]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Implement Address Space Layout Randomization (ASLR)
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
287         if (!pinit(vmspace_pmap(vm))) {
288                 uma_zfree(vmspace_zone, vm);
289                 return (NULL);
290         }
291         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293         vm->vm_refcnt = 1;
294         vm->vm_shm = NULL;
295         vm->vm_swrss = 0;
296         vm->vm_tsize = 0;
297         vm->vm_dsize = 0;
298         vm->vm_ssize = 0;
299         vm->vm_taddr = 0;
300         vm->vm_daddr = 0;
301         vm->vm_maxsaddr = 0;
302         return (vm);
303 }
304
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309
310         PROC_LOCK(p);
311         racct_set(p, RACCT_DATA, 0);
312         racct_set(p, RACCT_STACK, 0);
313         racct_set(p, RACCT_RSS, 0);
314         racct_set(p, RACCT_MEMLOCK, 0);
315         racct_set(p, RACCT_VMEM, 0);
316         PROC_UNLOCK(p);
317 }
318 #endif
319
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323
324         CTR1(KTR_VM, "vmspace_free: %p", vm);
325
326         /*
327          * Make sure any SysV shm is freed, it might not have been in
328          * exit1().
329          */
330         shmexit(vm);
331
332         /*
333          * Lock the map, to wait out all other references to it.
334          * Delete all of the mappings and pages they hold, then call
335          * the pmap module to reclaim anything left.
336          */
337         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
338             vm_map_max(&vm->vm_map));
339
340         pmap_release(vmspace_pmap(vm));
341         vm->vm_map.pmap = NULL;
342         uma_zfree(vmspace_zone, vm);
343 }
344
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348
349         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350             "vmspace_free() called");
351
352         if (vm->vm_refcnt == 0)
353                 panic("vmspace_free: attempt to free already freed vmspace");
354
355         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356                 vmspace_dofree(vm);
357 }
358
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362         struct vmspace *vm;
363
364         PROC_VMSPACE_LOCK(p);
365         vm = p->p_vmspace;
366         p->p_vmspace = NULL;
367         PROC_VMSPACE_UNLOCK(p);
368         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369         vmspace_free(vm);
370 }
371
372 void
373 vmspace_exit(struct thread *td)
374 {
375         int refcnt;
376         struct vmspace *vm;
377         struct proc *p;
378
379         /*
380          * Release user portion of address space.
381          * This releases references to vnodes,
382          * which could cause I/O if the file has been unlinked.
383          * Need to do this early enough that we can still sleep.
384          *
385          * The last exiting process to reach this point releases as
386          * much of the environment as it can. vmspace_dofree() is the
387          * slower fallback in case another process had a temporary
388          * reference to the vmspace.
389          */
390
391         p = td->td_proc;
392         vm = p->p_vmspace;
393         atomic_add_int(&vmspace0.vm_refcnt, 1);
394         refcnt = vm->vm_refcnt;
395         do {
396                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397                         /* Switch now since other proc might free vmspace */
398                         PROC_VMSPACE_LOCK(p);
399                         p->p_vmspace = &vmspace0;
400                         PROC_VMSPACE_UNLOCK(p);
401                         pmap_activate(td);
402                 }
403         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
404         if (refcnt == 1) {
405                 if (p->p_vmspace != vm) {
406                         /* vmspace not yet freed, switch back */
407                         PROC_VMSPACE_LOCK(p);
408                         p->p_vmspace = vm;
409                         PROC_VMSPACE_UNLOCK(p);
410                         pmap_activate(td);
411                 }
412                 pmap_remove_pages(vmspace_pmap(vm));
413                 /* Switch now since this proc will free vmspace */
414                 PROC_VMSPACE_LOCK(p);
415                 p->p_vmspace = &vmspace0;
416                 PROC_VMSPACE_UNLOCK(p);
417                 pmap_activate(td);
418                 vmspace_dofree(vm);
419         }
420 #ifdef RACCT
421         if (racct_enable)
422                 vmspace_container_reset(p);
423 #endif
424 }
425
426 /* Acquire reference to vmspace owned by another process. */
427
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431         struct vmspace *vm;
432         int refcnt;
433
434         PROC_VMSPACE_LOCK(p);
435         vm = p->p_vmspace;
436         if (vm == NULL) {
437                 PROC_VMSPACE_UNLOCK(p);
438                 return (NULL);
439         }
440         refcnt = vm->vm_refcnt;
441         do {
442                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
443                         PROC_VMSPACE_UNLOCK(p);
444                         return (NULL);
445                 }
446         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
447         if (vm != p->p_vmspace) {
448                 PROC_VMSPACE_UNLOCK(p);
449                 vmspace_free(vm);
450                 return (NULL);
451         }
452         PROC_VMSPACE_UNLOCK(p);
453         return (vm);
454 }
455
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475         struct vmspace *oldvm;
476
477         /* XXX: Need some way to assert that this is an aio daemon. */
478
479         KASSERT(newvm->vm_refcnt > 0,
480             ("vmspace_switch_aio: newvm unreferenced"));
481
482         oldvm = curproc->p_vmspace;
483         if (oldvm == newvm)
484                 return;
485
486         /*
487          * Point to the new address space and refer to it.
488          */
489         curproc->p_vmspace = newvm;
490         atomic_add_int(&newvm->vm_refcnt, 1);
491
492         /* Activate the new mapping. */
493         pmap_activate(curthread);
494
495         /* Remove the daemon's reference to the old address space. */
496         KASSERT(oldvm->vm_refcnt > 1,
497             ("vmspace_switch_aio: oldvm dropping last reference"));
498         vmspace_free(oldvm);
499 }
500
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504
505         if (map->system_map)
506                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
507         else
508                 sx_xlock_(&map->lock, file, line);
509         map->timestamp++;
510 }
511
512 static void
513 vm_map_process_deferred(void)
514 {
515         struct thread *td;
516         vm_map_entry_t entry, next;
517         vm_object_t object;
518
519         td = curthread;
520         entry = td->td_map_def_user;
521         td->td_map_def_user = NULL;
522         while (entry != NULL) {
523                 next = entry->next;
524                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525                         /*
526                          * Decrement the object's writemappings and
527                          * possibly the vnode's v_writecount.
528                          */
529                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530                             ("Submap with writecount"));
531                         object = entry->object.vm_object;
532                         KASSERT(object != NULL, ("No object for writecount"));
533                         vnode_pager_release_writecount(object, entry->start,
534                             entry->end);
535                 }
536                 vm_map_entry_deallocate(entry, FALSE);
537                 entry = next;
538         }
539 }
540
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544
545         if (map->system_map)
546                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547         else {
548                 sx_xunlock_(&map->lock, file, line);
549                 vm_map_process_deferred();
550         }
551 }
552
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556
557         if (map->system_map)
558                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
559         else
560                 sx_slock_(&map->lock, file, line);
561 }
562
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566
567         if (map->system_map)
568                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569         else {
570                 sx_sunlock_(&map->lock, file, line);
571                 vm_map_process_deferred();
572         }
573 }
574
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578         int error;
579
580         error = map->system_map ?
581             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582             !sx_try_xlock_(&map->lock, file, line);
583         if (error == 0)
584                 map->timestamp++;
585         return (error == 0);
586 }
587
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591         int error;
592
593         error = map->system_map ?
594             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595             !sx_try_slock_(&map->lock, file, line);
596         return (error == 0);
597 }
598
599 /*
600  *      _vm_map_lock_upgrade:   [ internal use only ]
601  *
602  *      Tries to upgrade a read (shared) lock on the specified map to a write
603  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *      returned without a read or write lock held.
606  *
607  *      Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612         unsigned int last_timestamp;
613
614         if (map->system_map) {
615                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616         } else {
617                 if (!sx_try_upgrade_(&map->lock, file, line)) {
618                         last_timestamp = map->timestamp;
619                         sx_sunlock_(&map->lock, file, line);
620                         vm_map_process_deferred();
621                         /*
622                          * If the map's timestamp does not change while the
623                          * map is unlocked, then the upgrade succeeds.
624                          */
625                         sx_xlock_(&map->lock, file, line);
626                         if (last_timestamp != map->timestamp) {
627                                 sx_xunlock_(&map->lock, file, line);
628                                 return (1);
629                         }
630                 }
631         }
632         map->timestamp++;
633         return (0);
634 }
635
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639
640         if (map->system_map) {
641                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642         } else
643                 sx_downgrade_(&map->lock, file, line);
644 }
645
646 /*
647  *      vm_map_locked:
648  *
649  *      Returns a non-zero value if the caller holds a write (exclusive) lock
650  *      on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655
656         if (map->system_map)
657                 return (mtx_owned(&map->system_mtx));
658         else
659                 return (sx_xlocked(&map->lock));
660 }
661
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666
667         if (map->system_map)
668                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669         else
670                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672
673 #define VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define VM_MAP_ASSERT_LOCKED(map)
677 #endif
678
679 /*
680  *      _vm_map_unlock_and_wait:
681  *
682  *      Atomically releases the lock on the specified map and puts the calling
683  *      thread to sleep.  The calling thread will remain asleep until either
684  *      vm_map_wakeup() is performed on the map or the specified timeout is
685  *      exceeded.
686  *
687  *      WARNING!  This function does not perform deferred deallocations of
688  *      objects and map entries.  Therefore, the calling thread is expected to
689  *      reacquire the map lock after reawakening and later perform an ordinary
690  *      unlock operation, such as vm_map_unlock(), before completing its
691  *      operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696
697         mtx_lock(&map_sleep_mtx);
698         if (map->system_map)
699                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700         else
701                 sx_xunlock_(&map->lock, file, line);
702         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703             timo));
704 }
705
706 /*
707  *      vm_map_wakeup:
708  *
709  *      Awaken any threads that have slept on the map using
710  *      vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715
716         /*
717          * Acquire and release map_sleep_mtx to prevent a wakeup()
718          * from being performed (and lost) between the map unlock
719          * and the msleep() in _vm_map_unlock_and_wait().
720          */
721         mtx_lock(&map_sleep_mtx);
722         mtx_unlock(&map_sleep_mtx);
723         wakeup(&map->root);
724 }
725
726 void
727 vm_map_busy(vm_map_t map)
728 {
729
730         VM_MAP_ASSERT_LOCKED(map);
731         map->busy++;
732 }
733
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737
738         VM_MAP_ASSERT_LOCKED(map);
739         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742                 wakeup(&map->busy);
743         }
744 }
745
746 void 
747 vm_map_wait_busy(vm_map_t map)
748 {
749
750         VM_MAP_ASSERT_LOCKED(map);
751         while (map->busy) {
752                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753                 if (map->system_map)
754                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755                 else
756                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757         }
758         map->timestamp++;
759 }
760
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764         return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766
767 /*
768  *      vm_map_create:
769  *
770  *      Creates and returns a new empty VM map with
771  *      the given physical map structure, and having
772  *      the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777         vm_map_t result;
778
779         result = uma_zalloc(mapzone, M_WAITOK);
780         CTR1(KTR_VM, "vm_map_create: %p", result);
781         _vm_map_init(result, pmap, min, max);
782         return (result);
783 }
784
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792
793         map->header.next = map->header.prev = &map->header;
794         map->header.eflags = MAP_ENTRY_HEADER;
795         map->needs_wakeup = FALSE;
796         map->system_map = 0;
797         map->pmap = pmap;
798         map->header.end = min;
799         map->header.start = max;
800         map->flags = 0;
801         map->root = NULL;
802         map->timestamp = 0;
803         map->busy = 0;
804         map->anon_loc = 0;
805 }
806
807 void
808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
809 {
810
811         _vm_map_init(map, pmap, min, max);
812         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
813         sx_init(&map->lock, "user map");
814 }
815
816 /*
817  *      vm_map_entry_dispose:   [ internal use only ]
818  *
819  *      Inverse of vm_map_entry_create.
820  */
821 static void
822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
823 {
824         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
825 }
826
827 /*
828  *      vm_map_entry_create:    [ internal use only ]
829  *
830  *      Allocates a VM map entry for insertion.
831  *      No entry fields are filled in.
832  */
833 static vm_map_entry_t
834 vm_map_entry_create(vm_map_t map)
835 {
836         vm_map_entry_t new_entry;
837
838         if (map->system_map)
839                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
840         else
841                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
842         if (new_entry == NULL)
843                 panic("vm_map_entry_create: kernel resources exhausted");
844         return (new_entry);
845 }
846
847 /*
848  *      vm_map_entry_set_behavior:
849  *
850  *      Set the expected access behavior, either normal, random, or
851  *      sequential.
852  */
853 static inline void
854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
855 {
856         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
857             (behavior & MAP_ENTRY_BEHAV_MASK);
858 }
859
860 /*
861  *      vm_map_entry_set_max_free:
862  *
863  *      Set the max_free field in a vm_map_entry.
864  */
865 static inline void
866 vm_map_entry_set_max_free(vm_map_entry_t entry)
867 {
868
869         entry->max_free = entry->adj_free;
870         if (entry->left != NULL && entry->left->max_free > entry->max_free)
871                 entry->max_free = entry->left->max_free;
872         if (entry->right != NULL && entry->right->max_free > entry->max_free)
873                 entry->max_free = entry->right->max_free;
874 }
875
876 /*
877  *      vm_map_entry_splay:
878  *
879  *      The Sleator and Tarjan top-down splay algorithm with the
880  *      following variation.  Max_free must be computed bottom-up, so
881  *      on the downward pass, maintain the left and right spines in
882  *      reverse order.  Then, make a second pass up each side to fix
883  *      the pointers and compute max_free.  The time bound is O(log n)
884  *      amortized.
885  *
886  *      The new root is the vm_map_entry containing "addr", or else an
887  *      adjacent entry (lower or higher) if addr is not in the tree.
888  *
889  *      The map must be locked, and leaves it so.
890  *
891  *      Returns: the new root.
892  */
893 static vm_map_entry_t
894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
895 {
896         vm_map_entry_t llist, rlist;
897         vm_map_entry_t ltree, rtree;
898         vm_map_entry_t y;
899
900         /* Special case of empty tree. */
901         if (root == NULL)
902                 return (root);
903
904         /*
905          * Pass One: Splay down the tree until we find addr or a NULL
906          * pointer where addr would go.  llist and rlist are the two
907          * sides in reverse order (bottom-up), with llist linked by
908          * the right pointer and rlist linked by the left pointer in
909          * the vm_map_entry.  Wait until Pass Two to set max_free on
910          * the two spines.
911          */
912         llist = NULL;
913         rlist = NULL;
914         for (;;) {
915                 /* root is never NULL in here. */
916                 if (addr < root->start) {
917                         y = root->left;
918                         if (y == NULL)
919                                 break;
920                         if (addr < y->start && y->left != NULL) {
921                                 /* Rotate right and put y on rlist. */
922                                 root->left = y->right;
923                                 y->right = root;
924                                 vm_map_entry_set_max_free(root);
925                                 root = y->left;
926                                 y->left = rlist;
927                                 rlist = y;
928                         } else {
929                                 /* Put root on rlist. */
930                                 root->left = rlist;
931                                 rlist = root;
932                                 root = y;
933                         }
934                 } else if (addr >= root->end) {
935                         y = root->right;
936                         if (y == NULL)
937                                 break;
938                         if (addr >= y->end && y->right != NULL) {
939                                 /* Rotate left and put y on llist. */
940                                 root->right = y->left;
941                                 y->left = root;
942                                 vm_map_entry_set_max_free(root);
943                                 root = y->right;
944                                 y->right = llist;
945                                 llist = y;
946                         } else {
947                                 /* Put root on llist. */
948                                 root->right = llist;
949                                 llist = root;
950                                 root = y;
951                         }
952                 } else
953                         break;
954         }
955
956         /*
957          * Pass Two: Walk back up the two spines, flip the pointers
958          * and set max_free.  The subtrees of the root go at the
959          * bottom of llist and rlist.
960          */
961         ltree = root->left;
962         while (llist != NULL) {
963                 y = llist->right;
964                 llist->right = ltree;
965                 vm_map_entry_set_max_free(llist);
966                 ltree = llist;
967                 llist = y;
968         }
969         rtree = root->right;
970         while (rlist != NULL) {
971                 y = rlist->left;
972                 rlist->left = rtree;
973                 vm_map_entry_set_max_free(rlist);
974                 rtree = rlist;
975                 rlist = y;
976         }
977
978         /*
979          * Final assembly: add ltree and rtree as subtrees of root.
980          */
981         root->left = ltree;
982         root->right = rtree;
983         vm_map_entry_set_max_free(root);
984
985         return (root);
986 }
987
988 /*
989  *      vm_map_entry_{un,}link:
990  *
991  *      Insert/remove entries from maps.
992  */
993 static void
994 vm_map_entry_link(vm_map_t map,
995                   vm_map_entry_t after_where,
996                   vm_map_entry_t entry)
997 {
998
999         CTR4(KTR_VM,
1000             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1001             map->nentries, entry, after_where);
1002         VM_MAP_ASSERT_LOCKED(map);
1003         KASSERT(after_where->end <= entry->start,
1004             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1005             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1006         KASSERT(entry->end <= after_where->next->start,
1007             ("vm_map_entry_link: new end %jx next start %jx overlap",
1008             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1009
1010         map->nentries++;
1011         entry->prev = after_where;
1012         entry->next = after_where->next;
1013         entry->next->prev = entry;
1014         after_where->next = entry;
1015
1016         if (after_where != &map->header) {
1017                 if (after_where != map->root)
1018                         vm_map_entry_splay(after_where->start, map->root);
1019                 entry->right = after_where->right;
1020                 entry->left = after_where;
1021                 after_where->right = NULL;
1022                 after_where->adj_free = entry->start - after_where->end;
1023                 vm_map_entry_set_max_free(after_where);
1024         } else {
1025                 entry->right = map->root;
1026                 entry->left = NULL;
1027         }
1028         entry->adj_free = entry->next->start - entry->end;
1029         vm_map_entry_set_max_free(entry);
1030         map->root = entry;
1031 }
1032
1033 static void
1034 vm_map_entry_unlink(vm_map_t map,
1035                     vm_map_entry_t entry)
1036 {
1037         vm_map_entry_t next, prev, root;
1038
1039         VM_MAP_ASSERT_LOCKED(map);
1040         if (entry != map->root)
1041                 vm_map_entry_splay(entry->start, map->root);
1042         if (entry->left == NULL)
1043                 root = entry->right;
1044         else {
1045                 root = vm_map_entry_splay(entry->start, entry->left);
1046                 root->right = entry->right;
1047                 root->adj_free = entry->next->start - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = entry->next->start - entry->end;
1084         vm_map_entry_set_max_free(entry);
1085 }
1086
1087 /*
1088  *      vm_map_lookup_entry:    [ internal use only ]
1089  *
1090  *      Finds the map entry containing (or
1091  *      immediately preceding) the specified address
1092  *      in the given map; the entry is returned
1093  *      in the "entry" parameter.  The boolean
1094  *      result indicates whether the address is
1095  *      actually contained in the map.
1096  */
1097 boolean_t
1098 vm_map_lookup_entry(
1099         vm_map_t map,
1100         vm_offset_t address,
1101         vm_map_entry_t *entry)  /* OUT */
1102 {
1103         vm_map_entry_t cur;
1104         boolean_t locked;
1105
1106         /*
1107          * If the map is empty, then the map entry immediately preceding
1108          * "address" is the map's header.
1109          */
1110         cur = map->root;
1111         if (cur == NULL)
1112                 *entry = &map->header;
1113         else if (address >= cur->start && cur->end > address) {
1114                 *entry = cur;
1115                 return (TRUE);
1116         } else if ((locked = vm_map_locked(map)) ||
1117             sx_try_upgrade(&map->lock)) {
1118                 /*
1119                  * Splay requires a write lock on the map.  However, it only
1120                  * restructures the binary search tree; it does not otherwise
1121                  * change the map.  Thus, the map's timestamp need not change
1122                  * on a temporary upgrade.
1123                  */
1124                 map->root = cur = vm_map_entry_splay(address, cur);
1125                 if (!locked)
1126                         sx_downgrade(&map->lock);
1127
1128                 /*
1129                  * If "address" is contained within a map entry, the new root
1130                  * is that map entry.  Otherwise, the new root is a map entry
1131                  * immediately before or after "address".
1132                  */
1133                 if (address >= cur->start) {
1134                         *entry = cur;
1135                         if (cur->end > address)
1136                                 return (TRUE);
1137                 } else
1138                         *entry = cur->prev;
1139         } else
1140                 /*
1141                  * Since the map is only locked for read access, perform a
1142                  * standard binary search tree lookup for "address".
1143                  */
1144                 for (;;) {
1145                         if (address < cur->start) {
1146                                 if (cur->left == NULL) {
1147                                         *entry = cur->prev;
1148                                         break;
1149                                 }
1150                                 cur = cur->left;
1151                         } else if (cur->end > address) {
1152                                 *entry = cur;
1153                                 return (TRUE);
1154                         } else {
1155                                 if (cur->right == NULL) {
1156                                         *entry = cur;
1157                                         break;
1158                                 }
1159                                 cur = cur->right;
1160                         }
1161                 }
1162         return (FALSE);
1163 }
1164
1165 /*
1166  *      vm_map_insert:
1167  *
1168  *      Inserts the given whole VM object into the target
1169  *      map at the specified address range.  The object's
1170  *      size should match that of the address range.
1171  *
1172  *      Requires that the map be locked, and leaves it so.
1173  *
1174  *      If object is non-NULL, ref count must be bumped by caller
1175  *      prior to making call to account for the new entry.
1176  */
1177 int
1178 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1179     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1180 {
1181         vm_map_entry_t new_entry, prev_entry, temp_entry;
1182         struct ucred *cred;
1183         vm_eflags_t protoeflags;
1184         vm_inherit_t inheritance;
1185
1186         VM_MAP_ASSERT_LOCKED(map);
1187         KASSERT(object != kernel_object ||
1188             (cow & MAP_COPY_ON_WRITE) == 0,
1189             ("vm_map_insert: kernel object and COW"));
1190         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1191             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1192         KASSERT((prot & ~max) == 0,
1193             ("prot %#x is not subset of max_prot %#x", prot, max));
1194
1195         /*
1196          * Check that the start and end points are not bogus.
1197          */
1198         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1199             start >= end)
1200                 return (KERN_INVALID_ADDRESS);
1201
1202         /*
1203          * Find the entry prior to the proposed starting address; if it's part
1204          * of an existing entry, this range is bogus.
1205          */
1206         if (vm_map_lookup_entry(map, start, &temp_entry))
1207                 return (KERN_NO_SPACE);
1208
1209         prev_entry = temp_entry;
1210
1211         /*
1212          * Assert that the next entry doesn't overlap the end point.
1213          */
1214         if (prev_entry->next->start < end)
1215                 return (KERN_NO_SPACE);
1216
1217         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1218             max != VM_PROT_NONE))
1219                 return (KERN_INVALID_ARGUMENT);
1220
1221         protoeflags = 0;
1222         if (cow & MAP_COPY_ON_WRITE)
1223                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1224         if (cow & MAP_NOFAULT)
1225                 protoeflags |= MAP_ENTRY_NOFAULT;
1226         if (cow & MAP_DISABLE_SYNCER)
1227                 protoeflags |= MAP_ENTRY_NOSYNC;
1228         if (cow & MAP_DISABLE_COREDUMP)
1229                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1230         if (cow & MAP_STACK_GROWS_DOWN)
1231                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1232         if (cow & MAP_STACK_GROWS_UP)
1233                 protoeflags |= MAP_ENTRY_GROWS_UP;
1234         if (cow & MAP_VN_WRITECOUNT)
1235                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1236         if ((cow & MAP_CREATE_GUARD) != 0)
1237                 protoeflags |= MAP_ENTRY_GUARD;
1238         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1239                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1240         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1241                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1242         if (cow & MAP_INHERIT_SHARE)
1243                 inheritance = VM_INHERIT_SHARE;
1244         else
1245                 inheritance = VM_INHERIT_DEFAULT;
1246
1247         cred = NULL;
1248         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1249                 goto charged;
1250         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1251             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1252                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1253                         return (KERN_RESOURCE_SHORTAGE);
1254                 KASSERT(object == NULL ||
1255                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1256                     object->cred == NULL,
1257                     ("overcommit: vm_map_insert o %p", object));
1258                 cred = curthread->td_ucred;
1259         }
1260
1261 charged:
1262         /* Expand the kernel pmap, if necessary. */
1263         if (map == kernel_map && end > kernel_vm_end)
1264                 pmap_growkernel(end);
1265         if (object != NULL) {
1266                 /*
1267                  * OBJ_ONEMAPPING must be cleared unless this mapping
1268                  * is trivially proven to be the only mapping for any
1269                  * of the object's pages.  (Object granularity
1270                  * reference counting is insufficient to recognize
1271                  * aliases with precision.)
1272                  */
1273                 VM_OBJECT_WLOCK(object);
1274                 if (object->ref_count > 1 || object->shadow_count != 0)
1275                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1276                 VM_OBJECT_WUNLOCK(object);
1277         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1278             protoeflags &&
1279             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1280             prev_entry->end == start && (prev_entry->cred == cred ||
1281             (prev_entry->object.vm_object != NULL &&
1282             prev_entry->object.vm_object->cred == cred)) &&
1283             vm_object_coalesce(prev_entry->object.vm_object,
1284             prev_entry->offset,
1285             (vm_size_t)(prev_entry->end - prev_entry->start),
1286             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1287             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1288                 /*
1289                  * We were able to extend the object.  Determine if we
1290                  * can extend the previous map entry to include the
1291                  * new range as well.
1292                  */
1293                 if (prev_entry->inheritance == inheritance &&
1294                     prev_entry->protection == prot &&
1295                     prev_entry->max_protection == max &&
1296                     prev_entry->wired_count == 0) {
1297                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1298                             0, ("prev_entry %p has incoherent wiring",
1299                             prev_entry));
1300                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1301                                 map->size += end - prev_entry->end;
1302                         prev_entry->end = end;
1303                         vm_map_entry_resize_free(map, prev_entry);
1304                         vm_map_simplify_entry(map, prev_entry);
1305                         return (KERN_SUCCESS);
1306                 }
1307
1308                 /*
1309                  * If we can extend the object but cannot extend the
1310                  * map entry, we have to create a new map entry.  We
1311                  * must bump the ref count on the extended object to
1312                  * account for it.  object may be NULL.
1313                  */
1314                 object = prev_entry->object.vm_object;
1315                 offset = prev_entry->offset +
1316                     (prev_entry->end - prev_entry->start);
1317                 vm_object_reference(object);
1318                 if (cred != NULL && object != NULL && object->cred != NULL &&
1319                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1320                         /* Object already accounts for this uid. */
1321                         cred = NULL;
1322                 }
1323         }
1324         if (cred != NULL)
1325                 crhold(cred);
1326
1327         /*
1328          * Create a new entry
1329          */
1330         new_entry = vm_map_entry_create(map);
1331         new_entry->start = start;
1332         new_entry->end = end;
1333         new_entry->cred = NULL;
1334
1335         new_entry->eflags = protoeflags;
1336         new_entry->object.vm_object = object;
1337         new_entry->offset = offset;
1338
1339         new_entry->inheritance = inheritance;
1340         new_entry->protection = prot;
1341         new_entry->max_protection = max;
1342         new_entry->wired_count = 0;
1343         new_entry->wiring_thread = NULL;
1344         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1345         new_entry->next_read = start;
1346
1347         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1348             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1349         new_entry->cred = cred;
1350
1351         /*
1352          * Insert the new entry into the list
1353          */
1354         vm_map_entry_link(map, prev_entry, new_entry);
1355         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1356                 map->size += new_entry->end - new_entry->start;
1357
1358         /*
1359          * Try to coalesce the new entry with both the previous and next
1360          * entries in the list.  Previously, we only attempted to coalesce
1361          * with the previous entry when object is NULL.  Here, we handle the
1362          * other cases, which are less common.
1363          */
1364         vm_map_simplify_entry(map, new_entry);
1365
1366         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1367                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1368                     end - start, cow & MAP_PREFAULT_PARTIAL);
1369         }
1370
1371         return (KERN_SUCCESS);
1372 }
1373
1374 /*
1375  *      vm_map_findspace:
1376  *
1377  *      Find the first fit (lowest VM address) for "length" free bytes
1378  *      beginning at address >= start in the given map.
1379  *
1380  *      In a vm_map_entry, "adj_free" is the amount of free space
1381  *      adjacent (higher address) to this entry, and "max_free" is the
1382  *      maximum amount of contiguous free space in its subtree.  This
1383  *      allows finding a free region in one path down the tree, so
1384  *      O(log n) amortized with splay trees.
1385  *
1386  *      The map must be locked, and leaves it so.
1387  *
1388  *      Returns: 0 on success, and starting address in *addr,
1389  *               1 if insufficient space.
1390  */
1391 int
1392 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1393     vm_offset_t *addr)  /* OUT */
1394 {
1395         vm_map_entry_t entry;
1396         vm_offset_t st;
1397
1398         /*
1399          * Request must fit within min/max VM address and must avoid
1400          * address wrap.
1401          */
1402         start = MAX(start, vm_map_min(map));
1403         if (start + length > vm_map_max(map) || start + length < start)
1404                 return (1);
1405
1406         /* Empty tree means wide open address space. */
1407         if (map->root == NULL) {
1408                 *addr = start;
1409                 return (0);
1410         }
1411
1412         /*
1413          * After splay, if start comes before root node, then there
1414          * must be a gap from start to the root.
1415          */
1416         map->root = vm_map_entry_splay(start, map->root);
1417         if (start + length <= map->root->start) {
1418                 *addr = start;
1419                 return (0);
1420         }
1421
1422         /*
1423          * Root is the last node that might begin its gap before
1424          * start, and this is the last comparison where address
1425          * wrap might be a problem.
1426          */
1427         st = (start > map->root->end) ? start : map->root->end;
1428         if (length <= map->root->end + map->root->adj_free - st) {
1429                 *addr = st;
1430                 return (0);
1431         }
1432
1433         /* With max_free, can immediately tell if no solution. */
1434         entry = map->root->right;
1435         if (entry == NULL || length > entry->max_free)
1436                 return (1);
1437
1438         /*
1439          * Search the right subtree in the order: left subtree, root,
1440          * right subtree (first fit).  The previous splay implies that
1441          * all regions in the right subtree have addresses > start.
1442          */
1443         while (entry != NULL) {
1444                 if (entry->left != NULL && entry->left->max_free >= length)
1445                         entry = entry->left;
1446                 else if (entry->adj_free >= length) {
1447                         *addr = entry->end;
1448                         return (0);
1449                 } else
1450                         entry = entry->right;
1451         }
1452
1453         /* Can't get here, so panic if we do. */
1454         panic("vm_map_findspace: max_free corrupt");
1455 }
1456
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462         vm_offset_t end;
1463         int result;
1464
1465         end = start + length;
1466         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467             object == NULL,
1468             ("vm_map_fixed: non-NULL backing object for stack"));
1469         vm_map_lock(map);
1470         VM_MAP_RANGE_CHECK(map, start, end);
1471         if ((cow & MAP_CHECK_EXCL) == 0)
1472                 vm_map_delete(map, start, end);
1473         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475                     prot, max, cow);
1476         } else {
1477                 result = vm_map_insert(map, object, offset, start, end,
1478                     prot, max, cow);
1479         }
1480         vm_map_unlock(map);
1481         return (result);
1482 }
1483
1484 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1485 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1486
1487 static int cluster_anon = 1;
1488 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1489     &cluster_anon, 0,
1490     "Cluster anonymous mappings");
1491
1492 static long aslr_restarts;
1493 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1494     &aslr_restarts, 0,
1495     "Number of aslr failures");
1496
1497 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1498
1499 /*
1500  * Searches for the specified amount of free space in the given map with the
1501  * specified alignment.  Performs an address-ordered, first-fit search from
1502  * the given address "*addr", with an optional upper bound "max_addr".  If the
1503  * parameter "alignment" is zero, then the alignment is computed from the
1504  * given (object, offset) pair so as to enable the greatest possible use of
1505  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1506  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1507  *
1508  * The map must be locked.  Initially, there must be at least "length" bytes
1509  * of free space at the given address.
1510  */
1511 static int
1512 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1513     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1514     vm_offset_t alignment)
1515 {
1516         vm_offset_t aligned_addr, free_addr;
1517
1518         VM_MAP_ASSERT_LOCKED(map);
1519         free_addr = *addr;
1520         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1521             free_addr == *addr, ("caller provided insufficient free space"));
1522         for (;;) {
1523                 /*
1524                  * At the start of every iteration, the free space at address
1525                  * "*addr" is at least "length" bytes.
1526                  */
1527                 if (alignment == 0)
1528                         pmap_align_superpage(object, offset, addr, length);
1529                 else if ((*addr & (alignment - 1)) != 0) {
1530                         *addr &= ~(alignment - 1);
1531                         *addr += alignment;
1532                 }
1533                 aligned_addr = *addr;
1534                 if (aligned_addr == free_addr) {
1535                         /*
1536                          * Alignment did not change "*addr", so "*addr" must
1537                          * still provide sufficient free space.
1538                          */
1539                         return (KERN_SUCCESS);
1540                 }
1541
1542                 /*
1543                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1544                  * be a valid address, in which case vm_map_findspace() cannot
1545                  * be relied upon to fail.
1546                  */
1547                 if (aligned_addr < free_addr ||
1548                     vm_map_findspace(map, aligned_addr, length, addr) ||
1549                     (max_addr != 0 && *addr + length > max_addr))
1550                         return (KERN_NO_SPACE);
1551                 free_addr = *addr;
1552                 if (free_addr == aligned_addr) {
1553                         /*
1554                          * If a successful call to vm_map_findspace() did not
1555                          * change "*addr", then "*addr" must still be aligned
1556                          * and provide sufficient free space.
1557                          */
1558                         return (KERN_SUCCESS);
1559                 }
1560         }
1561 }
1562
1563 /*
1564  *      vm_map_find finds an unallocated region in the target address
1565  *      map with the given length.  The search is defined to be
1566  *      first-fit from the specified address; the region found is
1567  *      returned in the same parameter.
1568  *
1569  *      If object is non-NULL, ref count must be bumped by caller
1570  *      prior to making call to account for the new entry.
1571  */
1572 int
1573 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1574             vm_offset_t *addr,  /* IN/OUT */
1575             vm_size_t length, vm_offset_t max_addr, int find_space,
1576             vm_prot_t prot, vm_prot_t max, int cow)
1577 {
1578         vm_offset_t alignment, curr_min_addr, min_addr;
1579         int gap, pidx, rv, try;
1580         bool cluster, en_aslr, update_anon;
1581
1582         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1583             object == NULL,
1584             ("vm_map_find: non-NULL backing object for stack"));
1585         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1586             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1587         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1588             (object->flags & OBJ_COLORED) == 0))
1589                 find_space = VMFS_ANY_SPACE;
1590         if (find_space >> 8 != 0) {
1591                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1592                 alignment = (vm_offset_t)1 << (find_space >> 8);
1593         } else
1594                 alignment = 0;
1595         en_aslr = (map->flags & MAP_ASLR) != 0;
1596         update_anon = cluster = cluster_anon != 0 &&
1597             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1598             find_space != VMFS_NO_SPACE && object == NULL &&
1599             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1600             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1601         curr_min_addr = min_addr = *addr;
1602         if (en_aslr && min_addr == 0 && !cluster &&
1603             find_space != VMFS_NO_SPACE &&
1604             (map->flags & MAP_ASLR_IGNSTART) != 0)
1605                 curr_min_addr = min_addr = vm_map_min(map);
1606         try = 0;
1607         vm_map_lock(map);
1608         if (cluster) {
1609                 curr_min_addr = map->anon_loc;
1610                 if (curr_min_addr == 0)
1611                         cluster = false;
1612         }
1613         if (find_space != VMFS_NO_SPACE) {
1614                 KASSERT(find_space == VMFS_ANY_SPACE ||
1615                     find_space == VMFS_OPTIMAL_SPACE ||
1616                     find_space == VMFS_SUPER_SPACE ||
1617                     alignment != 0, ("unexpected VMFS flag"));
1618 again:
1619                 /*
1620                  * When creating an anonymous mapping, try clustering
1621                  * with an existing anonymous mapping first.
1622                  *
1623                  * We make up to two attempts to find address space
1624                  * for a given find_space value. The first attempt may
1625                  * apply randomization or may cluster with an existing
1626                  * anonymous mapping. If this first attempt fails,
1627                  * perform a first-fit search of the available address
1628                  * space.
1629                  *
1630                  * If all tries failed, and find_space is
1631                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1632                  * Again enable clustering and randomization.
1633                  */
1634                 try++;
1635                 MPASS(try <= 2);
1636
1637                 if (try == 2) {
1638                         /*
1639                          * Second try: we failed either to find a
1640                          * suitable region for randomizing the
1641                          * allocation, or to cluster with an existing
1642                          * mapping.  Retry with free run.
1643                          */
1644                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1645                             vm_map_min(map) : min_addr;
1646                         atomic_add_long(&aslr_restarts, 1);
1647                 }
1648
1649                 if (try == 1 && en_aslr && !cluster) {
1650                         /*
1651                          * Find space for allocation, including
1652                          * gap needed for later randomization.
1653                          */
1654                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1655                             (find_space == VMFS_SUPER_SPACE || find_space ==
1656                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1657                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1658                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1659                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1660                         if (vm_map_findspace(map, curr_min_addr, length +
1661                             gap * pagesizes[pidx], addr) ||
1662                             (max_addr != 0 && *addr + length > max_addr))
1663                                 goto again;
1664                         /* And randomize the start address. */
1665                         *addr += (arc4random() % gap) * pagesizes[pidx];
1666                 } else if (vm_map_findspace(map, curr_min_addr, length, addr) ||
1667                     (max_addr != 0 && *addr + length > max_addr)) {
1668                         if (cluster) {
1669                                 cluster = false;
1670                                 MPASS(try == 1);
1671                                 goto again;
1672                         }
1673                         rv = KERN_NO_SPACE;
1674                         goto done;
1675                 }
1676
1677                 if (find_space != VMFS_ANY_SPACE &&
1678                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1679                     max_addr, alignment)) != KERN_SUCCESS) {
1680                         if (find_space == VMFS_OPTIMAL_SPACE) {
1681                                 find_space = VMFS_ANY_SPACE;
1682                                 curr_min_addr = min_addr;
1683                                 cluster = update_anon;
1684                                 try = 0;
1685                                 goto again;
1686                         }
1687                         goto done;
1688                 }
1689         } else if ((cow & MAP_REMAP) != 0) {
1690                 if (*addr < vm_map_min(map) ||
1691                     *addr + length > vm_map_max(map) ||
1692                     *addr + length <= length) {
1693                         rv = KERN_INVALID_ADDRESS;
1694                         goto done;
1695                 }
1696                 vm_map_delete(map, *addr, *addr + length);
1697         }
1698         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1699                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1700                     max, cow);
1701         } else {
1702                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1703                     prot, max, cow);
1704         }
1705         if (rv == KERN_SUCCESS && update_anon)
1706                 map->anon_loc = *addr + length;
1707 done:
1708         vm_map_unlock(map);
1709         return (rv);
1710 }
1711
1712 /*
1713  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1714  *      additional parameter (min_addr) and treats the given address
1715  *      (*addr) differently.  Specifically, it treats *addr as a hint
1716  *      and not as the minimum address where the mapping is created.
1717  *
1718  *      This function works in two phases.  First, it tries to
1719  *      allocate above the hint.  If that fails and the hint is
1720  *      greater than min_addr, it performs a second pass, replacing
1721  *      the hint with min_addr as the minimum address for the
1722  *      allocation.
1723  */
1724 int
1725 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1726     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1727     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1728     int cow)
1729 {
1730         vm_offset_t hint;
1731         int rv;
1732
1733         hint = *addr;
1734         for (;;) {
1735                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1736                     find_space, prot, max, cow);
1737                 if (rv == KERN_SUCCESS || min_addr >= hint)
1738                         return (rv);
1739                 *addr = hint = min_addr;
1740         }
1741 }
1742
1743 /*
1744  * A map entry with any of the following flags set must not be merged with
1745  * another entry.
1746  */
1747 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1748             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1749
1750 static bool
1751 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1752 {
1753
1754         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1755             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1756             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1757             prev, entry));
1758         return (prev->end == entry->start &&
1759             prev->object.vm_object == entry->object.vm_object &&
1760             (prev->object.vm_object == NULL ||
1761             prev->offset + (prev->end - prev->start) == entry->offset) &&
1762             prev->eflags == entry->eflags &&
1763             prev->protection == entry->protection &&
1764             prev->max_protection == entry->max_protection &&
1765             prev->inheritance == entry->inheritance &&
1766             prev->wired_count == entry->wired_count &&
1767             prev->cred == entry->cred);
1768 }
1769
1770 static void
1771 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1772 {
1773
1774         /*
1775          * If the backing object is a vnode object, vm_object_deallocate()
1776          * calls vrele().  However, vrele() does not lock the vnode because
1777          * the vnode has additional references.  Thus, the map lock can be
1778          * kept without causing a lock-order reversal with the vnode lock.
1779          *
1780          * Since we count the number of virtual page mappings in
1781          * object->un_pager.vnp.writemappings, the writemappings value
1782          * should not be adjusted when the entry is disposed of.
1783          */
1784         if (entry->object.vm_object != NULL)
1785                 vm_object_deallocate(entry->object.vm_object);
1786         if (entry->cred != NULL)
1787                 crfree(entry->cred);
1788         vm_map_entry_dispose(map, entry);
1789 }
1790
1791 /*
1792  *      vm_map_simplify_entry:
1793  *
1794  *      Simplify the given map entry by merging with either neighbor.  This
1795  *      routine also has the ability to merge with both neighbors.
1796  *
1797  *      The map must be locked.
1798  *
1799  *      This routine guarantees that the passed entry remains valid (though
1800  *      possibly extended).  When merging, this routine may delete one or
1801  *      both neighbors.
1802  */
1803 void
1804 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1805 {
1806         vm_map_entry_t next, prev;
1807
1808         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1809                 return;
1810         prev = entry->prev;
1811         if (vm_map_mergeable_neighbors(prev, entry)) {
1812                 vm_map_entry_unlink(map, prev);
1813                 entry->start = prev->start;
1814                 entry->offset = prev->offset;
1815                 if (entry->prev != &map->header)
1816                         vm_map_entry_resize_free(map, entry->prev);
1817                 vm_map_merged_neighbor_dispose(map, prev);
1818         }
1819         next = entry->next;
1820         if (vm_map_mergeable_neighbors(entry, next)) {
1821                 vm_map_entry_unlink(map, next);
1822                 entry->end = next->end;
1823                 vm_map_entry_resize_free(map, entry);
1824                 vm_map_merged_neighbor_dispose(map, next);
1825         }
1826 }
1827
1828 /*
1829  *      vm_map_clip_start:      [ internal use only ]
1830  *
1831  *      Asserts that the given entry begins at or after
1832  *      the specified address; if necessary,
1833  *      it splits the entry into two.
1834  */
1835 #define vm_map_clip_start(map, entry, startaddr) \
1836 { \
1837         if (startaddr > entry->start) \
1838                 _vm_map_clip_start(map, entry, startaddr); \
1839 }
1840
1841 /*
1842  *      This routine is called only when it is known that
1843  *      the entry must be split.
1844  */
1845 static void
1846 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1847 {
1848         vm_map_entry_t new_entry;
1849
1850         VM_MAP_ASSERT_LOCKED(map);
1851         KASSERT(entry->end > start && entry->start < start,
1852             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1853
1854         /*
1855          * Split off the front portion -- note that we must insert the new
1856          * entry BEFORE this one, so that this entry has the specified
1857          * starting address.
1858          */
1859         vm_map_simplify_entry(map, entry);
1860
1861         /*
1862          * If there is no object backing this entry, we might as well create
1863          * one now.  If we defer it, an object can get created after the map
1864          * is clipped, and individual objects will be created for the split-up
1865          * map.  This is a bit of a hack, but is also about the best place to
1866          * put this improvement.
1867          */
1868         if (entry->object.vm_object == NULL && !map->system_map &&
1869             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1870                 vm_object_t object;
1871                 object = vm_object_allocate(OBJT_DEFAULT,
1872                                 atop(entry->end - entry->start));
1873                 entry->object.vm_object = object;
1874                 entry->offset = 0;
1875                 if (entry->cred != NULL) {
1876                         object->cred = entry->cred;
1877                         object->charge = entry->end - entry->start;
1878                         entry->cred = NULL;
1879                 }
1880         } else if (entry->object.vm_object != NULL &&
1881                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1882                    entry->cred != NULL) {
1883                 VM_OBJECT_WLOCK(entry->object.vm_object);
1884                 KASSERT(entry->object.vm_object->cred == NULL,
1885                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1886                 entry->object.vm_object->cred = entry->cred;
1887                 entry->object.vm_object->charge = entry->end - entry->start;
1888                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1889                 entry->cred = NULL;
1890         }
1891
1892         new_entry = vm_map_entry_create(map);
1893         *new_entry = *entry;
1894
1895         new_entry->end = start;
1896         entry->offset += (start - entry->start);
1897         entry->start = start;
1898         if (new_entry->cred != NULL)
1899                 crhold(entry->cred);
1900
1901         vm_map_entry_link(map, entry->prev, new_entry);
1902
1903         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1904                 vm_object_reference(new_entry->object.vm_object);
1905                 /*
1906                  * The object->un_pager.vnp.writemappings for the
1907                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1908                  * kept as is here.  The virtual pages are
1909                  * re-distributed among the clipped entries, so the sum is
1910                  * left the same.
1911                  */
1912         }
1913 }
1914
1915 /*
1916  *      vm_map_clip_end:        [ internal use only ]
1917  *
1918  *      Asserts that the given entry ends at or before
1919  *      the specified address; if necessary,
1920  *      it splits the entry into two.
1921  */
1922 #define vm_map_clip_end(map, entry, endaddr) \
1923 { \
1924         if ((endaddr) < (entry->end)) \
1925                 _vm_map_clip_end((map), (entry), (endaddr)); \
1926 }
1927
1928 /*
1929  *      This routine is called only when it is known that
1930  *      the entry must be split.
1931  */
1932 static void
1933 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1934 {
1935         vm_map_entry_t new_entry;
1936
1937         VM_MAP_ASSERT_LOCKED(map);
1938         KASSERT(entry->start < end && entry->end > end,
1939             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1940
1941         /*
1942          * If there is no object backing this entry, we might as well create
1943          * one now.  If we defer it, an object can get created after the map
1944          * is clipped, and individual objects will be created for the split-up
1945          * map.  This is a bit of a hack, but is also about the best place to
1946          * put this improvement.
1947          */
1948         if (entry->object.vm_object == NULL && !map->system_map &&
1949             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1950                 vm_object_t object;
1951                 object = vm_object_allocate(OBJT_DEFAULT,
1952                                 atop(entry->end - entry->start));
1953                 entry->object.vm_object = object;
1954                 entry->offset = 0;
1955                 if (entry->cred != NULL) {
1956                         object->cred = entry->cred;
1957                         object->charge = entry->end - entry->start;
1958                         entry->cred = NULL;
1959                 }
1960         } else if (entry->object.vm_object != NULL &&
1961                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1962                    entry->cred != NULL) {
1963                 VM_OBJECT_WLOCK(entry->object.vm_object);
1964                 KASSERT(entry->object.vm_object->cred == NULL,
1965                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1966                 entry->object.vm_object->cred = entry->cred;
1967                 entry->object.vm_object->charge = entry->end - entry->start;
1968                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1969                 entry->cred = NULL;
1970         }
1971
1972         /*
1973          * Create a new entry and insert it AFTER the specified entry
1974          */
1975         new_entry = vm_map_entry_create(map);
1976         *new_entry = *entry;
1977
1978         new_entry->start = entry->end = end;
1979         new_entry->offset += (end - entry->start);
1980         if (new_entry->cred != NULL)
1981                 crhold(entry->cred);
1982
1983         vm_map_entry_link(map, entry, new_entry);
1984
1985         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1986                 vm_object_reference(new_entry->object.vm_object);
1987         }
1988 }
1989
1990 /*
1991  *      vm_map_submap:          [ kernel use only ]
1992  *
1993  *      Mark the given range as handled by a subordinate map.
1994  *
1995  *      This range must have been created with vm_map_find,
1996  *      and no other operations may have been performed on this
1997  *      range prior to calling vm_map_submap.
1998  *
1999  *      Only a limited number of operations can be performed
2000  *      within this rage after calling vm_map_submap:
2001  *              vm_fault
2002  *      [Don't try vm_map_copy!]
2003  *
2004  *      To remove a submapping, one must first remove the
2005  *      range from the superior map, and then destroy the
2006  *      submap (if desired).  [Better yet, don't try it.]
2007  */
2008 int
2009 vm_map_submap(
2010         vm_map_t map,
2011         vm_offset_t start,
2012         vm_offset_t end,
2013         vm_map_t submap)
2014 {
2015         vm_map_entry_t entry;
2016         int result;
2017
2018         result = KERN_INVALID_ARGUMENT;
2019
2020         vm_map_lock(submap);
2021         submap->flags |= MAP_IS_SUB_MAP;
2022         vm_map_unlock(submap);
2023
2024         vm_map_lock(map);
2025
2026         VM_MAP_RANGE_CHECK(map, start, end);
2027
2028         if (vm_map_lookup_entry(map, start, &entry)) {
2029                 vm_map_clip_start(map, entry, start);
2030         } else
2031                 entry = entry->next;
2032
2033         vm_map_clip_end(map, entry, end);
2034
2035         if ((entry->start == start) && (entry->end == end) &&
2036             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2037             (entry->object.vm_object == NULL)) {
2038                 entry->object.sub_map = submap;
2039                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2040                 result = KERN_SUCCESS;
2041         }
2042         vm_map_unlock(map);
2043
2044         if (result != KERN_SUCCESS) {
2045                 vm_map_lock(submap);
2046                 submap->flags &= ~MAP_IS_SUB_MAP;
2047                 vm_map_unlock(submap);
2048         }
2049         return (result);
2050 }
2051
2052 /*
2053  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2054  */
2055 #define MAX_INIT_PT     96
2056
2057 /*
2058  *      vm_map_pmap_enter:
2059  *
2060  *      Preload the specified map's pmap with mappings to the specified
2061  *      object's memory-resident pages.  No further physical pages are
2062  *      allocated, and no further virtual pages are retrieved from secondary
2063  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2064  *      limited number of page mappings are created at the low-end of the
2065  *      specified address range.  (For this purpose, a superpage mapping
2066  *      counts as one page mapping.)  Otherwise, all resident pages within
2067  *      the specified address range are mapped.
2068  */
2069 static void
2070 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2071     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2072 {
2073         vm_offset_t start;
2074         vm_page_t p, p_start;
2075         vm_pindex_t mask, psize, threshold, tmpidx;
2076
2077         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2078                 return;
2079         VM_OBJECT_RLOCK(object);
2080         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2081                 VM_OBJECT_RUNLOCK(object);
2082                 VM_OBJECT_WLOCK(object);
2083                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2084                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2085                             size);
2086                         VM_OBJECT_WUNLOCK(object);
2087                         return;
2088                 }
2089                 VM_OBJECT_LOCK_DOWNGRADE(object);
2090         }
2091
2092         psize = atop(size);
2093         if (psize + pindex > object->size) {
2094                 if (object->size < pindex) {
2095                         VM_OBJECT_RUNLOCK(object);
2096                         return;
2097                 }
2098                 psize = object->size - pindex;
2099         }
2100
2101         start = 0;
2102         p_start = NULL;
2103         threshold = MAX_INIT_PT;
2104
2105         p = vm_page_find_least(object, pindex);
2106         /*
2107          * Assert: the variable p is either (1) the page with the
2108          * least pindex greater than or equal to the parameter pindex
2109          * or (2) NULL.
2110          */
2111         for (;
2112              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2113              p = TAILQ_NEXT(p, listq)) {
2114                 /*
2115                  * don't allow an madvise to blow away our really
2116                  * free pages allocating pv entries.
2117                  */
2118                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2119                     vm_page_count_severe()) ||
2120                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2121                     tmpidx >= threshold)) {
2122                         psize = tmpidx;
2123                         break;
2124                 }
2125                 if (p->valid == VM_PAGE_BITS_ALL) {
2126                         if (p_start == NULL) {
2127                                 start = addr + ptoa(tmpidx);
2128                                 p_start = p;
2129                         }
2130                         /* Jump ahead if a superpage mapping is possible. */
2131                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2132                             (pagesizes[p->psind] - 1)) == 0) {
2133                                 mask = atop(pagesizes[p->psind]) - 1;
2134                                 if (tmpidx + mask < psize &&
2135                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2136                                         p += mask;
2137                                         threshold += mask;
2138                                 }
2139                         }
2140                 } else if (p_start != NULL) {
2141                         pmap_enter_object(map->pmap, start, addr +
2142                             ptoa(tmpidx), p_start, prot);
2143                         p_start = NULL;
2144                 }
2145         }
2146         if (p_start != NULL)
2147                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2148                     p_start, prot);
2149         VM_OBJECT_RUNLOCK(object);
2150 }
2151
2152 /*
2153  *      vm_map_protect:
2154  *
2155  *      Sets the protection of the specified address
2156  *      region in the target map.  If "set_max" is
2157  *      specified, the maximum protection is to be set;
2158  *      otherwise, only the current protection is affected.
2159  */
2160 int
2161 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2162                vm_prot_t new_prot, boolean_t set_max)
2163 {
2164         vm_map_entry_t current, entry;
2165         vm_object_t obj;
2166         struct ucred *cred;
2167         vm_prot_t old_prot;
2168
2169         if (start == end)
2170                 return (KERN_SUCCESS);
2171
2172         vm_map_lock(map);
2173
2174         /*
2175          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2176          * need to fault pages into the map and will drop the map lock while
2177          * doing so, and the VM object may end up in an inconsistent state if we
2178          * update the protection on the map entry in between faults.
2179          */
2180         vm_map_wait_busy(map);
2181
2182         VM_MAP_RANGE_CHECK(map, start, end);
2183
2184         if (vm_map_lookup_entry(map, start, &entry)) {
2185                 vm_map_clip_start(map, entry, start);
2186         } else {
2187                 entry = entry->next;
2188         }
2189
2190         /*
2191          * Make a first pass to check for protection violations.
2192          */
2193         for (current = entry; current->start < end; current = current->next) {
2194                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2195                         continue;
2196                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2197                         vm_map_unlock(map);
2198                         return (KERN_INVALID_ARGUMENT);
2199                 }
2200                 if ((new_prot & current->max_protection) != new_prot) {
2201                         vm_map_unlock(map);
2202                         return (KERN_PROTECTION_FAILURE);
2203                 }
2204         }
2205
2206         /*
2207          * Do an accounting pass for private read-only mappings that
2208          * now will do cow due to allowed write (e.g. debugger sets
2209          * breakpoint on text segment)
2210          */
2211         for (current = entry; current->start < end; current = current->next) {
2212
2213                 vm_map_clip_end(map, current, end);
2214
2215                 if (set_max ||
2216                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2217                     ENTRY_CHARGED(current) ||
2218                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2219                         continue;
2220                 }
2221
2222                 cred = curthread->td_ucred;
2223                 obj = current->object.vm_object;
2224
2225                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2226                         if (!swap_reserve(current->end - current->start)) {
2227                                 vm_map_unlock(map);
2228                                 return (KERN_RESOURCE_SHORTAGE);
2229                         }
2230                         crhold(cred);
2231                         current->cred = cred;
2232                         continue;
2233                 }
2234
2235                 VM_OBJECT_WLOCK(obj);
2236                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2237                         VM_OBJECT_WUNLOCK(obj);
2238                         continue;
2239                 }
2240
2241                 /*
2242                  * Charge for the whole object allocation now, since
2243                  * we cannot distinguish between non-charged and
2244                  * charged clipped mapping of the same object later.
2245                  */
2246                 KASSERT(obj->charge == 0,
2247                     ("vm_map_protect: object %p overcharged (entry %p)",
2248                     obj, current));
2249                 if (!swap_reserve(ptoa(obj->size))) {
2250                         VM_OBJECT_WUNLOCK(obj);
2251                         vm_map_unlock(map);
2252                         return (KERN_RESOURCE_SHORTAGE);
2253                 }
2254
2255                 crhold(cred);
2256                 obj->cred = cred;
2257                 obj->charge = ptoa(obj->size);
2258                 VM_OBJECT_WUNLOCK(obj);
2259         }
2260
2261         /*
2262          * Go back and fix up protections. [Note that clipping is not
2263          * necessary the second time.]
2264          */
2265         for (current = entry; current->start < end; current = current->next) {
2266                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2267                         continue;
2268
2269                 old_prot = current->protection;
2270
2271                 if (set_max)
2272                         current->protection =
2273                             (current->max_protection = new_prot) &
2274                             old_prot;
2275                 else
2276                         current->protection = new_prot;
2277
2278                 /*
2279                  * For user wired map entries, the normal lazy evaluation of
2280                  * write access upgrades through soft page faults is
2281                  * undesirable.  Instead, immediately copy any pages that are
2282                  * copy-on-write and enable write access in the physical map.
2283                  */
2284                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2285                     (current->protection & VM_PROT_WRITE) != 0 &&
2286                     (old_prot & VM_PROT_WRITE) == 0)
2287                         vm_fault_copy_entry(map, map, current, current, NULL);
2288
2289                 /*
2290                  * When restricting access, update the physical map.  Worry
2291                  * about copy-on-write here.
2292                  */
2293                 if ((old_prot & ~current->protection) != 0) {
2294 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2295                                                         VM_PROT_ALL)
2296                         pmap_protect(map->pmap, current->start,
2297                             current->end,
2298                             current->protection & MASK(current));
2299 #undef  MASK
2300                 }
2301                 vm_map_simplify_entry(map, current);
2302         }
2303         vm_map_unlock(map);
2304         return (KERN_SUCCESS);
2305 }
2306
2307 /*
2308  *      vm_map_madvise:
2309  *
2310  *      This routine traverses a processes map handling the madvise
2311  *      system call.  Advisories are classified as either those effecting
2312  *      the vm_map_entry structure, or those effecting the underlying
2313  *      objects.
2314  */
2315 int
2316 vm_map_madvise(
2317         vm_map_t map,
2318         vm_offset_t start,
2319         vm_offset_t end,
2320         int behav)
2321 {
2322         vm_map_entry_t current, entry;
2323         bool modify_map;
2324
2325         /*
2326          * Some madvise calls directly modify the vm_map_entry, in which case
2327          * we need to use an exclusive lock on the map and we need to perform
2328          * various clipping operations.  Otherwise we only need a read-lock
2329          * on the map.
2330          */
2331         switch(behav) {
2332         case MADV_NORMAL:
2333         case MADV_SEQUENTIAL:
2334         case MADV_RANDOM:
2335         case MADV_NOSYNC:
2336         case MADV_AUTOSYNC:
2337         case MADV_NOCORE:
2338         case MADV_CORE:
2339                 if (start == end)
2340                         return (0);
2341                 modify_map = true;
2342                 vm_map_lock(map);
2343                 break;
2344         case MADV_WILLNEED:
2345         case MADV_DONTNEED:
2346         case MADV_FREE:
2347                 if (start == end)
2348                         return (0);
2349                 modify_map = false;
2350                 vm_map_lock_read(map);
2351                 break;
2352         default:
2353                 return (EINVAL);
2354         }
2355
2356         /*
2357          * Locate starting entry and clip if necessary.
2358          */
2359         VM_MAP_RANGE_CHECK(map, start, end);
2360
2361         if (vm_map_lookup_entry(map, start, &entry)) {
2362                 if (modify_map)
2363                         vm_map_clip_start(map, entry, start);
2364         } else {
2365                 entry = entry->next;
2366         }
2367
2368         if (modify_map) {
2369                 /*
2370                  * madvise behaviors that are implemented in the vm_map_entry.
2371                  *
2372                  * We clip the vm_map_entry so that behavioral changes are
2373                  * limited to the specified address range.
2374                  */
2375                 for (current = entry; current->start < end;
2376                     current = current->next) {
2377                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2378                                 continue;
2379
2380                         vm_map_clip_end(map, current, end);
2381
2382                         switch (behav) {
2383                         case MADV_NORMAL:
2384                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2385                                 break;
2386                         case MADV_SEQUENTIAL:
2387                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2388                                 break;
2389                         case MADV_RANDOM:
2390                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2391                                 break;
2392                         case MADV_NOSYNC:
2393                                 current->eflags |= MAP_ENTRY_NOSYNC;
2394                                 break;
2395                         case MADV_AUTOSYNC:
2396                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2397                                 break;
2398                         case MADV_NOCORE:
2399                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2400                                 break;
2401                         case MADV_CORE:
2402                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2403                                 break;
2404                         default:
2405                                 break;
2406                         }
2407                         vm_map_simplify_entry(map, current);
2408                 }
2409                 vm_map_unlock(map);
2410         } else {
2411                 vm_pindex_t pstart, pend;
2412
2413                 /*
2414                  * madvise behaviors that are implemented in the underlying
2415                  * vm_object.
2416                  *
2417                  * Since we don't clip the vm_map_entry, we have to clip
2418                  * the vm_object pindex and count.
2419                  */
2420                 for (current = entry; current->start < end;
2421                     current = current->next) {
2422                         vm_offset_t useEnd, useStart;
2423
2424                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2425                                 continue;
2426
2427                         pstart = OFF_TO_IDX(current->offset);
2428                         pend = pstart + atop(current->end - current->start);
2429                         useStart = current->start;
2430                         useEnd = current->end;
2431
2432                         if (current->start < start) {
2433                                 pstart += atop(start - current->start);
2434                                 useStart = start;
2435                         }
2436                         if (current->end > end) {
2437                                 pend -= atop(current->end - end);
2438                                 useEnd = end;
2439                         }
2440
2441                         if (pstart >= pend)
2442                                 continue;
2443
2444                         /*
2445                          * Perform the pmap_advise() before clearing
2446                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2447                          * concurrent pmap operation, such as pmap_remove(),
2448                          * could clear a reference in the pmap and set
2449                          * PGA_REFERENCED on the page before the pmap_advise()
2450                          * had completed.  Consequently, the page would appear
2451                          * referenced based upon an old reference that
2452                          * occurred before this pmap_advise() ran.
2453                          */
2454                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2455                                 pmap_advise(map->pmap, useStart, useEnd,
2456                                     behav);
2457
2458                         vm_object_madvise(current->object.vm_object, pstart,
2459                             pend, behav);
2460
2461                         /*
2462                          * Pre-populate paging structures in the
2463                          * WILLNEED case.  For wired entries, the
2464                          * paging structures are already populated.
2465                          */
2466                         if (behav == MADV_WILLNEED &&
2467                             current->wired_count == 0) {
2468                                 vm_map_pmap_enter(map,
2469                                     useStart,
2470                                     current->protection,
2471                                     current->object.vm_object,
2472                                     pstart,
2473                                     ptoa(pend - pstart),
2474                                     MAP_PREFAULT_MADVISE
2475                                 );
2476                         }
2477                 }
2478                 vm_map_unlock_read(map);
2479         }
2480         return (0);
2481 }
2482
2483
2484 /*
2485  *      vm_map_inherit:
2486  *
2487  *      Sets the inheritance of the specified address
2488  *      range in the target map.  Inheritance
2489  *      affects how the map will be shared with
2490  *      child maps at the time of vmspace_fork.
2491  */
2492 int
2493 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2494                vm_inherit_t new_inheritance)
2495 {
2496         vm_map_entry_t entry;
2497         vm_map_entry_t temp_entry;
2498
2499         switch (new_inheritance) {
2500         case VM_INHERIT_NONE:
2501         case VM_INHERIT_COPY:
2502         case VM_INHERIT_SHARE:
2503         case VM_INHERIT_ZERO:
2504                 break;
2505         default:
2506                 return (KERN_INVALID_ARGUMENT);
2507         }
2508         if (start == end)
2509                 return (KERN_SUCCESS);
2510         vm_map_lock(map);
2511         VM_MAP_RANGE_CHECK(map, start, end);
2512         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2513                 entry = temp_entry;
2514                 vm_map_clip_start(map, entry, start);
2515         } else
2516                 entry = temp_entry->next;
2517         while (entry->start < end) {
2518                 vm_map_clip_end(map, entry, end);
2519                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2520                     new_inheritance != VM_INHERIT_ZERO)
2521                         entry->inheritance = new_inheritance;
2522                 vm_map_simplify_entry(map, entry);
2523                 entry = entry->next;
2524         }
2525         vm_map_unlock(map);
2526         return (KERN_SUCCESS);
2527 }
2528
2529 /*
2530  *      vm_map_unwire:
2531  *
2532  *      Implements both kernel and user unwiring.
2533  */
2534 int
2535 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2536     int flags)
2537 {
2538         vm_map_entry_t entry, first_entry, tmp_entry;
2539         vm_offset_t saved_start;
2540         unsigned int last_timestamp;
2541         int rv;
2542         boolean_t need_wakeup, result, user_unwire;
2543
2544         if (start == end)
2545                 return (KERN_SUCCESS);
2546         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2547         vm_map_lock(map);
2548         VM_MAP_RANGE_CHECK(map, start, end);
2549         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2550                 if (flags & VM_MAP_WIRE_HOLESOK)
2551                         first_entry = first_entry->next;
2552                 else {
2553                         vm_map_unlock(map);
2554                         return (KERN_INVALID_ADDRESS);
2555                 }
2556         }
2557         last_timestamp = map->timestamp;
2558         entry = first_entry;
2559         while (entry->start < end) {
2560                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2561                         /*
2562                          * We have not yet clipped the entry.
2563                          */
2564                         saved_start = (start >= entry->start) ? start :
2565                             entry->start;
2566                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2567                         if (vm_map_unlock_and_wait(map, 0)) {
2568                                 /*
2569                                  * Allow interruption of user unwiring?
2570                                  */
2571                         }
2572                         vm_map_lock(map);
2573                         if (last_timestamp+1 != map->timestamp) {
2574                                 /*
2575                                  * Look again for the entry because the map was
2576                                  * modified while it was unlocked.
2577                                  * Specifically, the entry may have been
2578                                  * clipped, merged, or deleted.
2579                                  */
2580                                 if (!vm_map_lookup_entry(map, saved_start,
2581                                     &tmp_entry)) {
2582                                         if (flags & VM_MAP_WIRE_HOLESOK)
2583                                                 tmp_entry = tmp_entry->next;
2584                                         else {
2585                                                 if (saved_start == start) {
2586                                                         /*
2587                                                          * First_entry has been deleted.
2588                                                          */
2589                                                         vm_map_unlock(map);
2590                                                         return (KERN_INVALID_ADDRESS);
2591                                                 }
2592                                                 end = saved_start;
2593                                                 rv = KERN_INVALID_ADDRESS;
2594                                                 goto done;
2595                                         }
2596                                 }
2597                                 if (entry == first_entry)
2598                                         first_entry = tmp_entry;
2599                                 else
2600                                         first_entry = NULL;
2601                                 entry = tmp_entry;
2602                         }
2603                         last_timestamp = map->timestamp;
2604                         continue;
2605                 }
2606                 vm_map_clip_start(map, entry, start);
2607                 vm_map_clip_end(map, entry, end);
2608                 /*
2609                  * Mark the entry in case the map lock is released.  (See
2610                  * above.)
2611                  */
2612                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2613                     entry->wiring_thread == NULL,
2614                     ("owned map entry %p", entry));
2615                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2616                 entry->wiring_thread = curthread;
2617                 /*
2618                  * Check the map for holes in the specified region.
2619                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2620                  */
2621                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2622                     (entry->end < end && entry->next->start > entry->end)) {
2623                         end = entry->end;
2624                         rv = KERN_INVALID_ADDRESS;
2625                         goto done;
2626                 }
2627                 /*
2628                  * If system unwiring, require that the entry is system wired.
2629                  */
2630                 if (!user_unwire &&
2631                     vm_map_entry_system_wired_count(entry) == 0) {
2632                         end = entry->end;
2633                         rv = KERN_INVALID_ARGUMENT;
2634                         goto done;
2635                 }
2636                 entry = entry->next;
2637         }
2638         rv = KERN_SUCCESS;
2639 done:
2640         need_wakeup = FALSE;
2641         if (first_entry == NULL) {
2642                 result = vm_map_lookup_entry(map, start, &first_entry);
2643                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2644                         first_entry = first_entry->next;
2645                 else
2646                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2647         }
2648         for (entry = first_entry; entry->start < end; entry = entry->next) {
2649                 /*
2650                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2651                  * space in the unwired region could have been mapped
2652                  * while the map lock was dropped for draining
2653                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2654                  * could be simultaneously wiring this new mapping
2655                  * entry.  Detect these cases and skip any entries
2656                  * marked as in transition by us.
2657                  */
2658                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2659                     entry->wiring_thread != curthread) {
2660                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2661                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2662                         continue;
2663                 }
2664
2665                 if (rv == KERN_SUCCESS && (!user_unwire ||
2666                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2667                         if (user_unwire)
2668                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2669                         if (entry->wired_count == 1)
2670                                 vm_map_entry_unwire(map, entry);
2671                         else
2672                                 entry->wired_count--;
2673                 }
2674                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2675                     ("vm_map_unwire: in-transition flag missing %p", entry));
2676                 KASSERT(entry->wiring_thread == curthread,
2677                     ("vm_map_unwire: alien wire %p", entry));
2678                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2679                 entry->wiring_thread = NULL;
2680                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2681                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2682                         need_wakeup = TRUE;
2683                 }
2684                 vm_map_simplify_entry(map, entry);
2685         }
2686         vm_map_unlock(map);
2687         if (need_wakeup)
2688                 vm_map_wakeup(map);
2689         return (rv);
2690 }
2691
2692 /*
2693  *      vm_map_wire_entry_failure:
2694  *
2695  *      Handle a wiring failure on the given entry.
2696  *
2697  *      The map should be locked.
2698  */
2699 static void
2700 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2701     vm_offset_t failed_addr)
2702 {
2703
2704         VM_MAP_ASSERT_LOCKED(map);
2705         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2706             entry->wired_count == 1,
2707             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2708         KASSERT(failed_addr < entry->end,
2709             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2710
2711         /*
2712          * If any pages at the start of this entry were successfully wired,
2713          * then unwire them.
2714          */
2715         if (failed_addr > entry->start) {
2716                 pmap_unwire(map->pmap, entry->start, failed_addr);
2717                 vm_object_unwire(entry->object.vm_object, entry->offset,
2718                     failed_addr - entry->start, PQ_ACTIVE);
2719         }
2720
2721         /*
2722          * Assign an out-of-range value to represent the failure to wire this
2723          * entry.
2724          */
2725         entry->wired_count = -1;
2726 }
2727
2728 /*
2729  *      vm_map_wire:
2730  *
2731  *      Implements both kernel and user wiring.
2732  */
2733 int
2734 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2735     int flags)
2736 {
2737         vm_map_entry_t entry, first_entry, tmp_entry;
2738         vm_offset_t faddr, saved_end, saved_start;
2739         unsigned int last_timestamp;
2740         int rv;
2741         boolean_t need_wakeup, result, user_wire;
2742         vm_prot_t prot;
2743
2744         if (start == end)
2745                 return (KERN_SUCCESS);
2746         prot = 0;
2747         if (flags & VM_MAP_WIRE_WRITE)
2748                 prot |= VM_PROT_WRITE;
2749         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2750         vm_map_lock(map);
2751         VM_MAP_RANGE_CHECK(map, start, end);
2752         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2753                 if (flags & VM_MAP_WIRE_HOLESOK)
2754                         first_entry = first_entry->next;
2755                 else {
2756                         vm_map_unlock(map);
2757                         return (KERN_INVALID_ADDRESS);
2758                 }
2759         }
2760         last_timestamp = map->timestamp;
2761         entry = first_entry;
2762         while (entry->start < end) {
2763                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2764                         /*
2765                          * We have not yet clipped the entry.
2766                          */
2767                         saved_start = (start >= entry->start) ? start :
2768                             entry->start;
2769                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2770                         if (vm_map_unlock_and_wait(map, 0)) {
2771                                 /*
2772                                  * Allow interruption of user wiring?
2773                                  */
2774                         }
2775                         vm_map_lock(map);
2776                         if (last_timestamp + 1 != map->timestamp) {
2777                                 /*
2778                                  * Look again for the entry because the map was
2779                                  * modified while it was unlocked.
2780                                  * Specifically, the entry may have been
2781                                  * clipped, merged, or deleted.
2782                                  */
2783                                 if (!vm_map_lookup_entry(map, saved_start,
2784                                     &tmp_entry)) {
2785                                         if (flags & VM_MAP_WIRE_HOLESOK)
2786                                                 tmp_entry = tmp_entry->next;
2787                                         else {
2788                                                 if (saved_start == start) {
2789                                                         /*
2790                                                          * first_entry has been deleted.
2791                                                          */
2792                                                         vm_map_unlock(map);
2793                                                         return (KERN_INVALID_ADDRESS);
2794                                                 }
2795                                                 end = saved_start;
2796                                                 rv = KERN_INVALID_ADDRESS;
2797                                                 goto done;
2798                                         }
2799                                 }
2800                                 if (entry == first_entry)
2801                                         first_entry = tmp_entry;
2802                                 else
2803                                         first_entry = NULL;
2804                                 entry = tmp_entry;
2805                         }
2806                         last_timestamp = map->timestamp;
2807                         continue;
2808                 }
2809                 vm_map_clip_start(map, entry, start);
2810                 vm_map_clip_end(map, entry, end);
2811                 /*
2812                  * Mark the entry in case the map lock is released.  (See
2813                  * above.)
2814                  */
2815                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2816                     entry->wiring_thread == NULL,
2817                     ("owned map entry %p", entry));
2818                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2819                 entry->wiring_thread = curthread;
2820                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2821                     || (entry->protection & prot) != prot) {
2822                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2823                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2824                                 end = entry->end;
2825                                 rv = KERN_INVALID_ADDRESS;
2826                                 goto done;
2827                         }
2828                         goto next_entry;
2829                 }
2830                 if (entry->wired_count == 0) {
2831                         entry->wired_count++;
2832                         saved_start = entry->start;
2833                         saved_end = entry->end;
2834
2835                         /*
2836                          * Release the map lock, relying on the in-transition
2837                          * mark.  Mark the map busy for fork.
2838                          */
2839                         vm_map_busy(map);
2840                         vm_map_unlock(map);
2841
2842                         faddr = saved_start;
2843                         do {
2844                                 /*
2845                                  * Simulate a fault to get the page and enter
2846                                  * it into the physical map.
2847                                  */
2848                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2849                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2850                                         break;
2851                         } while ((faddr += PAGE_SIZE) < saved_end);
2852                         vm_map_lock(map);
2853                         vm_map_unbusy(map);
2854                         if (last_timestamp + 1 != map->timestamp) {
2855                                 /*
2856                                  * Look again for the entry because the map was
2857                                  * modified while it was unlocked.  The entry
2858                                  * may have been clipped, but NOT merged or
2859                                  * deleted.
2860                                  */
2861                                 result = vm_map_lookup_entry(map, saved_start,
2862                                     &tmp_entry);
2863                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2864                                 if (entry == first_entry)
2865                                         first_entry = tmp_entry;
2866                                 else
2867                                         first_entry = NULL;
2868                                 entry = tmp_entry;
2869                                 while (entry->end < saved_end) {
2870                                         /*
2871                                          * In case of failure, handle entries
2872                                          * that were not fully wired here;
2873                                          * fully wired entries are handled
2874                                          * later.
2875                                          */
2876                                         if (rv != KERN_SUCCESS &&
2877                                             faddr < entry->end)
2878                                                 vm_map_wire_entry_failure(map,
2879                                                     entry, faddr);
2880                                         entry = entry->next;
2881                                 }
2882                         }
2883                         last_timestamp = map->timestamp;
2884                         if (rv != KERN_SUCCESS) {
2885                                 vm_map_wire_entry_failure(map, entry, faddr);
2886                                 end = entry->end;
2887                                 goto done;
2888                         }
2889                 } else if (!user_wire ||
2890                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2891                         entry->wired_count++;
2892                 }
2893                 /*
2894                  * Check the map for holes in the specified region.
2895                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2896                  */
2897         next_entry:
2898                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2899                     entry->end < end && entry->next->start > entry->end) {
2900                         end = entry->end;
2901                         rv = KERN_INVALID_ADDRESS;
2902                         goto done;
2903                 }
2904                 entry = entry->next;
2905         }
2906         rv = KERN_SUCCESS;
2907 done:
2908         need_wakeup = FALSE;
2909         if (first_entry == NULL) {
2910                 result = vm_map_lookup_entry(map, start, &first_entry);
2911                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2912                         first_entry = first_entry->next;
2913                 else
2914                         KASSERT(result, ("vm_map_wire: lookup failed"));
2915         }
2916         for (entry = first_entry; entry->start < end; entry = entry->next) {
2917                 /*
2918                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2919                  * space in the unwired region could have been mapped
2920                  * while the map lock was dropped for faulting in the
2921                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2922                  * Moreover, another thread could be simultaneously
2923                  * wiring this new mapping entry.  Detect these cases
2924                  * and skip any entries marked as in transition not by us.
2925                  */
2926                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2927                     entry->wiring_thread != curthread) {
2928                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2929                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2930                         continue;
2931                 }
2932
2933                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2934                         goto next_entry_done;
2935
2936                 if (rv == KERN_SUCCESS) {
2937                         if (user_wire)
2938                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2939                 } else if (entry->wired_count == -1) {
2940                         /*
2941                          * Wiring failed on this entry.  Thus, unwiring is
2942                          * unnecessary.
2943                          */
2944                         entry->wired_count = 0;
2945                 } else if (!user_wire ||
2946                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2947                         /*
2948                          * Undo the wiring.  Wiring succeeded on this entry
2949                          * but failed on a later entry.  
2950                          */
2951                         if (entry->wired_count == 1)
2952                                 vm_map_entry_unwire(map, entry);
2953                         else
2954                                 entry->wired_count--;
2955                 }
2956         next_entry_done:
2957                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2958                     ("vm_map_wire: in-transition flag missing %p", entry));
2959                 KASSERT(entry->wiring_thread == curthread,
2960                     ("vm_map_wire: alien wire %p", entry));
2961                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2962                     MAP_ENTRY_WIRE_SKIPPED);
2963                 entry->wiring_thread = NULL;
2964                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2965                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2966                         need_wakeup = TRUE;
2967                 }
2968                 vm_map_simplify_entry(map, entry);
2969         }
2970         vm_map_unlock(map);
2971         if (need_wakeup)
2972                 vm_map_wakeup(map);
2973         return (rv);
2974 }
2975
2976 /*
2977  * vm_map_sync
2978  *
2979  * Push any dirty cached pages in the address range to their pager.
2980  * If syncio is TRUE, dirty pages are written synchronously.
2981  * If invalidate is TRUE, any cached pages are freed as well.
2982  *
2983  * If the size of the region from start to end is zero, we are
2984  * supposed to flush all modified pages within the region containing
2985  * start.  Unfortunately, a region can be split or coalesced with
2986  * neighboring regions, making it difficult to determine what the
2987  * original region was.  Therefore, we approximate this requirement by
2988  * flushing the current region containing start.
2989  *
2990  * Returns an error if any part of the specified range is not mapped.
2991  */
2992 int
2993 vm_map_sync(
2994         vm_map_t map,
2995         vm_offset_t start,
2996         vm_offset_t end,
2997         boolean_t syncio,
2998         boolean_t invalidate)
2999 {
3000         vm_map_entry_t current;
3001         vm_map_entry_t entry;
3002         vm_size_t size;
3003         vm_object_t object;
3004         vm_ooffset_t offset;
3005         unsigned int last_timestamp;
3006         boolean_t failed;
3007
3008         vm_map_lock_read(map);
3009         VM_MAP_RANGE_CHECK(map, start, end);
3010         if (!vm_map_lookup_entry(map, start, &entry)) {
3011                 vm_map_unlock_read(map);
3012                 return (KERN_INVALID_ADDRESS);
3013         } else if (start == end) {
3014                 start = entry->start;
3015                 end = entry->end;
3016         }
3017         /*
3018          * Make a first pass to check for user-wired memory and holes.
3019          */
3020         for (current = entry; current->start < end; current = current->next) {
3021                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3022                         vm_map_unlock_read(map);
3023                         return (KERN_INVALID_ARGUMENT);
3024                 }
3025                 if (end > current->end &&
3026                     current->end != current->next->start) {
3027                         vm_map_unlock_read(map);
3028                         return (KERN_INVALID_ADDRESS);
3029                 }
3030         }
3031
3032         if (invalidate)
3033                 pmap_remove(map->pmap, start, end);
3034         failed = FALSE;
3035
3036         /*
3037          * Make a second pass, cleaning/uncaching pages from the indicated
3038          * objects as we go.
3039          */
3040         for (current = entry; current->start < end;) {
3041                 offset = current->offset + (start - current->start);
3042                 size = (end <= current->end ? end : current->end) - start;
3043                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3044                         vm_map_t smap;
3045                         vm_map_entry_t tentry;
3046                         vm_size_t tsize;
3047
3048                         smap = current->object.sub_map;
3049                         vm_map_lock_read(smap);
3050                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3051                         tsize = tentry->end - offset;
3052                         if (tsize < size)
3053                                 size = tsize;
3054                         object = tentry->object.vm_object;
3055                         offset = tentry->offset + (offset - tentry->start);
3056                         vm_map_unlock_read(smap);
3057                 } else {
3058                         object = current->object.vm_object;
3059                 }
3060                 vm_object_reference(object);
3061                 last_timestamp = map->timestamp;
3062                 vm_map_unlock_read(map);
3063                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3064                         failed = TRUE;
3065                 start += size;
3066                 vm_object_deallocate(object);
3067                 vm_map_lock_read(map);
3068                 if (last_timestamp == map->timestamp ||
3069                     !vm_map_lookup_entry(map, start, &current))
3070                         current = current->next;
3071         }
3072
3073         vm_map_unlock_read(map);
3074         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3075 }
3076
3077 /*
3078  *      vm_map_entry_unwire:    [ internal use only ]
3079  *
3080  *      Make the region specified by this entry pageable.
3081  *
3082  *      The map in question should be locked.
3083  *      [This is the reason for this routine's existence.]
3084  */
3085 static void
3086 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3087 {
3088
3089         VM_MAP_ASSERT_LOCKED(map);
3090         KASSERT(entry->wired_count > 0,
3091             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3092         pmap_unwire(map->pmap, entry->start, entry->end);
3093         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3094             entry->start, PQ_ACTIVE);
3095         entry->wired_count = 0;
3096 }
3097
3098 static void
3099 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3100 {
3101
3102         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3103                 vm_object_deallocate(entry->object.vm_object);
3104         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3105 }
3106
3107 /*
3108  *      vm_map_entry_delete:    [ internal use only ]
3109  *
3110  *      Deallocate the given entry from the target map.
3111  */
3112 static void
3113 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3114 {
3115         vm_object_t object;
3116         vm_pindex_t offidxstart, offidxend, count, size1;
3117         vm_size_t size;
3118
3119         vm_map_entry_unlink(map, entry);
3120         object = entry->object.vm_object;
3121
3122         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3123                 MPASS(entry->cred == NULL);
3124                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3125                 MPASS(object == NULL);
3126                 vm_map_entry_deallocate(entry, map->system_map);
3127                 return;
3128         }
3129
3130         size = entry->end - entry->start;
3131         map->size -= size;
3132
3133         if (entry->cred != NULL) {
3134                 swap_release_by_cred(size, entry->cred);
3135                 crfree(entry->cred);
3136         }
3137
3138         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3139             (object != NULL)) {
3140                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3141                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3142                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3143                 count = atop(size);
3144                 offidxstart = OFF_TO_IDX(entry->offset);
3145                 offidxend = offidxstart + count;
3146                 VM_OBJECT_WLOCK(object);
3147                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3148                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3149                     object == kernel_object)) {
3150                         vm_object_collapse(object);
3151
3152                         /*
3153                          * The option OBJPR_NOTMAPPED can be passed here
3154                          * because vm_map_delete() already performed
3155                          * pmap_remove() on the only mapping to this range
3156                          * of pages. 
3157                          */
3158                         vm_object_page_remove(object, offidxstart, offidxend,
3159                             OBJPR_NOTMAPPED);
3160                         if (object->type == OBJT_SWAP)
3161                                 swap_pager_freespace(object, offidxstart,
3162                                     count);
3163                         if (offidxend >= object->size &&
3164                             offidxstart < object->size) {
3165                                 size1 = object->size;
3166                                 object->size = offidxstart;
3167                                 if (object->cred != NULL) {
3168                                         size1 -= object->size;
3169                                         KASSERT(object->charge >= ptoa(size1),
3170                                             ("object %p charge < 0", object));
3171                                         swap_release_by_cred(ptoa(size1),
3172                                             object->cred);
3173                                         object->charge -= ptoa(size1);
3174                                 }
3175                         }
3176                 }
3177                 VM_OBJECT_WUNLOCK(object);
3178         } else
3179                 entry->object.vm_object = NULL;
3180         if (map->system_map)
3181                 vm_map_entry_deallocate(entry, TRUE);
3182         else {
3183                 entry->next = curthread->td_map_def_user;
3184                 curthread->td_map_def_user = entry;
3185         }
3186 }
3187
3188 /*
3189  *      vm_map_delete:  [ internal use only ]
3190  *
3191  *      Deallocates the given address range from the target
3192  *      map.
3193  */
3194 int
3195 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3196 {
3197         vm_map_entry_t entry;
3198         vm_map_entry_t first_entry;
3199
3200         VM_MAP_ASSERT_LOCKED(map);
3201         if (start == end)
3202                 return (KERN_SUCCESS);
3203
3204         /*
3205          * Find the start of the region, and clip it
3206          */
3207         if (!vm_map_lookup_entry(map, start, &first_entry))
3208                 entry = first_entry->next;
3209         else {
3210                 entry = first_entry;
3211                 vm_map_clip_start(map, entry, start);
3212         }
3213
3214         /*
3215          * Step through all entries in this region
3216          */
3217         while (entry->start < end) {
3218                 vm_map_entry_t next;
3219
3220                 /*
3221                  * Wait for wiring or unwiring of an entry to complete.
3222                  * Also wait for any system wirings to disappear on
3223                  * user maps.
3224                  */
3225                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3226                     (vm_map_pmap(map) != kernel_pmap &&
3227                     vm_map_entry_system_wired_count(entry) != 0)) {
3228                         unsigned int last_timestamp;
3229                         vm_offset_t saved_start;
3230                         vm_map_entry_t tmp_entry;
3231
3232                         saved_start = entry->start;
3233                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3234                         last_timestamp = map->timestamp;
3235                         (void) vm_map_unlock_and_wait(map, 0);
3236                         vm_map_lock(map);
3237                         if (last_timestamp + 1 != map->timestamp) {
3238                                 /*
3239                                  * Look again for the entry because the map was
3240                                  * modified while it was unlocked.
3241                                  * Specifically, the entry may have been
3242                                  * clipped, merged, or deleted.
3243                                  */
3244                                 if (!vm_map_lookup_entry(map, saved_start,
3245                                                          &tmp_entry))
3246                                         entry = tmp_entry->next;
3247                                 else {
3248                                         entry = tmp_entry;
3249                                         vm_map_clip_start(map, entry,
3250                                                           saved_start);
3251                                 }
3252                         }
3253                         continue;
3254                 }
3255                 vm_map_clip_end(map, entry, end);
3256
3257                 next = entry->next;
3258
3259                 /*
3260                  * Unwire before removing addresses from the pmap; otherwise,
3261                  * unwiring will put the entries back in the pmap.
3262                  */
3263                 if (entry->wired_count != 0)
3264                         vm_map_entry_unwire(map, entry);
3265
3266                 /*
3267                  * Remove mappings for the pages, but only if the
3268                  * mappings could exist.  For instance, it does not
3269                  * make sense to call pmap_remove() for guard entries.
3270                  */
3271                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3272                     entry->object.vm_object != NULL)
3273                         pmap_remove(map->pmap, entry->start, entry->end);
3274
3275                 if (entry->end == map->anon_loc)
3276                         map->anon_loc = entry->start;
3277
3278                 /*
3279                  * Delete the entry only after removing all pmap
3280                  * entries pointing to its pages.  (Otherwise, its
3281                  * page frames may be reallocated, and any modify bits
3282                  * will be set in the wrong object!)
3283                  */
3284                 vm_map_entry_delete(map, entry);
3285                 entry = next;
3286         }
3287         return (KERN_SUCCESS);
3288 }
3289
3290 /*
3291  *      vm_map_remove:
3292  *
3293  *      Remove the given address range from the target map.
3294  *      This is the exported form of vm_map_delete.
3295  */
3296 int
3297 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3298 {
3299         int result;
3300
3301         vm_map_lock(map);
3302         VM_MAP_RANGE_CHECK(map, start, end);
3303         result = vm_map_delete(map, start, end);
3304         vm_map_unlock(map);
3305         return (result);
3306 }
3307
3308 /*
3309  *      vm_map_check_protection:
3310  *
3311  *      Assert that the target map allows the specified privilege on the
3312  *      entire address region given.  The entire region must be allocated.
3313  *
3314  *      WARNING!  This code does not and should not check whether the
3315  *      contents of the region is accessible.  For example a smaller file
3316  *      might be mapped into a larger address space.
3317  *
3318  *      NOTE!  This code is also called by munmap().
3319  *
3320  *      The map must be locked.  A read lock is sufficient.
3321  */
3322 boolean_t
3323 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3324                         vm_prot_t protection)
3325 {
3326         vm_map_entry_t entry;
3327         vm_map_entry_t tmp_entry;
3328
3329         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3330                 return (FALSE);
3331         entry = tmp_entry;
3332
3333         while (start < end) {
3334                 /*
3335                  * No holes allowed!
3336                  */
3337                 if (start < entry->start)
3338                         return (FALSE);
3339                 /*
3340                  * Check protection associated with entry.
3341                  */
3342                 if ((entry->protection & protection) != protection)
3343                         return (FALSE);
3344                 /* go to next entry */
3345                 start = entry->end;
3346                 entry = entry->next;
3347         }
3348         return (TRUE);
3349 }
3350
3351 /*
3352  *      vm_map_copy_entry:
3353  *
3354  *      Copies the contents of the source entry to the destination
3355  *      entry.  The entries *must* be aligned properly.
3356  */
3357 static void
3358 vm_map_copy_entry(
3359         vm_map_t src_map,
3360         vm_map_t dst_map,
3361         vm_map_entry_t src_entry,
3362         vm_map_entry_t dst_entry,
3363         vm_ooffset_t *fork_charge)
3364 {
3365         vm_object_t src_object;
3366         vm_map_entry_t fake_entry;
3367         vm_offset_t size;
3368         struct ucred *cred;
3369         int charged;
3370
3371         VM_MAP_ASSERT_LOCKED(dst_map);
3372
3373         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3374                 return;
3375
3376         if (src_entry->wired_count == 0 ||
3377             (src_entry->protection & VM_PROT_WRITE) == 0) {
3378                 /*
3379                  * If the source entry is marked needs_copy, it is already
3380                  * write-protected.
3381                  */
3382                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3383                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3384                         pmap_protect(src_map->pmap,
3385                             src_entry->start,
3386                             src_entry->end,
3387                             src_entry->protection & ~VM_PROT_WRITE);
3388                 }
3389
3390                 /*
3391                  * Make a copy of the object.
3392                  */
3393                 size = src_entry->end - src_entry->start;
3394                 if ((src_object = src_entry->object.vm_object) != NULL) {
3395                         VM_OBJECT_WLOCK(src_object);
3396                         charged = ENTRY_CHARGED(src_entry);
3397                         if (src_object->handle == NULL &&
3398                             (src_object->type == OBJT_DEFAULT ||
3399                             src_object->type == OBJT_SWAP)) {
3400                                 vm_object_collapse(src_object);
3401                                 if ((src_object->flags & (OBJ_NOSPLIT |
3402                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3403                                         vm_object_split(src_entry);
3404                                         src_object =
3405                                             src_entry->object.vm_object;
3406                                 }
3407                         }
3408                         vm_object_reference_locked(src_object);
3409                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3410                         if (src_entry->cred != NULL &&
3411                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3412                                 KASSERT(src_object->cred == NULL,
3413                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3414                                      src_object));
3415                                 src_object->cred = src_entry->cred;
3416                                 src_object->charge = size;
3417                         }
3418                         VM_OBJECT_WUNLOCK(src_object);
3419                         dst_entry->object.vm_object = src_object;
3420                         if (charged) {
3421                                 cred = curthread->td_ucred;
3422                                 crhold(cred);
3423                                 dst_entry->cred = cred;
3424                                 *fork_charge += size;
3425                                 if (!(src_entry->eflags &
3426                                       MAP_ENTRY_NEEDS_COPY)) {
3427                                         crhold(cred);
3428                                         src_entry->cred = cred;
3429                                         *fork_charge += size;
3430                                 }
3431                         }
3432                         src_entry->eflags |= MAP_ENTRY_COW |
3433                             MAP_ENTRY_NEEDS_COPY;
3434                         dst_entry->eflags |= MAP_ENTRY_COW |
3435                             MAP_ENTRY_NEEDS_COPY;
3436                         dst_entry->offset = src_entry->offset;
3437                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3438                                 /*
3439                                  * MAP_ENTRY_VN_WRITECNT cannot
3440                                  * indicate write reference from
3441                                  * src_entry, since the entry is
3442                                  * marked as needs copy.  Allocate a
3443                                  * fake entry that is used to
3444                                  * decrement object->un_pager.vnp.writecount
3445                                  * at the appropriate time.  Attach
3446                                  * fake_entry to the deferred list.
3447                                  */
3448                                 fake_entry = vm_map_entry_create(dst_map);
3449                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3450                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3451                                 vm_object_reference(src_object);
3452                                 fake_entry->object.vm_object = src_object;
3453                                 fake_entry->start = src_entry->start;
3454                                 fake_entry->end = src_entry->end;
3455                                 fake_entry->next = curthread->td_map_def_user;
3456                                 curthread->td_map_def_user = fake_entry;
3457                         }
3458
3459                         pmap_copy(dst_map->pmap, src_map->pmap,
3460                             dst_entry->start, dst_entry->end - dst_entry->start,
3461                             src_entry->start);
3462                 } else {
3463                         dst_entry->object.vm_object = NULL;
3464                         dst_entry->offset = 0;
3465                         if (src_entry->cred != NULL) {
3466                                 dst_entry->cred = curthread->td_ucred;
3467                                 crhold(dst_entry->cred);
3468                                 *fork_charge += size;
3469                         }
3470                 }
3471         } else {
3472                 /*
3473                  * We don't want to make writeable wired pages copy-on-write.
3474                  * Immediately copy these pages into the new map by simulating
3475                  * page faults.  The new pages are pageable.
3476                  */
3477                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3478                     fork_charge);
3479         }
3480 }
3481
3482 /*
3483  * vmspace_map_entry_forked:
3484  * Update the newly-forked vmspace each time a map entry is inherited
3485  * or copied.  The values for vm_dsize and vm_tsize are approximate
3486  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3487  */
3488 static void
3489 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3490     vm_map_entry_t entry)
3491 {
3492         vm_size_t entrysize;
3493         vm_offset_t newend;
3494
3495         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3496                 return;
3497         entrysize = entry->end - entry->start;
3498         vm2->vm_map.size += entrysize;
3499         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3500                 vm2->vm_ssize += btoc(entrysize);
3501         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3502             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3503                 newend = MIN(entry->end,
3504                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3505                 vm2->vm_dsize += btoc(newend - entry->start);
3506         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3507             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3508                 newend = MIN(entry->end,
3509                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3510                 vm2->vm_tsize += btoc(newend - entry->start);
3511         }
3512 }
3513
3514 /*
3515  * vmspace_fork:
3516  * Create a new process vmspace structure and vm_map
3517  * based on those of an existing process.  The new map
3518  * is based on the old map, according to the inheritance
3519  * values on the regions in that map.
3520  *
3521  * XXX It might be worth coalescing the entries added to the new vmspace.
3522  *
3523  * The source map must not be locked.
3524  */
3525 struct vmspace *
3526 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3527 {
3528         struct vmspace *vm2;
3529         vm_map_t new_map, old_map;
3530         vm_map_entry_t new_entry, old_entry;
3531         vm_object_t object;
3532         int locked;
3533         vm_inherit_t inh;
3534
3535         old_map = &vm1->vm_map;
3536         /* Copy immutable fields of vm1 to vm2. */
3537         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3538             pmap_pinit);
3539         if (vm2 == NULL)
3540                 return (NULL);
3541         vm2->vm_taddr = vm1->vm_taddr;
3542         vm2->vm_daddr = vm1->vm_daddr;
3543         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3544         vm_map_lock(old_map);
3545         if (old_map->busy)
3546                 vm_map_wait_busy(old_map);
3547         new_map = &vm2->vm_map;
3548         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3549         KASSERT(locked, ("vmspace_fork: lock failed"));
3550
3551         new_map->anon_loc = old_map->anon_loc;
3552         old_entry = old_map->header.next;
3553
3554         while (old_entry != &old_map->header) {
3555                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3556                         panic("vm_map_fork: encountered a submap");
3557
3558                 inh = old_entry->inheritance;
3559                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3560                     inh != VM_INHERIT_NONE)
3561                         inh = VM_INHERIT_COPY;
3562
3563                 switch (inh) {
3564                 case VM_INHERIT_NONE:
3565                         break;
3566
3567                 case VM_INHERIT_SHARE:
3568                         /*
3569                          * Clone the entry, creating the shared object if necessary.
3570                          */
3571                         object = old_entry->object.vm_object;
3572                         if (object == NULL) {
3573                                 object = vm_object_allocate(OBJT_DEFAULT,
3574                                         atop(old_entry->end - old_entry->start));
3575                                 old_entry->object.vm_object = object;
3576                                 old_entry->offset = 0;
3577                                 if (old_entry->cred != NULL) {
3578                                         object->cred = old_entry->cred;
3579                                         object->charge = old_entry->end -
3580                                             old_entry->start;
3581                                         old_entry->cred = NULL;
3582                                 }
3583                         }
3584
3585                         /*
3586                          * Add the reference before calling vm_object_shadow
3587                          * to insure that a shadow object is created.
3588                          */
3589                         vm_object_reference(object);
3590                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3591                                 vm_object_shadow(&old_entry->object.vm_object,
3592                                     &old_entry->offset,
3593                                     old_entry->end - old_entry->start);
3594                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3595                                 /* Transfer the second reference too. */
3596                                 vm_object_reference(
3597                                     old_entry->object.vm_object);
3598
3599                                 /*
3600                                  * As in vm_map_simplify_entry(), the
3601                                  * vnode lock will not be acquired in
3602                                  * this call to vm_object_deallocate().
3603                                  */
3604                                 vm_object_deallocate(object);
3605                                 object = old_entry->object.vm_object;
3606                         }
3607                         VM_OBJECT_WLOCK(object);
3608                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3609                         if (old_entry->cred != NULL) {
3610                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3611                                 object->cred = old_entry->cred;
3612                                 object->charge = old_entry->end - old_entry->start;
3613                                 old_entry->cred = NULL;
3614                         }
3615
3616                         /*
3617                          * Assert the correct state of the vnode
3618                          * v_writecount while the object is locked, to
3619                          * not relock it later for the assertion
3620                          * correctness.
3621                          */
3622                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3623                             object->type == OBJT_VNODE) {
3624                                 KASSERT(((struct vnode *)object->handle)->
3625                                     v_writecount > 0,
3626                                     ("vmspace_fork: v_writecount %p", object));
3627                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3628                                     ("vmspace_fork: vnp.writecount %p",
3629                                     object));
3630                         }
3631                         VM_OBJECT_WUNLOCK(object);
3632
3633                         /*
3634                          * Clone the entry, referencing the shared object.
3635                          */
3636                         new_entry = vm_map_entry_create(new_map);
3637                         *new_entry = *old_entry;
3638                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3639                             MAP_ENTRY_IN_TRANSITION);
3640                         new_entry->wiring_thread = NULL;
3641                         new_entry->wired_count = 0;
3642                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3643                                 vnode_pager_update_writecount(object,
3644                                     new_entry->start, new_entry->end);
3645                         }
3646
3647                         /*
3648                          * Insert the entry into the new map -- we know we're
3649                          * inserting at the end of the new map.
3650                          */
3651                         vm_map_entry_link(new_map, new_map->header.prev,
3652                             new_entry);
3653                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3654
3655                         /*
3656                          * Update the physical map
3657                          */
3658                         pmap_copy(new_map->pmap, old_map->pmap,
3659                             new_entry->start,
3660                             (old_entry->end - old_entry->start),
3661                             old_entry->start);
3662                         break;
3663
3664                 case VM_INHERIT_COPY:
3665                         /*
3666                          * Clone the entry and link into the map.
3667                          */
3668                         new_entry = vm_map_entry_create(new_map);
3669                         *new_entry = *old_entry;
3670                         /*
3671                          * Copied entry is COW over the old object.
3672                          */
3673                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3674                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3675                         new_entry->wiring_thread = NULL;
3676                         new_entry->wired_count = 0;
3677                         new_entry->object.vm_object = NULL;
3678                         new_entry->cred = NULL;
3679                         vm_map_entry_link(new_map, new_map->header.prev,
3680                             new_entry);
3681                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3682                         vm_map_copy_entry(old_map, new_map, old_entry,
3683                             new_entry, fork_charge);
3684                         break;
3685
3686                 case VM_INHERIT_ZERO:
3687                         /*
3688                          * Create a new anonymous mapping entry modelled from
3689                          * the old one.
3690                          */
3691                         new_entry = vm_map_entry_create(new_map);
3692                         memset(new_entry, 0, sizeof(*new_entry));
3693
3694                         new_entry->start = old_entry->start;
3695                         new_entry->end = old_entry->end;
3696                         new_entry->eflags = old_entry->eflags &
3697                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3698                             MAP_ENTRY_VN_WRITECNT);
3699                         new_entry->protection = old_entry->protection;
3700                         new_entry->max_protection = old_entry->max_protection;
3701                         new_entry->inheritance = VM_INHERIT_ZERO;
3702
3703                         vm_map_entry_link(new_map, new_map->header.prev,
3704                             new_entry);
3705                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3706
3707                         new_entry->cred = curthread->td_ucred;
3708                         crhold(new_entry->cred);
3709                         *fork_charge += (new_entry->end - new_entry->start);
3710
3711                         break;
3712                 }
3713                 old_entry = old_entry->next;
3714         }
3715         /*
3716          * Use inlined vm_map_unlock() to postpone handling the deferred
3717          * map entries, which cannot be done until both old_map and
3718          * new_map locks are released.
3719          */
3720         sx_xunlock(&old_map->lock);
3721         sx_xunlock(&new_map->lock);
3722         vm_map_process_deferred();
3723
3724         return (vm2);
3725 }
3726
3727 /*
3728  * Create a process's stack for exec_new_vmspace().  This function is never
3729  * asked to wire the newly created stack.
3730  */
3731 int
3732 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3733     vm_prot_t prot, vm_prot_t max, int cow)
3734 {
3735         vm_size_t growsize, init_ssize;
3736         rlim_t vmemlim;
3737         int rv;
3738
3739         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3740         growsize = sgrowsiz;
3741         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3742         vm_map_lock(map);
3743         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3744         /* If we would blow our VMEM resource limit, no go */
3745         if (map->size + init_ssize > vmemlim) {
3746                 rv = KERN_NO_SPACE;
3747                 goto out;
3748         }
3749         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3750             max, cow);
3751 out:
3752         vm_map_unlock(map);
3753         return (rv);
3754 }
3755
3756 static int stack_guard_page = 1;
3757 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3758     &stack_guard_page, 0,
3759     "Specifies the number of guard pages for a stack that grows");
3760
3761 static int
3762 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3763     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3764 {
3765         vm_map_entry_t new_entry, prev_entry;
3766         vm_offset_t bot, gap_bot, gap_top, top;
3767         vm_size_t init_ssize, sgp;
3768         int orient, rv;
3769
3770         /*
3771          * The stack orientation is piggybacked with the cow argument.
3772          * Extract it into orient and mask the cow argument so that we
3773          * don't pass it around further.
3774          */
3775         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3776         KASSERT(orient != 0, ("No stack grow direction"));
3777         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3778             ("bi-dir stack"));
3779
3780         if (addrbos < vm_map_min(map) ||
3781             addrbos + max_ssize > vm_map_max(map) ||
3782             addrbos + max_ssize <= addrbos)
3783                 return (KERN_INVALID_ADDRESS);
3784         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3785         if (sgp >= max_ssize)
3786                 return (KERN_INVALID_ARGUMENT);
3787
3788         init_ssize = growsize;
3789         if (max_ssize < init_ssize + sgp)
3790                 init_ssize = max_ssize - sgp;
3791
3792         /* If addr is already mapped, no go */
3793         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3794                 return (KERN_NO_SPACE);
3795
3796         /*
3797          * If we can't accommodate max_ssize in the current mapping, no go.
3798          */
3799         if (prev_entry->next->start < addrbos + max_ssize)
3800                 return (KERN_NO_SPACE);
3801
3802         /*
3803          * We initially map a stack of only init_ssize.  We will grow as
3804          * needed later.  Depending on the orientation of the stack (i.e.
3805          * the grow direction) we either map at the top of the range, the
3806          * bottom of the range or in the middle.
3807          *
3808          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3809          * and cow to be 0.  Possibly we should eliminate these as input
3810          * parameters, and just pass these values here in the insert call.
3811          */
3812         if (orient == MAP_STACK_GROWS_DOWN) {
3813                 bot = addrbos + max_ssize - init_ssize;
3814                 top = bot + init_ssize;
3815                 gap_bot = addrbos;
3816                 gap_top = bot;
3817         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3818                 bot = addrbos;
3819                 top = bot + init_ssize;
3820                 gap_bot = top;
3821                 gap_top = addrbos + max_ssize;
3822         }
3823         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3824         if (rv != KERN_SUCCESS)
3825                 return (rv);
3826         new_entry = prev_entry->next;
3827         KASSERT(new_entry->end == top || new_entry->start == bot,
3828             ("Bad entry start/end for new stack entry"));
3829         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3830             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3831             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3832         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3833             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3834             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3835         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3836             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3837             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3838         if (rv != KERN_SUCCESS)
3839                 (void)vm_map_delete(map, bot, top);
3840         return (rv);
3841 }
3842
3843 /*
3844  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3845  * successfully grow the stack.
3846  */
3847 static int
3848 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3849 {
3850         vm_map_entry_t stack_entry;
3851         struct proc *p;
3852         struct vmspace *vm;
3853         struct ucred *cred;
3854         vm_offset_t gap_end, gap_start, grow_start;
3855         size_t grow_amount, guard, max_grow;
3856         rlim_t lmemlim, stacklim, vmemlim;
3857         int rv, rv1;
3858         bool gap_deleted, grow_down, is_procstack;
3859 #ifdef notyet
3860         uint64_t limit;
3861 #endif
3862 #ifdef RACCT
3863         int error;
3864 #endif
3865
3866         p = curproc;
3867         vm = p->p_vmspace;
3868
3869         /*
3870          * Disallow stack growth when the access is performed by a
3871          * debugger or AIO daemon.  The reason is that the wrong
3872          * resource limits are applied.
3873          */
3874         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3875                 return (KERN_FAILURE);
3876
3877         MPASS(!map->system_map);
3878
3879         guard = stack_guard_page * PAGE_SIZE;
3880         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3881         stacklim = lim_cur(curthread, RLIMIT_STACK);
3882         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3883 retry:
3884         /* If addr is not in a hole for a stack grow area, no need to grow. */
3885         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3886                 return (KERN_FAILURE);
3887         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3888                 return (KERN_SUCCESS);
3889         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3890                 stack_entry = gap_entry->next;
3891                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3892                     stack_entry->start != gap_entry->end)
3893                         return (KERN_FAILURE);
3894                 grow_amount = round_page(stack_entry->start - addr);
3895                 grow_down = true;
3896         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3897                 stack_entry = gap_entry->prev;
3898                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3899                     stack_entry->end != gap_entry->start)
3900                         return (KERN_FAILURE);
3901                 grow_amount = round_page(addr + 1 - stack_entry->end);
3902                 grow_down = false;
3903         } else {
3904                 return (KERN_FAILURE);
3905         }
3906         max_grow = gap_entry->end - gap_entry->start;
3907         if (guard > max_grow)
3908                 return (KERN_NO_SPACE);
3909         max_grow -= guard;
3910         if (grow_amount > max_grow)
3911                 return (KERN_NO_SPACE);
3912
3913         /*
3914          * If this is the main process stack, see if we're over the stack
3915          * limit.
3916          */
3917         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3918             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3919         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3920                 return (KERN_NO_SPACE);
3921
3922 #ifdef RACCT
3923         if (racct_enable) {
3924                 PROC_LOCK(p);
3925                 if (is_procstack && racct_set(p, RACCT_STACK,
3926                     ctob(vm->vm_ssize) + grow_amount)) {
3927                         PROC_UNLOCK(p);
3928                         return (KERN_NO_SPACE);
3929                 }
3930                 PROC_UNLOCK(p);
3931         }
3932 #endif
3933
3934         grow_amount = roundup(grow_amount, sgrowsiz);
3935         if (grow_amount > max_grow)
3936                 grow_amount = max_grow;
3937         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3938                 grow_amount = trunc_page((vm_size_t)stacklim) -
3939                     ctob(vm->vm_ssize);
3940         }
3941
3942 #ifdef notyet
3943         PROC_LOCK(p);
3944         limit = racct_get_available(p, RACCT_STACK);
3945         PROC_UNLOCK(p);
3946         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3947                 grow_amount = limit - ctob(vm->vm_ssize);
3948 #endif
3949
3950         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3951                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3952                         rv = KERN_NO_SPACE;
3953                         goto out;
3954                 }
3955 #ifdef RACCT
3956                 if (racct_enable) {
3957                         PROC_LOCK(p);
3958                         if (racct_set(p, RACCT_MEMLOCK,
3959                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3960                                 PROC_UNLOCK(p);
3961                                 rv = KERN_NO_SPACE;
3962                                 goto out;
3963                         }
3964                         PROC_UNLOCK(p);
3965                 }
3966 #endif
3967         }
3968
3969         /* If we would blow our VMEM resource limit, no go */
3970         if (map->size + grow_amount > vmemlim) {
3971                 rv = KERN_NO_SPACE;
3972                 goto out;
3973         }
3974 #ifdef RACCT
3975         if (racct_enable) {
3976                 PROC_LOCK(p);
3977                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3978                         PROC_UNLOCK(p);
3979                         rv = KERN_NO_SPACE;
3980                         goto out;
3981                 }
3982                 PROC_UNLOCK(p);
3983         }
3984 #endif
3985
3986         if (vm_map_lock_upgrade(map)) {
3987                 gap_entry = NULL;
3988                 vm_map_lock_read(map);
3989                 goto retry;
3990         }
3991
3992         if (grow_down) {
3993                 grow_start = gap_entry->end - grow_amount;
3994                 if (gap_entry->start + grow_amount == gap_entry->end) {
3995                         gap_start = gap_entry->start;
3996                         gap_end = gap_entry->end;
3997                         vm_map_entry_delete(map, gap_entry);
3998                         gap_deleted = true;
3999                 } else {
4000                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4001                         gap_entry->end -= grow_amount;
4002                         vm_map_entry_resize_free(map, gap_entry);
4003                         gap_deleted = false;
4004                 }
4005                 rv = vm_map_insert(map, NULL, 0, grow_start,
4006                     grow_start + grow_amount,
4007                     stack_entry->protection, stack_entry->max_protection,
4008                     MAP_STACK_GROWS_DOWN);
4009                 if (rv != KERN_SUCCESS) {
4010                         if (gap_deleted) {
4011                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4012                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4013                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4014                                 MPASS(rv1 == KERN_SUCCESS);
4015                         } else {
4016                                 gap_entry->end += grow_amount;
4017                                 vm_map_entry_resize_free(map, gap_entry);
4018                         }
4019                 }
4020         } else {
4021                 grow_start = stack_entry->end;
4022                 cred = stack_entry->cred;
4023                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4024                         cred = stack_entry->object.vm_object->cred;
4025                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4026                         rv = KERN_NO_SPACE;
4027                 /* Grow the underlying object if applicable. */
4028                 else if (stack_entry->object.vm_object == NULL ||
4029                     vm_object_coalesce(stack_entry->object.vm_object,
4030                     stack_entry->offset,
4031                     (vm_size_t)(stack_entry->end - stack_entry->start),
4032                     (vm_size_t)grow_amount, cred != NULL)) {
4033                         if (gap_entry->start + grow_amount == gap_entry->end)
4034                                 vm_map_entry_delete(map, gap_entry);
4035                         else
4036                                 gap_entry->start += grow_amount;
4037                         stack_entry->end += grow_amount;
4038                         map->size += grow_amount;
4039                         vm_map_entry_resize_free(map, stack_entry);
4040                         rv = KERN_SUCCESS;
4041                 } else
4042                         rv = KERN_FAILURE;
4043         }
4044         if (rv == KERN_SUCCESS && is_procstack)
4045                 vm->vm_ssize += btoc(grow_amount);
4046
4047         /*
4048          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4049          */
4050         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4051                 vm_map_unlock(map);
4052                 vm_map_wire(map, grow_start, grow_start + grow_amount,
4053                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4054                 vm_map_lock_read(map);
4055         } else
4056                 vm_map_lock_downgrade(map);
4057
4058 out:
4059 #ifdef RACCT
4060         if (racct_enable && rv != KERN_SUCCESS) {
4061                 PROC_LOCK(p);
4062                 error = racct_set(p, RACCT_VMEM, map->size);
4063                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4064                 if (!old_mlock) {
4065                         error = racct_set(p, RACCT_MEMLOCK,
4066                             ptoa(pmap_wired_count(map->pmap)));
4067                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4068                 }
4069                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4070                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4071                 PROC_UNLOCK(p);
4072         }
4073 #endif
4074
4075         return (rv);
4076 }
4077
4078 /*
4079  * Unshare the specified VM space for exec.  If other processes are
4080  * mapped to it, then create a new one.  The new vmspace is null.
4081  */
4082 int
4083 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4084 {
4085         struct vmspace *oldvmspace = p->p_vmspace;
4086         struct vmspace *newvmspace;
4087
4088         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4089             ("vmspace_exec recursed"));
4090         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4091         if (newvmspace == NULL)
4092                 return (ENOMEM);
4093         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4094         /*
4095          * This code is written like this for prototype purposes.  The
4096          * goal is to avoid running down the vmspace here, but let the
4097          * other process's that are still using the vmspace to finally
4098          * run it down.  Even though there is little or no chance of blocking
4099          * here, it is a good idea to keep this form for future mods.
4100          */
4101         PROC_VMSPACE_LOCK(p);
4102         p->p_vmspace = newvmspace;
4103         PROC_VMSPACE_UNLOCK(p);
4104         if (p == curthread->td_proc)
4105                 pmap_activate(curthread);
4106         curthread->td_pflags |= TDP_EXECVMSPC;
4107         return (0);
4108 }
4109
4110 /*
4111  * Unshare the specified VM space for forcing COW.  This
4112  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4113  */
4114 int
4115 vmspace_unshare(struct proc *p)
4116 {
4117         struct vmspace *oldvmspace = p->p_vmspace;
4118         struct vmspace *newvmspace;
4119         vm_ooffset_t fork_charge;
4120
4121         if (oldvmspace->vm_refcnt == 1)
4122                 return (0);
4123         fork_charge = 0;
4124         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4125         if (newvmspace == NULL)
4126                 return (ENOMEM);
4127         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4128                 vmspace_free(newvmspace);
4129                 return (ENOMEM);
4130         }
4131         PROC_VMSPACE_LOCK(p);
4132         p->p_vmspace = newvmspace;
4133         PROC_VMSPACE_UNLOCK(p);
4134         if (p == curthread->td_proc)
4135                 pmap_activate(curthread);
4136         vmspace_free(oldvmspace);
4137         return (0);
4138 }
4139
4140 /*
4141  *      vm_map_lookup:
4142  *
4143  *      Finds the VM object, offset, and
4144  *      protection for a given virtual address in the
4145  *      specified map, assuming a page fault of the
4146  *      type specified.
4147  *
4148  *      Leaves the map in question locked for read; return
4149  *      values are guaranteed until a vm_map_lookup_done
4150  *      call is performed.  Note that the map argument
4151  *      is in/out; the returned map must be used in
4152  *      the call to vm_map_lookup_done.
4153  *
4154  *      A handle (out_entry) is returned for use in
4155  *      vm_map_lookup_done, to make that fast.
4156  *
4157  *      If a lookup is requested with "write protection"
4158  *      specified, the map may be changed to perform virtual
4159  *      copying operations, although the data referenced will
4160  *      remain the same.
4161  */
4162 int
4163 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4164               vm_offset_t vaddr,
4165               vm_prot_t fault_typea,
4166               vm_map_entry_t *out_entry,        /* OUT */
4167               vm_object_t *object,              /* OUT */
4168               vm_pindex_t *pindex,              /* OUT */
4169               vm_prot_t *out_prot,              /* OUT */
4170               boolean_t *wired)                 /* OUT */
4171 {
4172         vm_map_entry_t entry;
4173         vm_map_t map = *var_map;
4174         vm_prot_t prot;
4175         vm_prot_t fault_type = fault_typea;
4176         vm_object_t eobject;
4177         vm_size_t size;
4178         struct ucred *cred;
4179
4180 RetryLookup:
4181
4182         vm_map_lock_read(map);
4183
4184 RetryLookupLocked:
4185         /*
4186          * Lookup the faulting address.
4187          */
4188         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4189                 vm_map_unlock_read(map);
4190                 return (KERN_INVALID_ADDRESS);
4191         }
4192
4193         entry = *out_entry;
4194
4195         /*
4196          * Handle submaps.
4197          */
4198         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4199                 vm_map_t old_map = map;
4200
4201                 *var_map = map = entry->object.sub_map;
4202                 vm_map_unlock_read(old_map);
4203                 goto RetryLookup;
4204         }
4205
4206         /*
4207          * Check whether this task is allowed to have this page.
4208          */
4209         prot = entry->protection;
4210         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4211                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4212                 if (prot == VM_PROT_NONE && map != kernel_map &&
4213                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4214                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4215                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4216                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4217                         goto RetryLookupLocked;
4218         }
4219         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4220         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4221                 vm_map_unlock_read(map);
4222                 return (KERN_PROTECTION_FAILURE);
4223         }
4224         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4225             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4226             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4227             ("entry %p flags %x", entry, entry->eflags));
4228         if ((fault_typea & VM_PROT_COPY) != 0 &&
4229             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4230             (entry->eflags & MAP_ENTRY_COW) == 0) {
4231                 vm_map_unlock_read(map);
4232                 return (KERN_PROTECTION_FAILURE);
4233         }
4234
4235         /*
4236          * If this page is not pageable, we have to get it for all possible
4237          * accesses.
4238          */
4239         *wired = (entry->wired_count != 0);
4240         if (*wired)
4241                 fault_type = entry->protection;
4242         size = entry->end - entry->start;
4243         /*
4244          * If the entry was copy-on-write, we either ...
4245          */
4246         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4247                 /*
4248                  * If we want to write the page, we may as well handle that
4249                  * now since we've got the map locked.
4250                  *
4251                  * If we don't need to write the page, we just demote the
4252                  * permissions allowed.
4253                  */
4254                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4255                     (fault_typea & VM_PROT_COPY) != 0) {
4256                         /*
4257                          * Make a new object, and place it in the object
4258                          * chain.  Note that no new references have appeared
4259                          * -- one just moved from the map to the new
4260                          * object.
4261                          */
4262                         if (vm_map_lock_upgrade(map))
4263                                 goto RetryLookup;
4264
4265                         if (entry->cred == NULL) {
4266                                 /*
4267                                  * The debugger owner is charged for
4268                                  * the memory.
4269                                  */
4270                                 cred = curthread->td_ucred;
4271                                 crhold(cred);
4272                                 if (!swap_reserve_by_cred(size, cred)) {
4273                                         crfree(cred);
4274                                         vm_map_unlock(map);
4275                                         return (KERN_RESOURCE_SHORTAGE);
4276                                 }
4277                                 entry->cred = cred;
4278                         }
4279                         vm_object_shadow(&entry->object.vm_object,
4280                             &entry->offset, size);
4281                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4282                         eobject = entry->object.vm_object;
4283                         if (eobject->cred != NULL) {
4284                                 /*
4285                                  * The object was not shadowed.
4286                                  */
4287                                 swap_release_by_cred(size, entry->cred);
4288                                 crfree(entry->cred);
4289                                 entry->cred = NULL;
4290                         } else if (entry->cred != NULL) {
4291                                 VM_OBJECT_WLOCK(eobject);
4292                                 eobject->cred = entry->cred;
4293                                 eobject->charge = size;
4294                                 VM_OBJECT_WUNLOCK(eobject);
4295                                 entry->cred = NULL;
4296                         }
4297
4298                         vm_map_lock_downgrade(map);
4299                 } else {
4300                         /*
4301                          * We're attempting to read a copy-on-write page --
4302                          * don't allow writes.
4303                          */
4304                         prot &= ~VM_PROT_WRITE;
4305                 }
4306         }
4307
4308         /*
4309          * Create an object if necessary.
4310          */
4311         if (entry->object.vm_object == NULL &&
4312             !map->system_map) {
4313                 if (vm_map_lock_upgrade(map))
4314                         goto RetryLookup;
4315                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4316                     atop(size));
4317                 entry->offset = 0;
4318                 if (entry->cred != NULL) {
4319                         VM_OBJECT_WLOCK(entry->object.vm_object);
4320                         entry->object.vm_object->cred = entry->cred;
4321                         entry->object.vm_object->charge = size;
4322                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4323                         entry->cred = NULL;
4324                 }
4325                 vm_map_lock_downgrade(map);
4326         }
4327
4328         /*
4329          * Return the object/offset from this entry.  If the entry was
4330          * copy-on-write or empty, it has been fixed up.
4331          */
4332         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4333         *object = entry->object.vm_object;
4334
4335         *out_prot = prot;
4336         return (KERN_SUCCESS);
4337 }
4338
4339 /*
4340  *      vm_map_lookup_locked:
4341  *
4342  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4343  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4344  */
4345 int
4346 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4347                      vm_offset_t vaddr,
4348                      vm_prot_t fault_typea,
4349                      vm_map_entry_t *out_entry, /* OUT */
4350                      vm_object_t *object,       /* OUT */
4351                      vm_pindex_t *pindex,       /* OUT */
4352                      vm_prot_t *out_prot,       /* OUT */
4353                      boolean_t *wired)          /* OUT */
4354 {
4355         vm_map_entry_t entry;
4356         vm_map_t map = *var_map;
4357         vm_prot_t prot;
4358         vm_prot_t fault_type = fault_typea;
4359
4360         /*
4361          * Lookup the faulting address.
4362          */
4363         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4364                 return (KERN_INVALID_ADDRESS);
4365
4366         entry = *out_entry;
4367
4368         /*
4369          * Fail if the entry refers to a submap.
4370          */
4371         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4372                 return (KERN_FAILURE);
4373
4374         /*
4375          * Check whether this task is allowed to have this page.
4376          */
4377         prot = entry->protection;
4378         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4379         if ((fault_type & prot) != fault_type)
4380                 return (KERN_PROTECTION_FAILURE);
4381
4382         /*
4383          * If this page is not pageable, we have to get it for all possible
4384          * accesses.
4385          */
4386         *wired = (entry->wired_count != 0);
4387         if (*wired)
4388                 fault_type = entry->protection;
4389
4390         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4391                 /*
4392                  * Fail if the entry was copy-on-write for a write fault.
4393                  */
4394                 if (fault_type & VM_PROT_WRITE)
4395                         return (KERN_FAILURE);
4396                 /*
4397                  * We're attempting to read a copy-on-write page --
4398                  * don't allow writes.
4399                  */
4400                 prot &= ~VM_PROT_WRITE;
4401         }
4402
4403         /*
4404          * Fail if an object should be created.
4405          */
4406         if (entry->object.vm_object == NULL && !map->system_map)
4407                 return (KERN_FAILURE);
4408
4409         /*
4410          * Return the object/offset from this entry.  If the entry was
4411          * copy-on-write or empty, it has been fixed up.
4412          */
4413         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4414         *object = entry->object.vm_object;
4415
4416         *out_prot = prot;
4417         return (KERN_SUCCESS);
4418 }
4419
4420 /*
4421  *      vm_map_lookup_done:
4422  *
4423  *      Releases locks acquired by a vm_map_lookup
4424  *      (according to the handle returned by that lookup).
4425  */
4426 void
4427 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4428 {
4429         /*
4430          * Unlock the main-level map
4431          */
4432         vm_map_unlock_read(map);
4433 }
4434
4435 vm_offset_t
4436 vm_map_max_KBI(const struct vm_map *map)
4437 {
4438
4439         return (vm_map_max(map));
4440 }
4441
4442 vm_offset_t
4443 vm_map_min_KBI(const struct vm_map *map)
4444 {
4445
4446         return (vm_map_min(map));
4447 }
4448
4449 pmap_t
4450 vm_map_pmap_KBI(vm_map_t map)
4451 {
4452
4453         return (map->pmap);
4454 }
4455
4456 #include "opt_ddb.h"
4457 #ifdef DDB
4458 #include <sys/kernel.h>
4459
4460 #include <ddb/ddb.h>
4461
4462 static void
4463 vm_map_print(vm_map_t map)
4464 {
4465         vm_map_entry_t entry;
4466
4467         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4468             (void *)map,
4469             (void *)map->pmap, map->nentries, map->timestamp);
4470
4471         db_indent += 2;
4472         for (entry = map->header.next; entry != &map->header;
4473             entry = entry->next) {
4474                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4475                     (void *)entry, (void *)entry->start, (void *)entry->end,
4476                     entry->eflags);
4477                 {
4478                         static char *inheritance_name[4] =
4479                         {"share", "copy", "none", "donate_copy"};
4480
4481                         db_iprintf(" prot=%x/%x/%s",
4482                             entry->protection,
4483                             entry->max_protection,
4484                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4485                         if (entry->wired_count != 0)
4486                                 db_printf(", wired");
4487                 }
4488                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4489                         db_printf(", share=%p, offset=0x%jx\n",
4490                             (void *)entry->object.sub_map,
4491                             (uintmax_t)entry->offset);
4492                         if ((entry->prev == &map->header) ||
4493                             (entry->prev->object.sub_map !=
4494                                 entry->object.sub_map)) {
4495                                 db_indent += 2;
4496                                 vm_map_print((vm_map_t)entry->object.sub_map);
4497                                 db_indent -= 2;
4498                         }
4499                 } else {
4500                         if (entry->cred != NULL)
4501                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4502                         db_printf(", object=%p, offset=0x%jx",
4503                             (void *)entry->object.vm_object,
4504                             (uintmax_t)entry->offset);
4505                         if (entry->object.vm_object && entry->object.vm_object->cred)
4506                                 db_printf(", obj ruid %d charge %jx",
4507                                     entry->object.vm_object->cred->cr_ruid,
4508                                     (uintmax_t)entry->object.vm_object->charge);
4509                         if (entry->eflags & MAP_ENTRY_COW)
4510                                 db_printf(", copy (%s)",
4511                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4512                         db_printf("\n");
4513
4514                         if ((entry->prev == &map->header) ||
4515                             (entry->prev->object.vm_object !=
4516                                 entry->object.vm_object)) {
4517                                 db_indent += 2;
4518                                 vm_object_print((db_expr_t)(intptr_t)
4519                                                 entry->object.vm_object,
4520                                                 0, 0, (char *)0);
4521                                 db_indent -= 2;
4522                         }
4523                 }
4524         }
4525         db_indent -= 2;
4526 }
4527
4528 DB_SHOW_COMMAND(map, map)
4529 {
4530
4531         if (!have_addr) {
4532                 db_printf("usage: show map <addr>\n");
4533                 return;
4534         }
4535         vm_map_print((vm_map_t)addr);
4536 }
4537
4538 DB_SHOW_COMMAND(procvm, procvm)
4539 {
4540         struct proc *p;
4541
4542         if (have_addr) {
4543                 p = db_lookup_proc(addr);
4544         } else {
4545                 p = curproc;
4546         }
4547
4548         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4549             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4550             (void *)vmspace_pmap(p->p_vmspace));
4551
4552         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4553 }
4554
4555 #endif /* DDB */