]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFC r315281:
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100  *      Virtual memory maps provide for the mapping, protection,
101  *      and sharing of virtual memory objects.  In addition,
102  *      this module provides for an efficient virtual copy of
103  *      memory from one map to another.
104  *
105  *      Synchronization is required prior to most operations.
106  *
107  *      Maps consist of an ordered doubly-linked list of simple
108  *      entries; a self-adjusting binary search tree of these
109  *      entries is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /* 
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
161  *
162  *      Asserts that the starting and ending region
163  *      addresses fall within the valid range of the map.
164  */
165 #define VM_MAP_RANGE_CHECK(map, start, end)             \
166                 {                                       \
167                 if (start < vm_map_min(map))            \
168                         start = vm_map_min(map);        \
169                 if (end > vm_map_max(map))              \
170                         end = vm_map_max(map);          \
171                 if (start > end)                        \
172                         start = end;                    \
173                 }
174
175 /*
176  *      vm_map_startup:
177  *
178  *      Initialize the vm_map module.  Must be called before
179  *      any other vm_map routines.
180  *
181  *      Map and entry structures are allocated from the general
182  *      purpose memory pool with some exceptions:
183  *
184  *      - The kernel map and kmem submap are allocated statically.
185  *      - Kernel map entries are allocated out of a static pool.
186  *
187  *      These restrictions are necessary since malloc() uses the
188  *      maps and requires map entries.
189  */
190
191 void
192 vm_map_startup(void)
193 {
194         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197             vm_map_zdtor,
198 #else
199             NULL,
200 #endif
201             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202         uma_prealloc(mapzone, MAX_KMAP);
203         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210             vmspace_zdtor,
211 #else
212             NULL,
213 #endif
214             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220         struct vmspace *vm;
221
222         vm = (struct vmspace *)mem;
223
224         vm->vm_map.pmap = NULL;
225         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226         PMAP_LOCK_INIT(vmspace_pmap(vm));
227         return (0);
228 }
229
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233         vm_map_t map;
234
235         map = (vm_map_t)mem;
236         memset(map, 0, sizeof(*map));
237         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238         sx_init(&map->lock, "vm map (user)");
239         return (0);
240 }
241
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246         struct vmspace *vm;
247
248         vm = (struct vmspace *)mem;
249
250         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255         vm_map_t map;
256
257         map = (vm_map_t)mem;
258         KASSERT(map->nentries == 0,
259             ("map %p nentries == %d on free.",
260             map, map->nentries));
261         KASSERT(map->size == 0,
262             ("map %p size == %lu on free.",
263             map, (unsigned long)map->size));
264 }
265 #endif  /* INVARIANTS */
266
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276         struct vmspace *vm;
277
278         vm = uma_zalloc(vmspace_zone, M_WAITOK);
279
280         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281
282         if (pinit == NULL)
283                 pinit = &pmap_pinit;
284
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336             vm->vm_map.max_offset);
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         do {
393                 refcnt = vm->vm_refcnt;
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         do {
439                 refcnt = vm->vm_refcnt;
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         /* Remove the daemon's reference to the old address space. */
494         KASSERT(oldvm->vm_refcnt > 1,
495             ("vmspace_switch_aio: oldvm dropping last reference"));
496         vmspace_free(oldvm);
497 }
498
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502
503         if (map->system_map)
504                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
505         else
506                 sx_xlock_(&map->lock, file, line);
507         map->timestamp++;
508 }
509
510 static void
511 vm_map_process_deferred(void)
512 {
513         struct thread *td;
514         vm_map_entry_t entry, next;
515         vm_object_t object;
516
517         td = curthread;
518         entry = td->td_map_def_user;
519         td->td_map_def_user = NULL;
520         while (entry != NULL) {
521                 next = entry->next;
522                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523                         /*
524                          * Decrement the object's writemappings and
525                          * possibly the vnode's v_writecount.
526                          */
527                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528                             ("Submap with writecount"));
529                         object = entry->object.vm_object;
530                         KASSERT(object != NULL, ("No object for writecount"));
531                         vnode_pager_release_writecount(object, entry->start,
532                             entry->end);
533                 }
534                 vm_map_entry_deallocate(entry, FALSE);
535                 entry = next;
536         }
537 }
538
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542
543         if (map->system_map)
544                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545         else {
546                 sx_xunlock_(&map->lock, file, line);
547                 vm_map_process_deferred();
548         }
549 }
550
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554
555         if (map->system_map)
556                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
557         else
558                 sx_slock_(&map->lock, file, line);
559 }
560
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564
565         if (map->system_map)
566                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567         else {
568                 sx_sunlock_(&map->lock, file, line);
569                 vm_map_process_deferred();
570         }
571 }
572
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576         int error;
577
578         error = map->system_map ?
579             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580             !sx_try_xlock_(&map->lock, file, line);
581         if (error == 0)
582                 map->timestamp++;
583         return (error == 0);
584 }
585
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589         int error;
590
591         error = map->system_map ?
592             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593             !sx_try_slock_(&map->lock, file, line);
594         return (error == 0);
595 }
596
597 /*
598  *      _vm_map_lock_upgrade:   [ internal use only ]
599  *
600  *      Tries to upgrade a read (shared) lock on the specified map to a write
601  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *      returned without a read or write lock held.
604  *
605  *      Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610         unsigned int last_timestamp;
611
612         if (map->system_map) {
613                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614         } else {
615                 if (!sx_try_upgrade_(&map->lock, file, line)) {
616                         last_timestamp = map->timestamp;
617                         sx_sunlock_(&map->lock, file, line);
618                         vm_map_process_deferred();
619                         /*
620                          * If the map's timestamp does not change while the
621                          * map is unlocked, then the upgrade succeeds.
622                          */
623                         sx_xlock_(&map->lock, file, line);
624                         if (last_timestamp != map->timestamp) {
625                                 sx_xunlock_(&map->lock, file, line);
626                                 return (1);
627                         }
628                 }
629         }
630         map->timestamp++;
631         return (0);
632 }
633
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637
638         if (map->system_map) {
639                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640         } else
641                 sx_downgrade_(&map->lock, file, line);
642 }
643
644 /*
645  *      vm_map_locked:
646  *
647  *      Returns a non-zero value if the caller holds a write (exclusive) lock
648  *      on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653
654         if (map->system_map)
655                 return (mtx_owned(&map->system_mtx));
656         else
657                 return (sx_xlocked(&map->lock));
658 }
659
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664
665         if (map->system_map)
666                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667         else
668                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670
671 #define VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define VM_MAP_ASSERT_LOCKED(map)
675 #endif
676
677 /*
678  *      _vm_map_unlock_and_wait:
679  *
680  *      Atomically releases the lock on the specified map and puts the calling
681  *      thread to sleep.  The calling thread will remain asleep until either
682  *      vm_map_wakeup() is performed on the map or the specified timeout is
683  *      exceeded.
684  *
685  *      WARNING!  This function does not perform deferred deallocations of
686  *      objects and map entries.  Therefore, the calling thread is expected to
687  *      reacquire the map lock after reawakening and later perform an ordinary
688  *      unlock operation, such as vm_map_unlock(), before completing its
689  *      operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694
695         mtx_lock(&map_sleep_mtx);
696         if (map->system_map)
697                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698         else
699                 sx_xunlock_(&map->lock, file, line);
700         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701             timo));
702 }
703
704 /*
705  *      vm_map_wakeup:
706  *
707  *      Awaken any threads that have slept on the map using
708  *      vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713
714         /*
715          * Acquire and release map_sleep_mtx to prevent a wakeup()
716          * from being performed (and lost) between the map unlock
717          * and the msleep() in _vm_map_unlock_and_wait().
718          */
719         mtx_lock(&map_sleep_mtx);
720         mtx_unlock(&map_sleep_mtx);
721         wakeup(&map->root);
722 }
723
724 void
725 vm_map_busy(vm_map_t map)
726 {
727
728         VM_MAP_ASSERT_LOCKED(map);
729         map->busy++;
730 }
731
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735
736         VM_MAP_ASSERT_LOCKED(map);
737         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740                 wakeup(&map->busy);
741         }
742 }
743
744 void 
745 vm_map_wait_busy(vm_map_t map)
746 {
747
748         VM_MAP_ASSERT_LOCKED(map);
749         while (map->busy) {
750                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751                 if (map->system_map)
752                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753                 else
754                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755         }
756         map->timestamp++;
757 }
758
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762         return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764
765 /*
766  *      vm_map_create:
767  *
768  *      Creates and returns a new empty VM map with
769  *      the given physical map structure, and having
770  *      the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775         vm_map_t result;
776
777         result = uma_zalloc(mapzone, M_WAITOK);
778         CTR1(KTR_VM, "vm_map_create: %p", result);
779         _vm_map_init(result, pmap, min, max);
780         return (result);
781 }
782
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790
791         map->header.next = map->header.prev = &map->header;
792         map->needs_wakeup = FALSE;
793         map->system_map = 0;
794         map->pmap = pmap;
795         map->min_offset = min;
796         map->max_offset = max;
797         map->flags = 0;
798         map->root = NULL;
799         map->timestamp = 0;
800         map->busy = 0;
801 }
802
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806
807         _vm_map_init(map, pmap, min, max);
808         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809         sx_init(&map->lock, "user map");
810 }
811
812 /*
813  *      vm_map_entry_dispose:   [ internal use only ]
814  *
815  *      Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822
823 /*
824  *      vm_map_entry_create:    [ internal use only ]
825  *
826  *      Allocates a VM map entry for insertion.
827  *      No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832         vm_map_entry_t new_entry;
833
834         if (map->system_map)
835                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836         else
837                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
838         if (new_entry == NULL)
839                 panic("vm_map_entry_create: kernel resources exhausted");
840         return (new_entry);
841 }
842
843 /*
844  *      vm_map_entry_set_behavior:
845  *
846  *      Set the expected access behavior, either normal, random, or
847  *      sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853             (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855
856 /*
857  *      vm_map_entry_set_max_free:
858  *
859  *      Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864
865         entry->max_free = entry->adj_free;
866         if (entry->left != NULL && entry->left->max_free > entry->max_free)
867                 entry->max_free = entry->left->max_free;
868         if (entry->right != NULL && entry->right->max_free > entry->max_free)
869                 entry->max_free = entry->right->max_free;
870 }
871
872 /*
873  *      vm_map_entry_splay:
874  *
875  *      The Sleator and Tarjan top-down splay algorithm with the
876  *      following variation.  Max_free must be computed bottom-up, so
877  *      on the downward pass, maintain the left and right spines in
878  *      reverse order.  Then, make a second pass up each side to fix
879  *      the pointers and compute max_free.  The time bound is O(log n)
880  *      amortized.
881  *
882  *      The new root is the vm_map_entry containing "addr", or else an
883  *      adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *      The map must be locked, and leaves it so.
886  *
887  *      Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892         vm_map_entry_t llist, rlist;
893         vm_map_entry_t ltree, rtree;
894         vm_map_entry_t y;
895
896         /* Special case of empty tree. */
897         if (root == NULL)
898                 return (root);
899
900         /*
901          * Pass One: Splay down the tree until we find addr or a NULL
902          * pointer where addr would go.  llist and rlist are the two
903          * sides in reverse order (bottom-up), with llist linked by
904          * the right pointer and rlist linked by the left pointer in
905          * the vm_map_entry.  Wait until Pass Two to set max_free on
906          * the two spines.
907          */
908         llist = NULL;
909         rlist = NULL;
910         for (;;) {
911                 /* root is never NULL in here. */
912                 if (addr < root->start) {
913                         y = root->left;
914                         if (y == NULL)
915                                 break;
916                         if (addr < y->start && y->left != NULL) {
917                                 /* Rotate right and put y on rlist. */
918                                 root->left = y->right;
919                                 y->right = root;
920                                 vm_map_entry_set_max_free(root);
921                                 root = y->left;
922                                 y->left = rlist;
923                                 rlist = y;
924                         } else {
925                                 /* Put root on rlist. */
926                                 root->left = rlist;
927                                 rlist = root;
928                                 root = y;
929                         }
930                 } else if (addr >= root->end) {
931                         y = root->right;
932                         if (y == NULL)
933                                 break;
934                         if (addr >= y->end && y->right != NULL) {
935                                 /* Rotate left and put y on llist. */
936                                 root->right = y->left;
937                                 y->left = root;
938                                 vm_map_entry_set_max_free(root);
939                                 root = y->right;
940                                 y->right = llist;
941                                 llist = y;
942                         } else {
943                                 /* Put root on llist. */
944                                 root->right = llist;
945                                 llist = root;
946                                 root = y;
947                         }
948                 } else
949                         break;
950         }
951
952         /*
953          * Pass Two: Walk back up the two spines, flip the pointers
954          * and set max_free.  The subtrees of the root go at the
955          * bottom of llist and rlist.
956          */
957         ltree = root->left;
958         while (llist != NULL) {
959                 y = llist->right;
960                 llist->right = ltree;
961                 vm_map_entry_set_max_free(llist);
962                 ltree = llist;
963                 llist = y;
964         }
965         rtree = root->right;
966         while (rlist != NULL) {
967                 y = rlist->left;
968                 rlist->left = rtree;
969                 vm_map_entry_set_max_free(rlist);
970                 rtree = rlist;
971                 rlist = y;
972         }
973
974         /*
975          * Final assembly: add ltree and rtree as subtrees of root.
976          */
977         root->left = ltree;
978         root->right = rtree;
979         vm_map_entry_set_max_free(root);
980
981         return (root);
982 }
983
984 /*
985  *      vm_map_entry_{un,}link:
986  *
987  *      Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991                   vm_map_entry_t after_where,
992                   vm_map_entry_t entry)
993 {
994
995         CTR4(KTR_VM,
996             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997             map->nentries, entry, after_where);
998         VM_MAP_ASSERT_LOCKED(map);
999         KASSERT(after_where == &map->header ||
1000             after_where->end <= entry->start,
1001             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003         KASSERT(after_where->next == &map->header ||
1004             entry->end <= after_where->next->start,
1005             ("vm_map_entry_link: new end %jx next start %jx overlap",
1006             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007
1008         map->nentries++;
1009         entry->prev = after_where;
1010         entry->next = after_where->next;
1011         entry->next->prev = entry;
1012         after_where->next = entry;
1013
1014         if (after_where != &map->header) {
1015                 if (after_where != map->root)
1016                         vm_map_entry_splay(after_where->start, map->root);
1017                 entry->right = after_where->right;
1018                 entry->left = after_where;
1019                 after_where->right = NULL;
1020                 after_where->adj_free = entry->start - after_where->end;
1021                 vm_map_entry_set_max_free(after_where);
1022         } else {
1023                 entry->right = map->root;
1024                 entry->left = NULL;
1025         }
1026         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027             entry->next->start) - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1047                     entry->next->start) - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084             entry->next->start) - entry->end;
1085         vm_map_entry_set_max_free(entry);
1086 }
1087
1088 /*
1089  *      vm_map_lookup_entry:    [ internal use only ]
1090  *
1091  *      Finds the map entry containing (or
1092  *      immediately preceding) the specified address
1093  *      in the given map; the entry is returned
1094  *      in the "entry" parameter.  The boolean
1095  *      result indicates whether the address is
1096  *      actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100         vm_map_t map,
1101         vm_offset_t address,
1102         vm_map_entry_t *entry)  /* OUT */
1103 {
1104         vm_map_entry_t cur;
1105         boolean_t locked;
1106
1107         /*
1108          * If the map is empty, then the map entry immediately preceding
1109          * "address" is the map's header.
1110          */
1111         cur = map->root;
1112         if (cur == NULL)
1113                 *entry = &map->header;
1114         else if (address >= cur->start && cur->end > address) {
1115                 *entry = cur;
1116                 return (TRUE);
1117         } else if ((locked = vm_map_locked(map)) ||
1118             sx_try_upgrade(&map->lock)) {
1119                 /*
1120                  * Splay requires a write lock on the map.  However, it only
1121                  * restructures the binary search tree; it does not otherwise
1122                  * change the map.  Thus, the map's timestamp need not change
1123                  * on a temporary upgrade.
1124                  */
1125                 map->root = cur = vm_map_entry_splay(address, cur);
1126                 if (!locked)
1127                         sx_downgrade(&map->lock);
1128
1129                 /*
1130                  * If "address" is contained within a map entry, the new root
1131                  * is that map entry.  Otherwise, the new root is a map entry
1132                  * immediately before or after "address".
1133                  */
1134                 if (address >= cur->start) {
1135                         *entry = cur;
1136                         if (cur->end > address)
1137                                 return (TRUE);
1138                 } else
1139                         *entry = cur->prev;
1140         } else
1141                 /*
1142                  * Since the map is only locked for read access, perform a
1143                  * standard binary search tree lookup for "address".
1144                  */
1145                 for (;;) {
1146                         if (address < cur->start) {
1147                                 if (cur->left == NULL) {
1148                                         *entry = cur->prev;
1149                                         break;
1150                                 }
1151                                 cur = cur->left;
1152                         } else if (cur->end > address) {
1153                                 *entry = cur;
1154                                 return (TRUE);
1155                         } else {
1156                                 if (cur->right == NULL) {
1157                                         *entry = cur;
1158                                         break;
1159                                 }
1160                                 cur = cur->right;
1161                         }
1162                 }
1163         return (FALSE);
1164 }
1165
1166 /*
1167  *      vm_map_insert:
1168  *
1169  *      Inserts the given whole VM object into the target
1170  *      map at the specified address range.  The object's
1171  *      size should match that of the address range.
1172  *
1173  *      Requires that the map be locked, and leaves it so.
1174  *
1175  *      If object is non-NULL, ref count must be bumped by caller
1176  *      prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182         vm_map_entry_t new_entry, prev_entry, temp_entry;
1183         struct ucred *cred;
1184         vm_eflags_t protoeflags;
1185         vm_inherit_t inheritance;
1186
1187         VM_MAP_ASSERT_LOCKED(map);
1188         KASSERT((object != kmem_object && object != kernel_object) ||
1189             (cow & MAP_COPY_ON_WRITE) == 0,
1190             ("vm_map_insert: kmem or kernel object and COW"));
1191         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193
1194         /*
1195          * Check that the start and end points are not bogus.
1196          */
1197         if (start < map->min_offset || end > map->max_offset || start >= end)
1198                 return (KERN_INVALID_ADDRESS);
1199
1200         /*
1201          * Find the entry prior to the proposed starting address; if it's part
1202          * of an existing entry, this range is bogus.
1203          */
1204         if (vm_map_lookup_entry(map, start, &temp_entry))
1205                 return (KERN_NO_SPACE);
1206
1207         prev_entry = temp_entry;
1208
1209         /*
1210          * Assert that the next entry doesn't overlap the end point.
1211          */
1212         if (prev_entry->next != &map->header && prev_entry->next->start < end)
1213                 return (KERN_NO_SPACE);
1214
1215         protoeflags = 0;
1216         if (cow & MAP_COPY_ON_WRITE)
1217                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1218         if (cow & MAP_NOFAULT)
1219                 protoeflags |= MAP_ENTRY_NOFAULT;
1220         if (cow & MAP_DISABLE_SYNCER)
1221                 protoeflags |= MAP_ENTRY_NOSYNC;
1222         if (cow & MAP_DISABLE_COREDUMP)
1223                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1224         if (cow & MAP_STACK_GROWS_DOWN)
1225                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1226         if (cow & MAP_STACK_GROWS_UP)
1227                 protoeflags |= MAP_ENTRY_GROWS_UP;
1228         if (cow & MAP_VN_WRITECOUNT)
1229                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1230         if (cow & MAP_INHERIT_SHARE)
1231                 inheritance = VM_INHERIT_SHARE;
1232         else
1233                 inheritance = VM_INHERIT_DEFAULT;
1234
1235         cred = NULL;
1236         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1237                 goto charged;
1238         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1239             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1240                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1241                         return (KERN_RESOURCE_SHORTAGE);
1242                 KASSERT(object == NULL ||
1243                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1244                     object->cred == NULL,
1245                     ("overcommit: vm_map_insert o %p", object));
1246                 cred = curthread->td_ucred;
1247         }
1248
1249 charged:
1250         /* Expand the kernel pmap, if necessary. */
1251         if (map == kernel_map && end > kernel_vm_end)
1252                 pmap_growkernel(end);
1253         if (object != NULL) {
1254                 /*
1255                  * OBJ_ONEMAPPING must be cleared unless this mapping
1256                  * is trivially proven to be the only mapping for any
1257                  * of the object's pages.  (Object granularity
1258                  * reference counting is insufficient to recognize
1259                  * aliases with precision.)
1260                  */
1261                 VM_OBJECT_WLOCK(object);
1262                 if (object->ref_count > 1 || object->shadow_count != 0)
1263                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1264                 VM_OBJECT_WUNLOCK(object);
1265         } else if (prev_entry != &map->header &&
1266             prev_entry->eflags == protoeflags &&
1267             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1268             prev_entry->end == start && prev_entry->wired_count == 0 &&
1269             (prev_entry->cred == cred ||
1270             (prev_entry->object.vm_object != NULL &&
1271             prev_entry->object.vm_object->cred == cred)) &&
1272             vm_object_coalesce(prev_entry->object.vm_object,
1273             prev_entry->offset,
1274             (vm_size_t)(prev_entry->end - prev_entry->start),
1275             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1276             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1277                 /*
1278                  * We were able to extend the object.  Determine if we
1279                  * can extend the previous map entry to include the
1280                  * new range as well.
1281                  */
1282                 if (prev_entry->inheritance == inheritance &&
1283                     prev_entry->protection == prot &&
1284                     prev_entry->max_protection == max) {
1285                         map->size += end - prev_entry->end;
1286                         prev_entry->end = end;
1287                         vm_map_entry_resize_free(map, prev_entry);
1288                         vm_map_simplify_entry(map, prev_entry);
1289                         return (KERN_SUCCESS);
1290                 }
1291
1292                 /*
1293                  * If we can extend the object but cannot extend the
1294                  * map entry, we have to create a new map entry.  We
1295                  * must bump the ref count on the extended object to
1296                  * account for it.  object may be NULL.
1297                  */
1298                 object = prev_entry->object.vm_object;
1299                 offset = prev_entry->offset +
1300                     (prev_entry->end - prev_entry->start);
1301                 vm_object_reference(object);
1302                 if (cred != NULL && object != NULL && object->cred != NULL &&
1303                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1304                         /* Object already accounts for this uid. */
1305                         cred = NULL;
1306                 }
1307         }
1308         if (cred != NULL)
1309                 crhold(cred);
1310
1311         /*
1312          * Create a new entry
1313          */
1314         new_entry = vm_map_entry_create(map);
1315         new_entry->start = start;
1316         new_entry->end = end;
1317         new_entry->cred = NULL;
1318
1319         new_entry->eflags = protoeflags;
1320         new_entry->object.vm_object = object;
1321         new_entry->offset = offset;
1322         new_entry->avail_ssize = 0;
1323
1324         new_entry->inheritance = inheritance;
1325         new_entry->protection = prot;
1326         new_entry->max_protection = max;
1327         new_entry->wired_count = 0;
1328         new_entry->wiring_thread = NULL;
1329         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1330         new_entry->next_read = start;
1331
1332         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1333             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1334         new_entry->cred = cred;
1335
1336         /*
1337          * Insert the new entry into the list
1338          */
1339         vm_map_entry_link(map, prev_entry, new_entry);
1340         map->size += new_entry->end - new_entry->start;
1341
1342         /*
1343          * Try to coalesce the new entry with both the previous and next
1344          * entries in the list.  Previously, we only attempted to coalesce
1345          * with the previous entry when object is NULL.  Here, we handle the
1346          * other cases, which are less common.
1347          */
1348         vm_map_simplify_entry(map, new_entry);
1349
1350         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1351                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1352                     end - start, cow & MAP_PREFAULT_PARTIAL);
1353         }
1354
1355         return (KERN_SUCCESS);
1356 }
1357
1358 /*
1359  *      vm_map_findspace:
1360  *
1361  *      Find the first fit (lowest VM address) for "length" free bytes
1362  *      beginning at address >= start in the given map.
1363  *
1364  *      In a vm_map_entry, "adj_free" is the amount of free space
1365  *      adjacent (higher address) to this entry, and "max_free" is the
1366  *      maximum amount of contiguous free space in its subtree.  This
1367  *      allows finding a free region in one path down the tree, so
1368  *      O(log n) amortized with splay trees.
1369  *
1370  *      The map must be locked, and leaves it so.
1371  *
1372  *      Returns: 0 on success, and starting address in *addr,
1373  *               1 if insufficient space.
1374  */
1375 int
1376 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1377     vm_offset_t *addr)  /* OUT */
1378 {
1379         vm_map_entry_t entry;
1380         vm_offset_t st;
1381
1382         /*
1383          * Request must fit within min/max VM address and must avoid
1384          * address wrap.
1385          */
1386         if (start < map->min_offset)
1387                 start = map->min_offset;
1388         if (start + length > map->max_offset || start + length < start)
1389                 return (1);
1390
1391         /* Empty tree means wide open address space. */
1392         if (map->root == NULL) {
1393                 *addr = start;
1394                 return (0);
1395         }
1396
1397         /*
1398          * After splay, if start comes before root node, then there
1399          * must be a gap from start to the root.
1400          */
1401         map->root = vm_map_entry_splay(start, map->root);
1402         if (start + length <= map->root->start) {
1403                 *addr = start;
1404                 return (0);
1405         }
1406
1407         /*
1408          * Root is the last node that might begin its gap before
1409          * start, and this is the last comparison where address
1410          * wrap might be a problem.
1411          */
1412         st = (start > map->root->end) ? start : map->root->end;
1413         if (length <= map->root->end + map->root->adj_free - st) {
1414                 *addr = st;
1415                 return (0);
1416         }
1417
1418         /* With max_free, can immediately tell if no solution. */
1419         entry = map->root->right;
1420         if (entry == NULL || length > entry->max_free)
1421                 return (1);
1422
1423         /*
1424          * Search the right subtree in the order: left subtree, root,
1425          * right subtree (first fit).  The previous splay implies that
1426          * all regions in the right subtree have addresses > start.
1427          */
1428         while (entry != NULL) {
1429                 if (entry->left != NULL && entry->left->max_free >= length)
1430                         entry = entry->left;
1431                 else if (entry->adj_free >= length) {
1432                         *addr = entry->end;
1433                         return (0);
1434                 } else
1435                         entry = entry->right;
1436         }
1437
1438         /* Can't get here, so panic if we do. */
1439         panic("vm_map_findspace: max_free corrupt");
1440 }
1441
1442 int
1443 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1444     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1445     vm_prot_t max, int cow)
1446 {
1447         vm_offset_t end;
1448         int result;
1449
1450         end = start + length;
1451         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1452             object == NULL,
1453             ("vm_map_fixed: non-NULL backing object for stack"));
1454         vm_map_lock(map);
1455         VM_MAP_RANGE_CHECK(map, start, end);
1456         if ((cow & MAP_CHECK_EXCL) == 0)
1457                 vm_map_delete(map, start, end);
1458         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1459                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1460                     prot, max, cow);
1461         } else {
1462                 result = vm_map_insert(map, object, offset, start, end,
1463                     prot, max, cow);
1464         }
1465         vm_map_unlock(map);
1466         return (result);
1467 }
1468
1469 /*
1470  *      vm_map_find finds an unallocated region in the target address
1471  *      map with the given length.  The search is defined to be
1472  *      first-fit from the specified address; the region found is
1473  *      returned in the same parameter.
1474  *
1475  *      If object is non-NULL, ref count must be bumped by caller
1476  *      prior to making call to account for the new entry.
1477  */
1478 int
1479 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1480             vm_offset_t *addr,  /* IN/OUT */
1481             vm_size_t length, vm_offset_t max_addr, int find_space,
1482             vm_prot_t prot, vm_prot_t max, int cow)
1483 {
1484         vm_offset_t alignment, initial_addr, start;
1485         int result;
1486
1487         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1488             object == NULL,
1489             ("vm_map_find: non-NULL backing object for stack"));
1490         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1491             (object->flags & OBJ_COLORED) == 0))
1492                 find_space = VMFS_ANY_SPACE;
1493         if (find_space >> 8 != 0) {
1494                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1495                 alignment = (vm_offset_t)1 << (find_space >> 8);
1496         } else
1497                 alignment = 0;
1498         initial_addr = *addr;
1499 again:
1500         start = initial_addr;
1501         vm_map_lock(map);
1502         do {
1503                 if (find_space != VMFS_NO_SPACE) {
1504                         if (vm_map_findspace(map, start, length, addr) ||
1505                             (max_addr != 0 && *addr + length > max_addr)) {
1506                                 vm_map_unlock(map);
1507                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1508                                         find_space = VMFS_ANY_SPACE;
1509                                         goto again;
1510                                 }
1511                                 return (KERN_NO_SPACE);
1512                         }
1513                         switch (find_space) {
1514                         case VMFS_SUPER_SPACE:
1515                         case VMFS_OPTIMAL_SPACE:
1516                                 pmap_align_superpage(object, offset, addr,
1517                                     length);
1518                                 break;
1519                         case VMFS_ANY_SPACE:
1520                                 break;
1521                         default:
1522                                 if ((*addr & (alignment - 1)) != 0) {
1523                                         *addr &= ~(alignment - 1);
1524                                         *addr += alignment;
1525                                 }
1526                                 break;
1527                         }
1528
1529                         start = *addr;
1530                 }
1531                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1532                         result = vm_map_stack_locked(map, start, length,
1533                             sgrowsiz, prot, max, cow);
1534                 } else {
1535                         result = vm_map_insert(map, object, offset, start,
1536                             start + length, prot, max, cow);
1537                 }
1538         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1539             find_space != VMFS_ANY_SPACE);
1540         vm_map_unlock(map);
1541         return (result);
1542 }
1543
1544 /*
1545  *      vm_map_simplify_entry:
1546  *
1547  *      Simplify the given map entry by merging with either neighbor.  This
1548  *      routine also has the ability to merge with both neighbors.
1549  *
1550  *      The map must be locked.
1551  *
1552  *      This routine guarantees that the passed entry remains valid (though
1553  *      possibly extended).  When merging, this routine may delete one or
1554  *      both neighbors.
1555  */
1556 void
1557 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1558 {
1559         vm_map_entry_t next, prev;
1560         vm_size_t prevsize, esize;
1561
1562         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1563             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1564                 return;
1565
1566         prev = entry->prev;
1567         if (prev != &map->header) {
1568                 prevsize = prev->end - prev->start;
1569                 if ( (prev->end == entry->start) &&
1570                      (prev->object.vm_object == entry->object.vm_object) &&
1571                      (!prev->object.vm_object ||
1572                         (prev->offset + prevsize == entry->offset)) &&
1573                      (prev->eflags == entry->eflags) &&
1574                      (prev->protection == entry->protection) &&
1575                      (prev->max_protection == entry->max_protection) &&
1576                      (prev->inheritance == entry->inheritance) &&
1577                      (prev->wired_count == entry->wired_count) &&
1578                      (prev->cred == entry->cred)) {
1579                         vm_map_entry_unlink(map, prev);
1580                         entry->start = prev->start;
1581                         entry->offset = prev->offset;
1582                         if (entry->prev != &map->header)
1583                                 vm_map_entry_resize_free(map, entry->prev);
1584
1585                         /*
1586                          * If the backing object is a vnode object,
1587                          * vm_object_deallocate() calls vrele().
1588                          * However, vrele() does not lock the vnode
1589                          * because the vnode has additional
1590                          * references.  Thus, the map lock can be kept
1591                          * without causing a lock-order reversal with
1592                          * the vnode lock.
1593                          *
1594                          * Since we count the number of virtual page
1595                          * mappings in object->un_pager.vnp.writemappings,
1596                          * the writemappings value should not be adjusted
1597                          * when the entry is disposed of.
1598                          */
1599                         if (prev->object.vm_object)
1600                                 vm_object_deallocate(prev->object.vm_object);
1601                         if (prev->cred != NULL)
1602                                 crfree(prev->cred);
1603                         vm_map_entry_dispose(map, prev);
1604                 }
1605         }
1606
1607         next = entry->next;
1608         if (next != &map->header) {
1609                 esize = entry->end - entry->start;
1610                 if ((entry->end == next->start) &&
1611                     (next->object.vm_object == entry->object.vm_object) &&
1612                      (!entry->object.vm_object ||
1613                         (entry->offset + esize == next->offset)) &&
1614                     (next->eflags == entry->eflags) &&
1615                     (next->protection == entry->protection) &&
1616                     (next->max_protection == entry->max_protection) &&
1617                     (next->inheritance == entry->inheritance) &&
1618                     (next->wired_count == entry->wired_count) &&
1619                     (next->cred == entry->cred)) {
1620                         vm_map_entry_unlink(map, next);
1621                         entry->end = next->end;
1622                         vm_map_entry_resize_free(map, entry);
1623
1624                         /*
1625                          * See comment above.
1626                          */
1627                         if (next->object.vm_object)
1628                                 vm_object_deallocate(next->object.vm_object);
1629                         if (next->cred != NULL)
1630                                 crfree(next->cred);
1631                         vm_map_entry_dispose(map, next);
1632                 }
1633         }
1634 }
1635 /*
1636  *      vm_map_clip_start:      [ internal use only ]
1637  *
1638  *      Asserts that the given entry begins at or after
1639  *      the specified address; if necessary,
1640  *      it splits the entry into two.
1641  */
1642 #define vm_map_clip_start(map, entry, startaddr) \
1643 { \
1644         if (startaddr > entry->start) \
1645                 _vm_map_clip_start(map, entry, startaddr); \
1646 }
1647
1648 /*
1649  *      This routine is called only when it is known that
1650  *      the entry must be split.
1651  */
1652 static void
1653 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1654 {
1655         vm_map_entry_t new_entry;
1656
1657         VM_MAP_ASSERT_LOCKED(map);
1658
1659         /*
1660          * Split off the front portion -- note that we must insert the new
1661          * entry BEFORE this one, so that this entry has the specified
1662          * starting address.
1663          */
1664         vm_map_simplify_entry(map, entry);
1665
1666         /*
1667          * If there is no object backing this entry, we might as well create
1668          * one now.  If we defer it, an object can get created after the map
1669          * is clipped, and individual objects will be created for the split-up
1670          * map.  This is a bit of a hack, but is also about the best place to
1671          * put this improvement.
1672          */
1673         if (entry->object.vm_object == NULL && !map->system_map) {
1674                 vm_object_t object;
1675                 object = vm_object_allocate(OBJT_DEFAULT,
1676                                 atop(entry->end - entry->start));
1677                 entry->object.vm_object = object;
1678                 entry->offset = 0;
1679                 if (entry->cred != NULL) {
1680                         object->cred = entry->cred;
1681                         object->charge = entry->end - entry->start;
1682                         entry->cred = NULL;
1683                 }
1684         } else if (entry->object.vm_object != NULL &&
1685                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1686                    entry->cred != NULL) {
1687                 VM_OBJECT_WLOCK(entry->object.vm_object);
1688                 KASSERT(entry->object.vm_object->cred == NULL,
1689                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1690                 entry->object.vm_object->cred = entry->cred;
1691                 entry->object.vm_object->charge = entry->end - entry->start;
1692                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1693                 entry->cred = NULL;
1694         }
1695
1696         new_entry = vm_map_entry_create(map);
1697         *new_entry = *entry;
1698
1699         new_entry->end = start;
1700         entry->offset += (start - entry->start);
1701         entry->start = start;
1702         if (new_entry->cred != NULL)
1703                 crhold(entry->cred);
1704
1705         vm_map_entry_link(map, entry->prev, new_entry);
1706
1707         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1708                 vm_object_reference(new_entry->object.vm_object);
1709                 /*
1710                  * The object->un_pager.vnp.writemappings for the
1711                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1712                  * kept as is here.  The virtual pages are
1713                  * re-distributed among the clipped entries, so the sum is
1714                  * left the same.
1715                  */
1716         }
1717 }
1718
1719 /*
1720  *      vm_map_clip_end:        [ internal use only ]
1721  *
1722  *      Asserts that the given entry ends at or before
1723  *      the specified address; if necessary,
1724  *      it splits the entry into two.
1725  */
1726 #define vm_map_clip_end(map, entry, endaddr) \
1727 { \
1728         if ((endaddr) < (entry->end)) \
1729                 _vm_map_clip_end((map), (entry), (endaddr)); \
1730 }
1731
1732 /*
1733  *      This routine is called only when it is known that
1734  *      the entry must be split.
1735  */
1736 static void
1737 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1738 {
1739         vm_map_entry_t new_entry;
1740
1741         VM_MAP_ASSERT_LOCKED(map);
1742
1743         /*
1744          * If there is no object backing this entry, we might as well create
1745          * one now.  If we defer it, an object can get created after the map
1746          * is clipped, and individual objects will be created for the split-up
1747          * map.  This is a bit of a hack, but is also about the best place to
1748          * put this improvement.
1749          */
1750         if (entry->object.vm_object == NULL && !map->system_map) {
1751                 vm_object_t object;
1752                 object = vm_object_allocate(OBJT_DEFAULT,
1753                                 atop(entry->end - entry->start));
1754                 entry->object.vm_object = object;
1755                 entry->offset = 0;
1756                 if (entry->cred != NULL) {
1757                         object->cred = entry->cred;
1758                         object->charge = entry->end - entry->start;
1759                         entry->cred = NULL;
1760                 }
1761         } else if (entry->object.vm_object != NULL &&
1762                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1763                    entry->cred != NULL) {
1764                 VM_OBJECT_WLOCK(entry->object.vm_object);
1765                 KASSERT(entry->object.vm_object->cred == NULL,
1766                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1767                 entry->object.vm_object->cred = entry->cred;
1768                 entry->object.vm_object->charge = entry->end - entry->start;
1769                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1770                 entry->cred = NULL;
1771         }
1772
1773         /*
1774          * Create a new entry and insert it AFTER the specified entry
1775          */
1776         new_entry = vm_map_entry_create(map);
1777         *new_entry = *entry;
1778
1779         new_entry->start = entry->end = end;
1780         new_entry->offset += (end - entry->start);
1781         if (new_entry->cred != NULL)
1782                 crhold(entry->cred);
1783
1784         vm_map_entry_link(map, entry, new_entry);
1785
1786         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1787                 vm_object_reference(new_entry->object.vm_object);
1788         }
1789 }
1790
1791 /*
1792  *      vm_map_submap:          [ kernel use only ]
1793  *
1794  *      Mark the given range as handled by a subordinate map.
1795  *
1796  *      This range must have been created with vm_map_find,
1797  *      and no other operations may have been performed on this
1798  *      range prior to calling vm_map_submap.
1799  *
1800  *      Only a limited number of operations can be performed
1801  *      within this rage after calling vm_map_submap:
1802  *              vm_fault
1803  *      [Don't try vm_map_copy!]
1804  *
1805  *      To remove a submapping, one must first remove the
1806  *      range from the superior map, and then destroy the
1807  *      submap (if desired).  [Better yet, don't try it.]
1808  */
1809 int
1810 vm_map_submap(
1811         vm_map_t map,
1812         vm_offset_t start,
1813         vm_offset_t end,
1814         vm_map_t submap)
1815 {
1816         vm_map_entry_t entry;
1817         int result = KERN_INVALID_ARGUMENT;
1818
1819         vm_map_lock(map);
1820
1821         VM_MAP_RANGE_CHECK(map, start, end);
1822
1823         if (vm_map_lookup_entry(map, start, &entry)) {
1824                 vm_map_clip_start(map, entry, start);
1825         } else
1826                 entry = entry->next;
1827
1828         vm_map_clip_end(map, entry, end);
1829
1830         if ((entry->start == start) && (entry->end == end) &&
1831             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1832             (entry->object.vm_object == NULL)) {
1833                 entry->object.sub_map = submap;
1834                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1835                 result = KERN_SUCCESS;
1836         }
1837         vm_map_unlock(map);
1838
1839         return (result);
1840 }
1841
1842 /*
1843  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1844  */
1845 #define MAX_INIT_PT     96
1846
1847 /*
1848  *      vm_map_pmap_enter:
1849  *
1850  *      Preload the specified map's pmap with mappings to the specified
1851  *      object's memory-resident pages.  No further physical pages are
1852  *      allocated, and no further virtual pages are retrieved from secondary
1853  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1854  *      limited number of page mappings are created at the low-end of the
1855  *      specified address range.  (For this purpose, a superpage mapping
1856  *      counts as one page mapping.)  Otherwise, all resident pages within
1857  *      the specified address range are mapped.  Because these mappings are
1858  *      being created speculatively, cached pages are not reactivated and
1859  *      mapped.
1860  */
1861 static void
1862 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1863     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1864 {
1865         vm_offset_t start;
1866         vm_page_t p, p_start;
1867         vm_pindex_t mask, psize, threshold, tmpidx;
1868
1869         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1870                 return;
1871         VM_OBJECT_RLOCK(object);
1872         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1873                 VM_OBJECT_RUNLOCK(object);
1874                 VM_OBJECT_WLOCK(object);
1875                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1876                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1877                             size);
1878                         VM_OBJECT_WUNLOCK(object);
1879                         return;
1880                 }
1881                 VM_OBJECT_LOCK_DOWNGRADE(object);
1882         }
1883
1884         psize = atop(size);
1885         if (psize + pindex > object->size) {
1886                 if (object->size < pindex) {
1887                         VM_OBJECT_RUNLOCK(object);
1888                         return;
1889                 }
1890                 psize = object->size - pindex;
1891         }
1892
1893         start = 0;
1894         p_start = NULL;
1895         threshold = MAX_INIT_PT;
1896
1897         p = vm_page_find_least(object, pindex);
1898         /*
1899          * Assert: the variable p is either (1) the page with the
1900          * least pindex greater than or equal to the parameter pindex
1901          * or (2) NULL.
1902          */
1903         for (;
1904              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1905              p = TAILQ_NEXT(p, listq)) {
1906                 /*
1907                  * don't allow an madvise to blow away our really
1908                  * free pages allocating pv entries.
1909                  */
1910                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1911                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1912                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1913                     tmpidx >= threshold)) {
1914                         psize = tmpidx;
1915                         break;
1916                 }
1917                 if (p->valid == VM_PAGE_BITS_ALL) {
1918                         if (p_start == NULL) {
1919                                 start = addr + ptoa(tmpidx);
1920                                 p_start = p;
1921                         }
1922                         /* Jump ahead if a superpage mapping is possible. */
1923                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1924                             (pagesizes[p->psind] - 1)) == 0) {
1925                                 mask = atop(pagesizes[p->psind]) - 1;
1926                                 if (tmpidx + mask < psize &&
1927                                     vm_page_ps_is_valid(p)) {
1928                                         p += mask;
1929                                         threshold += mask;
1930                                 }
1931                         }
1932                 } else if (p_start != NULL) {
1933                         pmap_enter_object(map->pmap, start, addr +
1934                             ptoa(tmpidx), p_start, prot);
1935                         p_start = NULL;
1936                 }
1937         }
1938         if (p_start != NULL)
1939                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1940                     p_start, prot);
1941         VM_OBJECT_RUNLOCK(object);
1942 }
1943
1944 /*
1945  *      vm_map_protect:
1946  *
1947  *      Sets the protection of the specified address
1948  *      region in the target map.  If "set_max" is
1949  *      specified, the maximum protection is to be set;
1950  *      otherwise, only the current protection is affected.
1951  */
1952 int
1953 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1954                vm_prot_t new_prot, boolean_t set_max)
1955 {
1956         vm_map_entry_t current, entry;
1957         vm_object_t obj;
1958         struct ucred *cred;
1959         vm_prot_t old_prot;
1960
1961         if (start == end)
1962                 return (KERN_SUCCESS);
1963
1964         vm_map_lock(map);
1965
1966         VM_MAP_RANGE_CHECK(map, start, end);
1967
1968         if (vm_map_lookup_entry(map, start, &entry)) {
1969                 vm_map_clip_start(map, entry, start);
1970         } else {
1971                 entry = entry->next;
1972         }
1973
1974         /*
1975          * Make a first pass to check for protection violations.
1976          */
1977         current = entry;
1978         while ((current != &map->header) && (current->start < end)) {
1979                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1980                         vm_map_unlock(map);
1981                         return (KERN_INVALID_ARGUMENT);
1982                 }
1983                 if ((new_prot & current->max_protection) != new_prot) {
1984                         vm_map_unlock(map);
1985                         return (KERN_PROTECTION_FAILURE);
1986                 }
1987                 current = current->next;
1988         }
1989
1990
1991         /*
1992          * Do an accounting pass for private read-only mappings that
1993          * now will do cow due to allowed write (e.g. debugger sets
1994          * breakpoint on text segment)
1995          */
1996         for (current = entry; (current != &map->header) &&
1997              (current->start < end); current = current->next) {
1998
1999                 vm_map_clip_end(map, current, end);
2000
2001                 if (set_max ||
2002                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2003                     ENTRY_CHARGED(current)) {
2004                         continue;
2005                 }
2006
2007                 cred = curthread->td_ucred;
2008                 obj = current->object.vm_object;
2009
2010                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2011                         if (!swap_reserve(current->end - current->start)) {
2012                                 vm_map_unlock(map);
2013                                 return (KERN_RESOURCE_SHORTAGE);
2014                         }
2015                         crhold(cred);
2016                         current->cred = cred;
2017                         continue;
2018                 }
2019
2020                 VM_OBJECT_WLOCK(obj);
2021                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2022                         VM_OBJECT_WUNLOCK(obj);
2023                         continue;
2024                 }
2025
2026                 /*
2027                  * Charge for the whole object allocation now, since
2028                  * we cannot distinguish between non-charged and
2029                  * charged clipped mapping of the same object later.
2030                  */
2031                 KASSERT(obj->charge == 0,
2032                     ("vm_map_protect: object %p overcharged (entry %p)",
2033                     obj, current));
2034                 if (!swap_reserve(ptoa(obj->size))) {
2035                         VM_OBJECT_WUNLOCK(obj);
2036                         vm_map_unlock(map);
2037                         return (KERN_RESOURCE_SHORTAGE);
2038                 }
2039
2040                 crhold(cred);
2041                 obj->cred = cred;
2042                 obj->charge = ptoa(obj->size);
2043                 VM_OBJECT_WUNLOCK(obj);
2044         }
2045
2046         /*
2047          * Go back and fix up protections. [Note that clipping is not
2048          * necessary the second time.]
2049          */
2050         current = entry;
2051         while ((current != &map->header) && (current->start < end)) {
2052                 old_prot = current->protection;
2053
2054                 if (set_max)
2055                         current->protection =
2056                             (current->max_protection = new_prot) &
2057                             old_prot;
2058                 else
2059                         current->protection = new_prot;
2060
2061                 /*
2062                  * For user wired map entries, the normal lazy evaluation of
2063                  * write access upgrades through soft page faults is
2064                  * undesirable.  Instead, immediately copy any pages that are
2065                  * copy-on-write and enable write access in the physical map.
2066                  */
2067                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2068                     (current->protection & VM_PROT_WRITE) != 0 &&
2069                     (old_prot & VM_PROT_WRITE) == 0)
2070                         vm_fault_copy_entry(map, map, current, current, NULL);
2071
2072                 /*
2073                  * When restricting access, update the physical map.  Worry
2074                  * about copy-on-write here.
2075                  */
2076                 if ((old_prot & ~current->protection) != 0) {
2077 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2078                                                         VM_PROT_ALL)
2079                         pmap_protect(map->pmap, current->start,
2080                             current->end,
2081                             current->protection & MASK(current));
2082 #undef  MASK
2083                 }
2084                 vm_map_simplify_entry(map, current);
2085                 current = current->next;
2086         }
2087         vm_map_unlock(map);
2088         return (KERN_SUCCESS);
2089 }
2090
2091 /*
2092  *      vm_map_madvise:
2093  *
2094  *      This routine traverses a processes map handling the madvise
2095  *      system call.  Advisories are classified as either those effecting
2096  *      the vm_map_entry structure, or those effecting the underlying
2097  *      objects.
2098  */
2099 int
2100 vm_map_madvise(
2101         vm_map_t map,
2102         vm_offset_t start,
2103         vm_offset_t end,
2104         int behav)
2105 {
2106         vm_map_entry_t current, entry;
2107         int modify_map = 0;
2108
2109         /*
2110          * Some madvise calls directly modify the vm_map_entry, in which case
2111          * we need to use an exclusive lock on the map and we need to perform
2112          * various clipping operations.  Otherwise we only need a read-lock
2113          * on the map.
2114          */
2115         switch(behav) {
2116         case MADV_NORMAL:
2117         case MADV_SEQUENTIAL:
2118         case MADV_RANDOM:
2119         case MADV_NOSYNC:
2120         case MADV_AUTOSYNC:
2121         case MADV_NOCORE:
2122         case MADV_CORE:
2123                 if (start == end)
2124                         return (KERN_SUCCESS);
2125                 modify_map = 1;
2126                 vm_map_lock(map);
2127                 break;
2128         case MADV_WILLNEED:
2129         case MADV_DONTNEED:
2130         case MADV_FREE:
2131                 if (start == end)
2132                         return (KERN_SUCCESS);
2133                 vm_map_lock_read(map);
2134                 break;
2135         default:
2136                 return (KERN_INVALID_ARGUMENT);
2137         }
2138
2139         /*
2140          * Locate starting entry and clip if necessary.
2141          */
2142         VM_MAP_RANGE_CHECK(map, start, end);
2143
2144         if (vm_map_lookup_entry(map, start, &entry)) {
2145                 if (modify_map)
2146                         vm_map_clip_start(map, entry, start);
2147         } else {
2148                 entry = entry->next;
2149         }
2150
2151         if (modify_map) {
2152                 /*
2153                  * madvise behaviors that are implemented in the vm_map_entry.
2154                  *
2155                  * We clip the vm_map_entry so that behavioral changes are
2156                  * limited to the specified address range.
2157                  */
2158                 for (current = entry;
2159                      (current != &map->header) && (current->start < end);
2160                      current = current->next
2161                 ) {
2162                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2163                                 continue;
2164
2165                         vm_map_clip_end(map, current, end);
2166
2167                         switch (behav) {
2168                         case MADV_NORMAL:
2169                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2170                                 break;
2171                         case MADV_SEQUENTIAL:
2172                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2173                                 break;
2174                         case MADV_RANDOM:
2175                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2176                                 break;
2177                         case MADV_NOSYNC:
2178                                 current->eflags |= MAP_ENTRY_NOSYNC;
2179                                 break;
2180                         case MADV_AUTOSYNC:
2181                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2182                                 break;
2183                         case MADV_NOCORE:
2184                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2185                                 break;
2186                         case MADV_CORE:
2187                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2188                                 break;
2189                         default:
2190                                 break;
2191                         }
2192                         vm_map_simplify_entry(map, current);
2193                 }
2194                 vm_map_unlock(map);
2195         } else {
2196                 vm_pindex_t pstart, pend;
2197
2198                 /*
2199                  * madvise behaviors that are implemented in the underlying
2200                  * vm_object.
2201                  *
2202                  * Since we don't clip the vm_map_entry, we have to clip
2203                  * the vm_object pindex and count.
2204                  */
2205                 for (current = entry;
2206                      (current != &map->header) && (current->start < end);
2207                      current = current->next
2208                 ) {
2209                         vm_offset_t useEnd, useStart;
2210
2211                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2212                                 continue;
2213
2214                         pstart = OFF_TO_IDX(current->offset);
2215                         pend = pstart + atop(current->end - current->start);
2216                         useStart = current->start;
2217                         useEnd = current->end;
2218
2219                         if (current->start < start) {
2220                                 pstart += atop(start - current->start);
2221                                 useStart = start;
2222                         }
2223                         if (current->end > end) {
2224                                 pend -= atop(current->end - end);
2225                                 useEnd = end;
2226                         }
2227
2228                         if (pstart >= pend)
2229                                 continue;
2230
2231                         /*
2232                          * Perform the pmap_advise() before clearing
2233                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2234                          * concurrent pmap operation, such as pmap_remove(),
2235                          * could clear a reference in the pmap and set
2236                          * PGA_REFERENCED on the page before the pmap_advise()
2237                          * had completed.  Consequently, the page would appear
2238                          * referenced based upon an old reference that
2239                          * occurred before this pmap_advise() ran.
2240                          */
2241                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2242                                 pmap_advise(map->pmap, useStart, useEnd,
2243                                     behav);
2244
2245                         vm_object_madvise(current->object.vm_object, pstart,
2246                             pend, behav);
2247
2248                         /*
2249                          * Pre-populate paging structures in the
2250                          * WILLNEED case.  For wired entries, the
2251                          * paging structures are already populated.
2252                          */
2253                         if (behav == MADV_WILLNEED &&
2254                             current->wired_count == 0) {
2255                                 vm_map_pmap_enter(map,
2256                                     useStart,
2257                                     current->protection,
2258                                     current->object.vm_object,
2259                                     pstart,
2260                                     ptoa(pend - pstart),
2261                                     MAP_PREFAULT_MADVISE
2262                                 );
2263                         }
2264                 }
2265                 vm_map_unlock_read(map);
2266         }
2267         return (0);
2268 }
2269
2270
2271 /*
2272  *      vm_map_inherit:
2273  *
2274  *      Sets the inheritance of the specified address
2275  *      range in the target map.  Inheritance
2276  *      affects how the map will be shared with
2277  *      child maps at the time of vmspace_fork.
2278  */
2279 int
2280 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2281                vm_inherit_t new_inheritance)
2282 {
2283         vm_map_entry_t entry;
2284         vm_map_entry_t temp_entry;
2285
2286         switch (new_inheritance) {
2287         case VM_INHERIT_NONE:
2288         case VM_INHERIT_COPY:
2289         case VM_INHERIT_SHARE:
2290                 break;
2291         default:
2292                 return (KERN_INVALID_ARGUMENT);
2293         }
2294         if (start == end)
2295                 return (KERN_SUCCESS);
2296         vm_map_lock(map);
2297         VM_MAP_RANGE_CHECK(map, start, end);
2298         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2299                 entry = temp_entry;
2300                 vm_map_clip_start(map, entry, start);
2301         } else
2302                 entry = temp_entry->next;
2303         while ((entry != &map->header) && (entry->start < end)) {
2304                 vm_map_clip_end(map, entry, end);
2305                 entry->inheritance = new_inheritance;
2306                 vm_map_simplify_entry(map, entry);
2307                 entry = entry->next;
2308         }
2309         vm_map_unlock(map);
2310         return (KERN_SUCCESS);
2311 }
2312
2313 /*
2314  *      vm_map_unwire:
2315  *
2316  *      Implements both kernel and user unwiring.
2317  */
2318 int
2319 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2320     int flags)
2321 {
2322         vm_map_entry_t entry, first_entry, tmp_entry;
2323         vm_offset_t saved_start;
2324         unsigned int last_timestamp;
2325         int rv;
2326         boolean_t need_wakeup, result, user_unwire;
2327
2328         if (start == end)
2329                 return (KERN_SUCCESS);
2330         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2331         vm_map_lock(map);
2332         VM_MAP_RANGE_CHECK(map, start, end);
2333         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2334                 if (flags & VM_MAP_WIRE_HOLESOK)
2335                         first_entry = first_entry->next;
2336                 else {
2337                         vm_map_unlock(map);
2338                         return (KERN_INVALID_ADDRESS);
2339                 }
2340         }
2341         last_timestamp = map->timestamp;
2342         entry = first_entry;
2343         while (entry != &map->header && entry->start < end) {
2344                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2345                         /*
2346                          * We have not yet clipped the entry.
2347                          */
2348                         saved_start = (start >= entry->start) ? start :
2349                             entry->start;
2350                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2351                         if (vm_map_unlock_and_wait(map, 0)) {
2352                                 /*
2353                                  * Allow interruption of user unwiring?
2354                                  */
2355                         }
2356                         vm_map_lock(map);
2357                         if (last_timestamp+1 != map->timestamp) {
2358                                 /*
2359                                  * Look again for the entry because the map was
2360                                  * modified while it was unlocked.
2361                                  * Specifically, the entry may have been
2362                                  * clipped, merged, or deleted.
2363                                  */
2364                                 if (!vm_map_lookup_entry(map, saved_start,
2365                                     &tmp_entry)) {
2366                                         if (flags & VM_MAP_WIRE_HOLESOK)
2367                                                 tmp_entry = tmp_entry->next;
2368                                         else {
2369                                                 if (saved_start == start) {
2370                                                         /*
2371                                                          * First_entry has been deleted.
2372                                                          */
2373                                                         vm_map_unlock(map);
2374                                                         return (KERN_INVALID_ADDRESS);
2375                                                 }
2376                                                 end = saved_start;
2377                                                 rv = KERN_INVALID_ADDRESS;
2378                                                 goto done;
2379                                         }
2380                                 }
2381                                 if (entry == first_entry)
2382                                         first_entry = tmp_entry;
2383                                 else
2384                                         first_entry = NULL;
2385                                 entry = tmp_entry;
2386                         }
2387                         last_timestamp = map->timestamp;
2388                         continue;
2389                 }
2390                 vm_map_clip_start(map, entry, start);
2391                 vm_map_clip_end(map, entry, end);
2392                 /*
2393                  * Mark the entry in case the map lock is released.  (See
2394                  * above.)
2395                  */
2396                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2397                     entry->wiring_thread == NULL,
2398                     ("owned map entry %p", entry));
2399                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2400                 entry->wiring_thread = curthread;
2401                 /*
2402                  * Check the map for holes in the specified region.
2403                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2404                  */
2405                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2406                     (entry->end < end && (entry->next == &map->header ||
2407                     entry->next->start > entry->end))) {
2408                         end = entry->end;
2409                         rv = KERN_INVALID_ADDRESS;
2410                         goto done;
2411                 }
2412                 /*
2413                  * If system unwiring, require that the entry is system wired.
2414                  */
2415                 if (!user_unwire &&
2416                     vm_map_entry_system_wired_count(entry) == 0) {
2417                         end = entry->end;
2418                         rv = KERN_INVALID_ARGUMENT;
2419                         goto done;
2420                 }
2421                 entry = entry->next;
2422         }
2423         rv = KERN_SUCCESS;
2424 done:
2425         need_wakeup = FALSE;
2426         if (first_entry == NULL) {
2427                 result = vm_map_lookup_entry(map, start, &first_entry);
2428                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2429                         first_entry = first_entry->next;
2430                 else
2431                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2432         }
2433         for (entry = first_entry; entry != &map->header && entry->start < end;
2434             entry = entry->next) {
2435                 /*
2436                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2437                  * space in the unwired region could have been mapped
2438                  * while the map lock was dropped for draining
2439                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2440                  * could be simultaneously wiring this new mapping
2441                  * entry.  Detect these cases and skip any entries
2442                  * marked as in transition by us.
2443                  */
2444                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2445                     entry->wiring_thread != curthread) {
2446                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2447                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2448                         continue;
2449                 }
2450
2451                 if (rv == KERN_SUCCESS && (!user_unwire ||
2452                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2453                         if (user_unwire)
2454                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2455                         if (entry->wired_count == 1)
2456                                 vm_map_entry_unwire(map, entry);
2457                         else
2458                                 entry->wired_count--;
2459                 }
2460                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2461                     ("vm_map_unwire: in-transition flag missing %p", entry));
2462                 KASSERT(entry->wiring_thread == curthread,
2463                     ("vm_map_unwire: alien wire %p", entry));
2464                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2465                 entry->wiring_thread = NULL;
2466                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2467                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2468                         need_wakeup = TRUE;
2469                 }
2470                 vm_map_simplify_entry(map, entry);
2471         }
2472         vm_map_unlock(map);
2473         if (need_wakeup)
2474                 vm_map_wakeup(map);
2475         return (rv);
2476 }
2477
2478 /*
2479  *      vm_map_wire_entry_failure:
2480  *
2481  *      Handle a wiring failure on the given entry.
2482  *
2483  *      The map should be locked.
2484  */
2485 static void
2486 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2487     vm_offset_t failed_addr)
2488 {
2489
2490         VM_MAP_ASSERT_LOCKED(map);
2491         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2492             entry->wired_count == 1,
2493             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2494         KASSERT(failed_addr < entry->end,
2495             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2496
2497         /*
2498          * If any pages at the start of this entry were successfully wired,
2499          * then unwire them.
2500          */
2501         if (failed_addr > entry->start) {
2502                 pmap_unwire(map->pmap, entry->start, failed_addr);
2503                 vm_object_unwire(entry->object.vm_object, entry->offset,
2504                     failed_addr - entry->start, PQ_ACTIVE);
2505         }
2506
2507         /*
2508          * Assign an out-of-range value to represent the failure to wire this
2509          * entry.
2510          */
2511         entry->wired_count = -1;
2512 }
2513
2514 /*
2515  *      vm_map_wire:
2516  *
2517  *      Implements both kernel and user wiring.
2518  */
2519 int
2520 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2521     int flags)
2522 {
2523         vm_map_entry_t entry, first_entry, tmp_entry;
2524         vm_offset_t faddr, saved_end, saved_start;
2525         unsigned int last_timestamp;
2526         int rv;
2527         boolean_t need_wakeup, result, user_wire;
2528         vm_prot_t prot;
2529
2530         if (start == end)
2531                 return (KERN_SUCCESS);
2532         prot = 0;
2533         if (flags & VM_MAP_WIRE_WRITE)
2534                 prot |= VM_PROT_WRITE;
2535         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2536         vm_map_lock(map);
2537         VM_MAP_RANGE_CHECK(map, start, end);
2538         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2539                 if (flags & VM_MAP_WIRE_HOLESOK)
2540                         first_entry = first_entry->next;
2541                 else {
2542                         vm_map_unlock(map);
2543                         return (KERN_INVALID_ADDRESS);
2544                 }
2545         }
2546         last_timestamp = map->timestamp;
2547         entry = first_entry;
2548         while (entry != &map->header && entry->start < end) {
2549                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2550                         /*
2551                          * We have not yet clipped the entry.
2552                          */
2553                         saved_start = (start >= entry->start) ? start :
2554                             entry->start;
2555                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2556                         if (vm_map_unlock_and_wait(map, 0)) {
2557                                 /*
2558                                  * Allow interruption of user wiring?
2559                                  */
2560                         }
2561                         vm_map_lock(map);
2562                         if (last_timestamp + 1 != map->timestamp) {
2563                                 /*
2564                                  * Look again for the entry because the map was
2565                                  * modified while it was unlocked.
2566                                  * Specifically, the entry may have been
2567                                  * clipped, merged, or deleted.
2568                                  */
2569                                 if (!vm_map_lookup_entry(map, saved_start,
2570                                     &tmp_entry)) {
2571                                         if (flags & VM_MAP_WIRE_HOLESOK)
2572                                                 tmp_entry = tmp_entry->next;
2573                                         else {
2574                                                 if (saved_start == start) {
2575                                                         /*
2576                                                          * first_entry has been deleted.
2577                                                          */
2578                                                         vm_map_unlock(map);
2579                                                         return (KERN_INVALID_ADDRESS);
2580                                                 }
2581                                                 end = saved_start;
2582                                                 rv = KERN_INVALID_ADDRESS;
2583                                                 goto done;
2584                                         }
2585                                 }
2586                                 if (entry == first_entry)
2587                                         first_entry = tmp_entry;
2588                                 else
2589                                         first_entry = NULL;
2590                                 entry = tmp_entry;
2591                         }
2592                         last_timestamp = map->timestamp;
2593                         continue;
2594                 }
2595                 vm_map_clip_start(map, entry, start);
2596                 vm_map_clip_end(map, entry, end);
2597                 /*
2598                  * Mark the entry in case the map lock is released.  (See
2599                  * above.)
2600                  */
2601                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2602                     entry->wiring_thread == NULL,
2603                     ("owned map entry %p", entry));
2604                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2605                 entry->wiring_thread = curthread;
2606                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2607                     || (entry->protection & prot) != prot) {
2608                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2609                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2610                                 end = entry->end;
2611                                 rv = KERN_INVALID_ADDRESS;
2612                                 goto done;
2613                         }
2614                         goto next_entry;
2615                 }
2616                 if (entry->wired_count == 0) {
2617                         entry->wired_count++;
2618                         saved_start = entry->start;
2619                         saved_end = entry->end;
2620
2621                         /*
2622                          * Release the map lock, relying on the in-transition
2623                          * mark.  Mark the map busy for fork.
2624                          */
2625                         vm_map_busy(map);
2626                         vm_map_unlock(map);
2627
2628                         faddr = saved_start;
2629                         do {
2630                                 /*
2631                                  * Simulate a fault to get the page and enter
2632                                  * it into the physical map.
2633                                  */
2634                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2635                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2636                                         break;
2637                         } while ((faddr += PAGE_SIZE) < saved_end);
2638                         vm_map_lock(map);
2639                         vm_map_unbusy(map);
2640                         if (last_timestamp + 1 != map->timestamp) {
2641                                 /*
2642                                  * Look again for the entry because the map was
2643                                  * modified while it was unlocked.  The entry
2644                                  * may have been clipped, but NOT merged or
2645                                  * deleted.
2646                                  */
2647                                 result = vm_map_lookup_entry(map, saved_start,
2648                                     &tmp_entry);
2649                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2650                                 if (entry == first_entry)
2651                                         first_entry = tmp_entry;
2652                                 else
2653                                         first_entry = NULL;
2654                                 entry = tmp_entry;
2655                                 while (entry->end < saved_end) {
2656                                         /*
2657                                          * In case of failure, handle entries
2658                                          * that were not fully wired here;
2659                                          * fully wired entries are handled
2660                                          * later.
2661                                          */
2662                                         if (rv != KERN_SUCCESS &&
2663                                             faddr < entry->end)
2664                                                 vm_map_wire_entry_failure(map,
2665                                                     entry, faddr);
2666                                         entry = entry->next;
2667                                 }
2668                         }
2669                         last_timestamp = map->timestamp;
2670                         if (rv != KERN_SUCCESS) {
2671                                 vm_map_wire_entry_failure(map, entry, faddr);
2672                                 end = entry->end;
2673                                 goto done;
2674                         }
2675                 } else if (!user_wire ||
2676                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2677                         entry->wired_count++;
2678                 }
2679                 /*
2680                  * Check the map for holes in the specified region.
2681                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2682                  */
2683         next_entry:
2684                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2685                     (entry->end < end && (entry->next == &map->header ||
2686                     entry->next->start > entry->end))) {
2687                         end = entry->end;
2688                         rv = KERN_INVALID_ADDRESS;
2689                         goto done;
2690                 }
2691                 entry = entry->next;
2692         }
2693         rv = KERN_SUCCESS;
2694 done:
2695         need_wakeup = FALSE;
2696         if (first_entry == NULL) {
2697                 result = vm_map_lookup_entry(map, start, &first_entry);
2698                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2699                         first_entry = first_entry->next;
2700                 else
2701                         KASSERT(result, ("vm_map_wire: lookup failed"));
2702         }
2703         for (entry = first_entry; entry != &map->header && entry->start < end;
2704             entry = entry->next) {
2705                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2706                         goto next_entry_done;
2707
2708                 /*
2709                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2710                  * space in the unwired region could have been mapped
2711                  * while the map lock was dropped for faulting in the
2712                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2713                  * Moreover, another thread could be simultaneously
2714                  * wiring this new mapping entry.  Detect these cases
2715                  * and skip any entries marked as in transition by us.
2716                  */
2717                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2718                     entry->wiring_thread != curthread) {
2719                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2720                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2721                         continue;
2722                 }
2723
2724                 if (rv == KERN_SUCCESS) {
2725                         if (user_wire)
2726                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2727                 } else if (entry->wired_count == -1) {
2728                         /*
2729                          * Wiring failed on this entry.  Thus, unwiring is
2730                          * unnecessary.
2731                          */
2732                         entry->wired_count = 0;
2733                 } else if (!user_wire ||
2734                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2735                         /*
2736                          * Undo the wiring.  Wiring succeeded on this entry
2737                          * but failed on a later entry.  
2738                          */
2739                         if (entry->wired_count == 1)
2740                                 vm_map_entry_unwire(map, entry);
2741                         else
2742                                 entry->wired_count--;
2743                 }
2744         next_entry_done:
2745                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2746                     ("vm_map_wire: in-transition flag missing %p", entry));
2747                 KASSERT(entry->wiring_thread == curthread,
2748                     ("vm_map_wire: alien wire %p", entry));
2749                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2750                     MAP_ENTRY_WIRE_SKIPPED);
2751                 entry->wiring_thread = NULL;
2752                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2753                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2754                         need_wakeup = TRUE;
2755                 }
2756                 vm_map_simplify_entry(map, entry);
2757         }
2758         vm_map_unlock(map);
2759         if (need_wakeup)
2760                 vm_map_wakeup(map);
2761         return (rv);
2762 }
2763
2764 /*
2765  * vm_map_sync
2766  *
2767  * Push any dirty cached pages in the address range to their pager.
2768  * If syncio is TRUE, dirty pages are written synchronously.
2769  * If invalidate is TRUE, any cached pages are freed as well.
2770  *
2771  * If the size of the region from start to end is zero, we are
2772  * supposed to flush all modified pages within the region containing
2773  * start.  Unfortunately, a region can be split or coalesced with
2774  * neighboring regions, making it difficult to determine what the
2775  * original region was.  Therefore, we approximate this requirement by
2776  * flushing the current region containing start.
2777  *
2778  * Returns an error if any part of the specified range is not mapped.
2779  */
2780 int
2781 vm_map_sync(
2782         vm_map_t map,
2783         vm_offset_t start,
2784         vm_offset_t end,
2785         boolean_t syncio,
2786         boolean_t invalidate)
2787 {
2788         vm_map_entry_t current;
2789         vm_map_entry_t entry;
2790         vm_size_t size;
2791         vm_object_t object;
2792         vm_ooffset_t offset;
2793         unsigned int last_timestamp;
2794         boolean_t failed;
2795
2796         vm_map_lock_read(map);
2797         VM_MAP_RANGE_CHECK(map, start, end);
2798         if (!vm_map_lookup_entry(map, start, &entry)) {
2799                 vm_map_unlock_read(map);
2800                 return (KERN_INVALID_ADDRESS);
2801         } else if (start == end) {
2802                 start = entry->start;
2803                 end = entry->end;
2804         }
2805         /*
2806          * Make a first pass to check for user-wired memory and holes.
2807          */
2808         for (current = entry; current != &map->header && current->start < end;
2809             current = current->next) {
2810                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2811                         vm_map_unlock_read(map);
2812                         return (KERN_INVALID_ARGUMENT);
2813                 }
2814                 if (end > current->end &&
2815                     (current->next == &map->header ||
2816                         current->end != current->next->start)) {
2817                         vm_map_unlock_read(map);
2818                         return (KERN_INVALID_ADDRESS);
2819                 }
2820         }
2821
2822         if (invalidate)
2823                 pmap_remove(map->pmap, start, end);
2824         failed = FALSE;
2825
2826         /*
2827          * Make a second pass, cleaning/uncaching pages from the indicated
2828          * objects as we go.
2829          */
2830         for (current = entry; current != &map->header && current->start < end;) {
2831                 offset = current->offset + (start - current->start);
2832                 size = (end <= current->end ? end : current->end) - start;
2833                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2834                         vm_map_t smap;
2835                         vm_map_entry_t tentry;
2836                         vm_size_t tsize;
2837
2838                         smap = current->object.sub_map;
2839                         vm_map_lock_read(smap);
2840                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2841                         tsize = tentry->end - offset;
2842                         if (tsize < size)
2843                                 size = tsize;
2844                         object = tentry->object.vm_object;
2845                         offset = tentry->offset + (offset - tentry->start);
2846                         vm_map_unlock_read(smap);
2847                 } else {
2848                         object = current->object.vm_object;
2849                 }
2850                 vm_object_reference(object);
2851                 last_timestamp = map->timestamp;
2852                 vm_map_unlock_read(map);
2853                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2854                         failed = TRUE;
2855                 start += size;
2856                 vm_object_deallocate(object);
2857                 vm_map_lock_read(map);
2858                 if (last_timestamp == map->timestamp ||
2859                     !vm_map_lookup_entry(map, start, &current))
2860                         current = current->next;
2861         }
2862
2863         vm_map_unlock_read(map);
2864         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2865 }
2866
2867 /*
2868  *      vm_map_entry_unwire:    [ internal use only ]
2869  *
2870  *      Make the region specified by this entry pageable.
2871  *
2872  *      The map in question should be locked.
2873  *      [This is the reason for this routine's existence.]
2874  */
2875 static void
2876 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2877 {
2878
2879         VM_MAP_ASSERT_LOCKED(map);
2880         KASSERT(entry->wired_count > 0,
2881             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2882         pmap_unwire(map->pmap, entry->start, entry->end);
2883         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2884             entry->start, PQ_ACTIVE);
2885         entry->wired_count = 0;
2886 }
2887
2888 static void
2889 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2890 {
2891
2892         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2893                 vm_object_deallocate(entry->object.vm_object);
2894         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2895 }
2896
2897 /*
2898  *      vm_map_entry_delete:    [ internal use only ]
2899  *
2900  *      Deallocate the given entry from the target map.
2901  */
2902 static void
2903 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2904 {
2905         vm_object_t object;
2906         vm_pindex_t offidxstart, offidxend, count, size1;
2907         vm_size_t size;
2908
2909         vm_map_entry_unlink(map, entry);
2910         object = entry->object.vm_object;
2911         size = entry->end - entry->start;
2912         map->size -= size;
2913
2914         if (entry->cred != NULL) {
2915                 swap_release_by_cred(size, entry->cred);
2916                 crfree(entry->cred);
2917         }
2918
2919         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2920             (object != NULL)) {
2921                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2922                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2923                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2924                 count = atop(size);
2925                 offidxstart = OFF_TO_IDX(entry->offset);
2926                 offidxend = offidxstart + count;
2927                 VM_OBJECT_WLOCK(object);
2928                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2929                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2930                     object == kernel_object || object == kmem_object)) {
2931                         vm_object_collapse(object);
2932
2933                         /*
2934                          * The option OBJPR_NOTMAPPED can be passed here
2935                          * because vm_map_delete() already performed
2936                          * pmap_remove() on the only mapping to this range
2937                          * of pages. 
2938                          */
2939                         vm_object_page_remove(object, offidxstart, offidxend,
2940                             OBJPR_NOTMAPPED);
2941                         if (object->type == OBJT_SWAP)
2942                                 swap_pager_freespace(object, offidxstart,
2943                                     count);
2944                         if (offidxend >= object->size &&
2945                             offidxstart < object->size) {
2946                                 size1 = object->size;
2947                                 object->size = offidxstart;
2948                                 if (object->cred != NULL) {
2949                                         size1 -= object->size;
2950                                         KASSERT(object->charge >= ptoa(size1),
2951                                             ("object %p charge < 0", object));
2952                                         swap_release_by_cred(ptoa(size1),
2953                                             object->cred);
2954                                         object->charge -= ptoa(size1);
2955                                 }
2956                         }
2957                 }
2958                 VM_OBJECT_WUNLOCK(object);
2959         } else
2960                 entry->object.vm_object = NULL;
2961         if (map->system_map)
2962                 vm_map_entry_deallocate(entry, TRUE);
2963         else {
2964                 entry->next = curthread->td_map_def_user;
2965                 curthread->td_map_def_user = entry;
2966         }
2967 }
2968
2969 /*
2970  *      vm_map_delete:  [ internal use only ]
2971  *
2972  *      Deallocates the given address range from the target
2973  *      map.
2974  */
2975 int
2976 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2977 {
2978         vm_map_entry_t entry;
2979         vm_map_entry_t first_entry;
2980
2981         VM_MAP_ASSERT_LOCKED(map);
2982         if (start == end)
2983                 return (KERN_SUCCESS);
2984
2985         /*
2986          * Find the start of the region, and clip it
2987          */
2988         if (!vm_map_lookup_entry(map, start, &first_entry))
2989                 entry = first_entry->next;
2990         else {
2991                 entry = first_entry;
2992                 vm_map_clip_start(map, entry, start);
2993         }
2994
2995         /*
2996          * Step through all entries in this region
2997          */
2998         while ((entry != &map->header) && (entry->start < end)) {
2999                 vm_map_entry_t next;
3000
3001                 /*
3002                  * Wait for wiring or unwiring of an entry to complete.
3003                  * Also wait for any system wirings to disappear on
3004                  * user maps.
3005                  */
3006                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3007                     (vm_map_pmap(map) != kernel_pmap &&
3008                     vm_map_entry_system_wired_count(entry) != 0)) {
3009                         unsigned int last_timestamp;
3010                         vm_offset_t saved_start;
3011                         vm_map_entry_t tmp_entry;
3012
3013                         saved_start = entry->start;
3014                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3015                         last_timestamp = map->timestamp;
3016                         (void) vm_map_unlock_and_wait(map, 0);
3017                         vm_map_lock(map);
3018                         if (last_timestamp + 1 != map->timestamp) {
3019                                 /*
3020                                  * Look again for the entry because the map was
3021                                  * modified while it was unlocked.
3022                                  * Specifically, the entry may have been
3023                                  * clipped, merged, or deleted.
3024                                  */
3025                                 if (!vm_map_lookup_entry(map, saved_start,
3026                                                          &tmp_entry))
3027                                         entry = tmp_entry->next;
3028                                 else {
3029                                         entry = tmp_entry;
3030                                         vm_map_clip_start(map, entry,
3031                                                           saved_start);
3032                                 }
3033                         }
3034                         continue;
3035                 }
3036                 vm_map_clip_end(map, entry, end);
3037
3038                 next = entry->next;
3039
3040                 /*
3041                  * Unwire before removing addresses from the pmap; otherwise,
3042                  * unwiring will put the entries back in the pmap.
3043                  */
3044                 if (entry->wired_count != 0) {
3045                         vm_map_entry_unwire(map, entry);
3046                 }
3047
3048                 pmap_remove(map->pmap, entry->start, entry->end);
3049
3050                 /*
3051                  * Delete the entry only after removing all pmap
3052                  * entries pointing to its pages.  (Otherwise, its
3053                  * page frames may be reallocated, and any modify bits
3054                  * will be set in the wrong object!)
3055                  */
3056                 vm_map_entry_delete(map, entry);
3057                 entry = next;
3058         }
3059         return (KERN_SUCCESS);
3060 }
3061
3062 /*
3063  *      vm_map_remove:
3064  *
3065  *      Remove the given address range from the target map.
3066  *      This is the exported form of vm_map_delete.
3067  */
3068 int
3069 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3070 {
3071         int result;
3072
3073         vm_map_lock(map);
3074         VM_MAP_RANGE_CHECK(map, start, end);
3075         result = vm_map_delete(map, start, end);
3076         vm_map_unlock(map);
3077         return (result);
3078 }
3079
3080 /*
3081  *      vm_map_check_protection:
3082  *
3083  *      Assert that the target map allows the specified privilege on the
3084  *      entire address region given.  The entire region must be allocated.
3085  *
3086  *      WARNING!  This code does not and should not check whether the
3087  *      contents of the region is accessible.  For example a smaller file
3088  *      might be mapped into a larger address space.
3089  *
3090  *      NOTE!  This code is also called by munmap().
3091  *
3092  *      The map must be locked.  A read lock is sufficient.
3093  */
3094 boolean_t
3095 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3096                         vm_prot_t protection)
3097 {
3098         vm_map_entry_t entry;
3099         vm_map_entry_t tmp_entry;
3100
3101         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3102                 return (FALSE);
3103         entry = tmp_entry;
3104
3105         while (start < end) {
3106                 if (entry == &map->header)
3107                         return (FALSE);
3108                 /*
3109                  * No holes allowed!
3110                  */
3111                 if (start < entry->start)
3112                         return (FALSE);
3113                 /*
3114                  * Check protection associated with entry.
3115                  */
3116                 if ((entry->protection & protection) != protection)
3117                         return (FALSE);
3118                 /* go to next entry */
3119                 start = entry->end;
3120                 entry = entry->next;
3121         }
3122         return (TRUE);
3123 }
3124
3125 /*
3126  *      vm_map_copy_entry:
3127  *
3128  *      Copies the contents of the source entry to the destination
3129  *      entry.  The entries *must* be aligned properly.
3130  */
3131 static void
3132 vm_map_copy_entry(
3133         vm_map_t src_map,
3134         vm_map_t dst_map,
3135         vm_map_entry_t src_entry,
3136         vm_map_entry_t dst_entry,
3137         vm_ooffset_t *fork_charge)
3138 {
3139         vm_object_t src_object;
3140         vm_map_entry_t fake_entry;
3141         vm_offset_t size;
3142         struct ucred *cred;
3143         int charged;
3144
3145         VM_MAP_ASSERT_LOCKED(dst_map);
3146
3147         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3148                 return;
3149
3150         if (src_entry->wired_count == 0 ||
3151             (src_entry->protection & VM_PROT_WRITE) == 0) {
3152                 /*
3153                  * If the source entry is marked needs_copy, it is already
3154                  * write-protected.
3155                  */
3156                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3157                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3158                         pmap_protect(src_map->pmap,
3159                             src_entry->start,
3160                             src_entry->end,
3161                             src_entry->protection & ~VM_PROT_WRITE);
3162                 }
3163
3164                 /*
3165                  * Make a copy of the object.
3166                  */
3167                 size = src_entry->end - src_entry->start;
3168                 if ((src_object = src_entry->object.vm_object) != NULL) {
3169                         VM_OBJECT_WLOCK(src_object);
3170                         charged = ENTRY_CHARGED(src_entry);
3171                         if (src_object->handle == NULL &&
3172                             (src_object->type == OBJT_DEFAULT ||
3173                             src_object->type == OBJT_SWAP)) {
3174                                 vm_object_collapse(src_object);
3175                                 if ((src_object->flags & (OBJ_NOSPLIT |
3176                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3177                                         vm_object_split(src_entry);
3178                                         src_object =
3179                                             src_entry->object.vm_object;
3180                                 }
3181                         }
3182                         vm_object_reference_locked(src_object);
3183                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3184                         if (src_entry->cred != NULL &&
3185                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3186                                 KASSERT(src_object->cred == NULL,
3187                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3188                                      src_object));
3189                                 src_object->cred = src_entry->cred;
3190                                 src_object->charge = size;
3191                         }
3192                         VM_OBJECT_WUNLOCK(src_object);
3193                         dst_entry->object.vm_object = src_object;
3194                         if (charged) {
3195                                 cred = curthread->td_ucred;
3196                                 crhold(cred);
3197                                 dst_entry->cred = cred;
3198                                 *fork_charge += size;
3199                                 if (!(src_entry->eflags &
3200                                       MAP_ENTRY_NEEDS_COPY)) {
3201                                         crhold(cred);
3202                                         src_entry->cred = cred;
3203                                         *fork_charge += size;
3204                                 }
3205                         }
3206                         src_entry->eflags |= MAP_ENTRY_COW |
3207                             MAP_ENTRY_NEEDS_COPY;
3208                         dst_entry->eflags |= MAP_ENTRY_COW |
3209                             MAP_ENTRY_NEEDS_COPY;
3210                         dst_entry->offset = src_entry->offset;
3211                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3212                                 /*
3213                                  * MAP_ENTRY_VN_WRITECNT cannot
3214                                  * indicate write reference from
3215                                  * src_entry, since the entry is
3216                                  * marked as needs copy.  Allocate a
3217                                  * fake entry that is used to
3218                                  * decrement object->un_pager.vnp.writecount
3219                                  * at the appropriate time.  Attach
3220                                  * fake_entry to the deferred list.
3221                                  */
3222                                 fake_entry = vm_map_entry_create(dst_map);
3223                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3224                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3225                                 vm_object_reference(src_object);
3226                                 fake_entry->object.vm_object = src_object;
3227                                 fake_entry->start = src_entry->start;
3228                                 fake_entry->end = src_entry->end;
3229                                 fake_entry->next = curthread->td_map_def_user;
3230                                 curthread->td_map_def_user = fake_entry;
3231                         }
3232                 } else {
3233                         dst_entry->object.vm_object = NULL;
3234                         dst_entry->offset = 0;
3235                         if (src_entry->cred != NULL) {
3236                                 dst_entry->cred = curthread->td_ucred;
3237                                 crhold(dst_entry->cred);
3238                                 *fork_charge += size;
3239                         }
3240                 }
3241
3242                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3243                     dst_entry->end - dst_entry->start, src_entry->start);
3244         } else {
3245                 /*
3246                  * We don't want to make writeable wired pages copy-on-write.
3247                  * Immediately copy these pages into the new map by simulating
3248                  * page faults.  The new pages are pageable.
3249                  */
3250                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3251                     fork_charge);
3252         }
3253 }
3254
3255 /*
3256  * vmspace_map_entry_forked:
3257  * Update the newly-forked vmspace each time a map entry is inherited
3258  * or copied.  The values for vm_dsize and vm_tsize are approximate
3259  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3260  */
3261 static void
3262 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3263     vm_map_entry_t entry)
3264 {
3265         vm_size_t entrysize;
3266         vm_offset_t newend;
3267
3268         entrysize = entry->end - entry->start;
3269         vm2->vm_map.size += entrysize;
3270         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3271                 vm2->vm_ssize += btoc(entrysize);
3272         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3273             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3274                 newend = MIN(entry->end,
3275                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3276                 vm2->vm_dsize += btoc(newend - entry->start);
3277         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3278             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3279                 newend = MIN(entry->end,
3280                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3281                 vm2->vm_tsize += btoc(newend - entry->start);
3282         }
3283 }
3284
3285 /*
3286  * vmspace_fork:
3287  * Create a new process vmspace structure and vm_map
3288  * based on those of an existing process.  The new map
3289  * is based on the old map, according to the inheritance
3290  * values on the regions in that map.
3291  *
3292  * XXX It might be worth coalescing the entries added to the new vmspace.
3293  *
3294  * The source map must not be locked.
3295  */
3296 struct vmspace *
3297 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3298 {
3299         struct vmspace *vm2;
3300         vm_map_t new_map, old_map;
3301         vm_map_entry_t new_entry, old_entry;
3302         vm_object_t object;
3303         int locked;
3304
3305         old_map = &vm1->vm_map;
3306         /* Copy immutable fields of vm1 to vm2. */
3307         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3308         if (vm2 == NULL)
3309                 return (NULL);
3310         vm2->vm_taddr = vm1->vm_taddr;
3311         vm2->vm_daddr = vm1->vm_daddr;
3312         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3313         vm_map_lock(old_map);
3314         if (old_map->busy)
3315                 vm_map_wait_busy(old_map);
3316         new_map = &vm2->vm_map;
3317         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3318         KASSERT(locked, ("vmspace_fork: lock failed"));
3319
3320         old_entry = old_map->header.next;
3321
3322         while (old_entry != &old_map->header) {
3323                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3324                         panic("vm_map_fork: encountered a submap");
3325
3326                 switch (old_entry->inheritance) {
3327                 case VM_INHERIT_NONE:
3328                         break;
3329
3330                 case VM_INHERIT_SHARE:
3331                         /*
3332                          * Clone the entry, creating the shared object if necessary.
3333                          */
3334                         object = old_entry->object.vm_object;
3335                         if (object == NULL) {
3336                                 object = vm_object_allocate(OBJT_DEFAULT,
3337                                         atop(old_entry->end - old_entry->start));
3338                                 old_entry->object.vm_object = object;
3339                                 old_entry->offset = 0;
3340                                 if (old_entry->cred != NULL) {
3341                                         object->cred = old_entry->cred;
3342                                         object->charge = old_entry->end -
3343                                             old_entry->start;
3344                                         old_entry->cred = NULL;
3345                                 }
3346                         }
3347
3348                         /*
3349                          * Add the reference before calling vm_object_shadow
3350                          * to insure that a shadow object is created.
3351                          */
3352                         vm_object_reference(object);
3353                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3354                                 vm_object_shadow(&old_entry->object.vm_object,
3355                                     &old_entry->offset,
3356                                     old_entry->end - old_entry->start);
3357                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3358                                 /* Transfer the second reference too. */
3359                                 vm_object_reference(
3360                                     old_entry->object.vm_object);
3361
3362                                 /*
3363                                  * As in vm_map_simplify_entry(), the
3364                                  * vnode lock will not be acquired in
3365                                  * this call to vm_object_deallocate().
3366                                  */
3367                                 vm_object_deallocate(object);
3368                                 object = old_entry->object.vm_object;
3369                         }
3370                         VM_OBJECT_WLOCK(object);
3371                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3372                         if (old_entry->cred != NULL) {
3373                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3374                                 object->cred = old_entry->cred;
3375                                 object->charge = old_entry->end - old_entry->start;
3376                                 old_entry->cred = NULL;
3377                         }
3378
3379                         /*
3380                          * Assert the correct state of the vnode
3381                          * v_writecount while the object is locked, to
3382                          * not relock it later for the assertion
3383                          * correctness.
3384                          */
3385                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3386                             object->type == OBJT_VNODE) {
3387                                 KASSERT(((struct vnode *)object->handle)->
3388                                     v_writecount > 0,
3389                                     ("vmspace_fork: v_writecount %p", object));
3390                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3391                                     ("vmspace_fork: vnp.writecount %p",
3392                                     object));
3393                         }
3394                         VM_OBJECT_WUNLOCK(object);
3395
3396                         /*
3397                          * Clone the entry, referencing the shared object.
3398                          */
3399                         new_entry = vm_map_entry_create(new_map);
3400                         *new_entry = *old_entry;
3401                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3402                             MAP_ENTRY_IN_TRANSITION);
3403                         new_entry->wiring_thread = NULL;
3404                         new_entry->wired_count = 0;
3405                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3406                                 vnode_pager_update_writecount(object,
3407                                     new_entry->start, new_entry->end);
3408                         }
3409
3410                         /*
3411                          * Insert the entry into the new map -- we know we're
3412                          * inserting at the end of the new map.
3413                          */
3414                         vm_map_entry_link(new_map, new_map->header.prev,
3415                             new_entry);
3416                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3417
3418                         /*
3419                          * Update the physical map
3420                          */
3421                         pmap_copy(new_map->pmap, old_map->pmap,
3422                             new_entry->start,
3423                             (old_entry->end - old_entry->start),
3424                             old_entry->start);
3425                         break;
3426
3427                 case VM_INHERIT_COPY:
3428                         /*
3429                          * Clone the entry and link into the map.
3430                          */
3431                         new_entry = vm_map_entry_create(new_map);
3432                         *new_entry = *old_entry;
3433                         /*
3434                          * Copied entry is COW over the old object.
3435                          */
3436                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3437                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3438                         new_entry->wiring_thread = NULL;
3439                         new_entry->wired_count = 0;
3440                         new_entry->object.vm_object = NULL;
3441                         new_entry->cred = NULL;
3442                         vm_map_entry_link(new_map, new_map->header.prev,
3443                             new_entry);
3444                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3445                         vm_map_copy_entry(old_map, new_map, old_entry,
3446                             new_entry, fork_charge);
3447                         break;
3448                 }
3449                 old_entry = old_entry->next;
3450         }
3451         /*
3452          * Use inlined vm_map_unlock() to postpone handling the deferred
3453          * map entries, which cannot be done until both old_map and
3454          * new_map locks are released.
3455          */
3456         sx_xunlock(&old_map->lock);
3457         sx_xunlock(&new_map->lock);
3458         vm_map_process_deferred();
3459
3460         return (vm2);
3461 }
3462
3463 int
3464 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3465     vm_prot_t prot, vm_prot_t max, int cow)
3466 {
3467         vm_size_t growsize, init_ssize;
3468         rlim_t lmemlim, vmemlim;
3469         int rv;
3470
3471         growsize = sgrowsiz;
3472         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3473         vm_map_lock(map);
3474         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3475         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3476         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3477                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3478                         rv = KERN_NO_SPACE;
3479                         goto out;
3480                 }
3481         }
3482         /* If we would blow our VMEM resource limit, no go */
3483         if (map->size + init_ssize > vmemlim) {
3484                 rv = KERN_NO_SPACE;
3485                 goto out;
3486         }
3487         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3488             max, cow);
3489 out:
3490         vm_map_unlock(map);
3491         return (rv);
3492 }
3493
3494 static int
3495 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3496     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3497 {
3498         vm_map_entry_t new_entry, prev_entry;
3499         vm_offset_t bot, top;
3500         vm_size_t init_ssize;
3501         int orient, rv;
3502
3503         /*
3504          * The stack orientation is piggybacked with the cow argument.
3505          * Extract it into orient and mask the cow argument so that we
3506          * don't pass it around further.
3507          * NOTE: We explicitly allow bi-directional stacks.
3508          */
3509         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3510         KASSERT(orient != 0, ("No stack grow direction"));
3511
3512         if (addrbos < vm_map_min(map) ||
3513             addrbos > vm_map_max(map) ||
3514             addrbos + max_ssize < addrbos)
3515                 return (KERN_NO_SPACE);
3516
3517         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3518
3519         /* If addr is already mapped, no go */
3520         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3521                 return (KERN_NO_SPACE);
3522
3523         /*
3524          * If we can't accommodate max_ssize in the current mapping, no go.
3525          * However, we need to be aware that subsequent user mappings might
3526          * map into the space we have reserved for stack, and currently this
3527          * space is not protected.
3528          *
3529          * Hopefully we will at least detect this condition when we try to
3530          * grow the stack.
3531          */
3532         if ((prev_entry->next != &map->header) &&
3533             (prev_entry->next->start < addrbos + max_ssize))
3534                 return (KERN_NO_SPACE);
3535
3536         /*
3537          * We initially map a stack of only init_ssize.  We will grow as
3538          * needed later.  Depending on the orientation of the stack (i.e.
3539          * the grow direction) we either map at the top of the range, the
3540          * bottom of the range or in the middle.
3541          *
3542          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3543          * and cow to be 0.  Possibly we should eliminate these as input
3544          * parameters, and just pass these values here in the insert call.
3545          */
3546         if (orient == MAP_STACK_GROWS_DOWN)
3547                 bot = addrbos + max_ssize - init_ssize;
3548         else if (orient == MAP_STACK_GROWS_UP)
3549                 bot = addrbos;
3550         else
3551                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3552         top = bot + init_ssize;
3553         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3554
3555         /* Now set the avail_ssize amount. */
3556         if (rv == KERN_SUCCESS) {
3557                 new_entry = prev_entry->next;
3558                 if (new_entry->end != top || new_entry->start != bot)
3559                         panic("Bad entry start/end for new stack entry");
3560
3561                 new_entry->avail_ssize = max_ssize - init_ssize;
3562                 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3563                     (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3564                     ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3565                 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3566                     (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3567                     ("new entry lacks MAP_ENTRY_GROWS_UP"));
3568         }
3569
3570         return (rv);
3571 }
3572
3573 static int stack_guard_page = 0;
3574 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3575     &stack_guard_page, 0,
3576     "Insert stack guard page ahead of the growable segments.");
3577
3578 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3579  * desired address is already mapped, or if we successfully grow
3580  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3581  * stack range (this is strange, but preserves compatibility with
3582  * the grow function in vm_machdep.c).
3583  */
3584 int
3585 vm_map_growstack(struct proc *p, vm_offset_t addr)
3586 {
3587         vm_map_entry_t next_entry, prev_entry;
3588         vm_map_entry_t new_entry, stack_entry;
3589         struct vmspace *vm = p->p_vmspace;
3590         vm_map_t map = &vm->vm_map;
3591         vm_offset_t end;
3592         vm_size_t growsize;
3593         size_t grow_amount, max_grow;
3594         rlim_t lmemlim, stacklim, vmemlim;
3595         int is_procstack, rv;
3596         struct ucred *cred;
3597 #ifdef notyet
3598         uint64_t limit;
3599 #endif
3600 #ifdef RACCT
3601         int error;
3602 #endif
3603
3604         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3605         stacklim = lim_cur(curthread, RLIMIT_STACK);
3606         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3607 Retry:
3608
3609         vm_map_lock_read(map);
3610
3611         /* If addr is already in the entry range, no need to grow.*/
3612         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3613                 vm_map_unlock_read(map);
3614                 return (KERN_SUCCESS);
3615         }
3616
3617         next_entry = prev_entry->next;
3618         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3619                 /*
3620                  * This entry does not grow upwards. Since the address lies
3621                  * beyond this entry, the next entry (if one exists) has to
3622                  * be a downward growable entry. The entry list header is
3623                  * never a growable entry, so it suffices to check the flags.
3624                  */
3625                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3626                         vm_map_unlock_read(map);
3627                         return (KERN_SUCCESS);
3628                 }
3629                 stack_entry = next_entry;
3630         } else {
3631                 /*
3632                  * This entry grows upward. If the next entry does not at
3633                  * least grow downwards, this is the entry we need to grow.
3634                  * otherwise we have two possible choices and we have to
3635                  * select one.
3636                  */
3637                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3638                         /*
3639                          * We have two choices; grow the entry closest to
3640                          * the address to minimize the amount of growth.
3641                          */
3642                         if (addr - prev_entry->end <= next_entry->start - addr)
3643                                 stack_entry = prev_entry;
3644                         else
3645                                 stack_entry = next_entry;
3646                 } else
3647                         stack_entry = prev_entry;
3648         }
3649
3650         if (stack_entry == next_entry) {
3651                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3652                 KASSERT(addr < stack_entry->start, ("foo"));
3653                 end = (prev_entry != &map->header) ? prev_entry->end :
3654                     stack_entry->start - stack_entry->avail_ssize;
3655                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3656                 max_grow = stack_entry->start - end;
3657         } else {
3658                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3659                 KASSERT(addr >= stack_entry->end, ("foo"));
3660                 end = (next_entry != &map->header) ? next_entry->start :
3661                     stack_entry->end + stack_entry->avail_ssize;
3662                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3663                 max_grow = end - stack_entry->end;
3664         }
3665
3666         if (grow_amount > stack_entry->avail_ssize) {
3667                 vm_map_unlock_read(map);
3668                 return (KERN_NO_SPACE);
3669         }
3670
3671         /*
3672          * If there is no longer enough space between the entries nogo, and
3673          * adjust the available space.  Note: this  should only happen if the
3674          * user has mapped into the stack area after the stack was created,
3675          * and is probably an error.
3676          *
3677          * This also effectively destroys any guard page the user might have
3678          * intended by limiting the stack size.
3679          */
3680         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3681                 if (vm_map_lock_upgrade(map))
3682                         goto Retry;
3683
3684                 stack_entry->avail_ssize = max_grow;
3685
3686                 vm_map_unlock(map);
3687                 return (KERN_NO_SPACE);
3688         }
3689
3690         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3691             addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3692
3693         /*
3694          * If this is the main process stack, see if we're over the stack
3695          * limit.
3696          */
3697         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3698                 vm_map_unlock_read(map);
3699                 return (KERN_NO_SPACE);
3700         }
3701 #ifdef RACCT
3702         if (racct_enable) {
3703                 PROC_LOCK(p);
3704                 if (is_procstack && racct_set(p, RACCT_STACK,
3705                     ctob(vm->vm_ssize) + grow_amount)) {
3706                         PROC_UNLOCK(p);
3707                         vm_map_unlock_read(map);
3708                         return (KERN_NO_SPACE);
3709                 }
3710                 PROC_UNLOCK(p);
3711         }
3712 #endif
3713
3714         /* Round up the grow amount modulo sgrowsiz */
3715         growsize = sgrowsiz;
3716         grow_amount = roundup(grow_amount, growsize);
3717         if (grow_amount > stack_entry->avail_ssize)
3718                 grow_amount = stack_entry->avail_ssize;
3719         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3720                 grow_amount = trunc_page((vm_size_t)stacklim) -
3721                     ctob(vm->vm_ssize);
3722         }
3723 #ifdef notyet
3724         PROC_LOCK(p);
3725         limit = racct_get_available(p, RACCT_STACK);
3726         PROC_UNLOCK(p);
3727         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3728                 grow_amount = limit - ctob(vm->vm_ssize);
3729 #endif
3730         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3731                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3732                         vm_map_unlock_read(map);
3733                         rv = KERN_NO_SPACE;
3734                         goto out;
3735                 }
3736 #ifdef RACCT
3737                 if (racct_enable) {
3738                         PROC_LOCK(p);
3739                         if (racct_set(p, RACCT_MEMLOCK,
3740                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3741                                 PROC_UNLOCK(p);
3742                                 vm_map_unlock_read(map);
3743                                 rv = KERN_NO_SPACE;
3744                                 goto out;
3745                         }
3746                         PROC_UNLOCK(p);
3747                 }
3748 #endif
3749         }
3750         /* If we would blow our VMEM resource limit, no go */
3751         if (map->size + grow_amount > vmemlim) {
3752                 vm_map_unlock_read(map);
3753                 rv = KERN_NO_SPACE;
3754                 goto out;
3755         }
3756 #ifdef RACCT
3757         if (racct_enable) {
3758                 PROC_LOCK(p);
3759                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3760                         PROC_UNLOCK(p);
3761                         vm_map_unlock_read(map);
3762                         rv = KERN_NO_SPACE;
3763                         goto out;
3764                 }
3765                 PROC_UNLOCK(p);
3766         }
3767 #endif
3768
3769         if (vm_map_lock_upgrade(map))
3770                 goto Retry;
3771
3772         if (stack_entry == next_entry) {
3773                 /*
3774                  * Growing downward.
3775                  */
3776                 /* Get the preliminary new entry start value */
3777                 addr = stack_entry->start - grow_amount;
3778
3779                 /*
3780                  * If this puts us into the previous entry, cut back our
3781                  * growth to the available space. Also, see the note above.
3782                  */
3783                 if (addr < end) {
3784                         stack_entry->avail_ssize = max_grow;
3785                         addr = end;
3786                         if (stack_guard_page)
3787                                 addr += PAGE_SIZE;
3788                 }
3789
3790                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3791                     next_entry->protection, next_entry->max_protection,
3792                     MAP_STACK_GROWS_DOWN);
3793
3794                 /* Adjust the available stack space by the amount we grew. */
3795                 if (rv == KERN_SUCCESS) {
3796                         new_entry = prev_entry->next;
3797                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3798                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3799                         KASSERT(new_entry->start == addr, ("foo"));
3800                         KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3801                             0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3802                         grow_amount = new_entry->end - new_entry->start;
3803                         new_entry->avail_ssize = stack_entry->avail_ssize -
3804                             grow_amount;
3805                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3806                 }
3807         } else {
3808                 /*
3809                  * Growing upward.
3810                  */
3811                 addr = stack_entry->end + grow_amount;
3812
3813                 /*
3814                  * If this puts us into the next entry, cut back our growth
3815                  * to the available space. Also, see the note above.
3816                  */
3817                 if (addr > end) {
3818                         stack_entry->avail_ssize = end - stack_entry->end;
3819                         addr = end;
3820                         if (stack_guard_page)
3821                                 addr -= PAGE_SIZE;
3822                 }
3823
3824                 grow_amount = addr - stack_entry->end;
3825                 cred = stack_entry->cred;
3826                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3827                         cred = stack_entry->object.vm_object->cred;
3828                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3829                         rv = KERN_NO_SPACE;
3830                 /* Grow the underlying object if applicable. */
3831                 else if (stack_entry->object.vm_object == NULL ||
3832                     vm_object_coalesce(stack_entry->object.vm_object,
3833                     stack_entry->offset,
3834                     (vm_size_t)(stack_entry->end - stack_entry->start),
3835                     (vm_size_t)grow_amount, cred != NULL)) {
3836                         map->size += (addr - stack_entry->end);
3837                         /* Update the current entry. */
3838                         stack_entry->end = addr;
3839                         stack_entry->avail_ssize -= grow_amount;
3840                         vm_map_entry_resize_free(map, stack_entry);
3841                         rv = KERN_SUCCESS;
3842                 } else
3843                         rv = KERN_FAILURE;
3844         }
3845
3846         if (rv == KERN_SUCCESS && is_procstack)
3847                 vm->vm_ssize += btoc(grow_amount);
3848
3849         vm_map_unlock(map);
3850
3851         /*
3852          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3853          */
3854         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3855                 vm_map_wire(map,
3856                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3857                     (stack_entry == next_entry) ? stack_entry->start : addr,
3858                     (p->p_flag & P_SYSTEM)
3859                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3860                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3861         }
3862
3863 out:
3864 #ifdef RACCT
3865         if (racct_enable && rv != KERN_SUCCESS) {
3866                 PROC_LOCK(p);
3867                 error = racct_set(p, RACCT_VMEM, map->size);
3868                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3869                 if (!old_mlock) {
3870                         error = racct_set(p, RACCT_MEMLOCK,
3871                             ptoa(pmap_wired_count(map->pmap)));
3872                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3873                 }
3874                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3875                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3876                 PROC_UNLOCK(p);
3877         }
3878 #endif
3879
3880         return (rv);
3881 }
3882
3883 /*
3884  * Unshare the specified VM space for exec.  If other processes are
3885  * mapped to it, then create a new one.  The new vmspace is null.
3886  */
3887 int
3888 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3889 {
3890         struct vmspace *oldvmspace = p->p_vmspace;
3891         struct vmspace *newvmspace;
3892
3893         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3894             ("vmspace_exec recursed"));
3895         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3896         if (newvmspace == NULL)
3897                 return (ENOMEM);
3898         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3899         /*
3900          * This code is written like this for prototype purposes.  The
3901          * goal is to avoid running down the vmspace here, but let the
3902          * other process's that are still using the vmspace to finally
3903          * run it down.  Even though there is little or no chance of blocking
3904          * here, it is a good idea to keep this form for future mods.
3905          */
3906         PROC_VMSPACE_LOCK(p);
3907         p->p_vmspace = newvmspace;
3908         PROC_VMSPACE_UNLOCK(p);
3909         if (p == curthread->td_proc)
3910                 pmap_activate(curthread);
3911         curthread->td_pflags |= TDP_EXECVMSPC;
3912         return (0);
3913 }
3914
3915 /*
3916  * Unshare the specified VM space for forcing COW.  This
3917  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3918  */
3919 int
3920 vmspace_unshare(struct proc *p)
3921 {
3922         struct vmspace *oldvmspace = p->p_vmspace;
3923         struct vmspace *newvmspace;
3924         vm_ooffset_t fork_charge;
3925
3926         if (oldvmspace->vm_refcnt == 1)
3927                 return (0);
3928         fork_charge = 0;
3929         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3930         if (newvmspace == NULL)
3931                 return (ENOMEM);
3932         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3933                 vmspace_free(newvmspace);
3934                 return (ENOMEM);
3935         }
3936         PROC_VMSPACE_LOCK(p);
3937         p->p_vmspace = newvmspace;
3938         PROC_VMSPACE_UNLOCK(p);
3939         if (p == curthread->td_proc)
3940                 pmap_activate(curthread);
3941         vmspace_free(oldvmspace);
3942         return (0);
3943 }
3944
3945 /*
3946  *      vm_map_lookup:
3947  *
3948  *      Finds the VM object, offset, and
3949  *      protection for a given virtual address in the
3950  *      specified map, assuming a page fault of the
3951  *      type specified.
3952  *
3953  *      Leaves the map in question locked for read; return
3954  *      values are guaranteed until a vm_map_lookup_done
3955  *      call is performed.  Note that the map argument
3956  *      is in/out; the returned map must be used in
3957  *      the call to vm_map_lookup_done.
3958  *
3959  *      A handle (out_entry) is returned for use in
3960  *      vm_map_lookup_done, to make that fast.
3961  *
3962  *      If a lookup is requested with "write protection"
3963  *      specified, the map may be changed to perform virtual
3964  *      copying operations, although the data referenced will
3965  *      remain the same.
3966  */
3967 int
3968 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3969               vm_offset_t vaddr,
3970               vm_prot_t fault_typea,
3971               vm_map_entry_t *out_entry,        /* OUT */
3972               vm_object_t *object,              /* OUT */
3973               vm_pindex_t *pindex,              /* OUT */
3974               vm_prot_t *out_prot,              /* OUT */
3975               boolean_t *wired)                 /* OUT */
3976 {
3977         vm_map_entry_t entry;
3978         vm_map_t map = *var_map;
3979         vm_prot_t prot;
3980         vm_prot_t fault_type = fault_typea;
3981         vm_object_t eobject;
3982         vm_size_t size;
3983         struct ucred *cred;
3984
3985 RetryLookup:;
3986
3987         vm_map_lock_read(map);
3988
3989         /*
3990          * Lookup the faulting address.
3991          */
3992         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3993                 vm_map_unlock_read(map);
3994                 return (KERN_INVALID_ADDRESS);
3995         }
3996
3997         entry = *out_entry;
3998
3999         /*
4000          * Handle submaps.
4001          */
4002         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4003                 vm_map_t old_map = map;
4004
4005                 *var_map = map = entry->object.sub_map;
4006                 vm_map_unlock_read(old_map);
4007                 goto RetryLookup;
4008         }
4009
4010         /*
4011          * Check whether this task is allowed to have this page.
4012          */
4013         prot = entry->protection;
4014         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4015         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4016                 vm_map_unlock_read(map);
4017                 return (KERN_PROTECTION_FAILURE);
4018         }
4019         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4020             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4021             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4022             ("entry %p flags %x", entry, entry->eflags));
4023         if ((fault_typea & VM_PROT_COPY) != 0 &&
4024             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4025             (entry->eflags & MAP_ENTRY_COW) == 0) {
4026                 vm_map_unlock_read(map);
4027                 return (KERN_PROTECTION_FAILURE);
4028         }
4029
4030         /*
4031          * If this page is not pageable, we have to get it for all possible
4032          * accesses.
4033          */
4034         *wired = (entry->wired_count != 0);
4035         if (*wired)
4036                 fault_type = entry->protection;
4037         size = entry->end - entry->start;
4038         /*
4039          * If the entry was copy-on-write, we either ...
4040          */
4041         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4042                 /*
4043                  * If we want to write the page, we may as well handle that
4044                  * now since we've got the map locked.
4045                  *
4046                  * If we don't need to write the page, we just demote the
4047                  * permissions allowed.
4048                  */
4049                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4050                     (fault_typea & VM_PROT_COPY) != 0) {
4051                         /*
4052                          * Make a new object, and place it in the object
4053                          * chain.  Note that no new references have appeared
4054                          * -- one just moved from the map to the new
4055                          * object.
4056                          */
4057                         if (vm_map_lock_upgrade(map))
4058                                 goto RetryLookup;
4059
4060                         if (entry->cred == NULL) {
4061                                 /*
4062                                  * The debugger owner is charged for
4063                                  * the memory.
4064                                  */
4065                                 cred = curthread->td_ucred;
4066                                 crhold(cred);
4067                                 if (!swap_reserve_by_cred(size, cred)) {
4068                                         crfree(cred);
4069                                         vm_map_unlock(map);
4070                                         return (KERN_RESOURCE_SHORTAGE);
4071                                 }
4072                                 entry->cred = cred;
4073                         }
4074                         vm_object_shadow(&entry->object.vm_object,
4075                             &entry->offset, size);
4076                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4077                         eobject = entry->object.vm_object;
4078                         if (eobject->cred != NULL) {
4079                                 /*
4080                                  * The object was not shadowed.
4081                                  */
4082                                 swap_release_by_cred(size, entry->cred);
4083                                 crfree(entry->cred);
4084                                 entry->cred = NULL;
4085                         } else if (entry->cred != NULL) {
4086                                 VM_OBJECT_WLOCK(eobject);
4087                                 eobject->cred = entry->cred;
4088                                 eobject->charge = size;
4089                                 VM_OBJECT_WUNLOCK(eobject);
4090                                 entry->cred = NULL;
4091                         }
4092
4093                         vm_map_lock_downgrade(map);
4094                 } else {
4095                         /*
4096                          * We're attempting to read a copy-on-write page --
4097                          * don't allow writes.
4098                          */
4099                         prot &= ~VM_PROT_WRITE;
4100                 }
4101         }
4102
4103         /*
4104          * Create an object if necessary.
4105          */
4106         if (entry->object.vm_object == NULL &&
4107             !map->system_map) {
4108                 if (vm_map_lock_upgrade(map))
4109                         goto RetryLookup;
4110                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4111                     atop(size));
4112                 entry->offset = 0;
4113                 if (entry->cred != NULL) {
4114                         VM_OBJECT_WLOCK(entry->object.vm_object);
4115                         entry->object.vm_object->cred = entry->cred;
4116                         entry->object.vm_object->charge = size;
4117                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4118                         entry->cred = NULL;
4119                 }
4120                 vm_map_lock_downgrade(map);
4121         }
4122
4123         /*
4124          * Return the object/offset from this entry.  If the entry was
4125          * copy-on-write or empty, it has been fixed up.
4126          */
4127         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4128         *object = entry->object.vm_object;
4129
4130         *out_prot = prot;
4131         return (KERN_SUCCESS);
4132 }
4133
4134 /*
4135  *      vm_map_lookup_locked:
4136  *
4137  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4138  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4139  */
4140 int
4141 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4142                      vm_offset_t vaddr,
4143                      vm_prot_t fault_typea,
4144                      vm_map_entry_t *out_entry, /* OUT */
4145                      vm_object_t *object,       /* OUT */
4146                      vm_pindex_t *pindex,       /* OUT */
4147                      vm_prot_t *out_prot,       /* OUT */
4148                      boolean_t *wired)          /* OUT */
4149 {
4150         vm_map_entry_t entry;
4151         vm_map_t map = *var_map;
4152         vm_prot_t prot;
4153         vm_prot_t fault_type = fault_typea;
4154
4155         /*
4156          * Lookup the faulting address.
4157          */
4158         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4159                 return (KERN_INVALID_ADDRESS);
4160
4161         entry = *out_entry;
4162
4163         /*
4164          * Fail if the entry refers to a submap.
4165          */
4166         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4167                 return (KERN_FAILURE);
4168
4169         /*
4170          * Check whether this task is allowed to have this page.
4171          */
4172         prot = entry->protection;
4173         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4174         if ((fault_type & prot) != fault_type)
4175                 return (KERN_PROTECTION_FAILURE);
4176
4177         /*
4178          * If this page is not pageable, we have to get it for all possible
4179          * accesses.
4180          */
4181         *wired = (entry->wired_count != 0);
4182         if (*wired)
4183                 fault_type = entry->protection;
4184
4185         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4186                 /*
4187                  * Fail if the entry was copy-on-write for a write fault.
4188                  */
4189                 if (fault_type & VM_PROT_WRITE)
4190                         return (KERN_FAILURE);
4191                 /*
4192                  * We're attempting to read a copy-on-write page --
4193                  * don't allow writes.
4194                  */
4195                 prot &= ~VM_PROT_WRITE;
4196         }
4197
4198         /*
4199          * Fail if an object should be created.
4200          */
4201         if (entry->object.vm_object == NULL && !map->system_map)
4202                 return (KERN_FAILURE);
4203
4204         /*
4205          * Return the object/offset from this entry.  If the entry was
4206          * copy-on-write or empty, it has been fixed up.
4207          */
4208         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4209         *object = entry->object.vm_object;
4210
4211         *out_prot = prot;
4212         return (KERN_SUCCESS);
4213 }
4214
4215 /*
4216  *      vm_map_lookup_done:
4217  *
4218  *      Releases locks acquired by a vm_map_lookup
4219  *      (according to the handle returned by that lookup).
4220  */
4221 void
4222 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4223 {
4224         /*
4225          * Unlock the main-level map
4226          */
4227         vm_map_unlock_read(map);
4228 }
4229
4230 #include "opt_ddb.h"
4231 #ifdef DDB
4232 #include <sys/kernel.h>
4233
4234 #include <ddb/ddb.h>
4235
4236 static void
4237 vm_map_print(vm_map_t map)
4238 {
4239         vm_map_entry_t entry;
4240
4241         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4242             (void *)map,
4243             (void *)map->pmap, map->nentries, map->timestamp);
4244
4245         db_indent += 2;
4246         for (entry = map->header.next; entry != &map->header;
4247             entry = entry->next) {
4248                 db_iprintf("map entry %p: start=%p, end=%p\n",
4249                     (void *)entry, (void *)entry->start, (void *)entry->end);
4250                 {
4251                         static char *inheritance_name[4] =
4252                         {"share", "copy", "none", "donate_copy"};
4253
4254                         db_iprintf(" prot=%x/%x/%s",
4255                             entry->protection,
4256                             entry->max_protection,
4257                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4258                         if (entry->wired_count != 0)
4259                                 db_printf(", wired");
4260                 }
4261                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4262                         db_printf(", share=%p, offset=0x%jx\n",
4263                             (void *)entry->object.sub_map,
4264                             (uintmax_t)entry->offset);
4265                         if ((entry->prev == &map->header) ||
4266                             (entry->prev->object.sub_map !=
4267                                 entry->object.sub_map)) {
4268                                 db_indent += 2;
4269                                 vm_map_print((vm_map_t)entry->object.sub_map);
4270                                 db_indent -= 2;
4271                         }
4272                 } else {
4273                         if (entry->cred != NULL)
4274                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4275                         db_printf(", object=%p, offset=0x%jx",
4276                             (void *)entry->object.vm_object,
4277                             (uintmax_t)entry->offset);
4278                         if (entry->object.vm_object && entry->object.vm_object->cred)
4279                                 db_printf(", obj ruid %d charge %jx",
4280                                     entry->object.vm_object->cred->cr_ruid,
4281                                     (uintmax_t)entry->object.vm_object->charge);
4282                         if (entry->eflags & MAP_ENTRY_COW)
4283                                 db_printf(", copy (%s)",
4284                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4285                         db_printf("\n");
4286
4287                         if ((entry->prev == &map->header) ||
4288                             (entry->prev->object.vm_object !=
4289                                 entry->object.vm_object)) {
4290                                 db_indent += 2;
4291                                 vm_object_print((db_expr_t)(intptr_t)
4292                                                 entry->object.vm_object,
4293                                                 0, 0, (char *)0);
4294                                 db_indent -= 2;
4295                         }
4296                 }
4297         }
4298         db_indent -= 2;
4299 }
4300
4301 DB_SHOW_COMMAND(map, map)
4302 {
4303
4304         if (!have_addr) {
4305                 db_printf("usage: show map <addr>\n");
4306                 return;
4307         }
4308         vm_map_print((vm_map_t)addr);
4309 }
4310
4311 DB_SHOW_COMMAND(procvm, procvm)
4312 {
4313         struct proc *p;
4314
4315         if (have_addr) {
4316                 p = db_lookup_proc(addr);
4317         } else {
4318                 p = curproc;
4319         }
4320
4321         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4322             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4323             (void *)vmspace_pmap(p->p_vmspace));
4324
4325         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4326 }
4327
4328 #endif /* DDB */