, file, line);
737                                 return (1);
738                         }
739                 }
740         }
741         map->timestamp++;
742         return (0);
743 }
744
745 void
746 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
747 {
748
749         if (map->system_map) {
750                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
751         } else {
752                 VM_MAP_UNLOCK_CONSISTENT(map);
753                 sx_downgrade_(&map->lock, file, line);
754         }
755 }
756
757 /*
758  *      vm_map_locked:
759  *
760  *      Returns a non-zero value if the caller holds a write (exclusive) lock
761  *      on the specified map and the value "0" otherwise.
762  */
763 int
764 vm_map_locked(vm_map_t map)
765 {
766
767         if (map->system_map)
768                 return (mtx_owned(&map->system_mtx));
769         else
770                 return (sx_xlocked(&map->lock));
771 }
772
773 /*
774  *      _vm_map_unlock_and_wait:
775  *
776  *      Atomically releases the lock on the specified map and puts the calling
777  *      thread to sleep.  The calling thread will remain asleep until either
778  *      vm_map_wakeup() is performed on the map or the specified timeout is
779  *      exceeded.
780  *
781  *      WARNING!  This function does not perform deferred deallocations of
782  *      objects and map entries.  Therefore, the calling thread is expected to
783  *      reacquire the map lock after reawakening and later perform an ordinary
784  *      unlock operation, such as vm_map_unlock(), before completing its
785  *      operation on the map.
786  */
787 int
788 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
789 {
790
791         VM_MAP_UNLOCK_CONSISTENT(map);
792         mtx_lock(&map_sleep_mtx);
793         if (map->system_map)
794                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
795         else
796                 sx_xunlock_(&map->lock, file, line);
797         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
798             timo));
799 }
800
801 /*
802  *      vm_map_wakeup:
803  *
804  *      Awaken any threads that have slept on the map using
805  *      vm_map_unlock_and_wait().
806  */
807 void
808 vm_map_wakeup(vm_map_t map)
809 {
810
811         /*
812          * Acquire and release map_sleep_mtx to prevent a wakeup()
813          * from being performed (and lost) between the map unlock
814          * and the msleep() in _vm_map_unlock_and_wait().
815          */
816         mtx_lock(&map_sleep_mtx);
817         mtx_unlock(&map_sleep_mtx);
818         wakeup(&map->root);
819 }
820
821 void
822 vm_map_busy(vm_map_t map)
823 {
824
825         VM_MAP_ASSERT_LOCKED(map);
826         map->busy++;
827 }
828
829 void
830 vm_map_unbusy(vm_map_t map)
831 {
832
833         VM_MAP_ASSERT_LOCKED(map);
834         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
835         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
836                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
837                 wakeup(&map->busy);
838         }
839 }
840
841 void 
842 vm_map_wait_busy(vm_map_t map)
843 {
844
845         VM_MAP_ASSERT_LOCKED(map);
846         while (map->busy) {
847                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
848                 if (map->system_map)
849                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
850                 else
851                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
852         }
853         map->timestamp++;
854 }
855
856 long
857 vmspace_resident_count(struct vmspace *vmspace)
858 {
859         return pmap_resident_count(vmspace_pmap(vmspace));
860 }
861
862 /*
863  *      vm_map_create:
864  *
865  *      Creates and returns a new empty VM map with
866  *      the given physical map structure, and having
867  *      the given lower and upper address bounds.
868  */
869 vm_map_t
870 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
871 {
872         vm_map_t result;
873
874         result = uma_zalloc(mapzone, M_WAITOK);
875         CTR1(KTR_VM, "vm_map_create: %p", result);
876         _vm_map_init(result, pmap, min, max);
877         return (result);
878 }
879
880 /*
881  * Initialize an existing vm_map structure
882  * such as that in the vmspace structure.
883  */
884 static void
885 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
886 {
887
888         map->header.next = map->header.prev = &map->header;
889         map->header.eflags = MAP_ENTRY_HEADER;
890         map->needs_wakeup = FALSE;
891         map->system_map = 0;
892         map->pmap = pmap;
893         map->header.end = min;
894         map->header.start = max;
895         map->flags = 0;
896         map->root = NULL;
897         map->timestamp = 0;
898         map->busy = 0;
899         map->anon_loc = 0;
900 #ifdef DIAGNOSTIC
901         map->nupdates = 0;
902 #endif
903 }
904
905 void
906 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
907 {
908
909         _vm_map_init(map, pmap, min, max);
910         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
911         sx_init(&map->lock, "user map");
912 }
913
914 /*
915  *      vm_map_entry_dispose:   [ internal use only ]
916  *
917  *      Inverse of vm_map_entry_create.
918  */
919 static void
920 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
921 {
922         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
923 }
924
925 /*
926  *      vm_map_entry_create:    [ internal use only ]
927  *
928  *      Allocates a VM map entry for insertion.
929  *      No entry fields are filled in.
930  */
931 static vm_map_entry_t
932 vm_map_entry_create(vm_map_t map)
933 {
934         vm_map_entry_t new_entry;
935
936         if (map->system_map)
937                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
938         else
939                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
940         if (new_entry == NULL)
941                 panic("vm_map_entry_create: kernel resources exhausted");
942         return (new_entry);
943 }
944
945 /*
946  *      vm_map_entry_set_behavior:
947  *
948  *      Set the expected access behavior, either normal, random, or
949  *      sequential.
950  */
951 static inline void
952 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
953 {
954         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
955             (behavior & MAP_ENTRY_BEHAV_MASK);
956 }
957
958 /*
959  *      vm_map_entry_max_free_{left,right}:
960  *
961  *      Compute the size of the largest free gap between two entries,
962  *      one the root of a tree and the other the ancestor of that root
963  *      that is the least or greatest ancestor found on the search path.
964  */
965 static inline vm_size_t
966 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
967 {
968
969         return (root->left != NULL ?
970             root->left->max_free : root->start - left_ancestor->end);
971 }
972
973 static inline vm_size_t
974 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
975 {
976
977         return (root->right != NULL ?
978             root->right->max_free : right_ancestor->start - root->end);
979 }
980
981 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {                      \
982         vm_size_t max_free;                                             \
983                                                                         \
984         /*                                                              \
985          * Infer root->right->max_free == root->max_free when           \
986          * y->max_free < root->max_free || root->max_free == 0.         \
987          * Otherwise, look right to find it.                            \
988          */                                                             \
989         y = root->left;                                                 \
990         max_free = root->max_free;                                      \
991         KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),   \
992             ("%s: max_free invariant fails", __func__));                \
993         if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)      \
994                 max_free = vm_map_entry_max_free_right(root, rlist);    \
995         if (y != NULL && (test)) {                                      \
996                 /* Rotate right and make y root. */                     \
997                 root->left = y->right;                                  \
998                 y->right = root;                                        \
999                 if (max_free < y->max_free)                             \
1000                         root->max_free = max_free = MAX(max_free,       \
1001                             vm_map_entry_max_free_left(root, y));       \
1002                 root = y;                                               \
1003                 y = root->left;                                         \
1004         }                                                               \
1005         /* Copy right->max_free.  Put root on rlist. */                 \
1006         root->max_free = max_free;                                      \
1007         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1008             ("%s: max_free not copied from right", __func__));          \
1009         root->left = rlist;                                             \
1010         rlist = root;                                                   \
1011         root = y;                                                       \
1012 } while (0)
1013
1014 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {                     \
1015         vm_size_t max_free;                                             \
1016                                                                         \
1017         /*                                                              \
1018          * Infer root->left->max_free == root->max_free when            \
1019          * y->max_free < root->max_free || root->max_free == 0.         \
1020          * Otherwise, look left to find it.                             \
1021          */                                                             \
1022         y = root->right;                                                \
1023         max_free = root->max_free;                                      \
1024         KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),    \
1025             ("%s: max_free invariant fails", __func__));                \
1026         if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)      \
1027                 max_free = vm_map_entry_max_free_left(root, llist);     \
1028         if (y != NULL && (test)) {                                      \
1029                 /* Rotate left and make y root. */                      \
1030                 root->right = y->left;                                  \
1031                 y->left = root;                                         \
1032                 if (max_free < y->max_free)                             \
1033                         root->max_free = max_free = MAX(max_free,       \
1034                             vm_map_entry_max_free_right(root, y));      \
1035                 root = y;                                               \
1036                 y = root->right;                                        \
1037         }                                                               \
1038         /* Copy left->max_free.  Put root on llist. */                  \
1039         root->max_free = max_free;                                      \
1040         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1041             ("%s: max_free not copied from left", __func__));           \
1042         root->right = llist;                                            \
1043         llist = root;                                                   \
1044         root = y;                                                       \
1045 } while (0)
1046
1047 /*
1048  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1049  * breaking off left and right subtrees of nodes less than, or greater than
1050  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1051  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1052  * linked by the right pointer and rlist linked by the left pointer in the
1053  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1054  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1055  * values in &map->header.
1056  */
1057 static vm_map_entry_t
1058 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1059     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1060 {
1061         vm_map_entry_t llist, rlist, root, y;
1062
1063         llist = rlist = &map->header;
1064         root = map->root;
1065         while (root != NULL && root->max_free >= length) {
1066                 KASSERT(llist->end <= root->start && root->end <= rlist->start,
1067                     ("%s: root not within tree bounds", __func__));
1068                 if (addr < root->start) {
1069                         SPLAY_LEFT_STEP(root, y, rlist,
1070                             y->max_free >= length && addr < y->start);
1071                 } else if (addr >= root->end) {
1072                         SPLAY_RIGHT_STEP(root, y, llist,
1073                             y->max_free >= length && addr >= y->end);
1074                 } else
1075                         break;
1076         }
1077         *out_llist = llist;
1078         *out_rlist = rlist;
1079         return (root);
1080 }
1081
1082 static void
1083 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1084 {
1085         vm_map_entry_t rlist, y;
1086
1087         root = root->right;
1088         rlist = *iolist;
1089         while (root != NULL)
1090                 SPLAY_LEFT_STEP(root, y, rlist, true);
1091         *iolist = rlist;
1092 }
1093
1094 static void
1095 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1096 {
1097         vm_map_entry_t llist, y;
1098
1099         root = root->left;
1100         llist = *iolist;
1101         while (root != NULL)
1102                 SPLAY_RIGHT_STEP(root, y, llist, true);
1103         *iolist = llist;
1104 }
1105
1106 static inline void
1107 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1108 {
1109         vm_map_entry_t tmp;
1110
1111         tmp = *b;
1112         *b = *a;
1113         *a = tmp;
1114 }
1115
1116 /*
1117  * Walk back up the two spines, flip the pointers and set max_free.  The
1118  * subtrees of the root go at the bottom of llist and rlist.
1119  */
1120 static void
1121 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1122     vm_map_entry_t llist, vm_map_entry_t rlist)
1123 {
1124         vm_map_entry_t prev;
1125         vm_size_t max_free_left, max_free_right;
1126
1127         max_free_left = vm_map_entry_max_free_left(root, llist);
1128         if (llist != &map->header) {
1129                 prev = root->left;
1130                 do {
1131                         /*
1132                          * The max_free values of the children of llist are in
1133                          * llist->max_free and max_free_left.  Update with the
1134                          * max value.
1135                          */
1136                         llist->max_free = max_free_left =
1137                             MAX(llist->max_free, max_free_left);
1138                         vm_map_entry_swap(&llist->right, &prev);
1139                         vm_map_entry_swap(&prev, &llist);
1140                 } while (llist != &map->header);
1141                 root->left = prev;
1142         }
1143         max_free_right = vm_map_entry_max_free_right(root, rlist);
1144         if (rlist != &map->header) {
1145                 prev = root->right;
1146                 do {
1147                         /*
1148                          * The max_free values of the children of rlist are in
1149                          * rlist->max_free and max_free_right.  Update with the
1150                          * max value.
1151                          */
1152                         rlist->max_free = max_free_right =
1153                             MAX(rlist->max_free, max_free_right);
1154                         vm_map_entry_swap(&rlist->left, &prev);
1155                         vm_map_entry_swap(&prev, &rlist);
1156                 } while (rlist != &map->header);
1157                 root->right = prev;
1158         }               
1159         root->max_free = MAX(max_free_left, max_free_right);
1160         map->root = root;
1161 #ifdef DIAGNOSTIC
1162         ++map->nupdates;
1163 #endif
1164 }
1165
1166 /*
1167  *      vm_map_splay:
1168  *
1169  *      The Sleator and Tarjan top-down splay algorithm with the
1170  *      following variation.  Max_free must be computed bottom-up, so
1171  *      on the downward pass, maintain the left and right spines in
1172  *      reverse order.  Then, make a second pass up each side to fix
1173  *      the pointers and compute max_free.  The time bound is O(log n)
1174  *      amortized.
1175  *
1176  *      The new root is the vm_map_entry containing "addr", or else an
1177  *      adjacent entry (lower if possible) if addr is not in the tree.
1178  *
1179  *      The map must be locked, and leaves it so.
1180  *
1181  *      Returns: the new root.
1182  */
1183 static vm_map_entry_t
1184 vm_map_splay(vm_map_t map, vm_offset_t addr)
1185 {
1186         vm_map_entry_t llist, rlist, root;
1187
1188         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1189         if (root != NULL) {
1190                 /* do nothing */
1191         } else if (llist != &map->header) {
1192                 /*
1193                  * Recover the greatest node in the left
1194                  * subtree and make it the root.
1195                  */
1196                 root = llist;
1197                 llist = root->right;
1198                 root->right = NULL;
1199         } else if (rlist != &map->header) {
1200                 /*
1201                  * Recover the least node in the right
1202                  * subtree and make it the root.
1203                  */
1204                 root = rlist;
1205                 rlist = root->left;
1206                 root->left = NULL;
1207         } else {
1208                 /* There is no root. */
1209                 return (NULL);
1210         }
1211         vm_map_splay_merge(map, root, llist, rlist);
1212         VM_MAP_ASSERT_CONSISTENT(map);
1213         return (root);
1214 }
1215
1216 /*
1217  *      vm_map_entry_{un,}link:
1218  *
1219  *      Insert/remove entries from maps.
1220  */
1221 static void
1222 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1223 {
1224         vm_map_entry_t llist, rlist, root;
1225
1226         CTR3(KTR_VM,
1227             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1228             map->nentries, entry);
1229         VM_MAP_ASSERT_LOCKED(map);
1230         map->nentries++;
1231         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1232         KASSERT(root == NULL,
1233             ("vm_map_entry_link: link object already mapped"));
1234         entry->prev = llist;
1235         entry->next = rlist;
1236         llist->next = rlist->prev = entry;
1237         entry->left = entry->right = NULL;
1238         vm_map_splay_merge(map, entry, llist, rlist);
1239         VM_MAP_ASSERT_CONSISTENT(map);
1240 }
1241
1242 enum unlink_merge_type {
1243         UNLINK_MERGE_NONE,
1244         UNLINK_MERGE_NEXT
1245 };
1246
1247 static void
1248 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1249     enum unlink_merge_type op)
1250 {
1251         vm_map_entry_t llist, rlist, root, y;
1252
1253         VM_MAP_ASSERT_LOCKED(map);
1254         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1255         KASSERT(root != NULL,
1256             ("vm_map_entry_unlink: unlink object not mapped"));
1257
1258         vm_map_splay_findnext(root, &rlist);
1259         switch (op) {
1260         case UNLINK_MERGE_NEXT:
1261                 rlist->start = root->start;
1262                 rlist->offset = root->offset;
1263                 y = root->left;
1264                 root = rlist;
1265                 rlist = root->left;
1266                 root->left = y;
1267                 break;
1268         case UNLINK_MERGE_NONE:
1269                 vm_map_splay_findprev(root, &llist);
1270                 if (llist != &map->header) {
1271                         root = llist;
1272                         llist = root->right;
1273                         root->right = NULL;
1274                 } else if (rlist != &map->header) {
1275                         root = rlist;
1276                         rlist = root->left;
1277                         root->left = NULL;
1278                 } else
1279                         root = NULL;
1280                 break;
1281         }
1282         y = entry->next;
1283         y->prev = entry->prev;
1284         y->prev->next = y;
1285         if (root != NULL)
1286                 vm_map_splay_merge(map, root, llist, rlist);
1287         else
1288                 map->root = NULL;
1289         VM_MAP_ASSERT_CONSISTENT(map);
1290         map->nentries--;
1291         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1292             map->nentries, entry);
1293 }
1294
1295 /*
1296  *      vm_map_entry_resize:
1297  *
1298  *      Resize a vm_map_entry, recompute the amount of free space that
1299  *      follows it and propagate that value up the tree.
1300  *
1301  *      The map must be locked, and leaves it so.
1302  */
1303 static void
1304 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1305 {
1306         vm_map_entry_t llist, rlist, root;
1307
1308         VM_MAP_ASSERT_LOCKED(map);
1309         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1310         KASSERT(root != NULL,
1311             ("%s: resize object not mapped", __func__));
1312         vm_map_splay_findnext(root, &rlist);
1313         root->right = NULL;
1314         entry->end += grow_amount;
1315         vm_map_splay_merge(map, root, llist, rlist);
1316         VM_MAP_ASSERT_CONSISTENT(map);
1317         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1318             __func__, map, map->nentries, entry);
1319 }
1320
1321 /*
1322  *      vm_map_lookup_entry:    [ internal use only ]
1323  *
1324  *      Finds the map entry containing (or
1325  *      immediately preceding) the specified address
1326  *      in the given map; the entry is returned
1327  *      in the "entry" parameter.  The boolean
1328  *      result indicates whether the address is
1329  *      actually contained in the map.
1330  */
1331 boolean_t
1332 vm_map_lookup_entry(
1333         vm_map_t map,
1334         vm_offset_t address,
1335         vm_map_entry_t *entry)  /* OUT */
1336 {
1337         vm_map_entry_t cur, lbound;
1338         boolean_t locked;
1339
1340         /*
1341          * If the map is empty, then the map entry immediately preceding
1342          * "address" is the map's header.
1343          */
1344         cur = map->root;
1345         if (cur == NULL) {
1346                 *entry = &map->header;
1347                 return (FALSE);
1348         }
1349         if (address >= cur->start && cur->end > address) {
1350                 *entry = cur;
1351                 return (TRUE);
1352         }
1353         if ((locked = vm_map_locked(map)) ||
1354             sx_try_upgrade(&map->lock)) {
1355                 /*
1356                  * Splay requires a write lock on the map.  However, it only
1357                  * restructures the binary search tree; it does not otherwise
1358                  * change the map.  Thus, the map's timestamp need not change
1359                  * on a temporary upgrade.
1360                  */
1361                 cur = vm_map_splay(map, address);
1362                 if (!locked) {
1363                         VM_MAP_UNLOCK_CONSISTENT(map);
1364                         sx_downgrade(&map->lock);
1365                 }
1366
1367                 /*
1368                  * If "address" is contained within a map entry, the new root
1369                  * is that map entry.  Otherwise, the new root is a map entry
1370                  * immediately before or after "address".
1371                  */
1372                 if (address < cur->start) {
1373                         *entry = &map->header;
1374                         return (FALSE);
1375                 }
1376                 *entry = cur;
1377                 return (address < cur->end);
1378         }
1379         /*
1380          * Since the map is only locked for read access, perform a
1381          * standard binary search tree lookup for "address".
1382          */
1383         lbound = &map->header;
1384         do {
1385                 if (address < cur->start) {
1386                         cur = cur->left;
1387                 } else if (cur->end <= address) {
1388                         lbound = cur;
1389                         cur = cur->right;
1390                 } else {
1391                         *entry = cur;
1392                         return (TRUE);
1393                 }
1394         } while (cur != NULL);
1395         *entry = lbound;
1396         return (FALSE);
1397 }
1398
1399 /*
1400  *      vm_map_insert:
1401  *
1402  *      Inserts the given whole VM object into the target
1403  *      map at the specified address range.  The object's
1404  *      size should match that of the address range.
1405  *
1406  *      Requires that the map be locked, and leaves it so.
1407  *
1408  *      If object is non-NULL, ref count must be bumped by caller
1409  *      prior to making call to account for the new entry.
1410  */
1411 int
1412 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1413     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1414 {
1415         vm_map_entry_t new_entry, prev_entry;
1416         struct ucred *cred;
1417         vm_eflags_t protoeflags;
1418         vm_inherit_t inheritance;
1419
1420         VM_MAP_ASSERT_LOCKED(map);
1421         KASSERT(object != kernel_object ||
1422             (cow & MAP_COPY_ON_WRITE) == 0,
1423             ("vm_map_insert: kernel object and COW"));
1424         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1425             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1426         KASSERT((prot & ~max) == 0,
1427             ("prot %#x is not subset of max_prot %#x", prot, max));
1428
1429         /*
1430          * Check that the start and end points are not bogus.
1431          */
1432         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1433             start >= end)
1434                 return (KERN_INVALID_ADDRESS);
1435
1436         /*
1437          * Find the entry prior to the proposed starting address; if it's part
1438          * of an existing entry, this range is bogus.
1439          */
1440         if (vm_map_lookup_entry(map, start, &prev_entry))
1441                 return (KERN_NO_SPACE);
1442
1443         /*
1444          * Assert that the next entry doesn't overlap the end point.
1445          */
1446         if (vm_map_entry_succ(prev_entry)->start < end)
1447                 return (KERN_NO_SPACE);
1448
1449         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1450             max != VM_PROT_NONE))
1451                 return (KERN_INVALID_ARGUMENT);
1452
1453         protoeflags = 0;
1454         if (cow & MAP_COPY_ON_WRITE)
1455                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1456         if (cow & MAP_NOFAULT)
1457                 protoeflags |= MAP_ENTRY_NOFAULT;
1458         if (cow & MAP_DISABLE_SYNCER)
1459                 protoeflags |= MAP_ENTRY_NOSYNC;
1460         if (cow & MAP_DISABLE_COREDUMP)
1461                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1462         if (cow & MAP_STACK_GROWS_DOWN)
1463                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1464         if (cow & MAP_STACK_GROWS_UP)
1465                 protoeflags |= MAP_ENTRY_GROWS_UP;
1466         if (cow & MAP_WRITECOUNT)
1467                 protoeflags |= MAP_ENTRY_WRITECNT;
1468         if (cow & MAP_VN_EXEC)
1469                 protoeflags |= MAP_ENTRY_VN_EXEC;
1470         if ((cow & MAP_CREATE_GUARD) != 0)
1471                 protoeflags |= MAP_ENTRY_GUARD;
1472         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1473                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1474         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1475                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1476         if (cow & MAP_INHERIT_SHARE)
1477                 inheritance = VM_INHERIT_SHARE;
1478         else
1479                 inheritance = VM_INHERIT_DEFAULT;
1480
1481         cred = NULL;
1482         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1483                 goto charged;
1484         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1485             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1486                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1487                         return (KERN_RESOURCE_SHORTAGE);
1488                 KASSERT(object == NULL ||
1489                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1490                     object->cred == NULL,
1491                     ("overcommit: vm_map_insert o %p", object));
1492                 cred = curthread->td_ucred;
1493         }
1494
1495 charged:
1496         /* Expand the kernel pmap, if necessary. */
1497         if (map == kernel_map && end > kernel_vm_end)
1498                 pmap_growkernel(end);
1499         if (object != NULL) {
1500                 /*
1501                  * OBJ_ONEMAPPING must be cleared unless this mapping
1502                  * is trivially proven to be the only mapping for any
1503                  * of the object's pages.  (Object granularity
1504                  * reference counting is insufficient to recognize
1505                  * aliases with precision.)
1506                  */
1507                 VM_OBJECT_WLOCK(object);
1508                 if (object->ref_count > 1 || object->shadow_count != 0)
1509                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1510                 VM_OBJECT_WUNLOCK(object);
1511         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1512             protoeflags &&
1513             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1514             MAP_VN_EXEC)) == 0 &&
1515             prev_entry->end == start && (prev_entry->cred == cred ||
1516             (prev_entry->object.vm_object != NULL &&
1517             prev_entry->object.vm_object->cred == cred)) &&
1518             vm_object_coalesce(prev_entry->object.vm_object,
1519             prev_entry->offset,
1520             (vm_size_t)(prev_entry->end - prev_entry->start),
1521             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1522             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1523                 /*
1524                  * We were able to extend the object.  Determine if we
1525                  * can extend the previous map entry to include the
1526                  * new range as well.
1527                  */
1528                 if (prev_entry->inheritance == inheritance &&
1529                     prev_entry->protection == prot &&
1530                     prev_entry->max_protection == max &&
1531                     prev_entry->wired_count == 0) {
1532                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1533                             0, ("prev_entry %p has incoherent wiring",
1534                             prev_entry));
1535                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1536                                 map->size += end - prev_entry->end;
1537                         vm_map_entry_resize(map, prev_entry,
1538                             end - prev_entry->end);
1539                         vm_map_try_merge_entries(map, prev_entry,
1540                             vm_map_entry_succ(prev_entry));
1541                         return (KERN_SUCCESS);
1542                 }
1543
1544                 /*
1545                  * If we can extend the object but cannot extend the
1546                  * map entry, we have to create a new map entry.  We
1547                  * must bump the ref count on the extended object to
1548                  * account for it.  object may be NULL.
1549                  */
1550                 object = prev_entry->object.vm_object;
1551                 offset = prev_entry->offset +
1552                     (prev_entry->end - prev_entry->start);
1553                 vm_object_reference(object);
1554                 if (cred != NULL && object != NULL && object->cred != NULL &&
1555                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1556                         /* Object already accounts for this uid. */
1557                         cred = NULL;
1558                 }
1559         }
1560         if (cred != NULL)
1561                 crhold(cred);
1562
1563         /*
1564          * Create a new entry
1565          */
1566         new_entry = vm_map_entry_create(map);
1567         new_entry->start = start;
1568         new_entry->end = end;
1569         new_entry->cred = NULL;
1570
1571         new_entry->eflags = protoeflags;
1572         new_entry->object.vm_object = object;
1573         new_entry->offset = offset;
1574
1575         new_entry->inheritance = inheritance;
1576         new_entry->protection = prot;
1577         new_entry->max_protection = max;
1578         new_entry->wired_count = 0;
1579         new_entry->wiring_thread = NULL;
1580         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1581         new_entry->next_read = start;
1582
1583         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1584             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1585         new_entry->cred = cred;
1586
1587         /*
1588          * Insert the new entry into the list
1589          */
1590         vm_map_entry_link(map, new_entry);
1591         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1592                 map->size += new_entry->end - new_entry->start;
1593
1594         /*
1595          * Try to coalesce the new entry with both the previous and next
1596          * entries in the list.  Previously, we only attempted to coalesce
1597          * with the previous entry when object is NULL.  Here, we handle the
1598          * other cases, which are less common.
1599          */
1600         vm_map_try_merge_entries(map, prev_entry, new_entry);
1601         vm_map_try_merge_entries(map, new_entry, vm_map_entry_succ(new_entry));
1602
1603         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1604                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1605                     end - start, cow & MAP_PREFAULT_PARTIAL);
1606         }
1607
1608         return (KERN_SUCCESS);
1609 }
1610
1611 /*
1612  *      vm_map_findspace:
1613  *
1614  *      Find the first fit (lowest VM address) for "length" free bytes
1615  *      beginning at address >= start in the given map.
1616  *
1617  *      In a vm_map_entry, "max_free" is the maximum amount of
1618  *      contiguous free space between an entry in its subtree and a
1619  *      neighbor of that entry.  This allows finding a free region in
1620  *      one path down the tree, so O(log n) amortized with splay
1621  *      trees.
1622  *
1623  *      The map must be locked, and leaves it so.
1624  *
1625  *      Returns: starting address if sufficient space,
1626  *               vm_map_max(map)-length+1 if insufficient space.
1627  */
1628 vm_offset_t
1629 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1630 {
1631         vm_map_entry_t llist, rlist, root, y;
1632         vm_size_t left_length;
1633         vm_offset_t gap_end;
1634
1635         /*
1636          * Request must fit within min/max VM address and must avoid
1637          * address wrap.
1638          */
1639         start = MAX(start, vm_map_min(map));
1640         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1641                 return (vm_map_max(map) - length + 1);
1642
1643         /* Empty tree means wide open address space. */
1644         if (map->root == NULL)
1645                 return (start);
1646
1647         /*
1648          * After splay_split, if start is within an entry, push it to the start
1649          * of the following gap.  If rlist is at the end of the gap containing
1650          * start, save the end of that gap in gap_end to see if the gap is big
1651          * enough; otherwise set gap_end to start skip gap-checking and move
1652          * directly to a search of the right subtree.
1653          */
1654         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1655         gap_end = rlist->start;
1656         if (root != NULL) {
1657                 start = root->end;
1658                 if (root->right != NULL)
1659                         gap_end = start;
1660         } else if (rlist != &map->header) {
1661                 root = rlist;
1662                 rlist = root->left;
1663                 root->left = NULL;
1664         } else {
1665                 root = llist;
1666                 llist = root->right;
1667                 root->right = NULL;
1668         }
1669         vm_map_splay_merge(map, root, llist, rlist);
1670         VM_MAP_ASSERT_CONSISTENT(map);
1671         if (length <= gap_end - start)
1672                 return (start);
1673
1674         /* With max_free, can immediately tell if no solution. */
1675         if (root->right == NULL || length > root->right->max_free)
1676                 return (vm_map_max(map) - length + 1);
1677
1678         /*
1679          * Splay for the least large-enough gap in the right subtree.
1680          */
1681         llist = rlist = &map->header;
1682         for (left_length = 0;;
1683             left_length = vm_map_entry_max_free_left(root, llist)) {
1684                 if (length <= left_length)
1685                         SPLAY_LEFT_STEP(root, y, rlist,
1686                             length <= vm_map_entry_max_free_left(y, llist));
1687                 else
1688                         SPLAY_RIGHT_STEP(root, y, llist,
1689                             length > vm_map_entry_max_free_left(y, root));
1690                 if (root == NULL)
1691                         break;
1692         }
1693         root = llist;
1694         llist = root->right;
1695         root->right = NULL;
1696         if (rlist != &map->header) {
1697                 y = rlist;
1698                 rlist = y->left;
1699                 y->left = NULL;
1700                 vm_map_splay_merge(map, y, &map->header, rlist);
1701                 y->max_free = MAX(
1702                     vm_map_entry_max_free_left(y, root),
1703                     vm_map_entry_max_free_right(y, &map->header));
1704                 root->right = y;
1705         }
1706         vm_map_splay_merge(map, root, llist, &map->header);
1707         VM_MAP_ASSERT_CONSISTENT(map);
1708         return (root->end);
1709 }
1710
1711 int
1712 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1713     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1714     vm_prot_t max, int cow)
1715 {
1716         vm_offset_t end;
1717         int result;
1718
1719         end = start + length;
1720         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1721             object == NULL,
1722             ("vm_map_fixed: non-NULL backing object for stack"));
1723         vm_map_lock(map);
1724         VM_MAP_RANGE_CHECK(map, start, end);
1725         if ((cow & MAP_CHECK_EXCL) == 0)
1726                 vm_map_delete(map, start, end);
1727         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1728                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1729                     prot, max, cow);
1730         } else {
1731                 result = vm_map_insert(map, object, offset, start, end,
1732                     prot, max, cow);
1733         }
1734         vm_map_unlock(map);
1735         return (result);
1736 }
1737
1738 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1739 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1740
1741 static int cluster_anon = 1;
1742 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1743     &cluster_anon, 0,
1744     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1745
1746 static bool
1747 clustering_anon_allowed(vm_offset_t addr)
1748 {
1749
1750         switch (cluster_anon) {
1751         case 0:
1752                 return (false);
1753         case 1:
1754                 return (addr == 0);
1755         case 2:
1756         default:
1757                 return (true);
1758         }
1759 }
1760
1761 static long aslr_restarts;
1762 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1763     &aslr_restarts, 0,
1764     "Number of aslr failures");
1765
1766 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1767
1768 /*
1769  * Searches for the specified amount of free space in the given map with the
1770  * specified alignment.  Performs an address-ordered, first-fit search from
1771  * the given address "*addr", with an optional upper bound "max_addr".  If the
1772  * parameter "alignment" is zero, then the alignment is computed from the
1773  * given (object, offset) pair so as to enable the greatest possible use of
1774  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1775  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1776  *
1777  * The map must be locked.  Initially, there must be at least "length" bytes
1778  * of free space at the given address.
1779  */
1780 static int
1781 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1782     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1783     vm_offset_t alignment)
1784 {
1785         vm_offset_t aligned_addr, free_addr;
1786
1787         VM_MAP_ASSERT_LOCKED(map);
1788         free_addr = *addr;
1789         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1790             ("caller failed to provide space %#jx at address %p",
1791              (uintmax_t)length, (void *)free_addr));
1792         for (;;) {
1793                 /*
1794                  * At the start of every iteration, the free space at address
1795                  * "*addr" is at least "length" bytes.
1796                  */
1797                 if (alignment == 0)
1798                         pmap_align_superpage(object, offset, addr, length);
1799                 else if ((*addr & (alignment - 1)) != 0) {
1800                         *addr &= ~(alignment - 1);
1801                         *addr += alignment;
1802                 }
1803                 aligned_addr = *addr;
1804                 if (aligned_addr == free_addr) {
1805                         /*
1806                          * Alignment did not change "*addr", so "*addr" must
1807                          * still provide sufficient free space.
1808                          */
1809                         return (KERN_SUCCESS);
1810                 }
1811
1812                 /*
1813                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1814                  * be a valid address, in which case vm_map_findspace() cannot
1815                  * be relied upon to fail.
1816                  */
1817                 if (aligned_addr < free_addr)
1818                         return (KERN_NO_SPACE);
1819                 *addr = vm_map_findspace(map, aligned_addr, length);
1820                 if (*addr + length > vm_map_max(map) ||
1821                     (max_addr != 0 && *addr + length > max_addr))
1822                         return (KERN_NO_SPACE);
1823                 free_addr = *addr;
1824                 if (free_addr == aligned_addr) {
1825                         /*
1826                          * If a successful call to vm_map_findspace() did not
1827                          * change "*addr", then "*addr" must still be aligned
1828                          * and provide sufficient free space.
1829                          */
1830                         return (KERN_SUCCESS);
1831                 }
1832         }
1833 }
1834
1835 /*
1836  *      vm_map_find finds an unallocated region in the target address
1837  *      map with the given length.  The search is defined to be
1838  *      first-fit from the specified address; the region found is
1839  *      returned in the same parameter.
1840  *
1841  *      If object is non-NULL, ref count must be bumped by caller
1842  *      prior to making call to account for the new entry.
1843  */
1844 int
1845 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1846             vm_offset_t *addr,  /* IN/OUT */
1847             vm_size_t length, vm_offset_t max_addr, int find_space,
1848             vm_prot_t prot, vm_prot_t max, int cow)
1849 {
1850         vm_offset_t alignment, curr_min_addr, min_addr;
1851         int gap, pidx, rv, try;
1852         bool cluster, en_aslr, update_anon;
1853
1854         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1855             object == NULL,
1856             ("vm_map_find: non-NULL backing object for stack"));
1857         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1858             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1859         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1860             (object->flags & OBJ_COLORED) == 0))
1861                 find_space = VMFS_ANY_SPACE;
1862         if (find_space >> 8 != 0) {
1863                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1864                 alignment = (vm_offset_t)1 << (find_space >> 8);
1865         } else
1866                 alignment = 0;
1867         en_aslr = (map->flags & MAP_ASLR) != 0;
1868         update_anon = cluster = clustering_anon_allowed(*addr) &&
1869             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1870             find_space != VMFS_NO_SPACE && object == NULL &&
1871             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1872             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1873         curr_min_addr = min_addr = *addr;
1874         if (en_aslr && min_addr == 0 && !cluster &&
1875             find_space != VMFS_NO_SPACE &&
1876             (map->flags & MAP_ASLR_IGNSTART) != 0)
1877                 curr_min_addr = min_addr = vm_map_min(map);
1878         try = 0;
1879         vm_map_lock(map);
1880         if (cluster) {
1881                 curr_min_addr = map->anon_loc;
1882                 if (curr_min_addr == 0)
1883                         cluster = false;
1884         }
1885         if (find_space != VMFS_NO_SPACE) {
1886                 KASSERT(find_space == VMFS_ANY_SPACE ||
1887                     find_space == VMFS_OPTIMAL_SPACE ||
1888                     find_space == VMFS_SUPER_SPACE ||
1889                     alignment != 0, ("unexpected VMFS flag"));
1890 again:
1891                 /*
1892                  * When creating an anonymous mapping, try clustering
1893                  * with an existing anonymous mapping first.
1894                  *
1895                  * We make up to two attempts to find address space
1896                  * for a given find_space value. The first attempt may
1897                  * apply randomization or may cluster with an existing
1898                  * anonymous mapping. If this first attempt fails,
1899                  * perform a first-fit search of the available address
1900                  * space.
1901                  *
1902                  * If all tries failed, and find_space is
1903                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1904                  * Again enable clustering and randomization.
1905                  */
1906                 try++;
1907                 MPASS(try <= 2);
1908
1909                 if (try == 2) {
1910                         /*
1911                          * Second try: we failed either to find a
1912                          * suitable region for randomizing the
1913                          * allocation, or to cluster with an existing
1914                          * mapping.  Retry with free run.
1915                          */
1916                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1917                             vm_map_min(map) : min_addr;
1918                         atomic_add_long(&aslr_restarts, 1);
1919                 }
1920
1921                 if (try == 1 && en_aslr && !cluster) {
1922                         /*
1923                          * Find space for allocation, including
1924                          * gap needed for later randomization.
1925                          */
1926                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1927                             (find_space == VMFS_SUPER_SPACE || find_space ==
1928                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1929                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1930                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1931                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1932                         *addr = vm_map_findspace(map, curr_min_addr,
1933                             length + gap * pagesizes[pidx]);
1934                         if (*addr + length + gap * pagesizes[pidx] >
1935                             vm_map_max(map))
1936                                 goto again;
1937                         /* And randomize the start address. */
1938                         *addr += (arc4random() % gap) * pagesizes[pidx];
1939                         if (max_addr != 0 && *addr + length > max_addr)
1940                                 goto again;
1941                 } else {
1942                         *addr = vm_map_findspace(map, curr_min_addr, length);
1943                         if (*addr + length > vm_map_max(map) ||
1944                             (max_addr != 0 && *addr + length > max_addr)) {
1945                                 if (cluster) {
1946                                         cluster = false;
1947                                         MPASS(try == 1);
1948                                         goto again;
1949                                 }
1950                                 rv = KERN_NO_SPACE;
1951                                 goto done;
1952                         }
1953                 }
1954
1955                 if (find_space != VMFS_ANY_SPACE &&
1956                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1957                     max_addr, alignment)) != KERN_SUCCESS) {
1958                         if (find_space == VMFS_OPTIMAL_SPACE) {
1959                                 find_space = VMFS_ANY_SPACE;
1960                                 curr_min_addr = min_addr;
1961                                 cluster = update_anon;
1962                                 try = 0;
1963                                 goto again;
1964                         }
1965                         goto done;
1966                 }
1967         } else if ((cow & MAP_REMAP) != 0) {
1968                 if (*addr < vm_map_min(map) ||
1969                     *addr + length > vm_map_max(map) ||
1970                     *addr + length <= length) {
1971                         rv = KERN_INVALID_ADDRESS;
1972                         goto done;
1973                 }
1974                 vm_map_delete(map, *addr, *addr + length);
1975         }
1976         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1977                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1978                     max, cow);
1979         } else {
1980                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1981                     prot, max, cow);
1982         }
1983         if (rv == KERN_SUCCESS && update_anon)
1984                 map->anon_loc = *addr + length;
1985 done:
1986         vm_map_unlock(map);
1987         return (rv);
1988 }
1989
1990 /*
1991  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1992  *      additional parameter (min_addr) and treats the given address
1993  *      (*addr) differently.  Specifically, it treats *addr as a hint
1994  *      and not as the minimum address where the mapping is created.
1995  *
1996  *      This function works in two phases.  First, it tries to
1997  *      allocate above the hint.  If that fails and the hint is
1998  *      greater than min_addr, it performs a second pass, replacing
1999  *      the hint with min_addr as the minimum address for the
2000  *      allocation.
2001  */
2002 int
2003 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2004     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2005     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2006     int cow)
2007 {
2008         vm_offset_t hint;
2009         int rv;
2010
2011         hint = *addr;
2012         for (;;) {
2013                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2014                     find_space, prot, max, cow);
2015                 if (rv == KERN_SUCCESS || min_addr >= hint)
2016                         return (rv);
2017                 *addr = hint = min_addr;
2018         }
2019 }
2020
2021 /*
2022  * A map entry with any of the following flags set must not be merged with
2023  * another entry.
2024  */
2025 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2026             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2027
2028 static bool
2029 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2030 {
2031
2032         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2033             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2034             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2035             prev, entry));
2036         return (prev->end == entry->start &&
2037             prev->object.vm_object == entry->object.vm_object &&
2038             (prev->object.vm_object == NULL ||
2039             prev->offset + (prev->end - prev->start) == entry->offset) &&
2040             prev->eflags == entry->eflags &&
2041             prev->protection == entry->protection &&
2042             prev->max_protection == entry->max_protection &&
2043             prev->inheritance == entry->inheritance &&
2044             prev->wired_count == entry->wired_count &&
2045             prev->cred == entry->cred);
2046 }
2047
2048 static void
2049 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2050 {
2051
2052         /*
2053          * If the backing object is a vnode object, vm_object_deallocate()
2054          * calls vrele().  However, vrele() does not lock the vnode because
2055          * the vnode has additional references.  Thus, the map lock can be
2056          * kept without causing a lock-order reversal with the vnode lock.
2057          *
2058          * Since we count the number of virtual page mappings in
2059          * object->un_pager.vnp.writemappings, the writemappings value
2060          * should not be adjusted when the entry is disposed of.
2061          */
2062         if (entry->object.vm_object != NULL)
2063                 vm_object_deallocate(entry->object.vm_object);
2064         if (entry->cred != NULL)
2065                 crfree(entry->cred);
2066         vm_map_entry_dispose(map, entry);
2067 }
2068
2069 /*
2070  *      vm_map_try_merge_entries:
2071  *
2072  *      Compare the given map entry to its predecessor, and merge its precessor
2073  *      into it if possible.  The entry remains valid, and may be extended.
2074  *      The predecessor may be deleted.
2075  *
2076  *      The map must be locked.
2077  */
2078 void
2079 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry)
2080 {
2081
2082         VM_MAP_ASSERT_LOCKED(map);
2083         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2084             vm_map_mergeable_neighbors(prev, entry)) {
2085                 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2086                 vm_map_merged_neighbor_dispose(map, prev);
2087         }
2088 }
2089
2090 /*
2091  *      vm_map_entry_back:
2092  *
2093  *      Allocate an object to back a map entry.
2094  */
2095 static inline void
2096 vm_map_entry_back(vm_map_entry_t entry)
2097 {
2098         vm_object_t object;
2099
2100         KASSERT(entry->object.vm_object == NULL,
2101             ("map entry %p has backing object", entry));
2102         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2103             ("map entry %p is a submap", entry));
2104         object = vm_object_allocate(OBJT_DEFAULT,
2105             atop(entry->end - entry->start));
2106         entry->object.vm_object = object;
2107         entry->offset = 0;
2108         if (entry->cred != NULL) {
2109                 object->cred = entry->cred;
2110                 object->charge = entry->end - entry->start;
2111                 entry->cred = NULL;
2112         }
2113 }
2114
2115 /*
2116  *      vm_map_entry_charge_object
2117  *
2118  *      If there is no object backing this entry, create one.  Otherwise, if
2119  *      the entry has cred, give it to the backing object.
2120  */
2121 static inline void
2122 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2123 {
2124
2125         VM_MAP_ASSERT_LOCKED(map);
2126         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2127             ("map entry %p is a submap", entry));
2128         if (entry->object.vm_object == NULL && !map->system_map &&
2129             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2130                 vm_map_entry_back(entry);
2131         else if (entry->object.vm_object != NULL &&
2132             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2133             entry->cred != NULL) {
2134                 VM_OBJECT_WLOCK(entry->object.vm_object);
2135                 KASSERT(entry->object.vm_object->cred == NULL,
2136                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2137                 entry->object.vm_object->cred = entry->cred;
2138                 entry->object.vm_object->charge = entry->end - entry->start;
2139                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2140                 entry->cred = NULL;
2141         }
2142 }
2143
2144 /*
2145  *      vm_map_clip_start:      [ internal use only ]
2146  *
2147  *      Asserts that the given entry begins at or after
2148  *      the specified address; if necessary,
2149  *      it splits the entry into two.
2150  */
2151 #define vm_map_clip_start(map, entry, startaddr) \
2152 { \
2153         if (startaddr > entry->start) \
2154                 _vm_map_clip_start(map, entry, startaddr); \
2155 }
2156
2157 /*
2158  *      This routine is called only when it is known that
2159  *      the entry must be split.
2160  */
2161 static void
2162 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2163 {
2164         vm_map_entry_t new_entry;
2165
2166         VM_MAP_ASSERT_LOCKED(map);
2167         KASSERT(entry->end > start && entry->start < start,
2168             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2169
2170         /*
2171          * Create a backing object now, if none exists, so that more individual
2172          * objects won't be created after the map entry is split.
2173          */
2174         vm_map_entry_charge_object(map, entry);
2175
2176         /* Clone the entry. */
2177         new_entry = vm_map_entry_create(map);
2178         *new_entry = *entry;
2179
2180         /*
2181          * Split off the front portion.  Insert the new entry BEFORE this one,
2182          * so that this entry has the specified starting address.
2183          */
2184         new_entry->end = start;
2185         entry->offset += (start - entry->start);
2186         entry->start = start;
2187         if (new_entry->cred != NULL)
2188                 crhold(entry->cred);
2189
2190         vm_map_entry_link(map, new_entry);
2191
2192         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2193                 vm_object_reference(new_entry->object.vm_object);
2194                 vm_map_entry_set_vnode_text(new_entry, true);
2195                 /*
2196                  * The object->un_pager.vnp.writemappings for the
2197                  * object of MAP_ENTRY_WRITECNT type entry shall be
2198                  * kept as is here.  The virtual pages are
2199                  * re-distributed among the clipped entries, so the sum is
2200                  * left the same.
2201                  */
2202         }
2203 }
2204
2205 /*
2206  *      vm_map_clip_end:        [ internal use only ]
2207  *
2208  *      Asserts that the given entry ends at or before
2209  *      the specified address; if necessary,
2210  *      it splits the entry into two.
2211  */
2212 #define vm_map_clip_end(map, entry, endaddr) \
2213 { \
2214         if ((endaddr) < (entry->end)) \
2215                 _vm_map_clip_end((map), (entry), (endaddr)); \
2216 }
2217
2218 /*
2219  *      This routine is called only when it is known that
2220  *      the entry must be split.
2221  */
2222 static void
2223 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2224 {
2225         vm_map_entry_t new_entry;
2226
2227         VM_MAP_ASSERT_LOCKED(map);
2228         KASSERT(entry->start < end && entry->end > end,
2229             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2230
2231         /*
2232          * Create a backing object now, if none exists, so that more individual
2233          * objects won't be created after the map entry is split.
2234          */
2235         vm_map_entry_charge_object(map, entry);
2236
2237         /* Clone the entry. */
2238         new_entry = vm_map_entry_create(map);
2239         *new_entry = *entry;
2240
2241         /*
2242          * Split off the back portion.  Insert the new entry AFTER this one,
2243          * so that this entry has the specified ending address.
2244          */
2245         new_entry->start = entry->end = end;
2246         new_entry->offset += (end - entry->start);
2247         if (new_entry->cred != NULL)
2248                 crhold(entry->cred);
2249
2250         vm_map_entry_link(map, new_entry);
2251
2252         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2253                 vm_object_reference(new_entry->object.vm_object);
2254                 vm_map_entry_set_vnode_text(new_entry, true);
2255         }
2256 }
2257
2258 /*
2259  *      vm_map_submap:          [ kernel use only ]
2260  *
2261  *      Mark the given range as handled by a subordinate map.
2262  *
2263  *      This range must have been created with vm_map_find,
2264  *      and no other operations may have been performed on this
2265  *      range prior to calling vm_map_submap.
2266  *
2267  *      Only a limited number of operations can be performed
2268  *      within this rage after calling vm_map_submap:
2269  *              vm_fault
2270  *      [Don't try vm_map_copy!]
2271  *
2272  *      To remove a submapping, one must first remove the
2273  *      range from the superior map, and then destroy the
2274  *      submap (if desired).  [Better yet, don't try it.]
2275  */
2276 int
2277 vm_map_submap(
2278         vm_map_t map,
2279         vm_offset_t start,
2280         vm_offset_t end,
2281         vm_map_t submap)
2282 {
2283         vm_map_entry_t entry;
2284         int result;
2285
2286         result = KERN_INVALID_ARGUMENT;
2287
2288         vm_map_lock(submap);
2289         submap->flags |= MAP_IS_SUB_MAP;
2290         vm_map_unlock(submap);
2291
2292         vm_map_lock(map);
2293
2294         VM_MAP_RANGE_CHECK(map, start, end);
2295
2296         if (vm_map_lookup_entry(map, start, &entry)) {
2297                 vm_map_clip_start(map, entry, start);
2298         } else
2299                 entry = vm_map_entry_succ(entry);
2300
2301         vm_map_clip_end(map, entry, end);
2302
2303         if ((entry->start == start) && (entry->end == end) &&
2304             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2305             (entry->object.vm_object == NULL)) {
2306                 entry->object.sub_map = submap;
2307                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2308                 result = KERN_SUCCESS;
2309         }
2310         vm_map_unlock(map);
2311
2312         if (result != KERN_SUCCESS) {
2313                 vm_map_lock(submap);
2314                 submap->flags &= ~MAP_IS_SUB_MAP;
2315                 vm_map_unlock(submap);
2316         }
2317         return (result);
2318 }
2319
2320 /*
2321  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2322  */
2323 #define MAX_INIT_PT     96
2324
2325 /*
2326  *      vm_map_pmap_enter:
2327  *
2328  *      Preload the specified map's pmap with mappings to the specified
2329  *      object's memory-resident pages.  No further physical pages are
2330  *      allocated, and no further virtual pages are retrieved from secondary
2331  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2332  *      limited number of page mappings are created at the low-end of the
2333  *      specified address range.  (For this purpose, a superpage mapping
2334  *      counts as one page mapping.)  Otherwise, all resident pages within
2335  *      the specified address range are mapped.
2336  */
2337 static void
2338 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2339     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2340 {
2341         vm_offset_t start;
2342         vm_page_t p, p_start;
2343         vm_pindex_t mask, psize, threshold, tmpidx;
2344
2345         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2346                 return;
2347         VM_OBJECT_RLOCK(object);
2348         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2349                 VM_OBJECT_RUNLOCK(object);
2350                 VM_OBJECT_WLOCK(object);
2351                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2352                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2353                             size);
2354                         VM_OBJECT_WUNLOCK(object);
2355                         return;
2356                 }
2357                 VM_OBJECT_LOCK_DOWNGRADE(object);
2358         }
2359
2360         psize = atop(size);
2361         if (psize + pindex > object->size) {
2362                 if (object->size < pindex) {
2363                         VM_OBJECT_RUNLOCK(object);
2364                         return;
2365                 }
2366                 psize = object->size - pindex;
2367         }
2368
2369         start = 0;
2370         p_start = NULL;
2371         threshold = MAX_INIT_PT;
2372
2373         p = vm_page_find_least(object, pindex);
2374         /*
2375          * Assert: the variable p is either (1) the page with the
2376          * least pindex greater than or equal to the parameter pindex
2377          * or (2) NULL.
2378          */
2379         for (;
2380              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2381              p = TAILQ_NEXT(p, listq)) {
2382                 /*
2383                  * don't allow an madvise to blow away our really
2384                  * free pages allocating pv entries.
2385                  */
2386                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2387                     vm_page_count_severe()) ||
2388                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2389                     tmpidx >= threshold)) {
2390                         psize = tmpidx;
2391                         break;
2392                 }
2393                 if (vm_page_all_valid(p)) {
2394                         if (p_start == NULL) {
2395                                 start = addr + ptoa(tmpidx);
2396                                 p_start = p;
2397                         }
2398                         /* Jump ahead if a superpage mapping is possible. */
2399                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2400                             (pagesizes[p->psind] - 1)) == 0) {
2401                                 mask = atop(pagesizes[p->psind]) - 1;
2402                                 if (tmpidx + mask < psize &&
2403                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2404                                         p += mask;
2405                                         threshold += mask;
2406                                 }
2407                         }
2408                 } else if (p_start != NULL) {
2409                         pmap_enter_object(map->pmap, start, addr +
2410                             ptoa(tmpidx), p_start, prot);
2411                         p_start = NULL;
2412                 }
2413         }
2414         if (p_start != NULL)
2415                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2416                     p_start, prot);
2417         VM_OBJECT_RUNLOCK(object);
2418 }
2419
2420 /*
2421  *      vm_map_protect:
2422  *
2423  *      Sets the protection of the specified address
2424  *      region in the target map.  If "set_max" is
2425  *      specified, the maximum protection is to be set;
2426  *      otherwise, only the current protection is affected.
2427  */
2428 int
2429 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2430                vm_prot_t new_prot, boolean_t set_max)
2431 {
2432         vm_map_entry_t current, entry, in_tran;
2433         vm_object_t obj;
2434         struct ucred *cred;
2435         vm_prot_t old_prot;
2436         int rv;
2437
2438         if (start == end)
2439                 return (KERN_SUCCESS);
2440
2441 again:
2442         in_tran = NULL;
2443         vm_map_lock(map);
2444
2445         /*
2446          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2447          * need to fault pages into the map and will drop the map lock while
2448          * doing so, and the VM object may end up in an inconsistent state if we
2449          * update the protection on the map entry in between faults.
2450          */
2451         vm_map_wait_busy(map);
2452
2453         VM_MAP_RANGE_CHECK(map, start, end);
2454
2455         if (!vm_map_lookup_entry(map, start, &entry))
2456                 entry = vm_map_entry_succ(entry);
2457
2458         /*
2459          * Make a first pass to check for protection violations.
2460          */
2461         for (current = entry; current->start < end;
2462             current = vm_map_entry_succ(current)) {
2463                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2464                         continue;
2465                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2466                         vm_map_unlock(map);
2467                         return (KERN_INVALID_ARGUMENT);
2468                 }
2469                 if ((new_prot & current->max_protection) != new_prot) {
2470                         vm_map_unlock(map);
2471                         return (KERN_PROTECTION_FAILURE);
2472                 }
2473                 if ((current->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2474                         in_tran = current;
2475         }
2476
2477         /*
2478          * Postpone the operation until all in-transition map entries have
2479          * stabilized.  An in-transition entry might already have its pages
2480          * wired and wired_count incremented, but not yet have its
2481          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2482          * vm_fault_copy_entry() in the final loop below.
2483          */
2484         if (in_tran != NULL) {
2485                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2486                 vm_map_unlock_and_wait(map, 0);
2487                 goto again;
2488         }
2489
2490         /*
2491          * Before changing the protections, try to reserve swap space for any
2492          * private (i.e., copy-on-write) mappings that are transitioning from
2493          * read-only to read/write access.  If a reservation fails, break out
2494          * of this loop early and let the next loop simplify the entries, since
2495          * some may now be mergeable.
2496          */
2497         rv = KERN_SUCCESS;
2498         vm_map_clip_start(map, entry, start);
2499         for (current = entry; current->start < end;
2500             current = vm_map_entry_succ(current)) {
2501
2502                 vm_map_clip_end(map, current, end);
2503
2504                 if (set_max ||
2505                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2506                     ENTRY_CHARGED(current) ||
2507                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2508                         continue;
2509                 }
2510
2511                 cred = curthread->td_ucred;
2512                 obj = current->object.vm_object;
2513
2514                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2515                         if (!swap_reserve(current->end - current->start)) {
2516                                 rv = KERN_RESOURCE_SHORTAGE;
2517                                 end = current->end;
2518                                 break;
2519                         }
2520                         crhold(cred);
2521                         current->cred = cred;
2522                         continue;
2523                 }
2524
2525                 VM_OBJECT_WLOCK(obj);
2526                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2527                         VM_OBJECT_WUNLOCK(obj);
2528                         continue;
2529                 }
2530
2531                 /*
2532                  * Charge for the whole object allocation now, since
2533                  * we cannot distinguish between non-charged and
2534                  * charged clipped mapping of the same object later.
2535                  */
2536                 KASSERT(obj->charge == 0,
2537                     ("vm_map_protect: object %p overcharged (entry %p)",
2538                     obj, current));
2539                 if (!swap_reserve(ptoa(obj->size))) {
2540                         VM_OBJECT_WUNLOCK(obj);
2541                         rv = KERN_RESOURCE_SHORTAGE;
2542                         end = current->end;
2543                         break;
2544                 }
2545
2546                 crhold(cred);
2547                 obj->cred = cred;
2548                 obj->charge = ptoa(obj->size);
2549                 VM_OBJECT_WUNLOCK(obj);
2550         }
2551
2552         /*
2553          * If enough swap space was available, go back and fix up protections.
2554          * Otherwise, just simplify entries, since some may have been modified.
2555          * [Note that clipping is not necessary the second time.]
2556          */
2557         for (current = entry; current->start < end;
2558              vm_map_try_merge_entries(map, vm_map_entry_pred(current), current),
2559             current = vm_map_entry_succ(current)) {
2560                 if (rv != KERN_SUCCESS ||
2561                     (current->eflags & MAP_ENTRY_GUARD) != 0)
2562                         continue;
2563
2564                 old_prot = current->protection;
2565
2566                 if (set_max)
2567                         current->protection =
2568                             (current->max_protection = new_prot) &
2569                             old_prot;
2570                 else
2571                         current->protection = new_prot;
2572
2573                 /*
2574                  * For user wired map entries, the normal lazy evaluation of
2575                  * write access upgrades through soft page faults is
2576                  * undesirable.  Instead, immediately copy any pages that are
2577                  * copy-on-write and enable write access in the physical map.
2578                  */
2579                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2580                     (current->protection & VM_PROT_WRITE) != 0 &&
2581                     (old_prot & VM_PROT_WRITE) == 0)
2582                         vm_fault_copy_entry(map, map, current, current, NULL);
2583
2584                 /*
2585                  * When restricting access, update the physical map.  Worry
2586                  * about copy-on-write here.
2587                  */
2588                 if ((old_prot & ~current->protection) != 0) {
2589 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2590                                                         VM_PROT_ALL)
2591                         pmap_protect(map->pmap, current->start,
2592                             current->end,
2593                             current->protection & MASK(current));
2594 #undef  MASK
2595                 }
2596         }
2597         vm_map_try_merge_entries(map, vm_map_entry_pred(current), current);
2598         vm_map_unlock(map);
2599         return (rv);
2600 }
2601
2602 /*
2603  *      vm_map_madvise:
2604  *
2605  *      This routine traverses a processes map handling the madvise
2606  *      system call.  Advisories are classified as either those effecting
2607  *      the vm_map_entry structure, or those effecting the underlying
2608  *      objects.
2609  */
2610 int
2611 vm_map_madvise(
2612         vm_map_t map,
2613         vm_offset_t start,
2614         vm_offset_t end,
2615         int behav)
2616 {
2617         vm_map_entry_t current, entry;
2618         bool modify_map;
2619
2620         /*
2621          * Some madvise calls directly modify the vm_map_entry, in which case
2622          * we need to use an exclusive lock on the map and we need to perform
2623          * various clipping operations.  Otherwise we only need a read-lock
2624          * on the map.
2625          */
2626         switch(behav) {
2627         case MADV_NORMAL:
2628         case MADV_SEQUENTIAL:
2629         case MADV_RANDOM:
2630         case MADV_NOSYNC:
2631         case MADV_AUTOSYNC:
2632         case MADV_NOCORE:
2633         case MADV_CORE:
2634                 if (start == end)
2635                         return (0);
2636                 modify_map = true;
2637                 vm_map_lock(map);
2638                 break;
2639         case MADV_WILLNEED:
2640         case MADV_DONTNEED:
2641         case MADV_FREE:
2642                 if (start == end)
2643                         return (0);
2644                 modify_map = false;
2645                 vm_map_lock_read(map);
2646                 break;
2647         default:
2648                 return (EINVAL);
2649         }
2650
2651         /*
2652          * Locate starting entry and clip if necessary.
2653          */
2654         VM_MAP_RANGE_CHECK(map, start, end);
2655
2656         if (vm_map_lookup_entry(map, start, &entry)) {
2657                 if (modify_map)
2658                         vm_map_clip_start(map, entry, start);
2659         } else {
2660                 entry = vm_map_entry_succ(entry);
2661         }
2662
2663         if (modify_map) {
2664                 /*
2665                  * madvise behaviors that are implemented in the vm_map_entry.
2666                  *
2667                  * We clip the vm_map_entry so that behavioral changes are
2668                  * limited to the specified address range.
2669                  */
2670                 for (current = entry; current->start < end;
2671                     current = vm_map_entry_succ(current)) {
2672                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2673                                 continue;
2674
2675                         vm_map_clip_end(map, current, end);
2676
2677                         switch (behav) {
2678                         case MADV_NORMAL:
2679                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2680                                 break;
2681                         case MADV_SEQUENTIAL:
2682                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2683                                 break;
2684                         case MADV_RANDOM:
2685                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2686                                 break;
2687                         case MADV_NOSYNC:
2688                                 current->eflags |= MAP_ENTRY_NOSYNC;
2689                                 break;
2690                         case MADV_AUTOSYNC:
2691                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2692                                 break;
2693                         case MADV_NOCORE:
2694                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2695                                 break;
2696                         case MADV_CORE:
2697                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2698                                 break;
2699                         default:
2700                                 break;
2701                         }
2702                         vm_map_try_merge_entries(map,
2703                             vm_map_entry_pred(current), current);
2704                 }
2705                 vm_map_try_merge_entries(map, vm_map_entry_pred(current),
2706                     current);
2707                 vm_map_unlock(map);
2708         } else {
2709                 vm_pindex_t pstart, pend;
2710
2711                 /*
2712                  * madvise behaviors that are implemented in the underlying
2713                  * vm_object.
2714                  *
2715                  * Since we don't clip the vm_map_entry, we have to clip
2716                  * the vm_object pindex and count.
2717                  */
2718                 for (current = entry; current->start < end;
2719                     current = vm_map_entry_succ(current)) {
2720                         vm_offset_t useEnd, useStart;
2721
2722                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2723                                 continue;
2724
2725                         /*
2726                          * MADV_FREE would otherwise rewind time to
2727                          * the creation of the shadow object.  Because
2728                          * we hold the VM map read-locked, neither the
2729                          * entry's object nor the presence of a
2730                          * backing object can change.
2731                          */
2732                         if (behav == MADV_FREE &&
2733                             current->object.vm_object != NULL &&
2734                             current->object.vm_object->backing_object != NULL)
2735                                 continue;
2736
2737                         pstart = OFF_TO_IDX(current->offset);
2738                         pend = pstart + atop(current->end - current->start);
2739                         useStart = current->start;
2740                         useEnd = current->end;
2741
2742                         if (current->start < start) {
2743                                 pstart += atop(start - current->start);
2744                                 useStart = start;
2745                         }
2746                         if (current->end > end) {
2747                                 pend -= atop(current->end - end);
2748                                 useEnd = end;
2749                         }
2750
2751                         if (pstart >= pend)
2752                                 continue;
2753
2754                         /*
2755                          * Perform the pmap_advise() before clearing
2756                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2757                          * concurrent pmap operation, such as pmap_remove(),
2758                          * could clear a reference in the pmap and set
2759                          * PGA_REFERENCED on the page before the pmap_advise()
2760                          * had completed.  Consequently, the page would appear
2761                          * referenced based upon an old reference that
2762                          * occurred before this pmap_advise() ran.
2763                          */
2764                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2765                                 pmap_advise(map->pmap, useStart, useEnd,
2766                                     behav);
2767
2768                         vm_object_madvise(current->object.vm_object, pstart,
2769                             pend, behav);
2770
2771                         /*
2772                          * Pre-populate paging structures in the
2773                          * WILLNEED case.  For wired entries, the
2774                          * paging structures are already populated.
2775                          */
2776                         if (behav == MADV_WILLNEED &&
2777                             current->wired_count == 0) {
2778                                 vm_map_pmap_enter(map,
2779                                     useStart,
2780                                     current->protection,
2781                                     current->object.vm_object,
2782                                     pstart,
2783                                     ptoa(pend - pstart),
2784                                     MAP_PREFAULT_MADVISE
2785                                 );
2786                         }
2787                 }
2788                 vm_map_unlock_read(map);
2789         }
2790         return (0);
2791 }
2792
2793
2794 /*
2795  *      vm_map_inherit:
2796  *
2797  *      Sets the inheritance of the specified address
2798  *      range in the target map.  Inheritance
2799  *      affects how the map will be shared with
2800  *      child maps at the time of vmspace_fork.
2801  */
2802 int
2803 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2804                vm_inherit_t new_inheritance)
2805 {
2806         vm_map_entry_t entry;
2807         vm_map_entry_t temp_entry;
2808
2809         switch (new_inheritance) {
2810         case VM_INHERIT_NONE:
2811         case VM_INHERIT_COPY:
2812         case VM_INHERIT_SHARE:
2813         case VM_INHERIT_ZERO:
2814                 break;
2815         default:
2816                 return (KERN_INVALID_ARGUMENT);
2817         }
2818         if (start == end)
2819                 return (KERN_SUCCESS);
2820         vm_map_lock(map);
2821         VM_MAP_RANGE_CHECK(map, start, end);
2822         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2823                 entry = temp_entry;
2824                 vm_map_clip_start(map, entry, start);
2825         } else
2826                 entry = vm_map_entry_succ(temp_entry);
2827         while (entry->start < end) {
2828                 vm_map_clip_end(map, entry, end);
2829                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2830                     new_inheritance != VM_INHERIT_ZERO)
2831                         entry->inheritance = new_inheritance;
2832                 vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
2833                 entry = vm_map_entry_succ(entry);
2834         }
2835         vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
2836         vm_map_unlock(map);
2837         return (KERN_SUCCESS);
2838 }
2839
2840 /*
2841  *      vm_map_entry_in_transition:
2842  *
2843  *      Release the map lock, and sleep until the entry is no longer in
2844  *      transition.  Awake and acquire the map lock.  If the map changed while
2845  *      another held the lock, lookup a possibly-changed entry at or after the
2846  *      'start' position of the old entry.
2847  */
2848 static vm_map_entry_t
2849 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2850     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2851 {
2852         vm_map_entry_t entry;
2853         vm_offset_t start;
2854         u_int last_timestamp;
2855
2856         VM_MAP_ASSERT_LOCKED(map);
2857         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2858             ("not in-tranition map entry %p", in_entry));
2859         /*
2860          * We have not yet clipped the entry.
2861          */
2862         start = MAX(in_start, in_entry->start);
2863         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2864         last_timestamp = map->timestamp;
2865         if (vm_map_unlock_and_wait(map, 0)) {
2866                 /*
2867                  * Allow interruption of user wiring/unwiring?
2868                  */
2869         }
2870         vm_map_lock(map);
2871         if (last_timestamp + 1 == map->timestamp)
2872                 return (in_entry);
2873
2874         /*
2875          * Look again for the entry because the map was modified while it was
2876          * unlocked.  Specifically, the entry may have been clipped, merged, or
2877          * deleted.
2878          */
2879         if (!vm_map_lookup_entry(map, start, &entry)) {
2880                 if (!holes_ok) {
2881                         *io_end = start;
2882                         return (NULL);
2883                 }
2884                 entry = vm_map_entry_succ(entry);
2885         }
2886         return (entry);
2887 }
2888
2889 /*
2890  *      vm_map_unwire:
2891  *
2892  *      Implements both kernel and user unwiring.
2893  */
2894 int
2895 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2896     int flags)
2897 {
2898         vm_map_entry_t entry, first_entry;
2899         int rv;
2900         bool first_iteration, holes_ok, need_wakeup, user_unwire;
2901
2902         if (start == end)
2903                 return (KERN_SUCCESS);
2904         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
2905         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
2906         vm_map_lock(map);
2907         VM_MAP_RANGE_CHECK(map, start, end);
2908         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2909                 if (holes_ok)
2910                         first_entry = vm_map_entry_succ(first_entry);
2911                 else {
2912                         vm_map_unlock(map);
2913                         return (KERN_INVALID_ADDRESS);
2914                 }
2915         }
2916         first_iteration = true;
2917         entry = first_entry;
2918         rv = KERN_SUCCESS;
2919         while (entry->start < end) {
2920                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2921                         /*
2922                          * We have not yet clipped the entry.
2923                          */
2924                         entry = vm_map_entry_in_transition(map, start, &end,
2925                             holes_ok, entry);
2926                         if (entry == NULL) {
2927                                 if (first_iteration) {
2928                                         vm_map_unlock(map);
2929                                         return (KERN_INVALID_ADDRESS);
2930                                 }
2931                                 rv = KERN_INVALID_ADDRESS;
2932                                 break;
2933                         }
2934                         first_entry = first_iteration ? entry : NULL;
2935                         continue;
2936                 }
2937                 first_iteration = false;
2938                 vm_map_clip_start(map, entry, start);
2939                 vm_map_clip_end(map, entry, end);
2940                 /*
2941                  * Mark the entry in case the map lock is released.  (See
2942                  * above.)
2943                  */
2944                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2945                     entry->wiring_thread == NULL,
2946                     ("owned map entry %p", entry));
2947                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2948                 entry->wiring_thread = curthread;
2949                 /*
2950                  * Check the map for holes in the specified region.
2951                  * If holes_ok, skip this check.
2952                  */
2953                 if (!holes_ok &&
2954                     (entry->end < end &&
2955                     vm_map_entry_succ(entry)->start > entry->end)) {
2956                         end = entry->end;
2957                         rv = KERN_INVALID_ADDRESS;
2958                         break;
2959                 }
2960                 /*
2961                  * If system unwiring, require that the entry is system wired.
2962                  */
2963                 if (!user_unwire &&
2964                     vm_map_entry_system_wired_count(entry) == 0) {
2965                         end = entry->end;
2966                         rv = KERN_INVALID_ARGUMENT;
2967                         break;
2968                 }
2969                 entry = vm_map_entry_succ(entry);
2970         }
2971         need_wakeup = false;
2972         if (first_entry == NULL &&
2973             !vm_map_lookup_entry(map, start, &first_entry)) {
2974                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
2975                 first_entry = vm_map_entry_succ(first_entry);
2976         }
2977         for (entry = first_entry; entry->start < end;
2978             entry = vm_map_entry_succ(entry)) {
2979                 /*
2980                  * If holes_ok was specified, an empty
2981                  * space in the unwired region could have been mapped
2982                  * while the map lock was dropped for draining
2983                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2984                  * could be simultaneously wiring this new mapping
2985                  * entry.  Detect these cases and skip any entries
2986                  * marked as in transition by us.
2987                  */
2988                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2989                     entry->wiring_thread != curthread) {
2990                         KASSERT(holes_ok,
2991                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2992                         continue;
2993                 }
2994
2995                 if (rv == KERN_SUCCESS && (!user_unwire ||
2996                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2997                         if (entry->wired_count == 1)
2998                                 vm_map_entry_unwire(map, entry);
2999                         else
3000                                 entry->wired_count--;
3001                         if (user_unwire)
3002                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3003                 }
3004                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3005                     ("vm_map_unwire: in-transition flag missing %p", entry));
3006                 KASSERT(entry->wiring_thread == curthread,
3007                     ("vm_map_unwire: alien wire %p", entry));
3008                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3009                 entry->wiring_thread = NULL;
3010                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3011                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3012                         need_wakeup = true;
3013                 }
3014                 vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3015         }
3016         vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3017         vm_map_unlock(map);
3018         if (need_wakeup)
3019                 vm_map_wakeup(map);
3020         return (rv);
3021 }
3022
3023 static void
3024 vm_map_wire_user_count_sub(u_long npages)
3025 {
3026
3027         atomic_subtract_long(&vm_user_wire_count, npages);
3028 }
3029
3030 static bool
3031 vm_map_wire_user_count_add(u_long npages)
3032 {
3033         u_long wired;
3034
3035         wired = vm_user_wire_count;
3036         do {
3037                 if (npages + wired > vm_page_max_user_wired)
3038                         return (false);
3039         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3040             npages + wired));
3041
3042         return (true);
3043 }
3044
3045 /*
3046  *      vm_map_wire_entry_failure:
3047  *
3048  *      Handle a wiring failure on the given entry.
3049  *
3050  *      The map should be locked.
3051  */
3052 static void
3053 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3054     vm_offset_t failed_addr)
3055 {
3056
3057         VM_MAP_ASSERT_LOCKED(map);
3058         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3059             entry->wired_count == 1,
3060             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3061         KASSERT(failed_addr < entry->end,
3062             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3063
3064         /*
3065          * If any pages at the start of this entry were successfully wired,
3066          * then unwire them.
3067          */
3068         if (failed_addr > entry->start) {
3069                 pmap_unwire(map->pmap, entry->start, failed_addr);
3070                 vm_object_unwire(entry->object.vm_object, entry->offset,
3071                     failed_addr - entry->start, PQ_ACTIVE);
3072         }
3073
3074         /*
3075          * Assign an out-of-range value to represent the failure to wire this
3076          * entry.
3077          */
3078         entry->wired_count = -1;
3079 }
3080
3081 int
3082 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3083 {
3084         int rv;
3085
3086         vm_map_lock(map);
3087         rv = vm_map_wire_locked(map, start, end, flags);
3088         vm_map_unlock(map);
3089         return (rv);
3090 }
3091
3092
3093 /*
3094  *      vm_map_wire_locked:
3095  *
3096  *      Implements both kernel and user wiring.  Returns with the map locked,
3097  *      the map lock may be dropped.
3098  */
3099 int
3100 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3101 {
3102         vm_map_entry_t entry, first_entry, tmp_entry;
3103         vm_offset_t faddr, saved_end, saved_start;
3104         u_long npages;
3105         u_int last_timestamp;
3106         int rv;
3107         bool first_iteration, holes_ok, need_wakeup, user_wire;
3108         vm_prot_t prot;
3109
3110         VM_MAP_ASSERT_LOCKED(map);
3111
3112         if (start == end)
3113                 return (KERN_SUCCESS);
3114         prot = 0;
3115         if (flags & VM_MAP_WIRE_WRITE)
3116                 prot |= VM_PROT_WRITE;
3117         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3118         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3119         VM_MAP_RANGE_CHECK(map, start, end);
3120         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3121                 if (holes_ok)
3122                         first_entry = vm_map_entry_succ(first_entry);
3123                 else
3124                         return (KERN_INVALID_ADDRESS);
3125         }
3126         first_iteration = true;
3127         entry = first_entry;
3128         while (entry->start < end) {
3129                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3130                         /*
3131                          * We have not yet clipped the entry.
3132                          */
3133                         entry = vm_map_entry_in_transition(map, start, &end,
3134                             holes_ok, entry);
3135                         if (entry == NULL) {
3136                                 if (first_iteration)
3137                                         return (KERN_INVALID_ADDRESS);
3138                                 rv = KERN_INVALID_ADDRESS;
3139                                 goto done;
3140                         }
3141                         first_entry = first_iteration ? entry : NULL;
3142                         continue;
3143                 }
3144                 first_iteration = false;
3145                 vm_map_clip_start(map, entry, start);
3146                 vm_map_clip_end(map, entry, end);
3147                 /*
3148                  * Mark the entry in case the map lock is released.  (See
3149                  * above.)
3150                  */
3151                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3152                     entry->wiring_thread == NULL,
3153                     ("owned map entry %p", entry));
3154                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3155                 entry->wiring_thread = curthread;
3156                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3157                     || (entry->protection & prot) != prot) {
3158                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3159                         if (!holes_ok) {
3160                                 end = entry->end;
3161                                 rv = KERN_INVALID_ADDRESS;
3162                                 goto done;
3163                         }
3164                 } else if (entry->wired_count == 0) {
3165                         entry->wired_count++;
3166
3167                         npages = atop(entry->end - entry->start);
3168                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3169                                 vm_map_wire_entry_failure(map, entry,
3170                                     entry->start);
3171                                 end = entry->end;
3172                                 rv = KERN_RESOURCE_SHORTAGE;
3173                                 goto done;
3174                         }
3175
3176                         /*
3177                          * Release the map lock, relying on the in-transition
3178                          * mark.  Mark the map busy for fork.
3179                          */
3180                         saved_start = entry->start;
3181                         saved_end = entry->end;
3182                         last_timestamp = map->timestamp;
3183                         vm_map_busy(map);
3184                         vm_map_unlock(map);
3185
3186                         faddr = saved_start;
3187                         do {
3188                                 /*
3189                                  * Simulate a fault to get the page and enter
3190                                  * it into the physical map.
3191                                  */
3192                                 if ((rv = vm_fault(map, faddr,
3193                                     VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3194                                     KERN_SUCCESS)
3195                                         break;
3196                         } while ((faddr += PAGE_SIZE) < saved_end);
3197                         vm_map_lock(map);
3198                         vm_map_unbusy(map);
3199                         if (last_timestamp + 1 != map->timestamp) {
3200                                 /*
3201                                  * Look again for the entry because the map was
3202                                  * modified while it was unlocked.  The entry
3203                                  * may have been clipped, but NOT merged or
3204                                  * deleted.
3205                                  */
3206                                 if (!vm_map_lookup_entry(map, saved_start,
3207                                     &tmp_entry))
3208                                         KASSERT(false,
3209                                             ("vm_map_wire: lookup failed"));
3210                                 if (entry == first_entry)
3211                                         first_entry = tmp_entry;
3212                                 else
3213                                         first_entry = NULL;
3214                                 entry = tmp_entry;
3215                                 while (entry->end < saved_end) {
3216                                         /*
3217                                          * In case of failure, handle entries
3218                                          * that were not fully wired here;
3219                                          * fully wired entries are handled
3220                                          * later.
3221                                          */
3222                                         if (rv != KERN_SUCCESS &&
3223                                             faddr < entry->end)
3224                                                 vm_map_wire_entry_failure(map,
3225                                                     entry, faddr);
3226                                         entry = vm_map_entry_succ(entry);
3227                                 }
3228                         }
3229                         if (rv != KERN_SUCCESS) {
3230                                 vm_map_wire_entry_failure(map, entry, faddr);
3231                                 if (user_wire)
3232                                         vm_map_wire_user_count_sub(npages);
3233                                 end = entry->end;
3234                                 goto done;
3235                         }
3236                 } else if (!user_wire ||
3237                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3238                         entry->wired_count++;
3239                 }
3240                 /*
3241                  * Check the map for holes in the specified region.
3242                  * If holes_ok was specified, skip this check.
3243                  */
3244                 if (!holes_ok &&
3245                     entry->end < end &&
3246                     vm_map_entry_succ(entry)->start > entry->end) {
3247                         end = entry->end;
3248                         rv = KERN_INVALID_ADDRESS;
3249                         goto done;
3250                 }
3251                 entry = vm_map_entry_succ(entry);
3252         }
3253         rv = KERN_SUCCESS;
3254 done:
3255         need_wakeup = false;
3256         if (first_entry == NULL &&
3257             !vm_map_lookup_entry(map, start, &first_entry)) {
3258                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3259                 first_entry = vm_map_entry_succ(first_entry);
3260         }
3261         for (entry = first_entry; entry->start < end;
3262             entry = vm_map_entry_succ(entry)) {
3263                 /*
3264                  * If holes_ok was specified, an empty
3265                  * space in the unwired region could have been mapped
3266                  * while the map lock was dropped for faulting in the
3267                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3268                  * Moreover, another thread could be simultaneously
3269                  * wiring this new mapping entry.  Detect these cases
3270                  * and skip any entries marked as in transition not by us.
3271                  */
3272                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3273                     entry->wiring_thread != curthread) {
3274                         KASSERT(holes_ok,
3275                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3276                         continue;
3277                 }
3278
3279                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3280                         /* do nothing */
3281                 } else if (rv == KERN_SUCCESS) {
3282                         if (user_wire)
3283                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3284                 } else if (entry->wired_count == -1) {
3285                         /*
3286                          * Wiring failed on this entry.  Thus, unwiring is
3287                          * unnecessary.
3288                          */
3289                         entry->wired_count = 0;
3290                 } else if (!user_wire ||
3291                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3292                         /*
3293                          * Undo the wiring.  Wiring succeeded on this entry
3294                          * but failed on a later entry.  
3295                          */
3296                         if (entry->wired_count == 1) {
3297                                 vm_map_entry_unwire(map, entry);
3298                                 if (user_wire)
3299                                         vm_map_wire_user_count_sub(
3300                                             atop(entry->end - entry->start));
3301                         } else
3302                                 entry->wired_count--;
3303                 }
3304                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3305                     ("vm_map_wire: in-transition flag missing %p", entry));
3306                 KASSERT(entry->wiring_thread == curthread,
3307                     ("vm_map_wire: alien wire %p", entry));
3308                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3309                     MAP_ENTRY_WIRE_SKIPPED);
3310                 entry->wiring_thread = NULL;
3311                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3312                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3313                         need_wakeup = true;
3314                 }
3315                 vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3316         }
3317         vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3318         if (need_wakeup)
3319                 vm_map_wakeup(map);
3320         return (rv);
3321 }
3322
3323 /*
3324  * vm_map_sync
3325  *
3326  * Push any dirty cached pages in the address range to their pager.
3327  * If syncio is TRUE, dirty pages are written synchronously.
3328  * If invalidate is TRUE, any cached pages are freed as well.
3329  *
3330  * If the size of the region from start to end is zero, we are
3331  * supposed to flush all modified pages within the region containing
3332  * start.  Unfortunately, a region can be split or coalesced with
3333  * neighboring regions, making it difficult to determine what the
3334  * original region was.  Therefore, we approximate this requirement by
3335  * flushing the current region containing start.
3336  *
3337  * Returns an error if any part of the specified range is not mapped.
3338  */
3339 int
3340 vm_map_sync(
3341         vm_map_t map,
3342         vm_offset_t start,
3343         vm_offset_t end,
3344         boolean_t syncio,
3345         boolean_t invalidate)
3346 {
3347         vm_map_entry_t current;
3348         vm_map_entry_t entry;
3349         vm_size_t size;
3350         vm_object_t object;
3351         vm_ooffset_t offset;
3352         unsigned int last_timestamp;
3353         boolean_t failed;
3354
3355         vm_map_lock_read(map);
3356         VM_MAP_RANGE_CHECK(map, start, end);
3357         if (!vm_map_lookup_entry(map, start, &entry)) {
3358                 vm_map_unlock_read(map);
3359                 return (KERN_INVALID_ADDRESS);
3360         } else if (start == end) {
3361                 start = entry->start;
3362                 end = entry->end;
3363         }
3364         /*
3365          * Make a first pass to check for user-wired memory and holes.
3366          */
3367         for (current = entry; current->start < end;
3368             current = vm_map_entry_succ(current)) {
3369                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3370                         vm_map_unlock_read(map);
3371                         return (KERN_INVALID_ARGUMENT);
3372                 }
3373                 if (end > current->end &&
3374                     current->end != vm_map_entry_succ(current)->start) {
3375                         vm_map_unlock_read(map);
3376                         return (KERN_INVALID_ADDRESS);
3377                 }
3378         }
3379
3380         if (invalidate)
3381                 pmap_remove(map->pmap, start, end);
3382         failed = FALSE;
3383
3384         /*
3385          * Make a second pass, cleaning/uncaching pages from the indicated
3386          * objects as we go.
3387          */
3388         for (current = entry; current->start < end;) {
3389                 offset = current->offset + (start - current->start);
3390                 size = (end <= current->end ? end : current->end) - start;
3391                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3392                         vm_map_t smap;
3393                         vm_map_entry_t tentry;
3394                         vm_size_t tsize;
3395
3396                         smap = current->object.sub_map;
3397                         vm_map_lock_read(smap);
3398                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3399                         tsize = tentry->end - offset;
3400                         if (tsize < size)
3401                                 size = tsize;
3402                         object = tentry->object.vm_object;
3403                         offset = tentry->offset + (offset - tentry->start);
3404                         vm_map_unlock_read(smap);
3405                 } else {
3406                         object = current->object.vm_object;
3407                 }
3408                 vm_object_reference(object);
3409                 last_timestamp = map->timestamp;
3410                 vm_map_unlock_read(map);
3411                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3412                         failed = TRUE;
3413                 start += size;
3414                 vm_object_deallocate(object);
3415                 vm_map_lock_read(map);
3416                 if (last_timestamp == map->timestamp ||
3417                     !vm_map_lookup_entry(map, start, &current))
3418                         current = vm_map_entry_succ(current);
3419         }
3420
3421         vm_map_unlock_read(map);
3422         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3423 }
3424
3425 /*
3426  *      vm_map_entry_unwire:    [ internal use only ]
3427  *
3428  *      Make the region specified by this entry pageable.
3429  *
3430  *      The map in question should be locked.
3431  *      [This is the reason for this routine's existence.]
3432  */
3433 static void
3434 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3435 {
3436         vm_size_t size;
3437
3438         VM_MAP_ASSERT_LOCKED(map);
3439         KASSERT(entry->wired_count > 0,
3440             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3441
3442         size = entry->end - entry->start;
3443         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3444                 vm_map_wire_user_count_sub(atop(size));
3445         pmap_unwire(map->pmap, entry->start, entry->end);
3446         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3447             PQ_ACTIVE);
3448         entry->wired_count = 0;
3449 }
3450
3451 static void
3452 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3453 {
3454
3455         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3456                 vm_object_deallocate(entry->object.vm_object);
3457         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3458 }
3459
3460 /*
3461  *      vm_map_entry_delete:    [ internal use only ]
3462  *
3463  *      Deallocate the given entry from the target map.
3464  */
3465 static void
3466 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3467 {
3468         vm_object_t object;
3469         vm_pindex_t offidxstart, offidxend, count, size1;
3470         vm_size_t size;
3471
3472         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3473         object = entry->object.vm_object;
3474
3475         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3476                 MPASS(entry->cred == NULL);
3477                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3478                 MPASS(object == NULL);
3479                 vm_map_entry_deallocate(entry, map->system_map);
3480                 return;
3481         }
3482
3483         size = entry->end - entry->start;
3484         map->size -= size;
3485
3486         if (entry->cred != NULL) {
3487                 swap_release_by_cred(size, entry->cred);
3488                 crfree(entry->cred);
3489         }
3490
3491         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3492             (object != NULL)) {
3493                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3494                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3495                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3496                 count = atop(size);
3497                 offidxstart = OFF_TO_IDX(entry->offset);
3498                 offidxend = offidxstart + count;
3499                 VM_OBJECT_WLOCK(object);
3500                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3501                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3502                     object == kernel_object)) {
3503                         vm_object_collapse(object);
3504
3505                         /*
3506                          * The option OBJPR_NOTMAPPED can be passed here
3507                          * because vm_map_delete() already performed
3508                          * pmap_remove() on the only mapping to this range
3509                          * of pages. 
3510                          */
3511                         vm_object_page_remove(object, offidxstart, offidxend,
3512                             OBJPR_NOTMAPPED);
3513                         if (object->type == OBJT_SWAP)
3514                                 swap_pager_freespace(object, offidxstart,
3515                                     count);
3516                         if (offidxend >= object->size &&
3517                             offidxstart < object->size) {
3518                                 size1 = object->size;
3519                                 object->size = offidxstart;
3520                                 if (object->cred != NULL) {
3521                                         size1 -= object->size;
3522                                         KASSERT(object->charge >= ptoa(size1),
3523                                             ("object %p charge < 0", object));
3524                                         swap_release_by_cred(ptoa(size1),
3525                                             object->cred);
3526                                         object->charge -= ptoa(size1);
3527                                 }
3528                         }
3529                 }
3530                 VM_OBJECT_WUNLOCK(object);
3531         } else
3532                 entry->object.vm_object = NULL;
3533         if (map->system_map)
3534                 vm_map_entry_deallocate(entry, TRUE);
3535         else {
3536                 entry->defer_next = curthread->td_map_def_user;
3537                 curthread->td_map_def_user = entry;
3538         }
3539 }
3540
3541 /*
3542  *      vm_map_delete:  [ internal use only ]
3543  *
3544  *      Deallocates the given address range from the target
3545  *      map.
3546  */
3547 int
3548 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3549 {
3550         vm_map_entry_t entry;
3551         vm_map_entry_t first_entry;
3552
3553         VM_MAP_ASSERT_LOCKED(map);
3554         if (start == end)
3555                 return (KERN_SUCCESS);
3556
3557         /*
3558          * Find the start of the region, and clip it
3559          */
3560         if (!vm_map_lookup_entry(map, start, &first_entry))
3561                 entry = vm_map_entry_succ(first_entry);
3562         else {
3563                 entry = first_entry;
3564                 vm_map_clip_start(map, entry, start);
3565         }
3566
3567         /*
3568          * Step through all entries in this region
3569          */
3570         while (entry->start < end) {
3571                 vm_map_entry_t next;
3572
3573                 /*
3574                  * Wait for wiring or unwiring of an entry to complete.
3575                  * Also wait for any system wirings to disappear on
3576                  * user maps.
3577                  */
3578                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3579                     (vm_map_pmap(map) != kernel_pmap &&
3580                     vm_map_entry_system_wired_count(entry) != 0)) {
3581                         unsigned int last_timestamp;
3582                         vm_offset_t saved_start;
3583                         vm_map_entry_t tmp_entry;
3584
3585                         saved_start = entry->start;
3586                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3587                         last_timestamp = map->timestamp;
3588                         (void) vm_map_unlock_and_wait(map, 0);
3589                         vm_map_lock(map);
3590                         if (last_timestamp + 1 != map->timestamp) {
3591                                 /*
3592                                  * Look again for the entry because the map was
3593                                  * modified while it was unlocked.
3594                                  * Specifically, the entry may have been
3595                                  * clipped, merged, or deleted.
3596                                  */
3597                                 if (!vm_map_lookup_entry(map, saved_start,
3598                                                          &tmp_entry))
3599                                         entry = vm_map_entry_succ(tmp_entry);
3600                                 else {
3601                                         entry = tmp_entry;
3602                                         vm_map_clip_start(map, entry,
3603                                                           saved_start);
3604                                 }
3605                         }
3606                         continue;
3607                 }
3608                 vm_map_clip_end(map, entry, end);
3609
3610                 next = vm_map_entry_succ(entry);
3611
3612                 /*
3613                  * Unwire before removing addresses from the pmap; otherwise,
3614                  * unwiring will put the entries back in the pmap.
3615                  */
3616                 if (entry->wired_count != 0)
3617                         vm_map_entry_unwire(map, entry);
3618
3619                 /*
3620                  * Remove mappings for the pages, but only if the
3621                  * mappings could exist.  For instance, it does not
3622                  * make sense to call pmap_remove() for guard entries.
3623                  */
3624                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3625                     entry->object.vm_object != NULL)
3626                         pmap_remove(map->pmap, entry->start, entry->end);
3627
3628                 if (entry->end == map->anon_loc)
3629                         map->anon_loc = entry->start;
3630
3631                 /*
3632                  * Delete the entry only after removing all pmap
3633                  * entries pointing to its pages.  (Otherwise, its
3634                  * page frames may be reallocated, and any modify bits
3635                  * will be set in the wrong object!)
3636                  */
3637                 vm_map_entry_delete(map, entry);
3638                 entry = next;
3639         }
3640         return (KERN_SUCCESS);
3641 }
3642
3643 /*
3644  *      vm_map_remove:
3645  *
3646  *      Remove the given address range from the target map.
3647  *      This is the exported form of vm_map_delete.
3648  */
3649 int
3650 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3651 {
3652         int result;
3653
3654         vm_map_lock(map);
3655         VM_MAP_RANGE_CHECK(map, start, end);
3656         result = vm_map_delete(map, start, end);
3657         vm_map_unlock(map);
3658         return (result);
3659 }
3660
3661 /*
3662  *      vm_map_check_protection:
3663  *
3664  *      Assert that the target map allows the specified privilege on the
3665  *      entire address region given.  The entire region must be allocated.
3666  *
3667  *      WARNING!  This code does not and should not check whether the
3668  *      contents of the region is accessible.  For example a smaller file
3669  *      might be mapped into a larger address space.
3670  *
3671  *      NOTE!  This code is also called by munmap().
3672  *
3673  *      The map must be locked.  A read lock is sufficient.
3674  */
3675 boolean_t
3676 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3677                         vm_prot_t protection)
3678 {
3679         vm_map_entry_t entry;
3680         vm_map_entry_t tmp_entry;
3681
3682         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3683                 return (FALSE);
3684         entry = tmp_entry;
3685
3686         while (start < end) {
3687                 /*
3688                  * No holes allowed!
3689                  */
3690                 if (start < entry->start)
3691                         return (FALSE);
3692                 /*
3693                  * Check protection associated with entry.
3694                  */
3695                 if ((entry->protection & protection) != protection)
3696                         return (FALSE);
3697                 /* go to next entry */
3698                 start = entry->end;
3699                 entry = vm_map_entry_succ(entry);
3700         }
3701         return (TRUE);
3702 }
3703
3704 /*
3705  *      vm_map_copy_entry:
3706  *
3707  *      Copies the contents of the source entry to the destination
3708  *      entry.  The entries *must* be aligned properly.
3709  */
3710 static void
3711 vm_map_copy_entry(
3712         vm_map_t src_map,
3713         vm_map_t dst_map,
3714         vm_map_entry_t src_entry,
3715         vm_map_entry_t dst_entry,
3716         vm_ooffset_t *fork_charge)
3717 {
3718         vm_object_t src_object;
3719         vm_map_entry_t fake_entry;
3720         vm_offset_t size;
3721         struct ucred *cred;
3722         int charged;
3723
3724         VM_MAP_ASSERT_LOCKED(dst_map);
3725
3726         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3727                 return;
3728
3729         if (src_entry->wired_count == 0 ||
3730             (src_entry->protection & VM_PROT_WRITE) == 0) {
3731                 /*
3732                  * If the source entry is marked needs_copy, it is already
3733                  * write-protected.
3734                  */
3735                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3736                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3737                         pmap_protect(src_map->pmap,
3738                             src_entry->start,
3739                             src_entry->end,
3740                             src_entry->protection & ~VM_PROT_WRITE);
3741                 }
3742
3743                 /*
3744                  * Make a copy of the object.
3745                  */
3746                 size = src_entry->end - src_entry->start;
3747                 if ((src_object = src_entry->object.vm_object) != NULL) {
3748                         VM_OBJECT_WLOCK(src_object);
3749                         charged = ENTRY_CHARGED(src_entry);
3750                         if (src_object->handle == NULL &&
3751                             (src_object->type == OBJT_DEFAULT ||
3752                             src_object->type == OBJT_SWAP)) {
3753                                 vm_object_collapse(src_object);
3754                                 if ((src_object->flags & (OBJ_NOSPLIT |
3755                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3756                                         vm_object_split(src_entry);
3757                                         src_object =
3758                                             src_entry->object.vm_object;
3759                                 }
3760                         }
3761                         vm_object_reference_locked(src_object);
3762                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3763                         if (src_entry->cred != NULL &&
3764                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3765                                 KASSERT(src_object->cred == NULL,
3766                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3767                                      src_object));
3768                                 src_object->cred = src_entry->cred;
3769                                 src_object->charge = size;
3770                         }
3771                         VM_OBJECT_WUNLOCK(src_object);
3772                         dst_entry->object.vm_object = src_object;
3773                         if (charged) {
3774                                 cred = curthread->td_ucred;
3775                                 crhold(cred);
3776                                 dst_entry->cred = cred;
3777                                 *fork_charge += size;
3778                                 if (!(src_entry->eflags &
3779                                       MAP_ENTRY_NEEDS_COPY)) {
3780                                         crhold(cred);
3781                                         src_entry->cred = cred;
3782                                         *fork_charge += size;
3783                                 }
3784                         }
3785                         src_entry->eflags |= MAP_ENTRY_COW |
3786                             MAP_ENTRY_NEEDS_COPY;
3787                         dst_entry->eflags |= MAP_ENTRY_COW |
3788                             MAP_ENTRY_NEEDS_COPY;
3789                         dst_entry->offset = src_entry->offset;
3790                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3791                                 /*
3792                                  * MAP_ENTRY_WRITECNT cannot
3793                                  * indicate write reference from
3794                                  * src_entry, since the entry is
3795                                  * marked as needs copy.  Allocate a
3796                                  * fake entry that is used to
3797                                  * decrement object->un_pager writecount
3798                                  * at the appropriate time.  Attach
3799                                  * fake_entry to the deferred list.
3800                                  */
3801                                 fake_entry = vm_map_entry_create(dst_map);
3802                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
3803                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3804                                 vm_object_reference(src_object);
3805                                 fake_entry->object.vm_object = src_object;
3806                                 fake_entry->start = src_entry->start;
3807                                 fake_entry->end = src_entry->end;
3808                                 fake_entry->defer_next =
3809                                     curthread->td_map_def_user;
3810                                 curthread->td_map_def_user = fake_entry;
3811                         }
3812
3813                         pmap_copy(dst_map->pmap, src_map->pmap,
3814                             dst_entry->start, dst_entry->end - dst_entry->start,
3815                             src_entry->start);
3816                 } else {
3817                         dst_entry->object.vm_object = NULL;
3818                         dst_entry->offset = 0;
3819                         if (src_entry->cred != NULL) {
3820                                 dst_entry->cred = curthread->td_ucred;
3821                                 crhold(dst_entry->cred);
3822                                 *fork_charge += size;
3823                         }
3824                 }
3825         } else {
3826                 /*
3827                  * We don't want to make writeable wired pages copy-on-write.
3828                  * Immediately copy these pages into the new map by simulating
3829                  * page faults.  The new pages are pageable.
3830                  */
3831                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3832                     fork_charge);
3833         }
3834 }
3835
3836 /*
3837  * vmspace_map_entry_forked:
3838  * Update the newly-forked vmspace each time a map entry is inherited
3839  * or copied.  The values for vm_dsize and vm_tsize are approximate
3840  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3841  */
3842 static void
3843 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3844     vm_map_entry_t entry)
3845 {
3846         vm_size_t entrysize;
3847         vm_offset_t newend;
3848
3849         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3850                 return;
3851         entrysize = entry->end - entry->start;
3852         vm2->vm_map.size += entrysize;
3853         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3854                 vm2->vm_ssize += btoc(entrysize);
3855         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3856             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3857                 newend = MIN(entry->end,
3858                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3859                 vm2->vm_dsize += btoc(newend - entry->start);
3860         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3861             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3862                 newend = MIN(entry->end,
3863                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3864                 vm2->vm_tsize += btoc(newend - entry->start);
3865         }
3866 }
3867
3868 /*
3869  * vmspace_fork:
3870  * Create a new process vmspace structure and vm_map
3871  * based on those of an existing process.  The new map
3872  * is based on the old map, according to the inheritance
3873  * values on the regions in that map.
3874  *
3875  * XXX It might be worth coalescing the entries added to the new vmspace.
3876  *
3877  * The source map must not be locked.
3878  */
3879 struct vmspace *
3880 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3881 {
3882         struct vmspace *vm2;
3883         vm_map_t new_map, old_map;
3884         vm_map_entry_t new_entry, old_entry;
3885         vm_object_t object;
3886         int error, locked;
3887         vm_inherit_t inh;
3888
3889         old_map = &vm1->vm_map;
3890         /* Copy immutable fields of vm1 to vm2. */
3891         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3892             pmap_pinit);
3893         if (vm2 == NULL)
3894                 return (NULL);
3895
3896         vm2->vm_taddr = vm1->vm_taddr;
3897         vm2->vm_daddr = vm1->vm_daddr;
3898         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3899         vm_map_lock(old_map);
3900         if (old_map->busy)
3901                 vm_map_wait_busy(old_map);
3902         new_map = &vm2->vm_map;
3903         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3904         KASSERT(locked, ("vmspace_fork: lock failed"));
3905
3906         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3907         if (error != 0) {
3908                 sx_xunlock(&old_map->lock);
3909                 sx_xunlock(&new_map->lock);
3910                 vm_map_process_deferred();
3911                 vmspace_free(vm2);
3912                 return (NULL);
3913         }
3914
3915         new_map->anon_loc = old_map->anon_loc;
3916
3917         old_entry = old_map->header.next;
3918
3919         while (old_entry != &old_map->header) {
3920                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3921                         panic("vm_map_fork: encountered a submap");
3922
3923                 inh = old_entry->inheritance;
3924                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3925                     inh != VM_INHERIT_NONE)
3926                         inh = VM_INHERIT_COPY;
3927
3928                 switch (inh) {
3929                 case VM_INHERIT_NONE:
3930                         break;
3931
3932                 case VM_INHERIT_SHARE:
3933                         /*
3934                          * Clone the entry, creating the shared object if necessary.
3935                          */
3936                         object = old_entry->object.vm_object;
3937                         if (object == NULL) {
3938                                 vm_map_entry_back(old_entry);
3939                                 object = old_entry->object.vm_object;
3940                         }
3941
3942                         /*
3943                          * Add the reference before calling vm_object_shadow
3944                          * to insure that a shadow object is created.
3945                          */
3946                         vm_object_reference(object);
3947                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3948                                 vm_object_shadow(&old_entry->object.vm_object,
3949                                     &old_entry->offset,
3950                                     old_entry->end - old_entry->start);
3951                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3952                                 /* Transfer the second reference too. */
3953                                 vm_object_reference(
3954                                     old_entry->object.vm_object);
3955
3956                                 /*
3957                                  * As in vm_map_merged_neighbor_dispose(),
3958                                  * the vnode lock will not be acquired in
3959                                  * this call to vm_object_deallocate().
3960                                  */
3961                                 vm_object_deallocate(object);
3962                                 object = old_entry->object.vm_object;
3963                         }
3964                         VM_OBJECT_WLOCK(object);
3965                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3966                         if (old_entry->cred != NULL) {
3967                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3968                                 object->cred = old_entry->cred;
3969                                 object->charge = old_entry->end - old_entry->start;
3970                                 old_entry->cred = NULL;
3971                         }
3972
3973                         /*
3974                          * Assert the correct state of the vnode
3975                          * v_writecount while the object is locked, to
3976                          * not relock it later for the assertion
3977                          * correctness.
3978                          */
3979                         if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
3980                             object->type == OBJT_VNODE) {
3981                                 KASSERT(((struct vnode *)object->handle)->
3982                                     v_writecount > 0,
3983                                     ("vmspace_fork: v_writecount %p", object));
3984                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3985                                     ("vmspace_fork: vnp.writecount %p",
3986                                     object));
3987                         }
3988                         VM_OBJECT_WUNLOCK(object);
3989
3990                         /*
3991                          * Clone the entry, referencing the shared object.
3992                          */
3993                         new_entry = vm_map_entry_create(new_map);
3994                         *new_entry = *old_entry;
3995                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3996                             MAP_ENTRY_IN_TRANSITION);
3997                         new_entry->wiring_thread = NULL;
3998                         new_entry->wired_count = 0;
3999                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4000                                 vm_pager_update_writecount(object,
4001                                     new_entry->start, new_entry->end);
4002                         }
4003                         vm_map_entry_set_vnode_text(new_entry, true);
4004
4005                         /*
4006                          * Insert the entry into the new map -- we know we're
4007                          * inserting at the end of the new map.
4008                          */
4009                         vm_map_entry_link(new_map, new_entry);
4010                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4011
4012                         /*
4013                          * Update the physical map
4014                          */
4015                         pmap_copy(new_map->pmap, old_map->pmap,
4016                             new_entry->start,
4017                             (old_entry->end - old_entry->start),
4018                             old_entry->start);
4019                         break;
4020
4021                 case VM_INHERIT_COPY:
4022                         /*
4023                          * Clone the entry and link into the map.
4024                          */
4025                         new_entry = vm_map_entry_create(new_map);
4026                         *new_entry = *old_entry;
4027                         /*
4028                          * Copied entry is COW over the old object.
4029                          */
4030                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4031                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4032                         new_entry->wiring_thread = NULL;
4033                         new_entry->wired_count = 0;
4034                         new_entry->object.vm_object = NULL;
4035                         new_entry->cred = NULL;
4036                         vm_map_entry_link(new_map, new_entry);
4037                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4038                         vm_map_copy_entry(old_map, new_map, old_entry,
4039                             new_entry, fork_charge);
4040                         vm_map_entry_set_vnode_text(new_entry, true);
4041                         break;
4042
4043                 case VM_INHERIT_ZERO:
4044                         /*
4045                          * Create a new anonymous mapping entry modelled from
4046                          * the old one.
4047                          */
4048                         new_entry = vm_map_entry_create(new_map);
4049                         memset(new_entry, 0, sizeof(*new_entry));
4050
4051                         new_entry->start = old_entry->start;
4052                         new_entry->end = old_entry->end;
4053                         new_entry->eflags = old_entry->eflags &
4054                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4055                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4056                         new_entry->protection = old_entry->protection;
4057                         new_entry->max_protection = old_entry->max_protection;
4058                         new_entry->inheritance = VM_INHERIT_ZERO;
4059
4060                         vm_map_entry_link(new_map, new_entry);
4061                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4062
4063                         new_entry->cred = curthread->td_ucred;
4064                         crhold(new_entry->cred);
4065                         *fork_charge += (new_entry->end - new_entry->start);
4066
4067                         break;
4068                 }
4069                 old_entry = vm_map_entry_succ(old_entry);
4070         }
4071         /*
4072          * Use inlined vm_map_unlock() to postpone handling the deferred
4073          * map entries, which cannot be done until both old_map and
4074          * new_map locks are released.
4075          */
4076         sx_xunlock(&old_map->lock);
4077         sx_xunlock(&new_map->lock);
4078         vm_map_process_deferred();
4079
4080         return (vm2);
4081 }
4082
4083 /*
4084  * Create a process's stack for exec_new_vmspace().  This function is never
4085  * asked to wire the newly created stack.
4086  */
4087 int
4088 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4089     vm_prot_t prot, vm_prot_t max, int cow)
4090 {
4091         vm_size_t growsize, init_ssize;
4092         rlim_t vmemlim;
4093         int rv;
4094
4095         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4096         growsize = sgrowsiz;
4097         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4098         vm_map_lock(map);
4099         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4100         /* If we would blow our VMEM resource limit, no go */
4101         if (map->size + init_ssize > vmemlim) {
4102                 rv = KERN_NO_SPACE;
4103                 goto out;
4104         }
4105         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4106             max, cow);
4107 out:
4108         vm_map_unlock(map);
4109         return (rv);
4110 }
4111
4112 static int stack_guard_page = 1;
4113 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4114     &stack_guard_page, 0,
4115     "Specifies the number of guard pages for a stack that grows");
4116
4117 static int
4118 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4119     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4120 {
4121         vm_map_entry_t new_entry, prev_entry;
4122         vm_offset_t bot, gap_bot, gap_top, top;
4123         vm_size_t init_ssize, sgp;
4124         int orient, rv;
4125
4126         /*
4127          * The stack orientation is piggybacked with the cow argument.
4128          * Extract it into orient and mask the cow argument so that we
4129          * don't pass it around further.
4130          */
4131         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4132         KASSERT(orient != 0, ("No stack grow direction"));
4133         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4134             ("bi-dir stack"));
4135
4136         if (addrbos < vm_map_min(map) ||
4137             addrbos + max_ssize > vm_map_max(map) ||
4138             addrbos + max_ssize <= addrbos)
4139                 return (KERN_INVALID_ADDRESS);
4140         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4141             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4142             (vm_size_t)stack_guard_page * PAGE_SIZE;
4143         if (sgp >= max_ssize)
4144                 return (KERN_INVALID_ARGUMENT);
4145
4146         init_ssize = growsize;
4147         if (max_ssize < init_ssize + sgp)
4148                 init_ssize = max_ssize - sgp;
4149
4150         /* If addr is already mapped, no go */
4151         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4152                 return (KERN_NO_SPACE);
4153
4154         /*
4155          * If we can't accommodate max_ssize in the current mapping, no go.
4156          */
4157         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4158                 return (KERN_NO_SPACE);
4159
4160         /*
4161          * We initially map a stack of only init_ssize.  We will grow as
4162          * needed later.  Depending on the orientation of the stack (i.e.
4163          * the grow direction) we either map at the top of the range, the
4164          * bottom of the range or in the middle.
4165          *
4166          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4167          * and cow to be 0.  Possibly we should eliminate these as input
4168          * parameters, and just pass these values here in the insert call.
4169          */
4170         if (orient == MAP_STACK_GROWS_DOWN) {
4171                 bot = addrbos + max_ssize - init_ssize;
4172                 top = bot + init_ssize;
4173                 gap_bot = addrbos;
4174                 gap_top = bot;
4175         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4176                 bot = addrbos;
4177                 top = bot + init_ssize;
4178                 gap_bot = top;
4179                 gap_top = addrbos + max_ssize;
4180         }
4181         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4182         if (rv != KERN_SUCCESS)
4183                 return (rv);
4184         new_entry = vm_map_entry_succ(prev_entry);
4185         KASSERT(new_entry->end == top || new_entry->start == bot,
4186             ("Bad entry start/end for new stack entry"));
4187         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4188             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4189             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4190         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4191             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4192             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4193         if (gap_bot == gap_top)
4194                 return (KERN_SUCCESS);
4195         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4196             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4197             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4198         if (rv == KERN_SUCCESS) {
4199                 /*
4200                  * Gap can never successfully handle a fault, so
4201                  * read-ahead logic is never used for it.  Re-use
4202                  * next_read of the gap entry to store
4203                  * stack_guard_page for vm_map_growstack().
4204                  */
4205                 if (orient == MAP_STACK_GROWS_DOWN)
4206                         vm_map_entry_pred(new_entry)->next_read = sgp;
4207                 else
4208                         vm_map_entry_succ(new_entry)->next_read = sgp;
4209         } else {
4210                 (void)vm_map_delete(map, bot, top);
4211         }
4212         return (rv);
4213 }
4214
4215 /*
4216  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4217  * successfully grow the stack.
4218  */
4219 static int
4220 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4221 {
4222         vm_map_entry_t stack_entry;
4223         struct proc *p;
4224         struct vmspace *vm;
4225         struct ucred *cred;
4226         vm_offset_t gap_end, gap_start, grow_start;
4227         vm_size_t grow_amount, guard, max_grow;
4228         rlim_t lmemlim, stacklim, vmemlim;
4229         int rv, rv1;
4230         bool gap_deleted, grow_down, is_procstack;
4231 #ifdef notyet
4232         uint64_t limit;
4233 #endif
4234 #ifdef RACCT
4235         int error;
4236 #endif
4237
4238         p = curproc;
4239         vm = p->p_vmspace;
4240
4241         /*
4242          * Disallow stack growth when the access is performed by a
4243          * debugger or AIO daemon.  The reason is that the wrong
4244          * resource limits are applied.
4245          */
4246         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4247             p->p_textvp == NULL))
4248                 return (KERN_FAILURE);
4249
4250         MPASS(!map->system_map);
4251
4252         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4253         stacklim = lim_cur(curthread, RLIMIT_STACK);
4254         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4255 retry:
4256         /* If addr is not in a hole for a stack grow area, no need to grow. */
4257         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4258                 return (KERN_FAILURE);
4259         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4260                 return (KERN_SUCCESS);
4261         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4262                 stack_entry = vm_map_entry_succ(gap_entry);
4263                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4264                     stack_entry->start != gap_entry->end)
4265                         return (KERN_FAILURE);
4266                 grow_amount = round_page(stack_entry->start - addr);
4267                 grow_down = true;
4268         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4269                 stack_entry = vm_map_entry_pred(gap_entry);
4270                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4271                     stack_entry->end != gap_entry->start)
4272                         return (KERN_FAILURE);
4273                 grow_amount = round_page(addr + 1 - stack_entry->end);
4274                 grow_down = false;
4275         } else {
4276                 return (KERN_FAILURE);
4277         }
4278         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4279             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4280             gap_entry->next_read;
4281         max_grow = gap_entry->end - gap_entry->start;
4282         if (guard > max_grow)
4283                 return (KERN_NO_SPACE);
4284         max_grow -= guard;
4285         if (grow_amount > max_grow)
4286                 return (KERN_NO_SPACE);
4287
4288         /*
4289          * If this is the main process stack, see if we're over the stack
4290          * limit.
4291          */
4292         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4293             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4294         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4295                 return (KERN_NO_SPACE);
4296
4297 #ifdef RACCT
4298         if (racct_enable) {
4299                 PROC_LOCK(p);
4300                 if (is_procstack && racct_set(p, RACCT_STACK,
4301                     ctob(vm->vm_ssize) + grow_amount)) {
4302                         PROC_UNLOCK(p);
4303                         return (KERN_NO_SPACE);
4304                 }
4305                 PROC_UNLOCK(p);
4306         }
4307 #endif
4308
4309         grow_amount = roundup(grow_amount, sgrowsiz);
4310         if (grow_amount > max_grow)
4311                 grow_amount = max_grow;
4312         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4313                 grow_amount = trunc_page((vm_size_t)stacklim) -
4314                     ctob(vm->vm_ssize);
4315         }
4316
4317 #ifdef notyet
4318         PROC_LOCK(p);
4319         limit = racct_get_available(p, RACCT_STACK);
4320         PROC_UNLOCK(p);
4321         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4322                 grow_amount = limit - ctob(vm->vm_ssize);
4323 #endif
4324
4325         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4326                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4327                         rv = KERN_NO_SPACE;
4328                         goto out;
4329                 }
4330 #ifdef RACCT
4331                 if (racct_enable) {
4332                         PROC_LOCK(p);
4333                         if (racct_set(p, RACCT_MEMLOCK,
4334                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4335                                 PROC_UNLOCK(p);
4336                                 rv = KERN_NO_SPACE;
4337                                 goto out;
4338                         }
4339                         PROC_UNLOCK(p);
4340                 }
4341 #endif
4342         }
4343
4344         /* If we would blow our VMEM resource limit, no go */
4345         if (map->size + grow_amount > vmemlim) {
4346                 rv = KERN_NO_SPACE;
4347                 goto out;
4348         }
4349 #ifdef RACCT
4350         if (racct_enable) {
4351                 PROC_LOCK(p);
4352                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4353                         PROC_UNLOCK(p);
4354                         rv = KERN_NO_SPACE;
4355                         goto out;
4356                 }
4357                 PROC_UNLOCK(p);
4358         }
4359 #endif
4360
4361         if (vm_map_lock_upgrade(map)) {
4362                 gap_entry = NULL;
4363                 vm_map_lock_read(map);
4364                 goto retry;
4365         }
4366
4367         if (grow_down) {
4368                 grow_start = gap_entry->end - grow_amount;
4369                 if (gap_entry->start + grow_amount == gap_entry->end) {
4370                         gap_start = gap_entry->start;
4371                         gap_end = gap_entry->end;
4372                         vm_map_entry_delete(map, gap_entry);
4373                         gap_deleted = true;
4374                 } else {
4375                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4376                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4377                         gap_deleted = false;
4378                 }
4379                 rv = vm_map_insert(map, NULL, 0, grow_start,
4380                     grow_start + grow_amount,
4381                     stack_entry->protection, stack_entry->max_protection,
4382                     MAP_STACK_GROWS_DOWN);
4383                 if (rv != KERN_SUCCESS) {
4384                         if (gap_deleted) {
4385                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4386                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4387                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4388                                 MPASS(rv1 == KERN_SUCCESS);
4389                         } else
4390                                 vm_map_entry_resize(map, gap_entry,
4391                                     grow_amount);
4392                 }
4393         } else {
4394                 grow_start = stack_entry->end;
4395                 cred = stack_entry->cred;
4396                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4397                         cred = stack_entry->object.vm_object->cred;
4398                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4399                         rv = KERN_NO_SPACE;
4400                 /* Grow the underlying object if applicable. */
4401                 else if (stack_entry->object.vm_object == NULL ||
4402                     vm_object_coalesce(stack_entry->object.vm_object,
4403                     stack_entry->offset,
4404                     (vm_size_t)(stack_entry->end - stack_entry->start),
4405                     grow_amount, cred != NULL)) {
4406                         if (gap_entry->start + grow_amount == gap_entry->end) {
4407                                 vm_map_entry_delete(map, gap_entry);
4408                                 vm_map_entry_resize(map, stack_entry,
4409                                     grow_amount);
4410                         } else {
4411                                 gap_entry->start += grow_amount;
4412                                 stack_entry->end += grow_amount;
4413                         }
4414                         map->size += grow_amount;
4415                         rv = KERN_SUCCESS;
4416                 } else
4417                         rv = KERN_FAILURE;
4418         }
4419         if (rv == KERN_SUCCESS && is_procstack)
4420                 vm->vm_ssize += btoc(grow_amount);
4421
4422         /*
4423          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4424          */
4425         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4426                 rv = vm_map_wire_locked(map, grow_start,
4427                     grow_start + grow_amount,
4428                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4429         }
4430         vm_map_lock_downgrade(map);
4431
4432 out:
4433 #ifdef RACCT
4434         if (racct_enable && rv != KERN_SUCCESS) {
4435                 PROC_LOCK(p);
4436                 error = racct_set(p, RACCT_VMEM, map->size);
4437                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4438                 if (!old_mlock) {
4439                         error = racct_set(p, RACCT_MEMLOCK,
4440                             ptoa(pmap_wired_count(map->pmap)));
4441                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4442                 }
4443                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4444                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4445                 PROC_UNLOCK(p);
4446         }
4447 #endif
4448
4449         return (rv);
4450 }
4451
4452 /*
4453  * Unshare the specified VM space for exec.  If other processes are
4454  * mapped to it, then create a new one.  The new vmspace is null.
4455  */
4456 int
4457 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4458 {
4459         struct vmspace *oldvmspace = p->p_vmspace;
4460         struct vmspace *newvmspace;
4461
4462         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4463             ("vmspace_exec recursed"));
4464         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4465         if (newvmspace == NULL)
4466                 return (ENOMEM);
4467         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4468         /*
4469          * This code is written like this for prototype purposes.  The
4470          * goal is to avoid running down the vmspace here, but let the
4471          * other process's that are still using the vmspace to finally
4472          * run it down.  Even though there is little or no chance of blocking
4473          * here, it is a good idea to keep this form for future mods.
4474          */
4475         PROC_VMSPACE_LOCK(p);
4476         p->p_vmspace = newvmspace;
4477         PROC_VMSPACE_UNLOCK(p);
4478         if (p == curthread->td_proc)
4479                 pmap_activate(curthread);
4480         curthread->td_pflags |= TDP_EXECVMSPC;
4481         return (0);
4482 }
4483
4484 /*
4485  * Unshare the specified VM space for forcing COW.  This
4486  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4487  */
4488 int
4489 vmspace_unshare(struct proc *p)
4490 {
4491         struct vmspace *oldvmspace = p->p_vmspace;
4492         struct vmspace *newvmspace;
4493         vm_ooffset_t fork_charge;
4494
4495         if (oldvmspace->vm_refcnt == 1)
4496                 return (0);
4497         fork_charge = 0;
4498         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4499         if (newvmspace == NULL)
4500                 return (ENOMEM);
4501         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4502                 vmspace_free(newvmspace);
4503                 return (ENOMEM);
4504         }
4505         PROC_VMSPACE_LOCK(p);
4506         p->p_vmspace = newvmspace;
4507         PROC_VMSPACE_UNLOCK(p);
4508         if (p == curthread->td_proc)
4509                 pmap_activate(curthread);
4510         vmspace_free(oldvmspace);
4511         return (0);
4512 }
4513
4514 /*
4515  *      vm_map_lookup:
4516  *
4517  *      Finds the VM object, offset, and
4518  *      protection for a given virtual address in the
4519  *      specified map, assuming a page fault of the
4520  *      type specified.
4521  *
4522  *      Leaves the map in question locked for read; return
4523  *      values are guaranteed until a vm_map_lookup_done
4524  *      call is performed.  Note that the map argument
4525  *      is in/out; the returned map must be used in
4526  *      the call to vm_map_lookup_done.
4527  *
4528  *      A handle (out_entry) is returned for use in
4529  *      vm_map_lookup_done, to make that fast.
4530  *
4531  *      If a lookup is requested with "write protection"
4532  *      specified, the map may be changed to perform virtual
4533  *      copying operations, although the data referenced will
4534  *      remain the same.
4535  */
4536 int
4537 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4538               vm_offset_t vaddr,
4539               vm_prot_t fault_typea,
4540               vm_map_entry_t *out_entry,        /* OUT */
4541               vm_object_t *object,              /* OUT */
4542               vm_pindex_t *pindex,              /* OUT */
4543               vm_prot_t *out_prot,              /* OUT */
4544               boolean_t *wired)                 /* OUT */
4545 {
4546         vm_map_entry_t entry;
4547         vm_map_t map = *var_map;
4548         vm_prot_t prot;
4549         vm_prot_t fault_type = fault_typea;
4550         vm_object_t eobject;
4551         vm_size_t size;
4552         struct ucred *cred;
4553
4554 RetryLookup:
4555
4556         vm_map_lock_read(map);
4557
4558 RetryLookupLocked:
4559         /*
4560          * Lookup the faulting address.
4561          */
4562         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4563                 vm_map_unlock_read(map);
4564                 return (KERN_INVALID_ADDRESS);
4565         }
4566
4567         entry = *out_entry;
4568
4569         /*
4570          * Handle submaps.
4571          */
4572         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4573                 vm_map_t old_map = map;
4574
4575                 *var_map = map = entry->object.sub_map;
4576                 vm_map_unlock_read(old_map);
4577                 goto RetryLookup;
4578         }
4579
4580         /*
4581          * Check whether this task is allowed to have this page.
4582          */
4583         prot = entry->protection;
4584         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4585                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4586                 if (prot == VM_PROT_NONE && map != kernel_map &&
4587                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4588                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4589                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4590                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4591                         goto RetryLookupLocked;
4592         }
4593         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4594         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4595                 vm_map_unlock_read(map);
4596                 return (KERN_PROTECTION_FAILURE);
4597         }
4598         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4599             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4600             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4601             ("entry %p flags %x", entry, entry->eflags));
4602         if ((fault_typea & VM_PROT_COPY) != 0 &&
4603             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4604             (entry->eflags & MAP_ENTRY_COW) == 0) {
4605                 vm_map_unlock_read(map);
4606                 return (KERN_PROTECTION_FAILURE);
4607         }
4608
4609         /*
4610          * If this page is not pageable, we have to get it for all possible
4611          * accesses.
4612          */
4613         *wired = (entry->wired_count != 0);
4614         if (*wired)
4615                 fault_type = entry->protection;
4616         size = entry->end - entry->start;
4617         /*
4618          * If the entry was copy-on-write, we either ...
4619          */
4620         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4621                 /*
4622                  * If we want to write the page, we may as well handle that
4623                  * now since we've got the map locked.
4624                  *
4625                  * If we don't need to write the page, we just demote the
4626                  * permissions allowed.
4627                  */
4628                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4629                     (fault_typea & VM_PROT_COPY) != 0) {
4630                         /*
4631                          * Make a new object, and place it in the object
4632                          * chain.  Note that no new references have appeared
4633                          * -- one just moved from the map to the new
4634                          * object.
4635                          */
4636                         if (vm_map_lock_upgrade(map))
4637                                 goto RetryLookup;
4638
4639                         if (entry->cred == NULL) {
4640                                 /*
4641                                  * The debugger owner is charged for
4642                                  * the memory.
4643                                  */
4644                                 cred = curthread->td_ucred;
4645                                 crhold(cred);
4646                                 if (!swap_reserve_by_cred(size, cred)) {
4647                                         crfree(cred);
4648                                         vm_map_unlock(map);
4649                                         return (KERN_RESOURCE_SHORTAGE);
4650                                 }
4651                                 entry->cred = cred;
4652                         }
4653                         vm_object_shadow(&entry->object.vm_object,
4654                             &entry->offset, size);
4655                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4656                         eobject = entry->object.vm_object;
4657                         if (eobject->cred != NULL) {
4658                                 /*
4659                                  * The object was not shadowed.
4660                                  */
4661                                 swap_release_by_cred(size, entry->cred);
4662                                 crfree(entry->cred);
4663                                 entry->cred = NULL;
4664                         } else if (entry->cred != NULL) {
4665                                 VM_OBJECT_WLOCK(eobject);
4666                                 eobject->cred = entry->cred;
4667                                 eobject->charge = size;
4668                                 VM_OBJECT_WUNLOCK(eobject);
4669                                 entry->cred = NULL;
4670                         }
4671
4672                         vm_map_lock_downgrade(map);
4673                 } else {
4674                         /*
4675                          * We're attempting to read a copy-on-write page --
4676                          * don't allow writes.
4677                          */
4678                         prot &= ~VM_PROT_WRITE;
4679                 }
4680         }
4681
4682         /*
4683          * Create an object if necessary.
4684          */
4685         if (entry->object.vm_object == NULL &&
4686             !map->system_map) {
4687                 if (vm_map_lock_upgrade(map))
4688                         goto RetryLookup;
4689                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4690                     atop(size));
4691                 entry->offset = 0;
4692                 if (entry->cred != NULL) {
4693                         VM_OBJECT_WLOCK(entry->object.vm_object);
4694                         entry->object.vm_object->cred = entry->cred;
4695                         entry->object.vm_object->charge = size;
4696                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4697                         entry->cred = NULL;
4698                 }
4699                 vm_map_lock_downgrade(map);
4700         }
4701
4702         /*
4703          * Return the object/offset from this entry.  If the entry was
4704          * copy-on-write or empty, it has been fixed up.
4705          */
4706         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4707         *object = entry->object.vm_object;
4708
4709         *out_prot = prot;
4710         return (KERN_SUCCESS);
4711 }
4712
4713 /*
4714  *      vm_map_lookup_locked:
4715  *
4716  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4717  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4718  */
4719 int
4720 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4721                      vm_offset_t vaddr,
4722                      vm_prot_t fault_typea,
4723                      vm_map_entry_t *out_entry, /* OUT */
4724                      vm_object_t *object,       /* OUT */
4725                      vm_pindex_t *pindex,       /* OUT */
4726                      vm_prot_t *out_prot,       /* OUT */
4727                      boolean_t *wired)          /* OUT */
4728 {
4729         vm_map_entry_t entry;
4730         vm_map_t map = *var_map;
4731         vm_prot_t prot;
4732         vm_prot_t fault_type = fault_typea;
4733
4734         /*
4735          * Lookup the faulting address.
4736          */
4737         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4738                 return (KERN_INVALID_ADDRESS);
4739
4740         entry = *out_entry;
4741
4742         /*
4743          * Fail if the entry refers to a submap.
4744          */
4745         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4746                 return (KERN_FAILURE);
4747
4748         /*
4749          * Check whether this task is allowed to have this page.
4750          */
4751         prot = entry->protection;
4752         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4753         if ((fault_type & prot) != fault_type)
4754                 return (KERN_PROTECTION_FAILURE);
4755
4756         /*
4757          * If this page is not pageable, we have to get it for all possible
4758          * accesses.
4759          */
4760         *wired = (entry->wired_count != 0);
4761         if (*wired)
4762                 fault_type = entry->protection;
4763
4764         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4765                 /*
4766                  * Fail if the entry was copy-on-write for a write fault.
4767                  */
4768                 if (fault_type & VM_PROT_WRITE)
4769                         return (KERN_FAILURE);
4770                 /*
4771                  * We're attempting to read a copy-on-write page --
4772                  * don't allow writes.
4773                  */
4774                 prot &= ~VM_PROT_WRITE;
4775         }
4776
4777         /*
4778          * Fail if an object should be created.
4779          */
4780         if (entry->object.vm_object == NULL && !map->system_map)
4781                 return (KERN_FAILURE);
4782
4783         /*
4784          * Return the object/offset from this entry.  If the entry was
4785          * copy-on-write or empty, it has been fixed up.
4786          */
4787         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4788         *object = entry->object.vm_object;
4789
4790         *out_prot = prot;
4791         return (KERN_SUCCESS);
4792 }
4793
4794 /*
4795  *      vm_map_lookup_done:
4796  *
4797  *      Releases locks acquired by a vm_map_lookup
4798  *      (according to the handle returned by that lookup).
4799  */
4800 void
4801 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4802 {
4803         /*
4804          * Unlock the main-level map
4805          */
4806         vm_map_unlock_read(map);
4807 }
4808
4809 vm_offset_t
4810 vm_map_max_KBI(const struct vm_map *map)
4811 {
4812
4813         return (vm_map_max(map));
4814 }
4815
4816 vm_offset_t
4817 vm_map_min_KBI(const struct vm_map *map)
4818 {
4819
4820         return (vm_map_min(map));
4821 }
4822
4823 pmap_t
4824 vm_map_pmap_KBI(vm_map_t map)
4825 {
4826
4827         return (map->pmap);
4828 }
4829
4830 #ifdef INVARIANTS
4831 static void
4832 _vm_map_assert_consistent(vm_map_t map, int check)
4833 {
4834         vm_map_entry_t entry, prev;
4835         vm_size_t max_left, max_right;
4836
4837         if (enable_vmmap_check != check)
4838                 return;
4839
4840         prev = &map->header;
4841         VM_MAP_ENTRY_FOREACH(entry, map) {
4842                 KASSERT(prev->end <= entry->start,
4843                     ("map %p prev->end = %jx, start = %jx", map,
4844                     (uintmax_t)prev->end, (uintmax_t)entry->start));
4845                 KASSERT(entry->start < entry->end,
4846                     ("map %p start = %jx, end = %jx", map,
4847                     (uintmax_t)entry->start, (uintmax_t)entry->end));
4848                 KASSERT(entry->end <= vm_map_entry_succ(entry)->start,
4849                     ("map %p end = %jx, next->start = %jx", map,
4850                      (uintmax_t)entry->end,
4851                      (uintmax_t)vm_map_entry_succ(entry)->start));
4852                 KASSERT(entry->left == NULL ||
4853                     entry->left->start < entry->start,
4854                     ("map %p left->start = %jx, start = %jx", map,
4855                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
4856                 KASSERT(entry->right == NULL ||
4857                     entry->start < entry->right->start,
4858                     ("map %p start = %jx, right->start = %jx", map,
4859                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
4860                 max_left = vm_map_entry_max_free_left(entry,
4861                     vm_map_entry_pred(entry));
4862                 max_right = vm_map_entry_max_free_right(entry,
4863                     vm_map_entry_succ(entry));
4864                 KASSERT(entry->max_free == MAX(max_left, max_right),
4865                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
4866                     (uintmax_t)entry->max_free,
4867                     (uintmax_t)max_left, (uintmax_t)max_right));
4868                 prev = entry;
4869         }
4870         KASSERT(prev->end <= entry->start,
4871             ("map %p prev->end = %jx, start = %jx", map,
4872             (uintmax_t)prev->end, (uintmax_t)entry->start));
4873 }
4874 #endif
4875
4876 #include "opt_ddb.h"
4877 #ifdef DDB
4878 #include <sys/kernel.h>
4879
4880 #include <ddb/ddb.h>
4881
4882 static void
4883 vm_map_print(vm_map_t map)
4884 {
4885         vm_map_entry_t entry, prev;
4886
4887         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4888             (void *)map,
4889             (void *)map->pmap, map->nentries, map->timestamp);
4890
4891         db_indent += 2;
4892         prev = &map->header;
4893         VM_MAP_ENTRY_FOREACH(entry, map) {
4894                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4895                     (void *)entry, (void *)entry->start, (void *)entry->end,
4896                     entry->eflags);
4897                 {
4898                         static char *inheritance_name[4] =
4899                         {"share", "copy", "none", "donate_copy"};
4900
4901                         db_iprintf(" prot=%x/%x/%s",
4902                             entry->protection,
4903                             entry->max_protection,
4904                             inheritance_name[(int)(unsigned char)
4905                             entry->inheritance]);
4906                         if (entry->wired_count != 0)
4907                                 db_printf(", wired");
4908                 }
4909                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4910                         db_printf(", share=%p, offset=0x%jx\n",
4911                             (void *)entry->object.sub_map,
4912                             (uintmax_t)entry->offset);
4913                         if (prev == &map->header ||
4914                             prev->object.sub_map !=
4915                                 entry->object.sub_map) {
4916                                 db_indent += 2;
4917                                 vm_map_print((vm_map_t)entry->object.sub_map);
4918                                 db_indent -= 2;
4919                         }
4920                 } else {
4921                         if (entry->cred != NULL)
4922                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4923                         db_printf(", object=%p, offset=0x%jx",
4924                             (void *)entry->object.vm_object,
4925                             (uintmax_t)entry->offset);
4926                         if (entry->object.vm_object && entry->object.vm_object->cred)
4927                                 db_printf(", obj ruid %d charge %jx",
4928                                     entry->object.vm_object->cred->cr_ruid,
4929                                     (uintmax_t)entry->object.vm_object->charge);
4930                         if (entry->eflags & MAP_ENTRY_COW)
4931                                 db_printf(", copy (%s)",
4932                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4933                         db_printf("\n");
4934
4935                         if (prev == &map->header ||
4936                             prev->object.vm_object !=
4937                                 entry->object.vm_object) {
4938                                 db_indent += 2;
4939                                 vm_object_print((db_expr_t)(intptr_t)
4940                                                 entry->object.vm_object,
4941                                                 0, 0, (char *)0);
4942                                 db_indent -= 2;
4943                         }
4944                 }
4945                 prev = entry;
4946         }
4947         db_indent -= 2;
4948 }
4949
4950 DB_SHOW_COMMAND(map, map)
4951 {
4952
4953         if (!have_addr) {
4954                 db_printf("usage: show map <addr>\n");
4955                 return;
4956         }
4957         vm_map_print((vm_map_t)addr);
4958 }
4959
4960 DB_SHOW_COMMAND(procvm, procvm)
4961 {
4962         struct proc *p;
4963
4964         if (have_addr) {
4965                 p = db_lookup_proc(addr);
4966         } else {
4967                 p = curproc;
4968         }
4969
4970         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4971             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4972             (void *)vmspace_pmap(p->p_vmspace));
4973
4974         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4975 }
4976
4977 #endif /* DDB */