]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
To test to see if a free space is big enough compare the required
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101
102 /*
103  *      Virtual memory maps provide for the mapping, protection,
104  *      and sharing of virtual memory objects.  In addition,
105  *      this module provides for an efficient virtual copy of
106  *      memory from one map to another.
107  *
108  *      Synchronization is required prior to most operations.
109  *
110  *      Maps consist of an ordered doubly-linked list of simple
111  *      entries; a self-adjusting binary search tree of these
112  *      entries is used to speed up lookups.
113  *
114  *      Since portions of maps are specified by start/end addresses,
115  *      which may not align with existing map entries, all
116  *      routines merely "clip" entries to these start/end values.
117  *      [That is, an entry is split into two, bordering at a
118  *      start or end value.]  Note that these clippings may not
119  *      always be necessary (as the two resulting entries are then
120  *      not changed); however, the clipping is done for convenience.
121  *
122  *      As mentioned above, virtual copy operations are performed
123  *      by copying VM object references from one map to
124  *      another, and then marking both regions as copy-on-write.
125  */
126
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152
153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156
157 /* 
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163
164 /*
165  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
166  *
167  *      Asserts that the starting and ending region
168  *      addresses fall within the valid range of the map.
169  */
170 #define VM_MAP_RANGE_CHECK(map, start, end)             \
171                 {                                       \
172                 if (start < vm_map_min(map))            \
173                         start = vm_map_min(map);        \
174                 if (end > vm_map_max(map))              \
175                         end = vm_map_max(map);          \
176                 if (start > end)                        \
177                         start = end;                    \
178                 }
179
180 /*
181  *      vm_map_startup:
182  *
183  *      Initialize the vm_map module.  Must be called before
184  *      any other vm_map routines.
185  *
186  *      Map and entry structures are allocated from the general
187  *      purpose memory pool with some exceptions:
188  *
189  *      - The kernel map and kmem submap are allocated statically.
190  *      - Kernel map entries are allocated out of a static pool.
191  *
192  *      These restrictions are necessary since malloc() uses the
193  *      maps and requires map entries.
194  */
195
196 void
197 vm_map_startup(void)
198 {
199         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202             vm_map_zdtor,
203 #else
204             NULL,
205 #endif
206             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207         uma_prealloc(mapzone, MAX_KMAP);
208         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215             vmspace_zdtor,
216 #else
217             NULL,
218 #endif
219             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225         struct vmspace *vm;
226
227         vm = (struct vmspace *)mem;
228
229         vm->vm_map.pmap = NULL;
230         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231         PMAP_LOCK_INIT(vmspace_pmap(vm));
232         return (0);
233 }
234
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238         vm_map_t map;
239
240         map = (vm_map_t)mem;
241         memset(map, 0, sizeof(*map));
242         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243         sx_init(&map->lock, "vm map (user)");
244         return (0);
245 }
246
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251         struct vmspace *vm;
252
253         vm = (struct vmspace *)mem;
254
255         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260         vm_map_t map;
261
262         map = (vm_map_t)mem;
263         KASSERT(map->nentries == 0,
264             ("map %p nentries == %d on free.",
265             map, map->nentries));
266         KASSERT(map->size == 0,
267             ("map %p size == %lu on free.",
268             map, (unsigned long)map->size));
269 }
270 #endif  /* INVARIANTS */
271
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281         struct vmspace *vm;
282
283         vm = uma_zalloc(vmspace_zone, M_WAITOK);
284         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336             vm_map_max(&vm->vm_map));
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         refcnt = vm->vm_refcnt;
393         do {
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         refcnt = vm->vm_refcnt;
439         do {
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The new vmspace is either the vmspace of a user process obtained
458  * from an active AIO request or the initial vmspace of the AIO kernel
459  * process (when it is idling).  Because user processes will block to
460  * drain any active AIO requests before proceeding in exit() or
461  * execve(), the reference count for vmspaces from AIO requests can
462  * never be 0.  Similarly, AIO kernel processes hold an extra
463  * reference on their initial vmspace for the life of the process.  As
464  * a result, the 'newvm' vmspace always has a non-zero reference
465  * count.  This permits an additional reference on 'newvm' to be
466  * acquired via a simple atomic increment rather than the loop in
467  * vmspace_acquire_ref() above.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472         struct vmspace *oldvm;
473
474         /* XXX: Need some way to assert that this is an aio daemon. */
475
476         KASSERT(newvm->vm_refcnt > 0,
477             ("vmspace_switch_aio: newvm unreferenced"));
478
479         oldvm = curproc->p_vmspace;
480         if (oldvm == newvm)
481                 return;
482
483         /*
484          * Point to the new address space and refer to it.
485          */
486         curproc->p_vmspace = newvm;
487         atomic_add_int(&newvm->vm_refcnt, 1);
488
489         /* Activate the new mapping. */
490         pmap_activate(curthread);
491
492         vmspace_free(oldvm);
493 }
494
495 void
496 _vm_map_lock(vm_map_t map, const char *file, int line)
497 {
498
499         if (map->system_map)
500                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
501         else
502                 sx_xlock_(&map->lock, file, line);
503         map->timestamp++;
504 }
505
506 void
507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
508 {
509         vm_object_t object, object1;
510         struct vnode *vp;
511
512         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
513                 return;
514         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
515             ("Submap with execs"));
516         object = entry->object.vm_object;
517         KASSERT(object != NULL, ("No object for text, entry %p", entry));
518         VM_OBJECT_RLOCK(object);
519         while ((object1 = object->backing_object) != NULL) {
520                 VM_OBJECT_RLOCK(object1);
521                 VM_OBJECT_RUNLOCK(object);
522                 object = object1;
523         }
524
525         vp = NULL;
526         if (object->type == OBJT_DEAD) {
527                 /*
528                  * For OBJT_DEAD objects, v_writecount was handled in
529                  * vnode_pager_dealloc().
530                  */
531         } else if (object->type == OBJT_VNODE) {
532                 vp = object->handle;
533         } else if (object->type == OBJT_SWAP) {
534                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
535                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
536                     "entry %p, object %p, add %d", entry, object, add));
537                 /*
538                  * Tmpfs VREG node, which was reclaimed, has
539                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
540                  * this case there is no v_writecount to adjust.
541                  */
542                 if ((object->flags & OBJ_TMPFS) != 0)
543                         vp = object->un_pager.swp.swp_tmpfs;
544         } else {
545                 KASSERT(0,
546                     ("vm_map_entry_set_vnode_text: wrong object type, "
547                     "entry %p, object %p, add %d", entry, object, add));
548         }
549         if (vp != NULL) {
550                 if (add)
551                         VOP_SET_TEXT_CHECKED(vp);
552                 else
553                         VOP_UNSET_TEXT_CHECKED(vp);
554         }
555         VM_OBJECT_RUNLOCK(object);
556 }
557
558 static void
559 vm_map_process_deferred(void)
560 {
561         struct thread *td;
562         vm_map_entry_t entry, next;
563         vm_object_t object;
564
565         td = curthread;
566         entry = td->td_map_def_user;
567         td->td_map_def_user = NULL;
568         while (entry != NULL) {
569                 next = entry->next;
570                 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
571                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
572                     MAP_ENTRY_VN_EXEC));
573                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
574                         /*
575                          * Decrement the object's writemappings and
576                          * possibly the vnode's v_writecount.
577                          */
578                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
579                             ("Submap with writecount"));
580                         object = entry->object.vm_object;
581                         KASSERT(object != NULL, ("No object for writecount"));
582                         vnode_pager_release_writecount(object, entry->start,
583                             entry->end);
584                 }
585                 vm_map_entry_set_vnode_text(entry, false);
586                 vm_map_entry_deallocate(entry, FALSE);
587                 entry = next;
588         }
589 }
590
591 void
592 _vm_map_unlock(vm_map_t map, const char *file, int line)
593 {
594
595         if (map->system_map)
596                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
597         else {
598                 sx_xunlock_(&map->lock, file, line);
599                 vm_map_process_deferred();
600         }
601 }
602
603 void
604 _vm_map_lock_read(vm_map_t map, const char *file, int line)
605 {
606
607         if (map->system_map)
608                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
609         else
610                 sx_slock_(&map->lock, file, line);
611 }
612
613 void
614 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
615 {
616
617         if (map->system_map)
618                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
619         else {
620                 sx_sunlock_(&map->lock, file, line);
621                 vm_map_process_deferred();
622         }
623 }
624
625 int
626 _vm_map_trylock(vm_map_t map, const char *file, int line)
627 {
628         int error;
629
630         error = map->system_map ?
631             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
632             !sx_try_xlock_(&map->lock, file, line);
633         if (error == 0)
634                 map->timestamp++;
635         return (error == 0);
636 }
637
638 int
639 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
640 {
641         int error;
642
643         error = map->system_map ?
644             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
645             !sx_try_slock_(&map->lock, file, line);
646         return (error == 0);
647 }
648
649 /*
650  *      _vm_map_lock_upgrade:   [ internal use only ]
651  *
652  *      Tries to upgrade a read (shared) lock on the specified map to a write
653  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
654  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
655  *      returned without a read or write lock held.
656  *
657  *      Requires that the map be read locked.
658  */
659 int
660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
661 {
662         unsigned int last_timestamp;
663
664         if (map->system_map) {
665                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
666         } else {
667                 if (!sx_try_upgrade_(&map->lock, file, line)) {
668                         last_timestamp = map->timestamp;
669                         sx_sunlock_(&map->lock, file, line);
670                         vm_map_process_deferred();
671                         /*
672                          * If the map's timestamp does not change while the
673                          * map is unlocked, then the upgrade succeeds.
674                          */
675                         sx_xlock_(&map->lock, file, line);
676                         if (last_timestamp != map->timestamp) {
677                                 sx_xunlock_(&map->lock, file, line);
678                                 return (1);
679                         }
680                 }
681         }
682         map->timestamp++;
683         return (0);
684 }
685
686 void
687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
688 {
689
690         if (map->system_map) {
691                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
692         } else
693                 sx_downgrade_(&map->lock, file, line);
694 }
695
696 /*
697  *      vm_map_locked:
698  *
699  *      Returns a non-zero value if the caller holds a write (exclusive) lock
700  *      on the specified map and the value "0" otherwise.
701  */
702 int
703 vm_map_locked(vm_map_t map)
704 {
705
706         if (map->system_map)
707                 return (mtx_owned(&map->system_mtx));
708         else
709                 return (sx_xlocked(&map->lock));
710 }
711
712 #ifdef INVARIANTS
713 static void
714 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
715 {
716
717         if (map->system_map)
718                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
719         else
720                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
721 }
722
723 #define VM_MAP_ASSERT_LOCKED(map) \
724     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
725
726 #ifdef DIAGNOSTIC
727 static int enable_vmmap_check = 1;
728 #else
729 static int enable_vmmap_check = 0;
730 #endif
731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
732     &enable_vmmap_check, 0, "Enable vm map consistency checking");
733
734 static void
735 _vm_map_assert_consistent(vm_map_t map)
736 {
737         vm_map_entry_t entry;
738         vm_map_entry_t child;
739         vm_size_t max_left, max_right;
740
741         if (!enable_vmmap_check)
742                 return;
743
744         for (entry = map->header.next; entry != &map->header;
745             entry = entry->next) {
746                 KASSERT(entry->prev->end <= entry->start,
747                     ("map %p prev->end = %jx, start = %jx", map,
748                     (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
749                 KASSERT(entry->start < entry->end,
750                     ("map %p start = %jx, end = %jx", map,
751                     (uintmax_t)entry->start, (uintmax_t)entry->end));
752                 KASSERT(entry->end <= entry->next->start,
753                     ("map %p end = %jx, next->start = %jx", map,
754                     (uintmax_t)entry->end, (uintmax_t)entry->next->start));
755                 KASSERT(entry->left == NULL ||
756                     entry->left->start < entry->start,
757                     ("map %p left->start = %jx, start = %jx", map,
758                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
759                 KASSERT(entry->right == NULL ||
760                     entry->start < entry->right->start,
761                     ("map %p start = %jx, right->start = %jx", map,
762                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
763                 child = entry->left;
764                 max_left = (child != NULL) ? child->max_free :
765                         entry->start - entry->prev->end;
766                 child = entry->right;
767                 max_right = (child != NULL) ? child->max_free :
768                         entry->next->start - entry->end;
769                 KASSERT(entry->max_free == MAX(max_left, max_right),
770                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
771                      (uintmax_t)entry->max_free,
772                      (uintmax_t)max_left, (uintmax_t)max_right));
773         }       
774 }
775
776 #define VM_MAP_ASSERT_CONSISTENT(map) \
777     _vm_map_assert_consistent(map)
778 #else
779 #define VM_MAP_ASSERT_LOCKED(map)
780 #define VM_MAP_ASSERT_CONSISTENT(map)
781 #endif /* INVARIANTS */
782
783 /*
784  *      _vm_map_unlock_and_wait:
785  *
786  *      Atomically releases the lock on the specified map and puts the calling
787  *      thread to sleep.  The calling thread will remain asleep until either
788  *      vm_map_wakeup() is performed on the map or the specified timeout is
789  *      exceeded.
790  *
791  *      WARNING!  This function does not perform deferred deallocations of
792  *      objects and map entries.  Therefore, the calling thread is expected to
793  *      reacquire the map lock after reawakening and later perform an ordinary
794  *      unlock operation, such as vm_map_unlock(), before completing its
795  *      operation on the map.
796  */
797 int
798 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
799 {
800
801         mtx_lock(&map_sleep_mtx);
802         if (map->system_map)
803                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
804         else
805                 sx_xunlock_(&map->lock, file, line);
806         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
807             timo));
808 }
809
810 /*
811  *      vm_map_wakeup:
812  *
813  *      Awaken any threads that have slept on the map using
814  *      vm_map_unlock_and_wait().
815  */
816 void
817 vm_map_wakeup(vm_map_t map)
818 {
819
820         /*
821          * Acquire and release map_sleep_mtx to prevent a wakeup()
822          * from being performed (and lost) between the map unlock
823          * and the msleep() in _vm_map_unlock_and_wait().
824          */
825         mtx_lock(&map_sleep_mtx);
826         mtx_unlock(&map_sleep_mtx);
827         wakeup(&map->root);
828 }
829
830 void
831 vm_map_busy(vm_map_t map)
832 {
833
834         VM_MAP_ASSERT_LOCKED(map);
835         map->busy++;
836 }
837
838 void
839 vm_map_unbusy(vm_map_t map)
840 {
841
842         VM_MAP_ASSERT_LOCKED(map);
843         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
844         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
845                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
846                 wakeup(&map->busy);
847         }
848 }
849
850 void 
851 vm_map_wait_busy(vm_map_t map)
852 {
853
854         VM_MAP_ASSERT_LOCKED(map);
855         while (map->busy) {
856                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
857                 if (map->system_map)
858                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
859                 else
860                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
861         }
862         map->timestamp++;
863 }
864
865 long
866 vmspace_resident_count(struct vmspace *vmspace)
867 {
868         return pmap_resident_count(vmspace_pmap(vmspace));
869 }
870
871 /*
872  *      vm_map_create:
873  *
874  *      Creates and returns a new empty VM map with
875  *      the given physical map structure, and having
876  *      the given lower and upper address bounds.
877  */
878 vm_map_t
879 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
880 {
881         vm_map_t result;
882
883         result = uma_zalloc(mapzone, M_WAITOK);
884         CTR1(KTR_VM, "vm_map_create: %p", result);
885         _vm_map_init(result, pmap, min, max);
886         return (result);
887 }
888
889 /*
890  * Initialize an existing vm_map structure
891  * such as that in the vmspace structure.
892  */
893 static void
894 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
895 {
896
897         map->header.next = map->header.prev = &map->header;
898         map->header.eflags = MAP_ENTRY_HEADER;
899         map->needs_wakeup = FALSE;
900         map->system_map = 0;
901         map->pmap = pmap;
902         map->header.end = min;
903         map->header.start = max;
904         map->flags = 0;
905         map->root = NULL;
906         map->timestamp = 0;
907         map->busy = 0;
908         map->anon_loc = 0;
909 }
910
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914
915         _vm_map_init(map, pmap, min, max);
916         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
917         sx_init(&map->lock, "user map");
918 }
919
920 /*
921  *      vm_map_entry_dispose:   [ internal use only ]
922  *
923  *      Inverse of vm_map_entry_create.
924  */
925 static void
926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
927 {
928         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
929 }
930
931 /*
932  *      vm_map_entry_create:    [ internal use only ]
933  *
934  *      Allocates a VM map entry for insertion.
935  *      No entry fields are filled in.
936  */
937 static vm_map_entry_t
938 vm_map_entry_create(vm_map_t map)
939 {
940         vm_map_entry_t new_entry;
941
942         if (map->system_map)
943                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
944         else
945                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
946         if (new_entry == NULL)
947                 panic("vm_map_entry_create: kernel resources exhausted");
948         return (new_entry);
949 }
950
951 /*
952  *      vm_map_entry_set_behavior:
953  *
954  *      Set the expected access behavior, either normal, random, or
955  *      sequential.
956  */
957 static inline void
958 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
959 {
960         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
961             (behavior & MAP_ENTRY_BEHAV_MASK);
962 }
963
964 /*
965  *      vm_map_entry_max_free_{left,right}:
966  *
967  *      Compute the size of the largest free gap between two entries,
968  *      one the root of a tree and the other the ancestor of that root
969  *      that is the least or greatest ancestor found on the search path.
970  */
971 static inline vm_size_t
972 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
973 {
974
975         return (root->left != NULL ?
976             root->left->max_free : root->start - left_ancestor->end);
977 }
978
979 static inline vm_size_t
980 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
981 {
982
983         return (root->right != NULL ?
984             root->right->max_free : right_ancestor->start - root->end);
985 }
986
987 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {                      \
988         vm_size_t max_free;                                             \
989                                                                         \
990         /*                                                              \
991          * Infer root->right->max_free == root->max_free when           \
992          * y->max_free < root->max_free || root->max_free == 0.         \
993          * Otherwise, look right to find it.                            \
994          */                                                             \
995         y = root->left;                                                 \
996         max_free = root->max_free;                                      \
997         KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),   \
998             ("%s: max_free invariant fails", __func__));                \
999         if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)      \
1000                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1001         if (y != NULL && (test)) {                                      \
1002                 /* Rotate right and make y root. */                     \
1003                 root->left = y->right;                                  \
1004                 y->right = root;                                        \
1005                 if (max_free < y->max_free)                             \
1006                         root->max_free = max_free = MAX(max_free,       \
1007                             vm_map_entry_max_free_left(root, y));       \
1008                 root = y;                                               \
1009                 y = root->left;                                         \
1010         }                                                               \
1011         /* Copy right->max_free.  Put root on rlist. */                 \
1012         root->max_free = max_free;                                      \
1013         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1014             ("%s: max_free not copied from right", __func__));          \
1015         root->left = rlist;                                             \
1016         rlist = root;                                                   \
1017         root = y;                                                       \
1018 } while (0)
1019
1020 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {                     \
1021         vm_size_t max_free;                                             \
1022                                                                         \
1023         /*                                                              \
1024          * Infer root->left->max_free == root->max_free when            \
1025          * y->max_free < root->max_free || root->max_free == 0.         \
1026          * Otherwise, look left to find it.                             \
1027          */                                                             \
1028         y = root->right;                                                \
1029         max_free = root->max_free;                                      \
1030         KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),    \
1031             ("%s: max_free invariant fails", __func__));                \
1032         if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)      \
1033                 max_free = vm_map_entry_max_free_left(root, llist);     \
1034         if (y != NULL && (test)) {                                      \
1035                 /* Rotate left and make y root. */                      \
1036                 root->right = y->left;                                  \
1037                 y->left = root;                                         \
1038                 if (max_free < y->max_free)                             \
1039                         root->max_free = max_free = MAX(max_free,       \
1040                             vm_map_entry_max_free_right(root, y));      \
1041                 root = y;                                               \
1042                 y = root->right;                                        \
1043         }                                                               \
1044         /* Copy left->max_free.  Put root on llist. */                  \
1045         root->max_free = max_free;                                      \
1046         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1047             ("%s: max_free not copied from left", __func__));           \
1048         root->right = llist;                                            \
1049         llist = root;                                                   \
1050         root = y;                                                       \
1051 } while (0)
1052
1053 /*
1054  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1055  * breaking off left and right subtrees of nodes less than, or greater than
1056  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1057  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1058  * linked by the right pointer and rlist linked by the left pointer in the
1059  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1060  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1061  * values in &map->header.
1062  */
1063 static vm_map_entry_t
1064 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1065     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1066 {
1067         vm_map_entry_t llist, rlist, root, y;
1068
1069         llist = rlist = &map->header;
1070         root = map->root;
1071         while (root != NULL && root->max_free >= length) {
1072                 KASSERT(llist->end <= root->start && root->end <= rlist->start,
1073                     ("%s: root not within tree bounds", __func__));
1074                 if (addr < root->start) {
1075                         SPLAY_LEFT_STEP(root, y, rlist,
1076                             y->max_free >= length && addr < y->start);
1077                 } else if (addr >= root->end) {
1078                         SPLAY_RIGHT_STEP(root, y, llist,
1079                             y->max_free >= length && addr >= y->end);
1080                 } else
1081                         break;
1082         }
1083         *out_llist = llist;
1084         *out_rlist = rlist;
1085         return (root);
1086 }
1087
1088 static void
1089 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1090 {
1091         vm_map_entry_t rlist, y;
1092
1093         root = root->right;
1094         rlist = *iolist;
1095         while (root != NULL)
1096                 SPLAY_LEFT_STEP(root, y, rlist, true);
1097         *iolist = rlist;
1098 }
1099
1100 static void
1101 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1102 {
1103         vm_map_entry_t llist, y;
1104
1105         root = root->left;
1106         llist = *iolist;
1107         while (root != NULL)
1108                 SPLAY_RIGHT_STEP(root, y, llist, true);
1109         *iolist = llist;
1110 }
1111
1112 static inline void
1113 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1114 {
1115         vm_map_entry_t tmp;
1116
1117         tmp = *b;
1118         *b = *a;
1119         *a = tmp;
1120 }
1121
1122 /*
1123  * Walk back up the two spines, flip the pointers and set max_free.  The
1124  * subtrees of the root go at the bottom of llist and rlist.
1125  */
1126 static void
1127 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1128     vm_map_entry_t llist, vm_map_entry_t rlist)
1129 {
1130         vm_map_entry_t prev;
1131         vm_size_t max_free_left, max_free_right;
1132
1133         max_free_left = vm_map_entry_max_free_left(root, llist);
1134         if (llist != &map->header) {
1135                 prev = root->left;
1136                 do {
1137                         /*
1138                          * The max_free values of the children of llist are in
1139                          * llist->max_free and max_free_left.  Update with the
1140                          * max value.
1141                          */
1142                         llist->max_free = max_free_left =
1143                             MAX(llist->max_free, max_free_left);
1144                         vm_map_entry_swap(&llist->right, &prev);
1145                         vm_map_entry_swap(&prev, &llist);
1146                 } while (llist != &map->header);
1147                 root->left = prev;
1148         }
1149         max_free_right = vm_map_entry_max_free_right(root, rlist);
1150         if (rlist != &map->header) {
1151                 prev = root->right;
1152                 do {
1153                         /*
1154                          * The max_free values of the children of rlist are in
1155                          * rlist->max_free and max_free_right.  Update with the
1156                          * max value.
1157                          */
1158                         rlist->max_free = max_free_right =
1159                             MAX(rlist->max_free, max_free_right);
1160                         vm_map_entry_swap(&rlist->left, &prev);
1161                         vm_map_entry_swap(&prev, &rlist);
1162                 } while (rlist != &map->header);
1163                 root->right = prev;
1164         }               
1165         root->max_free = MAX(max_free_left, max_free_right);
1166         map->root = root;
1167 }
1168
1169 /*
1170  *      vm_map_splay:
1171  *
1172  *      The Sleator and Tarjan top-down splay algorithm with the
1173  *      following variation.  Max_free must be computed bottom-up, so
1174  *      on the downward pass, maintain the left and right spines in
1175  *      reverse order.  Then, make a second pass up each side to fix
1176  *      the pointers and compute max_free.  The time bound is O(log n)
1177  *      amortized.
1178  *
1179  *      The new root is the vm_map_entry containing "addr", or else an
1180  *      adjacent entry (lower if possible) if addr is not in the tree.
1181  *
1182  *      The map must be locked, and leaves it so.
1183  *
1184  *      Returns: the new root.
1185  */
1186 static vm_map_entry_t
1187 vm_map_splay(vm_map_t map, vm_offset_t addr)
1188 {
1189         vm_map_entry_t llist, rlist, root;
1190
1191         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1192         if (root != NULL) {
1193                 /* do nothing */
1194         } else if (llist != &map->header) {
1195                 /*
1196                  * Recover the greatest node in the left
1197                  * subtree and make it the root.
1198                  */
1199                 root = llist;
1200                 llist = root->right;
1201                 root->right = NULL;
1202         } else if (rlist != &map->header) {
1203                 /*
1204                  * Recover the least node in the right
1205                  * subtree and make it the root.
1206                  */
1207                 root = rlist;
1208                 rlist = root->left;
1209                 root->left = NULL;
1210         } else {
1211                 /* There is no root. */
1212                 return (NULL);
1213         }
1214         vm_map_splay_merge(map, root, llist, rlist);
1215         VM_MAP_ASSERT_CONSISTENT(map);
1216         return (root);
1217 }
1218
1219 /*
1220  *      vm_map_entry_{un,}link:
1221  *
1222  *      Insert/remove entries from maps.
1223  */
1224 static void
1225 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1226 {
1227         vm_map_entry_t llist, rlist, root;
1228
1229         CTR3(KTR_VM,
1230             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1231             map->nentries, entry);
1232         VM_MAP_ASSERT_LOCKED(map);
1233         map->nentries++;
1234         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1235         KASSERT(root == NULL,
1236             ("vm_map_entry_link: link object already mapped"));
1237         entry->prev = llist;
1238         entry->next = rlist;
1239         llist->next = rlist->prev = entry;
1240         entry->left = entry->right = NULL;
1241         vm_map_splay_merge(map, entry, llist, rlist);
1242         VM_MAP_ASSERT_CONSISTENT(map);
1243 }
1244
1245 enum unlink_merge_type {
1246         UNLINK_MERGE_PREV,
1247         UNLINK_MERGE_NONE,
1248         UNLINK_MERGE_NEXT
1249 };
1250
1251 static void
1252 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1253     enum unlink_merge_type op)
1254 {
1255         vm_map_entry_t llist, rlist, root, y;
1256
1257         VM_MAP_ASSERT_LOCKED(map);
1258         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1259         KASSERT(root != NULL,
1260             ("vm_map_entry_unlink: unlink object not mapped"));
1261
1262         switch (op) {
1263         case UNLINK_MERGE_PREV:
1264                 vm_map_splay_findprev(root, &llist);
1265                 llist->end = root->end;
1266                 y = root->right;
1267                 root = llist;
1268                 llist = root->right;
1269                 root->right = y;
1270                 break;
1271         case UNLINK_MERGE_NEXT:
1272                 vm_map_splay_findnext(root, &rlist);
1273                 rlist->start = root->start;
1274                 rlist->offset = root->offset;
1275                 y = root->left;
1276                 root = rlist;
1277                 rlist = root->left;
1278                 root->left = y;
1279                 break;
1280         case UNLINK_MERGE_NONE:
1281                 vm_map_splay_findprev(root, &llist);
1282                 vm_map_splay_findnext(root, &rlist);
1283                 if (llist != &map->header) {
1284                         root = llist;
1285                         llist = root->right;
1286                         root->right = NULL;
1287                 } else if (rlist != &map->header) {
1288                         root = rlist;
1289                         rlist = root->left;
1290                         root->left = NULL;
1291                 } else
1292                         root = NULL;
1293                 break;
1294         }
1295         y = entry->next;
1296         y->prev = entry->prev;
1297         y->prev->next = y;
1298         if (root != NULL)
1299                 vm_map_splay_merge(map, root, llist, rlist);
1300         else
1301                 map->root = NULL;
1302         VM_MAP_ASSERT_CONSISTENT(map);
1303         map->nentries--;
1304         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1305             map->nentries, entry);
1306 }
1307
1308 /*
1309  *      vm_map_entry_resize:
1310  *
1311  *      Resize a vm_map_entry, recompute the amount of free space that
1312  *      follows it and propagate that value up the tree.
1313  *
1314  *      The map must be locked, and leaves it so.
1315  */
1316 static void
1317 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1318 {
1319         vm_map_entry_t llist, rlist, root;
1320
1321         VM_MAP_ASSERT_LOCKED(map);
1322         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1323         KASSERT(root != NULL,
1324             ("%s: resize object not mapped", __func__));
1325         vm_map_splay_findnext(root, &rlist);
1326         root->right = NULL;
1327         entry->end += grow_amount;
1328         vm_map_splay_merge(map, root, llist, rlist);
1329         VM_MAP_ASSERT_CONSISTENT(map);
1330         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1331             __func__, map, map->nentries, entry);
1332 }
1333
1334 /*
1335  *      vm_map_lookup_entry:    [ internal use only ]
1336  *
1337  *      Finds the map entry containing (or
1338  *      immediately preceding) the specified address
1339  *      in the given map; the entry is returned
1340  *      in the "entry" parameter.  The boolean
1341  *      result indicates whether the address is
1342  *      actually contained in the map.
1343  */
1344 boolean_t
1345 vm_map_lookup_entry(
1346         vm_map_t map,
1347         vm_offset_t address,
1348         vm_map_entry_t *entry)  /* OUT */
1349 {
1350         vm_map_entry_t cur, lbound;
1351         boolean_t locked;
1352
1353         /*
1354          * If the map is empty, then the map entry immediately preceding
1355          * "address" is the map's header.
1356          */
1357         cur = map->root;
1358         if (cur == NULL) {
1359                 *entry = &map->header;
1360                 return (FALSE);
1361         }
1362         if (address >= cur->start && cur->end > address) {
1363                 *entry = cur;
1364                 return (TRUE);
1365         }
1366         if ((locked = vm_map_locked(map)) ||
1367             sx_try_upgrade(&map->lock)) {
1368                 /*
1369                  * Splay requires a write lock on the map.  However, it only
1370                  * restructures the binary search tree; it does not otherwise
1371                  * change the map.  Thus, the map's timestamp need not change
1372                  * on a temporary upgrade.
1373                  */
1374                 cur = vm_map_splay(map, address);
1375                 if (!locked)
1376                         sx_downgrade(&map->lock);
1377
1378                 /*
1379                  * If "address" is contained within a map entry, the new root
1380                  * is that map entry.  Otherwise, the new root is a map entry
1381                  * immediately before or after "address".
1382                  */
1383                 if (address < cur->start) {
1384                         *entry = &map->header;
1385                         return (FALSE);
1386                 }
1387                 *entry = cur;
1388                 return (address < cur->end);
1389         }
1390         /*
1391          * Since the map is only locked for read access, perform a
1392          * standard binary search tree lookup for "address".
1393          */
1394         lbound = &map->header;
1395         do {
1396                 if (address < cur->start) {
1397                         cur = cur->left;
1398                 } else if (cur->end <= address) {
1399                         lbound = cur;
1400                         cur = cur->right;
1401                 } else {
1402                         *entry = cur;
1403                         return (TRUE);
1404                 }
1405         } while (cur != NULL);
1406         *entry = lbound;
1407         return (FALSE);
1408 }
1409
1410 /*
1411  *      vm_map_insert:
1412  *
1413  *      Inserts the given whole VM object into the target
1414  *      map at the specified address range.  The object's
1415  *      size should match that of the address range.
1416  *
1417  *      Requires that the map be locked, and leaves it so.
1418  *
1419  *      If object is non-NULL, ref count must be bumped by caller
1420  *      prior to making call to account for the new entry.
1421  */
1422 int
1423 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1424     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1425 {
1426         vm_map_entry_t new_entry, prev_entry, temp_entry;
1427         struct ucred *cred;
1428         vm_eflags_t protoeflags;
1429         vm_inherit_t inheritance;
1430
1431         VM_MAP_ASSERT_LOCKED(map);
1432         KASSERT(object != kernel_object ||
1433             (cow & MAP_COPY_ON_WRITE) == 0,
1434             ("vm_map_insert: kernel object and COW"));
1435         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1436             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1437         KASSERT((prot & ~max) == 0,
1438             ("prot %#x is not subset of max_prot %#x", prot, max));
1439
1440         /*
1441          * Check that the start and end points are not bogus.
1442          */
1443         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1444             start >= end)
1445                 return (KERN_INVALID_ADDRESS);
1446
1447         /*
1448          * Find the entry prior to the proposed starting address; if it's part
1449          * of an existing entry, this range is bogus.
1450          */
1451         if (vm_map_lookup_entry(map, start, &temp_entry))
1452                 return (KERN_NO_SPACE);
1453
1454         prev_entry = temp_entry;
1455
1456         /*
1457          * Assert that the next entry doesn't overlap the end point.
1458          */
1459         if (prev_entry->next->start < end)
1460                 return (KERN_NO_SPACE);
1461
1462         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1463             max != VM_PROT_NONE))
1464                 return (KERN_INVALID_ARGUMENT);
1465
1466         protoeflags = 0;
1467         if (cow & MAP_COPY_ON_WRITE)
1468                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1469         if (cow & MAP_NOFAULT)
1470                 protoeflags |= MAP_ENTRY_NOFAULT;
1471         if (cow & MAP_DISABLE_SYNCER)
1472                 protoeflags |= MAP_ENTRY_NOSYNC;
1473         if (cow & MAP_DISABLE_COREDUMP)
1474                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1475         if (cow & MAP_STACK_GROWS_DOWN)
1476                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1477         if (cow & MAP_STACK_GROWS_UP)
1478                 protoeflags |= MAP_ENTRY_GROWS_UP;
1479         if (cow & MAP_VN_WRITECOUNT)
1480                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1481         if (cow & MAP_VN_EXEC)
1482                 protoeflags |= MAP_ENTRY_VN_EXEC;
1483         if ((cow & MAP_CREATE_GUARD) != 0)
1484                 protoeflags |= MAP_ENTRY_GUARD;
1485         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1486                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1487         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1488                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1489         if (cow & MAP_INHERIT_SHARE)
1490                 inheritance = VM_INHERIT_SHARE;
1491         else
1492                 inheritance = VM_INHERIT_DEFAULT;
1493
1494         cred = NULL;
1495         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1496                 goto charged;
1497         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1498             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1499                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1500                         return (KERN_RESOURCE_SHORTAGE);
1501                 KASSERT(object == NULL ||
1502                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1503                     object->cred == NULL,
1504                     ("overcommit: vm_map_insert o %p", object));
1505                 cred = curthread->td_ucred;
1506         }
1507
1508 charged:
1509         /* Expand the kernel pmap, if necessary. */
1510         if (map == kernel_map && end > kernel_vm_end)
1511                 pmap_growkernel(end);
1512         if (object != NULL) {
1513                 /*
1514                  * OBJ_ONEMAPPING must be cleared unless this mapping
1515                  * is trivially proven to be the only mapping for any
1516                  * of the object's pages.  (Object granularity
1517                  * reference counting is insufficient to recognize
1518                  * aliases with precision.)
1519                  */
1520                 VM_OBJECT_WLOCK(object);
1521                 if (object->ref_count > 1 || object->shadow_count != 0)
1522                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1523                 VM_OBJECT_WUNLOCK(object);
1524         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1525             protoeflags &&
1526             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1527             MAP_VN_EXEC)) == 0 &&
1528             prev_entry->end == start && (prev_entry->cred == cred ||
1529             (prev_entry->object.vm_object != NULL &&
1530             prev_entry->object.vm_object->cred == cred)) &&
1531             vm_object_coalesce(prev_entry->object.vm_object,
1532             prev_entry->offset,
1533             (vm_size_t)(prev_entry->end - prev_entry->start),
1534             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1535             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1536                 /*
1537                  * We were able to extend the object.  Determine if we
1538                  * can extend the previous map entry to include the
1539                  * new range as well.
1540                  */
1541                 if (prev_entry->inheritance == inheritance &&
1542                     prev_entry->protection == prot &&
1543                     prev_entry->max_protection == max &&
1544                     prev_entry->wired_count == 0) {
1545                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1546                             0, ("prev_entry %p has incoherent wiring",
1547                             prev_entry));
1548                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1549                                 map->size += end - prev_entry->end;
1550                         vm_map_entry_resize(map, prev_entry,
1551                             end - prev_entry->end);
1552                         vm_map_simplify_entry(map, prev_entry);
1553                         return (KERN_SUCCESS);
1554                 }
1555
1556                 /*
1557                  * If we can extend the object but cannot extend the
1558                  * map entry, we have to create a new map entry.  We
1559                  * must bump the ref count on the extended object to
1560                  * account for it.  object may be NULL.
1561                  */
1562                 object = prev_entry->object.vm_object;
1563                 offset = prev_entry->offset +
1564                     (prev_entry->end - prev_entry->start);
1565                 vm_object_reference(object);
1566                 if (cred != NULL && object != NULL && object->cred != NULL &&
1567                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1568                         /* Object already accounts for this uid. */
1569                         cred = NULL;
1570                 }
1571         }
1572         if (cred != NULL)
1573                 crhold(cred);
1574
1575         /*
1576          * Create a new entry
1577          */
1578         new_entry = vm_map_entry_create(map);
1579         new_entry->start = start;
1580         new_entry->end = end;
1581         new_entry->cred = NULL;
1582
1583         new_entry->eflags = protoeflags;
1584         new_entry->object.vm_object = object;
1585         new_entry->offset = offset;
1586
1587         new_entry->inheritance = inheritance;
1588         new_entry->protection = prot;
1589         new_entry->max_protection = max;
1590         new_entry->wired_count = 0;
1591         new_entry->wiring_thread = NULL;
1592         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1593         new_entry->next_read = start;
1594
1595         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1596             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1597         new_entry->cred = cred;
1598
1599         /*
1600          * Insert the new entry into the list
1601          */
1602         vm_map_entry_link(map, new_entry);
1603         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1604                 map->size += new_entry->end - new_entry->start;
1605
1606         /*
1607          * Try to coalesce the new entry with both the previous and next
1608          * entries in the list.  Previously, we only attempted to coalesce
1609          * with the previous entry when object is NULL.  Here, we handle the
1610          * other cases, which are less common.
1611          */
1612         vm_map_simplify_entry(map, new_entry);
1613
1614         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1615                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1616                     end - start, cow & MAP_PREFAULT_PARTIAL);
1617         }
1618
1619         return (KERN_SUCCESS);
1620 }
1621
1622 /*
1623  *      vm_map_findspace:
1624  *
1625  *      Find the first fit (lowest VM address) for "length" free bytes
1626  *      beginning at address >= start in the given map.
1627  *
1628  *      In a vm_map_entry, "max_free" is the maximum amount of
1629  *      contiguous free space between an entry in its subtree and a
1630  *      neighbor of that entry.  This allows finding a free region in
1631  *      one path down the tree, so O(log n) amortized with splay
1632  *      trees.
1633  *
1634  *      The map must be locked, and leaves it so.
1635  *
1636  *      Returns: starting address if sufficient space,
1637  *               vm_map_max(map)-length+1 if insufficient space.
1638  */
1639 vm_offset_t
1640 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1641 {
1642         vm_map_entry_t llist, rlist, root, y;
1643         vm_size_t left_length;
1644         vm_offset_t gap_end;
1645
1646         /*
1647          * Request must fit within min/max VM address and must avoid
1648          * address wrap.
1649          */
1650         start = MAX(start, vm_map_min(map));
1651         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1652                 return (vm_map_max(map) - length + 1);
1653
1654         /* Empty tree means wide open address space. */
1655         if (map->root == NULL)
1656                 return (start);
1657
1658         /*
1659          * After splay_split, if start is within an entry, push it to the start
1660          * of the following gap.  If rlist is at the end of the gap containing
1661          * start, save the end of that gap in gap_end to see if the gap is big
1662          * enough; otherwise set gap_end to start skip gap-checking and move
1663          * directly to a search of the right subtree.
1664          */
1665         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1666         gap_end = rlist->start;
1667         if (root != NULL) {
1668                 start = root->end;
1669                 if (root->right != NULL)
1670                         gap_end = start;
1671         } else if (rlist != &map->header) {
1672                 root = rlist;
1673                 rlist = root->left;
1674                 root->left = NULL;
1675         } else {
1676                 root = llist;
1677                 llist = root->right;
1678                 root->right = NULL;
1679         }
1680         vm_map_splay_merge(map, root, llist, rlist);
1681         VM_MAP_ASSERT_CONSISTENT(map);
1682         if (length <= gap_end - start)
1683                 return (start);
1684
1685         /* With max_free, can immediately tell if no solution. */
1686         if (root->right == NULL || length > root->right->max_free)
1687                 return (vm_map_max(map) - length + 1);
1688
1689         /*
1690          * Splay for the least large-enough gap in the right subtree.
1691          */
1692         llist = rlist = &map->header;
1693         for (left_length = 0;;
1694             left_length = vm_map_entry_max_free_left(root, llist)) {
1695                 if (length <= left_length)
1696                         SPLAY_LEFT_STEP(root, y, rlist,
1697                             length <= vm_map_entry_max_free_left(y, llist));
1698                 else
1699                         SPLAY_RIGHT_STEP(root, y, llist,
1700                             length > vm_map_entry_max_free_left(y, root));
1701                 if (root == NULL)
1702                         break;
1703         }
1704         root = llist;
1705         llist = root->right;
1706         root->right = NULL;
1707         if (rlist != &map->header) {
1708                 y = rlist;
1709                 rlist = y->left;
1710                 y->left = NULL;
1711                 vm_map_splay_merge(map, y, &map->header, rlist);
1712                 y->max_free = MAX(
1713                     vm_map_entry_max_free_left(y, root),
1714                     vm_map_entry_max_free_right(y, &map->header));
1715                 root->right = y;
1716         }
1717         vm_map_splay_merge(map, root, llist, &map->header);
1718         VM_MAP_ASSERT_CONSISTENT(map);
1719         return (root->end);
1720 }
1721
1722 int
1723 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1724     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1725     vm_prot_t max, int cow)
1726 {
1727         vm_offset_t end;
1728         int result;
1729
1730         end = start + length;
1731         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1732             object == NULL,
1733             ("vm_map_fixed: non-NULL backing object for stack"));
1734         vm_map_lock(map);
1735         VM_MAP_RANGE_CHECK(map, start, end);
1736         if ((cow & MAP_CHECK_EXCL) == 0)
1737                 vm_map_delete(map, start, end);
1738         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1739                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1740                     prot, max, cow);
1741         } else {
1742                 result = vm_map_insert(map, object, offset, start, end,
1743                     prot, max, cow);
1744         }
1745         vm_map_unlock(map);
1746         return (result);
1747 }
1748
1749 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1750 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1751
1752 static int cluster_anon = 1;
1753 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1754     &cluster_anon, 0,
1755     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1756
1757 static bool
1758 clustering_anon_allowed(vm_offset_t addr)
1759 {
1760
1761         switch (cluster_anon) {
1762         case 0:
1763                 return (false);
1764         case 1:
1765                 return (addr == 0);
1766         case 2:
1767         default:
1768                 return (true);
1769         }
1770 }
1771
1772 static long aslr_restarts;
1773 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1774     &aslr_restarts, 0,
1775     "Number of aslr failures");
1776
1777 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1778
1779 /*
1780  * Searches for the specified amount of free space in the given map with the
1781  * specified alignment.  Performs an address-ordered, first-fit search from
1782  * the given address "*addr", with an optional upper bound "max_addr".  If the
1783  * parameter "alignment" is zero, then the alignment is computed from the
1784  * given (object, offset) pair so as to enable the greatest possible use of
1785  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1786  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1787  *
1788  * The map must be locked.  Initially, there must be at least "length" bytes
1789  * of free space at the given address.
1790  */
1791 static int
1792 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1793     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1794     vm_offset_t alignment)
1795 {
1796         vm_offset_t aligned_addr, free_addr;
1797
1798         VM_MAP_ASSERT_LOCKED(map);
1799         free_addr = *addr;
1800         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1801             ("caller failed to provide space %#jx at address %p",
1802              (uintmax_t)length, (void *)free_addr));
1803         for (;;) {
1804                 /*
1805                  * At the start of every iteration, the free space at address
1806                  * "*addr" is at least "length" bytes.
1807                  */
1808                 if (alignment == 0)
1809                         pmap_align_superpage(object, offset, addr, length);
1810                 else if ((*addr & (alignment - 1)) != 0) {
1811                         *addr &= ~(alignment - 1);
1812                         *addr += alignment;
1813                 }
1814                 aligned_addr = *addr;
1815                 if (aligned_addr == free_addr) {
1816                         /*
1817                          * Alignment did not change "*addr", so "*addr" must
1818                          * still provide sufficient free space.
1819                          */
1820                         return (KERN_SUCCESS);
1821                 }
1822
1823                 /*
1824                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1825                  * be a valid address, in which case vm_map_findspace() cannot
1826                  * be relied upon to fail.
1827                  */
1828                 if (aligned_addr < free_addr)
1829                         return (KERN_NO_SPACE);
1830                 *addr = vm_map_findspace(map, aligned_addr, length);
1831                 if (*addr + length > vm_map_max(map) ||
1832                     (max_addr != 0 && *addr + length > max_addr))
1833                         return (KERN_NO_SPACE);
1834                 free_addr = *addr;
1835                 if (free_addr == aligned_addr) {
1836                         /*
1837                          * If a successful call to vm_map_findspace() did not
1838                          * change "*addr", then "*addr" must still be aligned
1839                          * and provide sufficient free space.
1840                          */
1841                         return (KERN_SUCCESS);
1842                 }
1843         }
1844 }
1845
1846 /*
1847  *      vm_map_find finds an unallocated region in the target address
1848  *      map with the given length.  The search is defined to be
1849  *      first-fit from the specified address; the region found is
1850  *      returned in the same parameter.
1851  *
1852  *      If object is non-NULL, ref count must be bumped by caller
1853  *      prior to making call to account for the new entry.
1854  */
1855 int
1856 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1857             vm_offset_t *addr,  /* IN/OUT */
1858             vm_size_t length, vm_offset_t max_addr, int find_space,
1859             vm_prot_t prot, vm_prot_t max, int cow)
1860 {
1861         vm_offset_t alignment, curr_min_addr, min_addr;
1862         int gap, pidx, rv, try;
1863         bool cluster, en_aslr, update_anon;
1864
1865         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1866             object == NULL,
1867             ("vm_map_find: non-NULL backing object for stack"));
1868         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1869             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1870         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1871             (object->flags & OBJ_COLORED) == 0))
1872                 find_space = VMFS_ANY_SPACE;
1873         if (find_space >> 8 != 0) {
1874                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1875                 alignment = (vm_offset_t)1 << (find_space >> 8);
1876         } else
1877                 alignment = 0;
1878         en_aslr = (map->flags & MAP_ASLR) != 0;
1879         update_anon = cluster = clustering_anon_allowed(*addr) &&
1880             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1881             find_space != VMFS_NO_SPACE && object == NULL &&
1882             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1883             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1884         curr_min_addr = min_addr = *addr;
1885         if (en_aslr && min_addr == 0 && !cluster &&
1886             find_space != VMFS_NO_SPACE &&
1887             (map->flags & MAP_ASLR_IGNSTART) != 0)
1888                 curr_min_addr = min_addr = vm_map_min(map);
1889         try = 0;
1890         vm_map_lock(map);
1891         if (cluster) {
1892                 curr_min_addr = map->anon_loc;
1893                 if (curr_min_addr == 0)
1894                         cluster = false;
1895         }
1896         if (find_space != VMFS_NO_SPACE) {
1897                 KASSERT(find_space == VMFS_ANY_SPACE ||
1898                     find_space == VMFS_OPTIMAL_SPACE ||
1899                     find_space == VMFS_SUPER_SPACE ||
1900                     alignment != 0, ("unexpected VMFS flag"));
1901 again:
1902                 /*
1903                  * When creating an anonymous mapping, try clustering
1904                  * with an existing anonymous mapping first.
1905                  *
1906                  * We make up to two attempts to find address space
1907                  * for a given find_space value. The first attempt may
1908                  * apply randomization or may cluster with an existing
1909                  * anonymous mapping. If this first attempt fails,
1910                  * perform a first-fit search of the available address
1911                  * space.
1912                  *
1913                  * If all tries failed, and find_space is
1914                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1915                  * Again enable clustering and randomization.
1916                  */
1917                 try++;
1918                 MPASS(try <= 2);
1919
1920                 if (try == 2) {
1921                         /*
1922                          * Second try: we failed either to find a
1923                          * suitable region for randomizing the
1924                          * allocation, or to cluster with an existing
1925                          * mapping.  Retry with free run.
1926                          */
1927                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1928                             vm_map_min(map) : min_addr;
1929                         atomic_add_long(&aslr_restarts, 1);
1930                 }
1931
1932                 if (try == 1 && en_aslr && !cluster) {
1933                         /*
1934                          * Find space for allocation, including
1935                          * gap needed for later randomization.
1936                          */
1937                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1938                             (find_space == VMFS_SUPER_SPACE || find_space ==
1939                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1940                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1941                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1942                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1943                         *addr = vm_map_findspace(map, curr_min_addr,
1944                             length + gap * pagesizes[pidx]);
1945                         if (*addr + length + gap * pagesizes[pidx] >
1946                             vm_map_max(map))
1947                                 goto again;
1948                         /* And randomize the start address. */
1949                         *addr += (arc4random() % gap) * pagesizes[pidx];
1950                         if (max_addr != 0 && *addr + length > max_addr)
1951                                 goto again;
1952                 } else {
1953                         *addr = vm_map_findspace(map, curr_min_addr, length);
1954                         if (*addr + length > vm_map_max(map) ||
1955                             (max_addr != 0 && *addr + length > max_addr)) {
1956                                 if (cluster) {
1957                                         cluster = false;
1958                                         MPASS(try == 1);
1959                                         goto again;
1960                                 }
1961                                 rv = KERN_NO_SPACE;
1962                                 goto done;
1963                         }
1964                 }
1965
1966                 if (find_space != VMFS_ANY_SPACE &&
1967                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1968                     max_addr, alignment)) != KERN_SUCCESS) {
1969                         if (find_space == VMFS_OPTIMAL_SPACE) {
1970                                 find_space = VMFS_ANY_SPACE;
1971                                 curr_min_addr = min_addr;
1972                                 cluster = update_anon;
1973                                 try = 0;
1974                                 goto again;
1975                         }
1976                         goto done;
1977                 }
1978         } else if ((cow & MAP_REMAP) != 0) {
1979                 if (*addr < vm_map_min(map) ||
1980                     *addr + length > vm_map_max(map) ||
1981                     *addr + length <= length) {
1982                         rv = KERN_INVALID_ADDRESS;
1983                         goto done;
1984                 }
1985                 vm_map_delete(map, *addr, *addr + length);
1986         }
1987         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1988                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1989                     max, cow);
1990         } else {
1991                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1992                     prot, max, cow);
1993         }
1994         if (rv == KERN_SUCCESS && update_anon)
1995                 map->anon_loc = *addr + length;
1996 done:
1997         vm_map_unlock(map);
1998         return (rv);
1999 }
2000
2001 /*
2002  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2003  *      additional parameter (min_addr) and treats the given address
2004  *      (*addr) differently.  Specifically, it treats *addr as a hint
2005  *      and not as the minimum address where the mapping is created.
2006  *
2007  *      This function works in two phases.  First, it tries to
2008  *      allocate above the hint.  If that fails and the hint is
2009  *      greater than min_addr, it performs a second pass, replacing
2010  *      the hint with min_addr as the minimum address for the
2011  *      allocation.
2012  */
2013 int
2014 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2015     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2016     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2017     int cow)
2018 {
2019         vm_offset_t hint;
2020         int rv;
2021
2022         hint = *addr;
2023         for (;;) {
2024                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2025                     find_space, prot, max, cow);
2026                 if (rv == KERN_SUCCESS || min_addr >= hint)
2027                         return (rv);
2028                 *addr = hint = min_addr;
2029         }
2030 }
2031
2032 /*
2033  * A map entry with any of the following flags set must not be merged with
2034  * another entry.
2035  */
2036 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2037             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2038
2039 static bool
2040 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2041 {
2042
2043         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2044             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2045             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2046             prev, entry));
2047         return (prev->end == entry->start &&
2048             prev->object.vm_object == entry->object.vm_object &&
2049             (prev->object.vm_object == NULL ||
2050             prev->offset + (prev->end - prev->start) == entry->offset) &&
2051             prev->eflags == entry->eflags &&
2052             prev->protection == entry->protection &&
2053             prev->max_protection == entry->max_protection &&
2054             prev->inheritance == entry->inheritance &&
2055             prev->wired_count == entry->wired_count &&
2056             prev->cred == entry->cred);
2057 }
2058
2059 static void
2060 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2061 {
2062
2063         /*
2064          * If the backing object is a vnode object, vm_object_deallocate()
2065          * calls vrele().  However, vrele() does not lock the vnode because
2066          * the vnode has additional references.  Thus, the map lock can be
2067          * kept without causing a lock-order reversal with the vnode lock.
2068          *
2069          * Since we count the number of virtual page mappings in
2070          * object->un_pager.vnp.writemappings, the writemappings value
2071          * should not be adjusted when the entry is disposed of.
2072          */
2073         if (entry->object.vm_object != NULL)
2074                 vm_object_deallocate(entry->object.vm_object);
2075         if (entry->cred != NULL)
2076                 crfree(entry->cred);
2077         vm_map_entry_dispose(map, entry);
2078 }
2079
2080 /*
2081  *      vm_map_simplify_entry:
2082  *
2083  *      Simplify the given map entry by merging with either neighbor.  This
2084  *      routine also has the ability to merge with both neighbors.
2085  *
2086  *      The map must be locked.
2087  *
2088  *      This routine guarantees that the passed entry remains valid (though
2089  *      possibly extended).  When merging, this routine may delete one or
2090  *      both neighbors.
2091  */
2092 void
2093 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2094 {
2095         vm_map_entry_t next, prev;
2096
2097         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2098                 return;
2099         prev = entry->prev;
2100         if (vm_map_mergeable_neighbors(prev, entry)) {
2101                 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2102                 vm_map_merged_neighbor_dispose(map, prev);
2103         }
2104         next = entry->next;
2105         if (vm_map_mergeable_neighbors(entry, next)) {
2106                 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2107                 vm_map_merged_neighbor_dispose(map, next);
2108         }
2109 }
2110
2111 /*
2112  *      vm_map_clip_start:      [ internal use only ]
2113  *
2114  *      Asserts that the given entry begins at or after
2115  *      the specified address; if necessary,
2116  *      it splits the entry into two.
2117  */
2118 #define vm_map_clip_start(map, entry, startaddr) \
2119 { \
2120         if (startaddr > entry->start) \
2121                 _vm_map_clip_start(map, entry, startaddr); \
2122 }
2123
2124 /*
2125  *      This routine is called only when it is known that
2126  *      the entry must be split.
2127  */
2128 static void
2129 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2130 {
2131         vm_map_entry_t new_entry;
2132
2133         VM_MAP_ASSERT_LOCKED(map);
2134         KASSERT(entry->end > start && entry->start < start,
2135             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2136
2137         /*
2138          * Split off the front portion -- note that we must insert the new
2139          * entry BEFORE this one, so that this entry has the specified
2140          * starting address.
2141          */
2142         vm_map_simplify_entry(map, entry);
2143
2144         /*
2145          * If there is no object backing this entry, we might as well create
2146          * one now.  If we defer it, an object can get created after the map
2147          * is clipped, and individual objects will be created for the split-up
2148          * map.  This is a bit of a hack, but is also about the best place to
2149          * put this improvement.
2150          */
2151         if (entry->object.vm_object == NULL && !map->system_map &&
2152             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2153                 vm_object_t object;
2154                 object = vm_object_allocate(OBJT_DEFAULT,
2155                                 atop(entry->end - entry->start));
2156                 entry->object.vm_object = object;
2157                 entry->offset = 0;
2158                 if (entry->cred != NULL) {
2159                         object->cred = entry->cred;
2160                         object->charge = entry->end - entry->start;
2161                         entry->cred = NULL;
2162                 }
2163         } else if (entry->object.vm_object != NULL &&
2164                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2165                    entry->cred != NULL) {
2166                 VM_OBJECT_WLOCK(entry->object.vm_object);
2167                 KASSERT(entry->object.vm_object->cred == NULL,
2168                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2169                 entry->object.vm_object->cred = entry->cred;
2170                 entry->object.vm_object->charge = entry->end - entry->start;
2171                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2172                 entry->cred = NULL;
2173         }
2174
2175         new_entry = vm_map_entry_create(map);
2176         *new_entry = *entry;
2177
2178         new_entry->end = start;
2179         entry->offset += (start - entry->start);
2180         entry->start = start;
2181         if (new_entry->cred != NULL)
2182                 crhold(entry->cred);
2183
2184         vm_map_entry_link(map, new_entry);
2185
2186         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2187                 vm_object_reference(new_entry->object.vm_object);
2188                 vm_map_entry_set_vnode_text(new_entry, true);
2189                 /*
2190                  * The object->un_pager.vnp.writemappings for the
2191                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2192                  * kept as is here.  The virtual pages are
2193                  * re-distributed among the clipped entries, so the sum is
2194                  * left the same.
2195                  */
2196         }
2197 }
2198
2199 /*
2200  *      vm_map_clip_end:        [ internal use only ]
2201  *
2202  *      Asserts that the given entry ends at or before
2203  *      the specified address; if necessary,
2204  *      it splits the entry into two.
2205  */
2206 #define vm_map_clip_end(map, entry, endaddr) \
2207 { \
2208         if ((endaddr) < (entry->end)) \
2209                 _vm_map_clip_end((map), (entry), (endaddr)); \
2210 }
2211
2212 /*
2213  *      This routine is called only when it is known that
2214  *      the entry must be split.
2215  */
2216 static void
2217 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2218 {
2219         vm_map_entry_t new_entry;
2220
2221         VM_MAP_ASSERT_LOCKED(map);
2222         KASSERT(entry->start < end && entry->end > end,
2223             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2224
2225         /*
2226          * If there is no object backing this entry, we might as well create
2227          * one now.  If we defer it, an object can get created after the map
2228          * is clipped, and individual objects will be created for the split-up
2229          * map.  This is a bit of a hack, but is also about the best place to
2230          * put this improvement.
2231          */
2232         if (entry->object.vm_object == NULL && !map->system_map &&
2233             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2234                 vm_object_t object;
2235                 object = vm_object_allocate(OBJT_DEFAULT,
2236                                 atop(entry->end - entry->start));
2237                 entry->object.vm_object = object;
2238                 entry->offset = 0;
2239                 if (entry->cred != NULL) {
2240                         object->cred = entry->cred;
2241                         object->charge = entry->end - entry->start;
2242                         entry->cred = NULL;
2243                 }
2244         } else if (entry->object.vm_object != NULL &&
2245                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2246                    entry->cred != NULL) {
2247                 VM_OBJECT_WLOCK(entry->object.vm_object);
2248                 KASSERT(entry->object.vm_object->cred == NULL,
2249                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2250                 entry->object.vm_object->cred = entry->cred;
2251                 entry->object.vm_object->charge = entry->end - entry->start;
2252                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2253                 entry->cred = NULL;
2254         }
2255
2256         /*
2257          * Create a new entry and insert it AFTER the specified entry
2258          */
2259         new_entry = vm_map_entry_create(map);
2260         *new_entry = *entry;
2261
2262         new_entry->start = entry->end = end;
2263         new_entry->offset += (end - entry->start);
2264         if (new_entry->cred != NULL)
2265                 crhold(entry->cred);
2266
2267         vm_map_entry_link(map, new_entry);
2268
2269         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2270                 vm_object_reference(new_entry->object.vm_object);
2271                 vm_map_entry_set_vnode_text(new_entry, true);
2272         }
2273 }
2274
2275 /*
2276  *      vm_map_submap:          [ kernel use only ]
2277  *
2278  *      Mark the given range as handled by a subordinate map.
2279  *
2280  *      This range must have been created with vm_map_find,
2281  *      and no other operations may have been performed on this
2282  *      range prior to calling vm_map_submap.
2283  *
2284  *      Only a limited number of operations can be performed
2285  *      within this rage after calling vm_map_submap:
2286  *              vm_fault
2287  *      [Don't try vm_map_copy!]
2288  *
2289  *      To remove a submapping, one must first remove the
2290  *      range from the superior map, and then destroy the
2291  *      submap (if desired).  [Better yet, don't try it.]
2292  */
2293 int
2294 vm_map_submap(
2295         vm_map_t map,
2296         vm_offset_t start,
2297         vm_offset_t end,
2298         vm_map_t submap)
2299 {
2300         vm_map_entry_t entry;
2301         int result;
2302
2303         result = KERN_INVALID_ARGUMENT;
2304
2305         vm_map_lock(submap);
2306         submap->flags |= MAP_IS_SUB_MAP;
2307         vm_map_unlock(submap);
2308
2309         vm_map_lock(map);
2310
2311         VM_MAP_RANGE_CHECK(map, start, end);
2312
2313         if (vm_map_lookup_entry(map, start, &entry)) {
2314                 vm_map_clip_start(map, entry, start);
2315         } else
2316                 entry = entry->next;
2317
2318         vm_map_clip_end(map, entry, end);
2319
2320         if ((entry->start == start) && (entry->end == end) &&
2321             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2322             (entry->object.vm_object == NULL)) {
2323                 entry->object.sub_map = submap;
2324                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2325                 result = KERN_SUCCESS;
2326         }
2327         vm_map_unlock(map);
2328
2329         if (result != KERN_SUCCESS) {
2330                 vm_map_lock(submap);
2331                 submap->flags &= ~MAP_IS_SUB_MAP;
2332                 vm_map_unlock(submap);
2333         }
2334         return (result);
2335 }
2336
2337 /*
2338  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2339  */
2340 #define MAX_INIT_PT     96
2341
2342 /*
2343  *      vm_map_pmap_enter:
2344  *
2345  *      Preload the specified map's pmap with mappings to the specified
2346  *      object's memory-resident pages.  No further physical pages are
2347  *      allocated, and no further virtual pages are retrieved from secondary
2348  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2349  *      limited number of page mappings are created at the low-end of the
2350  *      specified address range.  (For this purpose, a superpage mapping
2351  *      counts as one page mapping.)  Otherwise, all resident pages within
2352  *      the specified address range are mapped.
2353  */
2354 static void
2355 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2356     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2357 {
2358         vm_offset_t start;
2359         vm_page_t p, p_start;
2360         vm_pindex_t mask, psize, threshold, tmpidx;
2361
2362         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2363                 return;
2364         VM_OBJECT_RLOCK(object);
2365         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2366                 VM_OBJECT_RUNLOCK(object);
2367                 VM_OBJECT_WLOCK(object);
2368                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2369                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2370                             size);
2371                         VM_OBJECT_WUNLOCK(object);
2372                         return;
2373                 }
2374                 VM_OBJECT_LOCK_DOWNGRADE(object);
2375         }
2376
2377         psize = atop(size);
2378         if (psize + pindex > object->size) {
2379                 if (object->size < pindex) {
2380                         VM_OBJECT_RUNLOCK(object);
2381                         return;
2382                 }
2383                 psize = object->size - pindex;
2384         }
2385
2386         start = 0;
2387         p_start = NULL;
2388         threshold = MAX_INIT_PT;
2389
2390         p = vm_page_find_least(object, pindex);
2391         /*
2392          * Assert: the variable p is either (1) the page with the
2393          * least pindex greater than or equal to the parameter pindex
2394          * or (2) NULL.
2395          */
2396         for (;
2397              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2398              p = TAILQ_NEXT(p, listq)) {
2399                 /*
2400                  * don't allow an madvise to blow away our really
2401                  * free pages allocating pv entries.
2402                  */
2403                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2404                     vm_page_count_severe()) ||
2405                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2406                     tmpidx >= threshold)) {
2407                         psize = tmpidx;
2408                         break;
2409                 }
2410                 if (p->valid == VM_PAGE_BITS_ALL) {
2411                         if (p_start == NULL) {
2412                                 start = addr + ptoa(tmpidx);
2413                                 p_start = p;
2414                         }
2415                         /* Jump ahead if a superpage mapping is possible. */
2416                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2417                             (pagesizes[p->psind] - 1)) == 0) {
2418                                 mask = atop(pagesizes[p->psind]) - 1;
2419                                 if (tmpidx + mask < psize &&
2420                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2421                                         p += mask;
2422                                         threshold += mask;
2423                                 }
2424                         }
2425                 } else if (p_start != NULL) {
2426                         pmap_enter_object(map->pmap, start, addr +
2427                             ptoa(tmpidx), p_start, prot);
2428                         p_start = NULL;
2429                 }
2430         }
2431         if (p_start != NULL)
2432                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2433                     p_start, prot);
2434         VM_OBJECT_RUNLOCK(object);
2435 }
2436
2437 /*
2438  *      vm_map_protect:
2439  *
2440  *      Sets the protection of the specified address
2441  *      region in the target map.  If "set_max" is
2442  *      specified, the maximum protection is to be set;
2443  *      otherwise, only the current protection is affected.
2444  */
2445 int
2446 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2447                vm_prot_t new_prot, boolean_t set_max)
2448 {
2449         vm_map_entry_t current, entry, in_tran;
2450         vm_object_t obj;
2451         struct ucred *cred;
2452         vm_prot_t old_prot;
2453
2454         if (start == end)
2455                 return (KERN_SUCCESS);
2456
2457 again:
2458         in_tran = NULL;
2459         vm_map_lock(map);
2460
2461         /*
2462          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2463          * need to fault pages into the map and will drop the map lock while
2464          * doing so, and the VM object may end up in an inconsistent state if we
2465          * update the protection on the map entry in between faults.
2466          */
2467         vm_map_wait_busy(map);
2468
2469         VM_MAP_RANGE_CHECK(map, start, end);
2470
2471         if (vm_map_lookup_entry(map, start, &entry)) {
2472                 vm_map_clip_start(map, entry, start);
2473         } else {
2474                 entry = entry->next;
2475         }
2476
2477         /*
2478          * Make a first pass to check for protection violations.
2479          */
2480         for (current = entry; current->start < end; current = current->next) {
2481                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2482                         continue;
2483                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2484                         vm_map_unlock(map);
2485                         return (KERN_INVALID_ARGUMENT);
2486                 }
2487                 if ((new_prot & current->max_protection) != new_prot) {
2488                         vm_map_unlock(map);
2489                         return (KERN_PROTECTION_FAILURE);
2490                 }
2491                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2492                         in_tran = entry;
2493         }
2494
2495         /*
2496          * Postpone the operation until all in transition map entries
2497          * are stabilized.  In-transition entry might already have its
2498          * pages wired and wired_count incremented, but
2499          * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2500          * threads because the map lock is dropped.  In this case we
2501          * would miss our call to vm_fault_copy_entry().
2502          */
2503         if (in_tran != NULL) {
2504                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2505                 vm_map_unlock_and_wait(map, 0);
2506                 goto again;
2507         }
2508
2509         /*
2510          * Do an accounting pass for private read-only mappings that
2511          * now will do cow due to allowed write (e.g. debugger sets
2512          * breakpoint on text segment)
2513          */
2514         for (current = entry; current->start < end; current = current->next) {
2515
2516                 vm_map_clip_end(map, current, end);
2517
2518                 if (set_max ||
2519                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2520                     ENTRY_CHARGED(current) ||
2521                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2522                         continue;
2523                 }
2524
2525                 cred = curthread->td_ucred;
2526                 obj = current->object.vm_object;
2527
2528                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2529                         if (!swap_reserve(current->end - current->start)) {
2530                                 vm_map_unlock(map);
2531                                 return (KERN_RESOURCE_SHORTAGE);
2532                         }
2533                         crhold(cred);
2534                         current->cred = cred;
2535                         continue;
2536                 }
2537
2538                 VM_OBJECT_WLOCK(obj);
2539                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2540                         VM_OBJECT_WUNLOCK(obj);
2541                         continue;
2542                 }
2543
2544                 /*
2545                  * Charge for the whole object allocation now, since
2546                  * we cannot distinguish between non-charged and
2547                  * charged clipped mapping of the same object later.
2548                  */
2549                 KASSERT(obj->charge == 0,
2550                     ("vm_map_protect: object %p overcharged (entry %p)",
2551                     obj, current));
2552                 if (!swap_reserve(ptoa(obj->size))) {
2553                         VM_OBJECT_WUNLOCK(obj);
2554                         vm_map_unlock(map);
2555                         return (KERN_RESOURCE_SHORTAGE);
2556                 }
2557
2558                 crhold(cred);
2559                 obj->cred = cred;
2560                 obj->charge = ptoa(obj->size);
2561                 VM_OBJECT_WUNLOCK(obj);
2562         }
2563
2564         /*
2565          * Go back and fix up protections. [Note that clipping is not
2566          * necessary the second time.]
2567          */
2568         for (current = entry; current->start < end; current = current->next) {
2569                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2570                         continue;
2571
2572                 old_prot = current->protection;
2573
2574                 if (set_max)
2575                         current->protection =
2576                             (current->max_protection = new_prot) &
2577                             old_prot;
2578                 else
2579                         current->protection = new_prot;
2580
2581                 /*
2582                  * For user wired map entries, the normal lazy evaluation of
2583                  * write access upgrades through soft page faults is
2584                  * undesirable.  Instead, immediately copy any pages that are
2585                  * copy-on-write and enable write access in the physical map.
2586                  */
2587                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2588                     (current->protection & VM_PROT_WRITE) != 0 &&
2589                     (old_prot & VM_PROT_WRITE) == 0)
2590                         vm_fault_copy_entry(map, map, current, current, NULL);
2591
2592                 /*
2593                  * When restricting access, update the physical map.  Worry
2594                  * about copy-on-write here.
2595                  */
2596                 if ((old_prot & ~current->protection) != 0) {
2597 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2598                                                         VM_PROT_ALL)
2599                         pmap_protect(map->pmap, current->start,
2600                             current->end,
2601                             current->protection & MASK(current));
2602 #undef  MASK
2603                 }
2604                 vm_map_simplify_entry(map, current);
2605         }
2606         vm_map_unlock(map);
2607         return (KERN_SUCCESS);
2608 }
2609
2610 /*
2611  *      vm_map_madvise:
2612  *
2613  *      This routine traverses a processes map handling the madvise
2614  *      system call.  Advisories are classified as either those effecting
2615  *      the vm_map_entry structure, or those effecting the underlying
2616  *      objects.
2617  */
2618 int
2619 vm_map_madvise(
2620         vm_map_t map,
2621         vm_offset_t start,
2622         vm_offset_t end,
2623         int behav)
2624 {
2625         vm_map_entry_t current, entry;
2626         bool modify_map;
2627
2628         /*
2629          * Some madvise calls directly modify the vm_map_entry, in which case
2630          * we need to use an exclusive lock on the map and we need to perform
2631          * various clipping operations.  Otherwise we only need a read-lock
2632          * on the map.
2633          */
2634         switch(behav) {
2635         case MADV_NORMAL:
2636         case MADV_SEQUENTIAL:
2637         case MADV_RANDOM:
2638         case MADV_NOSYNC:
2639         case MADV_AUTOSYNC:
2640         case MADV_NOCORE:
2641         case MADV_CORE:
2642                 if (start == end)
2643                         return (0);
2644                 modify_map = true;
2645                 vm_map_lock(map);
2646                 break;
2647         case MADV_WILLNEED:
2648         case MADV_DONTNEED:
2649         case MADV_FREE:
2650                 if (start == end)
2651                         return (0);
2652                 modify_map = false;
2653                 vm_map_lock_read(map);
2654                 break;
2655         default:
2656                 return (EINVAL);
2657         }
2658
2659         /*
2660          * Locate starting entry and clip if necessary.
2661          */
2662         VM_MAP_RANGE_CHECK(map, start, end);
2663
2664         if (vm_map_lookup_entry(map, start, &entry)) {
2665                 if (modify_map)
2666                         vm_map_clip_start(map, entry, start);
2667         } else {
2668                 entry = entry->next;
2669         }
2670
2671         if (modify_map) {
2672                 /*
2673                  * madvise behaviors that are implemented in the vm_map_entry.
2674                  *
2675                  * We clip the vm_map_entry so that behavioral changes are
2676                  * limited to the specified address range.
2677                  */
2678                 for (current = entry; current->start < end;
2679                     current = current->next) {
2680                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2681                                 continue;
2682
2683                         vm_map_clip_end(map, current, end);
2684
2685                         switch (behav) {
2686                         case MADV_NORMAL:
2687                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2688                                 break;
2689                         case MADV_SEQUENTIAL:
2690                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2691                                 break;
2692                         case MADV_RANDOM:
2693                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2694                                 break;
2695                         case MADV_NOSYNC:
2696                                 current->eflags |= MAP_ENTRY_NOSYNC;
2697                                 break;
2698                         case MADV_AUTOSYNC:
2699                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2700                                 break;
2701                         case MADV_NOCORE:
2702                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2703                                 break;
2704                         case MADV_CORE:
2705                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2706                                 break;
2707                         default:
2708                                 break;
2709                         }
2710                         vm_map_simplify_entry(map, current);
2711                 }
2712                 vm_map_unlock(map);
2713         } else {
2714                 vm_pindex_t pstart, pend;
2715
2716                 /*
2717                  * madvise behaviors that are implemented in the underlying
2718                  * vm_object.
2719                  *
2720                  * Since we don't clip the vm_map_entry, we have to clip
2721                  * the vm_object pindex and count.
2722                  */
2723                 for (current = entry; current->start < end;
2724                     current = current->next) {
2725                         vm_offset_t useEnd, useStart;
2726
2727                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2728                                 continue;
2729
2730                         pstart = OFF_TO_IDX(current->offset);
2731                         pend = pstart + atop(current->end - current->start);
2732                         useStart = current->start;
2733                         useEnd = current->end;
2734
2735                         if (current->start < start) {
2736                                 pstart += atop(start - current->start);
2737                                 useStart = start;
2738                         }
2739                         if (current->end > end) {
2740                                 pend -= atop(current->end - end);
2741                                 useEnd = end;
2742                         }
2743
2744                         if (pstart >= pend)
2745                                 continue;
2746
2747                         /*
2748                          * Perform the pmap_advise() before clearing
2749                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2750                          * concurrent pmap operation, such as pmap_remove(),
2751                          * could clear a reference in the pmap and set
2752                          * PGA_REFERENCED on the page before the pmap_advise()
2753                          * had completed.  Consequently, the page would appear
2754                          * referenced based upon an old reference that
2755                          * occurred before this pmap_advise() ran.
2756                          */
2757                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2758                                 pmap_advise(map->pmap, useStart, useEnd,
2759                                     behav);
2760
2761                         vm_object_madvise(current->object.vm_object, pstart,
2762                             pend, behav);
2763
2764                         /*
2765                          * Pre-populate paging structures in the
2766                          * WILLNEED case.  For wired entries, the
2767                          * paging structures are already populated.
2768                          */
2769                         if (behav == MADV_WILLNEED &&
2770                             current->wired_count == 0) {
2771                                 vm_map_pmap_enter(map,
2772                                     useStart,
2773                                     current->protection,
2774                                     current->object.vm_object,
2775                                     pstart,
2776                                     ptoa(pend - pstart),
2777                                     MAP_PREFAULT_MADVISE
2778                                 );
2779                         }
2780                 }
2781                 vm_map_unlock_read(map);
2782         }
2783         return (0);
2784 }
2785
2786
2787 /*
2788  *      vm_map_inherit:
2789  *
2790  *      Sets the inheritance of the specified address
2791  *      range in the target map.  Inheritance
2792  *      affects how the map will be shared with
2793  *      child maps at the time of vmspace_fork.
2794  */
2795 int
2796 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2797                vm_inherit_t new_inheritance)
2798 {
2799         vm_map_entry_t entry;
2800         vm_map_entry_t temp_entry;
2801
2802         switch (new_inheritance) {
2803         case VM_INHERIT_NONE:
2804         case VM_INHERIT_COPY:
2805         case VM_INHERIT_SHARE:
2806         case VM_INHERIT_ZERO:
2807                 break;
2808         default:
2809                 return (KERN_INVALID_ARGUMENT);
2810         }
2811         if (start == end)
2812                 return (KERN_SUCCESS);
2813         vm_map_lock(map);
2814         VM_MAP_RANGE_CHECK(map, start, end);
2815         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2816                 entry = temp_entry;
2817                 vm_map_clip_start(map, entry, start);
2818         } else
2819                 entry = temp_entry->next;
2820         while (entry->start < end) {
2821                 vm_map_clip_end(map, entry, end);
2822                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2823                     new_inheritance != VM_INHERIT_ZERO)
2824                         entry->inheritance = new_inheritance;
2825                 vm_map_simplify_entry(map, entry);
2826                 entry = entry->next;
2827         }
2828         vm_map_unlock(map);
2829         return (KERN_SUCCESS);
2830 }
2831
2832 /*
2833  *      vm_map_unwire:
2834  *
2835  *      Implements both kernel and user unwiring.
2836  */
2837 int
2838 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2839     int flags)
2840 {
2841         vm_map_entry_t entry, first_entry, tmp_entry;
2842         vm_offset_t saved_start;
2843         unsigned int last_timestamp;
2844         int rv;
2845         boolean_t need_wakeup, result, user_unwire;
2846
2847         if (start == end)
2848                 return (KERN_SUCCESS);
2849         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2850         vm_map_lock(map);
2851         VM_MAP_RANGE_CHECK(map, start, end);
2852         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2853                 if (flags & VM_MAP_WIRE_HOLESOK)
2854                         first_entry = first_entry->next;
2855                 else {
2856                         vm_map_unlock(map);
2857                         return (KERN_INVALID_ADDRESS);
2858                 }
2859         }
2860         last_timestamp = map->timestamp;
2861         entry = first_entry;
2862         while (entry->start < end) {
2863                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2864                         /*
2865                          * We have not yet clipped the entry.
2866                          */
2867                         saved_start = (start >= entry->start) ? start :
2868                             entry->start;
2869                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2870                         if (vm_map_unlock_and_wait(map, 0)) {
2871                                 /*
2872                                  * Allow interruption of user unwiring?
2873                                  */
2874                         }
2875                         vm_map_lock(map);
2876                         if (last_timestamp+1 != map->timestamp) {
2877                                 /*
2878                                  * Look again for the entry because the map was
2879                                  * modified while it was unlocked.
2880                                  * Specifically, the entry may have been
2881                                  * clipped, merged, or deleted.
2882                                  */
2883                                 if (!vm_map_lookup_entry(map, saved_start,
2884                                     &tmp_entry)) {
2885                                         if (flags & VM_MAP_WIRE_HOLESOK)
2886                                                 tmp_entry = tmp_entry->next;
2887                                         else {
2888                                                 if (saved_start == start) {
2889                                                         /*
2890                                                          * First_entry has been deleted.
2891                                                          */
2892                                                         vm_map_unlock(map);
2893                                                         return (KERN_INVALID_ADDRESS);
2894                                                 }
2895                                                 end = saved_start;
2896                                                 rv = KERN_INVALID_ADDRESS;
2897                                                 goto done;
2898                                         }
2899                                 }
2900                                 if (entry == first_entry)
2901                                         first_entry = tmp_entry;
2902                                 else
2903                                         first_entry = NULL;
2904                                 entry = tmp_entry;
2905                         }
2906                         last_timestamp = map->timestamp;
2907                         continue;
2908                 }
2909                 vm_map_clip_start(map, entry, start);
2910                 vm_map_clip_end(map, entry, end);
2911                 /*
2912                  * Mark the entry in case the map lock is released.  (See
2913                  * above.)
2914                  */
2915                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2916                     entry->wiring_thread == NULL,
2917                     ("owned map entry %p", entry));
2918                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2919                 entry->wiring_thread = curthread;
2920                 /*
2921                  * Check the map for holes in the specified region.
2922                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2923                  */
2924                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2925                     (entry->end < end && entry->next->start > entry->end)) {
2926                         end = entry->end;
2927                         rv = KERN_INVALID_ADDRESS;
2928                         goto done;
2929                 }
2930                 /*
2931                  * If system unwiring, require that the entry is system wired.
2932                  */
2933                 if (!user_unwire &&
2934                     vm_map_entry_system_wired_count(entry) == 0) {
2935                         end = entry->end;
2936                         rv = KERN_INVALID_ARGUMENT;
2937                         goto done;
2938                 }
2939                 entry = entry->next;
2940         }
2941         rv = KERN_SUCCESS;
2942 done:
2943         need_wakeup = FALSE;
2944         if (first_entry == NULL) {
2945                 result = vm_map_lookup_entry(map, start, &first_entry);
2946                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2947                         first_entry = first_entry->next;
2948                 else
2949                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2950         }
2951         for (entry = first_entry; entry->start < end; entry = entry->next) {
2952                 /*
2953                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2954                  * space in the unwired region could have been mapped
2955                  * while the map lock was dropped for draining
2956                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2957                  * could be simultaneously wiring this new mapping
2958                  * entry.  Detect these cases and skip any entries
2959                  * marked as in transition by us.
2960                  */
2961                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2962                     entry->wiring_thread != curthread) {
2963                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2964                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2965                         continue;
2966                 }
2967
2968                 if (rv == KERN_SUCCESS && (!user_unwire ||
2969                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2970                         if (entry->wired_count == 1)
2971                                 vm_map_entry_unwire(map, entry);
2972                         else
2973                                 entry->wired_count--;
2974                         if (user_unwire)
2975                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2976                 }
2977                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2978                     ("vm_map_unwire: in-transition flag missing %p", entry));
2979                 KASSERT(entry->wiring_thread == curthread,
2980                     ("vm_map_unwire: alien wire %p", entry));
2981                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2982                 entry->wiring_thread = NULL;
2983                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2984                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2985                         need_wakeup = TRUE;
2986                 }
2987                 vm_map_simplify_entry(map, entry);
2988         }
2989         vm_map_unlock(map);
2990         if (need_wakeup)
2991                 vm_map_wakeup(map);
2992         return (rv);
2993 }
2994
2995 static void
2996 vm_map_wire_user_count_sub(u_long npages)
2997 {
2998
2999         atomic_subtract_long(&vm_user_wire_count, npages);
3000 }
3001
3002 static bool
3003 vm_map_wire_user_count_add(u_long npages)
3004 {
3005         u_long wired;
3006
3007         wired = vm_user_wire_count;
3008         do {
3009                 if (npages + wired > vm_page_max_user_wired)
3010                         return (false);
3011         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3012             npages + wired));
3013
3014         return (true);
3015 }
3016
3017 /*
3018  *      vm_map_wire_entry_failure:
3019  *
3020  *      Handle a wiring failure on the given entry.
3021  *
3022  *      The map should be locked.
3023  */
3024 static void
3025 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3026     vm_offset_t failed_addr)
3027 {
3028
3029         VM_MAP_ASSERT_LOCKED(map);
3030         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3031             entry->wired_count == 1,
3032             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3033         KASSERT(failed_addr < entry->end,
3034             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3035
3036         /*
3037          * If any pages at the start of this entry were successfully wired,
3038          * then unwire them.
3039          */
3040         if (failed_addr > entry->start) {
3041                 pmap_unwire(map->pmap, entry->start, failed_addr);
3042                 vm_object_unwire(entry->object.vm_object, entry->offset,
3043                     failed_addr - entry->start, PQ_ACTIVE);
3044         }
3045
3046         /*
3047          * Assign an out-of-range value to represent the failure to wire this
3048          * entry.
3049          */
3050         entry->wired_count = -1;
3051 }
3052
3053 int
3054 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3055 {
3056         int rv;
3057
3058         vm_map_lock(map);
3059         rv = vm_map_wire_locked(map, start, end, flags);
3060         vm_map_unlock(map);
3061         return (rv);
3062 }
3063
3064
3065 /*
3066  *      vm_map_wire_locked:
3067  *
3068  *      Implements both kernel and user wiring.  Returns with the map locked,
3069  *      the map lock may be dropped.
3070  */
3071 int
3072 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3073 {
3074         vm_map_entry_t entry, first_entry, tmp_entry;
3075         vm_offset_t faddr, saved_end, saved_start;
3076         u_long npages;
3077         u_int last_timestamp;
3078         int rv;
3079         boolean_t need_wakeup, result, user_wire;
3080         vm_prot_t prot;
3081
3082         VM_MAP_ASSERT_LOCKED(map);
3083
3084         if (start == end)
3085                 return (KERN_SUCCESS);
3086         prot = 0;
3087         if (flags & VM_MAP_WIRE_WRITE)
3088                 prot |= VM_PROT_WRITE;
3089         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3090         VM_MAP_RANGE_CHECK(map, start, end);
3091         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3092                 if (flags & VM_MAP_WIRE_HOLESOK)
3093                         first_entry = first_entry->next;
3094                 else
3095                         return (KERN_INVALID_ADDRESS);
3096         }
3097         last_timestamp = map->timestamp;
3098         entry = first_entry;
3099         while (entry->start < end) {
3100                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3101                         /*
3102                          * We have not yet clipped the entry.
3103                          */
3104                         saved_start = (start >= entry->start) ? start :
3105                             entry->start;
3106                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3107                         if (vm_map_unlock_and_wait(map, 0)) {
3108                                 /*
3109                                  * Allow interruption of user wiring?
3110                                  */
3111                         }
3112                         vm_map_lock(map);
3113                         if (last_timestamp + 1 != map->timestamp) {
3114                                 /*
3115                                  * Look again for the entry because the map was
3116                                  * modified while it was unlocked.
3117                                  * Specifically, the entry may have been
3118                                  * clipped, merged, or deleted.
3119                                  */
3120                                 if (!vm_map_lookup_entry(map, saved_start,
3121                                     &tmp_entry)) {
3122                                         if (flags & VM_MAP_WIRE_HOLESOK)
3123                                                 tmp_entry = tmp_entry->next;
3124                                         else {
3125                                                 if (saved_start == start) {
3126                                                         /*
3127                                                          * first_entry has been deleted.
3128                                                          */
3129                                                         return (KERN_INVALID_ADDRESS);
3130                                                 }
3131                                                 end = saved_start;
3132                                                 rv = KERN_INVALID_ADDRESS;
3133                                                 goto done;
3134                                         }
3135                                 }
3136                                 if (entry == first_entry)
3137                                         first_entry = tmp_entry;
3138                                 else
3139                                         first_entry = NULL;
3140                                 entry = tmp_entry;
3141                         }
3142                         last_timestamp = map->timestamp;
3143                         continue;
3144                 }
3145                 vm_map_clip_start(map, entry, start);
3146                 vm_map_clip_end(map, entry, end);
3147                 /*
3148                  * Mark the entry in case the map lock is released.  (See
3149                  * above.)
3150                  */
3151                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3152                     entry->wiring_thread == NULL,
3153                     ("owned map entry %p", entry));
3154                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3155                 entry->wiring_thread = curthread;
3156                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3157                     || (entry->protection & prot) != prot) {
3158                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3159                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3160                                 end = entry->end;
3161                                 rv = KERN_INVALID_ADDRESS;
3162                                 goto done;
3163                         }
3164                         goto next_entry;
3165                 }
3166                 if (entry->wired_count == 0) {
3167                         entry->wired_count++;
3168
3169                         npages = atop(entry->end - entry->start);
3170                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3171                                 vm_map_wire_entry_failure(map, entry,
3172                                     entry->start);
3173                                 end = entry->end;
3174                                 rv = KERN_RESOURCE_SHORTAGE;
3175                                 goto done;
3176                         }
3177
3178                         /*
3179                          * Release the map lock, relying on the in-transition
3180                          * mark.  Mark the map busy for fork.
3181                          */
3182                         saved_start = entry->start;
3183                         saved_end = entry->end;
3184                         vm_map_busy(map);
3185                         vm_map_unlock(map);
3186
3187                         faddr = saved_start;
3188                         do {
3189                                 /*
3190                                  * Simulate a fault to get the page and enter
3191                                  * it into the physical map.
3192                                  */
3193                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3194                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
3195                                         break;
3196                         } while ((faddr += PAGE_SIZE) < saved_end);
3197                         vm_map_lock(map);
3198                         vm_map_unbusy(map);
3199                         if (last_timestamp + 1 != map->timestamp) {
3200                                 /*
3201                                  * Look again for the entry because the map was
3202                                  * modified while it was unlocked.  The entry
3203                                  * may have been clipped, but NOT merged or
3204                                  * deleted.
3205                                  */
3206                                 result = vm_map_lookup_entry(map, saved_start,
3207                                     &tmp_entry);
3208                                 KASSERT(result, ("vm_map_wire: lookup failed"));
3209                                 if (entry == first_entry)
3210                                         first_entry = tmp_entry;
3211                                 else
3212                                         first_entry = NULL;
3213                                 entry = tmp_entry;
3214                                 while (entry->end < saved_end) {
3215                                         /*
3216                                          * In case of failure, handle entries
3217                                          * that were not fully wired here;
3218                                          * fully wired entries are handled
3219                                          * later.
3220                                          */
3221                                         if (rv != KERN_SUCCESS &&
3222                                             faddr < entry->end)
3223                                                 vm_map_wire_entry_failure(map,
3224                                                     entry, faddr);
3225                                         entry = entry->next;
3226                                 }
3227                         }
3228                         last_timestamp = map->timestamp;
3229                         if (rv != KERN_SUCCESS) {
3230                                 vm_map_wire_entry_failure(map, entry, faddr);
3231                                 if (user_wire)
3232                                         vm_map_wire_user_count_sub(npages);
3233                                 end = entry->end;
3234                                 goto done;
3235                         }
3236                 } else if (!user_wire ||
3237                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3238                         entry->wired_count++;
3239                 }
3240                 /*
3241                  * Check the map for holes in the specified region.
3242                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3243                  */
3244         next_entry:
3245                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3246                     entry->end < end && entry->next->start > entry->end) {
3247                         end = entry->end;
3248                         rv = KERN_INVALID_ADDRESS;
3249                         goto done;
3250                 }
3251                 entry = entry->next;
3252         }
3253         rv = KERN_SUCCESS;
3254 done:
3255         need_wakeup = FALSE;
3256         if (first_entry == NULL) {
3257                 result = vm_map_lookup_entry(map, start, &first_entry);
3258                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3259                         first_entry = first_entry->next;
3260                 else
3261                         KASSERT(result, ("vm_map_wire: lookup failed"));
3262         }
3263         for (entry = first_entry; entry->start < end; entry = entry->next) {
3264                 /*
3265                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
3266                  * space in the unwired region could have been mapped
3267                  * while the map lock was dropped for faulting in the
3268                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3269                  * Moreover, another thread could be simultaneously
3270                  * wiring this new mapping entry.  Detect these cases
3271                  * and skip any entries marked as in transition not by us.
3272                  */
3273                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3274                     entry->wiring_thread != curthread) {
3275                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3276                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3277                         continue;
3278                 }
3279
3280                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3281                         goto next_entry_done;
3282
3283                 if (rv == KERN_SUCCESS) {
3284                         if (user_wire)
3285                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3286                 } else if (entry->wired_count == -1) {
3287                         /*
3288                          * Wiring failed on this entry.  Thus, unwiring is
3289                          * unnecessary.
3290                          */
3291                         entry->wired_count = 0;
3292                 } else if (!user_wire ||
3293                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3294                         /*
3295                          * Undo the wiring.  Wiring succeeded on this entry
3296                          * but failed on a later entry.  
3297                          */
3298                         if (entry->wired_count == 1) {
3299                                 vm_map_entry_unwire(map, entry);
3300                                 if (user_wire)
3301                                         vm_map_wire_user_count_sub(
3302                                             atop(entry->end - entry->start));
3303                         } else
3304                                 entry->wired_count--;
3305                 }
3306         next_entry_done:
3307                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3308                     ("vm_map_wire: in-transition flag missing %p", entry));
3309                 KASSERT(entry->wiring_thread == curthread,
3310                     ("vm_map_wire: alien wire %p", entry));
3311                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3312                     MAP_ENTRY_WIRE_SKIPPED);
3313                 entry->wiring_thread = NULL;
3314                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3315                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3316                         need_wakeup = TRUE;
3317                 }
3318                 vm_map_simplify_entry(map, entry);
3319         }
3320         if (need_wakeup)
3321                 vm_map_wakeup(map);
3322         return (rv);
3323 }
3324
3325 /*
3326  * vm_map_sync
3327  *
3328  * Push any dirty cached pages in the address range to their pager.
3329  * If syncio is TRUE, dirty pages are written synchronously.
3330  * If invalidate is TRUE, any cached pages are freed as well.
3331  *
3332  * If the size of the region from start to end is zero, we are
3333  * supposed to flush all modified pages within the region containing
3334  * start.  Unfortunately, a region can be split or coalesced with
3335  * neighboring regions, making it difficult to determine what the
3336  * original region was.  Therefore, we approximate this requirement by
3337  * flushing the current region containing start.
3338  *
3339  * Returns an error if any part of the specified range is not mapped.
3340  */
3341 int
3342 vm_map_sync(
3343         vm_map_t map,
3344         vm_offset_t start,
3345         vm_offset_t end,
3346         boolean_t syncio,
3347         boolean_t invalidate)
3348 {
3349         vm_map_entry_t current;
3350         vm_map_entry_t entry;
3351         vm_size_t size;
3352         vm_object_t object;
3353         vm_ooffset_t offset;
3354         unsigned int last_timestamp;
3355         boolean_t failed;
3356
3357         vm_map_lock_read(map);
3358         VM_MAP_RANGE_CHECK(map, start, end);
3359         if (!vm_map_lookup_entry(map, start, &entry)) {
3360                 vm_map_unlock_read(map);
3361                 return (KERN_INVALID_ADDRESS);
3362         } else if (start == end) {
3363                 start = entry->start;
3364                 end = entry->end;
3365         }
3366         /*
3367          * Make a first pass to check for user-wired memory and holes.
3368          */
3369         for (current = entry; current->start < end; current = current->next) {
3370                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3371                         vm_map_unlock_read(map);
3372                         return (KERN_INVALID_ARGUMENT);
3373                 }
3374                 if (end > current->end &&
3375                     current->end != current->next->start) {
3376                         vm_map_unlock_read(map);
3377                         return (KERN_INVALID_ADDRESS);
3378                 }
3379         }
3380
3381         if (invalidate)
3382                 pmap_remove(map->pmap, start, end);
3383         failed = FALSE;
3384
3385         /*
3386          * Make a second pass, cleaning/uncaching pages from the indicated
3387          * objects as we go.
3388          */
3389         for (current = entry; current->start < end;) {
3390                 offset = current->offset + (start - current->start);
3391                 size = (end <= current->end ? end : current->end) - start;
3392                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3393                         vm_map_t smap;
3394                         vm_map_entry_t tentry;
3395                         vm_size_t tsize;
3396
3397                         smap = current->object.sub_map;
3398                         vm_map_lock_read(smap);
3399                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3400                         tsize = tentry->end - offset;
3401                         if (tsize < size)
3402                                 size = tsize;
3403                         object = tentry->object.vm_object;
3404                         offset = tentry->offset + (offset - tentry->start);
3405                         vm_map_unlock_read(smap);
3406                 } else {
3407                         object = current->object.vm_object;
3408                 }
3409                 vm_object_reference(object);
3410                 last_timestamp = map->timestamp;
3411                 vm_map_unlock_read(map);
3412                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3413                         failed = TRUE;
3414                 start += size;
3415                 vm_object_deallocate(object);
3416                 vm_map_lock_read(map);
3417                 if (last_timestamp == map->timestamp ||
3418                     !vm_map_lookup_entry(map, start, &current))
3419                         current = current->next;
3420         }
3421
3422         vm_map_unlock_read(map);
3423         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3424 }
3425
3426 /*
3427  *      vm_map_entry_unwire:    [ internal use only ]
3428  *
3429  *      Make the region specified by this entry pageable.
3430  *
3431  *      The map in question should be locked.
3432  *      [This is the reason for this routine's existence.]
3433  */
3434 static void
3435 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3436 {
3437         vm_size_t size;
3438
3439         VM_MAP_ASSERT_LOCKED(map);
3440         KASSERT(entry->wired_count > 0,
3441             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3442
3443         size = entry->end - entry->start;
3444         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3445                 vm_map_wire_user_count_sub(atop(size));
3446         pmap_unwire(map->pmap, entry->start, entry->end);
3447         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3448             PQ_ACTIVE);
3449         entry->wired_count = 0;
3450 }
3451
3452 static void
3453 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3454 {
3455
3456         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3457                 vm_object_deallocate(entry->object.vm_object);
3458         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3459 }
3460
3461 /*
3462  *      vm_map_entry_delete:    [ internal use only ]
3463  *
3464  *      Deallocate the given entry from the target map.
3465  */
3466 static void
3467 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3468 {
3469         vm_object_t object;
3470         vm_pindex_t offidxstart, offidxend, count, size1;
3471         vm_size_t size;
3472
3473         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3474         object = entry->object.vm_object;
3475
3476         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3477                 MPASS(entry->cred == NULL);
3478                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3479                 MPASS(object == NULL);
3480                 vm_map_entry_deallocate(entry, map->system_map);
3481                 return;
3482         }
3483
3484         size = entry->end - entry->start;
3485         map->size -= size;
3486
3487         if (entry->cred != NULL) {
3488                 swap_release_by_cred(size, entry->cred);
3489                 crfree(entry->cred);
3490         }
3491
3492         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3493             (object != NULL)) {
3494                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3495                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3496                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3497                 count = atop(size);
3498                 offidxstart = OFF_TO_IDX(entry->offset);
3499                 offidxend = offidxstart + count;
3500                 VM_OBJECT_WLOCK(object);
3501                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3502                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3503                     object == kernel_object)) {
3504                         vm_object_collapse(object);
3505
3506                         /*
3507                          * The option OBJPR_NOTMAPPED can be passed here
3508                          * because vm_map_delete() already performed
3509                          * pmap_remove() on the only mapping to this range
3510                          * of pages. 
3511                          */
3512                         vm_object_page_remove(object, offidxstart, offidxend,
3513                             OBJPR_NOTMAPPED);
3514                         if (object->type == OBJT_SWAP)
3515                                 swap_pager_freespace(object, offidxstart,
3516                                     count);
3517                         if (offidxend >= object->size &&
3518                             offidxstart < object->size) {
3519                                 size1 = object->size;
3520                                 object->size = offidxstart;
3521                                 if (object->cred != NULL) {
3522                                         size1 -= object->size;
3523                                         KASSERT(object->charge >= ptoa(size1),
3524                                             ("object %p charge < 0", object));
3525                                         swap_release_by_cred(ptoa(size1),
3526                                             object->cred);
3527                                         object->charge -= ptoa(size1);
3528                                 }
3529                         }
3530                 }
3531                 VM_OBJECT_WUNLOCK(object);
3532         } else
3533                 entry->object.vm_object = NULL;
3534         if (map->system_map)
3535                 vm_map_entry_deallocate(entry, TRUE);
3536         else {
3537                 entry->next = curthread->td_map_def_user;
3538                 curthread->td_map_def_user = entry;
3539         }
3540 }
3541
3542 /*
3543  *      vm_map_delete:  [ internal use only ]
3544  *
3545  *      Deallocates the given address range from the target
3546  *      map.
3547  */
3548 int
3549 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3550 {
3551         vm_map_entry_t entry;
3552         vm_map_entry_t first_entry;
3553
3554         VM_MAP_ASSERT_LOCKED(map);
3555         if (start == end)
3556                 return (KERN_SUCCESS);
3557
3558         /*
3559          * Find the start of the region, and clip it
3560          */
3561         if (!vm_map_lookup_entry(map, start, &first_entry))
3562                 entry = first_entry->next;
3563         else {
3564                 entry = first_entry;
3565                 vm_map_clip_start(map, entry, start);
3566         }
3567
3568         /*
3569          * Step through all entries in this region
3570          */
3571         while (entry->start < end) {
3572                 vm_map_entry_t next;
3573
3574                 /*
3575                  * Wait for wiring or unwiring of an entry to complete.
3576                  * Also wait for any system wirings to disappear on
3577                  * user maps.
3578                  */
3579                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3580                     (vm_map_pmap(map) != kernel_pmap &&
3581                     vm_map_entry_system_wired_count(entry) != 0)) {
3582                         unsigned int last_timestamp;
3583                         vm_offset_t saved_start;
3584                         vm_map_entry_t tmp_entry;
3585
3586                         saved_start = entry->start;
3587                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3588                         last_timestamp = map->timestamp;
3589                         (void) vm_map_unlock_and_wait(map, 0);
3590                         vm_map_lock(map);
3591                         if (last_timestamp + 1 != map->timestamp) {
3592                                 /*
3593                                  * Look again for the entry because the map was
3594                                  * modified while it was unlocked.
3595                                  * Specifically, the entry may have been
3596                                  * clipped, merged, or deleted.
3597                                  */
3598                                 if (!vm_map_lookup_entry(map, saved_start,
3599                                                          &tmp_entry))
3600                                         entry = tmp_entry->next;
3601                                 else {
3602                                         entry = tmp_entry;
3603                                         vm_map_clip_start(map, entry,
3604                                                           saved_start);
3605                                 }
3606                         }
3607                         continue;
3608                 }
3609                 vm_map_clip_end(map, entry, end);
3610
3611                 next = entry->next;
3612
3613                 /*
3614                  * Unwire before removing addresses from the pmap; otherwise,
3615                  * unwiring will put the entries back in the pmap.
3616                  */
3617                 if (entry->wired_count != 0)
3618                         vm_map_entry_unwire(map, entry);
3619
3620                 /*
3621                  * Remove mappings for the pages, but only if the
3622                  * mappings could exist.  For instance, it does not
3623                  * make sense to call pmap_remove() for guard entries.
3624                  */
3625                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3626                     entry->object.vm_object != NULL)
3627                         pmap_remove(map->pmap, entry->start, entry->end);
3628
3629                 if (entry->end == map->anon_loc)
3630                         map->anon_loc = entry->start;
3631
3632                 /*
3633                  * Delete the entry only after removing all pmap
3634                  * entries pointing to its pages.  (Otherwise, its
3635                  * page frames may be reallocated, and any modify bits
3636                  * will be set in the wrong object!)
3637                  */
3638                 vm_map_entry_delete(map, entry);
3639                 entry = next;
3640         }
3641         return (KERN_SUCCESS);
3642 }
3643
3644 /*
3645  *      vm_map_remove:
3646  *
3647  *      Remove the given address range from the target map.
3648  *      This is the exported form of vm_map_delete.
3649  */
3650 int
3651 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3652 {
3653         int result;
3654
3655         vm_map_lock(map);
3656         VM_MAP_RANGE_CHECK(map, start, end);
3657         result = vm_map_delete(map, start, end);
3658         vm_map_unlock(map);
3659         return (result);
3660 }
3661
3662 /*
3663  *      vm_map_check_protection:
3664  *
3665  *      Assert that the target map allows the specified privilege on the
3666  *      entire address region given.  The entire region must be allocated.
3667  *
3668  *      WARNING!  This code does not and should not check whether the
3669  *      contents of the region is accessible.  For example a smaller file
3670  *      might be mapped into a larger address space.
3671  *
3672  *      NOTE!  This code is also called by munmap().
3673  *
3674  *      The map must be locked.  A read lock is sufficient.
3675  */
3676 boolean_t
3677 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3678                         vm_prot_t protection)
3679 {
3680         vm_map_entry_t entry;
3681         vm_map_entry_t tmp_entry;
3682
3683         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3684                 return (FALSE);
3685         entry = tmp_entry;
3686
3687         while (start < end) {
3688                 /*
3689                  * No holes allowed!
3690                  */
3691                 if (start < entry->start)
3692                         return (FALSE);
3693                 /*
3694                  * Check protection associated with entry.
3695                  */
3696                 if ((entry->protection & protection) != protection)
3697                         return (FALSE);
3698                 /* go to next entry */
3699                 start = entry->end;
3700                 entry = entry->next;
3701         }
3702         return (TRUE);
3703 }
3704
3705 /*
3706  *      vm_map_copy_entry:
3707  *
3708  *      Copies the contents of the source entry to the destination
3709  *      entry.  The entries *must* be aligned properly.
3710  */
3711 static void
3712 vm_map_copy_entry(
3713         vm_map_t src_map,
3714         vm_map_t dst_map,
3715         vm_map_entry_t src_entry,
3716         vm_map_entry_t dst_entry,
3717         vm_ooffset_t *fork_charge)
3718 {
3719         vm_object_t src_object;
3720         vm_map_entry_t fake_entry;
3721         vm_offset_t size;
3722         struct ucred *cred;
3723         int charged;
3724
3725         VM_MAP_ASSERT_LOCKED(dst_map);
3726
3727         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3728                 return;
3729
3730         if (src_entry->wired_count == 0 ||
3731             (src_entry->protection & VM_PROT_WRITE) == 0) {
3732                 /*
3733                  * If the source entry is marked needs_copy, it is already
3734                  * write-protected.
3735                  */
3736                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3737                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3738                         pmap_protect(src_map->pmap,
3739                             src_entry->start,
3740                             src_entry->end,
3741                             src_entry->protection & ~VM_PROT_WRITE);
3742                 }
3743
3744                 /*
3745                  * Make a copy of the object.
3746                  */
3747                 size = src_entry->end - src_entry->start;
3748                 if ((src_object = src_entry->object.vm_object) != NULL) {
3749                         VM_OBJECT_WLOCK(src_object);
3750                         charged = ENTRY_CHARGED(src_entry);
3751                         if (src_object->handle == NULL &&
3752                             (src_object->type == OBJT_DEFAULT ||
3753                             src_object->type == OBJT_SWAP)) {
3754                                 vm_object_collapse(src_object);
3755                                 if ((src_object->flags & (OBJ_NOSPLIT |
3756                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3757                                         vm_object_split(src_entry);
3758                                         src_object =
3759                                             src_entry->object.vm_object;
3760                                 }
3761                         }
3762                         vm_object_reference_locked(src_object);
3763                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3764                         if (src_entry->cred != NULL &&
3765                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3766                                 KASSERT(src_object->cred == NULL,
3767                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3768                                      src_object));
3769                                 src_object->cred = src_entry->cred;
3770                                 src_object->charge = size;
3771                         }
3772                         VM_OBJECT_WUNLOCK(src_object);
3773                         dst_entry->object.vm_object = src_object;
3774                         if (charged) {
3775                                 cred = curthread->td_ucred;
3776                                 crhold(cred);
3777                                 dst_entry->cred = cred;
3778                                 *fork_charge += size;
3779                                 if (!(src_entry->eflags &
3780                                       MAP_ENTRY_NEEDS_COPY)) {
3781                                         crhold(cred);
3782                                         src_entry->cred = cred;
3783                                         *fork_charge += size;
3784                                 }
3785                         }
3786                         src_entry->eflags |= MAP_ENTRY_COW |
3787                             MAP_ENTRY_NEEDS_COPY;
3788                         dst_entry->eflags |= MAP_ENTRY_COW |
3789                             MAP_ENTRY_NEEDS_COPY;
3790                         dst_entry->offset = src_entry->offset;
3791                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3792                                 /*
3793                                  * MAP_ENTRY_VN_WRITECNT cannot
3794                                  * indicate write reference from
3795                                  * src_entry, since the entry is
3796                                  * marked as needs copy.  Allocate a
3797                                  * fake entry that is used to
3798                                  * decrement object->un_pager.vnp.writecount
3799                                  * at the appropriate time.  Attach
3800                                  * fake_entry to the deferred list.
3801                                  */
3802                                 fake_entry = vm_map_entry_create(dst_map);
3803                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3804                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3805                                 vm_object_reference(src_object);
3806                                 fake_entry->object.vm_object = src_object;
3807                                 fake_entry->start = src_entry->start;
3808                                 fake_entry->end = src_entry->end;
3809                                 fake_entry->next = curthread->td_map_def_user;
3810                                 curthread->td_map_def_user = fake_entry;
3811                         }
3812
3813                         pmap_copy(dst_map->pmap, src_map->pmap,
3814                             dst_entry->start, dst_entry->end - dst_entry->start,
3815                             src_entry->start);
3816                 } else {
3817                         dst_entry->object.vm_object = NULL;
3818                         dst_entry->offset = 0;
3819                         if (src_entry->cred != NULL) {
3820                                 dst_entry->cred = curthread->td_ucred;
3821                                 crhold(dst_entry->cred);
3822                                 *fork_charge += size;
3823                         }
3824                 }
3825         } else {
3826                 /*
3827                  * We don't want to make writeable wired pages copy-on-write.
3828                  * Immediately copy these pages into the new map by simulating
3829                  * page faults.  The new pages are pageable.
3830                  */
3831                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3832                     fork_charge);
3833         }
3834 }
3835
3836 /*
3837  * vmspace_map_entry_forked:
3838  * Update the newly-forked vmspace each time a map entry is inherited
3839  * or copied.  The values for vm_dsize and vm_tsize are approximate
3840  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3841  */
3842 static void
3843 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3844     vm_map_entry_t entry)
3845 {
3846         vm_size_t entrysize;
3847         vm_offset_t newend;
3848
3849         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3850                 return;
3851         entrysize = entry->end - entry->start;
3852         vm2->vm_map.size += entrysize;
3853         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3854                 vm2->vm_ssize += btoc(entrysize);
3855         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3856             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3857                 newend = MIN(entry->end,
3858                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3859                 vm2->vm_dsize += btoc(newend - entry->start);
3860         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3861             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3862                 newend = MIN(entry->end,
3863                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3864                 vm2->vm_tsize += btoc(newend - entry->start);
3865         }
3866 }
3867
3868 /*
3869  * vmspace_fork:
3870  * Create a new process vmspace structure and vm_map
3871  * based on those of an existing process.  The new map
3872  * is based on the old map, according to the inheritance
3873  * values on the regions in that map.
3874  *
3875  * XXX It might be worth coalescing the entries added to the new vmspace.
3876  *
3877  * The source map must not be locked.
3878  */
3879 struct vmspace *
3880 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3881 {
3882         struct vmspace *vm2;
3883         vm_map_t new_map, old_map;
3884         vm_map_entry_t new_entry, old_entry;
3885         vm_object_t object;
3886         int error, locked;
3887         vm_inherit_t inh;
3888
3889         old_map = &vm1->vm_map;
3890         /* Copy immutable fields of vm1 to vm2. */
3891         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3892             pmap_pinit);
3893         if (vm2 == NULL)
3894                 return (NULL);
3895
3896         vm2->vm_taddr = vm1->vm_taddr;
3897         vm2->vm_daddr = vm1->vm_daddr;
3898         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3899         vm_map_lock(old_map);
3900         if (old_map->busy)
3901                 vm_map_wait_busy(old_map);
3902         new_map = &vm2->vm_map;
3903         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3904         KASSERT(locked, ("vmspace_fork: lock failed"));
3905
3906         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3907         if (error != 0) {
3908                 sx_xunlock(&old_map->lock);
3909                 sx_xunlock(&new_map->lock);
3910                 vm_map_process_deferred();
3911                 vmspace_free(vm2);
3912                 return (NULL);
3913         }
3914
3915         new_map->anon_loc = old_map->anon_loc;
3916
3917         old_entry = old_map->header.next;
3918
3919         while (old_entry != &old_map->header) {
3920                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3921                         panic("vm_map_fork: encountered a submap");
3922
3923                 inh = old_entry->inheritance;
3924                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3925                     inh != VM_INHERIT_NONE)
3926                         inh = VM_INHERIT_COPY;
3927
3928                 switch (inh) {
3929                 case VM_INHERIT_NONE:
3930                         break;
3931
3932                 case VM_INHERIT_SHARE:
3933                         /*
3934                          * Clone the entry, creating the shared object if necessary.
3935                          */
3936                         object = old_entry->object.vm_object;
3937                         if (object == NULL) {
3938                                 object = vm_object_allocate(OBJT_DEFAULT,
3939                                         atop(old_entry->end - old_entry->start));
3940                                 old_entry->object.vm_object = object;
3941                                 old_entry->offset = 0;
3942                                 if (old_entry->cred != NULL) {
3943                                         object->cred = old_entry->cred;
3944                                         object->charge = old_entry->end -
3945                                             old_entry->start;
3946                                         old_entry->cred = NULL;
3947                                 }
3948                         }
3949
3950                         /*
3951                          * Add the reference before calling vm_object_shadow
3952                          * to insure that a shadow object is created.
3953                          */
3954                         vm_object_reference(object);
3955                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3956                                 vm_object_shadow(&old_entry->object.vm_object,
3957                                     &old_entry->offset,
3958                                     old_entry->end - old_entry->start);
3959                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3960                                 /* Transfer the second reference too. */
3961                                 vm_object_reference(
3962                                     old_entry->object.vm_object);
3963
3964                                 /*
3965                                  * As in vm_map_simplify_entry(), the
3966                                  * vnode lock will not be acquired in
3967                                  * this call to vm_object_deallocate().
3968                                  */
3969                                 vm_object_deallocate(object);
3970                                 object = old_entry->object.vm_object;
3971                         }
3972                         VM_OBJECT_WLOCK(object);
3973                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3974                         if (old_entry->cred != NULL) {
3975                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3976                                 object->cred = old_entry->cred;
3977                                 object->charge = old_entry->end - old_entry->start;
3978                                 old_entry->cred = NULL;
3979                         }
3980
3981                         /*
3982                          * Assert the correct state of the vnode
3983                          * v_writecount while the object is locked, to
3984                          * not relock it later for the assertion
3985                          * correctness.
3986                          */
3987                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3988                             object->type == OBJT_VNODE) {
3989                                 KASSERT(((struct vnode *)object->handle)->
3990                                     v_writecount > 0,
3991                                     ("vmspace_fork: v_writecount %p", object));
3992                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3993                                     ("vmspace_fork: vnp.writecount %p",
3994                                     object));
3995                         }
3996                         VM_OBJECT_WUNLOCK(object);
3997
3998                         /*
3999                          * Clone the entry, referencing the shared object.
4000                          */
4001                         new_entry = vm_map_entry_create(new_map);
4002                         *new_entry = *old_entry;
4003                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4004                             MAP_ENTRY_IN_TRANSITION);
4005                         new_entry->wiring_thread = NULL;
4006                         new_entry->wired_count = 0;
4007                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
4008                                 vnode_pager_update_writecount(object,
4009                                     new_entry->start, new_entry->end);
4010                         }
4011                         vm_map_entry_set_vnode_text(new_entry, true);
4012
4013                         /*
4014                          * Insert the entry into the new map -- we know we're
4015                          * inserting at the end of the new map.
4016                          */
4017                         vm_map_entry_link(new_map, new_entry);
4018                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4019
4020                         /*
4021                          * Update the physical map
4022                          */
4023                         pmap_copy(new_map->pmap, old_map->pmap,
4024                             new_entry->start,
4025                             (old_entry->end - old_entry->start),
4026                             old_entry->start);
4027                         break;
4028
4029                 case VM_INHERIT_COPY:
4030                         /*
4031                          * Clone the entry and link into the map.
4032                          */
4033                         new_entry = vm_map_entry_create(new_map);
4034                         *new_entry = *old_entry;
4035                         /*
4036                          * Copied entry is COW over the old object.
4037                          */
4038                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4039                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
4040                         new_entry->wiring_thread = NULL;
4041                         new_entry->wired_count = 0;
4042                         new_entry->object.vm_object = NULL;
4043                         new_entry->cred = NULL;
4044                         vm_map_entry_link(new_map, new_entry);
4045                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4046                         vm_map_copy_entry(old_map, new_map, old_entry,
4047                             new_entry, fork_charge);
4048                         vm_map_entry_set_vnode_text(new_entry, true);
4049                         break;
4050
4051                 case VM_INHERIT_ZERO:
4052                         /*
4053                          * Create a new anonymous mapping entry modelled from
4054                          * the old one.
4055                          */
4056                         new_entry = vm_map_entry_create(new_map);
4057                         memset(new_entry, 0, sizeof(*new_entry));
4058
4059                         new_entry->start = old_entry->start;
4060                         new_entry->end = old_entry->end;
4061                         new_entry->eflags = old_entry->eflags &
4062                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4063                             MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4064                         new_entry->protection = old_entry->protection;
4065                         new_entry->max_protection = old_entry->max_protection;
4066                         new_entry->inheritance = VM_INHERIT_ZERO;
4067
4068                         vm_map_entry_link(new_map, new_entry);
4069                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4070
4071                         new_entry->cred = curthread->td_ucred;
4072                         crhold(new_entry->cred);
4073                         *fork_charge += (new_entry->end - new_entry->start);
4074
4075                         break;
4076                 }
4077                 old_entry = old_entry->next;
4078         }
4079         /*
4080          * Use inlined vm_map_unlock() to postpone handling the deferred
4081          * map entries, which cannot be done until both old_map and
4082          * new_map locks are released.
4083          */
4084         sx_xunlock(&old_map->lock);
4085         sx_xunlock(&new_map->lock);
4086         vm_map_process_deferred();
4087
4088         return (vm2);
4089 }
4090
4091 /*
4092  * Create a process's stack for exec_new_vmspace().  This function is never
4093  * asked to wire the newly created stack.
4094  */
4095 int
4096 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4097     vm_prot_t prot, vm_prot_t max, int cow)
4098 {
4099         vm_size_t growsize, init_ssize;
4100         rlim_t vmemlim;
4101         int rv;
4102
4103         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4104         growsize = sgrowsiz;
4105         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4106         vm_map_lock(map);
4107         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4108         /* If we would blow our VMEM resource limit, no go */
4109         if (map->size + init_ssize > vmemlim) {
4110                 rv = KERN_NO_SPACE;
4111                 goto out;
4112         }
4113         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4114             max, cow);
4115 out:
4116         vm_map_unlock(map);
4117         return (rv);
4118 }
4119
4120 static int stack_guard_page = 1;
4121 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4122     &stack_guard_page, 0,
4123     "Specifies the number of guard pages for a stack that grows");
4124
4125 static int
4126 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4127     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4128 {
4129         vm_map_entry_t new_entry, prev_entry;
4130         vm_offset_t bot, gap_bot, gap_top, top;
4131         vm_size_t init_ssize, sgp;
4132         int orient, rv;
4133
4134         /*
4135          * The stack orientation is piggybacked with the cow argument.
4136          * Extract it into orient and mask the cow argument so that we
4137          * don't pass it around further.
4138          */
4139         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4140         KASSERT(orient != 0, ("No stack grow direction"));
4141         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4142             ("bi-dir stack"));
4143
4144         if (addrbos < vm_map_min(map) ||
4145             addrbos + max_ssize > vm_map_max(map) ||
4146             addrbos + max_ssize <= addrbos)
4147                 return (KERN_INVALID_ADDRESS);
4148         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4149         if (sgp >= max_ssize)
4150                 return (KERN_INVALID_ARGUMENT);
4151
4152         init_ssize = growsize;
4153         if (max_ssize < init_ssize + sgp)
4154                 init_ssize = max_ssize - sgp;
4155
4156         /* If addr is already mapped, no go */
4157         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4158                 return (KERN_NO_SPACE);
4159
4160         /*
4161          * If we can't accommodate max_ssize in the current mapping, no go.
4162          */
4163         if (prev_entry->next->start < addrbos + max_ssize)
4164                 return (KERN_NO_SPACE);
4165
4166         /*
4167          * We initially map a stack of only init_ssize.  We will grow as
4168          * needed later.  Depending on the orientation of the stack (i.e.
4169          * the grow direction) we either map at the top of the range, the
4170          * bottom of the range or in the middle.
4171          *
4172          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4173          * and cow to be 0.  Possibly we should eliminate these as input
4174          * parameters, and just pass these values here in the insert call.
4175          */
4176         if (orient == MAP_STACK_GROWS_DOWN) {
4177                 bot = addrbos + max_ssize - init_ssize;
4178                 top = bot + init_ssize;
4179                 gap_bot = addrbos;
4180                 gap_top = bot;
4181         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4182                 bot = addrbos;
4183                 top = bot + init_ssize;
4184                 gap_bot = top;
4185                 gap_top = addrbos + max_ssize;
4186         }
4187         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4188         if (rv != KERN_SUCCESS)
4189                 return (rv);
4190         new_entry = prev_entry->next;
4191         KASSERT(new_entry->end == top || new_entry->start == bot,
4192             ("Bad entry start/end for new stack entry"));
4193         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4194             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4195             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4196         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4197             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4198             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4199         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4200             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4201             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4202         if (rv != KERN_SUCCESS)
4203                 (void)vm_map_delete(map, bot, top);
4204         return (rv);
4205 }
4206
4207 /*
4208  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4209  * successfully grow the stack.
4210  */
4211 static int
4212 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4213 {
4214         vm_map_entry_t stack_entry;
4215         struct proc *p;
4216         struct vmspace *vm;
4217         struct ucred *cred;
4218         vm_offset_t gap_end, gap_start, grow_start;
4219         vm_size_t grow_amount, guard, max_grow;
4220         rlim_t lmemlim, stacklim, vmemlim;
4221         int rv, rv1;
4222         bool gap_deleted, grow_down, is_procstack;
4223 #ifdef notyet
4224         uint64_t limit;
4225 #endif
4226 #ifdef RACCT
4227         int error;
4228 #endif
4229
4230         p = curproc;
4231         vm = p->p_vmspace;
4232
4233         /*
4234          * Disallow stack growth when the access is performed by a
4235          * debugger or AIO daemon.  The reason is that the wrong
4236          * resource limits are applied.
4237          */
4238         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4239                 return (KERN_FAILURE);
4240
4241         MPASS(!map->system_map);
4242
4243         guard = stack_guard_page * PAGE_SIZE;
4244         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4245         stacklim = lim_cur(curthread, RLIMIT_STACK);
4246         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4247 retry:
4248         /* If addr is not in a hole for a stack grow area, no need to grow. */
4249         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4250                 return (KERN_FAILURE);
4251         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4252                 return (KERN_SUCCESS);
4253         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4254                 stack_entry = gap_entry->next;
4255                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4256                     stack_entry->start != gap_entry->end)
4257                         return (KERN_FAILURE);
4258                 grow_amount = round_page(stack_entry->start - addr);
4259                 grow_down = true;
4260         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4261                 stack_entry = gap_entry->prev;
4262                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4263                     stack_entry->end != gap_entry->start)
4264                         return (KERN_FAILURE);
4265                 grow_amount = round_page(addr + 1 - stack_entry->end);
4266                 grow_down = false;
4267         } else {
4268                 return (KERN_FAILURE);
4269         }
4270         max_grow = gap_entry->end - gap_entry->start;
4271         if (guard > max_grow)
4272                 return (KERN_NO_SPACE);
4273         max_grow -= guard;
4274         if (grow_amount > max_grow)
4275                 return (KERN_NO_SPACE);
4276
4277         /*
4278          * If this is the main process stack, see if we're over the stack
4279          * limit.
4280          */
4281         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4282             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4283         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4284                 return (KERN_NO_SPACE);
4285
4286 #ifdef RACCT
4287         if (racct_enable) {
4288                 PROC_LOCK(p);
4289                 if (is_procstack && racct_set(p, RACCT_STACK,
4290                     ctob(vm->vm_ssize) + grow_amount)) {
4291                         PROC_UNLOCK(p);
4292                         return (KERN_NO_SPACE);
4293                 }
4294                 PROC_UNLOCK(p);
4295         }
4296 #endif
4297
4298         grow_amount = roundup(grow_amount, sgrowsiz);
4299         if (grow_amount > max_grow)
4300                 grow_amount = max_grow;
4301         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4302                 grow_amount = trunc_page((vm_size_t)stacklim) -
4303                     ctob(vm->vm_ssize);
4304         }
4305
4306 #ifdef notyet
4307         PROC_LOCK(p);
4308         limit = racct_get_available(p, RACCT_STACK);
4309         PROC_UNLOCK(p);
4310         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4311                 grow_amount = limit - ctob(vm->vm_ssize);
4312 #endif
4313
4314         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4315                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4316                         rv = KERN_NO_SPACE;
4317                         goto out;
4318                 }
4319 #ifdef RACCT
4320                 if (racct_enable) {
4321                         PROC_LOCK(p);
4322                         if (racct_set(p, RACCT_MEMLOCK,
4323                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4324                                 PROC_UNLOCK(p);
4325                                 rv = KERN_NO_SPACE;
4326                                 goto out;
4327                         }
4328                         PROC_UNLOCK(p);
4329                 }
4330 #endif
4331         }
4332
4333         /* If we would blow our VMEM resource limit, no go */
4334         if (map->size + grow_amount > vmemlim) {
4335                 rv = KERN_NO_SPACE;
4336                 goto out;
4337         }
4338 #ifdef RACCT
4339         if (racct_enable) {
4340                 PROC_LOCK(p);
4341                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4342                         PROC_UNLOCK(p);
4343                         rv = KERN_NO_SPACE;
4344                         goto out;
4345                 }
4346                 PROC_UNLOCK(p);
4347         }
4348 #endif
4349
4350         if (vm_map_lock_upgrade(map)) {
4351                 gap_entry = NULL;
4352                 vm_map_lock_read(map);
4353                 goto retry;
4354         }
4355
4356         if (grow_down) {
4357                 grow_start = gap_entry->end - grow_amount;
4358                 if (gap_entry->start + grow_amount == gap_entry->end) {
4359                         gap_start = gap_entry->start;
4360                         gap_end = gap_entry->end;
4361                         vm_map_entry_delete(map, gap_entry);
4362                         gap_deleted = true;
4363                 } else {
4364                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4365                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4366                         gap_deleted = false;
4367                 }
4368                 rv = vm_map_insert(map, NULL, 0, grow_start,
4369                     grow_start + grow_amount,
4370                     stack_entry->protection, stack_entry->max_protection,
4371                     MAP_STACK_GROWS_DOWN);
4372                 if (rv != KERN_SUCCESS) {
4373                         if (gap_deleted) {
4374                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4375                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4376                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4377                                 MPASS(rv1 == KERN_SUCCESS);
4378                         } else
4379                                 vm_map_entry_resize(map, gap_entry,
4380                                     grow_amount);
4381                 }
4382         } else {
4383                 grow_start = stack_entry->end;
4384                 cred = stack_entry->cred;
4385                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4386                         cred = stack_entry->object.vm_object->cred;
4387                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4388                         rv = KERN_NO_SPACE;
4389                 /* Grow the underlying object if applicable. */
4390                 else if (stack_entry->object.vm_object == NULL ||
4391                     vm_object_coalesce(stack_entry->object.vm_object,
4392                     stack_entry->offset,
4393                     (vm_size_t)(stack_entry->end - stack_entry->start),
4394                     grow_amount, cred != NULL)) {
4395                         if (gap_entry->start + grow_amount == gap_entry->end) {
4396                                 vm_map_entry_delete(map, gap_entry);
4397                                 vm_map_entry_resize(map, stack_entry,
4398                                     grow_amount);
4399                         } else {
4400                                 gap_entry->start += grow_amount;
4401                                 stack_entry->end += grow_amount;
4402                         }
4403                         map->size += grow_amount;
4404                         rv = KERN_SUCCESS;
4405                 } else
4406                         rv = KERN_FAILURE;
4407         }
4408         if (rv == KERN_SUCCESS && is_procstack)
4409                 vm->vm_ssize += btoc(grow_amount);
4410
4411         /*
4412          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4413          */
4414         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4415                 rv = vm_map_wire_locked(map, grow_start,
4416                     grow_start + grow_amount,
4417                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4418         }
4419         vm_map_lock_downgrade(map);
4420
4421 out:
4422 #ifdef RACCT
4423         if (racct_enable && rv != KERN_SUCCESS) {
4424                 PROC_LOCK(p);
4425                 error = racct_set(p, RACCT_VMEM, map->size);
4426                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4427                 if (!old_mlock) {
4428                         error = racct_set(p, RACCT_MEMLOCK,
4429                             ptoa(pmap_wired_count(map->pmap)));
4430                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4431                 }
4432                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4433                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4434                 PROC_UNLOCK(p);
4435         }
4436 #endif
4437
4438         return (rv);
4439 }
4440
4441 /*
4442  * Unshare the specified VM space for exec.  If other processes are
4443  * mapped to it, then create a new one.  The new vmspace is null.
4444  */
4445 int
4446 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4447 {
4448         struct vmspace *oldvmspace = p->p_vmspace;
4449         struct vmspace *newvmspace;
4450
4451         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4452             ("vmspace_exec recursed"));
4453         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4454         if (newvmspace == NULL)
4455                 return (ENOMEM);
4456         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4457         /*
4458          * This code is written like this for prototype purposes.  The
4459          * goal is to avoid running down the vmspace here, but let the
4460          * other process's that are still using the vmspace to finally
4461          * run it down.  Even though there is little or no chance of blocking
4462          * here, it is a good idea to keep this form for future mods.
4463          */
4464         PROC_VMSPACE_LOCK(p);
4465         p->p_vmspace = newvmspace;
4466         PROC_VMSPACE_UNLOCK(p);
4467         if (p == curthread->td_proc)
4468                 pmap_activate(curthread);
4469         curthread->td_pflags |= TDP_EXECVMSPC;
4470         return (0);
4471 }
4472
4473 /*
4474  * Unshare the specified VM space for forcing COW.  This
4475  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4476  */
4477 int
4478 vmspace_unshare(struct proc *p)
4479 {
4480         struct vmspace *oldvmspace = p->p_vmspace;
4481         struct vmspace *newvmspace;
4482         vm_ooffset_t fork_charge;
4483
4484         if (oldvmspace->vm_refcnt == 1)
4485                 return (0);
4486         fork_charge = 0;
4487         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4488         if (newvmspace == NULL)
4489                 return (ENOMEM);
4490         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4491                 vmspace_free(newvmspace);
4492                 return (ENOMEM);
4493         }
4494         PROC_VMSPACE_LOCK(p);
4495         p->p_vmspace = newvmspace;
4496         PROC_VMSPACE_UNLOCK(p);
4497         if (p == curthread->td_proc)
4498                 pmap_activate(curthread);
4499         vmspace_free(oldvmspace);
4500         return (0);
4501 }
4502
4503 /*
4504  *      vm_map_lookup:
4505  *
4506  *      Finds the VM object, offset, and
4507  *      protection for a given virtual address in the
4508  *      specified map, assuming a page fault of the
4509  *      type specified.
4510  *
4511  *      Leaves the map in question locked for read; return
4512  *      values are guaranteed until a vm_map_lookup_done
4513  *      call is performed.  Note that the map argument
4514  *      is in/out; the returned map must be used in
4515  *      the call to vm_map_lookup_done.
4516  *
4517  *      A handle (out_entry) is returned for use in
4518  *      vm_map_lookup_done, to make that fast.
4519  *
4520  *      If a lookup is requested with "write protection"
4521  *      specified, the map may be changed to perform virtual
4522  *      copying operations, although the data referenced will
4523  *      remain the same.
4524  */
4525 int
4526 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4527               vm_offset_t vaddr,
4528               vm_prot_t fault_typea,
4529               vm_map_entry_t *out_entry,        /* OUT */
4530               vm_object_t *object,              /* OUT */
4531               vm_pindex_t *pindex,              /* OUT */
4532               vm_prot_t *out_prot,              /* OUT */
4533               boolean_t *wired)                 /* OUT */
4534 {
4535         vm_map_entry_t entry;
4536         vm_map_t map = *var_map;
4537         vm_prot_t prot;
4538         vm_prot_t fault_type = fault_typea;
4539         vm_object_t eobject;
4540         vm_size_t size;
4541         struct ucred *cred;
4542
4543 RetryLookup:
4544
4545         vm_map_lock_read(map);
4546
4547 RetryLookupLocked:
4548         /*
4549          * Lookup the faulting address.
4550          */
4551         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4552                 vm_map_unlock_read(map);
4553                 return (KERN_INVALID_ADDRESS);
4554         }
4555
4556         entry = *out_entry;
4557
4558         /*
4559          * Handle submaps.
4560          */
4561         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4562                 vm_map_t old_map = map;
4563
4564                 *var_map = map = entry->object.sub_map;
4565                 vm_map_unlock_read(old_map);
4566                 goto RetryLookup;
4567         }
4568
4569         /*
4570          * Check whether this task is allowed to have this page.
4571          */
4572         prot = entry->protection;
4573         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4574                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4575                 if (prot == VM_PROT_NONE && map != kernel_map &&
4576                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4577                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4578                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4579                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4580                         goto RetryLookupLocked;
4581         }
4582         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4583         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4584                 vm_map_unlock_read(map);
4585                 return (KERN_PROTECTION_FAILURE);
4586         }
4587         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4588             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4589             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4590             ("entry %p flags %x", entry, entry->eflags));
4591         if ((fault_typea & VM_PROT_COPY) != 0 &&
4592             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4593             (entry->eflags & MAP_ENTRY_COW) == 0) {
4594                 vm_map_unlock_read(map);
4595                 return (KERN_PROTECTION_FAILURE);
4596         }
4597
4598         /*
4599          * If this page is not pageable, we have to get it for all possible
4600          * accesses.
4601          */
4602         *wired = (entry->wired_count != 0);
4603         if (*wired)
4604                 fault_type = entry->protection;
4605         size = entry->end - entry->start;
4606         /*
4607          * If the entry was copy-on-write, we either ...
4608          */
4609         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4610                 /*
4611                  * If we want to write the page, we may as well handle that
4612                  * now since we've got the map locked.
4613                  *
4614                  * If we don't need to write the page, we just demote the
4615                  * permissions allowed.
4616                  */
4617                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4618                     (fault_typea & VM_PROT_COPY) != 0) {
4619                         /*
4620                          * Make a new object, and place it in the object
4621                          * chain.  Note that no new references have appeared
4622                          * -- one just moved from the map to the new
4623                          * object.
4624                          */
4625                         if (vm_map_lock_upgrade(map))
4626                                 goto RetryLookup;
4627
4628                         if (entry->cred == NULL) {
4629                                 /*
4630                                  * The debugger owner is charged for
4631                                  * the memory.
4632                                  */
4633                                 cred = curthread->td_ucred;
4634                                 crhold(cred);
4635                                 if (!swap_reserve_by_cred(size, cred)) {
4636                                         crfree(cred);
4637                                         vm_map_unlock(map);
4638                                         return (KERN_RESOURCE_SHORTAGE);
4639                                 }
4640                                 entry->cred = cred;
4641                         }
4642                         vm_object_shadow(&entry->object.vm_object,
4643                             &entry->offset, size);
4644                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4645                         eobject = entry->object.vm_object;
4646                         if (eobject->cred != NULL) {
4647                                 /*
4648                                  * The object was not shadowed.
4649                                  */
4650                                 swap_release_by_cred(size, entry->cred);
4651                                 crfree(entry->cred);
4652                                 entry->cred = NULL;
4653                         } else if (entry->cred != NULL) {
4654                                 VM_OBJECT_WLOCK(eobject);
4655                                 eobject->cred = entry->cred;
4656                                 eobject->charge = size;
4657                                 VM_OBJECT_WUNLOCK(eobject);
4658                                 entry->cred = NULL;
4659                         }
4660
4661                         vm_map_lock_downgrade(map);
4662                 } else {
4663                         /*
4664                          * We're attempting to read a copy-on-write page --
4665                          * don't allow writes.
4666                          */
4667                         prot &= ~VM_PROT_WRITE;
4668                 }
4669         }
4670
4671         /*
4672          * Create an object if necessary.
4673          */
4674         if (entry->object.vm_object == NULL &&
4675             !map->system_map) {
4676                 if (vm_map_lock_upgrade(map))
4677                         goto RetryLookup;
4678                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4679                     atop(size));
4680                 entry->offset = 0;
4681                 if (entry->cred != NULL) {
4682                         VM_OBJECT_WLOCK(entry->object.vm_object);
4683                         entry->object.vm_object->cred = entry->cred;
4684                         entry->object.vm_object->charge = size;
4685                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4686                         entry->cred = NULL;
4687                 }
4688                 vm_map_lock_downgrade(map);
4689         }
4690
4691         /*
4692          * Return the object/offset from this entry.  If the entry was
4693          * copy-on-write or empty, it has been fixed up.
4694          */
4695         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4696         *object = entry->object.vm_object;
4697
4698         *out_prot = prot;
4699         return (KERN_SUCCESS);
4700 }
4701
4702 /*
4703  *      vm_map_lookup_locked:
4704  *
4705  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4706  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4707  */
4708 int
4709 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4710                      vm_offset_t vaddr,
4711                      vm_prot_t fault_typea,
4712                      vm_map_entry_t *out_entry, /* OUT */
4713                      vm_object_t *object,       /* OUT */
4714                      vm_pindex_t *pindex,       /* OUT */
4715                      vm_prot_t *out_prot,       /* OUT */
4716                      boolean_t *wired)          /* OUT */
4717 {
4718         vm_map_entry_t entry;
4719         vm_map_t map = *var_map;
4720         vm_prot_t prot;
4721         vm_prot_t fault_type = fault_typea;
4722
4723         /*
4724          * Lookup the faulting address.
4725          */
4726         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4727                 return (KERN_INVALID_ADDRESS);
4728
4729         entry = *out_entry;
4730
4731         /*
4732          * Fail if the entry refers to a submap.
4733          */
4734         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4735                 return (KERN_FAILURE);
4736
4737         /*
4738          * Check whether this task is allowed to have this page.
4739          */
4740         prot = entry->protection;
4741         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4742         if ((fault_type & prot) != fault_type)
4743                 return (KERN_PROTECTION_FAILURE);
4744
4745         /*
4746          * If this page is not pageable, we have to get it for all possible
4747          * accesses.
4748          */
4749         *wired = (entry->wired_count != 0);
4750         if (*wired)
4751                 fault_type = entry->protection;
4752
4753         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4754                 /*
4755                  * Fail if the entry was copy-on-write for a write fault.
4756                  */
4757                 if (fault_type & VM_PROT_WRITE)
4758                         return (KERN_FAILURE);
4759                 /*
4760                  * We're attempting to read a copy-on-write page --
4761                  * don't allow writes.
4762                  */
4763                 prot &= ~VM_PROT_WRITE;
4764         }
4765
4766         /*
4767          * Fail if an object should be created.
4768          */
4769         if (entry->object.vm_object == NULL && !map->system_map)
4770                 return (KERN_FAILURE);
4771
4772         /*
4773          * Return the object/offset from this entry.  If the entry was
4774          * copy-on-write or empty, it has been fixed up.
4775          */
4776         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4777         *object = entry->object.vm_object;
4778
4779         *out_prot = prot;
4780         return (KERN_SUCCESS);
4781 }
4782
4783 /*
4784  *      vm_map_lookup_done:
4785  *
4786  *      Releases locks acquired by a vm_map_lookup
4787  *      (according to the handle returned by that lookup).
4788  */
4789 void
4790 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4791 {
4792         /*
4793          * Unlock the main-level map
4794          */
4795         vm_map_unlock_read(map);
4796 }
4797
4798 vm_offset_t
4799 vm_map_max_KBI(const struct vm_map *map)
4800 {
4801
4802         return (vm_map_max(map));
4803 }
4804
4805 vm_offset_t
4806 vm_map_min_KBI(const struct vm_map *map)
4807 {
4808
4809         return (vm_map_min(map));
4810 }
4811
4812 pmap_t
4813 vm_map_pmap_KBI(vm_map_t map)
4814 {
4815
4816         return (map->pmap);
4817 }
4818
4819 #include "opt_ddb.h"
4820 #ifdef DDB
4821 #include <sys/kernel.h>
4822
4823 #include <ddb/ddb.h>
4824
4825 static void
4826 vm_map_print(vm_map_t map)
4827 {
4828         vm_map_entry_t entry;
4829
4830         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4831             (void *)map,
4832             (void *)map->pmap, map->nentries, map->timestamp);
4833
4834         db_indent += 2;
4835         for (entry = map->header.next; entry != &map->header;
4836             entry = entry->next) {
4837                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4838                     (void *)entry, (void *)entry->start, (void *)entry->end,
4839                     entry->eflags);
4840                 {
4841                         static char *inheritance_name[4] =
4842                         {"share", "copy", "none", "donate_copy"};
4843
4844                         db_iprintf(" prot=%x/%x/%s",
4845                             entry->protection,
4846                             entry->max_protection,
4847                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4848                         if (entry->wired_count != 0)
4849                                 db_printf(", wired");
4850                 }
4851                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4852                         db_printf(", share=%p, offset=0x%jx\n",
4853                             (void *)entry->object.sub_map,
4854                             (uintmax_t)entry->offset);
4855                         if ((entry->prev == &map->header) ||
4856                             (entry->prev->object.sub_map !=
4857                                 entry->object.sub_map)) {
4858                                 db_indent += 2;
4859                                 vm_map_print((vm_map_t)entry->object.sub_map);
4860                                 db_indent -= 2;
4861                         }
4862                 } else {
4863                         if (entry->cred != NULL)
4864                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4865                         db_printf(", object=%p, offset=0x%jx",
4866                             (void *)entry->object.vm_object,
4867                             (uintmax_t)entry->offset);
4868                         if (entry->object.vm_object && entry->object.vm_object->cred)
4869                                 db_printf(", obj ruid %d charge %jx",
4870                                     entry->object.vm_object->cred->cr_ruid,
4871                                     (uintmax_t)entry->object.vm_object->charge);
4872                         if (entry->eflags & MAP_ENTRY_COW)
4873                                 db_printf(", copy (%s)",
4874                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4875                         db_printf("\n");
4876
4877                         if ((entry->prev == &map->header) ||
4878                             (entry->prev->object.vm_object !=
4879                                 entry->object.vm_object)) {
4880                                 db_indent += 2;
4881                                 vm_object_print((db_expr_t)(intptr_t)
4882                                                 entry->object.vm_object,
4883                                                 0, 0, (char *)0);
4884                                 db_indent -= 2;
4885                         }
4886                 }
4887         }
4888         db_indent -= 2;
4889 }
4890
4891 DB_SHOW_COMMAND(map, map)
4892 {
4893
4894         if (!have_addr) {
4895                 db_printf("usage: show map <addr>\n");
4896                 return;
4897         }
4898         vm_map_print((vm_map_t)addr);
4899 }
4900
4901 DB_SHOW_COMMAND(procvm, procvm)
4902 {
4903         struct proc *p;
4904
4905         if (have_addr) {
4906                 p = db_lookup_proc(addr);
4907         } else {
4908                 p = curproc;
4909         }
4910
4911         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4912             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4913             (void *)vmspace_pmap(p->p_vmspace));
4914
4915         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4916 }
4917
4918 #endif /* DDB */