]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFV r337223:
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286
287         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288
289         if (pinit == NULL)
290                 pinit = &pmap_pinit;
291
292         if (!pinit(vmspace_pmap(vm))) {
293                 uma_zfree(vmspace_zone, vm);
294                 return (NULL);
295         }
296         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298         vm->vm_refcnt = 1;
299         vm->vm_shm = NULL;
300         vm->vm_swrss = 0;
301         vm->vm_tsize = 0;
302         vm->vm_dsize = 0;
303         vm->vm_ssize = 0;
304         vm->vm_taddr = 0;
305         vm->vm_daddr = 0;
306         vm->vm_maxsaddr = 0;
307         return (vm);
308 }
309
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314
315         PROC_LOCK(p);
316         racct_set(p, RACCT_DATA, 0);
317         racct_set(p, RACCT_STACK, 0);
318         racct_set(p, RACCT_RSS, 0);
319         racct_set(p, RACCT_MEMLOCK, 0);
320         racct_set(p, RACCT_VMEM, 0);
321         PROC_UNLOCK(p);
322 }
323 #endif
324
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328
329         CTR1(KTR_VM, "vmspace_free: %p", vm);
330
331         /*
332          * Make sure any SysV shm is freed, it might not have been in
333          * exit1().
334          */
335         shmexit(vm);
336
337         /*
338          * Lock the map, to wait out all other references to it.
339          * Delete all of the mappings and pages they hold, then call
340          * the pmap module to reclaim anything left.
341          */
342         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
343             vm->vm_map.max_offset);
344
345         pmap_release(vmspace_pmap(vm));
346         vm->vm_map.pmap = NULL;
347         uma_zfree(vmspace_zone, vm);
348 }
349
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353
354         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355             "vmspace_free() called");
356
357         if (vm->vm_refcnt == 0)
358                 panic("vmspace_free: attempt to free already freed vmspace");
359
360         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361                 vmspace_dofree(vm);
362 }
363
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367         struct vmspace *vm;
368
369         PROC_VMSPACE_LOCK(p);
370         vm = p->p_vmspace;
371         p->p_vmspace = NULL;
372         PROC_VMSPACE_UNLOCK(p);
373         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374         vmspace_free(vm);
375 }
376
377 void
378 vmspace_exit(struct thread *td)
379 {
380         int refcnt;
381         struct vmspace *vm;
382         struct proc *p;
383
384         /*
385          * Release user portion of address space.
386          * This releases references to vnodes,
387          * which could cause I/O if the file has been unlinked.
388          * Need to do this early enough that we can still sleep.
389          *
390          * The last exiting process to reach this point releases as
391          * much of the environment as it can. vmspace_dofree() is the
392          * slower fallback in case another process had a temporary
393          * reference to the vmspace.
394          */
395
396         p = td->td_proc;
397         vm = p->p_vmspace;
398         atomic_add_int(&vmspace0.vm_refcnt, 1);
399         do {
400                 refcnt = vm->vm_refcnt;
401                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402                         /* Switch now since other proc might free vmspace */
403                         PROC_VMSPACE_LOCK(p);
404                         p->p_vmspace = &vmspace0;
405                         PROC_VMSPACE_UNLOCK(p);
406                         pmap_activate(td);
407                 }
408         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409         if (refcnt == 1) {
410                 if (p->p_vmspace != vm) {
411                         /* vmspace not yet freed, switch back */
412                         PROC_VMSPACE_LOCK(p);
413                         p->p_vmspace = vm;
414                         PROC_VMSPACE_UNLOCK(p);
415                         pmap_activate(td);
416                 }
417                 pmap_remove_pages(vmspace_pmap(vm));
418                 /* Switch now since this proc will free vmspace */
419                 PROC_VMSPACE_LOCK(p);
420                 p->p_vmspace = &vmspace0;
421                 PROC_VMSPACE_UNLOCK(p);
422                 pmap_activate(td);
423                 vmspace_dofree(vm);
424         }
425 #ifdef RACCT
426         if (racct_enable)
427                 vmspace_container_reset(p);
428 #endif
429 }
430
431 /* Acquire reference to vmspace owned by another process. */
432
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436         struct vmspace *vm;
437         int refcnt;
438
439         PROC_VMSPACE_LOCK(p);
440         vm = p->p_vmspace;
441         if (vm == NULL) {
442                 PROC_VMSPACE_UNLOCK(p);
443                 return (NULL);
444         }
445         do {
446                 refcnt = vm->vm_refcnt;
447                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
448                         PROC_VMSPACE_UNLOCK(p);
449                         return (NULL);
450                 }
451         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452         if (vm != p->p_vmspace) {
453                 PROC_VMSPACE_UNLOCK(p);
454                 vmspace_free(vm);
455                 return (NULL);
456         }
457         PROC_VMSPACE_UNLOCK(p);
458         return (vm);
459 }
460
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480         struct vmspace *oldvm;
481
482         /* XXX: Need some way to assert that this is an aio daemon. */
483
484         KASSERT(newvm->vm_refcnt > 0,
485             ("vmspace_switch_aio: newvm unreferenced"));
486
487         oldvm = curproc->p_vmspace;
488         if (oldvm == newvm)
489                 return;
490
491         /*
492          * Point to the new address space and refer to it.
493          */
494         curproc->p_vmspace = newvm;
495         atomic_add_int(&newvm->vm_refcnt, 1);
496
497         /* Activate the new mapping. */
498         pmap_activate(curthread);
499
500         /* Remove the daemon's reference to the old address space. */
501         KASSERT(oldvm->vm_refcnt > 1,
502             ("vmspace_switch_aio: oldvm dropping last reference"));
503         vmspace_free(oldvm);
504 }
505
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509
510         if (map->system_map)
511                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
512         else
513                 sx_xlock_(&map->lock, file, line);
514         map->timestamp++;
515 }
516
517 static void
518 vm_map_process_deferred(void)
519 {
520         struct thread *td;
521         vm_map_entry_t entry, next;
522         vm_object_t object;
523
524         td = curthread;
525         entry = td->td_map_def_user;
526         td->td_map_def_user = NULL;
527         while (entry != NULL) {
528                 next = entry->next;
529                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530                         /*
531                          * Decrement the object's writemappings and
532                          * possibly the vnode's v_writecount.
533                          */
534                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535                             ("Submap with writecount"));
536                         object = entry->object.vm_object;
537                         KASSERT(object != NULL, ("No object for writecount"));
538                         vnode_pager_release_writecount(object, entry->start,
539                             entry->end);
540                 }
541                 vm_map_entry_deallocate(entry, FALSE);
542                 entry = next;
543         }
544 }
545
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549
550         if (map->system_map)
551                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552         else {
553                 sx_xunlock_(&map->lock, file, line);
554                 vm_map_process_deferred();
555         }
556 }
557
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561
562         if (map->system_map)
563                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
564         else
565                 sx_slock_(&map->lock, file, line);
566 }
567
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571
572         if (map->system_map)
573                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574         else {
575                 sx_sunlock_(&map->lock, file, line);
576                 vm_map_process_deferred();
577         }
578 }
579
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583         int error;
584
585         error = map->system_map ?
586             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587             !sx_try_xlock_(&map->lock, file, line);
588         if (error == 0)
589                 map->timestamp++;
590         return (error == 0);
591 }
592
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596         int error;
597
598         error = map->system_map ?
599             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600             !sx_try_slock_(&map->lock, file, line);
601         return (error == 0);
602 }
603
604 /*
605  *      _vm_map_lock_upgrade:   [ internal use only ]
606  *
607  *      Tries to upgrade a read (shared) lock on the specified map to a write
608  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *      returned without a read or write lock held.
611  *
612  *      Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617         unsigned int last_timestamp;
618
619         if (map->system_map) {
620                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621         } else {
622                 if (!sx_try_upgrade_(&map->lock, file, line)) {
623                         last_timestamp = map->timestamp;
624                         sx_sunlock_(&map->lock, file, line);
625                         vm_map_process_deferred();
626                         /*
627                          * If the map's timestamp does not change while the
628                          * map is unlocked, then the upgrade succeeds.
629                          */
630                         sx_xlock_(&map->lock, file, line);
631                         if (last_timestamp != map->timestamp) {
632                                 sx_xunlock_(&map->lock, file, line);
633                                 return (1);
634                         }
635                 }
636         }
637         map->timestamp++;
638         return (0);
639 }
640
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644
645         if (map->system_map) {
646                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647         } else
648                 sx_downgrade_(&map->lock, file, line);
649 }
650
651 /*
652  *      vm_map_locked:
653  *
654  *      Returns a non-zero value if the caller holds a write (exclusive) lock
655  *      on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660
661         if (map->system_map)
662                 return (mtx_owned(&map->system_mtx));
663         else
664                 return (sx_xlocked(&map->lock));
665 }
666
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671
672         if (map->system_map)
673                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674         else
675                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677
678 #define VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define VM_MAP_ASSERT_LOCKED(map)
682 #endif
683
684 /*
685  *      _vm_map_unlock_and_wait:
686  *
687  *      Atomically releases the lock on the specified map and puts the calling
688  *      thread to sleep.  The calling thread will remain asleep until either
689  *      vm_map_wakeup() is performed on the map or the specified timeout is
690  *      exceeded.
691  *
692  *      WARNING!  This function does not perform deferred deallocations of
693  *      objects and map entries.  Therefore, the calling thread is expected to
694  *      reacquire the map lock after reawakening and later perform an ordinary
695  *      unlock operation, such as vm_map_unlock(), before completing its
696  *      operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701
702         mtx_lock(&map_sleep_mtx);
703         if (map->system_map)
704                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705         else
706                 sx_xunlock_(&map->lock, file, line);
707         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708             timo));
709 }
710
711 /*
712  *      vm_map_wakeup:
713  *
714  *      Awaken any threads that have slept on the map using
715  *      vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720
721         /*
722          * Acquire and release map_sleep_mtx to prevent a wakeup()
723          * from being performed (and lost) between the map unlock
724          * and the msleep() in _vm_map_unlock_and_wait().
725          */
726         mtx_lock(&map_sleep_mtx);
727         mtx_unlock(&map_sleep_mtx);
728         wakeup(&map->root);
729 }
730
731 void
732 vm_map_busy(vm_map_t map)
733 {
734
735         VM_MAP_ASSERT_LOCKED(map);
736         map->busy++;
737 }
738
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742
743         VM_MAP_ASSERT_LOCKED(map);
744         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747                 wakeup(&map->busy);
748         }
749 }
750
751 void 
752 vm_map_wait_busy(vm_map_t map)
753 {
754
755         VM_MAP_ASSERT_LOCKED(map);
756         while (map->busy) {
757                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758                 if (map->system_map)
759                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760                 else
761                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762         }
763         map->timestamp++;
764 }
765
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769         return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771
772 /*
773  *      vm_map_create:
774  *
775  *      Creates and returns a new empty VM map with
776  *      the given physical map structure, and having
777  *      the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782         vm_map_t result;
783
784         result = uma_zalloc(mapzone, M_WAITOK);
785         CTR1(KTR_VM, "vm_map_create: %p", result);
786         _vm_map_init(result, pmap, min, max);
787         return (result);
788 }
789
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797
798         map->header.next = map->header.prev = &map->header;
799         map->needs_wakeup = FALSE;
800         map->system_map = 0;
801         map->pmap = pmap;
802         map->min_offset = min;
803         map->max_offset = max;
804         map->flags = 0;
805         map->root = NULL;
806         map->timestamp = 0;
807         map->busy = 0;
808 }
809
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813
814         _vm_map_init(map, pmap, min, max);
815         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816         sx_init(&map->lock, "user map");
817 }
818
819 /*
820  *      vm_map_entry_dispose:   [ internal use only ]
821  *
822  *      Inverse of vm_map_entry_create.
823  */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829
830 /*
831  *      vm_map_entry_create:    [ internal use only ]
832  *
833  *      Allocates a VM map entry for insertion.
834  *      No entry fields are filled in.
835  */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839         vm_map_entry_t new_entry;
840
841         if (map->system_map)
842                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843         else
844                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
845         if (new_entry == NULL)
846                 panic("vm_map_entry_create: kernel resources exhausted");
847         return (new_entry);
848 }
849
850 /*
851  *      vm_map_entry_set_behavior:
852  *
853  *      Set the expected access behavior, either normal, random, or
854  *      sequential.
855  */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860             (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862
863 /*
864  *      vm_map_entry_set_max_free:
865  *
866  *      Set the max_free field in a vm_map_entry.
867  */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871
872         entry->max_free = entry->adj_free;
873         if (entry->left != NULL && entry->left->max_free > entry->max_free)
874                 entry->max_free = entry->left->max_free;
875         if (entry->right != NULL && entry->right->max_free > entry->max_free)
876                 entry->max_free = entry->right->max_free;
877 }
878
879 /*
880  *      vm_map_entry_splay:
881  *
882  *      The Sleator and Tarjan top-down splay algorithm with the
883  *      following variation.  Max_free must be computed bottom-up, so
884  *      on the downward pass, maintain the left and right spines in
885  *      reverse order.  Then, make a second pass up each side to fix
886  *      the pointers and compute max_free.  The time bound is O(log n)
887  *      amortized.
888  *
889  *      The new root is the vm_map_entry containing "addr", or else an
890  *      adjacent entry (lower or higher) if addr is not in the tree.
891  *
892  *      The map must be locked, and leaves it so.
893  *
894  *      Returns: the new root.
895  */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899         vm_map_entry_t llist, rlist;
900         vm_map_entry_t ltree, rtree;
901         vm_map_entry_t y;
902
903         /* Special case of empty tree. */
904         if (root == NULL)
905                 return (root);
906
907         /*
908          * Pass One: Splay down the tree until we find addr or a NULL
909          * pointer where addr would go.  llist and rlist are the two
910          * sides in reverse order (bottom-up), with llist linked by
911          * the right pointer and rlist linked by the left pointer in
912          * the vm_map_entry.  Wait until Pass Two to set max_free on
913          * the two spines.
914          */
915         llist = NULL;
916         rlist = NULL;
917         for (;;) {
918                 /* root is never NULL in here. */
919                 if (addr < root->start) {
920                         y = root->left;
921                         if (y == NULL)
922                                 break;
923                         if (addr < y->start && y->left != NULL) {
924                                 /* Rotate right and put y on rlist. */
925                                 root->left = y->right;
926                                 y->right = root;
927                                 vm_map_entry_set_max_free(root);
928                                 root = y->left;
929                                 y->left = rlist;
930                                 rlist = y;
931                         } else {
932                                 /* Put root on rlist. */
933                                 root->left = rlist;
934                                 rlist = root;
935                                 root = y;
936                         }
937                 } else if (addr >= root->end) {
938                         y = root->right;
939                         if (y == NULL)
940                                 break;
941                         if (addr >= y->end && y->right != NULL) {
942                                 /* Rotate left and put y on llist. */
943                                 root->right = y->left;
944                                 y->left = root;
945                                 vm_map_entry_set_max_free(root);
946                                 root = y->right;
947                                 y->right = llist;
948                                 llist = y;
949                         } else {
950                                 /* Put root on llist. */
951                                 root->right = llist;
952                                 llist = root;
953                                 root = y;
954                         }
955                 } else
956                         break;
957         }
958
959         /*
960          * Pass Two: Walk back up the two spines, flip the pointers
961          * and set max_free.  The subtrees of the root go at the
962          * bottom of llist and rlist.
963          */
964         ltree = root->left;
965         while (llist != NULL) {
966                 y = llist->right;
967                 llist->right = ltree;
968                 vm_map_entry_set_max_free(llist);
969                 ltree = llist;
970                 llist = y;
971         }
972         rtree = root->right;
973         while (rlist != NULL) {
974                 y = rlist->left;
975                 rlist->left = rtree;
976                 vm_map_entry_set_max_free(rlist);
977                 rtree = rlist;
978                 rlist = y;
979         }
980
981         /*
982          * Final assembly: add ltree and rtree as subtrees of root.
983          */
984         root->left = ltree;
985         root->right = rtree;
986         vm_map_entry_set_max_free(root);
987
988         return (root);
989 }
990
991 /*
992  *      vm_map_entry_{un,}link:
993  *
994  *      Insert/remove entries from maps.
995  */
996 static void
997 vm_map_entry_link(vm_map_t map,
998                   vm_map_entry_t after_where,
999                   vm_map_entry_t entry)
1000 {
1001
1002         CTR4(KTR_VM,
1003             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004             map->nentries, entry, after_where);
1005         VM_MAP_ASSERT_LOCKED(map);
1006         KASSERT(after_where->end <= entry->start,
1007             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1008             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1009         KASSERT(entry->end <= after_where->next->start,
1010             ("vm_map_entry_link: new end %jx next start %jx overlap",
1011             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1012
1013         map->nentries++;
1014         entry->prev = after_where;
1015         entry->next = after_where->next;
1016         entry->next->prev = entry;
1017         after_where->next = entry;
1018
1019         if (after_where != &map->header) {
1020                 if (after_where != map->root)
1021                         vm_map_entry_splay(after_where->start, map->root);
1022                 entry->right = after_where->right;
1023                 entry->left = after_where;
1024                 after_where->right = NULL;
1025                 after_where->adj_free = entry->start - after_where->end;
1026                 vm_map_entry_set_max_free(after_where);
1027         } else {
1028                 entry->right = map->root;
1029                 entry->left = NULL;
1030         }
1031         entry->adj_free = entry->next->start - entry->end;
1032         vm_map_entry_set_max_free(entry);
1033         map->root = entry;
1034 }
1035
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038                     vm_map_entry_t entry)
1039 {
1040         vm_map_entry_t next, prev, root;
1041
1042         VM_MAP_ASSERT_LOCKED(map);
1043         if (entry != map->root)
1044                 vm_map_entry_splay(entry->start, map->root);
1045         if (entry->left == NULL)
1046                 root = entry->right;
1047         else {
1048                 root = vm_map_entry_splay(entry->start, entry->left);
1049                 root->right = entry->right;
1050                 root->adj_free = entry->next->start - root->end;
1051                 vm_map_entry_set_max_free(root);
1052         }
1053         map->root = root;
1054
1055         prev = entry->prev;
1056         next = entry->next;
1057         next->prev = prev;
1058         prev->next = next;
1059         map->nentries--;
1060         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1061             map->nentries, entry);
1062 }
1063
1064 /*
1065  *      vm_map_entry_resize_free:
1066  *
1067  *      Recompute the amount of free space following a vm_map_entry
1068  *      and propagate that value up the tree.  Call this function after
1069  *      resizing a map entry in-place, that is, without a call to
1070  *      vm_map_entry_link() or _unlink().
1071  *
1072  *      The map must be locked, and leaves it so.
1073  */
1074 static void
1075 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1076 {
1077
1078         /*
1079          * Using splay trees without parent pointers, propagating
1080          * max_free up the tree is done by moving the entry to the
1081          * root and making the change there.
1082          */
1083         if (entry != map->root)
1084                 map->root = vm_map_entry_splay(entry->start, map->root);
1085
1086         entry->adj_free = entry->next->start - entry->end;
1087         vm_map_entry_set_max_free(entry);
1088 }
1089
1090 /*
1091  *      vm_map_lookup_entry:    [ internal use only ]
1092  *
1093  *      Finds the map entry containing (or
1094  *      immediately preceding) the specified address
1095  *      in the given map; the entry is returned
1096  *      in the "entry" parameter.  The boolean
1097  *      result indicates whether the address is
1098  *      actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102         vm_map_t map,
1103         vm_offset_t address,
1104         vm_map_entry_t *entry)  /* OUT */
1105 {
1106         vm_map_entry_t cur;
1107         boolean_t locked;
1108
1109         /*
1110          * If the map is empty, then the map entry immediately preceding
1111          * "address" is the map's header.
1112          */
1113         cur = map->root;
1114         if (cur == NULL)
1115                 *entry = &map->header;
1116         else if (address >= cur->start && cur->end > address) {
1117                 *entry = cur;
1118                 return (TRUE);
1119         } else if ((locked = vm_map_locked(map)) ||
1120             sx_try_upgrade(&map->lock)) {
1121                 /*
1122                  * Splay requires a write lock on the map.  However, it only
1123                  * restructures the binary search tree; it does not otherwise
1124                  * change the map.  Thus, the map's timestamp need not change
1125                  * on a temporary upgrade.
1126                  */
1127                 map->root = cur = vm_map_entry_splay(address, cur);
1128                 if (!locked)
1129                         sx_downgrade(&map->lock);
1130
1131                 /*
1132                  * If "address" is contained within a map entry, the new root
1133                  * is that map entry.  Otherwise, the new root is a map entry
1134                  * immediately before or after "address".
1135                  */
1136                 if (address >= cur->start) {
1137                         *entry = cur;
1138                         if (cur->end > address)
1139                                 return (TRUE);
1140                 } else
1141                         *entry = cur->prev;
1142         } else
1143                 /*
1144                  * Since the map is only locked for read access, perform a
1145                  * standard binary search tree lookup for "address".
1146                  */
1147                 for (;;) {
1148                         if (address < cur->start) {
1149                                 if (cur->left == NULL) {
1150                                         *entry = cur->prev;
1151                                         break;
1152                                 }
1153                                 cur = cur->left;
1154                         } else if (cur->end > address) {
1155                                 *entry = cur;
1156                                 return (TRUE);
1157                         } else {
1158                                 if (cur->right == NULL) {
1159                                         *entry = cur;
1160                                         break;
1161                                 }
1162                                 cur = cur->right;
1163                         }
1164                 }
1165         return (FALSE);
1166 }
1167
1168 /*
1169  *      vm_map_insert:
1170  *
1171  *      Inserts the given whole VM object into the target
1172  *      map at the specified address range.  The object's
1173  *      size should match that of the address range.
1174  *
1175  *      Requires that the map be locked, and leaves it so.
1176  *
1177  *      If object is non-NULL, ref count must be bumped by caller
1178  *      prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184         vm_map_entry_t new_entry, prev_entry, temp_entry;
1185         struct ucred *cred;
1186         vm_eflags_t protoeflags;
1187         vm_inherit_t inheritance;
1188
1189         VM_MAP_ASSERT_LOCKED(map);
1190         KASSERT(object != kernel_object ||
1191             (cow & MAP_COPY_ON_WRITE) == 0,
1192             ("vm_map_insert: kernel object and COW"));
1193         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195         KASSERT((prot & ~max) == 0,
1196             ("prot %#x is not subset of max_prot %#x", prot, max));
1197
1198         /*
1199          * Check that the start and end points are not bogus.
1200          */
1201         if (start < map->min_offset || end > map->max_offset || start >= end)
1202                 return (KERN_INVALID_ADDRESS);
1203
1204         /*
1205          * Find the entry prior to the proposed starting address; if it's part
1206          * of an existing entry, this range is bogus.
1207          */
1208         if (vm_map_lookup_entry(map, start, &temp_entry))
1209                 return (KERN_NO_SPACE);
1210
1211         prev_entry = temp_entry;
1212
1213         /*
1214          * Assert that the next entry doesn't overlap the end point.
1215          */
1216         if (prev_entry->next->start < end)
1217                 return (KERN_NO_SPACE);
1218
1219         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1220             max != VM_PROT_NONE))
1221                 return (KERN_INVALID_ARGUMENT);
1222
1223         protoeflags = 0;
1224         if (cow & MAP_COPY_ON_WRITE)
1225                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1226         if (cow & MAP_NOFAULT)
1227                 protoeflags |= MAP_ENTRY_NOFAULT;
1228         if (cow & MAP_DISABLE_SYNCER)
1229                 protoeflags |= MAP_ENTRY_NOSYNC;
1230         if (cow & MAP_DISABLE_COREDUMP)
1231                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1232         if (cow & MAP_STACK_GROWS_DOWN)
1233                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1234         if (cow & MAP_STACK_GROWS_UP)
1235                 protoeflags |= MAP_ENTRY_GROWS_UP;
1236         if (cow & MAP_VN_WRITECOUNT)
1237                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1238         if ((cow & MAP_CREATE_GUARD) != 0)
1239                 protoeflags |= MAP_ENTRY_GUARD;
1240         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1241                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1242         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1243                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1244         if (cow & MAP_INHERIT_SHARE)
1245                 inheritance = VM_INHERIT_SHARE;
1246         else
1247                 inheritance = VM_INHERIT_DEFAULT;
1248
1249         cred = NULL;
1250         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1251                 goto charged;
1252         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1253             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1254                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1255                         return (KERN_RESOURCE_SHORTAGE);
1256                 KASSERT(object == NULL ||
1257                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1258                     object->cred == NULL,
1259                     ("overcommit: vm_map_insert o %p", object));
1260                 cred = curthread->td_ucred;
1261         }
1262
1263 charged:
1264         /* Expand the kernel pmap, if necessary. */
1265         if (map == kernel_map && end > kernel_vm_end)
1266                 pmap_growkernel(end);
1267         if (object != NULL) {
1268                 /*
1269                  * OBJ_ONEMAPPING must be cleared unless this mapping
1270                  * is trivially proven to be the only mapping for any
1271                  * of the object's pages.  (Object granularity
1272                  * reference counting is insufficient to recognize
1273                  * aliases with precision.)
1274                  */
1275                 VM_OBJECT_WLOCK(object);
1276                 if (object->ref_count > 1 || object->shadow_count != 0)
1277                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1278                 VM_OBJECT_WUNLOCK(object);
1279         } else if (prev_entry != &map->header &&
1280             (prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == protoeflags &&
1281             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1282             prev_entry->end == start && (prev_entry->cred == cred ||
1283             (prev_entry->object.vm_object != NULL &&
1284             prev_entry->object.vm_object->cred == cred)) &&
1285             vm_object_coalesce(prev_entry->object.vm_object,
1286             prev_entry->offset,
1287             (vm_size_t)(prev_entry->end - prev_entry->start),
1288             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1289             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1290                 /*
1291                  * We were able to extend the object.  Determine if we
1292                  * can extend the previous map entry to include the
1293                  * new range as well.
1294                  */
1295                 if (prev_entry->inheritance == inheritance &&
1296                     prev_entry->protection == prot &&
1297                     prev_entry->max_protection == max &&
1298                     prev_entry->wired_count == 0) {
1299                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1300                             0, ("prev_entry %p has incoherent wiring",
1301                             prev_entry));
1302                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1303                                 map->size += end - prev_entry->end;
1304                         prev_entry->end = end;
1305                         vm_map_entry_resize_free(map, prev_entry);
1306                         vm_map_simplify_entry(map, prev_entry);
1307                         return (KERN_SUCCESS);
1308                 }
1309
1310                 /*
1311                  * If we can extend the object but cannot extend the
1312                  * map entry, we have to create a new map entry.  We
1313                  * must bump the ref count on the extended object to
1314                  * account for it.  object may be NULL.
1315                  */
1316                 object = prev_entry->object.vm_object;
1317                 offset = prev_entry->offset +
1318                     (prev_entry->end - prev_entry->start);
1319                 vm_object_reference(object);
1320                 if (cred != NULL && object != NULL && object->cred != NULL &&
1321                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1322                         /* Object already accounts for this uid. */
1323                         cred = NULL;
1324                 }
1325         }
1326         if (cred != NULL)
1327                 crhold(cred);
1328
1329         /*
1330          * Create a new entry
1331          */
1332         new_entry = vm_map_entry_create(map);
1333         new_entry->start = start;
1334         new_entry->end = end;
1335         new_entry->cred = NULL;
1336
1337         new_entry->eflags = protoeflags;
1338         new_entry->object.vm_object = object;
1339         new_entry->offset = offset;
1340
1341         new_entry->inheritance = inheritance;
1342         new_entry->protection = prot;
1343         new_entry->max_protection = max;
1344         new_entry->wired_count = 0;
1345         new_entry->wiring_thread = NULL;
1346         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1347         new_entry->next_read = start;
1348
1349         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1350             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1351         new_entry->cred = cred;
1352
1353         /*
1354          * Insert the new entry into the list
1355          */
1356         vm_map_entry_link(map, prev_entry, new_entry);
1357         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1358                 map->size += new_entry->end - new_entry->start;
1359
1360         /*
1361          * Try to coalesce the new entry with both the previous and next
1362          * entries in the list.  Previously, we only attempted to coalesce
1363          * with the previous entry when object is NULL.  Here, we handle the
1364          * other cases, which are less common.
1365          */
1366         vm_map_simplify_entry(map, new_entry);
1367
1368         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1369                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1370                     end - start, cow & MAP_PREFAULT_PARTIAL);
1371         }
1372
1373         return (KERN_SUCCESS);
1374 }
1375
1376 /*
1377  *      vm_map_findspace:
1378  *
1379  *      Find the first fit (lowest VM address) for "length" free bytes
1380  *      beginning at address >= start in the given map.
1381  *
1382  *      In a vm_map_entry, "adj_free" is the amount of free space
1383  *      adjacent (higher address) to this entry, and "max_free" is the
1384  *      maximum amount of contiguous free space in its subtree.  This
1385  *      allows finding a free region in one path down the tree, so
1386  *      O(log n) amortized with splay trees.
1387  *
1388  *      The map must be locked, and leaves it so.
1389  *
1390  *      Returns: 0 on success, and starting address in *addr,
1391  *               1 if insufficient space.
1392  */
1393 int
1394 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1395     vm_offset_t *addr)  /* OUT */
1396 {
1397         vm_map_entry_t entry;
1398         vm_offset_t st;
1399
1400         /*
1401          * Request must fit within min/max VM address and must avoid
1402          * address wrap.
1403          */
1404         if (start < map->min_offset)
1405                 start = map->min_offset;
1406         if (start + length > map->max_offset || start + length < start)
1407                 return (1);
1408
1409         /* Empty tree means wide open address space. */
1410         if (map->root == NULL) {
1411                 *addr = start;
1412                 return (0);
1413         }
1414
1415         /*
1416          * After splay, if start comes before root node, then there
1417          * must be a gap from start to the root.
1418          */
1419         map->root = vm_map_entry_splay(start, map->root);
1420         if (start + length <= map->root->start) {
1421                 *addr = start;
1422                 return (0);
1423         }
1424
1425         /*
1426          * Root is the last node that might begin its gap before
1427          * start, and this is the last comparison where address
1428          * wrap might be a problem.
1429          */
1430         st = (start > map->root->end) ? start : map->root->end;
1431         if (length <= map->root->end + map->root->adj_free - st) {
1432                 *addr = st;
1433                 return (0);
1434         }
1435
1436         /* With max_free, can immediately tell if no solution. */
1437         entry = map->root->right;
1438         if (entry == NULL || length > entry->max_free)
1439                 return (1);
1440
1441         /*
1442          * Search the right subtree in the order: left subtree, root,
1443          * right subtree (first fit).  The previous splay implies that
1444          * all regions in the right subtree have addresses > start.
1445          */
1446         while (entry != NULL) {
1447                 if (entry->left != NULL && entry->left->max_free >= length)
1448                         entry = entry->left;
1449                 else if (entry->adj_free >= length) {
1450                         *addr = entry->end;
1451                         return (0);
1452                 } else
1453                         entry = entry->right;
1454         }
1455
1456         /* Can't get here, so panic if we do. */
1457         panic("vm_map_findspace: max_free corrupt");
1458 }
1459
1460 int
1461 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1462     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1463     vm_prot_t max, int cow)
1464 {
1465         vm_offset_t end;
1466         int result;
1467
1468         end = start + length;
1469         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1470             object == NULL,
1471             ("vm_map_fixed: non-NULL backing object for stack"));
1472         vm_map_lock(map);
1473         VM_MAP_RANGE_CHECK(map, start, end);
1474         if ((cow & MAP_CHECK_EXCL) == 0)
1475                 vm_map_delete(map, start, end);
1476         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1477                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1478                     prot, max, cow);
1479         } else {
1480                 result = vm_map_insert(map, object, offset, start, end,
1481                     prot, max, cow);
1482         }
1483         vm_map_unlock(map);
1484         return (result);
1485 }
1486
1487 /*
1488  * Searches for the specified amount of free space in the given map with the
1489  * specified alignment.  Performs an address-ordered, first-fit search from
1490  * the given address "*addr", with an optional upper bound "max_addr".  If the
1491  * parameter "alignment" is zero, then the alignment is computed from the
1492  * given (object, offset) pair so as to enable the greatest possible use of
1493  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1494  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1495  *
1496  * The map must be locked.  Initially, there must be at least "length" bytes
1497  * of free space at the given address.
1498  */
1499 static int
1500 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1501     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1502     vm_offset_t alignment)
1503 {
1504         vm_offset_t aligned_addr, free_addr;
1505
1506         VM_MAP_ASSERT_LOCKED(map);
1507         free_addr = *addr;
1508         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1509             free_addr == *addr, ("caller provided insufficient free space"));
1510         for (;;) {
1511                 /*
1512                  * At the start of every iteration, the free space at address
1513                  * "*addr" is at least "length" bytes.
1514                  */
1515                 if (alignment == 0)
1516                         pmap_align_superpage(object, offset, addr, length);
1517                 else if ((*addr & (alignment - 1)) != 0) {
1518                         *addr &= ~(alignment - 1);
1519                         *addr += alignment;
1520                 }
1521                 aligned_addr = *addr;
1522                 if (aligned_addr == free_addr) {
1523                         /*
1524                          * Alignment did not change "*addr", so "*addr" must
1525                          * still provide sufficient free space.
1526                          */
1527                         return (KERN_SUCCESS);
1528                 }
1529
1530                 /*
1531                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1532                  * be a valid address, in which case vm_map_findspace() cannot
1533                  * be relied upon to fail.
1534                  */
1535                 if (aligned_addr < free_addr ||
1536                     vm_map_findspace(map, aligned_addr, length, addr) ||
1537                     (max_addr != 0 && *addr + length > max_addr))
1538                         return (KERN_NO_SPACE);
1539                 free_addr = *addr;
1540                 if (free_addr == aligned_addr) {
1541                         /*
1542                          * If a successful call to vm_map_findspace() did not
1543                          * change "*addr", then "*addr" must still be aligned
1544                          * and provide sufficient free space.
1545                          */
1546                         return (KERN_SUCCESS);
1547                 }
1548         }
1549 }
1550
1551 /*
1552  *      vm_map_find finds an unallocated region in the target address
1553  *      map with the given length.  The search is defined to be
1554  *      first-fit from the specified address; the region found is
1555  *      returned in the same parameter.
1556  *
1557  *      If object is non-NULL, ref count must be bumped by caller
1558  *      prior to making call to account for the new entry.
1559  */
1560 int
1561 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1562             vm_offset_t *addr,  /* IN/OUT */
1563             vm_size_t length, vm_offset_t max_addr, int find_space,
1564             vm_prot_t prot, vm_prot_t max, int cow)
1565 {
1566         vm_offset_t alignment, min_addr;
1567         int rv;
1568
1569         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1570             object == NULL,
1571             ("vm_map_find: non-NULL backing object for stack"));
1572         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1573             (object->flags & OBJ_COLORED) == 0))
1574                 find_space = VMFS_ANY_SPACE;
1575         if (find_space >> 8 != 0) {
1576                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1577                 alignment = (vm_offset_t)1 << (find_space >> 8);
1578         } else
1579                 alignment = 0;
1580         vm_map_lock(map);
1581         if (find_space != VMFS_NO_SPACE) {
1582                 KASSERT(find_space == VMFS_ANY_SPACE ||
1583                     find_space == VMFS_OPTIMAL_SPACE ||
1584                     find_space == VMFS_SUPER_SPACE ||
1585                     alignment != 0, ("unexpected VMFS flag"));
1586                 min_addr = *addr;
1587 again:
1588                 if (vm_map_findspace(map, min_addr, length, addr) ||
1589                     (max_addr != 0 && *addr + length > max_addr)) {
1590                         rv = KERN_NO_SPACE;
1591                         goto done;
1592                 }
1593                 if (find_space != VMFS_ANY_SPACE &&
1594                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1595                     max_addr, alignment)) != KERN_SUCCESS) {
1596                         if (find_space == VMFS_OPTIMAL_SPACE) {
1597                                 find_space = VMFS_ANY_SPACE;
1598                                 goto again;
1599                         }
1600                         goto done;
1601                 }
1602         }
1603         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1604                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1605                     max, cow);
1606         } else {
1607                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1608                     prot, max, cow);
1609         }
1610 done:
1611         vm_map_unlock(map);
1612         return (rv);
1613 }
1614
1615 /*
1616  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1617  *      additional parameter (min_addr) and treats the given address
1618  *      (*addr) differently.  Specifically, it treats *addr as a hint
1619  *      and not as the minimum address where the mapping is created.
1620  *
1621  *      This function works in two phases.  First, it tries to
1622  *      allocate above the hint.  If that fails and the hint is
1623  *      greater than min_addr, it performs a second pass, replacing
1624  *      the hint with min_addr as the minimum address for the
1625  *      allocation.
1626  */
1627 int
1628 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1629     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1630     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1631     int cow)
1632 {
1633         vm_offset_t hint;
1634         int rv;
1635
1636         hint = *addr;
1637         for (;;) {
1638                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1639                     find_space, prot, max, cow);
1640                 if (rv == KERN_SUCCESS || min_addr >= hint)
1641                         return (rv);
1642                 *addr = hint = min_addr;
1643         }
1644 }
1645
1646 /*
1647  *      vm_map_simplify_entry:
1648  *
1649  *      Simplify the given map entry by merging with either neighbor.  This
1650  *      routine also has the ability to merge with both neighbors.
1651  *
1652  *      The map must be locked.
1653  *
1654  *      This routine guarantees that the passed entry remains valid (though
1655  *      possibly extended).  When merging, this routine may delete one or
1656  *      both neighbors.
1657  */
1658 void
1659 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1660 {
1661         vm_map_entry_t next, prev;
1662         vm_size_t prevsize, esize;
1663
1664         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1665             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1666                 return;
1667
1668         prev = entry->prev;
1669         if (prev != &map->header) {
1670                 prevsize = prev->end - prev->start;
1671                 if ( (prev->end == entry->start) &&
1672                      (prev->object.vm_object == entry->object.vm_object) &&
1673                      (!prev->object.vm_object ||
1674                         (prev->offset + prevsize == entry->offset)) &&
1675                      (prev->eflags == entry->eflags) &&
1676                      (prev->protection == entry->protection) &&
1677                      (prev->max_protection == entry->max_protection) &&
1678                      (prev->inheritance == entry->inheritance) &&
1679                      (prev->wired_count == entry->wired_count) &&
1680                      (prev->cred == entry->cred)) {
1681                         vm_map_entry_unlink(map, prev);
1682                         entry->start = prev->start;
1683                         entry->offset = prev->offset;
1684                         if (entry->prev != &map->header)
1685                                 vm_map_entry_resize_free(map, entry->prev);
1686
1687                         /*
1688                          * If the backing object is a vnode object,
1689                          * vm_object_deallocate() calls vrele().
1690                          * However, vrele() does not lock the vnode
1691                          * because the vnode has additional
1692                          * references.  Thus, the map lock can be kept
1693                          * without causing a lock-order reversal with
1694                          * the vnode lock.
1695                          *
1696                          * Since we count the number of virtual page
1697                          * mappings in object->un_pager.vnp.writemappings,
1698                          * the writemappings value should not be adjusted
1699                          * when the entry is disposed of.
1700                          */
1701                         if (prev->object.vm_object)
1702                                 vm_object_deallocate(prev->object.vm_object);
1703                         if (prev->cred != NULL)
1704                                 crfree(prev->cred);
1705                         vm_map_entry_dispose(map, prev);
1706                 }
1707         }
1708
1709         next = entry->next;
1710         if (next != &map->header) {
1711                 esize = entry->end - entry->start;
1712                 if ((entry->end == next->start) &&
1713                     (next->object.vm_object == entry->object.vm_object) &&
1714                      (!entry->object.vm_object ||
1715                         (entry->offset + esize == next->offset)) &&
1716                     (next->eflags == entry->eflags) &&
1717                     (next->protection == entry->protection) &&
1718                     (next->max_protection == entry->max_protection) &&
1719                     (next->inheritance == entry->inheritance) &&
1720                     (next->wired_count == entry->wired_count) &&
1721                     (next->cred == entry->cred)) {
1722                         vm_map_entry_unlink(map, next);
1723                         entry->end = next->end;
1724                         vm_map_entry_resize_free(map, entry);
1725
1726                         /*
1727                          * See comment above.
1728                          */
1729                         if (next->object.vm_object)
1730                                 vm_object_deallocate(next->object.vm_object);
1731                         if (next->cred != NULL)
1732                                 crfree(next->cred);
1733                         vm_map_entry_dispose(map, next);
1734                 }
1735         }
1736 }
1737 /*
1738  *      vm_map_clip_start:      [ internal use only ]
1739  *
1740  *      Asserts that the given entry begins at or after
1741  *      the specified address; if necessary,
1742  *      it splits the entry into two.
1743  */
1744 #define vm_map_clip_start(map, entry, startaddr) \
1745 { \
1746         if (startaddr > entry->start) \
1747                 _vm_map_clip_start(map, entry, startaddr); \
1748 }
1749
1750 /*
1751  *      This routine is called only when it is known that
1752  *      the entry must be split.
1753  */
1754 static void
1755 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1756 {
1757         vm_map_entry_t new_entry;
1758
1759         VM_MAP_ASSERT_LOCKED(map);
1760         KASSERT(entry->end > start && entry->start < start,
1761             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1762
1763         /*
1764          * Split off the front portion -- note that we must insert the new
1765          * entry BEFORE this one, so that this entry has the specified
1766          * starting address.
1767          */
1768         vm_map_simplify_entry(map, entry);
1769
1770         /*
1771          * If there is no object backing this entry, we might as well create
1772          * one now.  If we defer it, an object can get created after the map
1773          * is clipped, and individual objects will be created for the split-up
1774          * map.  This is a bit of a hack, but is also about the best place to
1775          * put this improvement.
1776          */
1777         if (entry->object.vm_object == NULL && !map->system_map &&
1778             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1779                 vm_object_t object;
1780                 object = vm_object_allocate(OBJT_DEFAULT,
1781                                 atop(entry->end - entry->start));
1782                 entry->object.vm_object = object;
1783                 entry->offset = 0;
1784                 if (entry->cred != NULL) {
1785                         object->cred = entry->cred;
1786                         object->charge = entry->end - entry->start;
1787                         entry->cred = NULL;
1788                 }
1789         } else if (entry->object.vm_object != NULL &&
1790                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1791                    entry->cred != NULL) {
1792                 VM_OBJECT_WLOCK(entry->object.vm_object);
1793                 KASSERT(entry->object.vm_object->cred == NULL,
1794                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1795                 entry->object.vm_object->cred = entry->cred;
1796                 entry->object.vm_object->charge = entry->end - entry->start;
1797                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1798                 entry->cred = NULL;
1799         }
1800
1801         new_entry = vm_map_entry_create(map);
1802         *new_entry = *entry;
1803
1804         new_entry->end = start;
1805         entry->offset += (start - entry->start);
1806         entry->start = start;
1807         if (new_entry->cred != NULL)
1808                 crhold(entry->cred);
1809
1810         vm_map_entry_link(map, entry->prev, new_entry);
1811
1812         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1813                 vm_object_reference(new_entry->object.vm_object);
1814                 /*
1815                  * The object->un_pager.vnp.writemappings for the
1816                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1817                  * kept as is here.  The virtual pages are
1818                  * re-distributed among the clipped entries, so the sum is
1819                  * left the same.
1820                  */
1821         }
1822 }
1823
1824 /*
1825  *      vm_map_clip_end:        [ internal use only ]
1826  *
1827  *      Asserts that the given entry ends at or before
1828  *      the specified address; if necessary,
1829  *      it splits the entry into two.
1830  */
1831 #define vm_map_clip_end(map, entry, endaddr) \
1832 { \
1833         if ((endaddr) < (entry->end)) \
1834                 _vm_map_clip_end((map), (entry), (endaddr)); \
1835 }
1836
1837 /*
1838  *      This routine is called only when it is known that
1839  *      the entry must be split.
1840  */
1841 static void
1842 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1843 {
1844         vm_map_entry_t new_entry;
1845
1846         VM_MAP_ASSERT_LOCKED(map);
1847         KASSERT(entry->start < end && entry->end > end,
1848             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1849
1850         /*
1851          * If there is no object backing this entry, we might as well create
1852          * one now.  If we defer it, an object can get created after the map
1853          * is clipped, and individual objects will be created for the split-up
1854          * map.  This is a bit of a hack, but is also about the best place to
1855          * put this improvement.
1856          */
1857         if (entry->object.vm_object == NULL && !map->system_map &&
1858             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1859                 vm_object_t object;
1860                 object = vm_object_allocate(OBJT_DEFAULT,
1861                                 atop(entry->end - entry->start));
1862                 entry->object.vm_object = object;
1863                 entry->offset = 0;
1864                 if (entry->cred != NULL) {
1865                         object->cred = entry->cred;
1866                         object->charge = entry->end - entry->start;
1867                         entry->cred = NULL;
1868                 }
1869         } else if (entry->object.vm_object != NULL &&
1870                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1871                    entry->cred != NULL) {
1872                 VM_OBJECT_WLOCK(entry->object.vm_object);
1873                 KASSERT(entry->object.vm_object->cred == NULL,
1874                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1875                 entry->object.vm_object->cred = entry->cred;
1876                 entry->object.vm_object->charge = entry->end - entry->start;
1877                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1878                 entry->cred = NULL;
1879         }
1880
1881         /*
1882          * Create a new entry and insert it AFTER the specified entry
1883          */
1884         new_entry = vm_map_entry_create(map);
1885         *new_entry = *entry;
1886
1887         new_entry->start = entry->end = end;
1888         new_entry->offset += (end - entry->start);
1889         if (new_entry->cred != NULL)
1890                 crhold(entry->cred);
1891
1892         vm_map_entry_link(map, entry, new_entry);
1893
1894         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1895                 vm_object_reference(new_entry->object.vm_object);
1896         }
1897 }
1898
1899 /*
1900  *      vm_map_submap:          [ kernel use only ]
1901  *
1902  *      Mark the given range as handled by a subordinate map.
1903  *
1904  *      This range must have been created with vm_map_find,
1905  *      and no other operations may have been performed on this
1906  *      range prior to calling vm_map_submap.
1907  *
1908  *      Only a limited number of operations can be performed
1909  *      within this rage after calling vm_map_submap:
1910  *              vm_fault
1911  *      [Don't try vm_map_copy!]
1912  *
1913  *      To remove a submapping, one must first remove the
1914  *      range from the superior map, and then destroy the
1915  *      submap (if desired).  [Better yet, don't try it.]
1916  */
1917 int
1918 vm_map_submap(
1919         vm_map_t map,
1920         vm_offset_t start,
1921         vm_offset_t end,
1922         vm_map_t submap)
1923 {
1924         vm_map_entry_t entry;
1925         int result = KERN_INVALID_ARGUMENT;
1926
1927         vm_map_lock(map);
1928
1929         VM_MAP_RANGE_CHECK(map, start, end);
1930
1931         if (vm_map_lookup_entry(map, start, &entry)) {
1932                 vm_map_clip_start(map, entry, start);
1933         } else
1934                 entry = entry->next;
1935
1936         vm_map_clip_end(map, entry, end);
1937
1938         if ((entry->start == start) && (entry->end == end) &&
1939             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1940             (entry->object.vm_object == NULL)) {
1941                 entry->object.sub_map = submap;
1942                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1943                 result = KERN_SUCCESS;
1944         }
1945         vm_map_unlock(map);
1946
1947         return (result);
1948 }
1949
1950 /*
1951  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1952  */
1953 #define MAX_INIT_PT     96
1954
1955 /*
1956  *      vm_map_pmap_enter:
1957  *
1958  *      Preload the specified map's pmap with mappings to the specified
1959  *      object's memory-resident pages.  No further physical pages are
1960  *      allocated, and no further virtual pages are retrieved from secondary
1961  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1962  *      limited number of page mappings are created at the low-end of the
1963  *      specified address range.  (For this purpose, a superpage mapping
1964  *      counts as one page mapping.)  Otherwise, all resident pages within
1965  *      the specified address range are mapped.
1966  */
1967 static void
1968 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1969     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1970 {
1971         vm_offset_t start;
1972         vm_page_t p, p_start;
1973         vm_pindex_t mask, psize, threshold, tmpidx;
1974
1975         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1976                 return;
1977         VM_OBJECT_RLOCK(object);
1978         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979                 VM_OBJECT_RUNLOCK(object);
1980                 VM_OBJECT_WLOCK(object);
1981                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1982                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1983                             size);
1984                         VM_OBJECT_WUNLOCK(object);
1985                         return;
1986                 }
1987                 VM_OBJECT_LOCK_DOWNGRADE(object);
1988         }
1989
1990         psize = atop(size);
1991         if (psize + pindex > object->size) {
1992                 if (object->size < pindex) {
1993                         VM_OBJECT_RUNLOCK(object);
1994                         return;
1995                 }
1996                 psize = object->size - pindex;
1997         }
1998
1999         start = 0;
2000         p_start = NULL;
2001         threshold = MAX_INIT_PT;
2002
2003         p = vm_page_find_least(object, pindex);
2004         /*
2005          * Assert: the variable p is either (1) the page with the
2006          * least pindex greater than or equal to the parameter pindex
2007          * or (2) NULL.
2008          */
2009         for (;
2010              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2011              p = TAILQ_NEXT(p, listq)) {
2012                 /*
2013                  * don't allow an madvise to blow away our really
2014                  * free pages allocating pv entries.
2015                  */
2016                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2017                     vm_page_count_severe()) ||
2018                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2019                     tmpidx >= threshold)) {
2020                         psize = tmpidx;
2021                         break;
2022                 }
2023                 if (p->valid == VM_PAGE_BITS_ALL) {
2024                         if (p_start == NULL) {
2025                                 start = addr + ptoa(tmpidx);
2026                                 p_start = p;
2027                         }
2028                         /* Jump ahead if a superpage mapping is possible. */
2029                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2030                             (pagesizes[p->psind] - 1)) == 0) {
2031                                 mask = atop(pagesizes[p->psind]) - 1;
2032                                 if (tmpidx + mask < psize &&
2033                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2034                                         p += mask;
2035                                         threshold += mask;
2036                                 }
2037                         }
2038                 } else if (p_start != NULL) {
2039                         pmap_enter_object(map->pmap, start, addr +
2040                             ptoa(tmpidx), p_start, prot);
2041                         p_start = NULL;
2042                 }
2043         }
2044         if (p_start != NULL)
2045                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2046                     p_start, prot);
2047         VM_OBJECT_RUNLOCK(object);
2048 }
2049
2050 /*
2051  *      vm_map_protect:
2052  *
2053  *      Sets the protection of the specified address
2054  *      region in the target map.  If "set_max" is
2055  *      specified, the maximum protection is to be set;
2056  *      otherwise, only the current protection is affected.
2057  */
2058 int
2059 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2060                vm_prot_t new_prot, boolean_t set_max)
2061 {
2062         vm_map_entry_t current, entry;
2063         vm_object_t obj;
2064         struct ucred *cred;
2065         vm_prot_t old_prot;
2066
2067         if (start == end)
2068                 return (KERN_SUCCESS);
2069
2070         vm_map_lock(map);
2071
2072         /*
2073          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2074          * need to fault pages into the map and will drop the map lock while
2075          * doing so, and the VM object may end up in an inconsistent state if we
2076          * update the protection on the map entry in between faults.
2077          */
2078         vm_map_wait_busy(map);
2079
2080         VM_MAP_RANGE_CHECK(map, start, end);
2081
2082         if (vm_map_lookup_entry(map, start, &entry)) {
2083                 vm_map_clip_start(map, entry, start);
2084         } else {
2085                 entry = entry->next;
2086         }
2087
2088         /*
2089          * Make a first pass to check for protection violations.
2090          */
2091         for (current = entry; current->start < end; current = current->next) {
2092                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2093                         continue;
2094                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2095                         vm_map_unlock(map);
2096                         return (KERN_INVALID_ARGUMENT);
2097                 }
2098                 if ((new_prot & current->max_protection) != new_prot) {
2099                         vm_map_unlock(map);
2100                         return (KERN_PROTECTION_FAILURE);
2101                 }
2102         }
2103
2104         /*
2105          * Do an accounting pass for private read-only mappings that
2106          * now will do cow due to allowed write (e.g. debugger sets
2107          * breakpoint on text segment)
2108          */
2109         for (current = entry; current->start < end; current = current->next) {
2110
2111                 vm_map_clip_end(map, current, end);
2112
2113                 if (set_max ||
2114                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2115                     ENTRY_CHARGED(current) ||
2116                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2117                         continue;
2118                 }
2119
2120                 cred = curthread->td_ucred;
2121                 obj = current->object.vm_object;
2122
2123                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2124                         if (!swap_reserve(current->end - current->start)) {
2125                                 vm_map_unlock(map);
2126                                 return (KERN_RESOURCE_SHORTAGE);
2127                         }
2128                         crhold(cred);
2129                         current->cred = cred;
2130                         continue;
2131                 }
2132
2133                 VM_OBJECT_WLOCK(obj);
2134                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2135                         VM_OBJECT_WUNLOCK(obj);
2136                         continue;
2137                 }
2138
2139                 /*
2140                  * Charge for the whole object allocation now, since
2141                  * we cannot distinguish between non-charged and
2142                  * charged clipped mapping of the same object later.
2143                  */
2144                 KASSERT(obj->charge == 0,
2145                     ("vm_map_protect: object %p overcharged (entry %p)",
2146                     obj, current));
2147                 if (!swap_reserve(ptoa(obj->size))) {
2148                         VM_OBJECT_WUNLOCK(obj);
2149                         vm_map_unlock(map);
2150                         return (KERN_RESOURCE_SHORTAGE);
2151                 }
2152
2153                 crhold(cred);
2154                 obj->cred = cred;
2155                 obj->charge = ptoa(obj->size);
2156                 VM_OBJECT_WUNLOCK(obj);
2157         }
2158
2159         /*
2160          * Go back and fix up protections. [Note that clipping is not
2161          * necessary the second time.]
2162          */
2163         for (current = entry; current->start < end; current = current->next) {
2164                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2165                         continue;
2166
2167                 old_prot = current->protection;
2168
2169                 if (set_max)
2170                         current->protection =
2171                             (current->max_protection = new_prot) &
2172                             old_prot;
2173                 else
2174                         current->protection = new_prot;
2175
2176                 /*
2177                  * For user wired map entries, the normal lazy evaluation of
2178                  * write access upgrades through soft page faults is
2179                  * undesirable.  Instead, immediately copy any pages that are
2180                  * copy-on-write and enable write access in the physical map.
2181                  */
2182                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2183                     (current->protection & VM_PROT_WRITE) != 0 &&
2184                     (old_prot & VM_PROT_WRITE) == 0)
2185                         vm_fault_copy_entry(map, map, current, current, NULL);
2186
2187                 /*
2188                  * When restricting access, update the physical map.  Worry
2189                  * about copy-on-write here.
2190                  */
2191                 if ((old_prot & ~current->protection) != 0) {
2192 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2193                                                         VM_PROT_ALL)
2194                         pmap_protect(map->pmap, current->start,
2195                             current->end,
2196                             current->protection & MASK(current));
2197 #undef  MASK
2198                 }
2199                 vm_map_simplify_entry(map, current);
2200         }
2201         vm_map_unlock(map);
2202         return (KERN_SUCCESS);
2203 }
2204
2205 /*
2206  *      vm_map_madvise:
2207  *
2208  *      This routine traverses a processes map handling the madvise
2209  *      system call.  Advisories are classified as either those effecting
2210  *      the vm_map_entry structure, or those effecting the underlying
2211  *      objects.
2212  */
2213 int
2214 vm_map_madvise(
2215         vm_map_t map,
2216         vm_offset_t start,
2217         vm_offset_t end,
2218         int behav)
2219 {
2220         vm_map_entry_t current, entry;
2221         bool modify_map;
2222
2223         /*
2224          * Some madvise calls directly modify the vm_map_entry, in which case
2225          * we need to use an exclusive lock on the map and we need to perform
2226          * various clipping operations.  Otherwise we only need a read-lock
2227          * on the map.
2228          */
2229         switch(behav) {
2230         case MADV_NORMAL:
2231         case MADV_SEQUENTIAL:
2232         case MADV_RANDOM:
2233         case MADV_NOSYNC:
2234         case MADV_AUTOSYNC:
2235         case MADV_NOCORE:
2236         case MADV_CORE:
2237                 if (start == end)
2238                         return (0);
2239                 modify_map = true;
2240                 vm_map_lock(map);
2241                 break;
2242         case MADV_WILLNEED:
2243         case MADV_DONTNEED:
2244         case MADV_FREE:
2245                 if (start == end)
2246                         return (0);
2247                 modify_map = false;
2248                 vm_map_lock_read(map);
2249                 break;
2250         default:
2251                 return (EINVAL);
2252         }
2253
2254         /*
2255          * Locate starting entry and clip if necessary.
2256          */
2257         VM_MAP_RANGE_CHECK(map, start, end);
2258
2259         if (vm_map_lookup_entry(map, start, &entry)) {
2260                 if (modify_map)
2261                         vm_map_clip_start(map, entry, start);
2262         } else {
2263                 entry = entry->next;
2264         }
2265
2266         if (modify_map) {
2267                 /*
2268                  * madvise behaviors that are implemented in the vm_map_entry.
2269                  *
2270                  * We clip the vm_map_entry so that behavioral changes are
2271                  * limited to the specified address range.
2272                  */
2273                 for (current = entry; current->start < end;
2274                     current = current->next) {
2275                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2276                                 continue;
2277
2278                         vm_map_clip_end(map, current, end);
2279
2280                         switch (behav) {
2281                         case MADV_NORMAL:
2282                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2283                                 break;
2284                         case MADV_SEQUENTIAL:
2285                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2286                                 break;
2287                         case MADV_RANDOM:
2288                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2289                                 break;
2290                         case MADV_NOSYNC:
2291                                 current->eflags |= MAP_ENTRY_NOSYNC;
2292                                 break;
2293                         case MADV_AUTOSYNC:
2294                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2295                                 break;
2296                         case MADV_NOCORE:
2297                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2298                                 break;
2299                         case MADV_CORE:
2300                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2301                                 break;
2302                         default:
2303                                 break;
2304                         }
2305                         vm_map_simplify_entry(map, current);
2306                 }
2307                 vm_map_unlock(map);
2308         } else {
2309                 vm_pindex_t pstart, pend;
2310
2311                 /*
2312                  * madvise behaviors that are implemented in the underlying
2313                  * vm_object.
2314                  *
2315                  * Since we don't clip the vm_map_entry, we have to clip
2316                  * the vm_object pindex and count.
2317                  */
2318                 for (current = entry; current->start < end;
2319                     current = current->next) {
2320                         vm_offset_t useEnd, useStart;
2321
2322                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2323                                 continue;
2324
2325                         pstart = OFF_TO_IDX(current->offset);
2326                         pend = pstart + atop(current->end - current->start);
2327                         useStart = current->start;
2328                         useEnd = current->end;
2329
2330                         if (current->start < start) {
2331                                 pstart += atop(start - current->start);
2332                                 useStart = start;
2333                         }
2334                         if (current->end > end) {
2335                                 pend -= atop(current->end - end);
2336                                 useEnd = end;
2337                         }
2338
2339                         if (pstart >= pend)
2340                                 continue;
2341
2342                         /*
2343                          * Perform the pmap_advise() before clearing
2344                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2345                          * concurrent pmap operation, such as pmap_remove(),
2346                          * could clear a reference in the pmap and set
2347                          * PGA_REFERENCED on the page before the pmap_advise()
2348                          * had completed.  Consequently, the page would appear
2349                          * referenced based upon an old reference that
2350                          * occurred before this pmap_advise() ran.
2351                          */
2352                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2353                                 pmap_advise(map->pmap, useStart, useEnd,
2354                                     behav);
2355
2356                         vm_object_madvise(current->object.vm_object, pstart,
2357                             pend, behav);
2358
2359                         /*
2360                          * Pre-populate paging structures in the
2361                          * WILLNEED case.  For wired entries, the
2362                          * paging structures are already populated.
2363                          */
2364                         if (behav == MADV_WILLNEED &&
2365                             current->wired_count == 0) {
2366                                 vm_map_pmap_enter(map,
2367                                     useStart,
2368                                     current->protection,
2369                                     current->object.vm_object,
2370                                     pstart,
2371                                     ptoa(pend - pstart),
2372                                     MAP_PREFAULT_MADVISE
2373                                 );
2374                         }
2375                 }
2376                 vm_map_unlock_read(map);
2377         }
2378         return (0);
2379 }
2380
2381
2382 /*
2383  *      vm_map_inherit:
2384  *
2385  *      Sets the inheritance of the specified address
2386  *      range in the target map.  Inheritance
2387  *      affects how the map will be shared with
2388  *      child maps at the time of vmspace_fork.
2389  */
2390 int
2391 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2392                vm_inherit_t new_inheritance)
2393 {
2394         vm_map_entry_t entry;
2395         vm_map_entry_t temp_entry;
2396
2397         switch (new_inheritance) {
2398         case VM_INHERIT_NONE:
2399         case VM_INHERIT_COPY:
2400         case VM_INHERIT_SHARE:
2401         case VM_INHERIT_ZERO:
2402                 break;
2403         default:
2404                 return (KERN_INVALID_ARGUMENT);
2405         }
2406         if (start == end)
2407                 return (KERN_SUCCESS);
2408         vm_map_lock(map);
2409         VM_MAP_RANGE_CHECK(map, start, end);
2410         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2411                 entry = temp_entry;
2412                 vm_map_clip_start(map, entry, start);
2413         } else
2414                 entry = temp_entry->next;
2415         while (entry->start < end) {
2416                 vm_map_clip_end(map, entry, end);
2417                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2418                     new_inheritance != VM_INHERIT_ZERO)
2419                         entry->inheritance = new_inheritance;
2420                 vm_map_simplify_entry(map, entry);
2421                 entry = entry->next;
2422         }
2423         vm_map_unlock(map);
2424         return (KERN_SUCCESS);
2425 }
2426
2427 /*
2428  *      vm_map_unwire:
2429  *
2430  *      Implements both kernel and user unwiring.
2431  */
2432 int
2433 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2434     int flags)
2435 {
2436         vm_map_entry_t entry, first_entry, tmp_entry;
2437         vm_offset_t saved_start;
2438         unsigned int last_timestamp;
2439         int rv;
2440         boolean_t need_wakeup, result, user_unwire;
2441
2442         if (start == end)
2443                 return (KERN_SUCCESS);
2444         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2445         vm_map_lock(map);
2446         VM_MAP_RANGE_CHECK(map, start, end);
2447         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2448                 if (flags & VM_MAP_WIRE_HOLESOK)
2449                         first_entry = first_entry->next;
2450                 else {
2451                         vm_map_unlock(map);
2452                         return (KERN_INVALID_ADDRESS);
2453                 }
2454         }
2455         last_timestamp = map->timestamp;
2456         entry = first_entry;
2457         while (entry->start < end) {
2458                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2459                         /*
2460                          * We have not yet clipped the entry.
2461                          */
2462                         saved_start = (start >= entry->start) ? start :
2463                             entry->start;
2464                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2465                         if (vm_map_unlock_and_wait(map, 0)) {
2466                                 /*
2467                                  * Allow interruption of user unwiring?
2468                                  */
2469                         }
2470                         vm_map_lock(map);
2471                         if (last_timestamp+1 != map->timestamp) {
2472                                 /*
2473                                  * Look again for the entry because the map was
2474                                  * modified while it was unlocked.
2475                                  * Specifically, the entry may have been
2476                                  * clipped, merged, or deleted.
2477                                  */
2478                                 if (!vm_map_lookup_entry(map, saved_start,
2479                                     &tmp_entry)) {
2480                                         if (flags & VM_MAP_WIRE_HOLESOK)
2481                                                 tmp_entry = tmp_entry->next;
2482                                         else {
2483                                                 if (saved_start == start) {
2484                                                         /*
2485                                                          * First_entry has been deleted.
2486                                                          */
2487                                                         vm_map_unlock(map);
2488                                                         return (KERN_INVALID_ADDRESS);
2489                                                 }
2490                                                 end = saved_start;
2491                                                 rv = KERN_INVALID_ADDRESS;
2492                                                 goto done;
2493                                         }
2494                                 }
2495                                 if (entry == first_entry)
2496                                         first_entry = tmp_entry;
2497                                 else
2498                                         first_entry = NULL;
2499                                 entry = tmp_entry;
2500                         }
2501                         last_timestamp = map->timestamp;
2502                         continue;
2503                 }
2504                 vm_map_clip_start(map, entry, start);
2505                 vm_map_clip_end(map, entry, end);
2506                 /*
2507                  * Mark the entry in case the map lock is released.  (See
2508                  * above.)
2509                  */
2510                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2511                     entry->wiring_thread == NULL,
2512                     ("owned map entry %p", entry));
2513                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2514                 entry->wiring_thread = curthread;
2515                 /*
2516                  * Check the map for holes in the specified region.
2517                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2518                  */
2519                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2520                     (entry->end < end && entry->next->start > entry->end)) {
2521                         end = entry->end;
2522                         rv = KERN_INVALID_ADDRESS;
2523                         goto done;
2524                 }
2525                 /*
2526                  * If system unwiring, require that the entry is system wired.
2527                  */
2528                 if (!user_unwire &&
2529                     vm_map_entry_system_wired_count(entry) == 0) {
2530                         end = entry->end;
2531                         rv = KERN_INVALID_ARGUMENT;
2532                         goto done;
2533                 }
2534                 entry = entry->next;
2535         }
2536         rv = KERN_SUCCESS;
2537 done:
2538         need_wakeup = FALSE;
2539         if (first_entry == NULL) {
2540                 result = vm_map_lookup_entry(map, start, &first_entry);
2541                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2542                         first_entry = first_entry->next;
2543                 else
2544                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2545         }
2546         for (entry = first_entry; entry->start < end; entry = entry->next) {
2547                 /*
2548                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2549                  * space in the unwired region could have been mapped
2550                  * while the map lock was dropped for draining
2551                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2552                  * could be simultaneously wiring this new mapping
2553                  * entry.  Detect these cases and skip any entries
2554                  * marked as in transition by us.
2555                  */
2556                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2557                     entry->wiring_thread != curthread) {
2558                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2559                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2560                         continue;
2561                 }
2562
2563                 if (rv == KERN_SUCCESS && (!user_unwire ||
2564                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2565                         if (user_unwire)
2566                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2567                         if (entry->wired_count == 1)
2568                                 vm_map_entry_unwire(map, entry);
2569                         else
2570                                 entry->wired_count--;
2571                 }
2572                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2573                     ("vm_map_unwire: in-transition flag missing %p", entry));
2574                 KASSERT(entry->wiring_thread == curthread,
2575                     ("vm_map_unwire: alien wire %p", entry));
2576                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2577                 entry->wiring_thread = NULL;
2578                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2579                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2580                         need_wakeup = TRUE;
2581                 }
2582                 vm_map_simplify_entry(map, entry);
2583         }
2584         vm_map_unlock(map);
2585         if (need_wakeup)
2586                 vm_map_wakeup(map);
2587         return (rv);
2588 }
2589
2590 /*
2591  *      vm_map_wire_entry_failure:
2592  *
2593  *      Handle a wiring failure on the given entry.
2594  *
2595  *      The map should be locked.
2596  */
2597 static void
2598 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2599     vm_offset_t failed_addr)
2600 {
2601
2602         VM_MAP_ASSERT_LOCKED(map);
2603         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2604             entry->wired_count == 1,
2605             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2606         KASSERT(failed_addr < entry->end,
2607             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2608
2609         /*
2610          * If any pages at the start of this entry were successfully wired,
2611          * then unwire them.
2612          */
2613         if (failed_addr > entry->start) {
2614                 pmap_unwire(map->pmap, entry->start, failed_addr);
2615                 vm_object_unwire(entry->object.vm_object, entry->offset,
2616                     failed_addr - entry->start, PQ_ACTIVE);
2617         }
2618
2619         /*
2620          * Assign an out-of-range value to represent the failure to wire this
2621          * entry.
2622          */
2623         entry->wired_count = -1;
2624 }
2625
2626 /*
2627  *      vm_map_wire:
2628  *
2629  *      Implements both kernel and user wiring.
2630  */
2631 int
2632 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2633     int flags)
2634 {
2635         vm_map_entry_t entry, first_entry, tmp_entry;
2636         vm_offset_t faddr, saved_end, saved_start;
2637         unsigned int last_timestamp;
2638         int rv;
2639         boolean_t need_wakeup, result, user_wire;
2640         vm_prot_t prot;
2641
2642         if (start == end)
2643                 return (KERN_SUCCESS);
2644         prot = 0;
2645         if (flags & VM_MAP_WIRE_WRITE)
2646                 prot |= VM_PROT_WRITE;
2647         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2648         vm_map_lock(map);
2649         VM_MAP_RANGE_CHECK(map, start, end);
2650         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2651                 if (flags & VM_MAP_WIRE_HOLESOK)
2652                         first_entry = first_entry->next;
2653                 else {
2654                         vm_map_unlock(map);
2655                         return (KERN_INVALID_ADDRESS);
2656                 }
2657         }
2658         last_timestamp = map->timestamp;
2659         entry = first_entry;
2660         while (entry->start < end) {
2661                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2662                         /*
2663                          * We have not yet clipped the entry.
2664                          */
2665                         saved_start = (start >= entry->start) ? start :
2666                             entry->start;
2667                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2668                         if (vm_map_unlock_and_wait(map, 0)) {
2669                                 /*
2670                                  * Allow interruption of user wiring?
2671                                  */
2672                         }
2673                         vm_map_lock(map);
2674                         if (last_timestamp + 1 != map->timestamp) {
2675                                 /*
2676                                  * Look again for the entry because the map was
2677                                  * modified while it was unlocked.
2678                                  * Specifically, the entry may have been
2679                                  * clipped, merged, or deleted.
2680                                  */
2681                                 if (!vm_map_lookup_entry(map, saved_start,
2682                                     &tmp_entry)) {
2683                                         if (flags & VM_MAP_WIRE_HOLESOK)
2684                                                 tmp_entry = tmp_entry->next;
2685                                         else {
2686                                                 if (saved_start == start) {
2687                                                         /*
2688                                                          * first_entry has been deleted.
2689                                                          */
2690                                                         vm_map_unlock(map);
2691                                                         return (KERN_INVALID_ADDRESS);
2692                                                 }
2693                                                 end = saved_start;
2694                                                 rv = KERN_INVALID_ADDRESS;
2695                                                 goto done;
2696                                         }
2697                                 }
2698                                 if (entry == first_entry)
2699                                         first_entry = tmp_entry;
2700                                 else
2701                                         first_entry = NULL;
2702                                 entry = tmp_entry;
2703                         }
2704                         last_timestamp = map->timestamp;
2705                         continue;
2706                 }
2707                 vm_map_clip_start(map, entry, start);
2708                 vm_map_clip_end(map, entry, end);
2709                 /*
2710                  * Mark the entry in case the map lock is released.  (See
2711                  * above.)
2712                  */
2713                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2714                     entry->wiring_thread == NULL,
2715                     ("owned map entry %p", entry));
2716                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2717                 entry->wiring_thread = curthread;
2718                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2719                     || (entry->protection & prot) != prot) {
2720                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2721                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2722                                 end = entry->end;
2723                                 rv = KERN_INVALID_ADDRESS;
2724                                 goto done;
2725                         }
2726                         goto next_entry;
2727                 }
2728                 if (entry->wired_count == 0) {
2729                         entry->wired_count++;
2730                         saved_start = entry->start;
2731                         saved_end = entry->end;
2732
2733                         /*
2734                          * Release the map lock, relying on the in-transition
2735                          * mark.  Mark the map busy for fork.
2736                          */
2737                         vm_map_busy(map);
2738                         vm_map_unlock(map);
2739
2740                         faddr = saved_start;
2741                         do {
2742                                 /*
2743                                  * Simulate a fault to get the page and enter
2744                                  * it into the physical map.
2745                                  */
2746                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2747                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2748                                         break;
2749                         } while ((faddr += PAGE_SIZE) < saved_end);
2750                         vm_map_lock(map);
2751                         vm_map_unbusy(map);
2752                         if (last_timestamp + 1 != map->timestamp) {
2753                                 /*
2754                                  * Look again for the entry because the map was
2755                                  * modified while it was unlocked.  The entry
2756                                  * may have been clipped, but NOT merged or
2757                                  * deleted.
2758                                  */
2759                                 result = vm_map_lookup_entry(map, saved_start,
2760                                     &tmp_entry);
2761                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2762                                 if (entry == first_entry)
2763                                         first_entry = tmp_entry;
2764                                 else
2765                                         first_entry = NULL;
2766                                 entry = tmp_entry;
2767                                 while (entry->end < saved_end) {
2768                                         /*
2769                                          * In case of failure, handle entries
2770                                          * that were not fully wired here;
2771                                          * fully wired entries are handled
2772                                          * later.
2773                                          */
2774                                         if (rv != KERN_SUCCESS &&
2775                                             faddr < entry->end)
2776                                                 vm_map_wire_entry_failure(map,
2777                                                     entry, faddr);
2778                                         entry = entry->next;
2779                                 }
2780                         }
2781                         last_timestamp = map->timestamp;
2782                         if (rv != KERN_SUCCESS) {
2783                                 vm_map_wire_entry_failure(map, entry, faddr);
2784                                 end = entry->end;
2785                                 goto done;
2786                         }
2787                 } else if (!user_wire ||
2788                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2789                         entry->wired_count++;
2790                 }
2791                 /*
2792                  * Check the map for holes in the specified region.
2793                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2794                  */
2795         next_entry:
2796                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2797                     entry->end < end && entry->next->start > entry->end) {
2798                         end = entry->end;
2799                         rv = KERN_INVALID_ADDRESS;
2800                         goto done;
2801                 }
2802                 entry = entry->next;
2803         }
2804         rv = KERN_SUCCESS;
2805 done:
2806         need_wakeup = FALSE;
2807         if (first_entry == NULL) {
2808                 result = vm_map_lookup_entry(map, start, &first_entry);
2809                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2810                         first_entry = first_entry->next;
2811                 else
2812                         KASSERT(result, ("vm_map_wire: lookup failed"));
2813         }
2814         for (entry = first_entry; entry->start < end; entry = entry->next) {
2815                 /*
2816                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2817                  * space in the unwired region could have been mapped
2818                  * while the map lock was dropped for faulting in the
2819                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2820                  * Moreover, another thread could be simultaneously
2821                  * wiring this new mapping entry.  Detect these cases
2822                  * and skip any entries marked as in transition not by us.
2823                  */
2824                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2825                     entry->wiring_thread != curthread) {
2826                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2827                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2828                         continue;
2829                 }
2830
2831                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2832                         goto next_entry_done;
2833
2834                 if (rv == KERN_SUCCESS) {
2835                         if (user_wire)
2836                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2837                 } else if (entry->wired_count == -1) {
2838                         /*
2839                          * Wiring failed on this entry.  Thus, unwiring is
2840                          * unnecessary.
2841                          */
2842                         entry->wired_count = 0;
2843                 } else if (!user_wire ||
2844                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2845                         /*
2846                          * Undo the wiring.  Wiring succeeded on this entry
2847                          * but failed on a later entry.  
2848                          */
2849                         if (entry->wired_count == 1)
2850                                 vm_map_entry_unwire(map, entry);
2851                         else
2852                                 entry->wired_count--;
2853                 }
2854         next_entry_done:
2855                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2856                     ("vm_map_wire: in-transition flag missing %p", entry));
2857                 KASSERT(entry->wiring_thread == curthread,
2858                     ("vm_map_wire: alien wire %p", entry));
2859                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2860                     MAP_ENTRY_WIRE_SKIPPED);
2861                 entry->wiring_thread = NULL;
2862                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2863                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2864                         need_wakeup = TRUE;
2865                 }
2866                 vm_map_simplify_entry(map, entry);
2867         }
2868         vm_map_unlock(map);
2869         if (need_wakeup)
2870                 vm_map_wakeup(map);
2871         return (rv);
2872 }
2873
2874 /*
2875  * vm_map_sync
2876  *
2877  * Push any dirty cached pages in the address range to their pager.
2878  * If syncio is TRUE, dirty pages are written synchronously.
2879  * If invalidate is TRUE, any cached pages are freed as well.
2880  *
2881  * If the size of the region from start to end is zero, we are
2882  * supposed to flush all modified pages within the region containing
2883  * start.  Unfortunately, a region can be split or coalesced with
2884  * neighboring regions, making it difficult to determine what the
2885  * original region was.  Therefore, we approximate this requirement by
2886  * flushing the current region containing start.
2887  *
2888  * Returns an error if any part of the specified range is not mapped.
2889  */
2890 int
2891 vm_map_sync(
2892         vm_map_t map,
2893         vm_offset_t start,
2894         vm_offset_t end,
2895         boolean_t syncio,
2896         boolean_t invalidate)
2897 {
2898         vm_map_entry_t current;
2899         vm_map_entry_t entry;
2900         vm_size_t size;
2901         vm_object_t object;
2902         vm_ooffset_t offset;
2903         unsigned int last_timestamp;
2904         boolean_t failed;
2905
2906         vm_map_lock_read(map);
2907         VM_MAP_RANGE_CHECK(map, start, end);
2908         if (!vm_map_lookup_entry(map, start, &entry)) {
2909                 vm_map_unlock_read(map);
2910                 return (KERN_INVALID_ADDRESS);
2911         } else if (start == end) {
2912                 start = entry->start;
2913                 end = entry->end;
2914         }
2915         /*
2916          * Make a first pass to check for user-wired memory and holes.
2917          */
2918         for (current = entry; current->start < end; current = current->next) {
2919                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2920                         vm_map_unlock_read(map);
2921                         return (KERN_INVALID_ARGUMENT);
2922                 }
2923                 if (end > current->end &&
2924                     current->end != current->next->start) {
2925                         vm_map_unlock_read(map);
2926                         return (KERN_INVALID_ADDRESS);
2927                 }
2928         }
2929
2930         if (invalidate)
2931                 pmap_remove(map->pmap, start, end);
2932         failed = FALSE;
2933
2934         /*
2935          * Make a second pass, cleaning/uncaching pages from the indicated
2936          * objects as we go.
2937          */
2938         for (current = entry; current->start < end;) {
2939                 offset = current->offset + (start - current->start);
2940                 size = (end <= current->end ? end : current->end) - start;
2941                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2942                         vm_map_t smap;
2943                         vm_map_entry_t tentry;
2944                         vm_size_t tsize;
2945
2946                         smap = current->object.sub_map;
2947                         vm_map_lock_read(smap);
2948                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2949                         tsize = tentry->end - offset;
2950                         if (tsize < size)
2951                                 size = tsize;
2952                         object = tentry->object.vm_object;
2953                         offset = tentry->offset + (offset - tentry->start);
2954                         vm_map_unlock_read(smap);
2955                 } else {
2956                         object = current->object.vm_object;
2957                 }
2958                 vm_object_reference(object);
2959                 last_timestamp = map->timestamp;
2960                 vm_map_unlock_read(map);
2961                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2962                         failed = TRUE;
2963                 start += size;
2964                 vm_object_deallocate(object);
2965                 vm_map_lock_read(map);
2966                 if (last_timestamp == map->timestamp ||
2967                     !vm_map_lookup_entry(map, start, &current))
2968                         current = current->next;
2969         }
2970
2971         vm_map_unlock_read(map);
2972         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2973 }
2974
2975 /*
2976  *      vm_map_entry_unwire:    [ internal use only ]
2977  *
2978  *      Make the region specified by this entry pageable.
2979  *
2980  *      The map in question should be locked.
2981  *      [This is the reason for this routine's existence.]
2982  */
2983 static void
2984 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2985 {
2986
2987         VM_MAP_ASSERT_LOCKED(map);
2988         KASSERT(entry->wired_count > 0,
2989             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2990         pmap_unwire(map->pmap, entry->start, entry->end);
2991         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2992             entry->start, PQ_ACTIVE);
2993         entry->wired_count = 0;
2994 }
2995
2996 static void
2997 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2998 {
2999
3000         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3001                 vm_object_deallocate(entry->object.vm_object);
3002         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3003 }
3004
3005 /*
3006  *      vm_map_entry_delete:    [ internal use only ]
3007  *
3008  *      Deallocate the given entry from the target map.
3009  */
3010 static void
3011 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3012 {
3013         vm_object_t object;
3014         vm_pindex_t offidxstart, offidxend, count, size1;
3015         vm_size_t size;
3016
3017         vm_map_entry_unlink(map, entry);
3018         object = entry->object.vm_object;
3019
3020         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3021                 MPASS(entry->cred == NULL);
3022                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3023                 MPASS(object == NULL);
3024                 vm_map_entry_deallocate(entry, map->system_map);
3025                 return;
3026         }
3027
3028         size = entry->end - entry->start;
3029         map->size -= size;
3030
3031         if (entry->cred != NULL) {
3032                 swap_release_by_cred(size, entry->cred);
3033                 crfree(entry->cred);
3034         }
3035
3036         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3037             (object != NULL)) {
3038                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3039                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3040                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3041                 count = atop(size);
3042                 offidxstart = OFF_TO_IDX(entry->offset);
3043                 offidxend = offidxstart + count;
3044                 VM_OBJECT_WLOCK(object);
3045                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3046                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3047                     object == kernel_object)) {
3048                         vm_object_collapse(object);
3049
3050                         /*
3051                          * The option OBJPR_NOTMAPPED can be passed here
3052                          * because vm_map_delete() already performed
3053                          * pmap_remove() on the only mapping to this range
3054                          * of pages. 
3055                          */
3056                         vm_object_page_remove(object, offidxstart, offidxend,
3057                             OBJPR_NOTMAPPED);
3058                         if (object->type == OBJT_SWAP)
3059                                 swap_pager_freespace(object, offidxstart,
3060                                     count);
3061                         if (offidxend >= object->size &&
3062                             offidxstart < object->size) {
3063                                 size1 = object->size;
3064                                 object->size = offidxstart;
3065                                 if (object->cred != NULL) {
3066                                         size1 -= object->size;
3067                                         KASSERT(object->charge >= ptoa(size1),
3068                                             ("object %p charge < 0", object));
3069                                         swap_release_by_cred(ptoa(size1),
3070                                             object->cred);
3071                                         object->charge -= ptoa(size1);
3072                                 }
3073                         }
3074                 }
3075                 VM_OBJECT_WUNLOCK(object);
3076         } else
3077                 entry->object.vm_object = NULL;
3078         if (map->system_map)
3079                 vm_map_entry_deallocate(entry, TRUE);
3080         else {
3081                 entry->next = curthread->td_map_def_user;
3082                 curthread->td_map_def_user = entry;
3083         }
3084 }
3085
3086 /*
3087  *      vm_map_delete:  [ internal use only ]
3088  *
3089  *      Deallocates the given address range from the target
3090  *      map.
3091  */
3092 int
3093 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3094 {
3095         vm_map_entry_t entry;
3096         vm_map_entry_t first_entry;
3097
3098         VM_MAP_ASSERT_LOCKED(map);
3099         if (start == end)
3100                 return (KERN_SUCCESS);
3101
3102         /*
3103          * Find the start of the region, and clip it
3104          */
3105         if (!vm_map_lookup_entry(map, start, &first_entry))
3106                 entry = first_entry->next;
3107         else {
3108                 entry = first_entry;
3109                 vm_map_clip_start(map, entry, start);
3110         }
3111
3112         /*
3113          * Step through all entries in this region
3114          */
3115         while (entry->start < end) {
3116                 vm_map_entry_t next;
3117
3118                 /*
3119                  * Wait for wiring or unwiring of an entry to complete.
3120                  * Also wait for any system wirings to disappear on
3121                  * user maps.
3122                  */
3123                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3124                     (vm_map_pmap(map) != kernel_pmap &&
3125                     vm_map_entry_system_wired_count(entry) != 0)) {
3126                         unsigned int last_timestamp;
3127                         vm_offset_t saved_start;
3128                         vm_map_entry_t tmp_entry;
3129
3130                         saved_start = entry->start;
3131                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3132                         last_timestamp = map->timestamp;
3133                         (void) vm_map_unlock_and_wait(map, 0);
3134                         vm_map_lock(map);
3135                         if (last_timestamp + 1 != map->timestamp) {
3136                                 /*
3137                                  * Look again for the entry because the map was
3138                                  * modified while it was unlocked.
3139                                  * Specifically, the entry may have been
3140                                  * clipped, merged, or deleted.
3141                                  */
3142                                 if (!vm_map_lookup_entry(map, saved_start,
3143                                                          &tmp_entry))
3144                                         entry = tmp_entry->next;
3145                                 else {
3146                                         entry = tmp_entry;
3147                                         vm_map_clip_start(map, entry,
3148                                                           saved_start);
3149                                 }
3150                         }
3151                         continue;
3152                 }
3153                 vm_map_clip_end(map, entry, end);
3154
3155                 next = entry->next;
3156
3157                 /*
3158                  * Unwire before removing addresses from the pmap; otherwise,
3159                  * unwiring will put the entries back in the pmap.
3160                  */
3161                 if (entry->wired_count != 0)
3162                         vm_map_entry_unwire(map, entry);
3163
3164                 /*
3165                  * Remove mappings for the pages, but only if the
3166                  * mappings could exist.  For instance, it does not
3167                  * make sense to call pmap_remove() for guard entries.
3168                  */
3169                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3170                     entry->object.vm_object != NULL)
3171                         pmap_remove(map->pmap, entry->start, entry->end);
3172
3173                 /*
3174                  * Delete the entry only after removing all pmap
3175                  * entries pointing to its pages.  (Otherwise, its
3176                  * page frames may be reallocated, and any modify bits
3177                  * will be set in the wrong object!)
3178                  */
3179                 vm_map_entry_delete(map, entry);
3180                 entry = next;
3181         }
3182         return (KERN_SUCCESS);
3183 }
3184
3185 /*
3186  *      vm_map_remove:
3187  *
3188  *      Remove the given address range from the target map.
3189  *      This is the exported form of vm_map_delete.
3190  */
3191 int
3192 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3193 {
3194         int result;
3195
3196         vm_map_lock(map);
3197         VM_MAP_RANGE_CHECK(map, start, end);
3198         result = vm_map_delete(map, start, end);
3199         vm_map_unlock(map);
3200         return (result);
3201 }
3202
3203 /*
3204  *      vm_map_check_protection:
3205  *
3206  *      Assert that the target map allows the specified privilege on the
3207  *      entire address region given.  The entire region must be allocated.
3208  *
3209  *      WARNING!  This code does not and should not check whether the
3210  *      contents of the region is accessible.  For example a smaller file
3211  *      might be mapped into a larger address space.
3212  *
3213  *      NOTE!  This code is also called by munmap().
3214  *
3215  *      The map must be locked.  A read lock is sufficient.
3216  */
3217 boolean_t
3218 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3219                         vm_prot_t protection)
3220 {
3221         vm_map_entry_t entry;
3222         vm_map_entry_t tmp_entry;
3223
3224         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3225                 return (FALSE);
3226         entry = tmp_entry;
3227
3228         while (start < end) {
3229                 /*
3230                  * No holes allowed!
3231                  */
3232                 if (start < entry->start)
3233                         return (FALSE);
3234                 /*
3235                  * Check protection associated with entry.
3236                  */
3237                 if ((entry->protection & protection) != protection)
3238                         return (FALSE);
3239                 /* go to next entry */
3240                 start = entry->end;
3241                 entry = entry->next;
3242         }
3243         return (TRUE);
3244 }
3245
3246 /*
3247  *      vm_map_copy_entry:
3248  *
3249  *      Copies the contents of the source entry to the destination
3250  *      entry.  The entries *must* be aligned properly.
3251  */
3252 static void
3253 vm_map_copy_entry(
3254         vm_map_t src_map,
3255         vm_map_t dst_map,
3256         vm_map_entry_t src_entry,
3257         vm_map_entry_t dst_entry,
3258         vm_ooffset_t *fork_charge)
3259 {
3260         vm_object_t src_object;
3261         vm_map_entry_t fake_entry;
3262         vm_offset_t size;
3263         struct ucred *cred;
3264         int charged;
3265
3266         VM_MAP_ASSERT_LOCKED(dst_map);
3267
3268         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3269                 return;
3270
3271         if (src_entry->wired_count == 0 ||
3272             (src_entry->protection & VM_PROT_WRITE) == 0) {
3273                 /*
3274                  * If the source entry is marked needs_copy, it is already
3275                  * write-protected.
3276                  */
3277                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3278                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3279                         pmap_protect(src_map->pmap,
3280                             src_entry->start,
3281                             src_entry->end,
3282                             src_entry->protection & ~VM_PROT_WRITE);
3283                 }
3284
3285                 /*
3286                  * Make a copy of the object.
3287                  */
3288                 size = src_entry->end - src_entry->start;
3289                 if ((src_object = src_entry->object.vm_object) != NULL) {
3290                         VM_OBJECT_WLOCK(src_object);
3291                         charged = ENTRY_CHARGED(src_entry);
3292                         if (src_object->handle == NULL &&
3293                             (src_object->type == OBJT_DEFAULT ||
3294                             src_object->type == OBJT_SWAP)) {
3295                                 vm_object_collapse(src_object);
3296                                 if ((src_object->flags & (OBJ_NOSPLIT |
3297                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3298                                         vm_object_split(src_entry);
3299                                         src_object =
3300                                             src_entry->object.vm_object;
3301                                 }
3302                         }
3303                         vm_object_reference_locked(src_object);
3304                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3305                         if (src_entry->cred != NULL &&
3306                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3307                                 KASSERT(src_object->cred == NULL,
3308                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3309                                      src_object));
3310                                 src_object->cred = src_entry->cred;
3311                                 src_object->charge = size;
3312                         }
3313                         VM_OBJECT_WUNLOCK(src_object);
3314                         dst_entry->object.vm_object = src_object;
3315                         if (charged) {
3316                                 cred = curthread->td_ucred;
3317                                 crhold(cred);
3318                                 dst_entry->cred = cred;
3319                                 *fork_charge += size;
3320                                 if (!(src_entry->eflags &
3321                                       MAP_ENTRY_NEEDS_COPY)) {
3322                                         crhold(cred);
3323                                         src_entry->cred = cred;
3324                                         *fork_charge += size;
3325                                 }
3326                         }
3327                         src_entry->eflags |= MAP_ENTRY_COW |
3328                             MAP_ENTRY_NEEDS_COPY;
3329                         dst_entry->eflags |= MAP_ENTRY_COW |
3330                             MAP_ENTRY_NEEDS_COPY;
3331                         dst_entry->offset = src_entry->offset;
3332                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3333                                 /*
3334                                  * MAP_ENTRY_VN_WRITECNT cannot
3335                                  * indicate write reference from
3336                                  * src_entry, since the entry is
3337                                  * marked as needs copy.  Allocate a
3338                                  * fake entry that is used to
3339                                  * decrement object->un_pager.vnp.writecount
3340                                  * at the appropriate time.  Attach
3341                                  * fake_entry to the deferred list.
3342                                  */
3343                                 fake_entry = vm_map_entry_create(dst_map);
3344                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3345                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3346                                 vm_object_reference(src_object);
3347                                 fake_entry->object.vm_object = src_object;
3348                                 fake_entry->start = src_entry->start;
3349                                 fake_entry->end = src_entry->end;
3350                                 fake_entry->next = curthread->td_map_def_user;
3351                                 curthread->td_map_def_user = fake_entry;
3352                         }
3353
3354                         pmap_copy(dst_map->pmap, src_map->pmap,
3355                             dst_entry->start, dst_entry->end - dst_entry->start,
3356                             src_entry->start);
3357                 } else {
3358                         dst_entry->object.vm_object = NULL;
3359                         dst_entry->offset = 0;
3360                         if (src_entry->cred != NULL) {
3361                                 dst_entry->cred = curthread->td_ucred;
3362                                 crhold(dst_entry->cred);
3363                                 *fork_charge += size;
3364                         }
3365                 }
3366         } else {
3367                 /*
3368                  * We don't want to make writeable wired pages copy-on-write.
3369                  * Immediately copy these pages into the new map by simulating
3370                  * page faults.  The new pages are pageable.
3371                  */
3372                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3373                     fork_charge);
3374         }
3375 }
3376
3377 /*
3378  * vmspace_map_entry_forked:
3379  * Update the newly-forked vmspace each time a map entry is inherited
3380  * or copied.  The values for vm_dsize and vm_tsize are approximate
3381  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3382  */
3383 static void
3384 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3385     vm_map_entry_t entry)
3386 {
3387         vm_size_t entrysize;
3388         vm_offset_t newend;
3389
3390         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3391                 return;
3392         entrysize = entry->end - entry->start;
3393         vm2->vm_map.size += entrysize;
3394         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3395                 vm2->vm_ssize += btoc(entrysize);
3396         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3397             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3398                 newend = MIN(entry->end,
3399                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3400                 vm2->vm_dsize += btoc(newend - entry->start);
3401         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3402             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3403                 newend = MIN(entry->end,
3404                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3405                 vm2->vm_tsize += btoc(newend - entry->start);
3406         }
3407 }
3408
3409 /*
3410  * vmspace_fork:
3411  * Create a new process vmspace structure and vm_map
3412  * based on those of an existing process.  The new map
3413  * is based on the old map, according to the inheritance
3414  * values on the regions in that map.
3415  *
3416  * XXX It might be worth coalescing the entries added to the new vmspace.
3417  *
3418  * The source map must not be locked.
3419  */
3420 struct vmspace *
3421 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3422 {
3423         struct vmspace *vm2;
3424         vm_map_t new_map, old_map;
3425         vm_map_entry_t new_entry, old_entry;
3426         vm_object_t object;
3427         int locked;
3428         vm_inherit_t inh;
3429
3430         old_map = &vm1->vm_map;
3431         /* Copy immutable fields of vm1 to vm2. */
3432         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3433         if (vm2 == NULL)
3434                 return (NULL);
3435         vm2->vm_taddr = vm1->vm_taddr;
3436         vm2->vm_daddr = vm1->vm_daddr;
3437         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3438         vm_map_lock(old_map);
3439         if (old_map->busy)
3440                 vm_map_wait_busy(old_map);
3441         new_map = &vm2->vm_map;
3442         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3443         KASSERT(locked, ("vmspace_fork: lock failed"));
3444
3445         old_entry = old_map->header.next;
3446
3447         while (old_entry != &old_map->header) {
3448                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3449                         panic("vm_map_fork: encountered a submap");
3450
3451                 inh = old_entry->inheritance;
3452                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3453                     inh != VM_INHERIT_NONE)
3454                         inh = VM_INHERIT_COPY;
3455
3456                 switch (inh) {
3457                 case VM_INHERIT_NONE:
3458                         break;
3459
3460                 case VM_INHERIT_SHARE:
3461                         /*
3462                          * Clone the entry, creating the shared object if necessary.
3463                          */
3464                         object = old_entry->object.vm_object;
3465                         if (object == NULL) {
3466                                 object = vm_object_allocate(OBJT_DEFAULT,
3467                                         atop(old_entry->end - old_entry->start));
3468                                 old_entry->object.vm_object = object;
3469                                 old_entry->offset = 0;
3470                                 if (old_entry->cred != NULL) {
3471                                         object->cred = old_entry->cred;
3472                                         object->charge = old_entry->end -
3473                                             old_entry->start;
3474                                         old_entry->cred = NULL;
3475                                 }
3476                         }
3477
3478                         /*
3479                          * Add the reference before calling vm_object_shadow
3480                          * to insure that a shadow object is created.
3481                          */
3482                         vm_object_reference(object);
3483                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3484                                 vm_object_shadow(&old_entry->object.vm_object,
3485                                     &old_entry->offset,
3486                                     old_entry->end - old_entry->start);
3487                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3488                                 /* Transfer the second reference too. */
3489                                 vm_object_reference(
3490                                     old_entry->object.vm_object);
3491
3492                                 /*
3493                                  * As in vm_map_simplify_entry(), the
3494                                  * vnode lock will not be acquired in
3495                                  * this call to vm_object_deallocate().
3496                                  */
3497                                 vm_object_deallocate(object);
3498                                 object = old_entry->object.vm_object;
3499                         }
3500                         VM_OBJECT_WLOCK(object);
3501                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3502                         if (old_entry->cred != NULL) {
3503                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3504                                 object->cred = old_entry->cred;
3505                                 object->charge = old_entry->end - old_entry->start;
3506                                 old_entry->cred = NULL;
3507                         }
3508
3509                         /*
3510                          * Assert the correct state of the vnode
3511                          * v_writecount while the object is locked, to
3512                          * not relock it later for the assertion
3513                          * correctness.
3514                          */
3515                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3516                             object->type == OBJT_VNODE) {
3517                                 KASSERT(((struct vnode *)object->handle)->
3518                                     v_writecount > 0,
3519                                     ("vmspace_fork: v_writecount %p", object));
3520                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3521                                     ("vmspace_fork: vnp.writecount %p",
3522                                     object));
3523                         }
3524                         VM_OBJECT_WUNLOCK(object);
3525
3526                         /*
3527                          * Clone the entry, referencing the shared object.
3528                          */
3529                         new_entry = vm_map_entry_create(new_map);
3530                         *new_entry = *old_entry;
3531                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3532                             MAP_ENTRY_IN_TRANSITION);
3533                         new_entry->wiring_thread = NULL;
3534                         new_entry->wired_count = 0;
3535                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3536                                 vnode_pager_update_writecount(object,
3537                                     new_entry->start, new_entry->end);
3538                         }
3539
3540                         /*
3541                          * Insert the entry into the new map -- we know we're
3542                          * inserting at the end of the new map.
3543                          */
3544                         vm_map_entry_link(new_map, new_map->header.prev,
3545                             new_entry);
3546                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3547
3548                         /*
3549                          * Update the physical map
3550                          */
3551                         pmap_copy(new_map->pmap, old_map->pmap,
3552                             new_entry->start,
3553                             (old_entry->end - old_entry->start),
3554                             old_entry->start);
3555                         break;
3556
3557                 case VM_INHERIT_COPY:
3558                         /*
3559                          * Clone the entry and link into the map.
3560                          */
3561                         new_entry = vm_map_entry_create(new_map);
3562                         *new_entry = *old_entry;
3563                         /*
3564                          * Copied entry is COW over the old object.
3565                          */
3566                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3567                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3568                         new_entry->wiring_thread = NULL;
3569                         new_entry->wired_count = 0;
3570                         new_entry->object.vm_object = NULL;
3571                         new_entry->cred = NULL;
3572                         vm_map_entry_link(new_map, new_map->header.prev,
3573                             new_entry);
3574                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3575                         vm_map_copy_entry(old_map, new_map, old_entry,
3576                             new_entry, fork_charge);
3577                         break;
3578
3579                 case VM_INHERIT_ZERO:
3580                         /*
3581                          * Create a new anonymous mapping entry modelled from
3582                          * the old one.
3583                          */
3584                         new_entry = vm_map_entry_create(new_map);
3585                         memset(new_entry, 0, sizeof(*new_entry));
3586
3587                         new_entry->start = old_entry->start;
3588                         new_entry->end = old_entry->end;
3589                         new_entry->eflags = old_entry->eflags &
3590                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3591                             MAP_ENTRY_VN_WRITECNT);
3592                         new_entry->protection = old_entry->protection;
3593                         new_entry->max_protection = old_entry->max_protection;
3594                         new_entry->inheritance = VM_INHERIT_ZERO;
3595
3596                         vm_map_entry_link(new_map, new_map->header.prev,
3597                             new_entry);
3598                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3599
3600                         new_entry->cred = curthread->td_ucred;
3601                         crhold(new_entry->cred);
3602                         *fork_charge += (new_entry->end - new_entry->start);
3603
3604                         break;
3605                 }
3606                 old_entry = old_entry->next;
3607         }
3608         /*
3609          * Use inlined vm_map_unlock() to postpone handling the deferred
3610          * map entries, which cannot be done until both old_map and
3611          * new_map locks are released.
3612          */
3613         sx_xunlock(&old_map->lock);
3614         sx_xunlock(&new_map->lock);
3615         vm_map_process_deferred();
3616
3617         return (vm2);
3618 }
3619
3620 /*
3621  * Create a process's stack for exec_new_vmspace().  This function is never
3622  * asked to wire the newly created stack.
3623  */
3624 int
3625 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3626     vm_prot_t prot, vm_prot_t max, int cow)
3627 {
3628         vm_size_t growsize, init_ssize;
3629         rlim_t vmemlim;
3630         int rv;
3631
3632         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3633         growsize = sgrowsiz;
3634         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3635         vm_map_lock(map);
3636         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3637         /* If we would blow our VMEM resource limit, no go */
3638         if (map->size + init_ssize > vmemlim) {
3639                 rv = KERN_NO_SPACE;
3640                 goto out;
3641         }
3642         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3643             max, cow);
3644 out:
3645         vm_map_unlock(map);
3646         return (rv);
3647 }
3648
3649 static int stack_guard_page = 1;
3650 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3651     &stack_guard_page, 0,
3652     "Specifies the number of guard pages for a stack that grows");
3653
3654 static int
3655 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3656     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3657 {
3658         vm_map_entry_t new_entry, prev_entry;
3659         vm_offset_t bot, gap_bot, gap_top, top;
3660         vm_size_t init_ssize, sgp;
3661         int orient, rv;
3662
3663         /*
3664          * The stack orientation is piggybacked with the cow argument.
3665          * Extract it into orient and mask the cow argument so that we
3666          * don't pass it around further.
3667          */
3668         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3669         KASSERT(orient != 0, ("No stack grow direction"));
3670         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3671             ("bi-dir stack"));
3672
3673         if (addrbos < vm_map_min(map) ||
3674             addrbos + max_ssize > vm_map_max(map) ||
3675             addrbos + max_ssize <= addrbos)
3676                 return (KERN_INVALID_ADDRESS);
3677         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3678         if (sgp >= max_ssize)
3679                 return (KERN_INVALID_ARGUMENT);
3680
3681         init_ssize = growsize;
3682         if (max_ssize < init_ssize + sgp)
3683                 init_ssize = max_ssize - sgp;
3684
3685         /* If addr is already mapped, no go */
3686         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3687                 return (KERN_NO_SPACE);
3688
3689         /*
3690          * If we can't accommodate max_ssize in the current mapping, no go.
3691          */
3692         if (prev_entry->next->start < addrbos + max_ssize)
3693                 return (KERN_NO_SPACE);
3694
3695         /*
3696          * We initially map a stack of only init_ssize.  We will grow as
3697          * needed later.  Depending on the orientation of the stack (i.e.
3698          * the grow direction) we either map at the top of the range, the
3699          * bottom of the range or in the middle.
3700          *
3701          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3702          * and cow to be 0.  Possibly we should eliminate these as input
3703          * parameters, and just pass these values here in the insert call.
3704          */
3705         if (orient == MAP_STACK_GROWS_DOWN) {
3706                 bot = addrbos + max_ssize - init_ssize;
3707                 top = bot + init_ssize;
3708                 gap_bot = addrbos;
3709                 gap_top = bot;
3710         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3711                 bot = addrbos;
3712                 top = bot + init_ssize;
3713                 gap_bot = top;
3714                 gap_top = addrbos + max_ssize;
3715         }
3716         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3717         if (rv != KERN_SUCCESS)
3718                 return (rv);
3719         new_entry = prev_entry->next;
3720         KASSERT(new_entry->end == top || new_entry->start == bot,
3721             ("Bad entry start/end for new stack entry"));
3722         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3723             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3724             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3725         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3726             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3727             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3728         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3729             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3730             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3731         if (rv != KERN_SUCCESS)
3732                 (void)vm_map_delete(map, bot, top);
3733         return (rv);
3734 }
3735
3736 /*
3737  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3738  * successfully grow the stack.
3739  */
3740 static int
3741 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3742 {
3743         vm_map_entry_t stack_entry;
3744         struct proc *p;
3745         struct vmspace *vm;
3746         struct ucred *cred;
3747         vm_offset_t gap_end, gap_start, grow_start;
3748         size_t grow_amount, guard, max_grow;
3749         rlim_t lmemlim, stacklim, vmemlim;
3750         int rv, rv1;
3751         bool gap_deleted, grow_down, is_procstack;
3752 #ifdef notyet
3753         uint64_t limit;
3754 #endif
3755 #ifdef RACCT
3756         int error;
3757 #endif
3758
3759         p = curproc;
3760         vm = p->p_vmspace;
3761
3762         /*
3763          * Disallow stack growth when the access is performed by a
3764          * debugger or AIO daemon.  The reason is that the wrong
3765          * resource limits are applied.
3766          */
3767         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3768                 return (KERN_FAILURE);
3769
3770         MPASS(!map->system_map);
3771
3772         guard = stack_guard_page * PAGE_SIZE;
3773         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3774         stacklim = lim_cur(curthread, RLIMIT_STACK);
3775         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3776 retry:
3777         /* If addr is not in a hole for a stack grow area, no need to grow. */
3778         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3779                 return (KERN_FAILURE);
3780         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3781                 return (KERN_SUCCESS);
3782         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3783                 stack_entry = gap_entry->next;
3784                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3785                     stack_entry->start != gap_entry->end)
3786                         return (KERN_FAILURE);
3787                 grow_amount = round_page(stack_entry->start - addr);
3788                 grow_down = true;
3789         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3790                 stack_entry = gap_entry->prev;
3791                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3792                     stack_entry->end != gap_entry->start)
3793                         return (KERN_FAILURE);
3794                 grow_amount = round_page(addr + 1 - stack_entry->end);
3795                 grow_down = false;
3796         } else {
3797                 return (KERN_FAILURE);
3798         }
3799         max_grow = gap_entry->end - gap_entry->start;
3800         if (guard > max_grow)
3801                 return (KERN_NO_SPACE);
3802         max_grow -= guard;
3803         if (grow_amount > max_grow)
3804                 return (KERN_NO_SPACE);
3805
3806         /*
3807          * If this is the main process stack, see if we're over the stack
3808          * limit.
3809          */
3810         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3811             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3812         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3813                 return (KERN_NO_SPACE);
3814
3815 #ifdef RACCT
3816         if (racct_enable) {
3817                 PROC_LOCK(p);
3818                 if (is_procstack && racct_set(p, RACCT_STACK,
3819                     ctob(vm->vm_ssize) + grow_amount)) {
3820                         PROC_UNLOCK(p);
3821                         return (KERN_NO_SPACE);
3822                 }
3823                 PROC_UNLOCK(p);
3824         }
3825 #endif
3826
3827         grow_amount = roundup(grow_amount, sgrowsiz);
3828         if (grow_amount > max_grow)
3829                 grow_amount = max_grow;
3830         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3831                 grow_amount = trunc_page((vm_size_t)stacklim) -
3832                     ctob(vm->vm_ssize);
3833         }
3834
3835 #ifdef notyet
3836         PROC_LOCK(p);
3837         limit = racct_get_available(p, RACCT_STACK);
3838         PROC_UNLOCK(p);
3839         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3840                 grow_amount = limit - ctob(vm->vm_ssize);
3841 #endif
3842
3843         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3844                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3845                         rv = KERN_NO_SPACE;
3846                         goto out;
3847                 }
3848 #ifdef RACCT
3849                 if (racct_enable) {
3850                         PROC_LOCK(p);
3851                         if (racct_set(p, RACCT_MEMLOCK,
3852                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3853                                 PROC_UNLOCK(p);
3854                                 rv = KERN_NO_SPACE;
3855                                 goto out;
3856                         }
3857                         PROC_UNLOCK(p);
3858                 }
3859 #endif
3860         }
3861
3862         /* If we would blow our VMEM resource limit, no go */
3863         if (map->size + grow_amount > vmemlim) {
3864                 rv = KERN_NO_SPACE;
3865                 goto out;
3866         }
3867 #ifdef RACCT
3868         if (racct_enable) {
3869                 PROC_LOCK(p);
3870                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3871                         PROC_UNLOCK(p);
3872                         rv = KERN_NO_SPACE;
3873                         goto out;
3874                 }
3875                 PROC_UNLOCK(p);
3876         }
3877 #endif
3878
3879         if (vm_map_lock_upgrade(map)) {
3880                 gap_entry = NULL;
3881                 vm_map_lock_read(map);
3882                 goto retry;
3883         }
3884
3885         if (grow_down) {
3886                 grow_start = gap_entry->end - grow_amount;
3887                 if (gap_entry->start + grow_amount == gap_entry->end) {
3888                         gap_start = gap_entry->start;
3889                         gap_end = gap_entry->end;
3890                         vm_map_entry_delete(map, gap_entry);
3891                         gap_deleted = true;
3892                 } else {
3893                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3894                         gap_entry->end -= grow_amount;
3895                         vm_map_entry_resize_free(map, gap_entry);
3896                         gap_deleted = false;
3897                 }
3898                 rv = vm_map_insert(map, NULL, 0, grow_start,
3899                     grow_start + grow_amount,
3900                     stack_entry->protection, stack_entry->max_protection,
3901                     MAP_STACK_GROWS_DOWN);
3902                 if (rv != KERN_SUCCESS) {
3903                         if (gap_deleted) {
3904                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3905                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3906                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3907                                 MPASS(rv1 == KERN_SUCCESS);
3908                         } else {
3909                                 gap_entry->end += grow_amount;
3910                                 vm_map_entry_resize_free(map, gap_entry);
3911                         }
3912                 }
3913         } else {
3914                 grow_start = stack_entry->end;
3915                 cred = stack_entry->cred;
3916                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3917                         cred = stack_entry->object.vm_object->cred;
3918                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3919                         rv = KERN_NO_SPACE;
3920                 /* Grow the underlying object if applicable. */
3921                 else if (stack_entry->object.vm_object == NULL ||
3922                     vm_object_coalesce(stack_entry->object.vm_object,
3923                     stack_entry->offset,
3924                     (vm_size_t)(stack_entry->end - stack_entry->start),
3925                     (vm_size_t)grow_amount, cred != NULL)) {
3926                         if (gap_entry->start + grow_amount == gap_entry->end)
3927                                 vm_map_entry_delete(map, gap_entry);
3928                         else
3929                                 gap_entry->start += grow_amount;
3930                         stack_entry->end += grow_amount;
3931                         map->size += grow_amount;
3932                         vm_map_entry_resize_free(map, stack_entry);
3933                         rv = KERN_SUCCESS;
3934                 } else
3935                         rv = KERN_FAILURE;
3936         }
3937         if (rv == KERN_SUCCESS && is_procstack)
3938                 vm->vm_ssize += btoc(grow_amount);
3939
3940         /*
3941          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3942          */
3943         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3944                 vm_map_unlock(map);
3945                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3946                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3947                 vm_map_lock_read(map);
3948         } else
3949                 vm_map_lock_downgrade(map);
3950
3951 out:
3952 #ifdef RACCT
3953         if (racct_enable && rv != KERN_SUCCESS) {
3954                 PROC_LOCK(p);
3955                 error = racct_set(p, RACCT_VMEM, map->size);
3956                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3957                 if (!old_mlock) {
3958                         error = racct_set(p, RACCT_MEMLOCK,
3959                             ptoa(pmap_wired_count(map->pmap)));
3960                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3961                 }
3962                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3963                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3964                 PROC_UNLOCK(p);
3965         }
3966 #endif
3967
3968         return (rv);
3969 }
3970
3971 /*
3972  * Unshare the specified VM space for exec.  If other processes are
3973  * mapped to it, then create a new one.  The new vmspace is null.
3974  */
3975 int
3976 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3977 {
3978         struct vmspace *oldvmspace = p->p_vmspace;
3979         struct vmspace *newvmspace;
3980
3981         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3982             ("vmspace_exec recursed"));
3983         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3984         if (newvmspace == NULL)
3985                 return (ENOMEM);
3986         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3987         /*
3988          * This code is written like this for prototype purposes.  The
3989          * goal is to avoid running down the vmspace here, but let the
3990          * other process's that are still using the vmspace to finally
3991          * run it down.  Even though there is little or no chance of blocking
3992          * here, it is a good idea to keep this form for future mods.
3993          */
3994         PROC_VMSPACE_LOCK(p);
3995         p->p_vmspace = newvmspace;
3996         PROC_VMSPACE_UNLOCK(p);
3997         if (p == curthread->td_proc)
3998                 pmap_activate(curthread);
3999         curthread->td_pflags |= TDP_EXECVMSPC;
4000         return (0);
4001 }
4002
4003 /*
4004  * Unshare the specified VM space for forcing COW.  This
4005  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4006  */
4007 int
4008 vmspace_unshare(struct proc *p)
4009 {
4010         struct vmspace *oldvmspace = p->p_vmspace;
4011         struct vmspace *newvmspace;
4012         vm_ooffset_t fork_charge;
4013
4014         if (oldvmspace->vm_refcnt == 1)
4015                 return (0);
4016         fork_charge = 0;
4017         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4018         if (newvmspace == NULL)
4019                 return (ENOMEM);
4020         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4021                 vmspace_free(newvmspace);
4022                 return (ENOMEM);
4023         }
4024         PROC_VMSPACE_LOCK(p);
4025         p->p_vmspace = newvmspace;
4026         PROC_VMSPACE_UNLOCK(p);
4027         if (p == curthread->td_proc)
4028                 pmap_activate(curthread);
4029         vmspace_free(oldvmspace);
4030         return (0);
4031 }
4032
4033 /*
4034  *      vm_map_lookup:
4035  *
4036  *      Finds the VM object, offset, and
4037  *      protection for a given virtual address in the
4038  *      specified map, assuming a page fault of the
4039  *      type specified.
4040  *
4041  *      Leaves the map in question locked for read; return
4042  *      values are guaranteed until a vm_map_lookup_done
4043  *      call is performed.  Note that the map argument
4044  *      is in/out; the returned map must be used in
4045  *      the call to vm_map_lookup_done.
4046  *
4047  *      A handle (out_entry) is returned for use in
4048  *      vm_map_lookup_done, to make that fast.
4049  *
4050  *      If a lookup is requested with "write protection"
4051  *      specified, the map may be changed to perform virtual
4052  *      copying operations, although the data referenced will
4053  *      remain the same.
4054  */
4055 int
4056 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4057               vm_offset_t vaddr,
4058               vm_prot_t fault_typea,
4059               vm_map_entry_t *out_entry,        /* OUT */
4060               vm_object_t *object,              /* OUT */
4061               vm_pindex_t *pindex,              /* OUT */
4062               vm_prot_t *out_prot,              /* OUT */
4063               boolean_t *wired)                 /* OUT */
4064 {
4065         vm_map_entry_t entry;
4066         vm_map_t map = *var_map;
4067         vm_prot_t prot;
4068         vm_prot_t fault_type = fault_typea;
4069         vm_object_t eobject;
4070         vm_size_t size;
4071         struct ucred *cred;
4072
4073 RetryLookup:
4074
4075         vm_map_lock_read(map);
4076
4077 RetryLookupLocked:
4078         /*
4079          * Lookup the faulting address.
4080          */
4081         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4082                 vm_map_unlock_read(map);
4083                 return (KERN_INVALID_ADDRESS);
4084         }
4085
4086         entry = *out_entry;
4087
4088         /*
4089          * Handle submaps.
4090          */
4091         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4092                 vm_map_t old_map = map;
4093
4094                 *var_map = map = entry->object.sub_map;
4095                 vm_map_unlock_read(old_map);
4096                 goto RetryLookup;
4097         }
4098
4099         /*
4100          * Check whether this task is allowed to have this page.
4101          */
4102         prot = entry->protection;
4103         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4104                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4105                 if (prot == VM_PROT_NONE && map != kernel_map &&
4106                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4107                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4108                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4109                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4110                         goto RetryLookupLocked;
4111         }
4112         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4113         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4114                 vm_map_unlock_read(map);
4115                 return (KERN_PROTECTION_FAILURE);
4116         }
4117         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4118             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4119             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4120             ("entry %p flags %x", entry, entry->eflags));
4121         if ((fault_typea & VM_PROT_COPY) != 0 &&
4122             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4123             (entry->eflags & MAP_ENTRY_COW) == 0) {
4124                 vm_map_unlock_read(map);
4125                 return (KERN_PROTECTION_FAILURE);
4126         }
4127
4128         /*
4129          * If this page is not pageable, we have to get it for all possible
4130          * accesses.
4131          */
4132         *wired = (entry->wired_count != 0);
4133         if (*wired)
4134                 fault_type = entry->protection;
4135         size = entry->end - entry->start;
4136         /*
4137          * If the entry was copy-on-write, we either ...
4138          */
4139         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4140                 /*
4141                  * If we want to write the page, we may as well handle that
4142                  * now since we've got the map locked.
4143                  *
4144                  * If we don't need to write the page, we just demote the
4145                  * permissions allowed.
4146                  */
4147                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4148                     (fault_typea & VM_PROT_COPY) != 0) {
4149                         /*
4150                          * Make a new object, and place it in the object
4151                          * chain.  Note that no new references have appeared
4152                          * -- one just moved from the map to the new
4153                          * object.
4154                          */
4155                         if (vm_map_lock_upgrade(map))
4156                                 goto RetryLookup;
4157
4158                         if (entry->cred == NULL) {
4159                                 /*
4160                                  * The debugger owner is charged for
4161                                  * the memory.
4162                                  */
4163                                 cred = curthread->td_ucred;
4164                                 crhold(cred);
4165                                 if (!swap_reserve_by_cred(size, cred)) {
4166                                         crfree(cred);
4167                                         vm_map_unlock(map);
4168                                         return (KERN_RESOURCE_SHORTAGE);
4169                                 }
4170                                 entry->cred = cred;
4171                         }
4172                         vm_object_shadow(&entry->object.vm_object,
4173                             &entry->offset, size);
4174                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4175                         eobject = entry->object.vm_object;
4176                         if (eobject->cred != NULL) {
4177                                 /*
4178                                  * The object was not shadowed.
4179                                  */
4180                                 swap_release_by_cred(size, entry->cred);
4181                                 crfree(entry->cred);
4182                                 entry->cred = NULL;
4183                         } else if (entry->cred != NULL) {
4184                                 VM_OBJECT_WLOCK(eobject);
4185                                 eobject->cred = entry->cred;
4186                                 eobject->charge = size;
4187                                 VM_OBJECT_WUNLOCK(eobject);
4188                                 entry->cred = NULL;
4189                         }
4190
4191                         vm_map_lock_downgrade(map);
4192                 } else {
4193                         /*
4194                          * We're attempting to read a copy-on-write page --
4195                          * don't allow writes.
4196                          */
4197                         prot &= ~VM_PROT_WRITE;
4198                 }
4199         }
4200
4201         /*
4202          * Create an object if necessary.
4203          */
4204         if (entry->object.vm_object == NULL &&
4205             !map->system_map) {
4206                 if (vm_map_lock_upgrade(map))
4207                         goto RetryLookup;
4208                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4209                     atop(size));
4210                 entry->offset = 0;
4211                 if (entry->cred != NULL) {
4212                         VM_OBJECT_WLOCK(entry->object.vm_object);
4213                         entry->object.vm_object->cred = entry->cred;
4214                         entry->object.vm_object->charge = size;
4215                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4216                         entry->cred = NULL;
4217                 }
4218                 vm_map_lock_downgrade(map);
4219         }
4220
4221         /*
4222          * Return the object/offset from this entry.  If the entry was
4223          * copy-on-write or empty, it has been fixed up.
4224          */
4225         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4226         *object = entry->object.vm_object;
4227
4228         *out_prot = prot;
4229         return (KERN_SUCCESS);
4230 }
4231
4232 /*
4233  *      vm_map_lookup_locked:
4234  *
4235  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4236  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4237  */
4238 int
4239 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4240                      vm_offset_t vaddr,
4241                      vm_prot_t fault_typea,
4242                      vm_map_entry_t *out_entry, /* OUT */
4243                      vm_object_t *object,       /* OUT */
4244                      vm_pindex_t *pindex,       /* OUT */
4245                      vm_prot_t *out_prot,       /* OUT */
4246                      boolean_t *wired)          /* OUT */
4247 {
4248         vm_map_entry_t entry;
4249         vm_map_t map = *var_map;
4250         vm_prot_t prot;
4251         vm_prot_t fault_type = fault_typea;
4252
4253         /*
4254          * Lookup the faulting address.
4255          */
4256         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4257                 return (KERN_INVALID_ADDRESS);
4258
4259         entry = *out_entry;
4260
4261         /*
4262          * Fail if the entry refers to a submap.
4263          */
4264         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4265                 return (KERN_FAILURE);
4266
4267         /*
4268          * Check whether this task is allowed to have this page.
4269          */
4270         prot = entry->protection;
4271         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4272         if ((fault_type & prot) != fault_type)
4273                 return (KERN_PROTECTION_FAILURE);
4274
4275         /*
4276          * If this page is not pageable, we have to get it for all possible
4277          * accesses.
4278          */
4279         *wired = (entry->wired_count != 0);
4280         if (*wired)
4281                 fault_type = entry->protection;
4282
4283         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4284                 /*
4285                  * Fail if the entry was copy-on-write for a write fault.
4286                  */
4287                 if (fault_type & VM_PROT_WRITE)
4288                         return (KERN_FAILURE);
4289                 /*
4290                  * We're attempting to read a copy-on-write page --
4291                  * don't allow writes.
4292                  */
4293                 prot &= ~VM_PROT_WRITE;
4294         }
4295
4296         /*
4297          * Fail if an object should be created.
4298          */
4299         if (entry->object.vm_object == NULL && !map->system_map)
4300                 return (KERN_FAILURE);
4301
4302         /*
4303          * Return the object/offset from this entry.  If the entry was
4304          * copy-on-write or empty, it has been fixed up.
4305          */
4306         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4307         *object = entry->object.vm_object;
4308
4309         *out_prot = prot;
4310         return (KERN_SUCCESS);
4311 }
4312
4313 /*
4314  *      vm_map_lookup_done:
4315  *
4316  *      Releases locks acquired by a vm_map_lookup
4317  *      (according to the handle returned by that lookup).
4318  */
4319 void
4320 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4321 {
4322         /*
4323          * Unlock the main-level map
4324          */
4325         vm_map_unlock_read(map);
4326 }
4327
4328 vm_offset_t
4329 vm_map_max_KBI(const struct vm_map *map)
4330 {
4331
4332         return (map->max_offset);
4333 }
4334
4335 vm_offset_t
4336 vm_map_min_KBI(const struct vm_map *map)
4337 {
4338
4339         return (map->min_offset);
4340 }
4341
4342 pmap_t
4343 vm_map_pmap_KBI(vm_map_t map)
4344 {
4345
4346         return (map->pmap);
4347 }
4348
4349 #include "opt_ddb.h"
4350 #ifdef DDB
4351 #include <sys/kernel.h>
4352
4353 #include <ddb/ddb.h>
4354
4355 static void
4356 vm_map_print(vm_map_t map)
4357 {
4358         vm_map_entry_t entry;
4359
4360         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4361             (void *)map,
4362             (void *)map->pmap, map->nentries, map->timestamp);
4363
4364         db_indent += 2;
4365         for (entry = map->header.next; entry != &map->header;
4366             entry = entry->next) {
4367                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4368                     (void *)entry, (void *)entry->start, (void *)entry->end,
4369                     entry->eflags);
4370                 {
4371                         static char *inheritance_name[4] =
4372                         {"share", "copy", "none", "donate_copy"};
4373
4374                         db_iprintf(" prot=%x/%x/%s",
4375                             entry->protection,
4376                             entry->max_protection,
4377                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4378                         if (entry->wired_count != 0)
4379                                 db_printf(", wired");
4380                 }
4381                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4382                         db_printf(", share=%p, offset=0x%jx\n",
4383                             (void *)entry->object.sub_map,
4384                             (uintmax_t)entry->offset);
4385                         if ((entry->prev == &map->header) ||
4386                             (entry->prev->object.sub_map !=
4387                                 entry->object.sub_map)) {
4388                                 db_indent += 2;
4389                                 vm_map_print((vm_map_t)entry->object.sub_map);
4390                                 db_indent -= 2;
4391                         }
4392                 } else {
4393                         if (entry->cred != NULL)
4394                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4395                         db_printf(", object=%p, offset=0x%jx",
4396                             (void *)entry->object.vm_object,
4397                             (uintmax_t)entry->offset);
4398                         if (entry->object.vm_object && entry->object.vm_object->cred)
4399                                 db_printf(", obj ruid %d charge %jx",
4400                                     entry->object.vm_object->cred->cr_ruid,
4401                                     (uintmax_t)entry->object.vm_object->charge);
4402                         if (entry->eflags & MAP_ENTRY_COW)
4403                                 db_printf(", copy (%s)",
4404                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4405                         db_printf("\n");
4406
4407                         if ((entry->prev == &map->header) ||
4408                             (entry->prev->object.vm_object !=
4409                                 entry->object.vm_object)) {
4410                                 db_indent += 2;
4411                                 vm_object_print((db_expr_t)(intptr_t)
4412                                                 entry->object.vm_object,
4413                                                 0, 0, (char *)0);
4414                                 db_indent -= 2;
4415                         }
4416                 }
4417         }
4418         db_indent -= 2;
4419 }
4420
4421 DB_SHOW_COMMAND(map, map)
4422 {
4423
4424         if (!have_addr) {
4425                 db_printf("usage: show map <addr>\n");
4426                 return;
4427         }
4428         vm_map_print((vm_map_t)addr);
4429 }
4430
4431 DB_SHOW_COMMAND(procvm, procvm)
4432 {
4433         struct proc *p;
4434
4435         if (have_addr) {
4436                 p = db_lookup_proc(addr);
4437         } else {
4438                 p = curproc;
4439         }
4440
4441         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4442             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4443             (void *)vmspace_pmap(p->p_vmspace));
4444
4445         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4446 }
4447
4448 #endif /* DDB */