]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Additional work is still needed before we can claim that tmpfs
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93
94 /*
95  *      Virtual memory maps provide for the mapping, protection,
96  *      and sharing of virtual memory objects.  In addition,
97  *      this module provides for an efficient virtual copy of
98  *      memory from one map to another.
99  *
100  *      Synchronization is required prior to most operations.
101  *
102  *      Maps consist of an ordered doubly-linked list of simple
103  *      entries; a single hint is used to speed up lookups.
104  *
105  *      Since portions of maps are specified by start/end addresses,
106  *      which may not align with existing map entries, all
107  *      routines merely "clip" entries to these start/end values.
108  *      [That is, an entry is split into two, bordering at a
109  *      start or end value.]  Note that these clippings may not
110  *      always be necessary (as the two resulting entries are then
111  *      not changed); however, the clipping is done for convenience.
112  *
113  *      As mentioned above, virtual copy operations are performed
114  *      by copying VM object references from one map to
115  *      another, and then marking both regions as copy-on-write.
116  */
117
118 /*
119  *      vm_map_startup:
120  *
121  *      Initialize the vm_map module.  Must be called before
122  *      any other vm_map routines.
123  *
124  *      Map and entry structures are allocated from the general
125  *      purpose memory pool with some exceptions:
126  *
127  *      - The kernel map and kmem submap are allocated statically.
128  *      - Kernel map entries are allocated out of a static pool.
129  *
130  *      These restrictions are necessary since malloc() uses the
131  *      maps and requires map entries.
132  */
133
134 static struct mtx map_sleep_mtx;
135 static uma_zone_t mapentzone;
136 static uma_zone_t kmapentzone;
137 static uma_zone_t mapzone;
138 static uma_zone_t vmspace_zone;
139 static struct vm_object kmapentobj;
140 static int vmspace_zinit(void *mem, int size, int flags);
141 static void vmspace_zfini(void *mem, int size);
142 static int vm_map_zinit(void *mem, int ize, int flags);
143 static void vm_map_zfini(void *mem, int size);
144 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
145
146 #ifdef INVARIANTS
147 static void vm_map_zdtor(void *mem, int size, void *arg);
148 static void vmspace_zdtor(void *mem, int size, void *arg);
149 #endif
150
151 /* 
152  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
153  * stable.
154  */
155 #define PROC_VMSPACE_LOCK(p) do { } while (0)
156 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
157
158 /*
159  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
160  *
161  *      Asserts that the starting and ending region
162  *      addresses fall within the valid range of the map.
163  */
164 #define VM_MAP_RANGE_CHECK(map, start, end)             \
165                 {                                       \
166                 if (start < vm_map_min(map))            \
167                         start = vm_map_min(map);        \
168                 if (end > vm_map_max(map))              \
169                         end = vm_map_max(map);          \
170                 if (start > end)                        \
171                         start = end;                    \
172                 }
173
174 void
175 vm_map_startup(void)
176 {
177         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
178         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
179 #ifdef INVARIANTS
180             vm_map_zdtor,
181 #else
182             NULL,
183 #endif
184             vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
185         uma_prealloc(mapzone, MAX_KMAP);
186         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
187             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
188             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
189         uma_prealloc(kmapentzone, MAX_KMAPENT);
190         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
191             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192 }
193
194 static void
195 vmspace_zfini(void *mem, int size)
196 {
197         struct vmspace *vm;
198
199         vm = (struct vmspace *)mem;
200         pmap_release(vmspace_pmap(vm));
201         vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
202 }
203
204 static int
205 vmspace_zinit(void *mem, int size, int flags)
206 {
207         struct vmspace *vm;
208
209         vm = (struct vmspace *)mem;
210
211         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
212         pmap_pinit(vmspace_pmap(vm));
213         return (0);
214 }
215
216 static void
217 vm_map_zfini(void *mem, int size)
218 {
219         vm_map_t map;
220
221         map = (vm_map_t)mem;
222         mtx_destroy(&map->system_mtx);
223         sx_destroy(&map->lock);
224 }
225
226 static int
227 vm_map_zinit(void *mem, int size, int flags)
228 {
229         vm_map_t map;
230
231         map = (vm_map_t)mem;
232         map->nentries = 0;
233         map->size = 0;
234         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
235         sx_init(&map->lock, "user map");
236         return (0);
237 }
238
239 #ifdef INVARIANTS
240 static void
241 vmspace_zdtor(void *mem, int size, void *arg)
242 {
243         struct vmspace *vm;
244
245         vm = (struct vmspace *)mem;
246
247         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
248 }
249 static void
250 vm_map_zdtor(void *mem, int size, void *arg)
251 {
252         vm_map_t map;
253
254         map = (vm_map_t)mem;
255         KASSERT(map->nentries == 0,
256             ("map %p nentries == %d on free.",
257             map, map->nentries));
258         KASSERT(map->size == 0,
259             ("map %p size == %lu on free.",
260             map, (unsigned long)map->size));
261 }
262 #endif  /* INVARIANTS */
263
264 /*
265  * Allocate a vmspace structure, including a vm_map and pmap,
266  * and initialize those structures.  The refcnt is set to 1.
267  */
268 struct vmspace *
269 vmspace_alloc(min, max)
270         vm_offset_t min, max;
271 {
272         struct vmspace *vm;
273
274         vm = uma_zalloc(vmspace_zone, M_WAITOK);
275         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
276         _vm_map_init(&vm->vm_map, min, max);
277         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
278         vm->vm_refcnt = 1;
279         vm->vm_shm = NULL;
280         vm->vm_swrss = 0;
281         vm->vm_tsize = 0;
282         vm->vm_dsize = 0;
283         vm->vm_ssize = 0;
284         vm->vm_taddr = 0;
285         vm->vm_daddr = 0;
286         vm->vm_maxsaddr = 0;
287         return (vm);
288 }
289
290 void
291 vm_init2(void)
292 {
293         uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
294             (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8 +
295              maxproc * 2 + maxfiles);
296         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
297 #ifdef INVARIANTS
298             vmspace_zdtor,
299 #else
300             NULL,
301 #endif
302             vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
303 }
304
305 static inline void
306 vmspace_dofree(struct vmspace *vm)
307 {
308         CTR1(KTR_VM, "vmspace_free: %p", vm);
309
310         /*
311          * Make sure any SysV shm is freed, it might not have been in
312          * exit1().
313          */
314         shmexit(vm);
315
316         /*
317          * Lock the map, to wait out all other references to it.
318          * Delete all of the mappings and pages they hold, then call
319          * the pmap module to reclaim anything left.
320          */
321         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
322             vm->vm_map.max_offset);
323
324         uma_zfree(vmspace_zone, vm);
325 }
326
327 void
328 vmspace_free(struct vmspace *vm)
329 {
330         int refcnt;
331
332         if (vm->vm_refcnt == 0)
333                 panic("vmspace_free: attempt to free already freed vmspace");
334
335         do
336                 refcnt = vm->vm_refcnt;
337         while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
338         if (refcnt == 1)
339                 vmspace_dofree(vm);
340 }
341
342 void
343 vmspace_exitfree(struct proc *p)
344 {
345         struct vmspace *vm;
346
347         PROC_VMSPACE_LOCK(p);
348         vm = p->p_vmspace;
349         p->p_vmspace = NULL;
350         PROC_VMSPACE_UNLOCK(p);
351         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
352         vmspace_free(vm);
353 }
354
355 void
356 vmspace_exit(struct thread *td)
357 {
358         int refcnt;
359         struct vmspace *vm;
360         struct proc *p;
361
362         /*
363          * Release user portion of address space.
364          * This releases references to vnodes,
365          * which could cause I/O if the file has been unlinked.
366          * Need to do this early enough that we can still sleep.
367          *
368          * The last exiting process to reach this point releases as
369          * much of the environment as it can. vmspace_dofree() is the
370          * slower fallback in case another process had a temporary
371          * reference to the vmspace.
372          */
373
374         p = td->td_proc;
375         vm = p->p_vmspace;
376         atomic_add_int(&vmspace0.vm_refcnt, 1);
377         do {
378                 refcnt = vm->vm_refcnt;
379                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
380                         /* Switch now since other proc might free vmspace */
381                         PROC_VMSPACE_LOCK(p);
382                         p->p_vmspace = &vmspace0;
383                         PROC_VMSPACE_UNLOCK(p);
384                         pmap_activate(td);
385                 }
386         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
387         if (refcnt == 1) {
388                 if (p->p_vmspace != vm) {
389                         /* vmspace not yet freed, switch back */
390                         PROC_VMSPACE_LOCK(p);
391                         p->p_vmspace = vm;
392                         PROC_VMSPACE_UNLOCK(p);
393                         pmap_activate(td);
394                 }
395                 pmap_remove_pages(vmspace_pmap(vm));
396                 /* Switch now since this proc will free vmspace */
397                 PROC_VMSPACE_LOCK(p);
398                 p->p_vmspace = &vmspace0;
399                 PROC_VMSPACE_UNLOCK(p);
400                 pmap_activate(td);
401                 vmspace_dofree(vm);
402         }
403 }
404
405 /* Acquire reference to vmspace owned by another process. */
406
407 struct vmspace *
408 vmspace_acquire_ref(struct proc *p)
409 {
410         struct vmspace *vm;
411         int refcnt;
412
413         PROC_VMSPACE_LOCK(p);
414         vm = p->p_vmspace;
415         if (vm == NULL) {
416                 PROC_VMSPACE_UNLOCK(p);
417                 return (NULL);
418         }
419         do {
420                 refcnt = vm->vm_refcnt;
421                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
422                         PROC_VMSPACE_UNLOCK(p);
423                         return (NULL);
424                 }
425         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
426         if (vm != p->p_vmspace) {
427                 PROC_VMSPACE_UNLOCK(p);
428                 vmspace_free(vm);
429                 return (NULL);
430         }
431         PROC_VMSPACE_UNLOCK(p);
432         return (vm);
433 }
434
435 void
436 _vm_map_lock(vm_map_t map, const char *file, int line)
437 {
438
439         if (map->system_map)
440                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
441         else
442                 (void)_sx_xlock(&map->lock, 0, file, line);
443         map->timestamp++;
444 }
445
446 void
447 _vm_map_unlock(vm_map_t map, const char *file, int line)
448 {
449
450         if (map->system_map)
451                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
452         else
453                 _sx_xunlock(&map->lock, file, line);
454 }
455
456 void
457 _vm_map_lock_read(vm_map_t map, const char *file, int line)
458 {
459
460         if (map->system_map)
461                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
462         else
463                 (void)_sx_xlock(&map->lock, 0, file, line);
464 }
465
466 void
467 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
468 {
469
470         if (map->system_map)
471                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
472         else
473                 _sx_xunlock(&map->lock, file, line);
474 }
475
476 int
477 _vm_map_trylock(vm_map_t map, const char *file, int line)
478 {
479         int error;
480
481         error = map->system_map ?
482             !_mtx_trylock(&map->system_mtx, 0, file, line) :
483             !_sx_try_xlock(&map->lock, file, line);
484         if (error == 0)
485                 map->timestamp++;
486         return (error == 0);
487 }
488
489 int
490 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
491 {
492         int error;
493
494         error = map->system_map ?
495             !_mtx_trylock(&map->system_mtx, 0, file, line) :
496             !_sx_try_xlock(&map->lock, file, line);
497         return (error == 0);
498 }
499
500 int
501 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
502 {
503
504 #ifdef INVARIANTS
505         if (map->system_map) {
506                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
507         } else
508                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
509 #endif
510         map->timestamp++;
511         return (0);
512 }
513
514 void
515 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
516 {
517
518 #ifdef INVARIANTS
519         if (map->system_map) {
520                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
521         } else
522                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
523 #endif
524 }
525
526 /*
527  *      vm_map_unlock_and_wait:
528  */
529 int
530 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
531 {
532
533         mtx_lock(&map_sleep_mtx);
534         vm_map_unlock(map);
535         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
536 }
537
538 /*
539  *      vm_map_wakeup:
540  */
541 void
542 vm_map_wakeup(vm_map_t map)
543 {
544
545         /*
546          * Acquire and release map_sleep_mtx to prevent a wakeup()
547          * from being performed (and lost) between the vm_map_unlock()
548          * and the msleep() in vm_map_unlock_and_wait().
549          */
550         mtx_lock(&map_sleep_mtx);
551         mtx_unlock(&map_sleep_mtx);
552         wakeup(&map->root);
553 }
554
555 long
556 vmspace_resident_count(struct vmspace *vmspace)
557 {
558         return pmap_resident_count(vmspace_pmap(vmspace));
559 }
560
561 long
562 vmspace_wired_count(struct vmspace *vmspace)
563 {
564         return pmap_wired_count(vmspace_pmap(vmspace));
565 }
566
567 /*
568  *      vm_map_create:
569  *
570  *      Creates and returns a new empty VM map with
571  *      the given physical map structure, and having
572  *      the given lower and upper address bounds.
573  */
574 vm_map_t
575 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
576 {
577         vm_map_t result;
578
579         result = uma_zalloc(mapzone, M_WAITOK);
580         CTR1(KTR_VM, "vm_map_create: %p", result);
581         _vm_map_init(result, min, max);
582         result->pmap = pmap;
583         return (result);
584 }
585
586 /*
587  * Initialize an existing vm_map structure
588  * such as that in the vmspace structure.
589  * The pmap is set elsewhere.
590  */
591 static void
592 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
593 {
594
595         map->header.next = map->header.prev = &map->header;
596         map->needs_wakeup = FALSE;
597         map->system_map = 0;
598         map->min_offset = min;
599         map->max_offset = max;
600         map->flags = 0;
601         map->root = NULL;
602         map->timestamp = 0;
603 }
604
605 void
606 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
607 {
608         _vm_map_init(map, min, max);
609         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
610         sx_init(&map->lock, "user map");
611 }
612
613 /*
614  *      vm_map_entry_dispose:   [ internal use only ]
615  *
616  *      Inverse of vm_map_entry_create.
617  */
618 static void
619 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
620 {
621         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
622 }
623
624 /*
625  *      vm_map_entry_create:    [ internal use only ]
626  *
627  *      Allocates a VM map entry for insertion.
628  *      No entry fields are filled in.
629  */
630 static vm_map_entry_t
631 vm_map_entry_create(vm_map_t map)
632 {
633         vm_map_entry_t new_entry;
634
635         if (map->system_map)
636                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
637         else
638                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
639         if (new_entry == NULL)
640                 panic("vm_map_entry_create: kernel resources exhausted");
641         return (new_entry);
642 }
643
644 /*
645  *      vm_map_entry_set_behavior:
646  *
647  *      Set the expected access behavior, either normal, random, or
648  *      sequential.
649  */
650 static inline void
651 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
652 {
653         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
654             (behavior & MAP_ENTRY_BEHAV_MASK);
655 }
656
657 /*
658  *      vm_map_entry_set_max_free:
659  *
660  *      Set the max_free field in a vm_map_entry.
661  */
662 static inline void
663 vm_map_entry_set_max_free(vm_map_entry_t entry)
664 {
665
666         entry->max_free = entry->adj_free;
667         if (entry->left != NULL && entry->left->max_free > entry->max_free)
668                 entry->max_free = entry->left->max_free;
669         if (entry->right != NULL && entry->right->max_free > entry->max_free)
670                 entry->max_free = entry->right->max_free;
671 }
672
673 /*
674  *      vm_map_entry_splay:
675  *
676  *      The Sleator and Tarjan top-down splay algorithm with the
677  *      following variation.  Max_free must be computed bottom-up, so
678  *      on the downward pass, maintain the left and right spines in
679  *      reverse order.  Then, make a second pass up each side to fix
680  *      the pointers and compute max_free.  The time bound is O(log n)
681  *      amortized.
682  *
683  *      The new root is the vm_map_entry containing "addr", or else an
684  *      adjacent entry (lower or higher) if addr is not in the tree.
685  *
686  *      The map must be locked, and leaves it so.
687  *
688  *      Returns: the new root.
689  */
690 static vm_map_entry_t
691 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
692 {
693         vm_map_entry_t llist, rlist;
694         vm_map_entry_t ltree, rtree;
695         vm_map_entry_t y;
696
697         /* Special case of empty tree. */
698         if (root == NULL)
699                 return (root);
700
701         /*
702          * Pass One: Splay down the tree until we find addr or a NULL
703          * pointer where addr would go.  llist and rlist are the two
704          * sides in reverse order (bottom-up), with llist linked by
705          * the right pointer and rlist linked by the left pointer in
706          * the vm_map_entry.  Wait until Pass Two to set max_free on
707          * the two spines.
708          */
709         llist = NULL;
710         rlist = NULL;
711         for (;;) {
712                 /* root is never NULL in here. */
713                 if (addr < root->start) {
714                         y = root->left;
715                         if (y == NULL)
716                                 break;
717                         if (addr < y->start && y->left != NULL) {
718                                 /* Rotate right and put y on rlist. */
719                                 root->left = y->right;
720                                 y->right = root;
721                                 vm_map_entry_set_max_free(root);
722                                 root = y->left;
723                                 y->left = rlist;
724                                 rlist = y;
725                         } else {
726                                 /* Put root on rlist. */
727                                 root->left = rlist;
728                                 rlist = root;
729                                 root = y;
730                         }
731                 } else {
732                         y = root->right;
733                         if (addr < root->end || y == NULL)
734                                 break;
735                         if (addr >= y->end && y->right != NULL) {
736                                 /* Rotate left and put y on llist. */
737                                 root->right = y->left;
738                                 y->left = root;
739                                 vm_map_entry_set_max_free(root);
740                                 root = y->right;
741                                 y->right = llist;
742                                 llist = y;
743                         } else {
744                                 /* Put root on llist. */
745                                 root->right = llist;
746                                 llist = root;
747                                 root = y;
748                         }
749                 }
750         }
751
752         /*
753          * Pass Two: Walk back up the two spines, flip the pointers
754          * and set max_free.  The subtrees of the root go at the
755          * bottom of llist and rlist.
756          */
757         ltree = root->left;
758         while (llist != NULL) {
759                 y = llist->right;
760                 llist->right = ltree;
761                 vm_map_entry_set_max_free(llist);
762                 ltree = llist;
763                 llist = y;
764         }
765         rtree = root->right;
766         while (rlist != NULL) {
767                 y = rlist->left;
768                 rlist->left = rtree;
769                 vm_map_entry_set_max_free(rlist);
770                 rtree = rlist;
771                 rlist = y;
772         }
773
774         /*
775          * Final assembly: add ltree and rtree as subtrees of root.
776          */
777         root->left = ltree;
778         root->right = rtree;
779         vm_map_entry_set_max_free(root);
780
781         return (root);
782 }
783
784 /*
785  *      vm_map_entry_{un,}link:
786  *
787  *      Insert/remove entries from maps.
788  */
789 static void
790 vm_map_entry_link(vm_map_t map,
791                   vm_map_entry_t after_where,
792                   vm_map_entry_t entry)
793 {
794
795         CTR4(KTR_VM,
796             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
797             map->nentries, entry, after_where);
798         map->nentries++;
799         entry->prev = after_where;
800         entry->next = after_where->next;
801         entry->next->prev = entry;
802         after_where->next = entry;
803
804         if (after_where != &map->header) {
805                 if (after_where != map->root)
806                         vm_map_entry_splay(after_where->start, map->root);
807                 entry->right = after_where->right;
808                 entry->left = after_where;
809                 after_where->right = NULL;
810                 after_where->adj_free = entry->start - after_where->end;
811                 vm_map_entry_set_max_free(after_where);
812         } else {
813                 entry->right = map->root;
814                 entry->left = NULL;
815         }
816         entry->adj_free = (entry->next == &map->header ? map->max_offset :
817             entry->next->start) - entry->end;
818         vm_map_entry_set_max_free(entry);
819         map->root = entry;
820 }
821
822 static void
823 vm_map_entry_unlink(vm_map_t map,
824                     vm_map_entry_t entry)
825 {
826         vm_map_entry_t next, prev, root;
827
828         if (entry != map->root)
829                 vm_map_entry_splay(entry->start, map->root);
830         if (entry->left == NULL)
831                 root = entry->right;
832         else {
833                 root = vm_map_entry_splay(entry->start, entry->left);
834                 root->right = entry->right;
835                 root->adj_free = (entry->next == &map->header ? map->max_offset :
836                     entry->next->start) - root->end;
837                 vm_map_entry_set_max_free(root);
838         }
839         map->root = root;
840
841         prev = entry->prev;
842         next = entry->next;
843         next->prev = prev;
844         prev->next = next;
845         map->nentries--;
846         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
847             map->nentries, entry);
848 }
849
850 /*
851  *      vm_map_entry_resize_free:
852  *
853  *      Recompute the amount of free space following a vm_map_entry
854  *      and propagate that value up the tree.  Call this function after
855  *      resizing a map entry in-place, that is, without a call to
856  *      vm_map_entry_link() or _unlink().
857  *
858  *      The map must be locked, and leaves it so.
859  */
860 static void
861 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
862 {
863
864         /*
865          * Using splay trees without parent pointers, propagating
866          * max_free up the tree is done by moving the entry to the
867          * root and making the change there.
868          */
869         if (entry != map->root)
870                 map->root = vm_map_entry_splay(entry->start, map->root);
871
872         entry->adj_free = (entry->next == &map->header ? map->max_offset :
873             entry->next->start) - entry->end;
874         vm_map_entry_set_max_free(entry);
875 }
876
877 /*
878  *      vm_map_lookup_entry:    [ internal use only ]
879  *
880  *      Finds the map entry containing (or
881  *      immediately preceding) the specified address
882  *      in the given map; the entry is returned
883  *      in the "entry" parameter.  The boolean
884  *      result indicates whether the address is
885  *      actually contained in the map.
886  */
887 boolean_t
888 vm_map_lookup_entry(
889         vm_map_t map,
890         vm_offset_t address,
891         vm_map_entry_t *entry)  /* OUT */
892 {
893         vm_map_entry_t cur;
894
895         cur = vm_map_entry_splay(address, map->root);
896         if (cur == NULL)
897                 *entry = &map->header;
898         else {
899                 map->root = cur;
900
901                 if (address >= cur->start) {
902                         *entry = cur;
903                         if (cur->end > address)
904                                 return (TRUE);
905                 } else
906                         *entry = cur->prev;
907         }
908         return (FALSE);
909 }
910
911 /*
912  *      vm_map_insert:
913  *
914  *      Inserts the given whole VM object into the target
915  *      map at the specified address range.  The object's
916  *      size should match that of the address range.
917  *
918  *      Requires that the map be locked, and leaves it so.
919  *
920  *      If object is non-NULL, ref count must be bumped by caller
921  *      prior to making call to account for the new entry.
922  */
923 int
924 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
925               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
926               int cow)
927 {
928         vm_map_entry_t new_entry;
929         vm_map_entry_t prev_entry;
930         vm_map_entry_t temp_entry;
931         vm_eflags_t protoeflags;
932
933         /*
934          * Check that the start and end points are not bogus.
935          */
936         if ((start < map->min_offset) || (end > map->max_offset) ||
937             (start >= end))
938                 return (KERN_INVALID_ADDRESS);
939
940         /*
941          * Find the entry prior to the proposed starting address; if it's part
942          * of an existing entry, this range is bogus.
943          */
944         if (vm_map_lookup_entry(map, start, &temp_entry))
945                 return (KERN_NO_SPACE);
946
947         prev_entry = temp_entry;
948
949         /*
950          * Assert that the next entry doesn't overlap the end point.
951          */
952         if ((prev_entry->next != &map->header) &&
953             (prev_entry->next->start < end))
954                 return (KERN_NO_SPACE);
955
956         protoeflags = 0;
957
958         if (cow & MAP_COPY_ON_WRITE)
959                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
960
961         if (cow & MAP_NOFAULT) {
962                 protoeflags |= MAP_ENTRY_NOFAULT;
963
964                 KASSERT(object == NULL,
965                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
966         }
967         if (cow & MAP_DISABLE_SYNCER)
968                 protoeflags |= MAP_ENTRY_NOSYNC;
969         if (cow & MAP_DISABLE_COREDUMP)
970                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
971
972         if (object != NULL) {
973                 /*
974                  * OBJ_ONEMAPPING must be cleared unless this mapping
975                  * is trivially proven to be the only mapping for any
976                  * of the object's pages.  (Object granularity
977                  * reference counting is insufficient to recognize
978                  * aliases with precision.)
979                  */
980                 VM_OBJECT_LOCK(object);
981                 if (object->ref_count > 1 || object->shadow_count != 0)
982                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
983                 VM_OBJECT_UNLOCK(object);
984         }
985         else if ((prev_entry != &map->header) &&
986                  (prev_entry->eflags == protoeflags) &&
987                  (prev_entry->end == start) &&
988                  (prev_entry->wired_count == 0) &&
989                  ((prev_entry->object.vm_object == NULL) ||
990                   vm_object_coalesce(prev_entry->object.vm_object,
991                                      prev_entry->offset,
992                                      (vm_size_t)(prev_entry->end - prev_entry->start),
993                                      (vm_size_t)(end - prev_entry->end)))) {
994                 /*
995                  * We were able to extend the object.  Determine if we
996                  * can extend the previous map entry to include the
997                  * new range as well.
998                  */
999                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1000                     (prev_entry->protection == prot) &&
1001                     (prev_entry->max_protection == max)) {
1002                         map->size += (end - prev_entry->end);
1003                         prev_entry->end = end;
1004                         vm_map_entry_resize_free(map, prev_entry);
1005                         vm_map_simplify_entry(map, prev_entry);
1006                         return (KERN_SUCCESS);
1007                 }
1008
1009                 /*
1010                  * If we can extend the object but cannot extend the
1011                  * map entry, we have to create a new map entry.  We
1012                  * must bump the ref count on the extended object to
1013                  * account for it.  object may be NULL.
1014                  */
1015                 object = prev_entry->object.vm_object;
1016                 offset = prev_entry->offset +
1017                         (prev_entry->end - prev_entry->start);
1018                 vm_object_reference(object);
1019         }
1020
1021         /*
1022          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1023          * in things like the buffer map where we manage kva but do not manage
1024          * backing objects.
1025          */
1026
1027         /*
1028          * Create a new entry
1029          */
1030         new_entry = vm_map_entry_create(map);
1031         new_entry->start = start;
1032         new_entry->end = end;
1033
1034         new_entry->eflags = protoeflags;
1035         new_entry->object.vm_object = object;
1036         new_entry->offset = offset;
1037         new_entry->avail_ssize = 0;
1038
1039         new_entry->inheritance = VM_INHERIT_DEFAULT;
1040         new_entry->protection = prot;
1041         new_entry->max_protection = max;
1042         new_entry->wired_count = 0;
1043
1044         /*
1045          * Insert the new entry into the list
1046          */
1047         vm_map_entry_link(map, prev_entry, new_entry);
1048         map->size += new_entry->end - new_entry->start;
1049
1050 #if 0
1051         /*
1052          * Temporarily removed to avoid MAP_STACK panic, due to
1053          * MAP_STACK being a huge hack.  Will be added back in
1054          * when MAP_STACK (and the user stack mapping) is fixed.
1055          */
1056         /*
1057          * It may be possible to simplify the entry
1058          */
1059         vm_map_simplify_entry(map, new_entry);
1060 #endif
1061
1062         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1063                 vm_map_pmap_enter(map, start, prot,
1064                                     object, OFF_TO_IDX(offset), end - start,
1065                                     cow & MAP_PREFAULT_PARTIAL);
1066         }
1067
1068         return (KERN_SUCCESS);
1069 }
1070
1071 /*
1072  *      vm_map_findspace:
1073  *
1074  *      Find the first fit (lowest VM address) for "length" free bytes
1075  *      beginning at address >= start in the given map.
1076  *
1077  *      In a vm_map_entry, "adj_free" is the amount of free space
1078  *      adjacent (higher address) to this entry, and "max_free" is the
1079  *      maximum amount of contiguous free space in its subtree.  This
1080  *      allows finding a free region in one path down the tree, so
1081  *      O(log n) amortized with splay trees.
1082  *
1083  *      The map must be locked, and leaves it so.
1084  *
1085  *      Returns: 0 on success, and starting address in *addr,
1086  *               1 if insufficient space.
1087  */
1088 int
1089 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1090     vm_offset_t *addr)  /* OUT */
1091 {
1092         vm_map_entry_t entry;
1093         vm_offset_t end, st;
1094
1095         /*
1096          * Request must fit within min/max VM address and must avoid
1097          * address wrap.
1098          */
1099         if (start < map->min_offset)
1100                 start = map->min_offset;
1101         if (start + length > map->max_offset || start + length < start)
1102                 return (1);
1103
1104         /* Empty tree means wide open address space. */
1105         if (map->root == NULL) {
1106                 *addr = start;
1107                 goto found;
1108         }
1109
1110         /*
1111          * After splay, if start comes before root node, then there
1112          * must be a gap from start to the root.
1113          */
1114         map->root = vm_map_entry_splay(start, map->root);
1115         if (start + length <= map->root->start) {
1116                 *addr = start;
1117                 goto found;
1118         }
1119
1120         /*
1121          * Root is the last node that might begin its gap before
1122          * start, and this is the last comparison where address
1123          * wrap might be a problem.
1124          */
1125         st = (start > map->root->end) ? start : map->root->end;
1126         if (length <= map->root->end + map->root->adj_free - st) {
1127                 *addr = st;
1128                 goto found;
1129         }
1130
1131         /* With max_free, can immediately tell if no solution. */
1132         entry = map->root->right;
1133         if (entry == NULL || length > entry->max_free)
1134                 return (1);
1135
1136         /*
1137          * Search the right subtree in the order: left subtree, root,
1138          * right subtree (first fit).  The previous splay implies that
1139          * all regions in the right subtree have addresses > start.
1140          */
1141         while (entry != NULL) {
1142                 if (entry->left != NULL && entry->left->max_free >= length)
1143                         entry = entry->left;
1144                 else if (entry->adj_free >= length) {
1145                         *addr = entry->end;
1146                         goto found;
1147                 } else
1148                         entry = entry->right;
1149         }
1150
1151         /* Can't get here, so panic if we do. */
1152         panic("vm_map_findspace: max_free corrupt");
1153
1154 found:
1155         /* Expand the kernel pmap, if necessary. */
1156         if (map == kernel_map) {
1157                 end = round_page(*addr + length);
1158                 if (end > kernel_vm_end)
1159                         pmap_growkernel(end);
1160         }
1161         return (0);
1162 }
1163
1164 int
1165 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1166     vm_offset_t *addr /* IN/OUT */, vm_size_t length, vm_prot_t prot,
1167     vm_prot_t max, int cow)
1168 {
1169         vm_offset_t start, end;
1170         int result;
1171
1172         start = *addr;
1173         vm_map_lock(map);
1174         end = start + length;
1175         VM_MAP_RANGE_CHECK(map, start, end);
1176         (void) vm_map_delete(map, start, end);
1177         result = vm_map_insert(map, object, offset, start, end, prot,
1178             max, cow);
1179         vm_map_unlock(map);
1180         return (result);
1181 }
1182
1183 /*
1184  *      vm_map_find finds an unallocated region in the target address
1185  *      map with the given length.  The search is defined to be
1186  *      first-fit from the specified address; the region found is
1187  *      returned in the same parameter.
1188  *
1189  *      If object is non-NULL, ref count must be bumped by caller
1190  *      prior to making call to account for the new entry.
1191  */
1192 int
1193 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1194             vm_offset_t *addr,  /* IN/OUT */
1195             vm_size_t length, boolean_t find_space, vm_prot_t prot,
1196             vm_prot_t max, int cow)
1197 {
1198         vm_offset_t start;
1199         int result;
1200
1201         start = *addr;
1202         vm_map_lock(map);
1203         if (find_space) {
1204                 if (vm_map_findspace(map, start, length, addr)) {
1205                         vm_map_unlock(map);
1206                         return (KERN_NO_SPACE);
1207                 }
1208                 start = *addr;
1209         }
1210         result = vm_map_insert(map, object, offset,
1211                 start, start + length, prot, max, cow);
1212         vm_map_unlock(map);
1213         return (result);
1214 }
1215
1216 /*
1217  *      vm_map_simplify_entry:
1218  *
1219  *      Simplify the given map entry by merging with either neighbor.  This
1220  *      routine also has the ability to merge with both neighbors.
1221  *
1222  *      The map must be locked.
1223  *
1224  *      This routine guarentees that the passed entry remains valid (though
1225  *      possibly extended).  When merging, this routine may delete one or
1226  *      both neighbors.
1227  */
1228 void
1229 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1230 {
1231         vm_map_entry_t next, prev;
1232         vm_size_t prevsize, esize;
1233
1234         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1235                 return;
1236
1237         prev = entry->prev;
1238         if (prev != &map->header) {
1239                 prevsize = prev->end - prev->start;
1240                 if ( (prev->end == entry->start) &&
1241                      (prev->object.vm_object == entry->object.vm_object) &&
1242                      (!prev->object.vm_object ||
1243                         (prev->offset + prevsize == entry->offset)) &&
1244                      (prev->eflags == entry->eflags) &&
1245                      (prev->protection == entry->protection) &&
1246                      (prev->max_protection == entry->max_protection) &&
1247                      (prev->inheritance == entry->inheritance) &&
1248                      (prev->wired_count == entry->wired_count)) {
1249                         vm_map_entry_unlink(map, prev);
1250                         entry->start = prev->start;
1251                         entry->offset = prev->offset;
1252                         if (entry->prev != &map->header)
1253                                 vm_map_entry_resize_free(map, entry->prev);
1254                         if (prev->object.vm_object)
1255                                 vm_object_deallocate(prev->object.vm_object);
1256                         vm_map_entry_dispose(map, prev);
1257                 }
1258         }
1259
1260         next = entry->next;
1261         if (next != &map->header) {
1262                 esize = entry->end - entry->start;
1263                 if ((entry->end == next->start) &&
1264                     (next->object.vm_object == entry->object.vm_object) &&
1265                      (!entry->object.vm_object ||
1266                         (entry->offset + esize == next->offset)) &&
1267                     (next->eflags == entry->eflags) &&
1268                     (next->protection == entry->protection) &&
1269                     (next->max_protection == entry->max_protection) &&
1270                     (next->inheritance == entry->inheritance) &&
1271                     (next->wired_count == entry->wired_count)) {
1272                         vm_map_entry_unlink(map, next);
1273                         entry->end = next->end;
1274                         vm_map_entry_resize_free(map, entry);
1275                         if (next->object.vm_object)
1276                                 vm_object_deallocate(next->object.vm_object);
1277                         vm_map_entry_dispose(map, next);
1278                 }
1279         }
1280 }
1281 /*
1282  *      vm_map_clip_start:      [ internal use only ]
1283  *
1284  *      Asserts that the given entry begins at or after
1285  *      the specified address; if necessary,
1286  *      it splits the entry into two.
1287  */
1288 #define vm_map_clip_start(map, entry, startaddr) \
1289 { \
1290         if (startaddr > entry->start) \
1291                 _vm_map_clip_start(map, entry, startaddr); \
1292 }
1293
1294 /*
1295  *      This routine is called only when it is known that
1296  *      the entry must be split.
1297  */
1298 static void
1299 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1300 {
1301         vm_map_entry_t new_entry;
1302
1303         /*
1304          * Split off the front portion -- note that we must insert the new
1305          * entry BEFORE this one, so that this entry has the specified
1306          * starting address.
1307          */
1308         vm_map_simplify_entry(map, entry);
1309
1310         /*
1311          * If there is no object backing this entry, we might as well create
1312          * one now.  If we defer it, an object can get created after the map
1313          * is clipped, and individual objects will be created for the split-up
1314          * map.  This is a bit of a hack, but is also about the best place to
1315          * put this improvement.
1316          */
1317         if (entry->object.vm_object == NULL && !map->system_map) {
1318                 vm_object_t object;
1319                 object = vm_object_allocate(OBJT_DEFAULT,
1320                                 atop(entry->end - entry->start));
1321                 entry->object.vm_object = object;
1322                 entry->offset = 0;
1323         }
1324
1325         new_entry = vm_map_entry_create(map);
1326         *new_entry = *entry;
1327
1328         new_entry->end = start;
1329         entry->offset += (start - entry->start);
1330         entry->start = start;
1331
1332         vm_map_entry_link(map, entry->prev, new_entry);
1333
1334         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1335                 vm_object_reference(new_entry->object.vm_object);
1336         }
1337 }
1338
1339 /*
1340  *      vm_map_clip_end:        [ internal use only ]
1341  *
1342  *      Asserts that the given entry ends at or before
1343  *      the specified address; if necessary,
1344  *      it splits the entry into two.
1345  */
1346 #define vm_map_clip_end(map, entry, endaddr) \
1347 { \
1348         if ((endaddr) < (entry->end)) \
1349                 _vm_map_clip_end((map), (entry), (endaddr)); \
1350 }
1351
1352 /*
1353  *      This routine is called only when it is known that
1354  *      the entry must be split.
1355  */
1356 static void
1357 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1358 {
1359         vm_map_entry_t new_entry;
1360
1361         /*
1362          * If there is no object backing this entry, we might as well create
1363          * one now.  If we defer it, an object can get created after the map
1364          * is clipped, and individual objects will be created for the split-up
1365          * map.  This is a bit of a hack, but is also about the best place to
1366          * put this improvement.
1367          */
1368         if (entry->object.vm_object == NULL && !map->system_map) {
1369                 vm_object_t object;
1370                 object = vm_object_allocate(OBJT_DEFAULT,
1371                                 atop(entry->end - entry->start));
1372                 entry->object.vm_object = object;
1373                 entry->offset = 0;
1374         }
1375
1376         /*
1377          * Create a new entry and insert it AFTER the specified entry
1378          */
1379         new_entry = vm_map_entry_create(map);
1380         *new_entry = *entry;
1381
1382         new_entry->start = entry->end = end;
1383         new_entry->offset += (end - entry->start);
1384
1385         vm_map_entry_link(map, entry, new_entry);
1386
1387         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1388                 vm_object_reference(new_entry->object.vm_object);
1389         }
1390 }
1391
1392 /*
1393  *      vm_map_submap:          [ kernel use only ]
1394  *
1395  *      Mark the given range as handled by a subordinate map.
1396  *
1397  *      This range must have been created with vm_map_find,
1398  *      and no other operations may have been performed on this
1399  *      range prior to calling vm_map_submap.
1400  *
1401  *      Only a limited number of operations can be performed
1402  *      within this rage after calling vm_map_submap:
1403  *              vm_fault
1404  *      [Don't try vm_map_copy!]
1405  *
1406  *      To remove a submapping, one must first remove the
1407  *      range from the superior map, and then destroy the
1408  *      submap (if desired).  [Better yet, don't try it.]
1409  */
1410 int
1411 vm_map_submap(
1412         vm_map_t map,
1413         vm_offset_t start,
1414         vm_offset_t end,
1415         vm_map_t submap)
1416 {
1417         vm_map_entry_t entry;
1418         int result = KERN_INVALID_ARGUMENT;
1419
1420         vm_map_lock(map);
1421
1422         VM_MAP_RANGE_CHECK(map, start, end);
1423
1424         if (vm_map_lookup_entry(map, start, &entry)) {
1425                 vm_map_clip_start(map, entry, start);
1426         } else
1427                 entry = entry->next;
1428
1429         vm_map_clip_end(map, entry, end);
1430
1431         if ((entry->start == start) && (entry->end == end) &&
1432             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1433             (entry->object.vm_object == NULL)) {
1434                 entry->object.sub_map = submap;
1435                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1436                 result = KERN_SUCCESS;
1437         }
1438         vm_map_unlock(map);
1439
1440         return (result);
1441 }
1442
1443 /*
1444  * The maximum number of pages to map
1445  */
1446 #define MAX_INIT_PT     96
1447
1448 /*
1449  *      vm_map_pmap_enter:
1450  *
1451  *      Preload read-only mappings for the given object's resident pages into
1452  *      the given map.  This eliminates the soft faults on process startup and
1453  *      immediately after an mmap(2).  Unless the given flags include
1454  *      MAP_PREFAULT_MADVISE, cached pages are not reactivated and mapped.
1455  */
1456 void
1457 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1458     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1459 {
1460         vm_offset_t start;
1461         vm_page_t p, p_start;
1462         vm_pindex_t psize, tmpidx;
1463         boolean_t are_queues_locked;
1464
1465         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1466                 return;
1467         VM_OBJECT_LOCK(object);
1468         if (object->type == OBJT_DEVICE) {
1469                 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1470                 goto unlock_return;
1471         }
1472
1473         psize = atop(size);
1474
1475         if (object->type != OBJT_VNODE ||
1476             ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1477              (object->resident_page_count > MAX_INIT_PT))) {
1478                 goto unlock_return;
1479         }
1480
1481         if (psize + pindex > object->size) {
1482                 if (object->size < pindex)
1483                         goto unlock_return;
1484                 psize = object->size - pindex;
1485         }
1486
1487         are_queues_locked = FALSE;
1488         start = 0;
1489         p_start = NULL;
1490
1491         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1492                 if (p->pindex < pindex) {
1493                         p = vm_page_splay(pindex, object->root);
1494                         if ((object->root = p)->pindex < pindex)
1495                                 p = TAILQ_NEXT(p, listq);
1496                 }
1497         }
1498         /*
1499          * Assert: the variable p is either (1) the page with the
1500          * least pindex greater than or equal to the parameter pindex
1501          * or (2) NULL.
1502          */
1503         for (;
1504              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1505              p = TAILQ_NEXT(p, listq)) {
1506                 /*
1507                  * don't allow an madvise to blow away our really
1508                  * free pages allocating pv entries.
1509                  */
1510                 if ((flags & MAP_PREFAULT_MADVISE) &&
1511                     cnt.v_free_count < cnt.v_free_reserved) {
1512                         psize = tmpidx;
1513                         break;
1514                 }
1515                 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1516                     (p->busy == 0)) {
1517                         if (p_start == NULL) {
1518                                 start = addr + ptoa(tmpidx);
1519                                 p_start = p;
1520                         }
1521                 } else if (p_start != NULL) {
1522                         if (!are_queues_locked) {
1523                                 are_queues_locked = TRUE;
1524                                 vm_page_lock_queues();
1525                         }
1526                         pmap_enter_object(map->pmap, start, addr +
1527                             ptoa(tmpidx), p_start, prot);
1528                         p_start = NULL;
1529                 }
1530         }
1531         if (p_start != NULL) {
1532                 if (!are_queues_locked) {
1533                         are_queues_locked = TRUE;
1534                         vm_page_lock_queues();
1535                 }
1536                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1537                     p_start, prot);
1538         }
1539         if (are_queues_locked)
1540                 vm_page_unlock_queues();
1541 unlock_return:
1542         VM_OBJECT_UNLOCK(object);
1543 }
1544
1545 /*
1546  *      vm_map_protect:
1547  *
1548  *      Sets the protection of the specified address
1549  *      region in the target map.  If "set_max" is
1550  *      specified, the maximum protection is to be set;
1551  *      otherwise, only the current protection is affected.
1552  */
1553 int
1554 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1555                vm_prot_t new_prot, boolean_t set_max)
1556 {
1557         vm_map_entry_t current;
1558         vm_map_entry_t entry;
1559
1560         vm_map_lock(map);
1561
1562         VM_MAP_RANGE_CHECK(map, start, end);
1563
1564         if (vm_map_lookup_entry(map, start, &entry)) {
1565                 vm_map_clip_start(map, entry, start);
1566         } else {
1567                 entry = entry->next;
1568         }
1569
1570         /*
1571          * Make a first pass to check for protection violations.
1572          */
1573         current = entry;
1574         while ((current != &map->header) && (current->start < end)) {
1575                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1576                         vm_map_unlock(map);
1577                         return (KERN_INVALID_ARGUMENT);
1578                 }
1579                 if ((new_prot & current->max_protection) != new_prot) {
1580                         vm_map_unlock(map);
1581                         return (KERN_PROTECTION_FAILURE);
1582                 }
1583                 current = current->next;
1584         }
1585
1586         /*
1587          * Go back and fix up protections. [Note that clipping is not
1588          * necessary the second time.]
1589          */
1590         current = entry;
1591         while ((current != &map->header) && (current->start < end)) {
1592                 vm_prot_t old_prot;
1593
1594                 vm_map_clip_end(map, current, end);
1595
1596                 old_prot = current->protection;
1597                 if (set_max)
1598                         current->protection =
1599                             (current->max_protection = new_prot) &
1600                             old_prot;
1601                 else
1602                         current->protection = new_prot;
1603
1604                 /*
1605                  * Update physical map if necessary. Worry about copy-on-write
1606                  * here -- CHECK THIS XXX
1607                  */
1608                 if (current->protection != old_prot) {
1609 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1610                                                         VM_PROT_ALL)
1611                         pmap_protect(map->pmap, current->start,
1612                             current->end,
1613                             current->protection & MASK(current));
1614 #undef  MASK
1615                 }
1616                 vm_map_simplify_entry(map, current);
1617                 current = current->next;
1618         }
1619         vm_map_unlock(map);
1620         return (KERN_SUCCESS);
1621 }
1622
1623 /*
1624  *      vm_map_madvise:
1625  *
1626  *      This routine traverses a processes map handling the madvise
1627  *      system call.  Advisories are classified as either those effecting
1628  *      the vm_map_entry structure, or those effecting the underlying
1629  *      objects.
1630  */
1631 int
1632 vm_map_madvise(
1633         vm_map_t map,
1634         vm_offset_t start,
1635         vm_offset_t end,
1636         int behav)
1637 {
1638         vm_map_entry_t current, entry;
1639         int modify_map = 0;
1640
1641         /*
1642          * Some madvise calls directly modify the vm_map_entry, in which case
1643          * we need to use an exclusive lock on the map and we need to perform
1644          * various clipping operations.  Otherwise we only need a read-lock
1645          * on the map.
1646          */
1647         switch(behav) {
1648         case MADV_NORMAL:
1649         case MADV_SEQUENTIAL:
1650         case MADV_RANDOM:
1651         case MADV_NOSYNC:
1652         case MADV_AUTOSYNC:
1653         case MADV_NOCORE:
1654         case MADV_CORE:
1655                 modify_map = 1;
1656                 vm_map_lock(map);
1657                 break;
1658         case MADV_WILLNEED:
1659         case MADV_DONTNEED:
1660         case MADV_FREE:
1661                 vm_map_lock_read(map);
1662                 break;
1663         default:
1664                 return (KERN_INVALID_ARGUMENT);
1665         }
1666
1667         /*
1668          * Locate starting entry and clip if necessary.
1669          */
1670         VM_MAP_RANGE_CHECK(map, start, end);
1671
1672         if (vm_map_lookup_entry(map, start, &entry)) {
1673                 if (modify_map)
1674                         vm_map_clip_start(map, entry, start);
1675         } else {
1676                 entry = entry->next;
1677         }
1678
1679         if (modify_map) {
1680                 /*
1681                  * madvise behaviors that are implemented in the vm_map_entry.
1682                  *
1683                  * We clip the vm_map_entry so that behavioral changes are
1684                  * limited to the specified address range.
1685                  */
1686                 for (current = entry;
1687                      (current != &map->header) && (current->start < end);
1688                      current = current->next
1689                 ) {
1690                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1691                                 continue;
1692
1693                         vm_map_clip_end(map, current, end);
1694
1695                         switch (behav) {
1696                         case MADV_NORMAL:
1697                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1698                                 break;
1699                         case MADV_SEQUENTIAL:
1700                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1701                                 break;
1702                         case MADV_RANDOM:
1703                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1704                                 break;
1705                         case MADV_NOSYNC:
1706                                 current->eflags |= MAP_ENTRY_NOSYNC;
1707                                 break;
1708                         case MADV_AUTOSYNC:
1709                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1710                                 break;
1711                         case MADV_NOCORE:
1712                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1713                                 break;
1714                         case MADV_CORE:
1715                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1716                                 break;
1717                         default:
1718                                 break;
1719                         }
1720                         vm_map_simplify_entry(map, current);
1721                 }
1722                 vm_map_unlock(map);
1723         } else {
1724                 vm_pindex_t pindex;
1725                 int count;
1726
1727                 /*
1728                  * madvise behaviors that are implemented in the underlying
1729                  * vm_object.
1730                  *
1731                  * Since we don't clip the vm_map_entry, we have to clip
1732                  * the vm_object pindex and count.
1733                  */
1734                 for (current = entry;
1735                      (current != &map->header) && (current->start < end);
1736                      current = current->next
1737                 ) {
1738                         vm_offset_t useStart;
1739
1740                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1741                                 continue;
1742
1743                         pindex = OFF_TO_IDX(current->offset);
1744                         count = atop(current->end - current->start);
1745                         useStart = current->start;
1746
1747                         if (current->start < start) {
1748                                 pindex += atop(start - current->start);
1749                                 count -= atop(start - current->start);
1750                                 useStart = start;
1751                         }
1752                         if (current->end > end)
1753                                 count -= atop(current->end - end);
1754
1755                         if (count <= 0)
1756                                 continue;
1757
1758                         vm_object_madvise(current->object.vm_object,
1759                                           pindex, count, behav);
1760                         if (behav == MADV_WILLNEED) {
1761                                 vm_map_pmap_enter(map,
1762                                     useStart,
1763                                     current->protection,
1764                                     current->object.vm_object,
1765                                     pindex,
1766                                     (count << PAGE_SHIFT),
1767                                     MAP_PREFAULT_MADVISE
1768                                 );
1769                         }
1770                 }
1771                 vm_map_unlock_read(map);
1772         }
1773         return (0);
1774 }
1775
1776
1777 /*
1778  *      vm_map_inherit:
1779  *
1780  *      Sets the inheritance of the specified address
1781  *      range in the target map.  Inheritance
1782  *      affects how the map will be shared with
1783  *      child maps at the time of vm_map_fork.
1784  */
1785 int
1786 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1787                vm_inherit_t new_inheritance)
1788 {
1789         vm_map_entry_t entry;
1790         vm_map_entry_t temp_entry;
1791
1792         switch (new_inheritance) {
1793         case VM_INHERIT_NONE:
1794         case VM_INHERIT_COPY:
1795         case VM_INHERIT_SHARE:
1796                 break;
1797         default:
1798                 return (KERN_INVALID_ARGUMENT);
1799         }
1800         vm_map_lock(map);
1801         VM_MAP_RANGE_CHECK(map, start, end);
1802         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1803                 entry = temp_entry;
1804                 vm_map_clip_start(map, entry, start);
1805         } else
1806                 entry = temp_entry->next;
1807         while ((entry != &map->header) && (entry->start < end)) {
1808                 vm_map_clip_end(map, entry, end);
1809                 entry->inheritance = new_inheritance;
1810                 vm_map_simplify_entry(map, entry);
1811                 entry = entry->next;
1812         }
1813         vm_map_unlock(map);
1814         return (KERN_SUCCESS);
1815 }
1816
1817 /*
1818  *      vm_map_unwire:
1819  *
1820  *      Implements both kernel and user unwiring.
1821  */
1822 int
1823 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1824     int flags)
1825 {
1826         vm_map_entry_t entry, first_entry, tmp_entry;
1827         vm_offset_t saved_start;
1828         unsigned int last_timestamp;
1829         int rv;
1830         boolean_t need_wakeup, result, user_unwire;
1831
1832         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1833         vm_map_lock(map);
1834         VM_MAP_RANGE_CHECK(map, start, end);
1835         if (!vm_map_lookup_entry(map, start, &first_entry)) {
1836                 if (flags & VM_MAP_WIRE_HOLESOK)
1837                         first_entry = first_entry->next;
1838                 else {
1839                         vm_map_unlock(map);
1840                         return (KERN_INVALID_ADDRESS);
1841                 }
1842         }
1843         last_timestamp = map->timestamp;
1844         entry = first_entry;
1845         while (entry != &map->header && entry->start < end) {
1846                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1847                         /*
1848                          * We have not yet clipped the entry.
1849                          */
1850                         saved_start = (start >= entry->start) ? start :
1851                             entry->start;
1852                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1853                         if (vm_map_unlock_and_wait(map, user_unwire)) {
1854                                 /*
1855                                  * Allow interruption of user unwiring?
1856                                  */
1857                         }
1858                         vm_map_lock(map);
1859                         if (last_timestamp+1 != map->timestamp) {
1860                                 /*
1861                                  * Look again for the entry because the map was
1862                                  * modified while it was unlocked.
1863                                  * Specifically, the entry may have been
1864                                  * clipped, merged, or deleted.
1865                                  */
1866                                 if (!vm_map_lookup_entry(map, saved_start,
1867                                     &tmp_entry)) {
1868                                         if (flags & VM_MAP_WIRE_HOLESOK)
1869                                                 tmp_entry = tmp_entry->next;
1870                                         else {
1871                                                 if (saved_start == start) {
1872                                                         /*
1873                                                          * First_entry has been deleted.
1874                                                          */
1875                                                         vm_map_unlock(map);
1876                                                         return (KERN_INVALID_ADDRESS);
1877                                                 }
1878                                                 end = saved_start;
1879                                                 rv = KERN_INVALID_ADDRESS;
1880                                                 goto done;
1881                                         }
1882                                 }
1883                                 if (entry == first_entry)
1884                                         first_entry = tmp_entry;
1885                                 else
1886                                         first_entry = NULL;
1887                                 entry = tmp_entry;
1888                         }
1889                         last_timestamp = map->timestamp;
1890                         continue;
1891                 }
1892                 vm_map_clip_start(map, entry, start);
1893                 vm_map_clip_end(map, entry, end);
1894                 /*
1895                  * Mark the entry in case the map lock is released.  (See
1896                  * above.)
1897                  */
1898                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1899                 /*
1900                  * Check the map for holes in the specified region.
1901                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
1902                  */
1903                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
1904                     (entry->end < end && (entry->next == &map->header ||
1905                     entry->next->start > entry->end))) {
1906                         end = entry->end;
1907                         rv = KERN_INVALID_ADDRESS;
1908                         goto done;
1909                 }
1910                 /*
1911                  * If system unwiring, require that the entry is system wired.
1912                  */
1913                 if (!user_unwire &&
1914                     vm_map_entry_system_wired_count(entry) == 0) {
1915                         end = entry->end;
1916                         rv = KERN_INVALID_ARGUMENT;
1917                         goto done;
1918                 }
1919                 entry = entry->next;
1920         }
1921         rv = KERN_SUCCESS;
1922 done:
1923         need_wakeup = FALSE;
1924         if (first_entry == NULL) {
1925                 result = vm_map_lookup_entry(map, start, &first_entry);
1926                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
1927                         first_entry = first_entry->next;
1928                 else
1929                         KASSERT(result, ("vm_map_unwire: lookup failed"));
1930         }
1931         entry = first_entry;
1932         while (entry != &map->header && entry->start < end) {
1933                 if (rv == KERN_SUCCESS && (!user_unwire ||
1934                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
1935                         if (user_unwire)
1936                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1937                         entry->wired_count--;
1938                         if (entry->wired_count == 0) {
1939                                 /*
1940                                  * Retain the map lock.
1941                                  */
1942                                 vm_fault_unwire(map, entry->start, entry->end,
1943                                     entry->object.vm_object != NULL &&
1944                                     entry->object.vm_object->type == OBJT_DEVICE);
1945                         }
1946                 }
1947                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1948                         ("vm_map_unwire: in-transition flag missing"));
1949                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1950                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1951                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1952                         need_wakeup = TRUE;
1953                 }
1954                 vm_map_simplify_entry(map, entry);
1955                 entry = entry->next;
1956         }
1957         vm_map_unlock(map);
1958         if (need_wakeup)
1959                 vm_map_wakeup(map);
1960         return (rv);
1961 }
1962
1963 /*
1964  *      vm_map_wire:
1965  *
1966  *      Implements both kernel and user wiring.
1967  */
1968 int
1969 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1970     int flags)
1971 {
1972         vm_map_entry_t entry, first_entry, tmp_entry;
1973         vm_offset_t saved_end, saved_start;
1974         unsigned int last_timestamp;
1975         int rv;
1976         boolean_t fictitious, need_wakeup, result, user_wire;
1977
1978         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1979         vm_map_lock(map);
1980         VM_MAP_RANGE_CHECK(map, start, end);
1981         if (!vm_map_lookup_entry(map, start, &first_entry)) {
1982                 if (flags & VM_MAP_WIRE_HOLESOK)
1983                         first_entry = first_entry->next;
1984                 else {
1985                         vm_map_unlock(map);
1986                         return (KERN_INVALID_ADDRESS);
1987                 }
1988         }
1989         last_timestamp = map->timestamp;
1990         entry = first_entry;
1991         while (entry != &map->header && entry->start < end) {
1992                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1993                         /*
1994                          * We have not yet clipped the entry.
1995                          */
1996                         saved_start = (start >= entry->start) ? start :
1997                             entry->start;
1998                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1999                         if (vm_map_unlock_and_wait(map, user_wire)) {
2000                                 /*
2001                                  * Allow interruption of user wiring?
2002                                  */
2003                         }
2004                         vm_map_lock(map);
2005                         if (last_timestamp + 1 != map->timestamp) {
2006                                 /*
2007                                  * Look again for the entry because the map was
2008                                  * modified while it was unlocked.
2009                                  * Specifically, the entry may have been
2010                                  * clipped, merged, or deleted.
2011                                  */
2012                                 if (!vm_map_lookup_entry(map, saved_start,
2013                                     &tmp_entry)) {
2014                                         if (flags & VM_MAP_WIRE_HOLESOK)
2015                                                 tmp_entry = tmp_entry->next;
2016                                         else {
2017                                                 if (saved_start == start) {
2018                                                         /*
2019                                                          * first_entry has been deleted.
2020                                                          */
2021                                                         vm_map_unlock(map);
2022                                                         return (KERN_INVALID_ADDRESS);
2023                                                 }
2024                                                 end = saved_start;
2025                                                 rv = KERN_INVALID_ADDRESS;
2026                                                 goto done;
2027                                         }
2028                                 }
2029                                 if (entry == first_entry)
2030                                         first_entry = tmp_entry;
2031                                 else
2032                                         first_entry = NULL;
2033                                 entry = tmp_entry;
2034                         }
2035                         last_timestamp = map->timestamp;
2036                         continue;
2037                 }
2038                 vm_map_clip_start(map, entry, start);
2039                 vm_map_clip_end(map, entry, end);
2040                 /*
2041                  * Mark the entry in case the map lock is released.  (See
2042                  * above.)
2043                  */
2044                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2045                 /*
2046                  *
2047                  */
2048                 if (entry->wired_count == 0) {
2049                         entry->wired_count++;
2050                         saved_start = entry->start;
2051                         saved_end = entry->end;
2052                         fictitious = entry->object.vm_object != NULL &&
2053                             entry->object.vm_object->type == OBJT_DEVICE;
2054                         /*
2055                          * Release the map lock, relying on the in-transition
2056                          * mark.
2057                          */
2058                         vm_map_unlock(map);
2059                         rv = vm_fault_wire(map, saved_start, saved_end,
2060                             user_wire, fictitious);
2061                         vm_map_lock(map);
2062                         if (last_timestamp + 1 != map->timestamp) {
2063                                 /*
2064                                  * Look again for the entry because the map was
2065                                  * modified while it was unlocked.  The entry
2066                                  * may have been clipped, but NOT merged or
2067                                  * deleted.
2068                                  */
2069                                 result = vm_map_lookup_entry(map, saved_start,
2070                                     &tmp_entry);
2071                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2072                                 if (entry == first_entry)
2073                                         first_entry = tmp_entry;
2074                                 else
2075                                         first_entry = NULL;
2076                                 entry = tmp_entry;
2077                                 while (entry->end < saved_end) {
2078                                         if (rv != KERN_SUCCESS) {
2079                                                 KASSERT(entry->wired_count == 1,
2080                                                     ("vm_map_wire: bad count"));
2081                                                 entry->wired_count = -1;
2082                                         }
2083                                         entry = entry->next;
2084                                 }
2085                         }
2086                         last_timestamp = map->timestamp;
2087                         if (rv != KERN_SUCCESS) {
2088                                 KASSERT(entry->wired_count == 1,
2089                                     ("vm_map_wire: bad count"));
2090                                 /*
2091                                  * Assign an out-of-range value to represent
2092                                  * the failure to wire this entry.
2093                                  */
2094                                 entry->wired_count = -1;
2095                                 end = entry->end;
2096                                 goto done;
2097                         }
2098                 } else if (!user_wire ||
2099                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2100                         entry->wired_count++;
2101                 }
2102                 /*
2103                  * Check the map for holes in the specified region.
2104                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2105                  */
2106                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2107                     (entry->end < end && (entry->next == &map->header ||
2108                     entry->next->start > entry->end))) {
2109                         end = entry->end;
2110                         rv = KERN_INVALID_ADDRESS;
2111                         goto done;
2112                 }
2113                 entry = entry->next;
2114         }
2115         rv = KERN_SUCCESS;
2116 done:
2117         need_wakeup = FALSE;
2118         if (first_entry == NULL) {
2119                 result = vm_map_lookup_entry(map, start, &first_entry);
2120                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2121                         first_entry = first_entry->next;
2122                 else
2123                         KASSERT(result, ("vm_map_wire: lookup failed"));
2124         }
2125         entry = first_entry;
2126         while (entry != &map->header && entry->start < end) {
2127                 if (rv == KERN_SUCCESS) {
2128                         if (user_wire)
2129                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2130                 } else if (entry->wired_count == -1) {
2131                         /*
2132                          * Wiring failed on this entry.  Thus, unwiring is
2133                          * unnecessary.
2134                          */
2135                         entry->wired_count = 0;
2136                 } else {
2137                         if (!user_wire ||
2138                             (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2139                                 entry->wired_count--;
2140                         if (entry->wired_count == 0) {
2141                                 /*
2142                                  * Retain the map lock.
2143                                  */
2144                                 vm_fault_unwire(map, entry->start, entry->end,
2145                                     entry->object.vm_object != NULL &&
2146                                     entry->object.vm_object->type == OBJT_DEVICE);
2147                         }
2148                 }
2149                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2150                         ("vm_map_wire: in-transition flag missing"));
2151                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2152                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2153                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2154                         need_wakeup = TRUE;
2155                 }
2156                 vm_map_simplify_entry(map, entry);
2157                 entry = entry->next;
2158         }
2159         vm_map_unlock(map);
2160         if (need_wakeup)
2161                 vm_map_wakeup(map);
2162         return (rv);
2163 }
2164
2165 /*
2166  * vm_map_sync
2167  *
2168  * Push any dirty cached pages in the address range to their pager.
2169  * If syncio is TRUE, dirty pages are written synchronously.
2170  * If invalidate is TRUE, any cached pages are freed as well.
2171  *
2172  * If the size of the region from start to end is zero, we are
2173  * supposed to flush all modified pages within the region containing
2174  * start.  Unfortunately, a region can be split or coalesced with
2175  * neighboring regions, making it difficult to determine what the
2176  * original region was.  Therefore, we approximate this requirement by
2177  * flushing the current region containing start.
2178  *
2179  * Returns an error if any part of the specified range is not mapped.
2180  */
2181 int
2182 vm_map_sync(
2183         vm_map_t map,
2184         vm_offset_t start,
2185         vm_offset_t end,
2186         boolean_t syncio,
2187         boolean_t invalidate)
2188 {
2189         vm_map_entry_t current;
2190         vm_map_entry_t entry;
2191         vm_size_t size;
2192         vm_object_t object;
2193         vm_ooffset_t offset;
2194
2195         vm_map_lock_read(map);
2196         VM_MAP_RANGE_CHECK(map, start, end);
2197         if (!vm_map_lookup_entry(map, start, &entry)) {
2198                 vm_map_unlock_read(map);
2199                 return (KERN_INVALID_ADDRESS);
2200         } else if (start == end) {
2201                 start = entry->start;
2202                 end = entry->end;
2203         }
2204         /*
2205          * Make a first pass to check for user-wired memory and holes.
2206          */
2207         for (current = entry; current->start < end; current = current->next) {
2208                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2209                         vm_map_unlock_read(map);
2210                         return (KERN_INVALID_ARGUMENT);
2211                 }
2212                 if (end > current->end &&
2213                     (current->next == &map->header ||
2214                         current->end != current->next->start)) {
2215                         vm_map_unlock_read(map);
2216                         return (KERN_INVALID_ADDRESS);
2217                 }
2218         }
2219
2220         if (invalidate)
2221                 pmap_remove(map->pmap, start, end);
2222
2223         /*
2224          * Make a second pass, cleaning/uncaching pages from the indicated
2225          * objects as we go.
2226          */
2227         for (current = entry; current->start < end; current = current->next) {
2228                 offset = current->offset + (start - current->start);
2229                 size = (end <= current->end ? end : current->end) - start;
2230                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2231                         vm_map_t smap;
2232                         vm_map_entry_t tentry;
2233                         vm_size_t tsize;
2234
2235                         smap = current->object.sub_map;
2236                         vm_map_lock_read(smap);
2237                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2238                         tsize = tentry->end - offset;
2239                         if (tsize < size)
2240                                 size = tsize;
2241                         object = tentry->object.vm_object;
2242                         offset = tentry->offset + (offset - tentry->start);
2243                         vm_map_unlock_read(smap);
2244                 } else {
2245                         object = current->object.vm_object;
2246                 }
2247                 vm_object_sync(object, offset, size, syncio, invalidate);
2248                 start += size;
2249         }
2250
2251         vm_map_unlock_read(map);
2252         return (KERN_SUCCESS);
2253 }
2254
2255 /*
2256  *      vm_map_entry_unwire:    [ internal use only ]
2257  *
2258  *      Make the region specified by this entry pageable.
2259  *
2260  *      The map in question should be locked.
2261  *      [This is the reason for this routine's existence.]
2262  */
2263 static void
2264 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2265 {
2266         vm_fault_unwire(map, entry->start, entry->end,
2267             entry->object.vm_object != NULL &&
2268             entry->object.vm_object->type == OBJT_DEVICE);
2269         entry->wired_count = 0;
2270 }
2271
2272 /*
2273  *      vm_map_entry_delete:    [ internal use only ]
2274  *
2275  *      Deallocate the given entry from the target map.
2276  */
2277 static void
2278 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2279 {
2280         vm_object_t object;
2281         vm_pindex_t offidxstart, offidxend, count;
2282
2283         vm_map_entry_unlink(map, entry);
2284         map->size -= entry->end - entry->start;
2285
2286         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2287             (object = entry->object.vm_object) != NULL) {
2288                 count = OFF_TO_IDX(entry->end - entry->start);
2289                 offidxstart = OFF_TO_IDX(entry->offset);
2290                 offidxend = offidxstart + count;
2291                 VM_OBJECT_LOCK(object);
2292                 if (object->ref_count != 1 &&
2293                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2294                     object == kernel_object || object == kmem_object)) {
2295                         vm_object_collapse(object);
2296                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2297                         if (object->type == OBJT_SWAP)
2298                                 swap_pager_freespace(object, offidxstart, count);
2299                         if (offidxend >= object->size &&
2300                             offidxstart < object->size)
2301                                 object->size = offidxstart;
2302                 }
2303                 VM_OBJECT_UNLOCK(object);
2304                 vm_object_deallocate(object);
2305         }
2306
2307         vm_map_entry_dispose(map, entry);
2308 }
2309
2310 /*
2311  *      vm_map_delete:  [ internal use only ]
2312  *
2313  *      Deallocates the given address range from the target
2314  *      map.
2315  */
2316 int
2317 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2318 {
2319         vm_map_entry_t entry;
2320         vm_map_entry_t first_entry;
2321
2322         /*
2323          * Find the start of the region, and clip it
2324          */
2325         if (!vm_map_lookup_entry(map, start, &first_entry))
2326                 entry = first_entry->next;
2327         else {
2328                 entry = first_entry;
2329                 vm_map_clip_start(map, entry, start);
2330         }
2331
2332         /*
2333          * Step through all entries in this region
2334          */
2335         while ((entry != &map->header) && (entry->start < end)) {
2336                 vm_map_entry_t next;
2337
2338                 /*
2339                  * Wait for wiring or unwiring of an entry to complete.
2340                  * Also wait for any system wirings to disappear on
2341                  * user maps.
2342                  */
2343                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2344                     (vm_map_pmap(map) != kernel_pmap &&
2345                     vm_map_entry_system_wired_count(entry) != 0)) {
2346                         unsigned int last_timestamp;
2347                         vm_offset_t saved_start;
2348                         vm_map_entry_t tmp_entry;
2349
2350                         saved_start = entry->start;
2351                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2352                         last_timestamp = map->timestamp;
2353                         (void) vm_map_unlock_and_wait(map, FALSE);
2354                         vm_map_lock(map);
2355                         if (last_timestamp + 1 != map->timestamp) {
2356                                 /*
2357                                  * Look again for the entry because the map was
2358                                  * modified while it was unlocked.
2359                                  * Specifically, the entry may have been
2360                                  * clipped, merged, or deleted.
2361                                  */
2362                                 if (!vm_map_lookup_entry(map, saved_start,
2363                                                          &tmp_entry))
2364                                         entry = tmp_entry->next;
2365                                 else {
2366                                         entry = tmp_entry;
2367                                         vm_map_clip_start(map, entry,
2368                                                           saved_start);
2369                                 }
2370                         }
2371                         continue;
2372                 }
2373                 vm_map_clip_end(map, entry, end);
2374
2375                 next = entry->next;
2376
2377                 /*
2378                  * Unwire before removing addresses from the pmap; otherwise,
2379                  * unwiring will put the entries back in the pmap.
2380                  */
2381                 if (entry->wired_count != 0) {
2382                         vm_map_entry_unwire(map, entry);
2383                 }
2384
2385                 pmap_remove(map->pmap, entry->start, entry->end);
2386
2387                 /*
2388                  * Delete the entry (which may delete the object) only after
2389                  * removing all pmap entries pointing to its pages.
2390                  * (Otherwise, its page frames may be reallocated, and any
2391                  * modify bits will be set in the wrong object!)
2392                  */
2393                 vm_map_entry_delete(map, entry);
2394                 entry = next;
2395         }
2396         return (KERN_SUCCESS);
2397 }
2398
2399 /*
2400  *      vm_map_remove:
2401  *
2402  *      Remove the given address range from the target map.
2403  *      This is the exported form of vm_map_delete.
2404  */
2405 int
2406 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2407 {
2408         int result;
2409
2410         vm_map_lock(map);
2411         VM_MAP_RANGE_CHECK(map, start, end);
2412         result = vm_map_delete(map, start, end);
2413         vm_map_unlock(map);
2414         return (result);
2415 }
2416
2417 /*
2418  *      vm_map_check_protection:
2419  *
2420  *      Assert that the target map allows the specified privilege on the
2421  *      entire address region given.  The entire region must be allocated.
2422  *
2423  *      WARNING!  This code does not and should not check whether the
2424  *      contents of the region is accessible.  For example a smaller file
2425  *      might be mapped into a larger address space.
2426  *
2427  *      NOTE!  This code is also called by munmap().
2428  *
2429  *      The map must be locked.  A read lock is sufficient.
2430  */
2431 boolean_t
2432 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2433                         vm_prot_t protection)
2434 {
2435         vm_map_entry_t entry;
2436         vm_map_entry_t tmp_entry;
2437
2438         if (!vm_map_lookup_entry(map, start, &tmp_entry))
2439                 return (FALSE);
2440         entry = tmp_entry;
2441
2442         while (start < end) {
2443                 if (entry == &map->header)
2444                         return (FALSE);
2445                 /*
2446                  * No holes allowed!
2447                  */
2448                 if (start < entry->start)
2449                         return (FALSE);
2450                 /*
2451                  * Check protection associated with entry.
2452                  */
2453                 if ((entry->protection & protection) != protection)
2454                         return (FALSE);
2455                 /* go to next entry */
2456                 start = entry->end;
2457                 entry = entry->next;
2458         }
2459         return (TRUE);
2460 }
2461
2462 /*
2463  *      vm_map_copy_entry:
2464  *
2465  *      Copies the contents of the source entry to the destination
2466  *      entry.  The entries *must* be aligned properly.
2467  */
2468 static void
2469 vm_map_copy_entry(
2470         vm_map_t src_map,
2471         vm_map_t dst_map,
2472         vm_map_entry_t src_entry,
2473         vm_map_entry_t dst_entry)
2474 {
2475         vm_object_t src_object;
2476
2477         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2478                 return;
2479
2480         if (src_entry->wired_count == 0) {
2481
2482                 /*
2483                  * If the source entry is marked needs_copy, it is already
2484                  * write-protected.
2485                  */
2486                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2487                         pmap_protect(src_map->pmap,
2488                             src_entry->start,
2489                             src_entry->end,
2490                             src_entry->protection & ~VM_PROT_WRITE);
2491                 }
2492
2493                 /*
2494                  * Make a copy of the object.
2495                  */
2496                 if ((src_object = src_entry->object.vm_object) != NULL) {
2497                         VM_OBJECT_LOCK(src_object);
2498                         if ((src_object->handle == NULL) &&
2499                                 (src_object->type == OBJT_DEFAULT ||
2500                                  src_object->type == OBJT_SWAP)) {
2501                                 vm_object_collapse(src_object);
2502                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2503                                         vm_object_split(src_entry);
2504                                         src_object = src_entry->object.vm_object;
2505                                 }
2506                         }
2507                         vm_object_reference_locked(src_object);
2508                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2509                         VM_OBJECT_UNLOCK(src_object);
2510                         dst_entry->object.vm_object = src_object;
2511                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2512                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2513                         dst_entry->offset = src_entry->offset;
2514                 } else {
2515                         dst_entry->object.vm_object = NULL;
2516                         dst_entry->offset = 0;
2517                 }
2518
2519                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2520                     dst_entry->end - dst_entry->start, src_entry->start);
2521         } else {
2522                 /*
2523                  * Of course, wired down pages can't be set copy-on-write.
2524                  * Cause wired pages to be copied into the new map by
2525                  * simulating faults (the new pages are pageable)
2526                  */
2527                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2528         }
2529 }
2530
2531 /*
2532  * vmspace_map_entry_forked:
2533  * Update the newly-forked vmspace each time a map entry is inherited
2534  * or copied.  The values for vm_dsize and vm_tsize are approximate
2535  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2536  */
2537 static void
2538 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2539     vm_map_entry_t entry)
2540 {
2541         vm_size_t entrysize;
2542         vm_offset_t newend;
2543
2544         entrysize = entry->end - entry->start;
2545         vm2->vm_map.size += entrysize;
2546         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2547                 vm2->vm_ssize += btoc(entrysize);
2548         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2549             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2550                 newend = MIN(entry->end,
2551                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2552                 vm2->vm_dsize += btoc(newend - entry->start);
2553         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2554             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2555                 newend = MIN(entry->end,
2556                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2557                 vm2->vm_tsize += btoc(newend - entry->start);
2558         }
2559 }
2560
2561 /*
2562  * vmspace_fork:
2563  * Create a new process vmspace structure and vm_map
2564  * based on those of an existing process.  The new map
2565  * is based on the old map, according to the inheritance
2566  * values on the regions in that map.
2567  *
2568  * XXX It might be worth coalescing the entries added to the new vmspace.
2569  *
2570  * The source map must not be locked.
2571  */
2572 struct vmspace *
2573 vmspace_fork(struct vmspace *vm1)
2574 {
2575         struct vmspace *vm2;
2576         vm_map_t old_map = &vm1->vm_map;
2577         vm_map_t new_map;
2578         vm_map_entry_t old_entry;
2579         vm_map_entry_t new_entry;
2580         vm_object_t object;
2581
2582         vm_map_lock(old_map);
2583
2584         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2585         vm2->vm_taddr = vm1->vm_taddr;
2586         vm2->vm_daddr = vm1->vm_daddr;
2587         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2588         new_map = &vm2->vm_map; /* XXX */
2589         new_map->timestamp = 1;
2590
2591         old_entry = old_map->header.next;
2592
2593         while (old_entry != &old_map->header) {
2594                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2595                         panic("vm_map_fork: encountered a submap");
2596
2597                 switch (old_entry->inheritance) {
2598                 case VM_INHERIT_NONE:
2599                         break;
2600
2601                 case VM_INHERIT_SHARE:
2602                         /*
2603                          * Clone the entry, creating the shared object if necessary.
2604                          */
2605                         object = old_entry->object.vm_object;
2606                         if (object == NULL) {
2607                                 object = vm_object_allocate(OBJT_DEFAULT,
2608                                         atop(old_entry->end - old_entry->start));
2609                                 old_entry->object.vm_object = object;
2610                                 old_entry->offset = 0;
2611                         }
2612
2613                         /*
2614                          * Add the reference before calling vm_object_shadow
2615                          * to insure that a shadow object is created.
2616                          */
2617                         vm_object_reference(object);
2618                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2619                                 vm_object_shadow(&old_entry->object.vm_object,
2620                                         &old_entry->offset,
2621                                         atop(old_entry->end - old_entry->start));
2622                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2623                                 /* Transfer the second reference too. */
2624                                 vm_object_reference(
2625                                     old_entry->object.vm_object);
2626                                 vm_object_deallocate(object);
2627                                 object = old_entry->object.vm_object;
2628                         }
2629                         VM_OBJECT_LOCK(object);
2630                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2631                         VM_OBJECT_UNLOCK(object);
2632
2633                         /*
2634                          * Clone the entry, referencing the shared object.
2635                          */
2636                         new_entry = vm_map_entry_create(new_map);
2637                         *new_entry = *old_entry;
2638                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2639                         new_entry->wired_count = 0;
2640
2641                         /*
2642                          * Insert the entry into the new map -- we know we're
2643                          * inserting at the end of the new map.
2644                          */
2645                         vm_map_entry_link(new_map, new_map->header.prev,
2646                             new_entry);
2647                         vmspace_map_entry_forked(vm1, vm2, new_entry);
2648
2649                         /*
2650                          * Update the physical map
2651                          */
2652                         pmap_copy(new_map->pmap, old_map->pmap,
2653                             new_entry->start,
2654                             (old_entry->end - old_entry->start),
2655                             old_entry->start);
2656                         break;
2657
2658                 case VM_INHERIT_COPY:
2659                         /*
2660                          * Clone the entry and link into the map.
2661                          */
2662                         new_entry = vm_map_entry_create(new_map);
2663                         *new_entry = *old_entry;
2664                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2665                         new_entry->wired_count = 0;
2666                         new_entry->object.vm_object = NULL;
2667                         vm_map_entry_link(new_map, new_map->header.prev,
2668                             new_entry);
2669                         vmspace_map_entry_forked(vm1, vm2, new_entry);
2670                         vm_map_copy_entry(old_map, new_map, old_entry,
2671                             new_entry);
2672                         break;
2673                 }
2674                 old_entry = old_entry->next;
2675         }
2676
2677         vm_map_unlock(old_map);
2678
2679         return (vm2);
2680 }
2681
2682 int
2683 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2684     vm_prot_t prot, vm_prot_t max, int cow)
2685 {
2686         vm_map_entry_t new_entry, prev_entry;
2687         vm_offset_t bot, top;
2688         vm_size_t init_ssize;
2689         int orient, rv;
2690         rlim_t vmemlim;
2691
2692         /*
2693          * The stack orientation is piggybacked with the cow argument.
2694          * Extract it into orient and mask the cow argument so that we
2695          * don't pass it around further.
2696          * NOTE: We explicitly allow bi-directional stacks.
2697          */
2698         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2699         cow &= ~orient;
2700         KASSERT(orient != 0, ("No stack grow direction"));
2701
2702         if (addrbos < vm_map_min(map) || addrbos > map->max_offset)
2703                 return (KERN_NO_SPACE);
2704
2705         init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2706
2707         PROC_LOCK(curthread->td_proc);
2708         vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2709         PROC_UNLOCK(curthread->td_proc);
2710
2711         vm_map_lock(map);
2712
2713         /* If addr is already mapped, no go */
2714         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2715                 vm_map_unlock(map);
2716                 return (KERN_NO_SPACE);
2717         }
2718
2719         /* If we would blow our VMEM resource limit, no go */
2720         if (map->size + init_ssize > vmemlim) {
2721                 vm_map_unlock(map);
2722                 return (KERN_NO_SPACE);
2723         }
2724
2725         /*
2726          * If we can't accomodate max_ssize in the current mapping, no go.
2727          * However, we need to be aware that subsequent user mappings might
2728          * map into the space we have reserved for stack, and currently this
2729          * space is not protected.
2730          *
2731          * Hopefully we will at least detect this condition when we try to
2732          * grow the stack.
2733          */
2734         if ((prev_entry->next != &map->header) &&
2735             (prev_entry->next->start < addrbos + max_ssize)) {
2736                 vm_map_unlock(map);
2737                 return (KERN_NO_SPACE);
2738         }
2739
2740         /*
2741          * We initially map a stack of only init_ssize.  We will grow as
2742          * needed later.  Depending on the orientation of the stack (i.e.
2743          * the grow direction) we either map at the top of the range, the
2744          * bottom of the range or in the middle.
2745          *
2746          * Note: we would normally expect prot and max to be VM_PROT_ALL,
2747          * and cow to be 0.  Possibly we should eliminate these as input
2748          * parameters, and just pass these values here in the insert call.
2749          */
2750         if (orient == MAP_STACK_GROWS_DOWN)
2751                 bot = addrbos + max_ssize - init_ssize;
2752         else if (orient == MAP_STACK_GROWS_UP)
2753                 bot = addrbos;
2754         else
2755                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2756         top = bot + init_ssize;
2757         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2758
2759         /* Now set the avail_ssize amount. */
2760         if (rv == KERN_SUCCESS) {
2761                 if (prev_entry != &map->header)
2762                         vm_map_clip_end(map, prev_entry, bot);
2763                 new_entry = prev_entry->next;
2764                 if (new_entry->end != top || new_entry->start != bot)
2765                         panic("Bad entry start/end for new stack entry");
2766
2767                 new_entry->avail_ssize = max_ssize - init_ssize;
2768                 if (orient & MAP_STACK_GROWS_DOWN)
2769                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2770                 if (orient & MAP_STACK_GROWS_UP)
2771                         new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2772         }
2773
2774         vm_map_unlock(map);
2775         return (rv);
2776 }
2777
2778 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2779  * desired address is already mapped, or if we successfully grow
2780  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2781  * stack range (this is strange, but preserves compatibility with
2782  * the grow function in vm_machdep.c).
2783  */
2784 int
2785 vm_map_growstack(struct proc *p, vm_offset_t addr)
2786 {
2787         vm_map_entry_t next_entry, prev_entry;
2788         vm_map_entry_t new_entry, stack_entry;
2789         struct vmspace *vm = p->p_vmspace;
2790         vm_map_t map = &vm->vm_map;
2791         vm_offset_t end;
2792         size_t grow_amount, max_grow;
2793         rlim_t stacklim, vmemlim;
2794         int is_procstack, rv;
2795
2796 Retry:
2797         PROC_LOCK(p);
2798         stacklim = lim_cur(p, RLIMIT_STACK);
2799         vmemlim = lim_cur(p, RLIMIT_VMEM);
2800         PROC_UNLOCK(p);
2801
2802         vm_map_lock_read(map);
2803
2804         /* If addr is already in the entry range, no need to grow.*/
2805         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2806                 vm_map_unlock_read(map);
2807                 return (KERN_SUCCESS);
2808         }
2809
2810         next_entry = prev_entry->next;
2811         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2812                 /*
2813                  * This entry does not grow upwards. Since the address lies
2814                  * beyond this entry, the next entry (if one exists) has to
2815                  * be a downward growable entry. The entry list header is
2816                  * never a growable entry, so it suffices to check the flags.
2817                  */
2818                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2819                         vm_map_unlock_read(map);
2820                         return (KERN_SUCCESS);
2821                 }
2822                 stack_entry = next_entry;
2823         } else {
2824                 /*
2825                  * This entry grows upward. If the next entry does not at
2826                  * least grow downwards, this is the entry we need to grow.
2827                  * otherwise we have two possible choices and we have to
2828                  * select one.
2829                  */
2830                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2831                         /*
2832                          * We have two choices; grow the entry closest to
2833                          * the address to minimize the amount of growth.
2834                          */
2835                         if (addr - prev_entry->end <= next_entry->start - addr)
2836                                 stack_entry = prev_entry;
2837                         else
2838                                 stack_entry = next_entry;
2839                 } else
2840                         stack_entry = prev_entry;
2841         }
2842
2843         if (stack_entry == next_entry) {
2844                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
2845                 KASSERT(addr < stack_entry->start, ("foo"));
2846                 end = (prev_entry != &map->header) ? prev_entry->end :
2847                     stack_entry->start - stack_entry->avail_ssize;
2848                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
2849                 max_grow = stack_entry->start - end;
2850         } else {
2851                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
2852                 KASSERT(addr >= stack_entry->end, ("foo"));
2853                 end = (next_entry != &map->header) ? next_entry->start :
2854                     stack_entry->end + stack_entry->avail_ssize;
2855                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
2856                 max_grow = end - stack_entry->end;
2857         }
2858
2859         if (grow_amount > stack_entry->avail_ssize) {
2860                 vm_map_unlock_read(map);
2861                 return (KERN_NO_SPACE);
2862         }
2863
2864         /*
2865          * If there is no longer enough space between the entries nogo, and
2866          * adjust the available space.  Note: this  should only happen if the
2867          * user has mapped into the stack area after the stack was created,
2868          * and is probably an error.
2869          *
2870          * This also effectively destroys any guard page the user might have
2871          * intended by limiting the stack size.
2872          */
2873         if (grow_amount > max_grow) {
2874                 if (vm_map_lock_upgrade(map))
2875                         goto Retry;
2876
2877                 stack_entry->avail_ssize = max_grow;
2878
2879                 vm_map_unlock(map);
2880                 return (KERN_NO_SPACE);
2881         }
2882
2883         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
2884
2885         /*
2886          * If this is the main process stack, see if we're over the stack
2887          * limit.
2888          */
2889         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2890                 vm_map_unlock_read(map);
2891                 return (KERN_NO_SPACE);
2892         }
2893
2894         /* Round up the grow amount modulo SGROWSIZ */
2895         grow_amount = roundup (grow_amount, sgrowsiz);
2896         if (grow_amount > stack_entry->avail_ssize)
2897                 grow_amount = stack_entry->avail_ssize;
2898         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2899                 grow_amount = stacklim - ctob(vm->vm_ssize);
2900         }
2901
2902         /* If we would blow our VMEM resource limit, no go */
2903         if (map->size + grow_amount > vmemlim) {
2904                 vm_map_unlock_read(map);
2905                 return (KERN_NO_SPACE);
2906         }
2907
2908         if (vm_map_lock_upgrade(map))
2909                 goto Retry;
2910
2911         if (stack_entry == next_entry) {
2912                 /*
2913                  * Growing downward.
2914                  */
2915                 /* Get the preliminary new entry start value */
2916                 addr = stack_entry->start - grow_amount;
2917
2918                 /*
2919                  * If this puts us into the previous entry, cut back our
2920                  * growth to the available space. Also, see the note above.
2921                  */
2922                 if (addr < end) {
2923                         stack_entry->avail_ssize = max_grow;
2924                         addr = end;
2925                 }
2926
2927                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2928                     p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2929
2930                 /* Adjust the available stack space by the amount we grew. */
2931                 if (rv == KERN_SUCCESS) {
2932                         if (prev_entry != &map->header)
2933                                 vm_map_clip_end(map, prev_entry, addr);
2934                         new_entry = prev_entry->next;
2935                         KASSERT(new_entry == stack_entry->prev, ("foo"));
2936                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
2937                         KASSERT(new_entry->start == addr, ("foo"));
2938                         grow_amount = new_entry->end - new_entry->start;
2939                         new_entry->avail_ssize = stack_entry->avail_ssize -
2940                             grow_amount;
2941                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
2942                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2943                 }
2944         } else {
2945                 /*
2946                  * Growing upward.
2947                  */
2948                 addr = stack_entry->end + grow_amount;
2949
2950                 /*
2951                  * If this puts us into the next entry, cut back our growth
2952                  * to the available space. Also, see the note above.
2953                  */
2954                 if (addr > end) {
2955                         stack_entry->avail_ssize = end - stack_entry->end;
2956                         addr = end;
2957                 }
2958
2959                 grow_amount = addr - stack_entry->end;
2960
2961                 /* Grow the underlying object if applicable. */
2962                 if (stack_entry->object.vm_object == NULL ||
2963                     vm_object_coalesce(stack_entry->object.vm_object,
2964                     stack_entry->offset,
2965                     (vm_size_t)(stack_entry->end - stack_entry->start),
2966                     (vm_size_t)grow_amount)) {
2967                         map->size += (addr - stack_entry->end);
2968                         /* Update the current entry. */
2969                         stack_entry->end = addr;
2970                         stack_entry->avail_ssize -= grow_amount;
2971                         vm_map_entry_resize_free(map, stack_entry);
2972                         rv = KERN_SUCCESS;
2973
2974                         if (next_entry != &map->header)
2975                                 vm_map_clip_start(map, next_entry, addr);
2976                 } else
2977                         rv = KERN_FAILURE;
2978         }
2979
2980         if (rv == KERN_SUCCESS && is_procstack)
2981                 vm->vm_ssize += btoc(grow_amount);
2982
2983         vm_map_unlock(map);
2984
2985         /*
2986          * Heed the MAP_WIREFUTURE flag if it was set for this process.
2987          */
2988         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
2989                 vm_map_wire(map,
2990                     (stack_entry == next_entry) ? addr : addr - grow_amount,
2991                     (stack_entry == next_entry) ? stack_entry->start : addr,
2992                     (p->p_flag & P_SYSTEM)
2993                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
2994                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
2995         }
2996
2997         return (rv);
2998 }
2999
3000 /*
3001  * Unshare the specified VM space for exec.  If other processes are
3002  * mapped to it, then create a new one.  The new vmspace is null.
3003  */
3004 void
3005 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3006 {
3007         struct vmspace *oldvmspace = p->p_vmspace;
3008         struct vmspace *newvmspace;
3009
3010         newvmspace = vmspace_alloc(minuser, maxuser);
3011         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3012         /*
3013          * This code is written like this for prototype purposes.  The
3014          * goal is to avoid running down the vmspace here, but let the
3015          * other process's that are still using the vmspace to finally
3016          * run it down.  Even though there is little or no chance of blocking
3017          * here, it is a good idea to keep this form for future mods.
3018          */
3019         PROC_VMSPACE_LOCK(p);
3020         p->p_vmspace = newvmspace;
3021         PROC_VMSPACE_UNLOCK(p);
3022         if (p == curthread->td_proc)            /* XXXKSE ? */
3023                 pmap_activate(curthread);
3024         vmspace_free(oldvmspace);
3025 }
3026
3027 /*
3028  * Unshare the specified VM space for forcing COW.  This
3029  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3030  */
3031 void
3032 vmspace_unshare(struct proc *p)
3033 {
3034         struct vmspace *oldvmspace = p->p_vmspace;
3035         struct vmspace *newvmspace;
3036
3037         if (oldvmspace->vm_refcnt == 1)
3038                 return;
3039         newvmspace = vmspace_fork(oldvmspace);
3040         PROC_VMSPACE_LOCK(p);
3041         p->p_vmspace = newvmspace;
3042         PROC_VMSPACE_UNLOCK(p);
3043         if (p == curthread->td_proc)            /* XXXKSE ? */
3044                 pmap_activate(curthread);
3045         vmspace_free(oldvmspace);
3046 }
3047
3048 /*
3049  *      vm_map_lookup:
3050  *
3051  *      Finds the VM object, offset, and
3052  *      protection for a given virtual address in the
3053  *      specified map, assuming a page fault of the
3054  *      type specified.
3055  *
3056  *      Leaves the map in question locked for read; return
3057  *      values are guaranteed until a vm_map_lookup_done
3058  *      call is performed.  Note that the map argument
3059  *      is in/out; the returned map must be used in
3060  *      the call to vm_map_lookup_done.
3061  *
3062  *      A handle (out_entry) is returned for use in
3063  *      vm_map_lookup_done, to make that fast.
3064  *
3065  *      If a lookup is requested with "write protection"
3066  *      specified, the map may be changed to perform virtual
3067  *      copying operations, although the data referenced will
3068  *      remain the same.
3069  */
3070 int
3071 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3072               vm_offset_t vaddr,
3073               vm_prot_t fault_typea,
3074               vm_map_entry_t *out_entry,        /* OUT */
3075               vm_object_t *object,              /* OUT */
3076               vm_pindex_t *pindex,              /* OUT */
3077               vm_prot_t *out_prot,              /* OUT */
3078               boolean_t *wired)                 /* OUT */
3079 {
3080         vm_map_entry_t entry;
3081         vm_map_t map = *var_map;
3082         vm_prot_t prot;
3083         vm_prot_t fault_type = fault_typea;
3084
3085 RetryLookup:;
3086         /*
3087          * Lookup the faulting address.
3088          */
3089
3090         vm_map_lock_read(map);
3091 #define RETURN(why) \
3092                 { \
3093                 vm_map_unlock_read(map); \
3094                 return (why); \
3095                 }
3096
3097         /*
3098          * If the map has an interesting hint, try it before calling full
3099          * blown lookup routine.
3100          */
3101         entry = map->root;
3102         *out_entry = entry;
3103         if (entry == NULL ||
3104             (vaddr < entry->start) || (vaddr >= entry->end)) {
3105                 /*
3106                  * Entry was either not a valid hint, or the vaddr was not
3107                  * contained in the entry, so do a full lookup.
3108                  */
3109                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3110                         RETURN(KERN_INVALID_ADDRESS);
3111
3112                 entry = *out_entry;
3113         }
3114
3115         /*
3116          * Handle submaps.
3117          */
3118         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3119                 vm_map_t old_map = map;
3120
3121                 *var_map = map = entry->object.sub_map;
3122                 vm_map_unlock_read(old_map);
3123                 goto RetryLookup;
3124         }
3125
3126         /*
3127          * Check whether this task is allowed to have this page.
3128          * Note the special case for MAP_ENTRY_COW
3129          * pages with an override.  This is to implement a forced
3130          * COW for debuggers.
3131          */
3132         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3133                 prot = entry->max_protection;
3134         else
3135                 prot = entry->protection;
3136         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3137         if ((fault_type & prot) != fault_type) {
3138                         RETURN(KERN_PROTECTION_FAILURE);
3139         }
3140         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3141             (entry->eflags & MAP_ENTRY_COW) &&
3142             (fault_type & VM_PROT_WRITE) &&
3143             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3144                 RETURN(KERN_PROTECTION_FAILURE);
3145         }
3146
3147         /*
3148          * If this page is not pageable, we have to get it for all possible
3149          * accesses.
3150          */
3151         *wired = (entry->wired_count != 0);
3152         if (*wired)
3153                 prot = fault_type = entry->protection;
3154
3155         /*
3156          * If the entry was copy-on-write, we either ...
3157          */
3158         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3159                 /*
3160                  * If we want to write the page, we may as well handle that
3161                  * now since we've got the map locked.
3162                  *
3163                  * If we don't need to write the page, we just demote the
3164                  * permissions allowed.
3165                  */
3166                 if (fault_type & VM_PROT_WRITE) {
3167                         /*
3168                          * Make a new object, and place it in the object
3169                          * chain.  Note that no new references have appeared
3170                          * -- one just moved from the map to the new
3171                          * object.
3172                          */
3173                         if (vm_map_lock_upgrade(map))
3174                                 goto RetryLookup;
3175
3176                         vm_object_shadow(
3177                             &entry->object.vm_object,
3178                             &entry->offset,
3179                             atop(entry->end - entry->start));
3180                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3181
3182                         vm_map_lock_downgrade(map);
3183                 } else {
3184                         /*
3185                          * We're attempting to read a copy-on-write page --
3186                          * don't allow writes.
3187                          */
3188                         prot &= ~VM_PROT_WRITE;
3189                 }
3190         }
3191
3192         /*
3193          * Create an object if necessary.
3194          */
3195         if (entry->object.vm_object == NULL &&
3196             !map->system_map) {
3197                 if (vm_map_lock_upgrade(map))
3198                         goto RetryLookup;
3199                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3200                     atop(entry->end - entry->start));
3201                 entry->offset = 0;
3202                 vm_map_lock_downgrade(map);
3203         }
3204
3205         /*
3206          * Return the object/offset from this entry.  If the entry was
3207          * copy-on-write or empty, it has been fixed up.
3208          */
3209         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3210         *object = entry->object.vm_object;
3211
3212         *out_prot = prot;
3213         return (KERN_SUCCESS);
3214
3215 #undef  RETURN
3216 }
3217
3218 /*
3219  *      vm_map_lookup_locked:
3220  *
3221  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
3222  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3223  */
3224 int
3225 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
3226                      vm_offset_t vaddr,
3227                      vm_prot_t fault_typea,
3228                      vm_map_entry_t *out_entry, /* OUT */
3229                      vm_object_t *object,       /* OUT */
3230                      vm_pindex_t *pindex,       /* OUT */
3231                      vm_prot_t *out_prot,       /* OUT */
3232                      boolean_t *wired)          /* OUT */
3233 {
3234         vm_map_entry_t entry;
3235         vm_map_t map = *var_map;
3236         vm_prot_t prot;
3237         vm_prot_t fault_type = fault_typea;
3238
3239         /*
3240          * If the map has an interesting hint, try it before calling full
3241          * blown lookup routine.
3242          */
3243         entry = map->root;
3244         *out_entry = entry;
3245         if (entry == NULL ||
3246             (vaddr < entry->start) || (vaddr >= entry->end)) {
3247                 /*
3248                  * Entry was either not a valid hint, or the vaddr was not
3249                  * contained in the entry, so do a full lookup.
3250                  */
3251                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3252                         return (KERN_INVALID_ADDRESS);
3253
3254                 entry = *out_entry;
3255         }
3256
3257         /*
3258          * Fail if the entry refers to a submap.
3259          */
3260         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3261                 return (KERN_FAILURE);
3262
3263         /*
3264          * Check whether this task is allowed to have this page.
3265          * Note the special case for MAP_ENTRY_COW
3266          * pages with an override.  This is to implement a forced
3267          * COW for debuggers.
3268          */
3269         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3270                 prot = entry->max_protection;
3271         else
3272                 prot = entry->protection;
3273         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3274         if ((fault_type & prot) != fault_type)
3275                 return (KERN_PROTECTION_FAILURE);
3276         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3277             (entry->eflags & MAP_ENTRY_COW) &&
3278             (fault_type & VM_PROT_WRITE) &&
3279             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3280                 return (KERN_PROTECTION_FAILURE);
3281
3282         /*
3283          * If this page is not pageable, we have to get it for all possible
3284          * accesses.
3285          */
3286         *wired = (entry->wired_count != 0);
3287         if (*wired)
3288                 prot = fault_type = entry->protection;
3289
3290         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3291                 /*
3292                  * Fail if the entry was copy-on-write for a write fault.
3293                  */
3294                 if (fault_type & VM_PROT_WRITE)
3295                         return (KERN_FAILURE);
3296                 /*
3297                  * We're attempting to read a copy-on-write page --
3298                  * don't allow writes.
3299                  */
3300                 prot &= ~VM_PROT_WRITE;
3301         }
3302
3303         /*
3304          * Fail if an object should be created.
3305          */
3306         if (entry->object.vm_object == NULL && !map->system_map)
3307                 return (KERN_FAILURE);
3308
3309         /*
3310          * Return the object/offset from this entry.  If the entry was
3311          * copy-on-write or empty, it has been fixed up.
3312          */
3313         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3314         *object = entry->object.vm_object;
3315
3316         *out_prot = prot;
3317         return (KERN_SUCCESS);
3318 }
3319
3320 /*
3321  *      vm_map_lookup_done:
3322  *
3323  *      Releases locks acquired by a vm_map_lookup
3324  *      (according to the handle returned by that lookup).
3325  */
3326 void
3327 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3328 {
3329         /*
3330          * Unlock the main-level map
3331          */
3332         vm_map_unlock_read(map);
3333 }
3334
3335 #include "opt_ddb.h"
3336 #ifdef DDB
3337 #include <sys/kernel.h>
3338
3339 #include <ddb/ddb.h>
3340
3341 /*
3342  *      vm_map_print:   [ debug ]
3343  */
3344 DB_SHOW_COMMAND(map, vm_map_print)
3345 {
3346         static int nlines;
3347         /* XXX convert args. */
3348         vm_map_t map = (vm_map_t)addr;
3349         boolean_t full = have_addr;
3350
3351         vm_map_entry_t entry;
3352
3353         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3354             (void *)map,
3355             (void *)map->pmap, map->nentries, map->timestamp);
3356         nlines++;
3357
3358         if (!full && db_indent)
3359                 return;
3360
3361         db_indent += 2;
3362         for (entry = map->header.next; entry != &map->header;
3363             entry = entry->next) {
3364                 db_iprintf("map entry %p: start=%p, end=%p\n",
3365                     (void *)entry, (void *)entry->start, (void *)entry->end);
3366                 nlines++;
3367                 {
3368                         static char *inheritance_name[4] =
3369                         {"share", "copy", "none", "donate_copy"};
3370
3371                         db_iprintf(" prot=%x/%x/%s",
3372                             entry->protection,
3373                             entry->max_protection,
3374                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3375                         if (entry->wired_count != 0)
3376                                 db_printf(", wired");
3377                 }
3378                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3379                         db_printf(", share=%p, offset=0x%jx\n",
3380                             (void *)entry->object.sub_map,
3381                             (uintmax_t)entry->offset);
3382                         nlines++;
3383                         if ((entry->prev == &map->header) ||
3384                             (entry->prev->object.sub_map !=
3385                                 entry->object.sub_map)) {
3386                                 db_indent += 2;
3387                                 vm_map_print((db_expr_t)(intptr_t)
3388                                              entry->object.sub_map,
3389                                              full, 0, (char *)0);
3390                                 db_indent -= 2;
3391                         }
3392                 } else {
3393                         db_printf(", object=%p, offset=0x%jx",
3394                             (void *)entry->object.vm_object,
3395                             (uintmax_t)entry->offset);
3396                         if (entry->eflags & MAP_ENTRY_COW)
3397                                 db_printf(", copy (%s)",
3398                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3399                         db_printf("\n");
3400                         nlines++;
3401
3402                         if ((entry->prev == &map->header) ||
3403                             (entry->prev->object.vm_object !=
3404                                 entry->object.vm_object)) {
3405                                 db_indent += 2;
3406                                 vm_object_print((db_expr_t)(intptr_t)
3407                                                 entry->object.vm_object,
3408                                                 full, 0, (char *)0);
3409                                 nlines += 4;
3410                                 db_indent -= 2;
3411                         }
3412                 }
3413         }
3414         db_indent -= 2;
3415         if (db_indent == 0)
3416                 nlines = 0;
3417 }
3418
3419
3420 DB_SHOW_COMMAND(procvm, procvm)
3421 {
3422         struct proc *p;
3423
3424         if (have_addr) {
3425                 p = (struct proc *) addr;
3426         } else {
3427                 p = curproc;
3428         }
3429
3430         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3431             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3432             (void *)vmspace_pmap(p->p_vmspace));
3433
3434         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3435 }
3436
3437 #endif /* DDB */