]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFC r320316:
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100  *      Virtual memory maps provide for the mapping, protection,
101  *      and sharing of virtual memory objects.  In addition,
102  *      this module provides for an efficient virtual copy of
103  *      memory from one map to another.
104  *
105  *      Synchronization is required prior to most operations.
106  *
107  *      Maps consist of an ordered doubly-linked list of simple
108  *      entries; a self-adjusting binary search tree of these
109  *      entries is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /* 
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
161  *
162  *      Asserts that the starting and ending region
163  *      addresses fall within the valid range of the map.
164  */
165 #define VM_MAP_RANGE_CHECK(map, start, end)             \
166                 {                                       \
167                 if (start < vm_map_min(map))            \
168                         start = vm_map_min(map);        \
169                 if (end > vm_map_max(map))              \
170                         end = vm_map_max(map);          \
171                 if (start > end)                        \
172                         start = end;                    \
173                 }
174
175 /*
176  *      vm_map_startup:
177  *
178  *      Initialize the vm_map module.  Must be called before
179  *      any other vm_map routines.
180  *
181  *      Map and entry structures are allocated from the general
182  *      purpose memory pool with some exceptions:
183  *
184  *      - The kernel map and kmem submap are allocated statically.
185  *      - Kernel map entries are allocated out of a static pool.
186  *
187  *      These restrictions are necessary since malloc() uses the
188  *      maps and requires map entries.
189  */
190
191 void
192 vm_map_startup(void)
193 {
194         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197             vm_map_zdtor,
198 #else
199             NULL,
200 #endif
201             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202         uma_prealloc(mapzone, MAX_KMAP);
203         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210             vmspace_zdtor,
211 #else
212             NULL,
213 #endif
214             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220         struct vmspace *vm;
221
222         vm = (struct vmspace *)mem;
223
224         vm->vm_map.pmap = NULL;
225         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226         PMAP_LOCK_INIT(vmspace_pmap(vm));
227         return (0);
228 }
229
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233         vm_map_t map;
234
235         map = (vm_map_t)mem;
236         memset(map, 0, sizeof(*map));
237         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238         sx_init(&map->lock, "vm map (user)");
239         return (0);
240 }
241
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246         struct vmspace *vm;
247
248         vm = (struct vmspace *)mem;
249
250         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255         vm_map_t map;
256
257         map = (vm_map_t)mem;
258         KASSERT(map->nentries == 0,
259             ("map %p nentries == %d on free.",
260             map, map->nentries));
261         KASSERT(map->size == 0,
262             ("map %p size == %lu on free.",
263             map, (unsigned long)map->size));
264 }
265 #endif  /* INVARIANTS */
266
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276         struct vmspace *vm;
277
278         vm = uma_zalloc(vmspace_zone, M_WAITOK);
279
280         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281
282         if (pinit == NULL)
283                 pinit = &pmap_pinit;
284
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336             vm->vm_map.max_offset);
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         do {
393                 refcnt = vm->vm_refcnt;
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         do {
439                 refcnt = vm->vm_refcnt;
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         /* Remove the daemon's reference to the old address space. */
494         KASSERT(oldvm->vm_refcnt > 1,
495             ("vmspace_switch_aio: oldvm dropping last reference"));
496         vmspace_free(oldvm);
497 }
498
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502
503         if (map->system_map)
504                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
505         else
506                 sx_xlock_(&map->lock, file, line);
507         map->timestamp++;
508 }
509
510 static void
511 vm_map_process_deferred(void)
512 {
513         struct thread *td;
514         vm_map_entry_t entry, next;
515         vm_object_t object;
516
517         td = curthread;
518         entry = td->td_map_def_user;
519         td->td_map_def_user = NULL;
520         while (entry != NULL) {
521                 next = entry->next;
522                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523                         /*
524                          * Decrement the object's writemappings and
525                          * possibly the vnode's v_writecount.
526                          */
527                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528                             ("Submap with writecount"));
529                         object = entry->object.vm_object;
530                         KASSERT(object != NULL, ("No object for writecount"));
531                         vnode_pager_release_writecount(object, entry->start,
532                             entry->end);
533                 }
534                 vm_map_entry_deallocate(entry, FALSE);
535                 entry = next;
536         }
537 }
538
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542
543         if (map->system_map)
544                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545         else {
546                 sx_xunlock_(&map->lock, file, line);
547                 vm_map_process_deferred();
548         }
549 }
550
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554
555         if (map->system_map)
556                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
557         else
558                 sx_slock_(&map->lock, file, line);
559 }
560
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564
565         if (map->system_map)
566                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567         else {
568                 sx_sunlock_(&map->lock, file, line);
569                 vm_map_process_deferred();
570         }
571 }
572
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576         int error;
577
578         error = map->system_map ?
579             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580             !sx_try_xlock_(&map->lock, file, line);
581         if (error == 0)
582                 map->timestamp++;
583         return (error == 0);
584 }
585
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589         int error;
590
591         error = map->system_map ?
592             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593             !sx_try_slock_(&map->lock, file, line);
594         return (error == 0);
595 }
596
597 /*
598  *      _vm_map_lock_upgrade:   [ internal use only ]
599  *
600  *      Tries to upgrade a read (shared) lock on the specified map to a write
601  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *      returned without a read or write lock held.
604  *
605  *      Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610         unsigned int last_timestamp;
611
612         if (map->system_map) {
613                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614         } else {
615                 if (!sx_try_upgrade_(&map->lock, file, line)) {
616                         last_timestamp = map->timestamp;
617                         sx_sunlock_(&map->lock, file, line);
618                         vm_map_process_deferred();
619                         /*
620                          * If the map's timestamp does not change while the
621                          * map is unlocked, then the upgrade succeeds.
622                          */
623                         sx_xlock_(&map->lock, file, line);
624                         if (last_timestamp != map->timestamp) {
625                                 sx_xunlock_(&map->lock, file, line);
626                                 return (1);
627                         }
628                 }
629         }
630         map->timestamp++;
631         return (0);
632 }
633
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637
638         if (map->system_map) {
639                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640         } else
641                 sx_downgrade_(&map->lock, file, line);
642 }
643
644 /*
645  *      vm_map_locked:
646  *
647  *      Returns a non-zero value if the caller holds a write (exclusive) lock
648  *      on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653
654         if (map->system_map)
655                 return (mtx_owned(&map->system_mtx));
656         else
657                 return (sx_xlocked(&map->lock));
658 }
659
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664
665         if (map->system_map)
666                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667         else
668                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670
671 #define VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define VM_MAP_ASSERT_LOCKED(map)
675 #endif
676
677 /*
678  *      _vm_map_unlock_and_wait:
679  *
680  *      Atomically releases the lock on the specified map and puts the calling
681  *      thread to sleep.  The calling thread will remain asleep until either
682  *      vm_map_wakeup() is performed on the map or the specified timeout is
683  *      exceeded.
684  *
685  *      WARNING!  This function does not perform deferred deallocations of
686  *      objects and map entries.  Therefore, the calling thread is expected to
687  *      reacquire the map lock after reawakening and later perform an ordinary
688  *      unlock operation, such as vm_map_unlock(), before completing its
689  *      operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694
695         mtx_lock(&map_sleep_mtx);
696         if (map->system_map)
697                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698         else
699                 sx_xunlock_(&map->lock, file, line);
700         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701             timo));
702 }
703
704 /*
705  *      vm_map_wakeup:
706  *
707  *      Awaken any threads that have slept on the map using
708  *      vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713
714         /*
715          * Acquire and release map_sleep_mtx to prevent a wakeup()
716          * from being performed (and lost) between the map unlock
717          * and the msleep() in _vm_map_unlock_and_wait().
718          */
719         mtx_lock(&map_sleep_mtx);
720         mtx_unlock(&map_sleep_mtx);
721         wakeup(&map->root);
722 }
723
724 void
725 vm_map_busy(vm_map_t map)
726 {
727
728         VM_MAP_ASSERT_LOCKED(map);
729         map->busy++;
730 }
731
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735
736         VM_MAP_ASSERT_LOCKED(map);
737         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740                 wakeup(&map->busy);
741         }
742 }
743
744 void 
745 vm_map_wait_busy(vm_map_t map)
746 {
747
748         VM_MAP_ASSERT_LOCKED(map);
749         while (map->busy) {
750                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751                 if (map->system_map)
752                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753                 else
754                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755         }
756         map->timestamp++;
757 }
758
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762         return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764
765 /*
766  *      vm_map_create:
767  *
768  *      Creates and returns a new empty VM map with
769  *      the given physical map structure, and having
770  *      the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775         vm_map_t result;
776
777         result = uma_zalloc(mapzone, M_WAITOK);
778         CTR1(KTR_VM, "vm_map_create: %p", result);
779         _vm_map_init(result, pmap, min, max);
780         return (result);
781 }
782
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790
791         map->header.next = map->header.prev = &map->header;
792         map->needs_wakeup = FALSE;
793         map->system_map = 0;
794         map->pmap = pmap;
795         map->min_offset = min;
796         map->max_offset = max;
797         map->flags = 0;
798         map->root = NULL;
799         map->timestamp = 0;
800         map->busy = 0;
801 }
802
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806
807         _vm_map_init(map, pmap, min, max);
808         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809         sx_init(&map->lock, "user map");
810 }
811
812 /*
813  *      vm_map_entry_dispose:   [ internal use only ]
814  *
815  *      Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822
823 /*
824  *      vm_map_entry_create:    [ internal use only ]
825  *
826  *      Allocates a VM map entry for insertion.
827  *      No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832         vm_map_entry_t new_entry;
833
834         if (map->system_map)
835                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836         else
837                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
838         if (new_entry == NULL)
839                 panic("vm_map_entry_create: kernel resources exhausted");
840         return (new_entry);
841 }
842
843 /*
844  *      vm_map_entry_set_behavior:
845  *
846  *      Set the expected access behavior, either normal, random, or
847  *      sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853             (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855
856 /*
857  *      vm_map_entry_set_max_free:
858  *
859  *      Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864
865         entry->max_free = entry->adj_free;
866         if (entry->left != NULL && entry->left->max_free > entry->max_free)
867                 entry->max_free = entry->left->max_free;
868         if (entry->right != NULL && entry->right->max_free > entry->max_free)
869                 entry->max_free = entry->right->max_free;
870 }
871
872 /*
873  *      vm_map_entry_splay:
874  *
875  *      The Sleator and Tarjan top-down splay algorithm with the
876  *      following variation.  Max_free must be computed bottom-up, so
877  *      on the downward pass, maintain the left and right spines in
878  *      reverse order.  Then, make a second pass up each side to fix
879  *      the pointers and compute max_free.  The time bound is O(log n)
880  *      amortized.
881  *
882  *      The new root is the vm_map_entry containing "addr", or else an
883  *      adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *      The map must be locked, and leaves it so.
886  *
887  *      Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892         vm_map_entry_t llist, rlist;
893         vm_map_entry_t ltree, rtree;
894         vm_map_entry_t y;
895
896         /* Special case of empty tree. */
897         if (root == NULL)
898                 return (root);
899
900         /*
901          * Pass One: Splay down the tree until we find addr or a NULL
902          * pointer where addr would go.  llist and rlist are the two
903          * sides in reverse order (bottom-up), with llist linked by
904          * the right pointer and rlist linked by the left pointer in
905          * the vm_map_entry.  Wait until Pass Two to set max_free on
906          * the two spines.
907          */
908         llist = NULL;
909         rlist = NULL;
910         for (;;) {
911                 /* root is never NULL in here. */
912                 if (addr < root->start) {
913                         y = root->left;
914                         if (y == NULL)
915                                 break;
916                         if (addr < y->start && y->left != NULL) {
917                                 /* Rotate right and put y on rlist. */
918                                 root->left = y->right;
919                                 y->right = root;
920                                 vm_map_entry_set_max_free(root);
921                                 root = y->left;
922                                 y->left = rlist;
923                                 rlist = y;
924                         } else {
925                                 /* Put root on rlist. */
926                                 root->left = rlist;
927                                 rlist = root;
928                                 root = y;
929                         }
930                 } else if (addr >= root->end) {
931                         y = root->right;
932                         if (y == NULL)
933                                 break;
934                         if (addr >= y->end && y->right != NULL) {
935                                 /* Rotate left and put y on llist. */
936                                 root->right = y->left;
937                                 y->left = root;
938                                 vm_map_entry_set_max_free(root);
939                                 root = y->right;
940                                 y->right = llist;
941                                 llist = y;
942                         } else {
943                                 /* Put root on llist. */
944                                 root->right = llist;
945                                 llist = root;
946                                 root = y;
947                         }
948                 } else
949                         break;
950         }
951
952         /*
953          * Pass Two: Walk back up the two spines, flip the pointers
954          * and set max_free.  The subtrees of the root go at the
955          * bottom of llist and rlist.
956          */
957         ltree = root->left;
958         while (llist != NULL) {
959                 y = llist->right;
960                 llist->right = ltree;
961                 vm_map_entry_set_max_free(llist);
962                 ltree = llist;
963                 llist = y;
964         }
965         rtree = root->right;
966         while (rlist != NULL) {
967                 y = rlist->left;
968                 rlist->left = rtree;
969                 vm_map_entry_set_max_free(rlist);
970                 rtree = rlist;
971                 rlist = y;
972         }
973
974         /*
975          * Final assembly: add ltree and rtree as subtrees of root.
976          */
977         root->left = ltree;
978         root->right = rtree;
979         vm_map_entry_set_max_free(root);
980
981         return (root);
982 }
983
984 /*
985  *      vm_map_entry_{un,}link:
986  *
987  *      Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991                   vm_map_entry_t after_where,
992                   vm_map_entry_t entry)
993 {
994
995         CTR4(KTR_VM,
996             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997             map->nentries, entry, after_where);
998         VM_MAP_ASSERT_LOCKED(map);
999         KASSERT(after_where == &map->header ||
1000             after_where->end <= entry->start,
1001             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003         KASSERT(after_where->next == &map->header ||
1004             entry->end <= after_where->next->start,
1005             ("vm_map_entry_link: new end %jx next start %jx overlap",
1006             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007
1008         map->nentries++;
1009         entry->prev = after_where;
1010         entry->next = after_where->next;
1011         entry->next->prev = entry;
1012         after_where->next = entry;
1013
1014         if (after_where != &map->header) {
1015                 if (after_where != map->root)
1016                         vm_map_entry_splay(after_where->start, map->root);
1017                 entry->right = after_where->right;
1018                 entry->left = after_where;
1019                 after_where->right = NULL;
1020                 after_where->adj_free = entry->start - after_where->end;
1021                 vm_map_entry_set_max_free(after_where);
1022         } else {
1023                 entry->right = map->root;
1024                 entry->left = NULL;
1025         }
1026         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027             entry->next->start) - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1047                     entry->next->start) - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084             entry->next->start) - entry->end;
1085         vm_map_entry_set_max_free(entry);
1086 }
1087
1088 /*
1089  *      vm_map_lookup_entry:    [ internal use only ]
1090  *
1091  *      Finds the map entry containing (or
1092  *      immediately preceding) the specified address
1093  *      in the given map; the entry is returned
1094  *      in the "entry" parameter.  The boolean
1095  *      result indicates whether the address is
1096  *      actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100         vm_map_t map,
1101         vm_offset_t address,
1102         vm_map_entry_t *entry)  /* OUT */
1103 {
1104         vm_map_entry_t cur;
1105         boolean_t locked;
1106
1107         /*
1108          * If the map is empty, then the map entry immediately preceding
1109          * "address" is the map's header.
1110          */
1111         cur = map->root;
1112         if (cur == NULL)
1113                 *entry = &map->header;
1114         else if (address >= cur->start && cur->end > address) {
1115                 *entry = cur;
1116                 return (TRUE);
1117         } else if ((locked = vm_map_locked(map)) ||
1118             sx_try_upgrade(&map->lock)) {
1119                 /*
1120                  * Splay requires a write lock on the map.  However, it only
1121                  * restructures the binary search tree; it does not otherwise
1122                  * change the map.  Thus, the map's timestamp need not change
1123                  * on a temporary upgrade.
1124                  */
1125                 map->root = cur = vm_map_entry_splay(address, cur);
1126                 if (!locked)
1127                         sx_downgrade(&map->lock);
1128
1129                 /*
1130                  * If "address" is contained within a map entry, the new root
1131                  * is that map entry.  Otherwise, the new root is a map entry
1132                  * immediately before or after "address".
1133                  */
1134                 if (address >= cur->start) {
1135                         *entry = cur;
1136                         if (cur->end > address)
1137                                 return (TRUE);
1138                 } else
1139                         *entry = cur->prev;
1140         } else
1141                 /*
1142                  * Since the map is only locked for read access, perform a
1143                  * standard binary search tree lookup for "address".
1144                  */
1145                 for (;;) {
1146                         if (address < cur->start) {
1147                                 if (cur->left == NULL) {
1148                                         *entry = cur->prev;
1149                                         break;
1150                                 }
1151                                 cur = cur->left;
1152                         } else if (cur->end > address) {
1153                                 *entry = cur;
1154                                 return (TRUE);
1155                         } else {
1156                                 if (cur->right == NULL) {
1157                                         *entry = cur;
1158                                         break;
1159                                 }
1160                                 cur = cur->right;
1161                         }
1162                 }
1163         return (FALSE);
1164 }
1165
1166 /*
1167  *      vm_map_insert:
1168  *
1169  *      Inserts the given whole VM object into the target
1170  *      map at the specified address range.  The object's
1171  *      size should match that of the address range.
1172  *
1173  *      Requires that the map be locked, and leaves it so.
1174  *
1175  *      If object is non-NULL, ref count must be bumped by caller
1176  *      prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182         vm_map_entry_t new_entry, prev_entry, temp_entry;
1183         struct ucred *cred;
1184         vm_eflags_t protoeflags;
1185         vm_inherit_t inheritance;
1186
1187         VM_MAP_ASSERT_LOCKED(map);
1188         KASSERT((object != kmem_object && object != kernel_object) ||
1189             (cow & MAP_COPY_ON_WRITE) == 0,
1190             ("vm_map_insert: kmem or kernel object and COW"));
1191         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193         KASSERT((prot & ~max) == 0,
1194             ("prot %#x is not subset of max_prot %#x", prot, max));
1195
1196         /*
1197          * Check that the start and end points are not bogus.
1198          */
1199         if (start < map->min_offset || end > map->max_offset || start >= end)
1200                 return (KERN_INVALID_ADDRESS);
1201
1202         /*
1203          * Find the entry prior to the proposed starting address; if it's part
1204          * of an existing entry, this range is bogus.
1205          */
1206         if (vm_map_lookup_entry(map, start, &temp_entry))
1207                 return (KERN_NO_SPACE);
1208
1209         prev_entry = temp_entry;
1210
1211         /*
1212          * Assert that the next entry doesn't overlap the end point.
1213          */
1214         if (prev_entry->next != &map->header && prev_entry->next->start < end)
1215                 return (KERN_NO_SPACE);
1216
1217         protoeflags = 0;
1218         if (cow & MAP_COPY_ON_WRITE)
1219                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1220         if (cow & MAP_NOFAULT)
1221                 protoeflags |= MAP_ENTRY_NOFAULT;
1222         if (cow & MAP_DISABLE_SYNCER)
1223                 protoeflags |= MAP_ENTRY_NOSYNC;
1224         if (cow & MAP_DISABLE_COREDUMP)
1225                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1226         if (cow & MAP_STACK_GROWS_DOWN)
1227                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1228         if (cow & MAP_STACK_GROWS_UP)
1229                 protoeflags |= MAP_ENTRY_GROWS_UP;
1230         if (cow & MAP_VN_WRITECOUNT)
1231                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1232         if (cow & MAP_INHERIT_SHARE)
1233                 inheritance = VM_INHERIT_SHARE;
1234         else
1235                 inheritance = VM_INHERIT_DEFAULT;
1236
1237         cred = NULL;
1238         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1239                 goto charged;
1240         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1241             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1242                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1243                         return (KERN_RESOURCE_SHORTAGE);
1244                 KASSERT(object == NULL ||
1245                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1246                     object->cred == NULL,
1247                     ("overcommit: vm_map_insert o %p", object));
1248                 cred = curthread->td_ucred;
1249         }
1250
1251 charged:
1252         /* Expand the kernel pmap, if necessary. */
1253         if (map == kernel_map && end > kernel_vm_end)
1254                 pmap_growkernel(end);
1255         if (object != NULL) {
1256                 /*
1257                  * OBJ_ONEMAPPING must be cleared unless this mapping
1258                  * is trivially proven to be the only mapping for any
1259                  * of the object's pages.  (Object granularity
1260                  * reference counting is insufficient to recognize
1261                  * aliases with precision.)
1262                  */
1263                 VM_OBJECT_WLOCK(object);
1264                 if (object->ref_count > 1 || object->shadow_count != 0)
1265                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1266                 VM_OBJECT_WUNLOCK(object);
1267         } else if (prev_entry != &map->header &&
1268             prev_entry->eflags == protoeflags &&
1269             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1270             prev_entry->end == start && prev_entry->wired_count == 0 &&
1271             (prev_entry->cred == cred ||
1272             (prev_entry->object.vm_object != NULL &&
1273             prev_entry->object.vm_object->cred == cred)) &&
1274             vm_object_coalesce(prev_entry->object.vm_object,
1275             prev_entry->offset,
1276             (vm_size_t)(prev_entry->end - prev_entry->start),
1277             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1278             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1279                 /*
1280                  * We were able to extend the object.  Determine if we
1281                  * can extend the previous map entry to include the
1282                  * new range as well.
1283                  */
1284                 if (prev_entry->inheritance == inheritance &&
1285                     prev_entry->protection == prot &&
1286                     prev_entry->max_protection == max) {
1287                         map->size += end - prev_entry->end;
1288                         prev_entry->end = end;
1289                         vm_map_entry_resize_free(map, prev_entry);
1290                         vm_map_simplify_entry(map, prev_entry);
1291                         return (KERN_SUCCESS);
1292                 }
1293
1294                 /*
1295                  * If we can extend the object but cannot extend the
1296                  * map entry, we have to create a new map entry.  We
1297                  * must bump the ref count on the extended object to
1298                  * account for it.  object may be NULL.
1299                  */
1300                 object = prev_entry->object.vm_object;
1301                 offset = prev_entry->offset +
1302                     (prev_entry->end - prev_entry->start);
1303                 vm_object_reference(object);
1304                 if (cred != NULL && object != NULL && object->cred != NULL &&
1305                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1306                         /* Object already accounts for this uid. */
1307                         cred = NULL;
1308                 }
1309         }
1310         if (cred != NULL)
1311                 crhold(cred);
1312
1313         /*
1314          * Create a new entry
1315          */
1316         new_entry = vm_map_entry_create(map);
1317         new_entry->start = start;
1318         new_entry->end = end;
1319         new_entry->cred = NULL;
1320
1321         new_entry->eflags = protoeflags;
1322         new_entry->object.vm_object = object;
1323         new_entry->offset = offset;
1324         new_entry->avail_ssize = 0;
1325
1326         new_entry->inheritance = inheritance;
1327         new_entry->protection = prot;
1328         new_entry->max_protection = max;
1329         new_entry->wired_count = 0;
1330         new_entry->wiring_thread = NULL;
1331         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1332         new_entry->next_read = start;
1333
1334         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1335             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1336         new_entry->cred = cred;
1337
1338         /*
1339          * Insert the new entry into the list
1340          */
1341         vm_map_entry_link(map, prev_entry, new_entry);
1342         map->size += new_entry->end - new_entry->start;
1343
1344         /*
1345          * Try to coalesce the new entry with both the previous and next
1346          * entries in the list.  Previously, we only attempted to coalesce
1347          * with the previous entry when object is NULL.  Here, we handle the
1348          * other cases, which are less common.
1349          */
1350         vm_map_simplify_entry(map, new_entry);
1351
1352         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1353                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1354                     end - start, cow & MAP_PREFAULT_PARTIAL);
1355         }
1356
1357         return (KERN_SUCCESS);
1358 }
1359
1360 /*
1361  *      vm_map_findspace:
1362  *
1363  *      Find the first fit (lowest VM address) for "length" free bytes
1364  *      beginning at address >= start in the given map.
1365  *
1366  *      In a vm_map_entry, "adj_free" is the amount of free space
1367  *      adjacent (higher address) to this entry, and "max_free" is the
1368  *      maximum amount of contiguous free space in its subtree.  This
1369  *      allows finding a free region in one path down the tree, so
1370  *      O(log n) amortized with splay trees.
1371  *
1372  *      The map must be locked, and leaves it so.
1373  *
1374  *      Returns: 0 on success, and starting address in *addr,
1375  *               1 if insufficient space.
1376  */
1377 int
1378 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1379     vm_offset_t *addr)  /* OUT */
1380 {
1381         vm_map_entry_t entry;
1382         vm_offset_t st;
1383
1384         /*
1385          * Request must fit within min/max VM address and must avoid
1386          * address wrap.
1387          */
1388         if (start < map->min_offset)
1389                 start = map->min_offset;
1390         if (start + length > map->max_offset || start + length < start)
1391                 return (1);
1392
1393         /* Empty tree means wide open address space. */
1394         if (map->root == NULL) {
1395                 *addr = start;
1396                 return (0);
1397         }
1398
1399         /*
1400          * After splay, if start comes before root node, then there
1401          * must be a gap from start to the root.
1402          */
1403         map->root = vm_map_entry_splay(start, map->root);
1404         if (start + length <= map->root->start) {
1405                 *addr = start;
1406                 return (0);
1407         }
1408
1409         /*
1410          * Root is the last node that might begin its gap before
1411          * start, and this is the last comparison where address
1412          * wrap might be a problem.
1413          */
1414         st = (start > map->root->end) ? start : map->root->end;
1415         if (length <= map->root->end + map->root->adj_free - st) {
1416                 *addr = st;
1417                 return (0);
1418         }
1419
1420         /* With max_free, can immediately tell if no solution. */
1421         entry = map->root->right;
1422         if (entry == NULL || length > entry->max_free)
1423                 return (1);
1424
1425         /*
1426          * Search the right subtree in the order: left subtree, root,
1427          * right subtree (first fit).  The previous splay implies that
1428          * all regions in the right subtree have addresses > start.
1429          */
1430         while (entry != NULL) {
1431                 if (entry->left != NULL && entry->left->max_free >= length)
1432                         entry = entry->left;
1433                 else if (entry->adj_free >= length) {
1434                         *addr = entry->end;
1435                         return (0);
1436                 } else
1437                         entry = entry->right;
1438         }
1439
1440         /* Can't get here, so panic if we do. */
1441         panic("vm_map_findspace: max_free corrupt");
1442 }
1443
1444 int
1445 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1446     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1447     vm_prot_t max, int cow)
1448 {
1449         vm_offset_t end;
1450         int result;
1451
1452         end = start + length;
1453         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1454             object == NULL,
1455             ("vm_map_fixed: non-NULL backing object for stack"));
1456         vm_map_lock(map);
1457         VM_MAP_RANGE_CHECK(map, start, end);
1458         if ((cow & MAP_CHECK_EXCL) == 0)
1459                 vm_map_delete(map, start, end);
1460         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1461                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1462                     prot, max, cow);
1463         } else {
1464                 result = vm_map_insert(map, object, offset, start, end,
1465                     prot, max, cow);
1466         }
1467         vm_map_unlock(map);
1468         return (result);
1469 }
1470
1471 /*
1472  *      vm_map_find finds an unallocated region in the target address
1473  *      map with the given length.  The search is defined to be
1474  *      first-fit from the specified address; the region found is
1475  *      returned in the same parameter.
1476  *
1477  *      If object is non-NULL, ref count must be bumped by caller
1478  *      prior to making call to account for the new entry.
1479  */
1480 int
1481 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1482             vm_offset_t *addr,  /* IN/OUT */
1483             vm_size_t length, vm_offset_t max_addr, int find_space,
1484             vm_prot_t prot, vm_prot_t max, int cow)
1485 {
1486         vm_offset_t alignment, initial_addr, start;
1487         int result;
1488
1489         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1490             object == NULL,
1491             ("vm_map_find: non-NULL backing object for stack"));
1492         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1493             (object->flags & OBJ_COLORED) == 0))
1494                 find_space = VMFS_ANY_SPACE;
1495         if (find_space >> 8 != 0) {
1496                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1497                 alignment = (vm_offset_t)1 << (find_space >> 8);
1498         } else
1499                 alignment = 0;
1500         initial_addr = *addr;
1501 again:
1502         start = initial_addr;
1503         vm_map_lock(map);
1504         do {
1505                 if (find_space != VMFS_NO_SPACE) {
1506                         if (vm_map_findspace(map, start, length, addr) ||
1507                             (max_addr != 0 && *addr + length > max_addr)) {
1508                                 vm_map_unlock(map);
1509                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1510                                         find_space = VMFS_ANY_SPACE;
1511                                         goto again;
1512                                 }
1513                                 return (KERN_NO_SPACE);
1514                         }
1515                         switch (find_space) {
1516                         case VMFS_SUPER_SPACE:
1517                         case VMFS_OPTIMAL_SPACE:
1518                                 pmap_align_superpage(object, offset, addr,
1519                                     length);
1520                                 break;
1521                         case VMFS_ANY_SPACE:
1522                                 break;
1523                         default:
1524                                 if ((*addr & (alignment - 1)) != 0) {
1525                                         *addr &= ~(alignment - 1);
1526                                         *addr += alignment;
1527                                 }
1528                                 break;
1529                         }
1530
1531                         start = *addr;
1532                 }
1533                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1534                         result = vm_map_stack_locked(map, start, length,
1535                             sgrowsiz, prot, max, cow);
1536                 } else {
1537                         result = vm_map_insert(map, object, offset, start,
1538                             start + length, prot, max, cow);
1539                 }
1540         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1541             find_space != VMFS_ANY_SPACE);
1542         vm_map_unlock(map);
1543         return (result);
1544 }
1545
1546 /*
1547  *      vm_map_simplify_entry:
1548  *
1549  *      Simplify the given map entry by merging with either neighbor.  This
1550  *      routine also has the ability to merge with both neighbors.
1551  *
1552  *      The map must be locked.
1553  *
1554  *      This routine guarantees that the passed entry remains valid (though
1555  *      possibly extended).  When merging, this routine may delete one or
1556  *      both neighbors.
1557  */
1558 void
1559 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1560 {
1561         vm_map_entry_t next, prev;
1562         vm_size_t prevsize, esize;
1563
1564         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1565             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1566                 return;
1567
1568         prev = entry->prev;
1569         if (prev != &map->header) {
1570                 prevsize = prev->end - prev->start;
1571                 if ( (prev->end == entry->start) &&
1572                      (prev->object.vm_object == entry->object.vm_object) &&
1573                      (!prev->object.vm_object ||
1574                         (prev->offset + prevsize == entry->offset)) &&
1575                      (prev->eflags == entry->eflags) &&
1576                      (prev->protection == entry->protection) &&
1577                      (prev->max_protection == entry->max_protection) &&
1578                      (prev->inheritance == entry->inheritance) &&
1579                      (prev->wired_count == entry->wired_count) &&
1580                      (prev->cred == entry->cred)) {
1581                         vm_map_entry_unlink(map, prev);
1582                         entry->start = prev->start;
1583                         entry->offset = prev->offset;
1584                         if (entry->prev != &map->header)
1585                                 vm_map_entry_resize_free(map, entry->prev);
1586
1587                         /*
1588                          * If the backing object is a vnode object,
1589                          * vm_object_deallocate() calls vrele().
1590                          * However, vrele() does not lock the vnode
1591                          * because the vnode has additional
1592                          * references.  Thus, the map lock can be kept
1593                          * without causing a lock-order reversal with
1594                          * the vnode lock.
1595                          *
1596                          * Since we count the number of virtual page
1597                          * mappings in object->un_pager.vnp.writemappings,
1598                          * the writemappings value should not be adjusted
1599                          * when the entry is disposed of.
1600                          */
1601                         if (prev->object.vm_object)
1602                                 vm_object_deallocate(prev->object.vm_object);
1603                         if (prev->cred != NULL)
1604                                 crfree(prev->cred);
1605                         vm_map_entry_dispose(map, prev);
1606                 }
1607         }
1608
1609         next = entry->next;
1610         if (next != &map->header) {
1611                 esize = entry->end - entry->start;
1612                 if ((entry->end == next->start) &&
1613                     (next->object.vm_object == entry->object.vm_object) &&
1614                      (!entry->object.vm_object ||
1615                         (entry->offset + esize == next->offset)) &&
1616                     (next->eflags == entry->eflags) &&
1617                     (next->protection == entry->protection) &&
1618                     (next->max_protection == entry->max_protection) &&
1619                     (next->inheritance == entry->inheritance) &&
1620                     (next->wired_count == entry->wired_count) &&
1621                     (next->cred == entry->cred)) {
1622                         vm_map_entry_unlink(map, next);
1623                         entry->end = next->end;
1624                         vm_map_entry_resize_free(map, entry);
1625
1626                         /*
1627                          * See comment above.
1628                          */
1629                         if (next->object.vm_object)
1630                                 vm_object_deallocate(next->object.vm_object);
1631                         if (next->cred != NULL)
1632                                 crfree(next->cred);
1633                         vm_map_entry_dispose(map, next);
1634                 }
1635         }
1636 }
1637 /*
1638  *      vm_map_clip_start:      [ internal use only ]
1639  *
1640  *      Asserts that the given entry begins at or after
1641  *      the specified address; if necessary,
1642  *      it splits the entry into two.
1643  */
1644 #define vm_map_clip_start(map, entry, startaddr) \
1645 { \
1646         if (startaddr > entry->start) \
1647                 _vm_map_clip_start(map, entry, startaddr); \
1648 }
1649
1650 /*
1651  *      This routine is called only when it is known that
1652  *      the entry must be split.
1653  */
1654 static void
1655 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1656 {
1657         vm_map_entry_t new_entry;
1658
1659         VM_MAP_ASSERT_LOCKED(map);
1660         KASSERT(entry->end > start && entry->start < start,
1661             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1662
1663         /*
1664          * Split off the front portion -- note that we must insert the new
1665          * entry BEFORE this one, so that this entry has the specified
1666          * starting address.
1667          */
1668         vm_map_simplify_entry(map, entry);
1669
1670         /*
1671          * If there is no object backing this entry, we might as well create
1672          * one now.  If we defer it, an object can get created after the map
1673          * is clipped, and individual objects will be created for the split-up
1674          * map.  This is a bit of a hack, but is also about the best place to
1675          * put this improvement.
1676          */
1677         if (entry->object.vm_object == NULL && !map->system_map) {
1678                 vm_object_t object;
1679                 object = vm_object_allocate(OBJT_DEFAULT,
1680                                 atop(entry->end - entry->start));
1681                 entry->object.vm_object = object;
1682                 entry->offset = 0;
1683                 if (entry->cred != NULL) {
1684                         object->cred = entry->cred;
1685                         object->charge = entry->end - entry->start;
1686                         entry->cred = NULL;
1687                 }
1688         } else if (entry->object.vm_object != NULL &&
1689                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1690                    entry->cred != NULL) {
1691                 VM_OBJECT_WLOCK(entry->object.vm_object);
1692                 KASSERT(entry->object.vm_object->cred == NULL,
1693                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1694                 entry->object.vm_object->cred = entry->cred;
1695                 entry->object.vm_object->charge = entry->end - entry->start;
1696                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1697                 entry->cred = NULL;
1698         }
1699
1700         new_entry = vm_map_entry_create(map);
1701         *new_entry = *entry;
1702
1703         new_entry->end = start;
1704         entry->offset += (start - entry->start);
1705         entry->start = start;
1706         if (new_entry->cred != NULL)
1707                 crhold(entry->cred);
1708
1709         vm_map_entry_link(map, entry->prev, new_entry);
1710
1711         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1712                 vm_object_reference(new_entry->object.vm_object);
1713                 /*
1714                  * The object->un_pager.vnp.writemappings for the
1715                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1716                  * kept as is here.  The virtual pages are
1717                  * re-distributed among the clipped entries, so the sum is
1718                  * left the same.
1719                  */
1720         }
1721 }
1722
1723 /*
1724  *      vm_map_clip_end:        [ internal use only ]
1725  *
1726  *      Asserts that the given entry ends at or before
1727  *      the specified address; if necessary,
1728  *      it splits the entry into two.
1729  */
1730 #define vm_map_clip_end(map, entry, endaddr) \
1731 { \
1732         if ((endaddr) < (entry->end)) \
1733                 _vm_map_clip_end((map), (entry), (endaddr)); \
1734 }
1735
1736 /*
1737  *      This routine is called only when it is known that
1738  *      the entry must be split.
1739  */
1740 static void
1741 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1742 {
1743         vm_map_entry_t new_entry;
1744
1745         VM_MAP_ASSERT_LOCKED(map);
1746         KASSERT(entry->start < end && entry->end > end,
1747             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1748
1749         /*
1750          * If there is no object backing this entry, we might as well create
1751          * one now.  If we defer it, an object can get created after the map
1752          * is clipped, and individual objects will be created for the split-up
1753          * map.  This is a bit of a hack, but is also about the best place to
1754          * put this improvement.
1755          */
1756         if (entry->object.vm_object == NULL && !map->system_map) {
1757                 vm_object_t object;
1758                 object = vm_object_allocate(OBJT_DEFAULT,
1759                                 atop(entry->end - entry->start));
1760                 entry->object.vm_object = object;
1761                 entry->offset = 0;
1762                 if (entry->cred != NULL) {
1763                         object->cred = entry->cred;
1764                         object->charge = entry->end - entry->start;
1765                         entry->cred = NULL;
1766                 }
1767         } else if (entry->object.vm_object != NULL &&
1768                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1769                    entry->cred != NULL) {
1770                 VM_OBJECT_WLOCK(entry->object.vm_object);
1771                 KASSERT(entry->object.vm_object->cred == NULL,
1772                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1773                 entry->object.vm_object->cred = entry->cred;
1774                 entry->object.vm_object->charge = entry->end - entry->start;
1775                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1776                 entry->cred = NULL;
1777         }
1778
1779         /*
1780          * Create a new entry and insert it AFTER the specified entry
1781          */
1782         new_entry = vm_map_entry_create(map);
1783         *new_entry = *entry;
1784
1785         new_entry->start = entry->end = end;
1786         new_entry->offset += (end - entry->start);
1787         if (new_entry->cred != NULL)
1788                 crhold(entry->cred);
1789
1790         vm_map_entry_link(map, entry, new_entry);
1791
1792         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1793                 vm_object_reference(new_entry->object.vm_object);
1794         }
1795 }
1796
1797 /*
1798  *      vm_map_submap:          [ kernel use only ]
1799  *
1800  *      Mark the given range as handled by a subordinate map.
1801  *
1802  *      This range must have been created with vm_map_find,
1803  *      and no other operations may have been performed on this
1804  *      range prior to calling vm_map_submap.
1805  *
1806  *      Only a limited number of operations can be performed
1807  *      within this rage after calling vm_map_submap:
1808  *              vm_fault
1809  *      [Don't try vm_map_copy!]
1810  *
1811  *      To remove a submapping, one must first remove the
1812  *      range from the superior map, and then destroy the
1813  *      submap (if desired).  [Better yet, don't try it.]
1814  */
1815 int
1816 vm_map_submap(
1817         vm_map_t map,
1818         vm_offset_t start,
1819         vm_offset_t end,
1820         vm_map_t submap)
1821 {
1822         vm_map_entry_t entry;
1823         int result = KERN_INVALID_ARGUMENT;
1824
1825         vm_map_lock(map);
1826
1827         VM_MAP_RANGE_CHECK(map, start, end);
1828
1829         if (vm_map_lookup_entry(map, start, &entry)) {
1830                 vm_map_clip_start(map, entry, start);
1831         } else
1832                 entry = entry->next;
1833
1834         vm_map_clip_end(map, entry, end);
1835
1836         if ((entry->start == start) && (entry->end == end) &&
1837             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1838             (entry->object.vm_object == NULL)) {
1839                 entry->object.sub_map = submap;
1840                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1841                 result = KERN_SUCCESS;
1842         }
1843         vm_map_unlock(map);
1844
1845         return (result);
1846 }
1847
1848 /*
1849  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1850  */
1851 #define MAX_INIT_PT     96
1852
1853 /*
1854  *      vm_map_pmap_enter:
1855  *
1856  *      Preload the specified map's pmap with mappings to the specified
1857  *      object's memory-resident pages.  No further physical pages are
1858  *      allocated, and no further virtual pages are retrieved from secondary
1859  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1860  *      limited number of page mappings are created at the low-end of the
1861  *      specified address range.  (For this purpose, a superpage mapping
1862  *      counts as one page mapping.)  Otherwise, all resident pages within
1863  *      the specified address range are mapped.
1864  */
1865 static void
1866 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1867     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1868 {
1869         vm_offset_t start;
1870         vm_page_t p, p_start;
1871         vm_pindex_t mask, psize, threshold, tmpidx;
1872
1873         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1874                 return;
1875         VM_OBJECT_RLOCK(object);
1876         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1877                 VM_OBJECT_RUNLOCK(object);
1878                 VM_OBJECT_WLOCK(object);
1879                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1880                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1881                             size);
1882                         VM_OBJECT_WUNLOCK(object);
1883                         return;
1884                 }
1885                 VM_OBJECT_LOCK_DOWNGRADE(object);
1886         }
1887
1888         psize = atop(size);
1889         if (psize + pindex > object->size) {
1890                 if (object->size < pindex) {
1891                         VM_OBJECT_RUNLOCK(object);
1892                         return;
1893                 }
1894                 psize = object->size - pindex;
1895         }
1896
1897         start = 0;
1898         p_start = NULL;
1899         threshold = MAX_INIT_PT;
1900
1901         p = vm_page_find_least(object, pindex);
1902         /*
1903          * Assert: the variable p is either (1) the page with the
1904          * least pindex greater than or equal to the parameter pindex
1905          * or (2) NULL.
1906          */
1907         for (;
1908              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1909              p = TAILQ_NEXT(p, listq)) {
1910                 /*
1911                  * don't allow an madvise to blow away our really
1912                  * free pages allocating pv entries.
1913                  */
1914                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1915                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1916                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1917                     tmpidx >= threshold)) {
1918                         psize = tmpidx;
1919                         break;
1920                 }
1921                 if (p->valid == VM_PAGE_BITS_ALL) {
1922                         if (p_start == NULL) {
1923                                 start = addr + ptoa(tmpidx);
1924                                 p_start = p;
1925                         }
1926                         /* Jump ahead if a superpage mapping is possible. */
1927                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1928                             (pagesizes[p->psind] - 1)) == 0) {
1929                                 mask = atop(pagesizes[p->psind]) - 1;
1930                                 if (tmpidx + mask < psize &&
1931                                     vm_page_ps_is_valid(p)) {
1932                                         p += mask;
1933                                         threshold += mask;
1934                                 }
1935                         }
1936                 } else if (p_start != NULL) {
1937                         pmap_enter_object(map->pmap, start, addr +
1938                             ptoa(tmpidx), p_start, prot);
1939                         p_start = NULL;
1940                 }
1941         }
1942         if (p_start != NULL)
1943                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1944                     p_start, prot);
1945         VM_OBJECT_RUNLOCK(object);
1946 }
1947
1948 /*
1949  *      vm_map_protect:
1950  *
1951  *      Sets the protection of the specified address
1952  *      region in the target map.  If "set_max" is
1953  *      specified, the maximum protection is to be set;
1954  *      otherwise, only the current protection is affected.
1955  */
1956 int
1957 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1958                vm_prot_t new_prot, boolean_t set_max)
1959 {
1960         vm_map_entry_t current, entry;
1961         vm_object_t obj;
1962         struct ucred *cred;
1963         vm_prot_t old_prot;
1964
1965         if (start == end)
1966                 return (KERN_SUCCESS);
1967
1968         vm_map_lock(map);
1969
1970         /*
1971          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
1972          * need to fault pages into the map and will drop the map lock while
1973          * doing so, and the VM object may end up in an inconsistent state if we
1974          * update the protection on the map entry in between faults.
1975          */
1976         vm_map_wait_busy(map);
1977
1978         VM_MAP_RANGE_CHECK(map, start, end);
1979
1980         if (vm_map_lookup_entry(map, start, &entry)) {
1981                 vm_map_clip_start(map, entry, start);
1982         } else {
1983                 entry = entry->next;
1984         }
1985
1986         /*
1987          * Make a first pass to check for protection violations.
1988          */
1989         for (current = entry; current != &map->header && current->start < end;
1990             current = current->next) {
1991                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1992                         vm_map_unlock(map);
1993                         return (KERN_INVALID_ARGUMENT);
1994                 }
1995                 if ((new_prot & current->max_protection) != new_prot) {
1996                         vm_map_unlock(map);
1997                         return (KERN_PROTECTION_FAILURE);
1998                 }
1999         }
2000
2001         /*
2002          * Do an accounting pass for private read-only mappings that
2003          * now will do cow due to allowed write (e.g. debugger sets
2004          * breakpoint on text segment)
2005          */
2006         for (current = entry; current != &map->header && current->start < end;
2007             current = current->next) {
2008
2009                 vm_map_clip_end(map, current, end);
2010
2011                 if (set_max ||
2012                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2013                     ENTRY_CHARGED(current)) {
2014                         continue;
2015                 }
2016
2017                 cred = curthread->td_ucred;
2018                 obj = current->object.vm_object;
2019
2020                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2021                         if (!swap_reserve(current->end - current->start)) {
2022                                 vm_map_unlock(map);
2023                                 return (KERN_RESOURCE_SHORTAGE);
2024                         }
2025                         crhold(cred);
2026                         current->cred = cred;
2027                         continue;
2028                 }
2029
2030                 VM_OBJECT_WLOCK(obj);
2031                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2032                         VM_OBJECT_WUNLOCK(obj);
2033                         continue;
2034                 }
2035
2036                 /*
2037                  * Charge for the whole object allocation now, since
2038                  * we cannot distinguish between non-charged and
2039                  * charged clipped mapping of the same object later.
2040                  */
2041                 KASSERT(obj->charge == 0,
2042                     ("vm_map_protect: object %p overcharged (entry %p)",
2043                     obj, current));
2044                 if (!swap_reserve(ptoa(obj->size))) {
2045                         VM_OBJECT_WUNLOCK(obj);
2046                         vm_map_unlock(map);
2047                         return (KERN_RESOURCE_SHORTAGE);
2048                 }
2049
2050                 crhold(cred);
2051                 obj->cred = cred;
2052                 obj->charge = ptoa(obj->size);
2053                 VM_OBJECT_WUNLOCK(obj);
2054         }
2055
2056         /*
2057          * Go back and fix up protections. [Note that clipping is not
2058          * necessary the second time.]
2059          */
2060         for (current = entry; current != &map->header && current->start < end;
2061             current = current->next) {
2062                 old_prot = current->protection;
2063
2064                 if (set_max)
2065                         current->protection =
2066                             (current->max_protection = new_prot) &
2067                             old_prot;
2068                 else
2069                         current->protection = new_prot;
2070
2071                 /*
2072                  * For user wired map entries, the normal lazy evaluation of
2073                  * write access upgrades through soft page faults is
2074                  * undesirable.  Instead, immediately copy any pages that are
2075                  * copy-on-write and enable write access in the physical map.
2076                  */
2077                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2078                     (current->protection & VM_PROT_WRITE) != 0 &&
2079                     (old_prot & VM_PROT_WRITE) == 0)
2080                         vm_fault_copy_entry(map, map, current, current, NULL);
2081
2082                 /*
2083                  * When restricting access, update the physical map.  Worry
2084                  * about copy-on-write here.
2085                  */
2086                 if ((old_prot & ~current->protection) != 0) {
2087 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2088                                                         VM_PROT_ALL)
2089                         pmap_protect(map->pmap, current->start,
2090                             current->end,
2091                             current->protection & MASK(current));
2092 #undef  MASK
2093                 }
2094                 vm_map_simplify_entry(map, current);
2095         }
2096         vm_map_unlock(map);
2097         return (KERN_SUCCESS);
2098 }
2099
2100 /*
2101  *      vm_map_madvise:
2102  *
2103  *      This routine traverses a processes map handling the madvise
2104  *      system call.  Advisories are classified as either those effecting
2105  *      the vm_map_entry structure, or those effecting the underlying
2106  *      objects.
2107  */
2108 int
2109 vm_map_madvise(
2110         vm_map_t map,
2111         vm_offset_t start,
2112         vm_offset_t end,
2113         int behav)
2114 {
2115         vm_map_entry_t current, entry;
2116         int modify_map = 0;
2117
2118         /*
2119          * Some madvise calls directly modify the vm_map_entry, in which case
2120          * we need to use an exclusive lock on the map and we need to perform
2121          * various clipping operations.  Otherwise we only need a read-lock
2122          * on the map.
2123          */
2124         switch(behav) {
2125         case MADV_NORMAL:
2126         case MADV_SEQUENTIAL:
2127         case MADV_RANDOM:
2128         case MADV_NOSYNC:
2129         case MADV_AUTOSYNC:
2130         case MADV_NOCORE:
2131         case MADV_CORE:
2132                 if (start == end)
2133                         return (KERN_SUCCESS);
2134                 modify_map = 1;
2135                 vm_map_lock(map);
2136                 break;
2137         case MADV_WILLNEED:
2138         case MADV_DONTNEED:
2139         case MADV_FREE:
2140                 if (start == end)
2141                         return (KERN_SUCCESS);
2142                 vm_map_lock_read(map);
2143                 break;
2144         default:
2145                 return (KERN_INVALID_ARGUMENT);
2146         }
2147
2148         /*
2149          * Locate starting entry and clip if necessary.
2150          */
2151         VM_MAP_RANGE_CHECK(map, start, end);
2152
2153         if (vm_map_lookup_entry(map, start, &entry)) {
2154                 if (modify_map)
2155                         vm_map_clip_start(map, entry, start);
2156         } else {
2157                 entry = entry->next;
2158         }
2159
2160         if (modify_map) {
2161                 /*
2162                  * madvise behaviors that are implemented in the vm_map_entry.
2163                  *
2164                  * We clip the vm_map_entry so that behavioral changes are
2165                  * limited to the specified address range.
2166                  */
2167                 for (current = entry;
2168                      (current != &map->header) && (current->start < end);
2169                      current = current->next
2170                 ) {
2171                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2172                                 continue;
2173
2174                         vm_map_clip_end(map, current, end);
2175
2176                         switch (behav) {
2177                         case MADV_NORMAL:
2178                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2179                                 break;
2180                         case MADV_SEQUENTIAL:
2181                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2182                                 break;
2183                         case MADV_RANDOM:
2184                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2185                                 break;
2186                         case MADV_NOSYNC:
2187                                 current->eflags |= MAP_ENTRY_NOSYNC;
2188                                 break;
2189                         case MADV_AUTOSYNC:
2190                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2191                                 break;
2192                         case MADV_NOCORE:
2193                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2194                                 break;
2195                         case MADV_CORE:
2196                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2197                                 break;
2198                         default:
2199                                 break;
2200                         }
2201                         vm_map_simplify_entry(map, current);
2202                 }
2203                 vm_map_unlock(map);
2204         } else {
2205                 vm_pindex_t pstart, pend;
2206
2207                 /*
2208                  * madvise behaviors that are implemented in the underlying
2209                  * vm_object.
2210                  *
2211                  * Since we don't clip the vm_map_entry, we have to clip
2212                  * the vm_object pindex and count.
2213                  */
2214                 for (current = entry;
2215                      (current != &map->header) && (current->start < end);
2216                      current = current->next
2217                 ) {
2218                         vm_offset_t useEnd, useStart;
2219
2220                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2221                                 continue;
2222
2223                         pstart = OFF_TO_IDX(current->offset);
2224                         pend = pstart + atop(current->end - current->start);
2225                         useStart = current->start;
2226                         useEnd = current->end;
2227
2228                         if (current->start < start) {
2229                                 pstart += atop(start - current->start);
2230                                 useStart = start;
2231                         }
2232                         if (current->end > end) {
2233                                 pend -= atop(current->end - end);
2234                                 useEnd = end;
2235                         }
2236
2237                         if (pstart >= pend)
2238                                 continue;
2239
2240                         /*
2241                          * Perform the pmap_advise() before clearing
2242                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2243                          * concurrent pmap operation, such as pmap_remove(),
2244                          * could clear a reference in the pmap and set
2245                          * PGA_REFERENCED on the page before the pmap_advise()
2246                          * had completed.  Consequently, the page would appear
2247                          * referenced based upon an old reference that
2248                          * occurred before this pmap_advise() ran.
2249                          */
2250                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2251                                 pmap_advise(map->pmap, useStart, useEnd,
2252                                     behav);
2253
2254                         vm_object_madvise(current->object.vm_object, pstart,
2255                             pend, behav);
2256
2257                         /*
2258                          * Pre-populate paging structures in the
2259                          * WILLNEED case.  For wired entries, the
2260                          * paging structures are already populated.
2261                          */
2262                         if (behav == MADV_WILLNEED &&
2263                             current->wired_count == 0) {
2264                                 vm_map_pmap_enter(map,
2265                                     useStart,
2266                                     current->protection,
2267                                     current->object.vm_object,
2268                                     pstart,
2269                                     ptoa(pend - pstart),
2270                                     MAP_PREFAULT_MADVISE
2271                                 );
2272                         }
2273                 }
2274                 vm_map_unlock_read(map);
2275         }
2276         return (0);
2277 }
2278
2279
2280 /*
2281  *      vm_map_inherit:
2282  *
2283  *      Sets the inheritance of the specified address
2284  *      range in the target map.  Inheritance
2285  *      affects how the map will be shared with
2286  *      child maps at the time of vmspace_fork.
2287  */
2288 int
2289 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2290                vm_inherit_t new_inheritance)
2291 {
2292         vm_map_entry_t entry;
2293         vm_map_entry_t temp_entry;
2294
2295         switch (new_inheritance) {
2296         case VM_INHERIT_NONE:
2297         case VM_INHERIT_COPY:
2298         case VM_INHERIT_SHARE:
2299         case VM_INHERIT_ZERO:
2300                 break;
2301         default:
2302                 return (KERN_INVALID_ARGUMENT);
2303         }
2304         if (start == end)
2305                 return (KERN_SUCCESS);
2306         vm_map_lock(map);
2307         VM_MAP_RANGE_CHECK(map, start, end);
2308         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2309                 entry = temp_entry;
2310                 vm_map_clip_start(map, entry, start);
2311         } else
2312                 entry = temp_entry->next;
2313         while ((entry != &map->header) && (entry->start < end)) {
2314                 vm_map_clip_end(map, entry, end);
2315                 entry->inheritance = new_inheritance;
2316                 vm_map_simplify_entry(map, entry);
2317                 entry = entry->next;
2318         }
2319         vm_map_unlock(map);
2320         return (KERN_SUCCESS);
2321 }
2322
2323 /*
2324  *      vm_map_unwire:
2325  *
2326  *      Implements both kernel and user unwiring.
2327  */
2328 int
2329 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2330     int flags)
2331 {
2332         vm_map_entry_t entry, first_entry, tmp_entry;
2333         vm_offset_t saved_start;
2334         unsigned int last_timestamp;
2335         int rv;
2336         boolean_t need_wakeup, result, user_unwire;
2337
2338         if (start == end)
2339                 return (KERN_SUCCESS);
2340         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2341         vm_map_lock(map);
2342         VM_MAP_RANGE_CHECK(map, start, end);
2343         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2344                 if (flags & VM_MAP_WIRE_HOLESOK)
2345                         first_entry = first_entry->next;
2346                 else {
2347                         vm_map_unlock(map);
2348                         return (KERN_INVALID_ADDRESS);
2349                 }
2350         }
2351         last_timestamp = map->timestamp;
2352         entry = first_entry;
2353         while (entry != &map->header && entry->start < end) {
2354                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2355                         /*
2356                          * We have not yet clipped the entry.
2357                          */
2358                         saved_start = (start >= entry->start) ? start :
2359                             entry->start;
2360                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2361                         if (vm_map_unlock_and_wait(map, 0)) {
2362                                 /*
2363                                  * Allow interruption of user unwiring?
2364                                  */
2365                         }
2366                         vm_map_lock(map);
2367                         if (last_timestamp+1 != map->timestamp) {
2368                                 /*
2369                                  * Look again for the entry because the map was
2370                                  * modified while it was unlocked.
2371                                  * Specifically, the entry may have been
2372                                  * clipped, merged, or deleted.
2373                                  */
2374                                 if (!vm_map_lookup_entry(map, saved_start,
2375                                     &tmp_entry)) {
2376                                         if (flags & VM_MAP_WIRE_HOLESOK)
2377                                                 tmp_entry = tmp_entry->next;
2378                                         else {
2379                                                 if (saved_start == start) {
2380                                                         /*
2381                                                          * First_entry has been deleted.
2382                                                          */
2383                                                         vm_map_unlock(map);
2384                                                         return (KERN_INVALID_ADDRESS);
2385                                                 }
2386                                                 end = saved_start;
2387                                                 rv = KERN_INVALID_ADDRESS;
2388                                                 goto done;
2389                                         }
2390                                 }
2391                                 if (entry == first_entry)
2392                                         first_entry = tmp_entry;
2393                                 else
2394                                         first_entry = NULL;
2395                                 entry = tmp_entry;
2396                         }
2397                         last_timestamp = map->timestamp;
2398                         continue;
2399                 }
2400                 vm_map_clip_start(map, entry, start);
2401                 vm_map_clip_end(map, entry, end);
2402                 /*
2403                  * Mark the entry in case the map lock is released.  (See
2404                  * above.)
2405                  */
2406                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2407                     entry->wiring_thread == NULL,
2408                     ("owned map entry %p", entry));
2409                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2410                 entry->wiring_thread = curthread;
2411                 /*
2412                  * Check the map for holes in the specified region.
2413                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2414                  */
2415                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2416                     (entry->end < end && (entry->next == &map->header ||
2417                     entry->next->start > entry->end))) {
2418                         end = entry->end;
2419                         rv = KERN_INVALID_ADDRESS;
2420                         goto done;
2421                 }
2422                 /*
2423                  * If system unwiring, require that the entry is system wired.
2424                  */
2425                 if (!user_unwire &&
2426                     vm_map_entry_system_wired_count(entry) == 0) {
2427                         end = entry->end;
2428                         rv = KERN_INVALID_ARGUMENT;
2429                         goto done;
2430                 }
2431                 entry = entry->next;
2432         }
2433         rv = KERN_SUCCESS;
2434 done:
2435         need_wakeup = FALSE;
2436         if (first_entry == NULL) {
2437                 result = vm_map_lookup_entry(map, start, &first_entry);
2438                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2439                         first_entry = first_entry->next;
2440                 else
2441                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2442         }
2443         for (entry = first_entry; entry != &map->header && entry->start < end;
2444             entry = entry->next) {
2445                 /*
2446                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2447                  * space in the unwired region could have been mapped
2448                  * while the map lock was dropped for draining
2449                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2450                  * could be simultaneously wiring this new mapping
2451                  * entry.  Detect these cases and skip any entries
2452                  * marked as in transition by us.
2453                  */
2454                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2455                     entry->wiring_thread != curthread) {
2456                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2457                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2458                         continue;
2459                 }
2460
2461                 if (rv == KERN_SUCCESS && (!user_unwire ||
2462                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2463                         if (user_unwire)
2464                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2465                         if (entry->wired_count == 1)
2466                                 vm_map_entry_unwire(map, entry);
2467                         else
2468                                 entry->wired_count--;
2469                 }
2470                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2471                     ("vm_map_unwire: in-transition flag missing %p", entry));
2472                 KASSERT(entry->wiring_thread == curthread,
2473                     ("vm_map_unwire: alien wire %p", entry));
2474                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2475                 entry->wiring_thread = NULL;
2476                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2477                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2478                         need_wakeup = TRUE;
2479                 }
2480                 vm_map_simplify_entry(map, entry);
2481         }
2482         vm_map_unlock(map);
2483         if (need_wakeup)
2484                 vm_map_wakeup(map);
2485         return (rv);
2486 }
2487
2488 /*
2489  *      vm_map_wire_entry_failure:
2490  *
2491  *      Handle a wiring failure on the given entry.
2492  *
2493  *      The map should be locked.
2494  */
2495 static void
2496 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2497     vm_offset_t failed_addr)
2498 {
2499
2500         VM_MAP_ASSERT_LOCKED(map);
2501         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2502             entry->wired_count == 1,
2503             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2504         KASSERT(failed_addr < entry->end,
2505             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2506
2507         /*
2508          * If any pages at the start of this entry were successfully wired,
2509          * then unwire them.
2510          */
2511         if (failed_addr > entry->start) {
2512                 pmap_unwire(map->pmap, entry->start, failed_addr);
2513                 vm_object_unwire(entry->object.vm_object, entry->offset,
2514                     failed_addr - entry->start, PQ_ACTIVE);
2515         }
2516
2517         /*
2518          * Assign an out-of-range value to represent the failure to wire this
2519          * entry.
2520          */
2521         entry->wired_count = -1;
2522 }
2523
2524 /*
2525  *      vm_map_wire:
2526  *
2527  *      Implements both kernel and user wiring.
2528  */
2529 int
2530 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2531     int flags)
2532 {
2533         vm_map_entry_t entry, first_entry, tmp_entry;
2534         vm_offset_t faddr, saved_end, saved_start;
2535         unsigned int last_timestamp;
2536         int rv;
2537         boolean_t need_wakeup, result, user_wire;
2538         vm_prot_t prot;
2539
2540         if (start == end)
2541                 return (KERN_SUCCESS);
2542         prot = 0;
2543         if (flags & VM_MAP_WIRE_WRITE)
2544                 prot |= VM_PROT_WRITE;
2545         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2546         vm_map_lock(map);
2547         VM_MAP_RANGE_CHECK(map, start, end);
2548         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2549                 if (flags & VM_MAP_WIRE_HOLESOK)
2550                         first_entry = first_entry->next;
2551                 else {
2552                         vm_map_unlock(map);
2553                         return (KERN_INVALID_ADDRESS);
2554                 }
2555         }
2556         last_timestamp = map->timestamp;
2557         entry = first_entry;
2558         while (entry != &map->header && entry->start < end) {
2559                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2560                         /*
2561                          * We have not yet clipped the entry.
2562                          */
2563                         saved_start = (start >= entry->start) ? start :
2564                             entry->start;
2565                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2566                         if (vm_map_unlock_and_wait(map, 0)) {
2567                                 /*
2568                                  * Allow interruption of user wiring?
2569                                  */
2570                         }
2571                         vm_map_lock(map);
2572                         if (last_timestamp + 1 != map->timestamp) {
2573                                 /*
2574                                  * Look again for the entry because the map was
2575                                  * modified while it was unlocked.
2576                                  * Specifically, the entry may have been
2577                                  * clipped, merged, or deleted.
2578                                  */
2579                                 if (!vm_map_lookup_entry(map, saved_start,
2580                                     &tmp_entry)) {
2581                                         if (flags & VM_MAP_WIRE_HOLESOK)
2582                                                 tmp_entry = tmp_entry->next;
2583                                         else {
2584                                                 if (saved_start == start) {
2585                                                         /*
2586                                                          * first_entry has been deleted.
2587                                                          */
2588                                                         vm_map_unlock(map);
2589                                                         return (KERN_INVALID_ADDRESS);
2590                                                 }
2591                                                 end = saved_start;
2592                                                 rv = KERN_INVALID_ADDRESS;
2593                                                 goto done;
2594                                         }
2595                                 }
2596                                 if (entry == first_entry)
2597                                         first_entry = tmp_entry;
2598                                 else
2599                                         first_entry = NULL;
2600                                 entry = tmp_entry;
2601                         }
2602                         last_timestamp = map->timestamp;
2603                         continue;
2604                 }
2605                 vm_map_clip_start(map, entry, start);
2606                 vm_map_clip_end(map, entry, end);
2607                 /*
2608                  * Mark the entry in case the map lock is released.  (See
2609                  * above.)
2610                  */
2611                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2612                     entry->wiring_thread == NULL,
2613                     ("owned map entry %p", entry));
2614                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2615                 entry->wiring_thread = curthread;
2616                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2617                     || (entry->protection & prot) != prot) {
2618                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2619                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2620                                 end = entry->end;
2621                                 rv = KERN_INVALID_ADDRESS;
2622                                 goto done;
2623                         }
2624                         goto next_entry;
2625                 }
2626                 if (entry->wired_count == 0) {
2627                         entry->wired_count++;
2628                         saved_start = entry->start;
2629                         saved_end = entry->end;
2630
2631                         /*
2632                          * Release the map lock, relying on the in-transition
2633                          * mark.  Mark the map busy for fork.
2634                          */
2635                         vm_map_busy(map);
2636                         vm_map_unlock(map);
2637
2638                         faddr = saved_start;
2639                         do {
2640                                 /*
2641                                  * Simulate a fault to get the page and enter
2642                                  * it into the physical map.
2643                                  */
2644                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2645                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2646                                         break;
2647                         } while ((faddr += PAGE_SIZE) < saved_end);
2648                         vm_map_lock(map);
2649                         vm_map_unbusy(map);
2650                         if (last_timestamp + 1 != map->timestamp) {
2651                                 /*
2652                                  * Look again for the entry because the map was
2653                                  * modified while it was unlocked.  The entry
2654                                  * may have been clipped, but NOT merged or
2655                                  * deleted.
2656                                  */
2657                                 result = vm_map_lookup_entry(map, saved_start,
2658                                     &tmp_entry);
2659                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2660                                 if (entry == first_entry)
2661                                         first_entry = tmp_entry;
2662                                 else
2663                                         first_entry = NULL;
2664                                 entry = tmp_entry;
2665                                 while (entry->end < saved_end) {
2666                                         /*
2667                                          * In case of failure, handle entries
2668                                          * that were not fully wired here;
2669                                          * fully wired entries are handled
2670                                          * later.
2671                                          */
2672                                         if (rv != KERN_SUCCESS &&
2673                                             faddr < entry->end)
2674                                                 vm_map_wire_entry_failure(map,
2675                                                     entry, faddr);
2676                                         entry = entry->next;
2677                                 }
2678                         }
2679                         last_timestamp = map->timestamp;
2680                         if (rv != KERN_SUCCESS) {
2681                                 vm_map_wire_entry_failure(map, entry, faddr);
2682                                 end = entry->end;
2683                                 goto done;
2684                         }
2685                 } else if (!user_wire ||
2686                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2687                         entry->wired_count++;
2688                 }
2689                 /*
2690                  * Check the map for holes in the specified region.
2691                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2692                  */
2693         next_entry:
2694                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2695                     (entry->end < end && (entry->next == &map->header ||
2696                     entry->next->start > entry->end))) {
2697                         end = entry->end;
2698                         rv = KERN_INVALID_ADDRESS;
2699                         goto done;
2700                 }
2701                 entry = entry->next;
2702         }
2703         rv = KERN_SUCCESS;
2704 done:
2705         need_wakeup = FALSE;
2706         if (first_entry == NULL) {
2707                 result = vm_map_lookup_entry(map, start, &first_entry);
2708                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2709                         first_entry = first_entry->next;
2710                 else
2711                         KASSERT(result, ("vm_map_wire: lookup failed"));
2712         }
2713         for (entry = first_entry; entry != &map->header && entry->start < end;
2714             entry = entry->next) {
2715                 /*
2716                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2717                  * space in the unwired region could have been mapped
2718                  * while the map lock was dropped for faulting in the
2719                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2720                  * Moreover, another thread could be simultaneously
2721                  * wiring this new mapping entry.  Detect these cases
2722                  * and skip any entries marked as in transition not by us.
2723                  */
2724                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2725                     entry->wiring_thread != curthread) {
2726                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2727                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2728                         continue;
2729                 }
2730
2731                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2732                         goto next_entry_done;
2733
2734                 if (rv == KERN_SUCCESS) {
2735                         if (user_wire)
2736                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2737                 } else if (entry->wired_count == -1) {
2738                         /*
2739                          * Wiring failed on this entry.  Thus, unwiring is
2740                          * unnecessary.
2741                          */
2742                         entry->wired_count = 0;
2743                 } else if (!user_wire ||
2744                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2745                         /*
2746                          * Undo the wiring.  Wiring succeeded on this entry
2747                          * but failed on a later entry.  
2748                          */
2749                         if (entry->wired_count == 1)
2750                                 vm_map_entry_unwire(map, entry);
2751                         else
2752                                 entry->wired_count--;
2753                 }
2754         next_entry_done:
2755                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2756                     ("vm_map_wire: in-transition flag missing %p", entry));
2757                 KASSERT(entry->wiring_thread == curthread,
2758                     ("vm_map_wire: alien wire %p", entry));
2759                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2760                     MAP_ENTRY_WIRE_SKIPPED);
2761                 entry->wiring_thread = NULL;
2762                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2763                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2764                         need_wakeup = TRUE;
2765                 }
2766                 vm_map_simplify_entry(map, entry);
2767         }
2768         vm_map_unlock(map);
2769         if (need_wakeup)
2770                 vm_map_wakeup(map);
2771         return (rv);
2772 }
2773
2774 /*
2775  * vm_map_sync
2776  *
2777  * Push any dirty cached pages in the address range to their pager.
2778  * If syncio is TRUE, dirty pages are written synchronously.
2779  * If invalidate is TRUE, any cached pages are freed as well.
2780  *
2781  * If the size of the region from start to end is zero, we are
2782  * supposed to flush all modified pages within the region containing
2783  * start.  Unfortunately, a region can be split or coalesced with
2784  * neighboring regions, making it difficult to determine what the
2785  * original region was.  Therefore, we approximate this requirement by
2786  * flushing the current region containing start.
2787  *
2788  * Returns an error if any part of the specified range is not mapped.
2789  */
2790 int
2791 vm_map_sync(
2792         vm_map_t map,
2793         vm_offset_t start,
2794         vm_offset_t end,
2795         boolean_t syncio,
2796         boolean_t invalidate)
2797 {
2798         vm_map_entry_t current;
2799         vm_map_entry_t entry;
2800         vm_size_t size;
2801         vm_object_t object;
2802         vm_ooffset_t offset;
2803         unsigned int last_timestamp;
2804         boolean_t failed;
2805
2806         vm_map_lock_read(map);
2807         VM_MAP_RANGE_CHECK(map, start, end);
2808         if (!vm_map_lookup_entry(map, start, &entry)) {
2809                 vm_map_unlock_read(map);
2810                 return (KERN_INVALID_ADDRESS);
2811         } else if (start == end) {
2812                 start = entry->start;
2813                 end = entry->end;
2814         }
2815         /*
2816          * Make a first pass to check for user-wired memory and holes.
2817          */
2818         for (current = entry; current != &map->header && current->start < end;
2819             current = current->next) {
2820                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2821                         vm_map_unlock_read(map);
2822                         return (KERN_INVALID_ARGUMENT);
2823                 }
2824                 if (end > current->end &&
2825                     (current->next == &map->header ||
2826                         current->end != current->next->start)) {
2827                         vm_map_unlock_read(map);
2828                         return (KERN_INVALID_ADDRESS);
2829                 }
2830         }
2831
2832         if (invalidate)
2833                 pmap_remove(map->pmap, start, end);
2834         failed = FALSE;
2835
2836         /*
2837          * Make a second pass, cleaning/uncaching pages from the indicated
2838          * objects as we go.
2839          */
2840         for (current = entry; current != &map->header && current->start < end;) {
2841                 offset = current->offset + (start - current->start);
2842                 size = (end <= current->end ? end : current->end) - start;
2843                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2844                         vm_map_t smap;
2845                         vm_map_entry_t tentry;
2846                         vm_size_t tsize;
2847
2848                         smap = current->object.sub_map;
2849                         vm_map_lock_read(smap);
2850                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2851                         tsize = tentry->end - offset;
2852                         if (tsize < size)
2853                                 size = tsize;
2854                         object = tentry->object.vm_object;
2855                         offset = tentry->offset + (offset - tentry->start);
2856                         vm_map_unlock_read(smap);
2857                 } else {
2858                         object = current->object.vm_object;
2859                 }
2860                 vm_object_reference(object);
2861                 last_timestamp = map->timestamp;
2862                 vm_map_unlock_read(map);
2863                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2864                         failed = TRUE;
2865                 start += size;
2866                 vm_object_deallocate(object);
2867                 vm_map_lock_read(map);
2868                 if (last_timestamp == map->timestamp ||
2869                     !vm_map_lookup_entry(map, start, &current))
2870                         current = current->next;
2871         }
2872
2873         vm_map_unlock_read(map);
2874         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2875 }
2876
2877 /*
2878  *      vm_map_entry_unwire:    [ internal use only ]
2879  *
2880  *      Make the region specified by this entry pageable.
2881  *
2882  *      The map in question should be locked.
2883  *      [This is the reason for this routine's existence.]
2884  */
2885 static void
2886 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2887 {
2888
2889         VM_MAP_ASSERT_LOCKED(map);
2890         KASSERT(entry->wired_count > 0,
2891             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2892         pmap_unwire(map->pmap, entry->start, entry->end);
2893         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2894             entry->start, PQ_ACTIVE);
2895         entry->wired_count = 0;
2896 }
2897
2898 static void
2899 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2900 {
2901
2902         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2903                 vm_object_deallocate(entry->object.vm_object);
2904         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2905 }
2906
2907 /*
2908  *      vm_map_entry_delete:    [ internal use only ]
2909  *
2910  *      Deallocate the given entry from the target map.
2911  */
2912 static void
2913 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2914 {
2915         vm_object_t object;
2916         vm_pindex_t offidxstart, offidxend, count, size1;
2917         vm_size_t size;
2918
2919         vm_map_entry_unlink(map, entry);
2920         object = entry->object.vm_object;
2921         size = entry->end - entry->start;
2922         map->size -= size;
2923
2924         if (entry->cred != NULL) {
2925                 swap_release_by_cred(size, entry->cred);
2926                 crfree(entry->cred);
2927         }
2928
2929         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2930             (object != NULL)) {
2931                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2932                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2933                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2934                 count = atop(size);
2935                 offidxstart = OFF_TO_IDX(entry->offset);
2936                 offidxend = offidxstart + count;
2937                 VM_OBJECT_WLOCK(object);
2938                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2939                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2940                     object == kernel_object || object == kmem_object)) {
2941                         vm_object_collapse(object);
2942
2943                         /*
2944                          * The option OBJPR_NOTMAPPED can be passed here
2945                          * because vm_map_delete() already performed
2946                          * pmap_remove() on the only mapping to this range
2947                          * of pages. 
2948                          */
2949                         vm_object_page_remove(object, offidxstart, offidxend,
2950                             OBJPR_NOTMAPPED);
2951                         if (object->type == OBJT_SWAP)
2952                                 swap_pager_freespace(object, offidxstart,
2953                                     count);
2954                         if (offidxend >= object->size &&
2955                             offidxstart < object->size) {
2956                                 size1 = object->size;
2957                                 object->size = offidxstart;
2958                                 if (object->cred != NULL) {
2959                                         size1 -= object->size;
2960                                         KASSERT(object->charge >= ptoa(size1),
2961                                             ("object %p charge < 0", object));
2962                                         swap_release_by_cred(ptoa(size1),
2963                                             object->cred);
2964                                         object->charge -= ptoa(size1);
2965                                 }
2966                         }
2967                 }
2968                 VM_OBJECT_WUNLOCK(object);
2969         } else
2970                 entry->object.vm_object = NULL;
2971         if (map->system_map)
2972                 vm_map_entry_deallocate(entry, TRUE);
2973         else {
2974                 entry->next = curthread->td_map_def_user;
2975                 curthread->td_map_def_user = entry;
2976         }
2977 }
2978
2979 /*
2980  *      vm_map_delete:  [ internal use only ]
2981  *
2982  *      Deallocates the given address range from the target
2983  *      map.
2984  */
2985 int
2986 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2987 {
2988         vm_map_entry_t entry;
2989         vm_map_entry_t first_entry;
2990
2991         VM_MAP_ASSERT_LOCKED(map);
2992         if (start == end)
2993                 return (KERN_SUCCESS);
2994
2995         /*
2996          * Find the start of the region, and clip it
2997          */
2998         if (!vm_map_lookup_entry(map, start, &first_entry))
2999                 entry = first_entry->next;
3000         else {
3001                 entry = first_entry;
3002                 vm_map_clip_start(map, entry, start);
3003         }
3004
3005         /*
3006          * Step through all entries in this region
3007          */
3008         while ((entry != &map->header) && (entry->start < end)) {
3009                 vm_map_entry_t next;
3010
3011                 /*
3012                  * Wait for wiring or unwiring of an entry to complete.
3013                  * Also wait for any system wirings to disappear on
3014                  * user maps.
3015                  */
3016                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3017                     (vm_map_pmap(map) != kernel_pmap &&
3018                     vm_map_entry_system_wired_count(entry) != 0)) {
3019                         unsigned int last_timestamp;
3020                         vm_offset_t saved_start;
3021                         vm_map_entry_t tmp_entry;
3022
3023                         saved_start = entry->start;
3024                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3025                         last_timestamp = map->timestamp;
3026                         (void) vm_map_unlock_and_wait(map, 0);
3027                         vm_map_lock(map);
3028                         if (last_timestamp + 1 != map->timestamp) {
3029                                 /*
3030                                  * Look again for the entry because the map was
3031                                  * modified while it was unlocked.
3032                                  * Specifically, the entry may have been
3033                                  * clipped, merged, or deleted.
3034                                  */
3035                                 if (!vm_map_lookup_entry(map, saved_start,
3036                                                          &tmp_entry))
3037                                         entry = tmp_entry->next;
3038                                 else {
3039                                         entry = tmp_entry;
3040                                         vm_map_clip_start(map, entry,
3041                                                           saved_start);
3042                                 }
3043                         }
3044                         continue;
3045                 }
3046                 vm_map_clip_end(map, entry, end);
3047
3048                 next = entry->next;
3049
3050                 /*
3051                  * Unwire before removing addresses from the pmap; otherwise,
3052                  * unwiring will put the entries back in the pmap.
3053                  */
3054                 if (entry->wired_count != 0) {
3055                         vm_map_entry_unwire(map, entry);
3056                 }
3057
3058                 pmap_remove(map->pmap, entry->start, entry->end);
3059
3060                 /*
3061                  * Delete the entry only after removing all pmap
3062                  * entries pointing to its pages.  (Otherwise, its
3063                  * page frames may be reallocated, and any modify bits
3064                  * will be set in the wrong object!)
3065                  */
3066                 vm_map_entry_delete(map, entry);
3067                 entry = next;
3068         }
3069         return (KERN_SUCCESS);
3070 }
3071
3072 /*
3073  *      vm_map_remove:
3074  *
3075  *      Remove the given address range from the target map.
3076  *      This is the exported form of vm_map_delete.
3077  */
3078 int
3079 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3080 {
3081         int result;
3082
3083         vm_map_lock(map);
3084         VM_MAP_RANGE_CHECK(map, start, end);
3085         result = vm_map_delete(map, start, end);
3086         vm_map_unlock(map);
3087         return (result);
3088 }
3089
3090 /*
3091  *      vm_map_check_protection:
3092  *
3093  *      Assert that the target map allows the specified privilege on the
3094  *      entire address region given.  The entire region must be allocated.
3095  *
3096  *      WARNING!  This code does not and should not check whether the
3097  *      contents of the region is accessible.  For example a smaller file
3098  *      might be mapped into a larger address space.
3099  *
3100  *      NOTE!  This code is also called by munmap().
3101  *
3102  *      The map must be locked.  A read lock is sufficient.
3103  */
3104 boolean_t
3105 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3106                         vm_prot_t protection)
3107 {
3108         vm_map_entry_t entry;
3109         vm_map_entry_t tmp_entry;
3110
3111         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3112                 return (FALSE);
3113         entry = tmp_entry;
3114
3115         while (start < end) {
3116                 if (entry == &map->header)
3117                         return (FALSE);
3118                 /*
3119                  * No holes allowed!
3120                  */
3121                 if (start < entry->start)
3122                         return (FALSE);
3123                 /*
3124                  * Check protection associated with entry.
3125                  */
3126                 if ((entry->protection & protection) != protection)
3127                         return (FALSE);
3128                 /* go to next entry */
3129                 start = entry->end;
3130                 entry = entry->next;
3131         }
3132         return (TRUE);
3133 }
3134
3135 /*
3136  *      vm_map_copy_entry:
3137  *
3138  *      Copies the contents of the source entry to the destination
3139  *      entry.  The entries *must* be aligned properly.
3140  */
3141 static void
3142 vm_map_copy_entry(
3143         vm_map_t src_map,
3144         vm_map_t dst_map,
3145         vm_map_entry_t src_entry,
3146         vm_map_entry_t dst_entry,
3147         vm_ooffset_t *fork_charge)
3148 {
3149         vm_object_t src_object;
3150         vm_map_entry_t fake_entry;
3151         vm_offset_t size;
3152         struct ucred *cred;
3153         int charged;
3154
3155         VM_MAP_ASSERT_LOCKED(dst_map);
3156
3157         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3158                 return;
3159
3160         if (src_entry->wired_count == 0 ||
3161             (src_entry->protection & VM_PROT_WRITE) == 0) {
3162                 /*
3163                  * If the source entry is marked needs_copy, it is already
3164                  * write-protected.
3165                  */
3166                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3167                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3168                         pmap_protect(src_map->pmap,
3169                             src_entry->start,
3170                             src_entry->end,
3171                             src_entry->protection & ~VM_PROT_WRITE);
3172                 }
3173
3174                 /*
3175                  * Make a copy of the object.
3176                  */
3177                 size = src_entry->end - src_entry->start;
3178                 if ((src_object = src_entry->object.vm_object) != NULL) {
3179                         VM_OBJECT_WLOCK(src_object);
3180                         charged = ENTRY_CHARGED(src_entry);
3181                         if (src_object->handle == NULL &&
3182                             (src_object->type == OBJT_DEFAULT ||
3183                             src_object->type == OBJT_SWAP)) {
3184                                 vm_object_collapse(src_object);
3185                                 if ((src_object->flags & (OBJ_NOSPLIT |
3186                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3187                                         vm_object_split(src_entry);
3188                                         src_object =
3189                                             src_entry->object.vm_object;
3190                                 }
3191                         }
3192                         vm_object_reference_locked(src_object);
3193                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3194                         if (src_entry->cred != NULL &&
3195                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3196                                 KASSERT(src_object->cred == NULL,
3197                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3198                                      src_object));
3199                                 src_object->cred = src_entry->cred;
3200                                 src_object->charge = size;
3201                         }
3202                         VM_OBJECT_WUNLOCK(src_object);
3203                         dst_entry->object.vm_object = src_object;
3204                         if (charged) {
3205                                 cred = curthread->td_ucred;
3206                                 crhold(cred);
3207                                 dst_entry->cred = cred;
3208                                 *fork_charge += size;
3209                                 if (!(src_entry->eflags &
3210                                       MAP_ENTRY_NEEDS_COPY)) {
3211                                         crhold(cred);
3212                                         src_entry->cred = cred;
3213                                         *fork_charge += size;
3214                                 }
3215                         }
3216                         src_entry->eflags |= MAP_ENTRY_COW |
3217                             MAP_ENTRY_NEEDS_COPY;
3218                         dst_entry->eflags |= MAP_ENTRY_COW |
3219                             MAP_ENTRY_NEEDS_COPY;
3220                         dst_entry->offset = src_entry->offset;
3221                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3222                                 /*
3223                                  * MAP_ENTRY_VN_WRITECNT cannot
3224                                  * indicate write reference from
3225                                  * src_entry, since the entry is
3226                                  * marked as needs copy.  Allocate a
3227                                  * fake entry that is used to
3228                                  * decrement object->un_pager.vnp.writecount
3229                                  * at the appropriate time.  Attach
3230                                  * fake_entry to the deferred list.
3231                                  */
3232                                 fake_entry = vm_map_entry_create(dst_map);
3233                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3234                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3235                                 vm_object_reference(src_object);
3236                                 fake_entry->object.vm_object = src_object;
3237                                 fake_entry->start = src_entry->start;
3238                                 fake_entry->end = src_entry->end;
3239                                 fake_entry->next = curthread->td_map_def_user;
3240                                 curthread->td_map_def_user = fake_entry;
3241                         }
3242
3243                         pmap_copy(dst_map->pmap, src_map->pmap,
3244                             dst_entry->start, dst_entry->end - dst_entry->start,
3245                             src_entry->start);
3246                 } else {
3247                         dst_entry->object.vm_object = NULL;
3248                         dst_entry->offset = 0;
3249                         if (src_entry->cred != NULL) {
3250                                 dst_entry->cred = curthread->td_ucred;
3251                                 crhold(dst_entry->cred);
3252                                 *fork_charge += size;
3253                         }
3254                 }
3255         } else {
3256                 /*
3257                  * We don't want to make writeable wired pages copy-on-write.
3258                  * Immediately copy these pages into the new map by simulating
3259                  * page faults.  The new pages are pageable.
3260                  */
3261                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3262                     fork_charge);
3263         }
3264 }
3265
3266 /*
3267  * vmspace_map_entry_forked:
3268  * Update the newly-forked vmspace each time a map entry is inherited
3269  * or copied.  The values for vm_dsize and vm_tsize are approximate
3270  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3271  */
3272 static void
3273 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3274     vm_map_entry_t entry)
3275 {
3276         vm_size_t entrysize;
3277         vm_offset_t newend;
3278
3279         entrysize = entry->end - entry->start;
3280         vm2->vm_map.size += entrysize;
3281         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3282                 vm2->vm_ssize += btoc(entrysize);
3283         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3284             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3285                 newend = MIN(entry->end,
3286                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3287                 vm2->vm_dsize += btoc(newend - entry->start);
3288         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3289             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3290                 newend = MIN(entry->end,
3291                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3292                 vm2->vm_tsize += btoc(newend - entry->start);
3293         }
3294 }
3295
3296 /*
3297  * vmspace_fork:
3298  * Create a new process vmspace structure and vm_map
3299  * based on those of an existing process.  The new map
3300  * is based on the old map, according to the inheritance
3301  * values on the regions in that map.
3302  *
3303  * XXX It might be worth coalescing the entries added to the new vmspace.
3304  *
3305  * The source map must not be locked.
3306  */
3307 struct vmspace *
3308 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3309 {
3310         struct vmspace *vm2;
3311         vm_map_t new_map, old_map;
3312         vm_map_entry_t new_entry, old_entry;
3313         vm_object_t object;
3314         int locked;
3315
3316         old_map = &vm1->vm_map;
3317         /* Copy immutable fields of vm1 to vm2. */
3318         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3319         if (vm2 == NULL)
3320                 return (NULL);
3321         vm2->vm_taddr = vm1->vm_taddr;
3322         vm2->vm_daddr = vm1->vm_daddr;
3323         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3324         vm_map_lock(old_map);
3325         if (old_map->busy)
3326                 vm_map_wait_busy(old_map);
3327         new_map = &vm2->vm_map;
3328         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3329         KASSERT(locked, ("vmspace_fork: lock failed"));
3330
3331         old_entry = old_map->header.next;
3332
3333         while (old_entry != &old_map->header) {
3334                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3335                         panic("vm_map_fork: encountered a submap");
3336
3337                 switch (old_entry->inheritance) {
3338                 case VM_INHERIT_NONE:
3339                         break;
3340
3341                 case VM_INHERIT_SHARE:
3342                         /*
3343                          * Clone the entry, creating the shared object if necessary.
3344                          */
3345                         object = old_entry->object.vm_object;
3346                         if (object == NULL) {
3347                                 object = vm_object_allocate(OBJT_DEFAULT,
3348                                         atop(old_entry->end - old_entry->start));
3349                                 old_entry->object.vm_object = object;
3350                                 old_entry->offset = 0;
3351                                 if (old_entry->cred != NULL) {
3352                                         object->cred = old_entry->cred;
3353                                         object->charge = old_entry->end -
3354                                             old_entry->start;
3355                                         old_entry->cred = NULL;
3356                                 }
3357                         }
3358
3359                         /*
3360                          * Add the reference before calling vm_object_shadow
3361                          * to insure that a shadow object is created.
3362                          */
3363                         vm_object_reference(object);
3364                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3365                                 vm_object_shadow(&old_entry->object.vm_object,
3366                                     &old_entry->offset,
3367                                     old_entry->end - old_entry->start);
3368                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3369                                 /* Transfer the second reference too. */
3370                                 vm_object_reference(
3371                                     old_entry->object.vm_object);
3372
3373                                 /*
3374                                  * As in vm_map_simplify_entry(), the
3375                                  * vnode lock will not be acquired in
3376                                  * this call to vm_object_deallocate().
3377                                  */
3378                                 vm_object_deallocate(object);
3379                                 object = old_entry->object.vm_object;
3380                         }
3381                         VM_OBJECT_WLOCK(object);
3382                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3383                         if (old_entry->cred != NULL) {
3384                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3385                                 object->cred = old_entry->cred;
3386                                 object->charge = old_entry->end - old_entry->start;
3387                                 old_entry->cred = NULL;
3388                         }
3389
3390                         /*
3391                          * Assert the correct state of the vnode
3392                          * v_writecount while the object is locked, to
3393                          * not relock it later for the assertion
3394                          * correctness.
3395                          */
3396                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3397                             object->type == OBJT_VNODE) {
3398                                 KASSERT(((struct vnode *)object->handle)->
3399                                     v_writecount > 0,
3400                                     ("vmspace_fork: v_writecount %p", object));
3401                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3402                                     ("vmspace_fork: vnp.writecount %p",
3403                                     object));
3404                         }
3405                         VM_OBJECT_WUNLOCK(object);
3406
3407                         /*
3408                          * Clone the entry, referencing the shared object.
3409                          */
3410                         new_entry = vm_map_entry_create(new_map);
3411                         *new_entry = *old_entry;
3412                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3413                             MAP_ENTRY_IN_TRANSITION);
3414                         new_entry->wiring_thread = NULL;
3415                         new_entry->wired_count = 0;
3416                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3417                                 vnode_pager_update_writecount(object,
3418                                     new_entry->start, new_entry->end);
3419                         }
3420
3421                         /*
3422                          * Insert the entry into the new map -- we know we're
3423                          * inserting at the end of the new map.
3424                          */
3425                         vm_map_entry_link(new_map, new_map->header.prev,
3426                             new_entry);
3427                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3428
3429                         /*
3430                          * Update the physical map
3431                          */
3432                         pmap_copy(new_map->pmap, old_map->pmap,
3433                             new_entry->start,
3434                             (old_entry->end - old_entry->start),
3435                             old_entry->start);
3436                         break;
3437
3438                 case VM_INHERIT_COPY:
3439                         /*
3440                          * Clone the entry and link into the map.
3441                          */
3442                         new_entry = vm_map_entry_create(new_map);
3443                         *new_entry = *old_entry;
3444                         /*
3445                          * Copied entry is COW over the old object.
3446                          */
3447                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3448                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3449                         new_entry->wiring_thread = NULL;
3450                         new_entry->wired_count = 0;
3451                         new_entry->object.vm_object = NULL;
3452                         new_entry->cred = NULL;
3453                         vm_map_entry_link(new_map, new_map->header.prev,
3454                             new_entry);
3455                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3456                         vm_map_copy_entry(old_map, new_map, old_entry,
3457                             new_entry, fork_charge);
3458                         break;
3459
3460                 case VM_INHERIT_ZERO:
3461                         /*
3462                          * Create a new anonymous mapping entry modelled from
3463                          * the old one.
3464                          */
3465                         new_entry = vm_map_entry_create(new_map);
3466                         memset(new_entry, 0, sizeof(*new_entry));
3467
3468                         new_entry->start = old_entry->start;
3469                         new_entry->end = old_entry->end;
3470                         new_entry->avail_ssize = old_entry->avail_ssize;
3471                         new_entry->eflags = old_entry->eflags &
3472                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3473                             MAP_ENTRY_VN_WRITECNT);
3474                         new_entry->protection = old_entry->protection;
3475                         new_entry->max_protection = old_entry->max_protection;
3476                         new_entry->inheritance = VM_INHERIT_ZERO;
3477
3478                         vm_map_entry_link(new_map, new_map->header.prev,
3479                             new_entry);
3480                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3481
3482                         new_entry->cred = curthread->td_ucred;
3483                         crhold(new_entry->cred);
3484                         *fork_charge += (new_entry->end - new_entry->start);
3485
3486                         break;
3487                 }
3488                 old_entry = old_entry->next;
3489         }
3490         /*
3491          * Use inlined vm_map_unlock() to postpone handling the deferred
3492          * map entries, which cannot be done until both old_map and
3493          * new_map locks are released.
3494          */
3495         sx_xunlock(&old_map->lock);
3496         sx_xunlock(&new_map->lock);
3497         vm_map_process_deferred();
3498
3499         return (vm2);
3500 }
3501
3502 int
3503 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3504     vm_prot_t prot, vm_prot_t max, int cow)
3505 {
3506         vm_size_t growsize, init_ssize;
3507         rlim_t lmemlim, vmemlim;
3508         int rv;
3509
3510         growsize = sgrowsiz;
3511         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3512         vm_map_lock(map);
3513         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3514         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3515         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3516                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3517                         rv = KERN_NO_SPACE;
3518                         goto out;
3519                 }
3520         }
3521         /* If we would blow our VMEM resource limit, no go */
3522         if (map->size + init_ssize > vmemlim) {
3523                 rv = KERN_NO_SPACE;
3524                 goto out;
3525         }
3526         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3527             max, cow);
3528 out:
3529         vm_map_unlock(map);
3530         return (rv);
3531 }
3532
3533 static int
3534 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3535     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3536 {
3537         vm_map_entry_t new_entry, prev_entry;
3538         vm_offset_t bot, top;
3539         vm_size_t init_ssize;
3540         int orient, rv;
3541
3542         /*
3543          * The stack orientation is piggybacked with the cow argument.
3544          * Extract it into orient and mask the cow argument so that we
3545          * don't pass it around further.
3546          * NOTE: We explicitly allow bi-directional stacks.
3547          */
3548         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3549         KASSERT(orient != 0, ("No stack grow direction"));
3550
3551         if (addrbos < vm_map_min(map) ||
3552             addrbos > vm_map_max(map) ||
3553             addrbos + max_ssize < addrbos)
3554                 return (KERN_NO_SPACE);
3555
3556         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3557
3558         /* If addr is already mapped, no go */
3559         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3560                 return (KERN_NO_SPACE);
3561
3562         /*
3563          * If we can't accommodate max_ssize in the current mapping, no go.
3564          * However, we need to be aware that subsequent user mappings might
3565          * map into the space we have reserved for stack, and currently this
3566          * space is not protected.
3567          *
3568          * Hopefully we will at least detect this condition when we try to
3569          * grow the stack.
3570          */
3571         if ((prev_entry->next != &map->header) &&
3572             (prev_entry->next->start < addrbos + max_ssize))
3573                 return (KERN_NO_SPACE);
3574
3575         /*
3576          * We initially map a stack of only init_ssize.  We will grow as
3577          * needed later.  Depending on the orientation of the stack (i.e.
3578          * the grow direction) we either map at the top of the range, the
3579          * bottom of the range or in the middle.
3580          *
3581          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3582          * and cow to be 0.  Possibly we should eliminate these as input
3583          * parameters, and just pass these values here in the insert call.
3584          */
3585         if (orient == MAP_STACK_GROWS_DOWN)
3586                 bot = addrbos + max_ssize - init_ssize;
3587         else if (orient == MAP_STACK_GROWS_UP)
3588                 bot = addrbos;
3589         else
3590                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3591         top = bot + init_ssize;
3592         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3593
3594         /* Now set the avail_ssize amount. */
3595         if (rv == KERN_SUCCESS) {
3596                 new_entry = prev_entry->next;
3597                 if (new_entry->end != top || new_entry->start != bot)
3598                         panic("Bad entry start/end for new stack entry");
3599
3600                 new_entry->avail_ssize = max_ssize - init_ssize;
3601                 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3602                     (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3603                     ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3604                 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3605                     (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3606                     ("new entry lacks MAP_ENTRY_GROWS_UP"));
3607         }
3608
3609         return (rv);
3610 }
3611
3612 static int stack_guard_page = 0;
3613 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3614     &stack_guard_page, 0,
3615     "Insert stack guard page ahead of the growable segments.");
3616
3617 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3618  * desired address is already mapped, or if we successfully grow
3619  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3620  * stack range (this is strange, but preserves compatibility with
3621  * the grow function in vm_machdep.c).
3622  */
3623 int
3624 vm_map_growstack(struct proc *p, vm_offset_t addr)
3625 {
3626         vm_map_entry_t next_entry, prev_entry;
3627         vm_map_entry_t new_entry, stack_entry;
3628         struct vmspace *vm = p->p_vmspace;
3629         vm_map_t map = &vm->vm_map;
3630         vm_offset_t end;
3631         vm_size_t growsize;
3632         size_t grow_amount, max_grow;
3633         rlim_t lmemlim, stacklim, vmemlim;
3634         int is_procstack, rv;
3635         struct ucred *cred;
3636 #ifdef notyet
3637         uint64_t limit;
3638 #endif
3639 #ifdef RACCT
3640         int error;
3641 #endif
3642
3643         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3644         stacklim = lim_cur(curthread, RLIMIT_STACK);
3645         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3646 Retry:
3647
3648         vm_map_lock_read(map);
3649
3650         /* If addr is already in the entry range, no need to grow.*/
3651         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3652                 vm_map_unlock_read(map);
3653                 return (KERN_SUCCESS);
3654         }
3655
3656         next_entry = prev_entry->next;
3657         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3658                 /*
3659                  * This entry does not grow upwards. Since the address lies
3660                  * beyond this entry, the next entry (if one exists) has to
3661                  * be a downward growable entry. The entry list header is
3662                  * never a growable entry, so it suffices to check the flags.
3663                  */
3664                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3665                         vm_map_unlock_read(map);
3666                         return (KERN_SUCCESS);
3667                 }
3668                 stack_entry = next_entry;
3669         } else {
3670                 /*
3671                  * This entry grows upward. If the next entry does not at
3672                  * least grow downwards, this is the entry we need to grow.
3673                  * otherwise we have two possible choices and we have to
3674                  * select one.
3675                  */
3676                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3677                         /*
3678                          * We have two choices; grow the entry closest to
3679                          * the address to minimize the amount of growth.
3680                          */
3681                         if (addr - prev_entry->end <= next_entry->start - addr)
3682                                 stack_entry = prev_entry;
3683                         else
3684                                 stack_entry = next_entry;
3685                 } else
3686                         stack_entry = prev_entry;
3687         }
3688
3689         if (stack_entry == next_entry) {
3690                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3691                 KASSERT(addr < stack_entry->start, ("foo"));
3692                 end = (prev_entry != &map->header) ? prev_entry->end :
3693                     stack_entry->start - stack_entry->avail_ssize;
3694                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3695                 max_grow = stack_entry->start - end;
3696         } else {
3697                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3698                 KASSERT(addr >= stack_entry->end, ("foo"));
3699                 end = (next_entry != &map->header) ? next_entry->start :
3700                     stack_entry->end + stack_entry->avail_ssize;
3701                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3702                 max_grow = end - stack_entry->end;
3703         }
3704
3705         if (grow_amount > stack_entry->avail_ssize) {
3706                 vm_map_unlock_read(map);
3707                 return (KERN_NO_SPACE);
3708         }
3709
3710         /*
3711          * If there is no longer enough space between the entries nogo, and
3712          * adjust the available space.  Note: this  should only happen if the
3713          * user has mapped into the stack area after the stack was created,
3714          * and is probably an error.
3715          *
3716          * This also effectively destroys any guard page the user might have
3717          * intended by limiting the stack size.
3718          */
3719         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3720                 if (vm_map_lock_upgrade(map))
3721                         goto Retry;
3722
3723                 stack_entry->avail_ssize = max_grow;
3724
3725                 vm_map_unlock(map);
3726                 return (KERN_NO_SPACE);
3727         }
3728
3729         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3730             addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3731
3732         /*
3733          * If this is the main process stack, see if we're over the stack
3734          * limit.
3735          */
3736         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3737                 vm_map_unlock_read(map);
3738                 return (KERN_NO_SPACE);
3739         }
3740 #ifdef RACCT
3741         if (racct_enable) {
3742                 PROC_LOCK(p);
3743                 if (is_procstack && racct_set(p, RACCT_STACK,
3744                     ctob(vm->vm_ssize) + grow_amount)) {
3745                         PROC_UNLOCK(p);
3746                         vm_map_unlock_read(map);
3747                         return (KERN_NO_SPACE);
3748                 }
3749                 PROC_UNLOCK(p);
3750         }
3751 #endif
3752
3753         /* Round up the grow amount modulo sgrowsiz */
3754         growsize = sgrowsiz;
3755         grow_amount = roundup(grow_amount, growsize);
3756         if (grow_amount > stack_entry->avail_ssize)
3757                 grow_amount = stack_entry->avail_ssize;
3758         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3759                 grow_amount = trunc_page((vm_size_t)stacklim) -
3760                     ctob(vm->vm_ssize);
3761         }
3762 #ifdef notyet
3763         PROC_LOCK(p);
3764         limit = racct_get_available(p, RACCT_STACK);
3765         PROC_UNLOCK(p);
3766         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3767                 grow_amount = limit - ctob(vm->vm_ssize);
3768 #endif
3769         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3770                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3771                         vm_map_unlock_read(map);
3772                         rv = KERN_NO_SPACE;
3773                         goto out;
3774                 }
3775 #ifdef RACCT
3776                 if (racct_enable) {
3777                         PROC_LOCK(p);
3778                         if (racct_set(p, RACCT_MEMLOCK,
3779                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3780                                 PROC_UNLOCK(p);
3781                                 vm_map_unlock_read(map);
3782                                 rv = KERN_NO_SPACE;
3783                                 goto out;
3784                         }
3785                         PROC_UNLOCK(p);
3786                 }
3787 #endif
3788         }
3789         /* If we would blow our VMEM resource limit, no go */
3790         if (map->size + grow_amount > vmemlim) {
3791                 vm_map_unlock_read(map);
3792                 rv = KERN_NO_SPACE;
3793                 goto out;
3794         }
3795 #ifdef RACCT
3796         if (racct_enable) {
3797                 PROC_LOCK(p);
3798                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3799                         PROC_UNLOCK(p);
3800                         vm_map_unlock_read(map);
3801                         rv = KERN_NO_SPACE;
3802                         goto out;
3803                 }
3804                 PROC_UNLOCK(p);
3805         }
3806 #endif
3807
3808         if (vm_map_lock_upgrade(map))
3809                 goto Retry;
3810
3811         if (stack_entry == next_entry) {
3812                 /*
3813                  * Growing downward.
3814                  */
3815                 /* Get the preliminary new entry start value */
3816                 addr = stack_entry->start - grow_amount;
3817
3818                 /*
3819                  * If this puts us into the previous entry, cut back our
3820                  * growth to the available space. Also, see the note above.
3821                  */
3822                 if (addr < end) {
3823                         stack_entry->avail_ssize = max_grow;
3824                         addr = end;
3825                         if (stack_guard_page)
3826                                 addr += PAGE_SIZE;
3827                 }
3828
3829                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3830                     next_entry->protection, next_entry->max_protection,
3831                     MAP_STACK_GROWS_DOWN);
3832
3833                 /* Adjust the available stack space by the amount we grew. */
3834                 if (rv == KERN_SUCCESS) {
3835                         new_entry = prev_entry->next;
3836                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3837                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3838                         KASSERT(new_entry->start == addr, ("foo"));
3839                         KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3840                             0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3841                         grow_amount = new_entry->end - new_entry->start;
3842                         new_entry->avail_ssize = stack_entry->avail_ssize -
3843                             grow_amount;
3844                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3845                 }
3846         } else {
3847                 /*
3848                  * Growing upward.
3849                  */
3850                 addr = stack_entry->end + grow_amount;
3851
3852                 /*
3853                  * If this puts us into the next entry, cut back our growth
3854                  * to the available space. Also, see the note above.
3855                  */
3856                 if (addr > end) {
3857                         stack_entry->avail_ssize = end - stack_entry->end;
3858                         addr = end;
3859                         if (stack_guard_page)
3860                                 addr -= PAGE_SIZE;
3861                 }
3862
3863                 grow_amount = addr - stack_entry->end;
3864                 cred = stack_entry->cred;
3865                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3866                         cred = stack_entry->object.vm_object->cred;
3867                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3868                         rv = KERN_NO_SPACE;
3869                 /* Grow the underlying object if applicable. */
3870                 else if (stack_entry->object.vm_object == NULL ||
3871                     vm_object_coalesce(stack_entry->object.vm_object,
3872                     stack_entry->offset,
3873                     (vm_size_t)(stack_entry->end - stack_entry->start),
3874                     (vm_size_t)grow_amount, cred != NULL)) {
3875                         map->size += (addr - stack_entry->end);
3876                         /* Update the current entry. */
3877                         stack_entry->end = addr;
3878                         stack_entry->avail_ssize -= grow_amount;
3879                         vm_map_entry_resize_free(map, stack_entry);
3880                         rv = KERN_SUCCESS;
3881                 } else
3882                         rv = KERN_FAILURE;
3883         }
3884
3885         if (rv == KERN_SUCCESS && is_procstack)
3886                 vm->vm_ssize += btoc(grow_amount);
3887
3888         vm_map_unlock(map);
3889
3890         /*
3891          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3892          */
3893         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3894                 vm_map_wire(map,
3895                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3896                     (stack_entry == next_entry) ? stack_entry->start : addr,
3897                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3898         }
3899
3900 out:
3901 #ifdef RACCT
3902         if (racct_enable && rv != KERN_SUCCESS) {
3903                 PROC_LOCK(p);
3904                 error = racct_set(p, RACCT_VMEM, map->size);
3905                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3906                 if (!old_mlock) {
3907                         error = racct_set(p, RACCT_MEMLOCK,
3908                             ptoa(pmap_wired_count(map->pmap)));
3909                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3910                 }
3911                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3912                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3913                 PROC_UNLOCK(p);
3914         }
3915 #endif
3916
3917         return (rv);
3918 }
3919
3920 /*
3921  * Unshare the specified VM space for exec.  If other processes are
3922  * mapped to it, then create a new one.  The new vmspace is null.
3923  */
3924 int
3925 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3926 {
3927         struct vmspace *oldvmspace = p->p_vmspace;
3928         struct vmspace *newvmspace;
3929
3930         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3931             ("vmspace_exec recursed"));
3932         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3933         if (newvmspace == NULL)
3934                 return (ENOMEM);
3935         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3936         /*
3937          * This code is written like this for prototype purposes.  The
3938          * goal is to avoid running down the vmspace here, but let the
3939          * other process's that are still using the vmspace to finally
3940          * run it down.  Even though there is little or no chance of blocking
3941          * here, it is a good idea to keep this form for future mods.
3942          */
3943         PROC_VMSPACE_LOCK(p);
3944         p->p_vmspace = newvmspace;
3945         PROC_VMSPACE_UNLOCK(p);
3946         if (p == curthread->td_proc)
3947                 pmap_activate(curthread);
3948         curthread->td_pflags |= TDP_EXECVMSPC;
3949         return (0);
3950 }
3951
3952 /*
3953  * Unshare the specified VM space for forcing COW.  This
3954  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3955  */
3956 int
3957 vmspace_unshare(struct proc *p)
3958 {
3959         struct vmspace *oldvmspace = p->p_vmspace;
3960         struct vmspace *newvmspace;
3961         vm_ooffset_t fork_charge;
3962
3963         if (oldvmspace->vm_refcnt == 1)
3964                 return (0);
3965         fork_charge = 0;
3966         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3967         if (newvmspace == NULL)
3968                 return (ENOMEM);
3969         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3970                 vmspace_free(newvmspace);
3971                 return (ENOMEM);
3972         }
3973         PROC_VMSPACE_LOCK(p);
3974         p->p_vmspace = newvmspace;
3975         PROC_VMSPACE_UNLOCK(p);
3976         if (p == curthread->td_proc)
3977                 pmap_activate(curthread);
3978         vmspace_free(oldvmspace);
3979         return (0);
3980 }
3981
3982 /*
3983  *      vm_map_lookup:
3984  *
3985  *      Finds the VM object, offset, and
3986  *      protection for a given virtual address in the
3987  *      specified map, assuming a page fault of the
3988  *      type specified.
3989  *
3990  *      Leaves the map in question locked for read; return
3991  *      values are guaranteed until a vm_map_lookup_done
3992  *      call is performed.  Note that the map argument
3993  *      is in/out; the returned map must be used in
3994  *      the call to vm_map_lookup_done.
3995  *
3996  *      A handle (out_entry) is returned for use in
3997  *      vm_map_lookup_done, to make that fast.
3998  *
3999  *      If a lookup is requested with "write protection"
4000  *      specified, the map may be changed to perform virtual
4001  *      copying operations, although the data referenced will
4002  *      remain the same.
4003  */
4004 int
4005 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4006               vm_offset_t vaddr,
4007               vm_prot_t fault_typea,
4008               vm_map_entry_t *out_entry,        /* OUT */
4009               vm_object_t *object,              /* OUT */
4010               vm_pindex_t *pindex,              /* OUT */
4011               vm_prot_t *out_prot,              /* OUT */
4012               boolean_t *wired)                 /* OUT */
4013 {
4014         vm_map_entry_t entry;
4015         vm_map_t map = *var_map;
4016         vm_prot_t prot;
4017         vm_prot_t fault_type = fault_typea;
4018         vm_object_t eobject;
4019         vm_size_t size;
4020         struct ucred *cred;
4021
4022 RetryLookup:;
4023
4024         vm_map_lock_read(map);
4025
4026         /*
4027          * Lookup the faulting address.
4028          */
4029         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4030                 vm_map_unlock_read(map);
4031                 return (KERN_INVALID_ADDRESS);
4032         }
4033
4034         entry = *out_entry;
4035
4036         /*
4037          * Handle submaps.
4038          */
4039         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4040                 vm_map_t old_map = map;
4041
4042                 *var_map = map = entry->object.sub_map;
4043                 vm_map_unlock_read(old_map);
4044                 goto RetryLookup;
4045         }
4046
4047         /*
4048          * Check whether this task is allowed to have this page.
4049          */
4050         prot = entry->protection;
4051         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4052         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4053                 vm_map_unlock_read(map);
4054                 return (KERN_PROTECTION_FAILURE);
4055         }
4056         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4057             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4058             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4059             ("entry %p flags %x", entry, entry->eflags));
4060         if ((fault_typea & VM_PROT_COPY) != 0 &&
4061             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4062             (entry->eflags & MAP_ENTRY_COW) == 0) {
4063                 vm_map_unlock_read(map);
4064                 return (KERN_PROTECTION_FAILURE);
4065         }
4066
4067         /*
4068          * If this page is not pageable, we have to get it for all possible
4069          * accesses.
4070          */
4071         *wired = (entry->wired_count != 0);
4072         if (*wired)
4073                 fault_type = entry->protection;
4074         size = entry->end - entry->start;
4075         /*
4076          * If the entry was copy-on-write, we either ...
4077          */
4078         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4079                 /*
4080                  * If we want to write the page, we may as well handle that
4081                  * now since we've got the map locked.
4082                  *
4083                  * If we don't need to write the page, we just demote the
4084                  * permissions allowed.
4085                  */
4086                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4087                     (fault_typea & VM_PROT_COPY) != 0) {
4088                         /*
4089                          * Make a new object, and place it in the object
4090                          * chain.  Note that no new references have appeared
4091                          * -- one just moved from the map to the new
4092                          * object.
4093                          */
4094                         if (vm_map_lock_upgrade(map))
4095                                 goto RetryLookup;
4096
4097                         if (entry->cred == NULL) {
4098                                 /*
4099                                  * The debugger owner is charged for
4100                                  * the memory.
4101                                  */
4102                                 cred = curthread->td_ucred;
4103                                 crhold(cred);
4104                                 if (!swap_reserve_by_cred(size, cred)) {
4105                                         crfree(cred);
4106                                         vm_map_unlock(map);
4107                                         return (KERN_RESOURCE_SHORTAGE);
4108                                 }
4109                                 entry->cred = cred;
4110                         }
4111                         vm_object_shadow(&entry->object.vm_object,
4112                             &entry->offset, size);
4113                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4114                         eobject = entry->object.vm_object;
4115                         if (eobject->cred != NULL) {
4116                                 /*
4117                                  * The object was not shadowed.
4118                                  */
4119                                 swap_release_by_cred(size, entry->cred);
4120                                 crfree(entry->cred);
4121                                 entry->cred = NULL;
4122                         } else if (entry->cred != NULL) {
4123                                 VM_OBJECT_WLOCK(eobject);
4124                                 eobject->cred = entry->cred;
4125                                 eobject->charge = size;
4126                                 VM_OBJECT_WUNLOCK(eobject);
4127                                 entry->cred = NULL;
4128                         }
4129
4130                         vm_map_lock_downgrade(map);
4131                 } else {
4132                         /*
4133                          * We're attempting to read a copy-on-write page --
4134                          * don't allow writes.
4135                          */
4136                         prot &= ~VM_PROT_WRITE;
4137                 }
4138         }
4139
4140         /*
4141          * Create an object if necessary.
4142          */
4143         if (entry->object.vm_object == NULL &&
4144             !map->system_map) {
4145                 if (vm_map_lock_upgrade(map))
4146                         goto RetryLookup;
4147                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4148                     atop(size));
4149                 entry->offset = 0;
4150                 if (entry->cred != NULL) {
4151                         VM_OBJECT_WLOCK(entry->object.vm_object);
4152                         entry->object.vm_object->cred = entry->cred;
4153                         entry->object.vm_object->charge = size;
4154                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4155                         entry->cred = NULL;
4156                 }
4157                 vm_map_lock_downgrade(map);
4158         }
4159
4160         /*
4161          * Return the object/offset from this entry.  If the entry was
4162          * copy-on-write or empty, it has been fixed up.
4163          */
4164         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4165         *object = entry->object.vm_object;
4166
4167         *out_prot = prot;
4168         return (KERN_SUCCESS);
4169 }
4170
4171 /*
4172  *      vm_map_lookup_locked:
4173  *
4174  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4175  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4176  */
4177 int
4178 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4179                      vm_offset_t vaddr,
4180                      vm_prot_t fault_typea,
4181                      vm_map_entry_t *out_entry, /* OUT */
4182                      vm_object_t *object,       /* OUT */
4183                      vm_pindex_t *pindex,       /* OUT */
4184                      vm_prot_t *out_prot,       /* OUT */
4185                      boolean_t *wired)          /* OUT */
4186 {
4187         vm_map_entry_t entry;
4188         vm_map_t map = *var_map;
4189         vm_prot_t prot;
4190         vm_prot_t fault_type = fault_typea;
4191
4192         /*
4193          * Lookup the faulting address.
4194          */
4195         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4196                 return (KERN_INVALID_ADDRESS);
4197
4198         entry = *out_entry;
4199
4200         /*
4201          * Fail if the entry refers to a submap.
4202          */
4203         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4204                 return (KERN_FAILURE);
4205
4206         /*
4207          * Check whether this task is allowed to have this page.
4208          */
4209         prot = entry->protection;
4210         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4211         if ((fault_type & prot) != fault_type)
4212                 return (KERN_PROTECTION_FAILURE);
4213
4214         /*
4215          * If this page is not pageable, we have to get it for all possible
4216          * accesses.
4217          */
4218         *wired = (entry->wired_count != 0);
4219         if (*wired)
4220                 fault_type = entry->protection;
4221
4222         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4223                 /*
4224                  * Fail if the entry was copy-on-write for a write fault.
4225                  */
4226                 if (fault_type & VM_PROT_WRITE)
4227                         return (KERN_FAILURE);
4228                 /*
4229                  * We're attempting to read a copy-on-write page --
4230                  * don't allow writes.
4231                  */
4232                 prot &= ~VM_PROT_WRITE;
4233         }
4234
4235         /*
4236          * Fail if an object should be created.
4237          */
4238         if (entry->object.vm_object == NULL && !map->system_map)
4239                 return (KERN_FAILURE);
4240
4241         /*
4242          * Return the object/offset from this entry.  If the entry was
4243          * copy-on-write or empty, it has been fixed up.
4244          */
4245         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4246         *object = entry->object.vm_object;
4247
4248         *out_prot = prot;
4249         return (KERN_SUCCESS);
4250 }
4251
4252 /*
4253  *      vm_map_lookup_done:
4254  *
4255  *      Releases locks acquired by a vm_map_lookup
4256  *      (according to the handle returned by that lookup).
4257  */
4258 void
4259 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4260 {
4261         /*
4262          * Unlock the main-level map
4263          */
4264         vm_map_unlock_read(map);
4265 }
4266
4267 #include "opt_ddb.h"
4268 #ifdef DDB
4269 #include <sys/kernel.h>
4270
4271 #include <ddb/ddb.h>
4272
4273 static void
4274 vm_map_print(vm_map_t map)
4275 {
4276         vm_map_entry_t entry;
4277
4278         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4279             (void *)map,
4280             (void *)map->pmap, map->nentries, map->timestamp);
4281
4282         db_indent += 2;
4283         for (entry = map->header.next; entry != &map->header;
4284             entry = entry->next) {
4285                 db_iprintf("map entry %p: start=%p, end=%p\n",
4286                     (void *)entry, (void *)entry->start, (void *)entry->end);
4287                 {
4288                         static char *inheritance_name[4] =
4289                         {"share", "copy", "none", "donate_copy"};
4290
4291                         db_iprintf(" prot=%x/%x/%s",
4292                             entry->protection,
4293                             entry->max_protection,
4294                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4295                         if (entry->wired_count != 0)
4296                                 db_printf(", wired");
4297                 }
4298                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4299                         db_printf(", share=%p, offset=0x%jx\n",
4300                             (void *)entry->object.sub_map,
4301                             (uintmax_t)entry->offset);
4302                         if ((entry->prev == &map->header) ||
4303                             (entry->prev->object.sub_map !=
4304                                 entry->object.sub_map)) {
4305                                 db_indent += 2;
4306                                 vm_map_print((vm_map_t)entry->object.sub_map);
4307                                 db_indent -= 2;
4308                         }
4309                 } else {
4310                         if (entry->cred != NULL)
4311                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4312                         db_printf(", object=%p, offset=0x%jx",
4313                             (void *)entry->object.vm_object,
4314                             (uintmax_t)entry->offset);
4315                         if (entry->object.vm_object && entry->object.vm_object->cred)
4316                                 db_printf(", obj ruid %d charge %jx",
4317                                     entry->object.vm_object->cred->cr_ruid,
4318                                     (uintmax_t)entry->object.vm_object->charge);
4319                         if (entry->eflags & MAP_ENTRY_COW)
4320                                 db_printf(", copy (%s)",
4321                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4322                         db_printf("\n");
4323
4324                         if ((entry->prev == &map->header) ||
4325                             (entry->prev->object.vm_object !=
4326                                 entry->object.vm_object)) {
4327                                 db_indent += 2;
4328                                 vm_object_print((db_expr_t)(intptr_t)
4329                                                 entry->object.vm_object,
4330                                                 0, 0, (char *)0);
4331                                 db_indent -= 2;
4332                         }
4333                 }
4334         }
4335         db_indent -= 2;
4336 }
4337
4338 DB_SHOW_COMMAND(map, map)
4339 {
4340
4341         if (!have_addr) {
4342                 db_printf("usage: show map <addr>\n");
4343                 return;
4344         }
4345         vm_map_print((vm_map_t)addr);
4346 }
4347
4348 DB_SHOW_COMMAND(procvm, procvm)
4349 {
4350         struct proc *p;
4351
4352         if (have_addr) {
4353                 p = db_lookup_proc(addr);
4354         } else {
4355                 p = curproc;
4356         }
4357
4358         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4359             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4360             (void *)vmspace_pmap(p->p_vmspace));
4361
4362         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4363 }
4364
4365 #endif /* DDB */