]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFV: xz 5.4.4.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150
151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154
155 /* 
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161
162 /*
163  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
164  *
165  *      Asserts that the starting and ending region
166  *      addresses fall within the valid range of the map.
167  */
168 #define VM_MAP_RANGE_CHECK(map, start, end)             \
169                 {                                       \
170                 if (start < vm_map_min(map))            \
171                         start = vm_map_min(map);        \
172                 if (end > vm_map_max(map))              \
173                         end = vm_map_max(map);          \
174                 if (start > end)                        \
175                         start = end;                    \
176                 }
177
178 #ifndef UMA_MD_SMALL_ALLOC
179
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192         vm_offset_t addr;
193         int error, locked;
194
195         *pflag = UMA_SLAB_PRIV;
196
197         if (!(locked = vm_map_locked(kernel_map)))
198                 vm_map_lock(kernel_map);
199         addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200         if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201                 panic("%s: kernel map is exhausted", __func__);
202         error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204         if (error != KERN_SUCCESS)
205                 panic("%s: vm_map_insert() failed: %d", __func__, error);
206         if (!locked)
207                 vm_map_unlock(kernel_map);
208         error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209             M_USE_RESERVE | (wait & M_ZERO));
210         if (error == KERN_SUCCESS) {
211                 return ((void *)addr);
212         } else {
213                 if (!locked)
214                         vm_map_lock(kernel_map);
215                 vm_map_delete(kernel_map, addr, bytes);
216                 if (!locked)
217                         vm_map_unlock(kernel_map);
218                 return (NULL);
219         }
220 }
221
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225         vm_offset_t addr;
226         int error __diagused;
227
228         if ((pflag & UMA_SLAB_PRIV) == 0)
229                 /* XXX leaked */
230                 return;
231
232         addr = (vm_offset_t)item;
233         kmem_unback(kernel_object, addr, size);
234         error = vm_map_remove(kernel_map, addr, addr + size);
235         KASSERT(error == KERN_SUCCESS,
236             ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define KMAPENT_RESERVE         1
244
245 #endif /* !UMD_MD_SMALL_ALLOC */
246
247 /*
248  *      vm_map_startup:
249  *
250  *      Initialize the vm_map module.  Must be called before any other vm_map
251  *      routines.
252  *
253  *      User map and entry structures are allocated from the general purpose
254  *      memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *      require special handling to avoid recursion; see the comments above
256  *      kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262
263         /*
264          * Disable the use of per-CPU buckets: map entry allocation is
265          * serialized by the kernel map lock.
266          */
267         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269             UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271         /* Reserve an extra map entry for use when replenishing the reserve. */
272         uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273         uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274         uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275         uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277
278         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282             vmspace_zdtor,
283 #else
284             NULL,
285 #endif
286             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292         struct vmspace *vm;
293         vm_map_t map;
294
295         vm = (struct vmspace *)mem;
296         map = &vm->vm_map;
297
298         memset(map, 0, sizeof(*map));
299         mtx_init(&map->system_mtx, "vm map (system)", NULL,
300             MTX_DEF | MTX_DUPOK);
301         sx_init(&map->lock, "vm map (user)");
302         PMAP_LOCK_INIT(vmspace_pmap(vm));
303         return (0);
304 }
305
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310         struct vmspace *vm;
311
312         vm = (struct vmspace *)mem;
313         KASSERT(vm->vm_map.nentries == 0,
314             ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315         KASSERT(vm->vm_map.size == 0,
316             ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif  /* INVARIANTS */
319
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327         struct vmspace *vm;
328
329         vm = uma_zalloc(vmspace_zone, M_WAITOK);
330         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331         if (!pinit(vmspace_pmap(vm))) {
332                 uma_zfree(vmspace_zone, vm);
333                 return (NULL);
334         }
335         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337         refcount_init(&vm->vm_refcnt, 1);
338         vm->vm_shm = NULL;
339         vm->vm_swrss = 0;
340         vm->vm_tsize = 0;
341         vm->vm_dsize = 0;
342         vm->vm_ssize = 0;
343         vm->vm_taddr = 0;
344         vm->vm_daddr = 0;
345         vm->vm_maxsaddr = 0;
346         return (vm);
347 }
348
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353
354         PROC_LOCK(p);
355         racct_set(p, RACCT_DATA, 0);
356         racct_set(p, RACCT_STACK, 0);
357         racct_set(p, RACCT_RSS, 0);
358         racct_set(p, RACCT_MEMLOCK, 0);
359         racct_set(p, RACCT_VMEM, 0);
360         PROC_UNLOCK(p);
361 }
362 #endif
363
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367
368         CTR1(KTR_VM, "vmspace_free: %p", vm);
369
370         /*
371          * Make sure any SysV shm is freed, it might not have been in
372          * exit1().
373          */
374         shmexit(vm);
375
376         /*
377          * Lock the map, to wait out all other references to it.
378          * Delete all of the mappings and pages they hold, then call
379          * the pmap module to reclaim anything left.
380          */
381         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382             vm_map_max(&vm->vm_map));
383
384         pmap_release(vmspace_pmap(vm));
385         vm->vm_map.pmap = NULL;
386         uma_zfree(vmspace_zone, vm);
387 }
388
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392
393         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394             "vmspace_free() called");
395
396         if (refcount_release(&vm->vm_refcnt))
397                 vmspace_dofree(vm);
398 }
399
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403         struct vmspace *vm;
404
405         PROC_VMSPACE_LOCK(p);
406         vm = p->p_vmspace;
407         p->p_vmspace = NULL;
408         PROC_VMSPACE_UNLOCK(p);
409         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410         vmspace_free(vm);
411 }
412
413 void
414 vmspace_exit(struct thread *td)
415 {
416         struct vmspace *vm;
417         struct proc *p;
418         bool released;
419
420         p = td->td_proc;
421         vm = p->p_vmspace;
422
423         /*
424          * Prepare to release the vmspace reference.  The thread that releases
425          * the last reference is responsible for tearing down the vmspace.
426          * However, threads not releasing the final reference must switch to the
427          * kernel's vmspace0 before the decrement so that the subsequent pmap
428          * deactivation does not modify a freed vmspace.
429          */
430         refcount_acquire(&vmspace0.vm_refcnt);
431         if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432                 if (p->p_vmspace != &vmspace0) {
433                         PROC_VMSPACE_LOCK(p);
434                         p->p_vmspace = &vmspace0;
435                         PROC_VMSPACE_UNLOCK(p);
436                         pmap_activate(td);
437                 }
438                 released = refcount_release(&vm->vm_refcnt);
439         }
440         if (released) {
441                 /*
442                  * pmap_remove_pages() expects the pmap to be active, so switch
443                  * back first if necessary.
444                  */
445                 if (p->p_vmspace != vm) {
446                         PROC_VMSPACE_LOCK(p);
447                         p->p_vmspace = vm;
448                         PROC_VMSPACE_UNLOCK(p);
449                         pmap_activate(td);
450                 }
451                 pmap_remove_pages(vmspace_pmap(vm));
452                 PROC_VMSPACE_LOCK(p);
453                 p->p_vmspace = &vmspace0;
454                 PROC_VMSPACE_UNLOCK(p);
455                 pmap_activate(td);
456                 vmspace_dofree(vm);
457         }
458 #ifdef RACCT
459         if (racct_enable)
460                 vmspace_container_reset(p);
461 #endif
462 }
463
464 /* Acquire reference to vmspace owned by another process. */
465
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469         struct vmspace *vm;
470
471         PROC_VMSPACE_LOCK(p);
472         vm = p->p_vmspace;
473         if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474                 PROC_VMSPACE_UNLOCK(p);
475                 return (NULL);
476         }
477         if (vm != p->p_vmspace) {
478                 PROC_VMSPACE_UNLOCK(p);
479                 vmspace_free(vm);
480                 return (NULL);
481         }
482         PROC_VMSPACE_UNLOCK(p);
483         return (vm);
484 }
485
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504         struct vmspace *oldvm;
505
506         /* XXX: Need some way to assert that this is an aio daemon. */
507
508         KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509             ("vmspace_switch_aio: newvm unreferenced"));
510
511         oldvm = curproc->p_vmspace;
512         if (oldvm == newvm)
513                 return;
514
515         /*
516          * Point to the new address space and refer to it.
517          */
518         curproc->p_vmspace = newvm;
519         refcount_acquire(&newvm->vm_refcnt);
520
521         /* Activate the new mapping. */
522         pmap_activate(curthread);
523
524         vmspace_free(oldvm);
525 }
526
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530
531         if (map->system_map)
532                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
533         else
534                 sx_xlock_(&map->lock, file, line);
535         map->timestamp++;
536 }
537
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541         vm_object_t object;
542         struct vnode *vp;
543         bool vp_held;
544
545         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546                 return;
547         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548             ("Submap with execs"));
549         object = entry->object.vm_object;
550         KASSERT(object != NULL, ("No object for text, entry %p", entry));
551         if ((object->flags & OBJ_ANON) != 0)
552                 object = object->handle;
553         else
554                 KASSERT(object->backing_object == NULL,
555                     ("non-anon object %p shadows", object));
556         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557             entry, entry->object.vm_object));
558
559         /*
560          * Mostly, we do not lock the backing object.  It is
561          * referenced by the entry we are processing, so it cannot go
562          * away.
563          */
564         vm_pager_getvp(object, &vp, &vp_held);
565         if (vp != NULL) {
566                 if (add) {
567                         VOP_SET_TEXT_CHECKED(vp);
568                 } else {
569                         vn_lock(vp, LK_SHARED | LK_RETRY);
570                         VOP_UNSET_TEXT_CHECKED(vp);
571                         VOP_UNLOCK(vp);
572                 }
573                 if (vp_held)
574                         vdrop(vp);
575         }
576 }
577
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587         struct thread *td;
588         vm_map_entry_t entry, next;
589         vm_object_t object;
590
591         td = curthread;
592         entry = td->td_map_def_user;
593         td->td_map_def_user = NULL;
594         while (entry != NULL) {
595                 next = entry->defer_next;
596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC));
599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600                         /*
601                          * Decrement the object's writemappings and
602                          * possibly the vnode's v_writecount.
603                          */
604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605                             ("Submap with writecount"));
606                         object = entry->object.vm_object;
607                         KASSERT(object != NULL, ("No object for writecount"));
608                         vm_pager_release_writecount(object, entry->start,
609                             entry->end);
610                 }
611                 vm_map_entry_set_vnode_text(entry, false);
612                 vm_map_entry_deallocate(entry, FALSE);
613                 entry = next;
614         }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622         if (map->system_map)
623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624         else
625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
646         if (map->nupdates > map->nentries) {                            \
647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
648                 map->nupdates = 0;                                      \
649         }                                                               \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664         VM_MAP_UNLOCK_CONSISTENT(map);
665         if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667                 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668                         uma_prealloc(kmapentzone, 1);
669                         map->flags &= ~MAP_REPLENISH;
670                 }
671 #endif
672                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673         } else {
674                 sx_xunlock_(&map->lock, file, line);
675                 vm_map_process_deferred();
676         }
677 }
678
679 void
680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682
683         if (map->system_map)
684                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
685         else
686                 sx_slock_(&map->lock, file, line);
687 }
688
689 void
690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692
693         if (map->system_map) {
694                 KASSERT((map->flags & MAP_REPLENISH) == 0,
695                     ("%s: MAP_REPLENISH leaked", __func__));
696                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697         } else {
698                 sx_sunlock_(&map->lock, file, line);
699                 vm_map_process_deferred();
700         }
701 }
702
703 int
704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706         int error;
707
708         error = map->system_map ?
709             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710             !sx_try_xlock_(&map->lock, file, line);
711         if (error == 0)
712                 map->timestamp++;
713         return (error == 0);
714 }
715
716 int
717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719         int error;
720
721         error = map->system_map ?
722             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723             !sx_try_slock_(&map->lock, file, line);
724         return (error == 0);
725 }
726
727 /*
728  *      _vm_map_lock_upgrade:   [ internal use only ]
729  *
730  *      Tries to upgrade a read (shared) lock on the specified map to a write
731  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
732  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
733  *      returned without a read or write lock held.
734  *
735  *      Requires that the map be read locked.
736  */
737 int
738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740         unsigned int last_timestamp;
741
742         if (map->system_map) {
743                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744         } else {
745                 if (!sx_try_upgrade_(&map->lock, file, line)) {
746                         last_timestamp = map->timestamp;
747                         sx_sunlock_(&map->lock, file, line);
748                         vm_map_process_deferred();
749                         /*
750                          * If the map's timestamp does not change while the
751                          * map is unlocked, then the upgrade succeeds.
752                          */
753                         sx_xlock_(&map->lock, file, line);
754                         if (last_timestamp != map->timestamp) {
755                                 sx_xunlock_(&map->lock, file, line);
756                                 return (1);
757                         }
758                 }
759         }
760         map->timestamp++;
761         return (0);
762 }
763
764 void
765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767
768         if (map->system_map) {
769                 KASSERT((map->flags & MAP_REPLENISH) == 0,
770                     ("%s: MAP_REPLENISH leaked", __func__));
771                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772         } else {
773                 VM_MAP_UNLOCK_CONSISTENT(map);
774                 sx_downgrade_(&map->lock, file, line);
775         }
776 }
777
778 /*
779  *      vm_map_locked:
780  *
781  *      Returns a non-zero value if the caller holds a write (exclusive) lock
782  *      on the specified map and the value "0" otherwise.
783  */
784 int
785 vm_map_locked(vm_map_t map)
786 {
787
788         if (map->system_map)
789                 return (mtx_owned(&map->system_mtx));
790         else
791                 return (sx_xlocked(&map->lock));
792 }
793
794 /*
795  *      _vm_map_unlock_and_wait:
796  *
797  *      Atomically releases the lock on the specified map and puts the calling
798  *      thread to sleep.  The calling thread will remain asleep until either
799  *      vm_map_wakeup() is performed on the map or the specified timeout is
800  *      exceeded.
801  *
802  *      WARNING!  This function does not perform deferred deallocations of
803  *      objects and map entries.  Therefore, the calling thread is expected to
804  *      reacquire the map lock after reawakening and later perform an ordinary
805  *      unlock operation, such as vm_map_unlock(), before completing its
806  *      operation on the map.
807  */
808 int
809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811
812         VM_MAP_UNLOCK_CONSISTENT(map);
813         mtx_lock(&map_sleep_mtx);
814         if (map->system_map) {
815                 KASSERT((map->flags & MAP_REPLENISH) == 0,
816                     ("%s: MAP_REPLENISH leaked", __func__));
817                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818         } else {
819                 sx_xunlock_(&map->lock, file, line);
820         }
821         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822             timo));
823 }
824
825 /*
826  *      vm_map_wakeup:
827  *
828  *      Awaken any threads that have slept on the map using
829  *      vm_map_unlock_and_wait().
830  */
831 void
832 vm_map_wakeup(vm_map_t map)
833 {
834
835         /*
836          * Acquire and release map_sleep_mtx to prevent a wakeup()
837          * from being performed (and lost) between the map unlock
838          * and the msleep() in _vm_map_unlock_and_wait().
839          */
840         mtx_lock(&map_sleep_mtx);
841         mtx_unlock(&map_sleep_mtx);
842         wakeup(&map->root);
843 }
844
845 void
846 vm_map_busy(vm_map_t map)
847 {
848
849         VM_MAP_ASSERT_LOCKED(map);
850         map->busy++;
851 }
852
853 void
854 vm_map_unbusy(vm_map_t map)
855 {
856
857         VM_MAP_ASSERT_LOCKED(map);
858         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861                 wakeup(&map->busy);
862         }
863 }
864
865 void 
866 vm_map_wait_busy(vm_map_t map)
867 {
868
869         VM_MAP_ASSERT_LOCKED(map);
870         while (map->busy) {
871                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872                 if (map->system_map)
873                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874                 else
875                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876         }
877         map->timestamp++;
878 }
879
880 long
881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883         return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885
886 /*
887  * Initialize an existing vm_map structure
888  * such as that in the vmspace structure.
889  */
890 static void
891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893
894         map->header.eflags = MAP_ENTRY_HEADER;
895         map->needs_wakeup = FALSE;
896         map->system_map = 0;
897         map->pmap = pmap;
898         map->header.end = min;
899         map->header.start = max;
900         map->flags = 0;
901         map->header.left = map->header.right = &map->header;
902         map->root = NULL;
903         map->timestamp = 0;
904         map->busy = 0;
905         map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907         map->nupdates = 0;
908 #endif
909 }
910
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914
915         _vm_map_init(map, pmap, min, max);
916         mtx_init(&map->system_mtx, "vm map (system)", NULL,
917             MTX_DEF | MTX_DUPOK);
918         sx_init(&map->lock, "vm map (user)");
919 }
920
921 /*
922  *      vm_map_entry_dispose:   [ internal use only ]
923  *
924  *      Inverse of vm_map_entry_create.
925  */
926 static void
927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931
932 /*
933  *      vm_map_entry_create:    [ internal use only ]
934  *
935  *      Allocates a VM map entry for insertion.
936  *      No entry fields are filled in.
937  */
938 static vm_map_entry_t
939 vm_map_entry_create(vm_map_t map)
940 {
941         vm_map_entry_t new_entry;
942
943 #ifndef UMA_MD_SMALL_ALLOC
944         if (map == kernel_map) {
945                 VM_MAP_ASSERT_LOCKED(map);
946
947                 /*
948                  * A new slab of kernel map entries cannot be allocated at this
949                  * point because the kernel map has not yet been updated to
950                  * reflect the caller's request.  Therefore, we allocate a new
951                  * map entry, dipping into the reserve if necessary, and set a
952                  * flag indicating that the reserve must be replenished before
953                  * the map is unlocked.
954                  */
955                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956                 if (new_entry == NULL) {
957                         new_entry = uma_zalloc(kmapentzone,
958                             M_NOWAIT | M_NOVM | M_USE_RESERVE);
959                         kernel_map->flags |= MAP_REPLENISH;
960                 }
961         } else
962 #endif
963         if (map->system_map) {
964                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965         } else {
966                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
967         }
968         KASSERT(new_entry != NULL,
969             ("vm_map_entry_create: kernel resources exhausted"));
970         return (new_entry);
971 }
972
973 /*
974  *      vm_map_entry_set_behavior:
975  *
976  *      Set the expected access behavior, either normal, random, or
977  *      sequential.
978  */
979 static inline void
980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983             (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985
986 /*
987  *      vm_map_entry_max_free_{left,right}:
988  *
989  *      Compute the size of the largest free gap between two entries,
990  *      one the root of a tree and the other the ancestor of that root
991  *      that is the least or greatest ancestor found on the search path.
992  */
993 static inline vm_size_t
994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996
997         return (root->left != left_ancestor ?
998             root->left->max_free : root->start - left_ancestor->end);
999 }
1000
1001 static inline vm_size_t
1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004
1005         return (root->right != right_ancestor ?
1006             root->right->max_free : right_ancestor->start - root->end);
1007 }
1008
1009 /*
1010  *      vm_map_entry_{pred,succ}:
1011  *
1012  *      Find the {predecessor, successor} of the entry by taking one step
1013  *      in the appropriate direction and backtracking as much as necessary.
1014  *      vm_map_entry_succ is defined in vm_map.h.
1015  */
1016 static inline vm_map_entry_t
1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019         vm_map_entry_t prior;
1020
1021         prior = entry->left;
1022         if (prior->right->start < entry->start) {
1023                 do
1024                         prior = prior->right;
1025                 while (prior->right != entry);
1026         }
1027         return (prior);
1028 }
1029
1030 static inline vm_size_t
1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033
1034         return (a > b ? a : b);
1035 }
1036
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1038         vm_map_entry_t z;                                               \
1039         vm_size_t max_free;                                             \
1040                                                                         \
1041         /*                                                              \
1042          * Infer root->right->max_free == root->max_free when           \
1043          * y->max_free < root->max_free || root->max_free == 0.         \
1044          * Otherwise, look right to find it.                            \
1045          */                                                             \
1046         y = root->left;                                                 \
1047         max_free = root->max_free;                                      \
1048         KASSERT(max_free == vm_size_max(                                \
1049             vm_map_entry_max_free_left(root, llist),                    \
1050             vm_map_entry_max_free_right(root, rlist)),                  \
1051             ("%s: max_free invariant fails", __func__));                \
1052         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1053                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1054         if (y != llist && (test)) {                                     \
1055                 /* Rotate right and make y root. */                     \
1056                 z = y->right;                                           \
1057                 if (z != root) {                                        \
1058                         root->left = z;                                 \
1059                         y->right = root;                                \
1060                         if (max_free < y->max_free)                     \
1061                             root->max_free = max_free =                 \
1062                             vm_size_max(max_free, z->max_free);         \
1063                 } else if (max_free < y->max_free)                      \
1064                         root->max_free = max_free =                     \
1065                             vm_size_max(max_free, root->start - y->end);\
1066                 root = y;                                               \
1067                 y = root->left;                                         \
1068         }                                                               \
1069         /* Copy right->max_free.  Put root on rlist. */                 \
1070         root->max_free = max_free;                                      \
1071         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1072             ("%s: max_free not copied from right", __func__));          \
1073         root->left = rlist;                                             \
1074         rlist = root;                                                   \
1075         root = y != llist ? y : NULL;                                   \
1076 } while (0)
1077
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1079         vm_map_entry_t z;                                               \
1080         vm_size_t max_free;                                             \
1081                                                                         \
1082         /*                                                              \
1083          * Infer root->left->max_free == root->max_free when            \
1084          * y->max_free < root->max_free || root->max_free == 0.         \
1085          * Otherwise, look left to find it.                             \
1086          */                                                             \
1087         y = root->right;                                                \
1088         max_free = root->max_free;                                      \
1089         KASSERT(max_free == vm_size_max(                                \
1090             vm_map_entry_max_free_left(root, llist),                    \
1091             vm_map_entry_max_free_right(root, rlist)),                  \
1092             ("%s: max_free invariant fails", __func__));                \
1093         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1094                 max_free = vm_map_entry_max_free_left(root, llist);     \
1095         if (y != rlist && (test)) {                                     \
1096                 /* Rotate left and make y root. */                      \
1097                 z = y->left;                                            \
1098                 if (z != root) {                                        \
1099                         root->right = z;                                \
1100                         y->left = root;                                 \
1101                         if (max_free < y->max_free)                     \
1102                             root->max_free = max_free =                 \
1103                             vm_size_max(max_free, z->max_free);         \
1104                 } else if (max_free < y->max_free)                      \
1105                         root->max_free = max_free =                     \
1106                             vm_size_max(max_free, y->start - root->end);\
1107                 root = y;                                               \
1108                 y = root->right;                                        \
1109         }                                                               \
1110         /* Copy left->max_free.  Put root on llist. */                  \
1111         root->max_free = max_free;                                      \
1112         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1113             ("%s: max_free not copied from left", __func__));           \
1114         root->right = llist;                                            \
1115         llist = root;                                                   \
1116         root = y != rlist ? y : NULL;                                   \
1117 } while (0)
1118
1119 /*
1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1123  * the two sides in reverse order (bottom-up), with llist linked by the right
1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125  * lists terminated by &map->header.  This function, and the subsequent call to
1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127  * values in &map->header.
1128  */
1129 static __always_inline vm_map_entry_t
1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133         vm_map_entry_t left, right, root, y;
1134
1135         left = right = &map->header;
1136         root = map->root;
1137         while (root != NULL && root->max_free >= length) {
1138                 KASSERT(left->end <= root->start &&
1139                     root->end <= right->start,
1140                     ("%s: root not within tree bounds", __func__));
1141                 if (addr < root->start) {
1142                         SPLAY_LEFT_STEP(root, y, left, right,
1143                             y->max_free >= length && addr < y->start);
1144                 } else if (addr >= root->end) {
1145                         SPLAY_RIGHT_STEP(root, y, left, right,
1146                             y->max_free >= length && addr >= y->end);
1147                 } else
1148                         break;
1149         }
1150         *llist = left;
1151         *rlist = right;
1152         return (root);
1153 }
1154
1155 static __always_inline void
1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158         vm_map_entry_t hi, right, y;
1159
1160         right = *rlist;
1161         hi = root->right == right ? NULL : root->right;
1162         if (hi == NULL)
1163                 return;
1164         do
1165                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1166         while (hi != NULL);
1167         *rlist = right;
1168 }
1169
1170 static __always_inline void
1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173         vm_map_entry_t left, lo, y;
1174
1175         left = *llist;
1176         lo = root->left == left ? NULL : root->left;
1177         if (lo == NULL)
1178                 return;
1179         do
1180                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181         while (lo != NULL);
1182         *llist = left;
1183 }
1184
1185 static inline void
1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188         vm_map_entry_t tmp;
1189
1190         tmp = *b;
1191         *b = *a;
1192         *a = tmp;
1193 }
1194
1195 /*
1196  * Walk back up the two spines, flip the pointers and set max_free.  The
1197  * subtrees of the root go at the bottom of llist and rlist.
1198  */
1199 static vm_size_t
1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203         do {
1204                 /*
1205                  * The max_free values of the children of llist are in
1206                  * llist->max_free and max_free.  Update with the
1207                  * max value.
1208                  */
1209                 llist->max_free = max_free =
1210                     vm_size_max(llist->max_free, max_free);
1211                 vm_map_entry_swap(&llist->right, &tail);
1212                 vm_map_entry_swap(&tail, &llist);
1213         } while (llist != header);
1214         root->left = tail;
1215         return (max_free);
1216 }
1217
1218 /*
1219  * When llist is known to be the predecessor of root.
1220  */
1221 static inline vm_size_t
1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223     vm_map_entry_t llist)
1224 {
1225         vm_size_t max_free;
1226
1227         max_free = root->start - llist->end;
1228         if (llist != header) {
1229                 max_free = vm_map_splay_merge_left_walk(header, root,
1230                     root, max_free, llist);
1231         } else {
1232                 root->left = header;
1233                 header->right = root;
1234         }
1235         return (max_free);
1236 }
1237
1238 /*
1239  * When llist may or may not be the predecessor of root.
1240  */
1241 static inline vm_size_t
1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243     vm_map_entry_t llist)
1244 {
1245         vm_size_t max_free;
1246
1247         max_free = vm_map_entry_max_free_left(root, llist);
1248         if (llist != header) {
1249                 max_free = vm_map_splay_merge_left_walk(header, root,
1250                     root->left == llist ? root : root->left,
1251                     max_free, llist);
1252         }
1253         return (max_free);
1254 }
1255
1256 static vm_size_t
1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260         do {
1261                 /*
1262                  * The max_free values of the children of rlist are in
1263                  * rlist->max_free and max_free.  Update with the
1264                  * max value.
1265                  */
1266                 rlist->max_free = max_free =
1267                     vm_size_max(rlist->max_free, max_free);
1268                 vm_map_entry_swap(&rlist->left, &tail);
1269                 vm_map_entry_swap(&tail, &rlist);
1270         } while (rlist != header);
1271         root->right = tail;
1272         return (max_free);
1273 }
1274
1275 /*
1276  * When rlist is known to be the succecessor of root.
1277  */
1278 static inline vm_size_t
1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280     vm_map_entry_t rlist)
1281 {
1282         vm_size_t max_free;
1283
1284         max_free = rlist->start - root->end;
1285         if (rlist != header) {
1286                 max_free = vm_map_splay_merge_right_walk(header, root,
1287                     root, max_free, rlist);
1288         } else {
1289                 root->right = header;
1290                 header->left = root;
1291         }
1292         return (max_free);
1293 }
1294
1295 /*
1296  * When rlist may or may not be the succecessor of root.
1297  */
1298 static inline vm_size_t
1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300     vm_map_entry_t rlist)
1301 {
1302         vm_size_t max_free;
1303
1304         max_free = vm_map_entry_max_free_right(root, rlist);
1305         if (rlist != header) {
1306                 max_free = vm_map_splay_merge_right_walk(header, root,
1307                     root->right == rlist ? root : root->right,
1308                     max_free, rlist);
1309         }
1310         return (max_free);
1311 }
1312
1313 /*
1314  *      vm_map_splay:
1315  *
1316  *      The Sleator and Tarjan top-down splay algorithm with the
1317  *      following variation.  Max_free must be computed bottom-up, so
1318  *      on the downward pass, maintain the left and right spines in
1319  *      reverse order.  Then, make a second pass up each side to fix
1320  *      the pointers and compute max_free.  The time bound is O(log n)
1321  *      amortized.
1322  *
1323  *      The tree is threaded, which means that there are no null pointers.
1324  *      When a node has no left child, its left pointer points to its
1325  *      predecessor, which the last ancestor on the search path from the root
1326  *      where the search branched right.  Likewise, when a node has no right
1327  *      child, its right pointer points to its successor.  The map header node
1328  *      is the predecessor of the first map entry, and the successor of the
1329  *      last.
1330  *
1331  *      The new root is the vm_map_entry containing "addr", or else an
1332  *      adjacent entry (lower if possible) if addr is not in the tree.
1333  *
1334  *      The map must be locked, and leaves it so.
1335  *
1336  *      Returns: the new root.
1337  */
1338 static vm_map_entry_t
1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341         vm_map_entry_t header, llist, rlist, root;
1342         vm_size_t max_free_left, max_free_right;
1343
1344         header = &map->header;
1345         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346         if (root != NULL) {
1347                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1348                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349         } else if (llist != header) {
1350                 /*
1351                  * Recover the greatest node in the left
1352                  * subtree and make it the root.
1353                  */
1354                 root = llist;
1355                 llist = root->right;
1356                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1357                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358         } else if (rlist != header) {
1359                 /*
1360                  * Recover the least node in the right
1361                  * subtree and make it the root.
1362                  */
1363                 root = rlist;
1364                 rlist = root->left;
1365                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367         } else {
1368                 /* There is no root. */
1369                 return (NULL);
1370         }
1371         root->max_free = vm_size_max(max_free_left, max_free_right);
1372         map->root = root;
1373         VM_MAP_ASSERT_CONSISTENT(map);
1374         return (root);
1375 }
1376
1377 /*
1378  *      vm_map_entry_{un,}link:
1379  *
1380  *      Insert/remove entries from maps.  On linking, if new entry clips
1381  *      existing entry, trim existing entry to avoid overlap, and manage
1382  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1383  *      called for, and manage offsets.  Callers should not modify fields in
1384  *      entries already mapped.
1385  */
1386 static void
1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389         vm_map_entry_t header, llist, rlist, root;
1390         vm_size_t max_free_left, max_free_right;
1391
1392         CTR3(KTR_VM,
1393             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394             map->nentries, entry);
1395         VM_MAP_ASSERT_LOCKED(map);
1396         map->nentries++;
1397         header = &map->header;
1398         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399         if (root == NULL) {
1400                 /*
1401                  * The new entry does not overlap any existing entry in the
1402                  * map, so it becomes the new root of the map tree.
1403                  */
1404                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406         } else if (entry->start == root->start) {
1407                 /*
1408                  * The new entry is a clone of root, with only the end field
1409                  * changed.  The root entry will be shrunk to abut the new
1410                  * entry, and will be the right child of the new root entry in
1411                  * the modified map.
1412                  */
1413                 KASSERT(entry->end < root->end,
1414                     ("%s: clip_start not within entry", __func__));
1415                 vm_map_splay_findprev(root, &llist);
1416                 root->offset += entry->end - root->start;
1417                 root->start = entry->end;
1418                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419                 max_free_right = root->max_free = vm_size_max(
1420                     vm_map_splay_merge_pred(entry, root, entry),
1421                     vm_map_splay_merge_right(header, root, rlist));
1422         } else {
1423                 /*
1424                  * The new entry is a clone of root, with only the start field
1425                  * changed.  The root entry will be shrunk to abut the new
1426                  * entry, and will be the left child of the new root entry in
1427                  * the modified map.
1428                  */
1429                 KASSERT(entry->end == root->end,
1430                     ("%s: clip_start not within entry", __func__));
1431                 vm_map_splay_findnext(root, &rlist);
1432                 entry->offset += entry->start - root->start;
1433                 root->end = entry->start;
1434                 max_free_left = root->max_free = vm_size_max(
1435                     vm_map_splay_merge_left(header, root, llist),
1436                     vm_map_splay_merge_succ(entry, root, entry));
1437                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1438         }
1439         entry->max_free = vm_size_max(max_free_left, max_free_right);
1440         map->root = entry;
1441         VM_MAP_ASSERT_CONSISTENT(map);
1442 }
1443
1444 enum unlink_merge_type {
1445         UNLINK_MERGE_NONE,
1446         UNLINK_MERGE_NEXT
1447 };
1448
1449 static void
1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1451     enum unlink_merge_type op)
1452 {
1453         vm_map_entry_t header, llist, rlist, root;
1454         vm_size_t max_free_left, max_free_right;
1455
1456         VM_MAP_ASSERT_LOCKED(map);
1457         header = &map->header;
1458         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1459         KASSERT(root != NULL,
1460             ("vm_map_entry_unlink: unlink object not mapped"));
1461
1462         vm_map_splay_findprev(root, &llist);
1463         vm_map_splay_findnext(root, &rlist);
1464         if (op == UNLINK_MERGE_NEXT) {
1465                 rlist->start = root->start;
1466                 rlist->offset = root->offset;
1467         }
1468         if (llist != header) {
1469                 root = llist;
1470                 llist = root->right;
1471                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1472                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473         } else if (rlist != header) {
1474                 root = rlist;
1475                 rlist = root->left;
1476                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478         } else {
1479                 header->left = header->right = header;
1480                 root = NULL;
1481         }
1482         if (root != NULL)
1483                 root->max_free = vm_size_max(max_free_left, max_free_right);
1484         map->root = root;
1485         VM_MAP_ASSERT_CONSISTENT(map);
1486         map->nentries--;
1487         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488             map->nentries, entry);
1489 }
1490
1491 /*
1492  *      vm_map_entry_resize:
1493  *
1494  *      Resize a vm_map_entry, recompute the amount of free space that
1495  *      follows it and propagate that value up the tree.
1496  *
1497  *      The map must be locked, and leaves it so.
1498  */
1499 static void
1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501 {
1502         vm_map_entry_t header, llist, rlist, root;
1503
1504         VM_MAP_ASSERT_LOCKED(map);
1505         header = &map->header;
1506         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508         vm_map_splay_findnext(root, &rlist);
1509         entry->end += grow_amount;
1510         root->max_free = vm_size_max(
1511             vm_map_splay_merge_left(header, root, llist),
1512             vm_map_splay_merge_succ(header, root, rlist));
1513         map->root = root;
1514         VM_MAP_ASSERT_CONSISTENT(map);
1515         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516             __func__, map, map->nentries, entry);
1517 }
1518
1519 /*
1520  *      vm_map_lookup_entry:    [ internal use only ]
1521  *
1522  *      Finds the map entry containing (or
1523  *      immediately preceding) the specified address
1524  *      in the given map; the entry is returned
1525  *      in the "entry" parameter.  The boolean
1526  *      result indicates whether the address is
1527  *      actually contained in the map.
1528  */
1529 boolean_t
1530 vm_map_lookup_entry(
1531         vm_map_t map,
1532         vm_offset_t address,
1533         vm_map_entry_t *entry)  /* OUT */
1534 {
1535         vm_map_entry_t cur, header, lbound, ubound;
1536         boolean_t locked;
1537
1538         /*
1539          * If the map is empty, then the map entry immediately preceding
1540          * "address" is the map's header.
1541          */
1542         header = &map->header;
1543         cur = map->root;
1544         if (cur == NULL) {
1545                 *entry = header;
1546                 return (FALSE);
1547         }
1548         if (address >= cur->start && cur->end > address) {
1549                 *entry = cur;
1550                 return (TRUE);
1551         }
1552         if ((locked = vm_map_locked(map)) ||
1553             sx_try_upgrade(&map->lock)) {
1554                 /*
1555                  * Splay requires a write lock on the map.  However, it only
1556                  * restructures the binary search tree; it does not otherwise
1557                  * change the map.  Thus, the map's timestamp need not change
1558                  * on a temporary upgrade.
1559                  */
1560                 cur = vm_map_splay(map, address);
1561                 if (!locked) {
1562                         VM_MAP_UNLOCK_CONSISTENT(map);
1563                         sx_downgrade(&map->lock);
1564                 }
1565
1566                 /*
1567                  * If "address" is contained within a map entry, the new root
1568                  * is that map entry.  Otherwise, the new root is a map entry
1569                  * immediately before or after "address".
1570                  */
1571                 if (address < cur->start) {
1572                         *entry = header;
1573                         return (FALSE);
1574                 }
1575                 *entry = cur;
1576                 return (address < cur->end);
1577         }
1578         /*
1579          * Since the map is only locked for read access, perform a
1580          * standard binary search tree lookup for "address".
1581          */
1582         lbound = ubound = header;
1583         for (;;) {
1584                 if (address < cur->start) {
1585                         ubound = cur;
1586                         cur = cur->left;
1587                         if (cur == lbound)
1588                                 break;
1589                 } else if (cur->end <= address) {
1590                         lbound = cur;
1591                         cur = cur->right;
1592                         if (cur == ubound)
1593                                 break;
1594                 } else {
1595                         *entry = cur;
1596                         return (TRUE);
1597                 }
1598         }
1599         *entry = lbound;
1600         return (FALSE);
1601 }
1602
1603 /*
1604  *      vm_map_insert:
1605  *
1606  *      Inserts the given whole VM object into the target
1607  *      map at the specified address range.  The object's
1608  *      size should match that of the address range.
1609  *
1610  *      Requires that the map be locked, and leaves it so.
1611  *
1612  *      If object is non-NULL, ref count must be bumped by caller
1613  *      prior to making call to account for the new entry.
1614  */
1615 int
1616 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1617     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1618 {
1619         vm_map_entry_t new_entry, next_entry, prev_entry;
1620         struct ucred *cred;
1621         vm_eflags_t protoeflags;
1622         vm_inherit_t inheritance;
1623         u_long bdry;
1624         u_int bidx;
1625
1626         VM_MAP_ASSERT_LOCKED(map);
1627         KASSERT(object != kernel_object ||
1628             (cow & MAP_COPY_ON_WRITE) == 0,
1629             ("vm_map_insert: kernel object and COW"));
1630         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631             (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632             ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633             object, cow));
1634         KASSERT((prot & ~max) == 0,
1635             ("prot %#x is not subset of max_prot %#x", prot, max));
1636
1637         /*
1638          * Check that the start and end points are not bogus.
1639          */
1640         if (start == end || !vm_map_range_valid(map, start, end))
1641                 return (KERN_INVALID_ADDRESS);
1642
1643         if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644             VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645                 return (KERN_PROTECTION_FAILURE);
1646
1647         /*
1648          * Find the entry prior to the proposed starting address; if it's part
1649          * of an existing entry, this range is bogus.
1650          */
1651         if (vm_map_lookup_entry(map, start, &prev_entry))
1652                 return (KERN_NO_SPACE);
1653
1654         /*
1655          * Assert that the next entry doesn't overlap the end point.
1656          */
1657         next_entry = vm_map_entry_succ(prev_entry);
1658         if (next_entry->start < end)
1659                 return (KERN_NO_SPACE);
1660
1661         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662             max != VM_PROT_NONE))
1663                 return (KERN_INVALID_ARGUMENT);
1664
1665         protoeflags = 0;
1666         if (cow & MAP_COPY_ON_WRITE)
1667                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668         if (cow & MAP_NOFAULT)
1669                 protoeflags |= MAP_ENTRY_NOFAULT;
1670         if (cow & MAP_DISABLE_SYNCER)
1671                 protoeflags |= MAP_ENTRY_NOSYNC;
1672         if (cow & MAP_DISABLE_COREDUMP)
1673                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674         if (cow & MAP_STACK_GROWS_DOWN)
1675                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676         if (cow & MAP_STACK_GROWS_UP)
1677                 protoeflags |= MAP_ENTRY_GROWS_UP;
1678         if (cow & MAP_WRITECOUNT)
1679                 protoeflags |= MAP_ENTRY_WRITECNT;
1680         if (cow & MAP_VN_EXEC)
1681                 protoeflags |= MAP_ENTRY_VN_EXEC;
1682         if ((cow & MAP_CREATE_GUARD) != 0)
1683                 protoeflags |= MAP_ENTRY_GUARD;
1684         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688         if (cow & MAP_INHERIT_SHARE)
1689                 inheritance = VM_INHERIT_SHARE;
1690         else
1691                 inheritance = VM_INHERIT_DEFAULT;
1692         if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693                 /* This magically ignores index 0, for usual page size. */
1694                 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1695                     MAP_SPLIT_BOUNDARY_SHIFT;
1696                 if (bidx >= MAXPAGESIZES)
1697                         return (KERN_INVALID_ARGUMENT);
1698                 bdry = pagesizes[bidx] - 1;
1699                 if ((start & bdry) != 0 || (end & bdry) != 0)
1700                         return (KERN_INVALID_ARGUMENT);
1701                 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702         }
1703
1704         cred = NULL;
1705         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706                 goto charged;
1707         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710                         return (KERN_RESOURCE_SHORTAGE);
1711                 KASSERT(object == NULL ||
1712                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713                     object->cred == NULL,
1714                     ("overcommit: vm_map_insert o %p", object));
1715                 cred = curthread->td_ucred;
1716         }
1717
1718 charged:
1719         /* Expand the kernel pmap, if necessary. */
1720         if (map == kernel_map && end > kernel_vm_end)
1721                 pmap_growkernel(end);
1722         if (object != NULL) {
1723                 /*
1724                  * OBJ_ONEMAPPING must be cleared unless this mapping
1725                  * is trivially proven to be the only mapping for any
1726                  * of the object's pages.  (Object granularity
1727                  * reference counting is insufficient to recognize
1728                  * aliases with precision.)
1729                  */
1730                 if ((object->flags & OBJ_ANON) != 0) {
1731                         VM_OBJECT_WLOCK(object);
1732                         if (object->ref_count > 1 || object->shadow_count != 0)
1733                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1734                         VM_OBJECT_WUNLOCK(object);
1735                 }
1736         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737             protoeflags &&
1738             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1739             MAP_VN_EXEC)) == 0 &&
1740             prev_entry->end == start && (prev_entry->cred == cred ||
1741             (prev_entry->object.vm_object != NULL &&
1742             prev_entry->object.vm_object->cred == cred)) &&
1743             vm_object_coalesce(prev_entry->object.vm_object,
1744             prev_entry->offset,
1745             (vm_size_t)(prev_entry->end - prev_entry->start),
1746             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748                 /*
1749                  * We were able to extend the object.  Determine if we
1750                  * can extend the previous map entry to include the
1751                  * new range as well.
1752                  */
1753                 if (prev_entry->inheritance == inheritance &&
1754                     prev_entry->protection == prot &&
1755                     prev_entry->max_protection == max &&
1756                     prev_entry->wired_count == 0) {
1757                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758                             0, ("prev_entry %p has incoherent wiring",
1759                             prev_entry));
1760                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761                                 map->size += end - prev_entry->end;
1762                         vm_map_entry_resize(map, prev_entry,
1763                             end - prev_entry->end);
1764                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1765                         return (KERN_SUCCESS);
1766                 }
1767
1768                 /*
1769                  * If we can extend the object but cannot extend the
1770                  * map entry, we have to create a new map entry.  We
1771                  * must bump the ref count on the extended object to
1772                  * account for it.  object may be NULL.
1773                  */
1774                 object = prev_entry->object.vm_object;
1775                 offset = prev_entry->offset +
1776                     (prev_entry->end - prev_entry->start);
1777                 vm_object_reference(object);
1778                 if (cred != NULL && object != NULL && object->cred != NULL &&
1779                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780                         /* Object already accounts for this uid. */
1781                         cred = NULL;
1782                 }
1783         }
1784         if (cred != NULL)
1785                 crhold(cred);
1786
1787         /*
1788          * Create a new entry
1789          */
1790         new_entry = vm_map_entry_create(map);
1791         new_entry->start = start;
1792         new_entry->end = end;
1793         new_entry->cred = NULL;
1794
1795         new_entry->eflags = protoeflags;
1796         new_entry->object.vm_object = object;
1797         new_entry->offset = offset;
1798
1799         new_entry->inheritance = inheritance;
1800         new_entry->protection = prot;
1801         new_entry->max_protection = max;
1802         new_entry->wired_count = 0;
1803         new_entry->wiring_thread = NULL;
1804         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805         new_entry->next_read = start;
1806
1807         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809         new_entry->cred = cred;
1810
1811         /*
1812          * Insert the new entry into the list
1813          */
1814         vm_map_entry_link(map, new_entry);
1815         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816                 map->size += new_entry->end - new_entry->start;
1817
1818         /*
1819          * Try to coalesce the new entry with both the previous and next
1820          * entries in the list.  Previously, we only attempted to coalesce
1821          * with the previous entry when object is NULL.  Here, we handle the
1822          * other cases, which are less common.
1823          */
1824         vm_map_try_merge_entries(map, prev_entry, new_entry);
1825         vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829                     end - start, cow & MAP_PREFAULT_PARTIAL);
1830         }
1831
1832         return (KERN_SUCCESS);
1833 }
1834
1835 /*
1836  *      vm_map_findspace:
1837  *
1838  *      Find the first fit (lowest VM address) for "length" free bytes
1839  *      beginning at address >= start in the given map.
1840  *
1841  *      In a vm_map_entry, "max_free" is the maximum amount of
1842  *      contiguous free space between an entry in its subtree and a
1843  *      neighbor of that entry.  This allows finding a free region in
1844  *      one path down the tree, so O(log n) amortized with splay
1845  *      trees.
1846  *
1847  *      The map must be locked, and leaves it so.
1848  *
1849  *      Returns: starting address if sufficient space,
1850  *               vm_map_max(map)-length+1 if insufficient space.
1851  */
1852 vm_offset_t
1853 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1854 {
1855         vm_map_entry_t header, llist, rlist, root, y;
1856         vm_size_t left_length, max_free_left, max_free_right;
1857         vm_offset_t gap_end;
1858
1859         VM_MAP_ASSERT_LOCKED(map);
1860
1861         /*
1862          * Request must fit within min/max VM address and must avoid
1863          * address wrap.
1864          */
1865         start = MAX(start, vm_map_min(map));
1866         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1867                 return (vm_map_max(map) - length + 1);
1868
1869         /* Empty tree means wide open address space. */
1870         if (map->root == NULL)
1871                 return (start);
1872
1873         /*
1874          * After splay_split, if start is within an entry, push it to the start
1875          * of the following gap.  If rlist is at the end of the gap containing
1876          * start, save the end of that gap in gap_end to see if the gap is big
1877          * enough; otherwise set gap_end to start skip gap-checking and move
1878          * directly to a search of the right subtree.
1879          */
1880         header = &map->header;
1881         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1882         gap_end = rlist->start;
1883         if (root != NULL) {
1884                 start = root->end;
1885                 if (root->right != rlist)
1886                         gap_end = start;
1887                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1888                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1889         } else if (rlist != header) {
1890                 root = rlist;
1891                 rlist = root->left;
1892                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1893                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1894         } else {
1895                 root = llist;
1896                 llist = root->right;
1897                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1898                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1899         }
1900         root->max_free = vm_size_max(max_free_left, max_free_right);
1901         map->root = root;
1902         VM_MAP_ASSERT_CONSISTENT(map);
1903         if (length <= gap_end - start)
1904                 return (start);
1905
1906         /* With max_free, can immediately tell if no solution. */
1907         if (root->right == header || length > root->right->max_free)
1908                 return (vm_map_max(map) - length + 1);
1909
1910         /*
1911          * Splay for the least large-enough gap in the right subtree.
1912          */
1913         llist = rlist = header;
1914         for (left_length = 0;;
1915             left_length = vm_map_entry_max_free_left(root, llist)) {
1916                 if (length <= left_length)
1917                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1918                             length <= vm_map_entry_max_free_left(y, llist));
1919                 else
1920                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1921                             length > vm_map_entry_max_free_left(y, root));
1922                 if (root == NULL)
1923                         break;
1924         }
1925         root = llist;
1926         llist = root->right;
1927         max_free_left = vm_map_splay_merge_left(header, root, llist);
1928         if (rlist == header) {
1929                 root->max_free = vm_size_max(max_free_left,
1930                     vm_map_splay_merge_succ(header, root, rlist));
1931         } else {
1932                 y = rlist;
1933                 rlist = y->left;
1934                 y->max_free = vm_size_max(
1935                     vm_map_splay_merge_pred(root, y, root),
1936                     vm_map_splay_merge_right(header, y, rlist));
1937                 root->max_free = vm_size_max(max_free_left, y->max_free);
1938         }
1939         map->root = root;
1940         VM_MAP_ASSERT_CONSISTENT(map);
1941         return (root->end);
1942 }
1943
1944 int
1945 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1946     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1947     vm_prot_t max, int cow)
1948 {
1949         vm_offset_t end;
1950         int result;
1951
1952         end = start + length;
1953         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1954             object == NULL,
1955             ("vm_map_fixed: non-NULL backing object for stack"));
1956         vm_map_lock(map);
1957         VM_MAP_RANGE_CHECK(map, start, end);
1958         if ((cow & MAP_CHECK_EXCL) == 0) {
1959                 result = vm_map_delete(map, start, end);
1960                 if (result != KERN_SUCCESS)
1961                         goto out;
1962         }
1963         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1964                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1965                     prot, max, cow);
1966         } else {
1967                 result = vm_map_insert(map, object, offset, start, end,
1968                     prot, max, cow);
1969         }
1970 out:
1971         vm_map_unlock(map);
1972         return (result);
1973 }
1974
1975 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1976 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1977
1978 static int cluster_anon = 1;
1979 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1980     &cluster_anon, 0,
1981     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1982
1983 static bool
1984 clustering_anon_allowed(vm_offset_t addr, int cow)
1985 {
1986
1987         switch (cluster_anon) {
1988         case 0:
1989                 return (false);
1990         case 1:
1991                 return (addr == 0 || (cow & MAP_NO_HINT) != 0);
1992         case 2:
1993         default:
1994                 return (true);
1995         }
1996 }
1997
1998 static long aslr_restarts;
1999 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2000     &aslr_restarts, 0,
2001     "Number of aslr failures");
2002
2003 /*
2004  * Searches for the specified amount of free space in the given map with the
2005  * specified alignment.  Performs an address-ordered, first-fit search from
2006  * the given address "*addr", with an optional upper bound "max_addr".  If the
2007  * parameter "alignment" is zero, then the alignment is computed from the
2008  * given (object, offset) pair so as to enable the greatest possible use of
2009  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2010  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2011  *
2012  * The map must be locked.  Initially, there must be at least "length" bytes
2013  * of free space at the given address.
2014  */
2015 static int
2016 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2017     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2018     vm_offset_t alignment)
2019 {
2020         vm_offset_t aligned_addr, free_addr;
2021
2022         VM_MAP_ASSERT_LOCKED(map);
2023         free_addr = *addr;
2024         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2025             ("caller failed to provide space %#jx at address %p",
2026              (uintmax_t)length, (void *)free_addr));
2027         for (;;) {
2028                 /*
2029                  * At the start of every iteration, the free space at address
2030                  * "*addr" is at least "length" bytes.
2031                  */
2032                 if (alignment == 0)
2033                         pmap_align_superpage(object, offset, addr, length);
2034                 else
2035                         *addr = roundup2(*addr, alignment);
2036                 aligned_addr = *addr;
2037                 if (aligned_addr == free_addr) {
2038                         /*
2039                          * Alignment did not change "*addr", so "*addr" must
2040                          * still provide sufficient free space.
2041                          */
2042                         return (KERN_SUCCESS);
2043                 }
2044
2045                 /*
2046                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2047                  * be a valid address, in which case vm_map_findspace() cannot
2048                  * be relied upon to fail.
2049                  */
2050                 if (aligned_addr < free_addr)
2051                         return (KERN_NO_SPACE);
2052                 *addr = vm_map_findspace(map, aligned_addr, length);
2053                 if (*addr + length > vm_map_max(map) ||
2054                     (max_addr != 0 && *addr + length > max_addr))
2055                         return (KERN_NO_SPACE);
2056                 free_addr = *addr;
2057                 if (free_addr == aligned_addr) {
2058                         /*
2059                          * If a successful call to vm_map_findspace() did not
2060                          * change "*addr", then "*addr" must still be aligned
2061                          * and provide sufficient free space.
2062                          */
2063                         return (KERN_SUCCESS);
2064                 }
2065         }
2066 }
2067
2068 int
2069 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2070     vm_offset_t max_addr, vm_offset_t alignment)
2071 {
2072         /* XXXKIB ASLR eh ? */
2073         *addr = vm_map_findspace(map, *addr, length);
2074         if (*addr + length > vm_map_max(map) ||
2075             (max_addr != 0 && *addr + length > max_addr))
2076                 return (KERN_NO_SPACE);
2077         return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2078             alignment));
2079 }
2080
2081 /*
2082  *      vm_map_find finds an unallocated region in the target address
2083  *      map with the given length.  The search is defined to be
2084  *      first-fit from the specified address; the region found is
2085  *      returned in the same parameter.
2086  *
2087  *      If object is non-NULL, ref count must be bumped by caller
2088  *      prior to making call to account for the new entry.
2089  */
2090 int
2091 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2092             vm_offset_t *addr,  /* IN/OUT */
2093             vm_size_t length, vm_offset_t max_addr, int find_space,
2094             vm_prot_t prot, vm_prot_t max, int cow)
2095 {
2096         vm_offset_t alignment, curr_min_addr, min_addr;
2097         int gap, pidx, rv, try;
2098         bool cluster, en_aslr, update_anon;
2099
2100         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2101             object == NULL,
2102             ("vm_map_find: non-NULL backing object for stack"));
2103         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2104             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2105         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2106             (object->flags & OBJ_COLORED) == 0))
2107                 find_space = VMFS_ANY_SPACE;
2108         if (find_space >> 8 != 0) {
2109                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2110                 alignment = (vm_offset_t)1 << (find_space >> 8);
2111         } else
2112                 alignment = 0;
2113         en_aslr = (map->flags & MAP_ASLR) != 0;
2114         update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2115             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2116             find_space != VMFS_NO_SPACE && object == NULL &&
2117             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2118             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2119         curr_min_addr = min_addr = *addr;
2120         if (en_aslr && min_addr == 0 && !cluster &&
2121             find_space != VMFS_NO_SPACE &&
2122             (map->flags & MAP_ASLR_IGNSTART) != 0)
2123                 curr_min_addr = min_addr = vm_map_min(map);
2124         try = 0;
2125         vm_map_lock(map);
2126         if (cluster) {
2127                 curr_min_addr = map->anon_loc;
2128                 if (curr_min_addr == 0)
2129                         cluster = false;
2130         }
2131         if (find_space != VMFS_NO_SPACE) {
2132                 KASSERT(find_space == VMFS_ANY_SPACE ||
2133                     find_space == VMFS_OPTIMAL_SPACE ||
2134                     find_space == VMFS_SUPER_SPACE ||
2135                     alignment != 0, ("unexpected VMFS flag"));
2136 again:
2137                 /*
2138                  * When creating an anonymous mapping, try clustering
2139                  * with an existing anonymous mapping first.
2140                  *
2141                  * We make up to two attempts to find address space
2142                  * for a given find_space value. The first attempt may
2143                  * apply randomization or may cluster with an existing
2144                  * anonymous mapping. If this first attempt fails,
2145                  * perform a first-fit search of the available address
2146                  * space.
2147                  *
2148                  * If all tries failed, and find_space is
2149                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2150                  * Again enable clustering and randomization.
2151                  */
2152                 try++;
2153                 MPASS(try <= 2);
2154
2155                 if (try == 2) {
2156                         /*
2157                          * Second try: we failed either to find a
2158                          * suitable region for randomizing the
2159                          * allocation, or to cluster with an existing
2160                          * mapping.  Retry with free run.
2161                          */
2162                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2163                             vm_map_min(map) : min_addr;
2164                         atomic_add_long(&aslr_restarts, 1);
2165                 }
2166
2167                 if (try == 1 && en_aslr && !cluster) {
2168                         /*
2169                          * Find space for allocation, including
2170                          * gap needed for later randomization.
2171                          */
2172                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2173                             (find_space == VMFS_SUPER_SPACE || find_space ==
2174                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2175                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2176                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2177                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2178                         *addr = vm_map_findspace(map, curr_min_addr,
2179                             length + gap * pagesizes[pidx]);
2180                         if (*addr + length + gap * pagesizes[pidx] >
2181                             vm_map_max(map))
2182                                 goto again;
2183                         /* And randomize the start address. */
2184                         *addr += (arc4random() % gap) * pagesizes[pidx];
2185                         if (max_addr != 0 && *addr + length > max_addr)
2186                                 goto again;
2187                 } else {
2188                         *addr = vm_map_findspace(map, curr_min_addr, length);
2189                         if (*addr + length > vm_map_max(map) ||
2190                             (max_addr != 0 && *addr + length > max_addr)) {
2191                                 if (cluster) {
2192                                         cluster = false;
2193                                         MPASS(try == 1);
2194                                         goto again;
2195                                 }
2196                                 rv = KERN_NO_SPACE;
2197                                 goto done;
2198                         }
2199                 }
2200
2201                 if (find_space != VMFS_ANY_SPACE &&
2202                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2203                     max_addr, alignment)) != KERN_SUCCESS) {
2204                         if (find_space == VMFS_OPTIMAL_SPACE) {
2205                                 find_space = VMFS_ANY_SPACE;
2206                                 curr_min_addr = min_addr;
2207                                 cluster = update_anon;
2208                                 try = 0;
2209                                 goto again;
2210                         }
2211                         goto done;
2212                 }
2213         } else if ((cow & MAP_REMAP) != 0) {
2214                 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2215                         rv = KERN_INVALID_ADDRESS;
2216                         goto done;
2217                 }
2218                 rv = vm_map_delete(map, *addr, *addr + length);
2219                 if (rv != KERN_SUCCESS)
2220                         goto done;
2221         }
2222         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2223                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2224                     max, cow);
2225         } else {
2226                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2227                     prot, max, cow);
2228         }
2229         if (rv == KERN_SUCCESS && update_anon)
2230                 map->anon_loc = *addr + length;
2231 done:
2232         vm_map_unlock(map);
2233         return (rv);
2234 }
2235
2236 /*
2237  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2238  *      additional parameter (min_addr) and treats the given address
2239  *      (*addr) differently.  Specifically, it treats *addr as a hint
2240  *      and not as the minimum address where the mapping is created.
2241  *
2242  *      This function works in two phases.  First, it tries to
2243  *      allocate above the hint.  If that fails and the hint is
2244  *      greater than min_addr, it performs a second pass, replacing
2245  *      the hint with min_addr as the minimum address for the
2246  *      allocation.
2247  */
2248 int
2249 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2250     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2251     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2252     int cow)
2253 {
2254         vm_offset_t hint;
2255         int rv;
2256
2257         hint = *addr;
2258         if (hint == 0) {
2259                 cow |= MAP_NO_HINT;
2260                 *addr = hint = min_addr;
2261         }
2262         for (;;) {
2263                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2264                     find_space, prot, max, cow);
2265                 if (rv == KERN_SUCCESS || min_addr >= hint)
2266                         return (rv);
2267                 *addr = hint = min_addr;
2268         }
2269 }
2270
2271 /*
2272  * A map entry with any of the following flags set must not be merged with
2273  * another entry.
2274  */
2275 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2276             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2277
2278 static bool
2279 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2280 {
2281
2282         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2283             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2284             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2285             prev, entry));
2286         return (prev->end == entry->start &&
2287             prev->object.vm_object == entry->object.vm_object &&
2288             (prev->object.vm_object == NULL ||
2289             prev->offset + (prev->end - prev->start) == entry->offset) &&
2290             prev->eflags == entry->eflags &&
2291             prev->protection == entry->protection &&
2292             prev->max_protection == entry->max_protection &&
2293             prev->inheritance == entry->inheritance &&
2294             prev->wired_count == entry->wired_count &&
2295             prev->cred == entry->cred);
2296 }
2297
2298 static void
2299 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2300 {
2301
2302         /*
2303          * If the backing object is a vnode object, vm_object_deallocate()
2304          * calls vrele().  However, vrele() does not lock the vnode because
2305          * the vnode has additional references.  Thus, the map lock can be
2306          * kept without causing a lock-order reversal with the vnode lock.
2307          *
2308          * Since we count the number of virtual page mappings in
2309          * object->un_pager.vnp.writemappings, the writemappings value
2310          * should not be adjusted when the entry is disposed of.
2311          */
2312         if (entry->object.vm_object != NULL)
2313                 vm_object_deallocate(entry->object.vm_object);
2314         if (entry->cred != NULL)
2315                 crfree(entry->cred);
2316         vm_map_entry_dispose(map, entry);
2317 }
2318
2319 /*
2320  *      vm_map_try_merge_entries:
2321  *
2322  *      Compare the given map entry to its predecessor, and merge its precessor
2323  *      into it if possible.  The entry remains valid, and may be extended.
2324  *      The predecessor may be deleted.
2325  *
2326  *      The map must be locked.
2327  */
2328 void
2329 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2330     vm_map_entry_t entry)
2331 {
2332
2333         VM_MAP_ASSERT_LOCKED(map);
2334         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2335             vm_map_mergeable_neighbors(prev_entry, entry)) {
2336                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2337                 vm_map_merged_neighbor_dispose(map, prev_entry);
2338         }
2339 }
2340
2341 /*
2342  *      vm_map_entry_back:
2343  *
2344  *      Allocate an object to back a map entry.
2345  */
2346 static inline void
2347 vm_map_entry_back(vm_map_entry_t entry)
2348 {
2349         vm_object_t object;
2350
2351         KASSERT(entry->object.vm_object == NULL,
2352             ("map entry %p has backing object", entry));
2353         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2354             ("map entry %p is a submap", entry));
2355         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2356             entry->cred, entry->end - entry->start);
2357         entry->object.vm_object = object;
2358         entry->offset = 0;
2359         entry->cred = NULL;
2360 }
2361
2362 /*
2363  *      vm_map_entry_charge_object
2364  *
2365  *      If there is no object backing this entry, create one.  Otherwise, if
2366  *      the entry has cred, give it to the backing object.
2367  */
2368 static inline void
2369 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2370 {
2371
2372         VM_MAP_ASSERT_LOCKED(map);
2373         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2374             ("map entry %p is a submap", entry));
2375         if (entry->object.vm_object == NULL && !map->system_map &&
2376             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2377                 vm_map_entry_back(entry);
2378         else if (entry->object.vm_object != NULL &&
2379             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2380             entry->cred != NULL) {
2381                 VM_OBJECT_WLOCK(entry->object.vm_object);
2382                 KASSERT(entry->object.vm_object->cred == NULL,
2383                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2384                 entry->object.vm_object->cred = entry->cred;
2385                 entry->object.vm_object->charge = entry->end - entry->start;
2386                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2387                 entry->cred = NULL;
2388         }
2389 }
2390
2391 /*
2392  *      vm_map_entry_clone
2393  *
2394  *      Create a duplicate map entry for clipping.
2395  */
2396 static vm_map_entry_t
2397 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2398 {
2399         vm_map_entry_t new_entry;
2400
2401         VM_MAP_ASSERT_LOCKED(map);
2402
2403         /*
2404          * Create a backing object now, if none exists, so that more individual
2405          * objects won't be created after the map entry is split.
2406          */
2407         vm_map_entry_charge_object(map, entry);
2408
2409         /* Clone the entry. */
2410         new_entry = vm_map_entry_create(map);
2411         *new_entry = *entry;
2412         if (new_entry->cred != NULL)
2413                 crhold(entry->cred);
2414         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2415                 vm_object_reference(new_entry->object.vm_object);
2416                 vm_map_entry_set_vnode_text(new_entry, true);
2417                 /*
2418                  * The object->un_pager.vnp.writemappings for the object of
2419                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2420                  * virtual pages are re-distributed among the clipped entries,
2421                  * so the sum is left the same.
2422                  */
2423         }
2424         return (new_entry);
2425 }
2426
2427 /*
2428  *      vm_map_clip_start:      [ internal use only ]
2429  *
2430  *      Asserts that the given entry begins at or after
2431  *      the specified address; if necessary,
2432  *      it splits the entry into two.
2433  */
2434 static int
2435 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2436 {
2437         vm_map_entry_t new_entry;
2438         int bdry_idx;
2439
2440         if (!map->system_map)
2441                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2442                     "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2443                     (uintmax_t)startaddr);
2444
2445         if (startaddr <= entry->start)
2446                 return (KERN_SUCCESS);
2447
2448         VM_MAP_ASSERT_LOCKED(map);
2449         KASSERT(entry->end > startaddr && entry->start < startaddr,
2450             ("%s: invalid clip of entry %p", __func__, entry));
2451
2452         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2453         if (bdry_idx != 0) {
2454                 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2455                         return (KERN_INVALID_ARGUMENT);
2456         }
2457
2458         new_entry = vm_map_entry_clone(map, entry);
2459
2460         /*
2461          * Split off the front portion.  Insert the new entry BEFORE this one,
2462          * so that this entry has the specified starting address.
2463          */
2464         new_entry->end = startaddr;
2465         vm_map_entry_link(map, new_entry);
2466         return (KERN_SUCCESS);
2467 }
2468
2469 /*
2470  *      vm_map_lookup_clip_start:
2471  *
2472  *      Find the entry at or just after 'start', and clip it if 'start' is in
2473  *      the interior of the entry.  Return entry after 'start', and in
2474  *      prev_entry set the entry before 'start'.
2475  */
2476 static int
2477 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2478     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2479 {
2480         vm_map_entry_t entry;
2481         int rv;
2482
2483         if (!map->system_map)
2484                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2485                     "%s: map %p start 0x%jx prev %p", __func__, map,
2486                     (uintmax_t)start, prev_entry);
2487
2488         if (vm_map_lookup_entry(map, start, prev_entry)) {
2489                 entry = *prev_entry;
2490                 rv = vm_map_clip_start(map, entry, start);
2491                 if (rv != KERN_SUCCESS)
2492                         return (rv);
2493                 *prev_entry = vm_map_entry_pred(entry);
2494         } else
2495                 entry = vm_map_entry_succ(*prev_entry);
2496         *res_entry = entry;
2497         return (KERN_SUCCESS);
2498 }
2499
2500 /*
2501  *      vm_map_clip_end:        [ internal use only ]
2502  *
2503  *      Asserts that the given entry ends at or before
2504  *      the specified address; if necessary,
2505  *      it splits the entry into two.
2506  */
2507 static int
2508 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2509 {
2510         vm_map_entry_t new_entry;
2511         int bdry_idx;
2512
2513         if (!map->system_map)
2514                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2515                     "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2516                     (uintmax_t)endaddr);
2517
2518         if (endaddr >= entry->end)
2519                 return (KERN_SUCCESS);
2520
2521         VM_MAP_ASSERT_LOCKED(map);
2522         KASSERT(entry->start < endaddr && entry->end > endaddr,
2523             ("%s: invalid clip of entry %p", __func__, entry));
2524
2525         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2526         if (bdry_idx != 0) {
2527                 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2528                         return (KERN_INVALID_ARGUMENT);
2529         }
2530
2531         new_entry = vm_map_entry_clone(map, entry);
2532
2533         /*
2534          * Split off the back portion.  Insert the new entry AFTER this one,
2535          * so that this entry has the specified ending address.
2536          */
2537         new_entry->start = endaddr;
2538         vm_map_entry_link(map, new_entry);
2539
2540         return (KERN_SUCCESS);
2541 }
2542
2543 /*
2544  *      vm_map_submap:          [ kernel use only ]
2545  *
2546  *      Mark the given range as handled by a subordinate map.
2547  *
2548  *      This range must have been created with vm_map_find,
2549  *      and no other operations may have been performed on this
2550  *      range prior to calling vm_map_submap.
2551  *
2552  *      Only a limited number of operations can be performed
2553  *      within this rage after calling vm_map_submap:
2554  *              vm_fault
2555  *      [Don't try vm_map_copy!]
2556  *
2557  *      To remove a submapping, one must first remove the
2558  *      range from the superior map, and then destroy the
2559  *      submap (if desired).  [Better yet, don't try it.]
2560  */
2561 int
2562 vm_map_submap(
2563         vm_map_t map,
2564         vm_offset_t start,
2565         vm_offset_t end,
2566         vm_map_t submap)
2567 {
2568         vm_map_entry_t entry;
2569         int result;
2570
2571         result = KERN_INVALID_ARGUMENT;
2572
2573         vm_map_lock(submap);
2574         submap->flags |= MAP_IS_SUB_MAP;
2575         vm_map_unlock(submap);
2576
2577         vm_map_lock(map);
2578         VM_MAP_RANGE_CHECK(map, start, end);
2579         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2580             (entry->eflags & MAP_ENTRY_COW) == 0 &&
2581             entry->object.vm_object == NULL) {
2582                 result = vm_map_clip_start(map, entry, start);
2583                 if (result != KERN_SUCCESS)
2584                         goto unlock;
2585                 result = vm_map_clip_end(map, entry, end);
2586                 if (result != KERN_SUCCESS)
2587                         goto unlock;
2588                 entry->object.sub_map = submap;
2589                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2590                 result = KERN_SUCCESS;
2591         }
2592 unlock:
2593         vm_map_unlock(map);
2594
2595         if (result != KERN_SUCCESS) {
2596                 vm_map_lock(submap);
2597                 submap->flags &= ~MAP_IS_SUB_MAP;
2598                 vm_map_unlock(submap);
2599         }
2600         return (result);
2601 }
2602
2603 /*
2604  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2605  */
2606 #define MAX_INIT_PT     96
2607
2608 /*
2609  *      vm_map_pmap_enter:
2610  *
2611  *      Preload the specified map's pmap with mappings to the specified
2612  *      object's memory-resident pages.  No further physical pages are
2613  *      allocated, and no further virtual pages are retrieved from secondary
2614  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2615  *      limited number of page mappings are created at the low-end of the
2616  *      specified address range.  (For this purpose, a superpage mapping
2617  *      counts as one page mapping.)  Otherwise, all resident pages within
2618  *      the specified address range are mapped.
2619  */
2620 static void
2621 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2622     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2623 {
2624         vm_offset_t start;
2625         vm_page_t p, p_start;
2626         vm_pindex_t mask, psize, threshold, tmpidx;
2627
2628         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2629                 return;
2630         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2631                 VM_OBJECT_WLOCK(object);
2632                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2633                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2634                             size);
2635                         VM_OBJECT_WUNLOCK(object);
2636                         return;
2637                 }
2638                 VM_OBJECT_LOCK_DOWNGRADE(object);
2639         } else
2640                 VM_OBJECT_RLOCK(object);
2641
2642         psize = atop(size);
2643         if (psize + pindex > object->size) {
2644                 if (pindex >= object->size) {
2645                         VM_OBJECT_RUNLOCK(object);
2646                         return;
2647                 }
2648                 psize = object->size - pindex;
2649         }
2650
2651         start = 0;
2652         p_start = NULL;
2653         threshold = MAX_INIT_PT;
2654
2655         p = vm_page_find_least(object, pindex);
2656         /*
2657          * Assert: the variable p is either (1) the page with the
2658          * least pindex greater than or equal to the parameter pindex
2659          * or (2) NULL.
2660          */
2661         for (;
2662              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2663              p = TAILQ_NEXT(p, listq)) {
2664                 /*
2665                  * don't allow an madvise to blow away our really
2666                  * free pages allocating pv entries.
2667                  */
2668                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2669                     vm_page_count_severe()) ||
2670                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2671                     tmpidx >= threshold)) {
2672                         psize = tmpidx;
2673                         break;
2674                 }
2675                 if (vm_page_all_valid(p)) {
2676                         if (p_start == NULL) {
2677                                 start = addr + ptoa(tmpidx);
2678                                 p_start = p;
2679                         }
2680                         /* Jump ahead if a superpage mapping is possible. */
2681                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2682                             (pagesizes[p->psind] - 1)) == 0) {
2683                                 mask = atop(pagesizes[p->psind]) - 1;
2684                                 if (tmpidx + mask < psize &&
2685                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2686                                         p += mask;
2687                                         threshold += mask;
2688                                 }
2689                         }
2690                 } else if (p_start != NULL) {
2691                         pmap_enter_object(map->pmap, start, addr +
2692                             ptoa(tmpidx), p_start, prot);
2693                         p_start = NULL;
2694                 }
2695         }
2696         if (p_start != NULL)
2697                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2698                     p_start, prot);
2699         VM_OBJECT_RUNLOCK(object);
2700 }
2701
2702 /*
2703  *      vm_map_protect:
2704  *
2705  *      Sets the protection and/or the maximum protection of the
2706  *      specified address region in the target map.
2707  */
2708 int
2709 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2710     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2711 {
2712         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2713         vm_object_t obj;
2714         struct ucred *cred;
2715         vm_prot_t old_prot;
2716         int rv;
2717
2718         if (start == end)
2719                 return (KERN_SUCCESS);
2720
2721         if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
2722             (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
2723             (new_prot & new_maxprot) != new_prot)
2724                 return (KERN_OUT_OF_BOUNDS);
2725
2726 again:
2727         in_tran = NULL;
2728         vm_map_lock(map);
2729
2730         if ((map->flags & MAP_WXORX) != 0 &&
2731             (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2732             (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2733             VM_PROT_EXECUTE)) {
2734                 vm_map_unlock(map);
2735                 return (KERN_PROTECTION_FAILURE);
2736         }
2737
2738         /*
2739          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2740          * need to fault pages into the map and will drop the map lock while
2741          * doing so, and the VM object may end up in an inconsistent state if we
2742          * update the protection on the map entry in between faults.
2743          */
2744         vm_map_wait_busy(map);
2745
2746         VM_MAP_RANGE_CHECK(map, start, end);
2747
2748         if (!vm_map_lookup_entry(map, start, &first_entry))
2749                 first_entry = vm_map_entry_succ(first_entry);
2750
2751         /*
2752          * Make a first pass to check for protection violations.
2753          */
2754         for (entry = first_entry; entry->start < end;
2755             entry = vm_map_entry_succ(entry)) {
2756                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2757                         continue;
2758                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2759                         vm_map_unlock(map);
2760                         return (KERN_INVALID_ARGUMENT);
2761                 }
2762                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2763                         new_prot = entry->protection;
2764                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2765                         new_maxprot = entry->max_protection;
2766                 if ((new_prot & entry->max_protection) != new_prot ||
2767                     (new_maxprot & entry->max_protection) != new_maxprot) {
2768                         vm_map_unlock(map);
2769                         return (KERN_PROTECTION_FAILURE);
2770                 }
2771                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2772                         in_tran = entry;
2773         }
2774
2775         /*
2776          * Postpone the operation until all in-transition map entries have
2777          * stabilized.  An in-transition entry might already have its pages
2778          * wired and wired_count incremented, but not yet have its
2779          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2780          * vm_fault_copy_entry() in the final loop below.
2781          */
2782         if (in_tran != NULL) {
2783                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2784                 vm_map_unlock_and_wait(map, 0);
2785                 goto again;
2786         }
2787
2788         /*
2789          * Before changing the protections, try to reserve swap space for any
2790          * private (i.e., copy-on-write) mappings that are transitioning from
2791          * read-only to read/write access.  If a reservation fails, break out
2792          * of this loop early and let the next loop simplify the entries, since
2793          * some may now be mergeable.
2794          */
2795         rv = vm_map_clip_start(map, first_entry, start);
2796         if (rv != KERN_SUCCESS) {
2797                 vm_map_unlock(map);
2798                 return (rv);
2799         }
2800         for (entry = first_entry; entry->start < end;
2801             entry = vm_map_entry_succ(entry)) {
2802                 rv = vm_map_clip_end(map, entry, end);
2803                 if (rv != KERN_SUCCESS) {
2804                         vm_map_unlock(map);
2805                         return (rv);
2806                 }
2807
2808                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2809                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2810                     ENTRY_CHARGED(entry) ||
2811                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2812                         continue;
2813
2814                 cred = curthread->td_ucred;
2815                 obj = entry->object.vm_object;
2816
2817                 if (obj == NULL ||
2818                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2819                         if (!swap_reserve(entry->end - entry->start)) {
2820                                 rv = KERN_RESOURCE_SHORTAGE;
2821                                 end = entry->end;
2822                                 break;
2823                         }
2824                         crhold(cred);
2825                         entry->cred = cred;
2826                         continue;
2827                 }
2828
2829                 VM_OBJECT_WLOCK(obj);
2830                 if ((obj->flags & OBJ_SWAP) == 0) {
2831                         VM_OBJECT_WUNLOCK(obj);
2832                         continue;
2833                 }
2834
2835                 /*
2836                  * Charge for the whole object allocation now, since
2837                  * we cannot distinguish between non-charged and
2838                  * charged clipped mapping of the same object later.
2839                  */
2840                 KASSERT(obj->charge == 0,
2841                     ("vm_map_protect: object %p overcharged (entry %p)",
2842                     obj, entry));
2843                 if (!swap_reserve(ptoa(obj->size))) {
2844                         VM_OBJECT_WUNLOCK(obj);
2845                         rv = KERN_RESOURCE_SHORTAGE;
2846                         end = entry->end;
2847                         break;
2848                 }
2849
2850                 crhold(cred);
2851                 obj->cred = cred;
2852                 obj->charge = ptoa(obj->size);
2853                 VM_OBJECT_WUNLOCK(obj);
2854         }
2855
2856         /*
2857          * If enough swap space was available, go back and fix up protections.
2858          * Otherwise, just simplify entries, since some may have been modified.
2859          * [Note that clipping is not necessary the second time.]
2860          */
2861         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2862             entry->start < end;
2863             vm_map_try_merge_entries(map, prev_entry, entry),
2864             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2865                 if (rv != KERN_SUCCESS ||
2866                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2867                         continue;
2868
2869                 old_prot = entry->protection;
2870
2871                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2872                         entry->max_protection = new_maxprot;
2873                         entry->protection = new_maxprot & old_prot;
2874                 }
2875                 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2876                         entry->protection = new_prot;
2877
2878                 /*
2879                  * For user wired map entries, the normal lazy evaluation of
2880                  * write access upgrades through soft page faults is
2881                  * undesirable.  Instead, immediately copy any pages that are
2882                  * copy-on-write and enable write access in the physical map.
2883                  */
2884                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2885                     (entry->protection & VM_PROT_WRITE) != 0 &&
2886                     (old_prot & VM_PROT_WRITE) == 0)
2887                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2888
2889                 /*
2890                  * When restricting access, update the physical map.  Worry
2891                  * about copy-on-write here.
2892                  */
2893                 if ((old_prot & ~entry->protection) != 0) {
2894 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2895                                                         VM_PROT_ALL)
2896                         pmap_protect(map->pmap, entry->start,
2897                             entry->end,
2898                             entry->protection & MASK(entry));
2899 #undef  MASK
2900                 }
2901         }
2902         vm_map_try_merge_entries(map, prev_entry, entry);
2903         vm_map_unlock(map);
2904         return (rv);
2905 }
2906
2907 /*
2908  *      vm_map_madvise:
2909  *
2910  *      This routine traverses a processes map handling the madvise
2911  *      system call.  Advisories are classified as either those effecting
2912  *      the vm_map_entry structure, or those effecting the underlying
2913  *      objects.
2914  */
2915 int
2916 vm_map_madvise(
2917         vm_map_t map,
2918         vm_offset_t start,
2919         vm_offset_t end,
2920         int behav)
2921 {
2922         vm_map_entry_t entry, prev_entry;
2923         int rv;
2924         bool modify_map;
2925
2926         /*
2927          * Some madvise calls directly modify the vm_map_entry, in which case
2928          * we need to use an exclusive lock on the map and we need to perform
2929          * various clipping operations.  Otherwise we only need a read-lock
2930          * on the map.
2931          */
2932         switch(behav) {
2933         case MADV_NORMAL:
2934         case MADV_SEQUENTIAL:
2935         case MADV_RANDOM:
2936         case MADV_NOSYNC:
2937         case MADV_AUTOSYNC:
2938         case MADV_NOCORE:
2939         case MADV_CORE:
2940                 if (start == end)
2941                         return (0);
2942                 modify_map = true;
2943                 vm_map_lock(map);
2944                 break;
2945         case MADV_WILLNEED:
2946         case MADV_DONTNEED:
2947         case MADV_FREE:
2948                 if (start == end)
2949                         return (0);
2950                 modify_map = false;
2951                 vm_map_lock_read(map);
2952                 break;
2953         default:
2954                 return (EINVAL);
2955         }
2956
2957         /*
2958          * Locate starting entry and clip if necessary.
2959          */
2960         VM_MAP_RANGE_CHECK(map, start, end);
2961
2962         if (modify_map) {
2963                 /*
2964                  * madvise behaviors that are implemented in the vm_map_entry.
2965                  *
2966                  * We clip the vm_map_entry so that behavioral changes are
2967                  * limited to the specified address range.
2968                  */
2969                 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2970                 if (rv != KERN_SUCCESS) {
2971                         vm_map_unlock(map);
2972                         return (vm_mmap_to_errno(rv));
2973                 }
2974
2975                 for (; entry->start < end; prev_entry = entry,
2976                     entry = vm_map_entry_succ(entry)) {
2977                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2978                                 continue;
2979
2980                         rv = vm_map_clip_end(map, entry, end);
2981                         if (rv != KERN_SUCCESS) {
2982                                 vm_map_unlock(map);
2983                                 return (vm_mmap_to_errno(rv));
2984                         }
2985
2986                         switch (behav) {
2987                         case MADV_NORMAL:
2988                                 vm_map_entry_set_behavior(entry,
2989                                     MAP_ENTRY_BEHAV_NORMAL);
2990                                 break;
2991                         case MADV_SEQUENTIAL:
2992                                 vm_map_entry_set_behavior(entry,
2993                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2994                                 break;
2995                         case MADV_RANDOM:
2996                                 vm_map_entry_set_behavior(entry,
2997                                     MAP_ENTRY_BEHAV_RANDOM);
2998                                 break;
2999                         case MADV_NOSYNC:
3000                                 entry->eflags |= MAP_ENTRY_NOSYNC;
3001                                 break;
3002                         case MADV_AUTOSYNC:
3003                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3004                                 break;
3005                         case MADV_NOCORE:
3006                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3007                                 break;
3008                         case MADV_CORE:
3009                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3010                                 break;
3011                         default:
3012                                 break;
3013                         }
3014                         vm_map_try_merge_entries(map, prev_entry, entry);
3015                 }
3016                 vm_map_try_merge_entries(map, prev_entry, entry);
3017                 vm_map_unlock(map);
3018         } else {
3019                 vm_pindex_t pstart, pend;
3020
3021                 /*
3022                  * madvise behaviors that are implemented in the underlying
3023                  * vm_object.
3024                  *
3025                  * Since we don't clip the vm_map_entry, we have to clip
3026                  * the vm_object pindex and count.
3027                  */
3028                 if (!vm_map_lookup_entry(map, start, &entry))
3029                         entry = vm_map_entry_succ(entry);
3030                 for (; entry->start < end;
3031                     entry = vm_map_entry_succ(entry)) {
3032                         vm_offset_t useEnd, useStart;
3033
3034                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3035                                 continue;
3036
3037                         /*
3038                          * MADV_FREE would otherwise rewind time to
3039                          * the creation of the shadow object.  Because
3040                          * we hold the VM map read-locked, neither the
3041                          * entry's object nor the presence of a
3042                          * backing object can change.
3043                          */
3044                         if (behav == MADV_FREE &&
3045                             entry->object.vm_object != NULL &&
3046                             entry->object.vm_object->backing_object != NULL)
3047                                 continue;
3048
3049                         pstart = OFF_TO_IDX(entry->offset);
3050                         pend = pstart + atop(entry->end - entry->start);
3051                         useStart = entry->start;
3052                         useEnd = entry->end;
3053
3054                         if (entry->start < start) {
3055                                 pstart += atop(start - entry->start);
3056                                 useStart = start;
3057                         }
3058                         if (entry->end > end) {
3059                                 pend -= atop(entry->end - end);
3060                                 useEnd = end;
3061                         }
3062
3063                         if (pstart >= pend)
3064                                 continue;
3065
3066                         /*
3067                          * Perform the pmap_advise() before clearing
3068                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3069                          * concurrent pmap operation, such as pmap_remove(),
3070                          * could clear a reference in the pmap and set
3071                          * PGA_REFERENCED on the page before the pmap_advise()
3072                          * had completed.  Consequently, the page would appear
3073                          * referenced based upon an old reference that
3074                          * occurred before this pmap_advise() ran.
3075                          */
3076                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
3077                                 pmap_advise(map->pmap, useStart, useEnd,
3078                                     behav);
3079
3080                         vm_object_madvise(entry->object.vm_object, pstart,
3081                             pend, behav);
3082
3083                         /*
3084                          * Pre-populate paging structures in the
3085                          * WILLNEED case.  For wired entries, the
3086                          * paging structures are already populated.
3087                          */
3088                         if (behav == MADV_WILLNEED &&
3089                             entry->wired_count == 0) {
3090                                 vm_map_pmap_enter(map,
3091                                     useStart,
3092                                     entry->protection,
3093                                     entry->object.vm_object,
3094                                     pstart,
3095                                     ptoa(pend - pstart),
3096                                     MAP_PREFAULT_MADVISE
3097                                 );
3098                         }
3099                 }
3100                 vm_map_unlock_read(map);
3101         }
3102         return (0);
3103 }
3104
3105 /*
3106  *      vm_map_inherit:
3107  *
3108  *      Sets the inheritance of the specified address
3109  *      range in the target map.  Inheritance
3110  *      affects how the map will be shared with
3111  *      child maps at the time of vmspace_fork.
3112  */
3113 int
3114 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3115                vm_inherit_t new_inheritance)
3116 {
3117         vm_map_entry_t entry, lentry, prev_entry, start_entry;
3118         int rv;
3119
3120         switch (new_inheritance) {
3121         case VM_INHERIT_NONE:
3122         case VM_INHERIT_COPY:
3123         case VM_INHERIT_SHARE:
3124         case VM_INHERIT_ZERO:
3125                 break;
3126         default:
3127                 return (KERN_INVALID_ARGUMENT);
3128         }
3129         if (start == end)
3130                 return (KERN_SUCCESS);
3131         vm_map_lock(map);
3132         VM_MAP_RANGE_CHECK(map, start, end);
3133         rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3134         if (rv != KERN_SUCCESS)
3135                 goto unlock;
3136         if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3137                 rv = vm_map_clip_end(map, lentry, end);
3138                 if (rv != KERN_SUCCESS)
3139                         goto unlock;
3140         }
3141         if (new_inheritance == VM_INHERIT_COPY) {
3142                 for (entry = start_entry; entry->start < end;
3143                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3144                         if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3145                             != 0) {
3146                                 rv = KERN_INVALID_ARGUMENT;
3147                                 goto unlock;
3148                         }
3149                 }
3150         }
3151         for (entry = start_entry; entry->start < end; prev_entry = entry,
3152             entry = vm_map_entry_succ(entry)) {
3153                 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3154                     entry, (uintmax_t)entry->end, (uintmax_t)end));
3155                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3156                     new_inheritance != VM_INHERIT_ZERO)
3157                         entry->inheritance = new_inheritance;
3158                 vm_map_try_merge_entries(map, prev_entry, entry);
3159         }
3160         vm_map_try_merge_entries(map, prev_entry, entry);
3161 unlock:
3162         vm_map_unlock(map);
3163         return (rv);
3164 }
3165
3166 /*
3167  *      vm_map_entry_in_transition:
3168  *
3169  *      Release the map lock, and sleep until the entry is no longer in
3170  *      transition.  Awake and acquire the map lock.  If the map changed while
3171  *      another held the lock, lookup a possibly-changed entry at or after the
3172  *      'start' position of the old entry.
3173  */
3174 static vm_map_entry_t
3175 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3176     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3177 {
3178         vm_map_entry_t entry;
3179         vm_offset_t start;
3180         u_int last_timestamp;
3181
3182         VM_MAP_ASSERT_LOCKED(map);
3183         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3184             ("not in-tranition map entry %p", in_entry));
3185         /*
3186          * We have not yet clipped the entry.
3187          */
3188         start = MAX(in_start, in_entry->start);
3189         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3190         last_timestamp = map->timestamp;
3191         if (vm_map_unlock_and_wait(map, 0)) {
3192                 /*
3193                  * Allow interruption of user wiring/unwiring?
3194                  */
3195         }
3196         vm_map_lock(map);
3197         if (last_timestamp + 1 == map->timestamp)
3198                 return (in_entry);
3199
3200         /*
3201          * Look again for the entry because the map was modified while it was
3202          * unlocked.  Specifically, the entry may have been clipped, merged, or
3203          * deleted.
3204          */
3205         if (!vm_map_lookup_entry(map, start, &entry)) {
3206                 if (!holes_ok) {
3207                         *io_end = start;
3208                         return (NULL);
3209                 }
3210                 entry = vm_map_entry_succ(entry);
3211         }
3212         return (entry);
3213 }
3214
3215 /*
3216  *      vm_map_unwire:
3217  *
3218  *      Implements both kernel and user unwiring.
3219  */
3220 int
3221 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3222     int flags)
3223 {
3224         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3225         int rv;
3226         bool holes_ok, need_wakeup, user_unwire;
3227
3228         if (start == end)
3229                 return (KERN_SUCCESS);
3230         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3231         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3232         vm_map_lock(map);
3233         VM_MAP_RANGE_CHECK(map, start, end);
3234         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3235                 if (holes_ok)
3236                         first_entry = vm_map_entry_succ(first_entry);
3237                 else {
3238                         vm_map_unlock(map);
3239                         return (KERN_INVALID_ADDRESS);
3240                 }
3241         }
3242         rv = KERN_SUCCESS;
3243         for (entry = first_entry; entry->start < end; entry = next_entry) {
3244                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3245                         /*
3246                          * We have not yet clipped the entry.
3247                          */
3248                         next_entry = vm_map_entry_in_transition(map, start,
3249                             &end, holes_ok, entry);
3250                         if (next_entry == NULL) {
3251                                 if (entry == first_entry) {
3252                                         vm_map_unlock(map);
3253                                         return (KERN_INVALID_ADDRESS);
3254                                 }
3255                                 rv = KERN_INVALID_ADDRESS;
3256                                 break;
3257                         }
3258                         first_entry = (entry == first_entry) ?
3259                             next_entry : NULL;
3260                         continue;
3261                 }
3262                 rv = vm_map_clip_start(map, entry, start);
3263                 if (rv != KERN_SUCCESS)
3264                         break;
3265                 rv = vm_map_clip_end(map, entry, end);
3266                 if (rv != KERN_SUCCESS)
3267                         break;
3268
3269                 /*
3270                  * Mark the entry in case the map lock is released.  (See
3271                  * above.)
3272                  */
3273                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3274                     entry->wiring_thread == NULL,
3275                     ("owned map entry %p", entry));
3276                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3277                 entry->wiring_thread = curthread;
3278                 next_entry = vm_map_entry_succ(entry);
3279                 /*
3280                  * Check the map for holes in the specified region.
3281                  * If holes_ok, skip this check.
3282                  */
3283                 if (!holes_ok &&
3284                     entry->end < end && next_entry->start > entry->end) {
3285                         end = entry->end;
3286                         rv = KERN_INVALID_ADDRESS;
3287                         break;
3288                 }
3289                 /*
3290                  * If system unwiring, require that the entry is system wired.
3291                  */
3292                 if (!user_unwire &&
3293                     vm_map_entry_system_wired_count(entry) == 0) {
3294                         end = entry->end;
3295                         rv = KERN_INVALID_ARGUMENT;
3296                         break;
3297                 }
3298         }
3299         need_wakeup = false;
3300         if (first_entry == NULL &&
3301             !vm_map_lookup_entry(map, start, &first_entry)) {
3302                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3303                 prev_entry = first_entry;
3304                 entry = vm_map_entry_succ(first_entry);
3305         } else {
3306                 prev_entry = vm_map_entry_pred(first_entry);
3307                 entry = first_entry;
3308         }
3309         for (; entry->start < end;
3310             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3311                 /*
3312                  * If holes_ok was specified, an empty
3313                  * space in the unwired region could have been mapped
3314                  * while the map lock was dropped for draining
3315                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3316                  * could be simultaneously wiring this new mapping
3317                  * entry.  Detect these cases and skip any entries
3318                  * marked as in transition by us.
3319                  */
3320                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3321                     entry->wiring_thread != curthread) {
3322                         KASSERT(holes_ok,
3323                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3324                         continue;
3325                 }
3326
3327                 if (rv == KERN_SUCCESS && (!user_unwire ||
3328                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3329                         if (entry->wired_count == 1)
3330                                 vm_map_entry_unwire(map, entry);
3331                         else
3332                                 entry->wired_count--;
3333                         if (user_unwire)
3334                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3335                 }
3336                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3337                     ("vm_map_unwire: in-transition flag missing %p", entry));
3338                 KASSERT(entry->wiring_thread == curthread,
3339                     ("vm_map_unwire: alien wire %p", entry));
3340                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3341                 entry->wiring_thread = NULL;
3342                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3343                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3344                         need_wakeup = true;
3345                 }
3346                 vm_map_try_merge_entries(map, prev_entry, entry);
3347         }
3348         vm_map_try_merge_entries(map, prev_entry, entry);
3349         vm_map_unlock(map);
3350         if (need_wakeup)
3351                 vm_map_wakeup(map);
3352         return (rv);
3353 }
3354
3355 static void
3356 vm_map_wire_user_count_sub(u_long npages)
3357 {
3358
3359         atomic_subtract_long(&vm_user_wire_count, npages);
3360 }
3361
3362 static bool
3363 vm_map_wire_user_count_add(u_long npages)
3364 {
3365         u_long wired;
3366
3367         wired = vm_user_wire_count;
3368         do {
3369                 if (npages + wired > vm_page_max_user_wired)
3370                         return (false);
3371         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3372             npages + wired));
3373
3374         return (true);
3375 }
3376
3377 /*
3378  *      vm_map_wire_entry_failure:
3379  *
3380  *      Handle a wiring failure on the given entry.
3381  *
3382  *      The map should be locked.
3383  */
3384 static void
3385 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3386     vm_offset_t failed_addr)
3387 {
3388
3389         VM_MAP_ASSERT_LOCKED(map);
3390         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3391             entry->wired_count == 1,
3392             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3393         KASSERT(failed_addr < entry->end,
3394             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3395
3396         /*
3397          * If any pages at the start of this entry were successfully wired,
3398          * then unwire them.
3399          */
3400         if (failed_addr > entry->start) {
3401                 pmap_unwire(map->pmap, entry->start, failed_addr);
3402                 vm_object_unwire(entry->object.vm_object, entry->offset,
3403                     failed_addr - entry->start, PQ_ACTIVE);
3404         }
3405
3406         /*
3407          * Assign an out-of-range value to represent the failure to wire this
3408          * entry.
3409          */
3410         entry->wired_count = -1;
3411 }
3412
3413 int
3414 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3415 {
3416         int rv;
3417
3418         vm_map_lock(map);
3419         rv = vm_map_wire_locked(map, start, end, flags);
3420         vm_map_unlock(map);
3421         return (rv);
3422 }
3423
3424 /*
3425  *      vm_map_wire_locked:
3426  *
3427  *      Implements both kernel and user wiring.  Returns with the map locked,
3428  *      the map lock may be dropped.
3429  */
3430 int
3431 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3432 {
3433         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3434         vm_offset_t faddr, saved_end, saved_start;
3435         u_long incr, npages;
3436         u_int bidx, last_timestamp;
3437         int rv;
3438         bool holes_ok, need_wakeup, user_wire;
3439         vm_prot_t prot;
3440
3441         VM_MAP_ASSERT_LOCKED(map);
3442
3443         if (start == end)
3444                 return (KERN_SUCCESS);
3445         prot = 0;
3446         if (flags & VM_MAP_WIRE_WRITE)
3447                 prot |= VM_PROT_WRITE;
3448         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3449         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3450         VM_MAP_RANGE_CHECK(map, start, end);
3451         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3452                 if (holes_ok)
3453                         first_entry = vm_map_entry_succ(first_entry);
3454                 else
3455                         return (KERN_INVALID_ADDRESS);
3456         }
3457         for (entry = first_entry; entry->start < end; entry = next_entry) {
3458                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3459                         /*
3460                          * We have not yet clipped the entry.
3461                          */
3462                         next_entry = vm_map_entry_in_transition(map, start,
3463                             &end, holes_ok, entry);
3464                         if (next_entry == NULL) {
3465                                 if (entry == first_entry)
3466                                         return (KERN_INVALID_ADDRESS);
3467                                 rv = KERN_INVALID_ADDRESS;
3468                                 goto done;
3469                         }
3470                         first_entry = (entry == first_entry) ?
3471                             next_entry : NULL;
3472                         continue;
3473                 }
3474                 rv = vm_map_clip_start(map, entry, start);
3475                 if (rv != KERN_SUCCESS)
3476                         goto done;
3477                 rv = vm_map_clip_end(map, entry, end);
3478                 if (rv != KERN_SUCCESS)
3479                         goto done;
3480
3481                 /*
3482                  * Mark the entry in case the map lock is released.  (See
3483                  * above.)
3484                  */
3485                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3486                     entry->wiring_thread == NULL,
3487                     ("owned map entry %p", entry));
3488                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3489                 entry->wiring_thread = curthread;
3490                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3491                     || (entry->protection & prot) != prot) {
3492                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3493                         if (!holes_ok) {
3494                                 end = entry->end;
3495                                 rv = KERN_INVALID_ADDRESS;
3496                                 goto done;
3497                         }
3498                 } else if (entry->wired_count == 0) {
3499                         entry->wired_count++;
3500
3501                         npages = atop(entry->end - entry->start);
3502                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3503                                 vm_map_wire_entry_failure(map, entry,
3504                                     entry->start);
3505                                 end = entry->end;
3506                                 rv = KERN_RESOURCE_SHORTAGE;
3507                                 goto done;
3508                         }
3509
3510                         /*
3511                          * Release the map lock, relying on the in-transition
3512                          * mark.  Mark the map busy for fork.
3513                          */
3514                         saved_start = entry->start;
3515                         saved_end = entry->end;
3516                         last_timestamp = map->timestamp;
3517                         bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3518                         incr =  pagesizes[bidx];
3519                         vm_map_busy(map);
3520                         vm_map_unlock(map);
3521
3522                         for (faddr = saved_start; faddr < saved_end;
3523                             faddr += incr) {
3524                                 /*
3525                                  * Simulate a fault to get the page and enter
3526                                  * it into the physical map.
3527                                  */
3528                                 rv = vm_fault(map, faddr, VM_PROT_NONE,
3529                                     VM_FAULT_WIRE, NULL);
3530                                 if (rv != KERN_SUCCESS)
3531                                         break;
3532                         }
3533                         vm_map_lock(map);
3534                         vm_map_unbusy(map);
3535                         if (last_timestamp + 1 != map->timestamp) {
3536                                 /*
3537                                  * Look again for the entry because the map was
3538                                  * modified while it was unlocked.  The entry
3539                                  * may have been clipped, but NOT merged or
3540                                  * deleted.
3541                                  */
3542                                 if (!vm_map_lookup_entry(map, saved_start,
3543                                     &next_entry))
3544                                         KASSERT(false,
3545                                             ("vm_map_wire: lookup failed"));
3546                                 first_entry = (entry == first_entry) ?
3547                                     next_entry : NULL;
3548                                 for (entry = next_entry; entry->end < saved_end;
3549                                     entry = vm_map_entry_succ(entry)) {
3550                                         /*
3551                                          * In case of failure, handle entries
3552                                          * that were not fully wired here;
3553                                          * fully wired entries are handled
3554                                          * later.
3555                                          */
3556                                         if (rv != KERN_SUCCESS &&
3557                                             faddr < entry->end)
3558                                                 vm_map_wire_entry_failure(map,
3559                                                     entry, faddr);
3560                                 }
3561                         }
3562                         if (rv != KERN_SUCCESS) {
3563                                 vm_map_wire_entry_failure(map, entry, faddr);
3564                                 if (user_wire)
3565                                         vm_map_wire_user_count_sub(npages);
3566                                 end = entry->end;
3567                                 goto done;
3568                         }
3569                 } else if (!user_wire ||
3570                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3571                         entry->wired_count++;
3572                 }
3573                 /*
3574                  * Check the map for holes in the specified region.
3575                  * If holes_ok was specified, skip this check.
3576                  */
3577                 next_entry = vm_map_entry_succ(entry);
3578                 if (!holes_ok &&
3579                     entry->end < end && next_entry->start > entry->end) {
3580                         end = entry->end;
3581                         rv = KERN_INVALID_ADDRESS;
3582                         goto done;
3583                 }
3584         }
3585         rv = KERN_SUCCESS;
3586 done:
3587         need_wakeup = false;
3588         if (first_entry == NULL &&
3589             !vm_map_lookup_entry(map, start, &first_entry)) {
3590                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3591                 prev_entry = first_entry;
3592                 entry = vm_map_entry_succ(first_entry);
3593         } else {
3594                 prev_entry = vm_map_entry_pred(first_entry);
3595                 entry = first_entry;
3596         }
3597         for (; entry->start < end;
3598             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3599                 /*
3600                  * If holes_ok was specified, an empty
3601                  * space in the unwired region could have been mapped
3602                  * while the map lock was dropped for faulting in the
3603                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3604                  * Moreover, another thread could be simultaneously
3605                  * wiring this new mapping entry.  Detect these cases
3606                  * and skip any entries marked as in transition not by us.
3607                  *
3608                  * Another way to get an entry not marked with
3609                  * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3610                  * which set rv to KERN_INVALID_ARGUMENT.
3611                  */
3612                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3613                     entry->wiring_thread != curthread) {
3614                         KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3615                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3616                         continue;
3617                 }
3618
3619                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3620                         /* do nothing */
3621                 } else if (rv == KERN_SUCCESS) {
3622                         if (user_wire)
3623                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3624                 } else if (entry->wired_count == -1) {
3625                         /*
3626                          * Wiring failed on this entry.  Thus, unwiring is
3627                          * unnecessary.
3628                          */
3629                         entry->wired_count = 0;
3630                 } else if (!user_wire ||
3631                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3632                         /*
3633                          * Undo the wiring.  Wiring succeeded on this entry
3634                          * but failed on a later entry.  
3635                          */
3636                         if (entry->wired_count == 1) {
3637                                 vm_map_entry_unwire(map, entry);
3638                                 if (user_wire)
3639                                         vm_map_wire_user_count_sub(
3640                                             atop(entry->end - entry->start));
3641                         } else
3642                                 entry->wired_count--;
3643                 }
3644                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3645                     ("vm_map_wire: in-transition flag missing %p", entry));
3646                 KASSERT(entry->wiring_thread == curthread,
3647                     ("vm_map_wire: alien wire %p", entry));
3648                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3649                     MAP_ENTRY_WIRE_SKIPPED);
3650                 entry->wiring_thread = NULL;
3651                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3652                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3653                         need_wakeup = true;
3654                 }
3655                 vm_map_try_merge_entries(map, prev_entry, entry);
3656         }
3657         vm_map_try_merge_entries(map, prev_entry, entry);
3658         if (need_wakeup)
3659                 vm_map_wakeup(map);
3660         return (rv);
3661 }
3662
3663 /*
3664  * vm_map_sync
3665  *
3666  * Push any dirty cached pages in the address range to their pager.
3667  * If syncio is TRUE, dirty pages are written synchronously.
3668  * If invalidate is TRUE, any cached pages are freed as well.
3669  *
3670  * If the size of the region from start to end is zero, we are
3671  * supposed to flush all modified pages within the region containing
3672  * start.  Unfortunately, a region can be split or coalesced with
3673  * neighboring regions, making it difficult to determine what the
3674  * original region was.  Therefore, we approximate this requirement by
3675  * flushing the current region containing start.
3676  *
3677  * Returns an error if any part of the specified range is not mapped.
3678  */
3679 int
3680 vm_map_sync(
3681         vm_map_t map,
3682         vm_offset_t start,
3683         vm_offset_t end,
3684         boolean_t syncio,
3685         boolean_t invalidate)
3686 {
3687         vm_map_entry_t entry, first_entry, next_entry;
3688         vm_size_t size;
3689         vm_object_t object;
3690         vm_ooffset_t offset;
3691         unsigned int last_timestamp;
3692         int bdry_idx;
3693         boolean_t failed;
3694
3695         vm_map_lock_read(map);
3696         VM_MAP_RANGE_CHECK(map, start, end);
3697         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3698                 vm_map_unlock_read(map);
3699                 return (KERN_INVALID_ADDRESS);
3700         } else if (start == end) {
3701                 start = first_entry->start;
3702                 end = first_entry->end;
3703         }
3704
3705         /*
3706          * Make a first pass to check for user-wired memory, holes,
3707          * and partial invalidation of largepage mappings.
3708          */
3709         for (entry = first_entry; entry->start < end; entry = next_entry) {
3710                 if (invalidate) {
3711                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3712                                 vm_map_unlock_read(map);
3713                                 return (KERN_INVALID_ARGUMENT);
3714                         }
3715                         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3716                         if (bdry_idx != 0 &&
3717                             ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3718                             (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3719                                 vm_map_unlock_read(map);
3720                                 return (KERN_INVALID_ARGUMENT);
3721                         }
3722                 }
3723                 next_entry = vm_map_entry_succ(entry);
3724                 if (end > entry->end &&
3725                     entry->end != next_entry->start) {
3726                         vm_map_unlock_read(map);
3727                         return (KERN_INVALID_ADDRESS);
3728                 }
3729         }
3730
3731         if (invalidate)
3732                 pmap_remove(map->pmap, start, end);
3733         failed = FALSE;
3734
3735         /*
3736          * Make a second pass, cleaning/uncaching pages from the indicated
3737          * objects as we go.
3738          */
3739         for (entry = first_entry; entry->start < end;) {
3740                 offset = entry->offset + (start - entry->start);
3741                 size = (end <= entry->end ? end : entry->end) - start;
3742                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3743                         vm_map_t smap;
3744                         vm_map_entry_t tentry;
3745                         vm_size_t tsize;
3746
3747                         smap = entry->object.sub_map;
3748                         vm_map_lock_read(smap);
3749                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3750                         tsize = tentry->end - offset;
3751                         if (tsize < size)
3752                                 size = tsize;
3753                         object = tentry->object.vm_object;
3754                         offset = tentry->offset + (offset - tentry->start);
3755                         vm_map_unlock_read(smap);
3756                 } else {
3757                         object = entry->object.vm_object;
3758                 }
3759                 vm_object_reference(object);
3760                 last_timestamp = map->timestamp;
3761                 vm_map_unlock_read(map);
3762                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3763                         failed = TRUE;
3764                 start += size;
3765                 vm_object_deallocate(object);
3766                 vm_map_lock_read(map);
3767                 if (last_timestamp == map->timestamp ||
3768                     !vm_map_lookup_entry(map, start, &entry))
3769                         entry = vm_map_entry_succ(entry);
3770         }
3771
3772         vm_map_unlock_read(map);
3773         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3774 }
3775
3776 /*
3777  *      vm_map_entry_unwire:    [ internal use only ]
3778  *
3779  *      Make the region specified by this entry pageable.
3780  *
3781  *      The map in question should be locked.
3782  *      [This is the reason for this routine's existence.]
3783  */
3784 static void
3785 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3786 {
3787         vm_size_t size;
3788
3789         VM_MAP_ASSERT_LOCKED(map);
3790         KASSERT(entry->wired_count > 0,
3791             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3792
3793         size = entry->end - entry->start;
3794         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3795                 vm_map_wire_user_count_sub(atop(size));
3796         pmap_unwire(map->pmap, entry->start, entry->end);
3797         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3798             PQ_ACTIVE);
3799         entry->wired_count = 0;
3800 }
3801
3802 static void
3803 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3804 {
3805
3806         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3807                 vm_object_deallocate(entry->object.vm_object);
3808         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3809 }
3810
3811 /*
3812  *      vm_map_entry_delete:    [ internal use only ]
3813  *
3814  *      Deallocate the given entry from the target map.
3815  */
3816 static void
3817 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3818 {
3819         vm_object_t object;
3820         vm_pindex_t offidxstart, offidxend, size1;
3821         vm_size_t size;
3822
3823         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3824         object = entry->object.vm_object;
3825
3826         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3827                 MPASS(entry->cred == NULL);
3828                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3829                 MPASS(object == NULL);
3830                 vm_map_entry_deallocate(entry, map->system_map);
3831                 return;
3832         }
3833
3834         size = entry->end - entry->start;
3835         map->size -= size;
3836
3837         if (entry->cred != NULL) {
3838                 swap_release_by_cred(size, entry->cred);
3839                 crfree(entry->cred);
3840         }
3841
3842         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3843                 entry->object.vm_object = NULL;
3844         } else if ((object->flags & OBJ_ANON) != 0 ||
3845             object == kernel_object) {
3846                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3847                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3848                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3849                 offidxstart = OFF_TO_IDX(entry->offset);
3850                 offidxend = offidxstart + atop(size);
3851                 VM_OBJECT_WLOCK(object);
3852                 if (object->ref_count != 1 &&
3853                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3854                     object == kernel_object)) {
3855                         vm_object_collapse(object);
3856
3857                         /*
3858                          * The option OBJPR_NOTMAPPED can be passed here
3859                          * because vm_map_delete() already performed
3860                          * pmap_remove() on the only mapping to this range
3861                          * of pages. 
3862                          */
3863                         vm_object_page_remove(object, offidxstart, offidxend,
3864                             OBJPR_NOTMAPPED);
3865                         if (offidxend >= object->size &&
3866                             offidxstart < object->size) {
3867                                 size1 = object->size;
3868                                 object->size = offidxstart;
3869                                 if (object->cred != NULL) {
3870                                         size1 -= object->size;
3871                                         KASSERT(object->charge >= ptoa(size1),
3872                                             ("object %p charge < 0", object));
3873                                         swap_release_by_cred(ptoa(size1),
3874                                             object->cred);
3875                                         object->charge -= ptoa(size1);
3876                                 }
3877                         }
3878                 }
3879                 VM_OBJECT_WUNLOCK(object);
3880         }
3881         if (map->system_map)
3882                 vm_map_entry_deallocate(entry, TRUE);
3883         else {
3884                 entry->defer_next = curthread->td_map_def_user;
3885                 curthread->td_map_def_user = entry;
3886         }
3887 }
3888
3889 /*
3890  *      vm_map_delete:  [ internal use only ]
3891  *
3892  *      Deallocates the given address range from the target
3893  *      map.
3894  */
3895 int
3896 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3897 {
3898         vm_map_entry_t entry, next_entry, scratch_entry;
3899         int rv;
3900
3901         VM_MAP_ASSERT_LOCKED(map);
3902
3903         if (start == end)
3904                 return (KERN_SUCCESS);
3905
3906         /*
3907          * Find the start of the region, and clip it.
3908          * Step through all entries in this region.
3909          */
3910         rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3911         if (rv != KERN_SUCCESS)
3912                 return (rv);
3913         for (; entry->start < end; entry = next_entry) {
3914                 /*
3915                  * Wait for wiring or unwiring of an entry to complete.
3916                  * Also wait for any system wirings to disappear on
3917                  * user maps.
3918                  */
3919                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3920                     (vm_map_pmap(map) != kernel_pmap &&
3921                     vm_map_entry_system_wired_count(entry) != 0)) {
3922                         unsigned int last_timestamp;
3923                         vm_offset_t saved_start;
3924
3925                         saved_start = entry->start;
3926                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3927                         last_timestamp = map->timestamp;
3928                         (void) vm_map_unlock_and_wait(map, 0);
3929                         vm_map_lock(map);
3930                         if (last_timestamp + 1 != map->timestamp) {
3931                                 /*
3932                                  * Look again for the entry because the map was
3933                                  * modified while it was unlocked.
3934                                  * Specifically, the entry may have been
3935                                  * clipped, merged, or deleted.
3936                                  */
3937                                 rv = vm_map_lookup_clip_start(map, saved_start,
3938                                     &next_entry, &scratch_entry);
3939                                 if (rv != KERN_SUCCESS)
3940                                         break;
3941                         } else
3942                                 next_entry = entry;
3943                         continue;
3944                 }
3945
3946                 /* XXXKIB or delete to the upper superpage boundary ? */
3947                 rv = vm_map_clip_end(map, entry, end);
3948                 if (rv != KERN_SUCCESS)
3949                         break;
3950                 next_entry = vm_map_entry_succ(entry);
3951
3952                 /*
3953                  * Unwire before removing addresses from the pmap; otherwise,
3954                  * unwiring will put the entries back in the pmap.
3955                  */
3956                 if (entry->wired_count != 0)
3957                         vm_map_entry_unwire(map, entry);
3958
3959                 /*
3960                  * Remove mappings for the pages, but only if the
3961                  * mappings could exist.  For instance, it does not
3962                  * make sense to call pmap_remove() for guard entries.
3963                  */
3964                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3965                     entry->object.vm_object != NULL)
3966                         pmap_map_delete(map->pmap, entry->start, entry->end);
3967
3968                 if (entry->end == map->anon_loc)
3969                         map->anon_loc = entry->start;
3970
3971                 /*
3972                  * Delete the entry only after removing all pmap
3973                  * entries pointing to its pages.  (Otherwise, its
3974                  * page frames may be reallocated, and any modify bits
3975                  * will be set in the wrong object!)
3976                  */
3977                 vm_map_entry_delete(map, entry);
3978         }
3979         return (rv);
3980 }
3981
3982 /*
3983  *      vm_map_remove:
3984  *
3985  *      Remove the given address range from the target map.
3986  *      This is the exported form of vm_map_delete.
3987  */
3988 int
3989 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3990 {
3991         int result;
3992
3993         vm_map_lock(map);
3994         VM_MAP_RANGE_CHECK(map, start, end);
3995         result = vm_map_delete(map, start, end);
3996         vm_map_unlock(map);
3997         return (result);
3998 }
3999
4000 /*
4001  *      vm_map_check_protection:
4002  *
4003  *      Assert that the target map allows the specified privilege on the
4004  *      entire address region given.  The entire region must be allocated.
4005  *
4006  *      WARNING!  This code does not and should not check whether the
4007  *      contents of the region is accessible.  For example a smaller file
4008  *      might be mapped into a larger address space.
4009  *
4010  *      NOTE!  This code is also called by munmap().
4011  *
4012  *      The map must be locked.  A read lock is sufficient.
4013  */
4014 boolean_t
4015 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4016                         vm_prot_t protection)
4017 {
4018         vm_map_entry_t entry;
4019         vm_map_entry_t tmp_entry;
4020
4021         if (!vm_map_lookup_entry(map, start, &tmp_entry))
4022                 return (FALSE);
4023         entry = tmp_entry;
4024
4025         while (start < end) {
4026                 /*
4027                  * No holes allowed!
4028                  */
4029                 if (start < entry->start)
4030                         return (FALSE);
4031                 /*
4032                  * Check protection associated with entry.
4033                  */
4034                 if ((entry->protection & protection) != protection)
4035                         return (FALSE);
4036                 /* go to next entry */
4037                 start = entry->end;
4038                 entry = vm_map_entry_succ(entry);
4039         }
4040         return (TRUE);
4041 }
4042
4043 /*
4044  *
4045  *      vm_map_copy_swap_object:
4046  *
4047  *      Copies a swap-backed object from an existing map entry to a
4048  *      new one.  Carries forward the swap charge.  May change the
4049  *      src object on return.
4050  */
4051 static void
4052 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4053     vm_offset_t size, vm_ooffset_t *fork_charge)
4054 {
4055         vm_object_t src_object;
4056         struct ucred *cred;
4057         int charged;
4058
4059         src_object = src_entry->object.vm_object;
4060         charged = ENTRY_CHARGED(src_entry);
4061         if ((src_object->flags & OBJ_ANON) != 0) {
4062                 VM_OBJECT_WLOCK(src_object);
4063                 vm_object_collapse(src_object);
4064                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4065                         vm_object_split(src_entry);
4066                         src_object = src_entry->object.vm_object;
4067                 }
4068                 vm_object_reference_locked(src_object);
4069                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4070                 VM_OBJECT_WUNLOCK(src_object);
4071         } else
4072                 vm_object_reference(src_object);
4073         if (src_entry->cred != NULL &&
4074             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4075                 KASSERT(src_object->cred == NULL,
4076                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4077                      src_object));
4078                 src_object->cred = src_entry->cred;
4079                 src_object->charge = size;
4080         }
4081         dst_entry->object.vm_object = src_object;
4082         if (charged) {
4083                 cred = curthread->td_ucred;
4084                 crhold(cred);
4085                 dst_entry->cred = cred;
4086                 *fork_charge += size;
4087                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4088                         crhold(cred);
4089                         src_entry->cred = cred;
4090                         *fork_charge += size;
4091                 }
4092         }
4093 }
4094
4095 /*
4096  *      vm_map_copy_entry:
4097  *
4098  *      Copies the contents of the source entry to the destination
4099  *      entry.  The entries *must* be aligned properly.
4100  */
4101 static void
4102 vm_map_copy_entry(
4103         vm_map_t src_map,
4104         vm_map_t dst_map,
4105         vm_map_entry_t src_entry,
4106         vm_map_entry_t dst_entry,
4107         vm_ooffset_t *fork_charge)
4108 {
4109         vm_object_t src_object;
4110         vm_map_entry_t fake_entry;
4111         vm_offset_t size;
4112
4113         VM_MAP_ASSERT_LOCKED(dst_map);
4114
4115         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4116                 return;
4117
4118         if (src_entry->wired_count == 0 ||
4119             (src_entry->protection & VM_PROT_WRITE) == 0) {
4120                 /*
4121                  * If the source entry is marked needs_copy, it is already
4122                  * write-protected.
4123                  */
4124                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4125                     (src_entry->protection & VM_PROT_WRITE) != 0) {
4126                         pmap_protect(src_map->pmap,
4127                             src_entry->start,
4128                             src_entry->end,
4129                             src_entry->protection & ~VM_PROT_WRITE);
4130                 }
4131
4132                 /*
4133                  * Make a copy of the object.
4134                  */
4135                 size = src_entry->end - src_entry->start;
4136                 if ((src_object = src_entry->object.vm_object) != NULL) {
4137                         if ((src_object->flags & OBJ_SWAP) != 0) {
4138                                 vm_map_copy_swap_object(src_entry, dst_entry,
4139                                     size, fork_charge);
4140                                 /* May have split/collapsed, reload obj. */
4141                                 src_object = src_entry->object.vm_object;
4142                         } else {
4143                                 vm_object_reference(src_object);
4144                                 dst_entry->object.vm_object = src_object;
4145                         }
4146                         src_entry->eflags |= MAP_ENTRY_COW |
4147                             MAP_ENTRY_NEEDS_COPY;
4148                         dst_entry->eflags |= MAP_ENTRY_COW |
4149                             MAP_ENTRY_NEEDS_COPY;
4150                         dst_entry->offset = src_entry->offset;
4151                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4152                                 /*
4153                                  * MAP_ENTRY_WRITECNT cannot
4154                                  * indicate write reference from
4155                                  * src_entry, since the entry is
4156                                  * marked as needs copy.  Allocate a
4157                                  * fake entry that is used to
4158                                  * decrement object->un_pager writecount
4159                                  * at the appropriate time.  Attach
4160                                  * fake_entry to the deferred list.
4161                                  */
4162                                 fake_entry = vm_map_entry_create(dst_map);
4163                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4164                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4165                                 vm_object_reference(src_object);
4166                                 fake_entry->object.vm_object = src_object;
4167                                 fake_entry->start = src_entry->start;
4168                                 fake_entry->end = src_entry->end;
4169                                 fake_entry->defer_next =
4170                                     curthread->td_map_def_user;
4171                                 curthread->td_map_def_user = fake_entry;
4172                         }
4173
4174                         pmap_copy(dst_map->pmap, src_map->pmap,
4175                             dst_entry->start, dst_entry->end - dst_entry->start,
4176                             src_entry->start);
4177                 } else {
4178                         dst_entry->object.vm_object = NULL;
4179                         if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4180                                 dst_entry->offset = 0;
4181                         if (src_entry->cred != NULL) {
4182                                 dst_entry->cred = curthread->td_ucred;
4183                                 crhold(dst_entry->cred);
4184                                 *fork_charge += size;
4185                         }
4186                 }
4187         } else {
4188                 /*
4189                  * We don't want to make writeable wired pages copy-on-write.
4190                  * Immediately copy these pages into the new map by simulating
4191                  * page faults.  The new pages are pageable.
4192                  */
4193                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4194                     fork_charge);
4195         }
4196 }
4197
4198 /*
4199  * vmspace_map_entry_forked:
4200  * Update the newly-forked vmspace each time a map entry is inherited
4201  * or copied.  The values for vm_dsize and vm_tsize are approximate
4202  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4203  */
4204 static void
4205 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4206     vm_map_entry_t entry)
4207 {
4208         vm_size_t entrysize;
4209         vm_offset_t newend;
4210
4211         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4212                 return;
4213         entrysize = entry->end - entry->start;
4214         vm2->vm_map.size += entrysize;
4215         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4216                 vm2->vm_ssize += btoc(entrysize);
4217         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4218             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4219                 newend = MIN(entry->end,
4220                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4221                 vm2->vm_dsize += btoc(newend - entry->start);
4222         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4223             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4224                 newend = MIN(entry->end,
4225                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4226                 vm2->vm_tsize += btoc(newend - entry->start);
4227         }
4228 }
4229
4230 /*
4231  * vmspace_fork:
4232  * Create a new process vmspace structure and vm_map
4233  * based on those of an existing process.  The new map
4234  * is based on the old map, according to the inheritance
4235  * values on the regions in that map.
4236  *
4237  * XXX It might be worth coalescing the entries added to the new vmspace.
4238  *
4239  * The source map must not be locked.
4240  */
4241 struct vmspace *
4242 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4243 {
4244         struct vmspace *vm2;
4245         vm_map_t new_map, old_map;
4246         vm_map_entry_t new_entry, old_entry;
4247         vm_object_t object;
4248         int error, locked __diagused;
4249         vm_inherit_t inh;
4250
4251         old_map = &vm1->vm_map;
4252         /* Copy immutable fields of vm1 to vm2. */
4253         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4254             pmap_pinit);
4255         if (vm2 == NULL)
4256                 return (NULL);
4257
4258         vm2->vm_taddr = vm1->vm_taddr;
4259         vm2->vm_daddr = vm1->vm_daddr;
4260         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4261         vm2->vm_stacktop = vm1->vm_stacktop;
4262         vm2->vm_shp_base = vm1->vm_shp_base;
4263         vm_map_lock(old_map);
4264         if (old_map->busy)
4265                 vm_map_wait_busy(old_map);
4266         new_map = &vm2->vm_map;
4267         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4268         KASSERT(locked, ("vmspace_fork: lock failed"));
4269
4270         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4271         if (error != 0) {
4272                 sx_xunlock(&old_map->lock);
4273                 sx_xunlock(&new_map->lock);
4274                 vm_map_process_deferred();
4275                 vmspace_free(vm2);
4276                 return (NULL);
4277         }
4278
4279         new_map->anon_loc = old_map->anon_loc;
4280         new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4281             MAP_ASLR_STACK | MAP_WXORX);
4282
4283         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4284                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4285                         panic("vm_map_fork: encountered a submap");
4286
4287                 inh = old_entry->inheritance;
4288                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4289                     inh != VM_INHERIT_NONE)
4290                         inh = VM_INHERIT_COPY;
4291
4292                 switch (inh) {
4293                 case VM_INHERIT_NONE:
4294                         break;
4295
4296                 case VM_INHERIT_SHARE:
4297                         /*
4298                          * Clone the entry, creating the shared object if
4299                          * necessary.
4300                          */
4301                         object = old_entry->object.vm_object;
4302                         if (object == NULL) {
4303                                 vm_map_entry_back(old_entry);
4304                                 object = old_entry->object.vm_object;
4305                         }
4306
4307                         /*
4308                          * Add the reference before calling vm_object_shadow
4309                          * to insure that a shadow object is created.
4310                          */
4311                         vm_object_reference(object);
4312                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4313                                 vm_object_shadow(&old_entry->object.vm_object,
4314                                     &old_entry->offset,
4315                                     old_entry->end - old_entry->start,
4316                                     old_entry->cred,
4317                                     /* Transfer the second reference too. */
4318                                     true);
4319                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4320                                 old_entry->cred = NULL;
4321
4322                                 /*
4323                                  * As in vm_map_merged_neighbor_dispose(),
4324                                  * the vnode lock will not be acquired in
4325                                  * this call to vm_object_deallocate().
4326                                  */
4327                                 vm_object_deallocate(object);
4328                                 object = old_entry->object.vm_object;
4329                         } else {
4330                                 VM_OBJECT_WLOCK(object);
4331                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4332                                 if (old_entry->cred != NULL) {
4333                                         KASSERT(object->cred == NULL,
4334                                             ("vmspace_fork both cred"));
4335                                         object->cred = old_entry->cred;
4336                                         object->charge = old_entry->end -
4337                                             old_entry->start;
4338                                         old_entry->cred = NULL;
4339                                 }
4340
4341                                 /*
4342                                  * Assert the correct state of the vnode
4343                                  * v_writecount while the object is locked, to
4344                                  * not relock it later for the assertion
4345                                  * correctness.
4346                                  */
4347                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4348                                     object->type == OBJT_VNODE) {
4349                                         KASSERT(((struct vnode *)object->
4350                                             handle)->v_writecount > 0,
4351                                             ("vmspace_fork: v_writecount %p",
4352                                             object));
4353                                         KASSERT(object->un_pager.vnp.
4354                                             writemappings > 0,
4355                                             ("vmspace_fork: vnp.writecount %p",
4356                                             object));
4357                                 }
4358                                 VM_OBJECT_WUNLOCK(object);
4359                         }
4360
4361                         /*
4362                          * Clone the entry, referencing the shared object.
4363                          */
4364                         new_entry = vm_map_entry_create(new_map);
4365                         *new_entry = *old_entry;
4366                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4367                             MAP_ENTRY_IN_TRANSITION);
4368                         new_entry->wiring_thread = NULL;
4369                         new_entry->wired_count = 0;
4370                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4371                                 vm_pager_update_writecount(object,
4372                                     new_entry->start, new_entry->end);
4373                         }
4374                         vm_map_entry_set_vnode_text(new_entry, true);
4375
4376                         /*
4377                          * Insert the entry into the new map -- we know we're
4378                          * inserting at the end of the new map.
4379                          */
4380                         vm_map_entry_link(new_map, new_entry);
4381                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4382
4383                         /*
4384                          * Update the physical map
4385                          */
4386                         pmap_copy(new_map->pmap, old_map->pmap,
4387                             new_entry->start,
4388                             (old_entry->end - old_entry->start),
4389                             old_entry->start);
4390                         break;
4391
4392                 case VM_INHERIT_COPY:
4393                         /*
4394                          * Clone the entry and link into the map.
4395                          */
4396                         new_entry = vm_map_entry_create(new_map);
4397                         *new_entry = *old_entry;
4398                         /*
4399                          * Copied entry is COW over the old object.
4400                          */
4401                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4402                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4403                         new_entry->wiring_thread = NULL;
4404                         new_entry->wired_count = 0;
4405                         new_entry->object.vm_object = NULL;
4406                         new_entry->cred = NULL;
4407                         vm_map_entry_link(new_map, new_entry);
4408                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4409                         vm_map_copy_entry(old_map, new_map, old_entry,
4410                             new_entry, fork_charge);
4411                         vm_map_entry_set_vnode_text(new_entry, true);
4412                         break;
4413
4414                 case VM_INHERIT_ZERO:
4415                         /*
4416                          * Create a new anonymous mapping entry modelled from
4417                          * the old one.
4418                          */
4419                         new_entry = vm_map_entry_create(new_map);
4420                         memset(new_entry, 0, sizeof(*new_entry));
4421
4422                         new_entry->start = old_entry->start;
4423                         new_entry->end = old_entry->end;
4424                         new_entry->eflags = old_entry->eflags &
4425                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4426                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4427                             MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4428                         new_entry->protection = old_entry->protection;
4429                         new_entry->max_protection = old_entry->max_protection;
4430                         new_entry->inheritance = VM_INHERIT_ZERO;
4431
4432                         vm_map_entry_link(new_map, new_entry);
4433                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4434
4435                         new_entry->cred = curthread->td_ucred;
4436                         crhold(new_entry->cred);
4437                         *fork_charge += (new_entry->end - new_entry->start);
4438
4439                         break;
4440                 }
4441         }
4442         /*
4443          * Use inlined vm_map_unlock() to postpone handling the deferred
4444          * map entries, which cannot be done until both old_map and
4445          * new_map locks are released.
4446          */
4447         sx_xunlock(&old_map->lock);
4448         sx_xunlock(&new_map->lock);
4449         vm_map_process_deferred();
4450
4451         return (vm2);
4452 }
4453
4454 /*
4455  * Create a process's stack for exec_new_vmspace().  This function is never
4456  * asked to wire the newly created stack.
4457  */
4458 int
4459 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4460     vm_prot_t prot, vm_prot_t max, int cow)
4461 {
4462         vm_size_t growsize, init_ssize;
4463         rlim_t vmemlim;
4464         int rv;
4465
4466         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4467         growsize = sgrowsiz;
4468         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4469         vm_map_lock(map);
4470         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4471         /* If we would blow our VMEM resource limit, no go */
4472         if (map->size + init_ssize > vmemlim) {
4473                 rv = KERN_NO_SPACE;
4474                 goto out;
4475         }
4476         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4477             max, cow);
4478 out:
4479         vm_map_unlock(map);
4480         return (rv);
4481 }
4482
4483 static int stack_guard_page = 1;
4484 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4485     &stack_guard_page, 0,
4486     "Specifies the number of guard pages for a stack that grows");
4487
4488 static int
4489 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4490     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4491 {
4492         vm_map_entry_t gap_entry, new_entry, prev_entry;
4493         vm_offset_t bot, gap_bot, gap_top, top;
4494         vm_size_t init_ssize, sgp;
4495         int orient, rv;
4496
4497         /*
4498          * The stack orientation is piggybacked with the cow argument.
4499          * Extract it into orient and mask the cow argument so that we
4500          * don't pass it around further.
4501          */
4502         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4503         KASSERT(orient != 0, ("No stack grow direction"));
4504         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4505             ("bi-dir stack"));
4506
4507         if (max_ssize == 0 ||
4508             !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4509                 return (KERN_INVALID_ADDRESS);
4510         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4511             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4512             (vm_size_t)stack_guard_page * PAGE_SIZE;
4513         if (sgp >= max_ssize)
4514                 return (KERN_INVALID_ARGUMENT);
4515
4516         init_ssize = growsize;
4517         if (max_ssize < init_ssize + sgp)
4518                 init_ssize = max_ssize - sgp;
4519
4520         /* If addr is already mapped, no go */
4521         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4522                 return (KERN_NO_SPACE);
4523
4524         /*
4525          * If we can't accommodate max_ssize in the current mapping, no go.
4526          */
4527         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4528                 return (KERN_NO_SPACE);
4529
4530         /*
4531          * We initially map a stack of only init_ssize.  We will grow as
4532          * needed later.  Depending on the orientation of the stack (i.e.
4533          * the grow direction) we either map at the top of the range, the
4534          * bottom of the range or in the middle.
4535          *
4536          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4537          * and cow to be 0.  Possibly we should eliminate these as input
4538          * parameters, and just pass these values here in the insert call.
4539          */
4540         if (orient == MAP_STACK_GROWS_DOWN) {
4541                 bot = addrbos + max_ssize - init_ssize;
4542                 top = bot + init_ssize;
4543                 gap_bot = addrbos;
4544                 gap_top = bot;
4545         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4546                 bot = addrbos;
4547                 top = bot + init_ssize;
4548                 gap_bot = top;
4549                 gap_top = addrbos + max_ssize;
4550         }
4551         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4552         if (rv != KERN_SUCCESS)
4553                 return (rv);
4554         new_entry = vm_map_entry_succ(prev_entry);
4555         KASSERT(new_entry->end == top || new_entry->start == bot,
4556             ("Bad entry start/end for new stack entry"));
4557         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4558             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4559             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4560         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4561             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4562             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4563         if (gap_bot == gap_top)
4564                 return (KERN_SUCCESS);
4565         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4566             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4567             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4568         if (rv == KERN_SUCCESS) {
4569                 /*
4570                  * Gap can never successfully handle a fault, so
4571                  * read-ahead logic is never used for it.  Re-use
4572                  * next_read of the gap entry to store
4573                  * stack_guard_page for vm_map_growstack().
4574                  * Similarly, since a gap cannot have a backing object,
4575                  * store the original stack protections in the
4576                  * object offset.
4577                  */
4578                 gap_entry = orient == MAP_STACK_GROWS_DOWN ?
4579                     vm_map_entry_pred(new_entry) : vm_map_entry_succ(new_entry);
4580                 gap_entry->next_read = sgp;
4581                 gap_entry->offset = prot;
4582         } else {
4583                 (void)vm_map_delete(map, bot, top);
4584         }
4585         return (rv);
4586 }
4587
4588 /*
4589  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4590  * successfully grow the stack.
4591  */
4592 static int
4593 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4594 {
4595         vm_map_entry_t stack_entry;
4596         struct proc *p;
4597         struct vmspace *vm;
4598         struct ucred *cred;
4599         vm_offset_t gap_end, gap_start, grow_start;
4600         vm_size_t grow_amount, guard, max_grow;
4601         vm_prot_t prot;
4602         rlim_t lmemlim, stacklim, vmemlim;
4603         int rv, rv1 __diagused;
4604         bool gap_deleted, grow_down, is_procstack;
4605 #ifdef notyet
4606         uint64_t limit;
4607 #endif
4608 #ifdef RACCT
4609         int error __diagused;
4610 #endif
4611
4612         p = curproc;
4613         vm = p->p_vmspace;
4614
4615         /*
4616          * Disallow stack growth when the access is performed by a
4617          * debugger or AIO daemon.  The reason is that the wrong
4618          * resource limits are applied.
4619          */
4620         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4621             p->p_textvp == NULL))
4622                 return (KERN_FAILURE);
4623
4624         MPASS(!map->system_map);
4625
4626         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4627         stacklim = lim_cur(curthread, RLIMIT_STACK);
4628         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4629 retry:
4630         /* If addr is not in a hole for a stack grow area, no need to grow. */
4631         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4632                 return (KERN_FAILURE);
4633         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4634                 return (KERN_SUCCESS);
4635         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4636                 stack_entry = vm_map_entry_succ(gap_entry);
4637                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4638                     stack_entry->start != gap_entry->end)
4639                         return (KERN_FAILURE);
4640                 grow_amount = round_page(stack_entry->start - addr);
4641                 grow_down = true;
4642         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4643                 stack_entry = vm_map_entry_pred(gap_entry);
4644                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4645                     stack_entry->end != gap_entry->start)
4646                         return (KERN_FAILURE);
4647                 grow_amount = round_page(addr + 1 - stack_entry->end);
4648                 grow_down = false;
4649         } else {
4650                 return (KERN_FAILURE);
4651         }
4652         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4653             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4654             gap_entry->next_read;
4655         max_grow = gap_entry->end - gap_entry->start;
4656         if (guard > max_grow)
4657                 return (KERN_NO_SPACE);
4658         max_grow -= guard;
4659         if (grow_amount > max_grow)
4660                 return (KERN_NO_SPACE);
4661
4662         /*
4663          * If this is the main process stack, see if we're over the stack
4664          * limit.
4665          */
4666         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4667             addr < (vm_offset_t)vm->vm_stacktop;
4668         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4669                 return (KERN_NO_SPACE);
4670
4671 #ifdef RACCT
4672         if (racct_enable) {
4673                 PROC_LOCK(p);
4674                 if (is_procstack && racct_set(p, RACCT_STACK,
4675                     ctob(vm->vm_ssize) + grow_amount)) {
4676                         PROC_UNLOCK(p);
4677                         return (KERN_NO_SPACE);
4678                 }
4679                 PROC_UNLOCK(p);
4680         }
4681 #endif
4682
4683         grow_amount = roundup(grow_amount, sgrowsiz);
4684         if (grow_amount > max_grow)
4685                 grow_amount = max_grow;
4686         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4687                 grow_amount = trunc_page((vm_size_t)stacklim) -
4688                     ctob(vm->vm_ssize);
4689         }
4690
4691 #ifdef notyet
4692         PROC_LOCK(p);
4693         limit = racct_get_available(p, RACCT_STACK);
4694         PROC_UNLOCK(p);
4695         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4696                 grow_amount = limit - ctob(vm->vm_ssize);
4697 #endif
4698
4699         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4700                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4701                         rv = KERN_NO_SPACE;
4702                         goto out;
4703                 }
4704 #ifdef RACCT
4705                 if (racct_enable) {
4706                         PROC_LOCK(p);
4707                         if (racct_set(p, RACCT_MEMLOCK,
4708                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4709                                 PROC_UNLOCK(p);
4710                                 rv = KERN_NO_SPACE;
4711                                 goto out;
4712                         }
4713                         PROC_UNLOCK(p);
4714                 }
4715 #endif
4716         }
4717
4718         /* If we would blow our VMEM resource limit, no go */
4719         if (map->size + grow_amount > vmemlim) {
4720                 rv = KERN_NO_SPACE;
4721                 goto out;
4722         }
4723 #ifdef RACCT
4724         if (racct_enable) {
4725                 PROC_LOCK(p);
4726                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4727                         PROC_UNLOCK(p);
4728                         rv = KERN_NO_SPACE;
4729                         goto out;
4730                 }
4731                 PROC_UNLOCK(p);
4732         }
4733 #endif
4734
4735         if (vm_map_lock_upgrade(map)) {
4736                 gap_entry = NULL;
4737                 vm_map_lock_read(map);
4738                 goto retry;
4739         }
4740
4741         if (grow_down) {
4742                 /*
4743                  * The gap_entry "offset" field is overloaded.  See
4744                  * vm_map_stack_locked().
4745                  */
4746                 prot = gap_entry->offset;
4747
4748                 grow_start = gap_entry->end - grow_amount;
4749                 if (gap_entry->start + grow_amount == gap_entry->end) {
4750                         gap_start = gap_entry->start;
4751                         gap_end = gap_entry->end;
4752                         vm_map_entry_delete(map, gap_entry);
4753                         gap_deleted = true;
4754                 } else {
4755                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4756                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4757                         gap_deleted = false;
4758                 }
4759                 rv = vm_map_insert(map, NULL, 0, grow_start,
4760                     grow_start + grow_amount, prot, prot, MAP_STACK_GROWS_DOWN);
4761                 if (rv != KERN_SUCCESS) {
4762                         if (gap_deleted) {
4763                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4764                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4765                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4766                                 MPASS(rv1 == KERN_SUCCESS);
4767                         } else
4768                                 vm_map_entry_resize(map, gap_entry,
4769                                     grow_amount);
4770                 }
4771         } else {
4772                 grow_start = stack_entry->end;
4773                 cred = stack_entry->cred;
4774                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4775                         cred = stack_entry->object.vm_object->cred;
4776                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4777                         rv = KERN_NO_SPACE;
4778                 /* Grow the underlying object if applicable. */
4779                 else if (stack_entry->object.vm_object == NULL ||
4780                     vm_object_coalesce(stack_entry->object.vm_object,
4781                     stack_entry->offset,
4782                     (vm_size_t)(stack_entry->end - stack_entry->start),
4783                     grow_amount, cred != NULL)) {
4784                         if (gap_entry->start + grow_amount == gap_entry->end) {
4785                                 vm_map_entry_delete(map, gap_entry);
4786                                 vm_map_entry_resize(map, stack_entry,
4787                                     grow_amount);
4788                         } else {
4789                                 gap_entry->start += grow_amount;
4790                                 stack_entry->end += grow_amount;
4791                         }
4792                         map->size += grow_amount;
4793                         rv = KERN_SUCCESS;
4794                 } else
4795                         rv = KERN_FAILURE;
4796         }
4797         if (rv == KERN_SUCCESS && is_procstack)
4798                 vm->vm_ssize += btoc(grow_amount);
4799
4800         /*
4801          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4802          */
4803         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4804                 rv = vm_map_wire_locked(map, grow_start,
4805                     grow_start + grow_amount,
4806                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4807         }
4808         vm_map_lock_downgrade(map);
4809
4810 out:
4811 #ifdef RACCT
4812         if (racct_enable && rv != KERN_SUCCESS) {
4813                 PROC_LOCK(p);
4814                 error = racct_set(p, RACCT_VMEM, map->size);
4815                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4816                 if (!old_mlock) {
4817                         error = racct_set(p, RACCT_MEMLOCK,
4818                             ptoa(pmap_wired_count(map->pmap)));
4819                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4820                 }
4821                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4822                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4823                 PROC_UNLOCK(p);
4824         }
4825 #endif
4826
4827         return (rv);
4828 }
4829
4830 /*
4831  * Unshare the specified VM space for exec.  If other processes are
4832  * mapped to it, then create a new one.  The new vmspace is null.
4833  */
4834 int
4835 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4836 {
4837         struct vmspace *oldvmspace = p->p_vmspace;
4838         struct vmspace *newvmspace;
4839
4840         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4841             ("vmspace_exec recursed"));
4842         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4843         if (newvmspace == NULL)
4844                 return (ENOMEM);
4845         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4846         /*
4847          * This code is written like this for prototype purposes.  The
4848          * goal is to avoid running down the vmspace here, but let the
4849          * other process's that are still using the vmspace to finally
4850          * run it down.  Even though there is little or no chance of blocking
4851          * here, it is a good idea to keep this form for future mods.
4852          */
4853         PROC_VMSPACE_LOCK(p);
4854         p->p_vmspace = newvmspace;
4855         PROC_VMSPACE_UNLOCK(p);
4856         if (p == curthread->td_proc)
4857                 pmap_activate(curthread);
4858         curthread->td_pflags |= TDP_EXECVMSPC;
4859         return (0);
4860 }
4861
4862 /*
4863  * Unshare the specified VM space for forcing COW.  This
4864  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4865  */
4866 int
4867 vmspace_unshare(struct proc *p)
4868 {
4869         struct vmspace *oldvmspace = p->p_vmspace;
4870         struct vmspace *newvmspace;
4871         vm_ooffset_t fork_charge;
4872
4873         /*
4874          * The caller is responsible for ensuring that the reference count
4875          * cannot concurrently transition 1 -> 2.
4876          */
4877         if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4878                 return (0);
4879         fork_charge = 0;
4880         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4881         if (newvmspace == NULL)
4882                 return (ENOMEM);
4883         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4884                 vmspace_free(newvmspace);
4885                 return (ENOMEM);
4886         }
4887         PROC_VMSPACE_LOCK(p);
4888         p->p_vmspace = newvmspace;
4889         PROC_VMSPACE_UNLOCK(p);
4890         if (p == curthread->td_proc)
4891                 pmap_activate(curthread);
4892         vmspace_free(oldvmspace);
4893         return (0);
4894 }
4895
4896 /*
4897  *      vm_map_lookup:
4898  *
4899  *      Finds the VM object, offset, and
4900  *      protection for a given virtual address in the
4901  *      specified map, assuming a page fault of the
4902  *      type specified.
4903  *
4904  *      Leaves the map in question locked for read; return
4905  *      values are guaranteed until a vm_map_lookup_done
4906  *      call is performed.  Note that the map argument
4907  *      is in/out; the returned map must be used in
4908  *      the call to vm_map_lookup_done.
4909  *
4910  *      A handle (out_entry) is returned for use in
4911  *      vm_map_lookup_done, to make that fast.
4912  *
4913  *      If a lookup is requested with "write protection"
4914  *      specified, the map may be changed to perform virtual
4915  *      copying operations, although the data referenced will
4916  *      remain the same.
4917  */
4918 int
4919 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4920               vm_offset_t vaddr,
4921               vm_prot_t fault_typea,
4922               vm_map_entry_t *out_entry,        /* OUT */
4923               vm_object_t *object,              /* OUT */
4924               vm_pindex_t *pindex,              /* OUT */
4925               vm_prot_t *out_prot,              /* OUT */
4926               boolean_t *wired)                 /* OUT */
4927 {
4928         vm_map_entry_t entry;
4929         vm_map_t map = *var_map;
4930         vm_prot_t prot;
4931         vm_prot_t fault_type;
4932         vm_object_t eobject;
4933         vm_size_t size;
4934         struct ucred *cred;
4935
4936 RetryLookup:
4937
4938         vm_map_lock_read(map);
4939
4940 RetryLookupLocked:
4941         /*
4942          * Lookup the faulting address.
4943          */
4944         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4945                 vm_map_unlock_read(map);
4946                 return (KERN_INVALID_ADDRESS);
4947         }
4948
4949         entry = *out_entry;
4950
4951         /*
4952          * Handle submaps.
4953          */
4954         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4955                 vm_map_t old_map = map;
4956
4957                 *var_map = map = entry->object.sub_map;
4958                 vm_map_unlock_read(old_map);
4959                 goto RetryLookup;
4960         }
4961
4962         /*
4963          * Check whether this task is allowed to have this page.
4964          */
4965         prot = entry->protection;
4966         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4967                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4968                 if (prot == VM_PROT_NONE && map != kernel_map &&
4969                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4970                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4971                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4972                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4973                         goto RetryLookupLocked;
4974         }
4975         fault_type = fault_typea & VM_PROT_ALL;
4976         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4977                 vm_map_unlock_read(map);
4978                 return (KERN_PROTECTION_FAILURE);
4979         }
4980         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4981             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4982             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4983             ("entry %p flags %x", entry, entry->eflags));
4984         if ((fault_typea & VM_PROT_COPY) != 0 &&
4985             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4986             (entry->eflags & MAP_ENTRY_COW) == 0) {
4987                 vm_map_unlock_read(map);
4988                 return (KERN_PROTECTION_FAILURE);
4989         }
4990
4991         /*
4992          * If this page is not pageable, we have to get it for all possible
4993          * accesses.
4994          */
4995         *wired = (entry->wired_count != 0);
4996         if (*wired)
4997                 fault_type = entry->protection;
4998         size = entry->end - entry->start;
4999
5000         /*
5001          * If the entry was copy-on-write, we either ...
5002          */
5003         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5004                 /*
5005                  * If we want to write the page, we may as well handle that
5006                  * now since we've got the map locked.
5007                  *
5008                  * If we don't need to write the page, we just demote the
5009                  * permissions allowed.
5010                  */
5011                 if ((fault_type & VM_PROT_WRITE) != 0 ||
5012                     (fault_typea & VM_PROT_COPY) != 0) {
5013                         /*
5014                          * Make a new object, and place it in the object
5015                          * chain.  Note that no new references have appeared
5016                          * -- one just moved from the map to the new
5017                          * object.
5018                          */
5019                         if (vm_map_lock_upgrade(map))
5020                                 goto RetryLookup;
5021
5022                         if (entry->cred == NULL) {
5023                                 /*
5024                                  * The debugger owner is charged for
5025                                  * the memory.
5026                                  */
5027                                 cred = curthread->td_ucred;
5028                                 crhold(cred);
5029                                 if (!swap_reserve_by_cred(size, cred)) {
5030                                         crfree(cred);
5031                                         vm_map_unlock(map);
5032                                         return (KERN_RESOURCE_SHORTAGE);
5033                                 }
5034                                 entry->cred = cred;
5035                         }
5036                         eobject = entry->object.vm_object;
5037                         vm_object_shadow(&entry->object.vm_object,
5038                             &entry->offset, size, entry->cred, false);
5039                         if (eobject == entry->object.vm_object) {
5040                                 /*
5041                                  * The object was not shadowed.
5042                                  */
5043                                 swap_release_by_cred(size, entry->cred);
5044                                 crfree(entry->cred);
5045                         }
5046                         entry->cred = NULL;
5047                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5048
5049                         vm_map_lock_downgrade(map);
5050                 } else {
5051                         /*
5052                          * We're attempting to read a copy-on-write page --
5053                          * don't allow writes.
5054                          */
5055                         prot &= ~VM_PROT_WRITE;
5056                 }
5057         }
5058
5059         /*
5060          * Create an object if necessary.
5061          */
5062         if (entry->object.vm_object == NULL && !map->system_map) {
5063                 if (vm_map_lock_upgrade(map))
5064                         goto RetryLookup;
5065                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5066                     NULL, entry->cred, size);
5067                 entry->offset = 0;
5068                 entry->cred = NULL;
5069                 vm_map_lock_downgrade(map);
5070         }
5071
5072         /*
5073          * Return the object/offset from this entry.  If the entry was
5074          * copy-on-write or empty, it has been fixed up.
5075          */
5076         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5077         *object = entry->object.vm_object;
5078
5079         *out_prot = prot;
5080         return (KERN_SUCCESS);
5081 }
5082
5083 /*
5084  *      vm_map_lookup_locked:
5085  *
5086  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
5087  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5088  */
5089 int
5090 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
5091                      vm_offset_t vaddr,
5092                      vm_prot_t fault_typea,
5093                      vm_map_entry_t *out_entry, /* OUT */
5094                      vm_object_t *object,       /* OUT */
5095                      vm_pindex_t *pindex,       /* OUT */
5096                      vm_prot_t *out_prot,       /* OUT */
5097                      boolean_t *wired)          /* OUT */
5098 {
5099         vm_map_entry_t entry;
5100         vm_map_t map = *var_map;
5101         vm_prot_t prot;
5102         vm_prot_t fault_type = fault_typea;
5103
5104         /*
5105          * Lookup the faulting address.
5106          */
5107         if (!vm_map_lookup_entry(map, vaddr, out_entry))
5108                 return (KERN_INVALID_ADDRESS);
5109
5110         entry = *out_entry;
5111
5112         /*
5113          * Fail if the entry refers to a submap.
5114          */
5115         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5116                 return (KERN_FAILURE);
5117
5118         /*
5119          * Check whether this task is allowed to have this page.
5120          */
5121         prot = entry->protection;
5122         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5123         if ((fault_type & prot) != fault_type)
5124                 return (KERN_PROTECTION_FAILURE);
5125
5126         /*
5127          * If this page is not pageable, we have to get it for all possible
5128          * accesses.
5129          */
5130         *wired = (entry->wired_count != 0);
5131         if (*wired)
5132                 fault_type = entry->protection;
5133
5134         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5135                 /*
5136                  * Fail if the entry was copy-on-write for a write fault.
5137                  */
5138                 if (fault_type & VM_PROT_WRITE)
5139                         return (KERN_FAILURE);
5140                 /*
5141                  * We're attempting to read a copy-on-write page --
5142                  * don't allow writes.
5143                  */
5144                 prot &= ~VM_PROT_WRITE;
5145         }
5146
5147         /*
5148          * Fail if an object should be created.
5149          */
5150         if (entry->object.vm_object == NULL && !map->system_map)
5151                 return (KERN_FAILURE);
5152
5153         /*
5154          * Return the object/offset from this entry.  If the entry was
5155          * copy-on-write or empty, it has been fixed up.
5156          */
5157         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5158         *object = entry->object.vm_object;
5159
5160         *out_prot = prot;
5161         return (KERN_SUCCESS);
5162 }
5163
5164 /*
5165  *      vm_map_lookup_done:
5166  *
5167  *      Releases locks acquired by a vm_map_lookup
5168  *      (according to the handle returned by that lookup).
5169  */
5170 void
5171 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5172 {
5173         /*
5174          * Unlock the main-level map
5175          */
5176         vm_map_unlock_read(map);
5177 }
5178
5179 vm_offset_t
5180 vm_map_max_KBI(const struct vm_map *map)
5181 {
5182
5183         return (vm_map_max(map));
5184 }
5185
5186 vm_offset_t
5187 vm_map_min_KBI(const struct vm_map *map)
5188 {
5189
5190         return (vm_map_min(map));
5191 }
5192
5193 pmap_t
5194 vm_map_pmap_KBI(vm_map_t map)
5195 {
5196
5197         return (map->pmap);
5198 }
5199
5200 bool
5201 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5202 {
5203
5204         return (vm_map_range_valid(map, start, end));
5205 }
5206
5207 #ifdef INVARIANTS
5208 static void
5209 _vm_map_assert_consistent(vm_map_t map, int check)
5210 {
5211         vm_map_entry_t entry, prev;
5212         vm_map_entry_t cur, header, lbound, ubound;
5213         vm_size_t max_left, max_right;
5214
5215 #ifdef DIAGNOSTIC
5216         ++map->nupdates;
5217 #endif
5218         if (enable_vmmap_check != check)
5219                 return;
5220
5221         header = prev = &map->header;
5222         VM_MAP_ENTRY_FOREACH(entry, map) {
5223                 KASSERT(prev->end <= entry->start,
5224                     ("map %p prev->end = %jx, start = %jx", map,
5225                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5226                 KASSERT(entry->start < entry->end,
5227                     ("map %p start = %jx, end = %jx", map,
5228                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5229                 KASSERT(entry->left == header ||
5230                     entry->left->start < entry->start,
5231                     ("map %p left->start = %jx, start = %jx", map,
5232                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5233                 KASSERT(entry->right == header ||
5234                     entry->start < entry->right->start,
5235                     ("map %p start = %jx, right->start = %jx", map,
5236                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5237                 cur = map->root;
5238                 lbound = ubound = header;
5239                 for (;;) {
5240                         if (entry->start < cur->start) {
5241                                 ubound = cur;
5242                                 cur = cur->left;
5243                                 KASSERT(cur != lbound,
5244                                     ("map %p cannot find %jx",
5245                                     map, (uintmax_t)entry->start));
5246                         } else if (cur->end <= entry->start) {
5247                                 lbound = cur;
5248                                 cur = cur->right;
5249                                 KASSERT(cur != ubound,
5250                                     ("map %p cannot find %jx",
5251                                     map, (uintmax_t)entry->start));
5252                         } else {
5253                                 KASSERT(cur == entry,
5254                                     ("map %p cannot find %jx",
5255                                     map, (uintmax_t)entry->start));
5256                                 break;
5257                         }
5258                 }
5259                 max_left = vm_map_entry_max_free_left(entry, lbound);
5260                 max_right = vm_map_entry_max_free_right(entry, ubound);
5261                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5262                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5263                     (uintmax_t)entry->max_free,
5264                     (uintmax_t)max_left, (uintmax_t)max_right));
5265                 prev = entry;
5266         }
5267         KASSERT(prev->end <= entry->start,
5268             ("map %p prev->end = %jx, start = %jx", map,
5269             (uintmax_t)prev->end, (uintmax_t)entry->start));
5270 }
5271 #endif
5272
5273 #include "opt_ddb.h"
5274 #ifdef DDB
5275 #include <sys/kernel.h>
5276
5277 #include <ddb/ddb.h>
5278
5279 static void
5280 vm_map_print(vm_map_t map)
5281 {
5282         vm_map_entry_t entry, prev;
5283
5284         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5285             (void *)map,
5286             (void *)map->pmap, map->nentries, map->timestamp);
5287
5288         db_indent += 2;
5289         prev = &map->header;
5290         VM_MAP_ENTRY_FOREACH(entry, map) {
5291                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5292                     (void *)entry, (void *)entry->start, (void *)entry->end,
5293                     entry->eflags);
5294                 {
5295                         static const char * const inheritance_name[4] =
5296                         {"share", "copy", "none", "donate_copy"};
5297
5298                         db_iprintf(" prot=%x/%x/%s",
5299                             entry->protection,
5300                             entry->max_protection,
5301                             inheritance_name[(int)(unsigned char)
5302                             entry->inheritance]);
5303                         if (entry->wired_count != 0)
5304                                 db_printf(", wired");
5305                 }
5306                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5307                         db_printf(", share=%p, offset=0x%jx\n",
5308                             (void *)entry->object.sub_map,
5309                             (uintmax_t)entry->offset);
5310                         if (prev == &map->header ||
5311                             prev->object.sub_map !=
5312                                 entry->object.sub_map) {
5313                                 db_indent += 2;
5314                                 vm_map_print((vm_map_t)entry->object.sub_map);
5315                                 db_indent -= 2;
5316                         }
5317                 } else {
5318                         if (entry->cred != NULL)
5319                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5320                         db_printf(", object=%p, offset=0x%jx",
5321                             (void *)entry->object.vm_object,
5322                             (uintmax_t)entry->offset);
5323                         if (entry->object.vm_object && entry->object.vm_object->cred)
5324                                 db_printf(", obj ruid %d charge %jx",
5325                                     entry->object.vm_object->cred->cr_ruid,
5326                                     (uintmax_t)entry->object.vm_object->charge);
5327                         if (entry->eflags & MAP_ENTRY_COW)
5328                                 db_printf(", copy (%s)",
5329                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5330                         db_printf("\n");
5331
5332                         if (prev == &map->header ||
5333                             prev->object.vm_object !=
5334                                 entry->object.vm_object) {
5335                                 db_indent += 2;
5336                                 vm_object_print((db_expr_t)(intptr_t)
5337                                                 entry->object.vm_object,
5338                                                 0, 0, (char *)0);
5339                                 db_indent -= 2;
5340                         }
5341                 }
5342                 prev = entry;
5343         }
5344         db_indent -= 2;
5345 }
5346
5347 DB_SHOW_COMMAND(map, map)
5348 {
5349
5350         if (!have_addr) {
5351                 db_printf("usage: show map <addr>\n");
5352                 return;
5353         }
5354         vm_map_print((vm_map_t)addr);
5355 }
5356
5357 DB_SHOW_COMMAND(procvm, procvm)
5358 {
5359         struct proc *p;
5360
5361         if (have_addr) {
5362                 p = db_lookup_proc(addr);
5363         } else {
5364                 p = curproc;
5365         }
5366
5367         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5368             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5369             (void *)vmspace_pmap(p->p_vmspace));
5370
5371         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5372 }
5373
5374 #endif /* DDB */