]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Switch to use shared vnode locks for text files during image activation.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vm_map_zdtor(void *mem, int size, void *arg);
144 static void vmspace_zdtor(void *mem, int size, void *arg);
145 #endif
146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
147     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
148     int cow);
149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
150     vm_offset_t failed_addr);
151
152 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
153     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
154      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
155
156 /* 
157  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
158  * stable.
159  */
160 #define PROC_VMSPACE_LOCK(p) do { } while (0)
161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
162
163 /*
164  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
165  *
166  *      Asserts that the starting and ending region
167  *      addresses fall within the valid range of the map.
168  */
169 #define VM_MAP_RANGE_CHECK(map, start, end)             \
170                 {                                       \
171                 if (start < vm_map_min(map))            \
172                         start = vm_map_min(map);        \
173                 if (end > vm_map_max(map))              \
174                         end = vm_map_max(map);          \
175                 if (start > end)                        \
176                         start = end;                    \
177                 }
178
179 /*
180  *      vm_map_startup:
181  *
182  *      Initialize the vm_map module.  Must be called before
183  *      any other vm_map routines.
184  *
185  *      Map and entry structures are allocated from the general
186  *      purpose memory pool with some exceptions:
187  *
188  *      - The kernel map and kmem submap are allocated statically.
189  *      - Kernel map entries are allocated out of a static pool.
190  *
191  *      These restrictions are necessary since malloc() uses the
192  *      maps and requires map entries.
193  */
194
195 void
196 vm_map_startup(void)
197 {
198         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
199         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
200 #ifdef INVARIANTS
201             vm_map_zdtor,
202 #else
203             NULL,
204 #endif
205             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206         uma_prealloc(mapzone, MAX_KMAP);
207         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
208             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
209             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
210         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
213 #ifdef INVARIANTS
214             vmspace_zdtor,
215 #else
216             NULL,
217 #endif
218             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
219 }
220
221 static int
222 vmspace_zinit(void *mem, int size, int flags)
223 {
224         struct vmspace *vm;
225
226         vm = (struct vmspace *)mem;
227
228         vm->vm_map.pmap = NULL;
229         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
230         PMAP_LOCK_INIT(vmspace_pmap(vm));
231         return (0);
232 }
233
234 static int
235 vm_map_zinit(void *mem, int size, int flags)
236 {
237         vm_map_t map;
238
239         map = (vm_map_t)mem;
240         memset(map, 0, sizeof(*map));
241         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
242         sx_init(&map->lock, "vm map (user)");
243         return (0);
244 }
245
246 #ifdef INVARIANTS
247 static void
248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250         struct vmspace *vm;
251
252         vm = (struct vmspace *)mem;
253
254         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259         vm_map_t map;
260
261         map = (vm_map_t)mem;
262         KASSERT(map->nentries == 0,
263             ("map %p nentries == %d on free.",
264             map, map->nentries));
265         KASSERT(map->size == 0,
266             ("map %p size == %lu on free.",
267             map, (unsigned long)map->size));
268 }
269 #endif  /* INVARIANTS */
270
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  *
275  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
276  */
277 struct vmspace *
278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
279 {
280         struct vmspace *vm;
281
282         vm = uma_zalloc(vmspace_zone, M_WAITOK);
283         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
284         if (!pinit(vmspace_pmap(vm))) {
285                 uma_zfree(vmspace_zone, vm);
286                 return (NULL);
287         }
288         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290         vm->vm_refcnt = 1;
291         vm->vm_shm = NULL;
292         vm->vm_swrss = 0;
293         vm->vm_tsize = 0;
294         vm->vm_dsize = 0;
295         vm->vm_ssize = 0;
296         vm->vm_taddr = 0;
297         vm->vm_daddr = 0;
298         vm->vm_maxsaddr = 0;
299         return (vm);
300 }
301
302 #ifdef RACCT
303 static void
304 vmspace_container_reset(struct proc *p)
305 {
306
307         PROC_LOCK(p);
308         racct_set(p, RACCT_DATA, 0);
309         racct_set(p, RACCT_STACK, 0);
310         racct_set(p, RACCT_RSS, 0);
311         racct_set(p, RACCT_MEMLOCK, 0);
312         racct_set(p, RACCT_VMEM, 0);
313         PROC_UNLOCK(p);
314 }
315 #endif
316
317 static inline void
318 vmspace_dofree(struct vmspace *vm)
319 {
320
321         CTR1(KTR_VM, "vmspace_free: %p", vm);
322
323         /*
324          * Make sure any SysV shm is freed, it might not have been in
325          * exit1().
326          */
327         shmexit(vm);
328
329         /*
330          * Lock the map, to wait out all other references to it.
331          * Delete all of the mappings and pages they hold, then call
332          * the pmap module to reclaim anything left.
333          */
334         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
335             vm_map_max(&vm->vm_map));
336
337         pmap_release(vmspace_pmap(vm));
338         vm->vm_map.pmap = NULL;
339         uma_zfree(vmspace_zone, vm);
340 }
341
342 void
343 vmspace_free(struct vmspace *vm)
344 {
345
346         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
347             "vmspace_free() called");
348
349         if (vm->vm_refcnt == 0)
350                 panic("vmspace_free: attempt to free already freed vmspace");
351
352         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
353                 vmspace_dofree(vm);
354 }
355
356 void
357 vmspace_exitfree(struct proc *p)
358 {
359         struct vmspace *vm;
360
361         PROC_VMSPACE_LOCK(p);
362         vm = p->p_vmspace;
363         p->p_vmspace = NULL;
364         PROC_VMSPACE_UNLOCK(p);
365         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
366         vmspace_free(vm);
367 }
368
369 void
370 vmspace_exit(struct thread *td)
371 {
372         int refcnt;
373         struct vmspace *vm;
374         struct proc *p;
375
376         /*
377          * Release user portion of address space.
378          * This releases references to vnodes,
379          * which could cause I/O if the file has been unlinked.
380          * Need to do this early enough that we can still sleep.
381          *
382          * The last exiting process to reach this point releases as
383          * much of the environment as it can. vmspace_dofree() is the
384          * slower fallback in case another process had a temporary
385          * reference to the vmspace.
386          */
387
388         p = td->td_proc;
389         vm = p->p_vmspace;
390         atomic_add_int(&vmspace0.vm_refcnt, 1);
391         refcnt = vm->vm_refcnt;
392         do {
393                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
394                         /* Switch now since other proc might free vmspace */
395                         PROC_VMSPACE_LOCK(p);
396                         p->p_vmspace = &vmspace0;
397                         PROC_VMSPACE_UNLOCK(p);
398                         pmap_activate(td);
399                 }
400         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
401         if (refcnt == 1) {
402                 if (p->p_vmspace != vm) {
403                         /* vmspace not yet freed, switch back */
404                         PROC_VMSPACE_LOCK(p);
405                         p->p_vmspace = vm;
406                         PROC_VMSPACE_UNLOCK(p);
407                         pmap_activate(td);
408                 }
409                 pmap_remove_pages(vmspace_pmap(vm));
410                 /* Switch now since this proc will free vmspace */
411                 PROC_VMSPACE_LOCK(p);
412                 p->p_vmspace = &vmspace0;
413                 PROC_VMSPACE_UNLOCK(p);
414                 pmap_activate(td);
415                 vmspace_dofree(vm);
416         }
417 #ifdef RACCT
418         if (racct_enable)
419                 vmspace_container_reset(p);
420 #endif
421 }
422
423 /* Acquire reference to vmspace owned by another process. */
424
425 struct vmspace *
426 vmspace_acquire_ref(struct proc *p)
427 {
428         struct vmspace *vm;
429         int refcnt;
430
431         PROC_VMSPACE_LOCK(p);
432         vm = p->p_vmspace;
433         if (vm == NULL) {
434                 PROC_VMSPACE_UNLOCK(p);
435                 return (NULL);
436         }
437         refcnt = vm->vm_refcnt;
438         do {
439                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
440                         PROC_VMSPACE_UNLOCK(p);
441                         return (NULL);
442                 }
443         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
444         if (vm != p->p_vmspace) {
445                 PROC_VMSPACE_UNLOCK(p);
446                 vmspace_free(vm);
447                 return (NULL);
448         }
449         PROC_VMSPACE_UNLOCK(p);
450         return (vm);
451 }
452
453 /*
454  * Switch between vmspaces in an AIO kernel process.
455  *
456  * The AIO kernel processes switch to and from a user process's
457  * vmspace while performing an I/O operation on behalf of a user
458  * process.  The new vmspace is either the vmspace of a user process
459  * obtained from an active AIO request or the initial vmspace of the
460  * AIO kernel process (when it is idling).  Because user processes
461  * will block to drain any active AIO requests before proceeding in
462  * exit() or execve(), the vmspace reference count for these vmspaces
463  * can never be 0.  This allows for a much simpler implementation than
464  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
465  * processes hold an extra reference on their initial vmspace for the
466  * life of the process so that this guarantee is true for any vmspace
467  * passed as 'newvm'.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472         struct vmspace *oldvm;
473
474         /* XXX: Need some way to assert that this is an aio daemon. */
475
476         KASSERT(newvm->vm_refcnt > 0,
477             ("vmspace_switch_aio: newvm unreferenced"));
478
479         oldvm = curproc->p_vmspace;
480         if (oldvm == newvm)
481                 return;
482
483         /*
484          * Point to the new address space and refer to it.
485          */
486         curproc->p_vmspace = newvm;
487         atomic_add_int(&newvm->vm_refcnt, 1);
488
489         /* Activate the new mapping. */
490         pmap_activate(curthread);
491
492         /* Remove the daemon's reference to the old address space. */
493         KASSERT(oldvm->vm_refcnt > 1,
494             ("vmspace_switch_aio: oldvm dropping last reference"));
495         vmspace_free(oldvm);
496 }
497
498 void
499 _vm_map_lock(vm_map_t map, const char *file, int line)
500 {
501
502         if (map->system_map)
503                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
504         else
505                 sx_xlock_(&map->lock, file, line);
506         map->timestamp++;
507 }
508
509 void
510 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
511 {
512         vm_object_t object, object1;
513         struct vnode *vp;
514
515         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
516                 return;
517         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
518             ("Submap with execs"));
519         object = entry->object.vm_object;
520         KASSERT(object != NULL, ("No object for text, entry %p", entry));
521         VM_OBJECT_RLOCK(object);
522         while ((object1 = object->backing_object) != NULL) {
523                 VM_OBJECT_RLOCK(object1);
524                 VM_OBJECT_RUNLOCK(object);
525                 object = object1;
526         }
527
528         /*
529          * For OBJT_DEAD objects, v_writecount was handled in
530          * vnode_pager_dealloc().
531          */
532         if (object->type != OBJT_DEAD) {
533                 KASSERT(((object->flags & OBJ_TMPFS) == 0 &&
534                     object->type == OBJT_VNODE) ||
535                     ((object->flags & OBJ_TMPFS) != 0 &&
536                     object->type == OBJT_SWAP),
537                     ("vm_map_entry_set_vnode_text: wrong object type, "
538                     "entry %p, object %p, add %d", entry, object, add));
539                 vp = (object->flags & OBJ_TMPFS) == 0 ? object->handle :
540                     object->un_pager.swp.swp_tmpfs;
541                 if (add)
542                         VOP_SET_TEXT_CHECKED(vp);
543                 else
544                         VOP_UNSET_TEXT_CHECKED(vp);
545         }
546         VM_OBJECT_RUNLOCK(object);
547 }
548
549 static void
550 vm_map_process_deferred(void)
551 {
552         struct thread *td;
553         vm_map_entry_t entry, next;
554         vm_object_t object;
555
556         td = curthread;
557         entry = td->td_map_def_user;
558         td->td_map_def_user = NULL;
559         while (entry != NULL) {
560                 next = entry->next;
561                 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
562                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
563                     MAP_ENTRY_VN_EXEC));
564                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
565                         /*
566                          * Decrement the object's writemappings and
567                          * possibly the vnode's v_writecount.
568                          */
569                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
570                             ("Submap with writecount"));
571                         object = entry->object.vm_object;
572                         KASSERT(object != NULL, ("No object for writecount"));
573                         vnode_pager_release_writecount(object, entry->start,
574                             entry->end);
575                 }
576                 vm_map_entry_set_vnode_text(entry, false);
577                 vm_map_entry_deallocate(entry, FALSE);
578                 entry = next;
579         }
580 }
581
582 void
583 _vm_map_unlock(vm_map_t map, const char *file, int line)
584 {
585
586         if (map->system_map)
587                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
588         else {
589                 sx_xunlock_(&map->lock, file, line);
590                 vm_map_process_deferred();
591         }
592 }
593
594 void
595 _vm_map_lock_read(vm_map_t map, const char *file, int line)
596 {
597
598         if (map->system_map)
599                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
600         else
601                 sx_slock_(&map->lock, file, line);
602 }
603
604 void
605 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
606 {
607
608         if (map->system_map)
609                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
610         else {
611                 sx_sunlock_(&map->lock, file, line);
612                 vm_map_process_deferred();
613         }
614 }
615
616 int
617 _vm_map_trylock(vm_map_t map, const char *file, int line)
618 {
619         int error;
620
621         error = map->system_map ?
622             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
623             !sx_try_xlock_(&map->lock, file, line);
624         if (error == 0)
625                 map->timestamp++;
626         return (error == 0);
627 }
628
629 int
630 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
631 {
632         int error;
633
634         error = map->system_map ?
635             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
636             !sx_try_slock_(&map->lock, file, line);
637         return (error == 0);
638 }
639
640 /*
641  *      _vm_map_lock_upgrade:   [ internal use only ]
642  *
643  *      Tries to upgrade a read (shared) lock on the specified map to a write
644  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
645  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
646  *      returned without a read or write lock held.
647  *
648  *      Requires that the map be read locked.
649  */
650 int
651 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
652 {
653         unsigned int last_timestamp;
654
655         if (map->system_map) {
656                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
657         } else {
658                 if (!sx_try_upgrade_(&map->lock, file, line)) {
659                         last_timestamp = map->timestamp;
660                         sx_sunlock_(&map->lock, file, line);
661                         vm_map_process_deferred();
662                         /*
663                          * If the map's timestamp does not change while the
664                          * map is unlocked, then the upgrade succeeds.
665                          */
666                         sx_xlock_(&map->lock, file, line);
667                         if (last_timestamp != map->timestamp) {
668                                 sx_xunlock_(&map->lock, file, line);
669                                 return (1);
670                         }
671                 }
672         }
673         map->timestamp++;
674         return (0);
675 }
676
677 void
678 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
679 {
680
681         if (map->system_map) {
682                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
683         } else
684                 sx_downgrade_(&map->lock, file, line);
685 }
686
687 /*
688  *      vm_map_locked:
689  *
690  *      Returns a non-zero value if the caller holds a write (exclusive) lock
691  *      on the specified map and the value "0" otherwise.
692  */
693 int
694 vm_map_locked(vm_map_t map)
695 {
696
697         if (map->system_map)
698                 return (mtx_owned(&map->system_mtx));
699         else
700                 return (sx_xlocked(&map->lock));
701 }
702
703 #ifdef INVARIANTS
704 static void
705 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
706 {
707
708         if (map->system_map)
709                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
710         else
711                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
712 }
713
714 #define VM_MAP_ASSERT_LOCKED(map) \
715     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
716
717 #ifdef DIAGNOSTIC
718 static int enable_vmmap_check = 1;
719 #else
720 static int enable_vmmap_check = 0;
721 #endif
722 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
723     &enable_vmmap_check, 0, "Enable vm map consistency checking");
724
725 static void
726 _vm_map_assert_consistent(vm_map_t map)
727 {
728         vm_map_entry_t entry;
729         vm_map_entry_t child;
730         vm_size_t max_left, max_right;
731
732         if (!enable_vmmap_check)
733                 return;
734
735         for (entry = map->header.next; entry != &map->header;
736             entry = entry->next) {
737                 KASSERT(entry->prev->end <= entry->start,
738                     ("map %p prev->end = %jx, start = %jx", map,
739                     (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
740                 KASSERT(entry->start < entry->end,
741                     ("map %p start = %jx, end = %jx", map,
742                     (uintmax_t)entry->start, (uintmax_t)entry->end));
743                 KASSERT(entry->end <= entry->next->start,
744                     ("map %p end = %jx, next->start = %jx", map,
745                     (uintmax_t)entry->end, (uintmax_t)entry->next->start));
746                 KASSERT(entry->left == NULL ||
747                     entry->left->start < entry->start,
748                     ("map %p left->start = %jx, start = %jx", map,
749                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
750                 KASSERT(entry->right == NULL ||
751                     entry->start < entry->right->start,
752                     ("map %p start = %jx, right->start = %jx", map,
753                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
754                 child = entry->left;
755                 max_left = (child != NULL) ? child->max_free :
756                         entry->start - entry->prev->end;
757                 child = entry->right;
758                 max_right = (child != NULL) ? child->max_free :
759                         entry->next->start - entry->end;
760                 KASSERT(entry->max_free == MAX(max_left, max_right),
761                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
762                      (uintmax_t)entry->max_free,
763                      (uintmax_t)max_left, (uintmax_t)max_right));
764         }       
765 }
766
767 #define VM_MAP_ASSERT_CONSISTENT(map) \
768     _vm_map_assert_consistent(map)
769 #else
770 #define VM_MAP_ASSERT_LOCKED(map)
771 #define VM_MAP_ASSERT_CONSISTENT(map)
772 #endif /* INVARIANTS */
773
774 /*
775  *      _vm_map_unlock_and_wait:
776  *
777  *      Atomically releases the lock on the specified map and puts the calling
778  *      thread to sleep.  The calling thread will remain asleep until either
779  *      vm_map_wakeup() is performed on the map or the specified timeout is
780  *      exceeded.
781  *
782  *      WARNING!  This function does not perform deferred deallocations of
783  *      objects and map entries.  Therefore, the calling thread is expected to
784  *      reacquire the map lock after reawakening and later perform an ordinary
785  *      unlock operation, such as vm_map_unlock(), before completing its
786  *      operation on the map.
787  */
788 int
789 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
790 {
791
792         mtx_lock(&map_sleep_mtx);
793         if (map->system_map)
794                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
795         else
796                 sx_xunlock_(&map->lock, file, line);
797         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
798             timo));
799 }
800
801 /*
802  *      vm_map_wakeup:
803  *
804  *      Awaken any threads that have slept on the map using
805  *      vm_map_unlock_and_wait().
806  */
807 void
808 vm_map_wakeup(vm_map_t map)
809 {
810
811         /*
812          * Acquire and release map_sleep_mtx to prevent a wakeup()
813          * from being performed (and lost) between the map unlock
814          * and the msleep() in _vm_map_unlock_and_wait().
815          */
816         mtx_lock(&map_sleep_mtx);
817         mtx_unlock(&map_sleep_mtx);
818         wakeup(&map->root);
819 }
820
821 void
822 vm_map_busy(vm_map_t map)
823 {
824
825         VM_MAP_ASSERT_LOCKED(map);
826         map->busy++;
827 }
828
829 void
830 vm_map_unbusy(vm_map_t map)
831 {
832
833         VM_MAP_ASSERT_LOCKED(map);
834         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
835         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
836                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
837                 wakeup(&map->busy);
838         }
839 }
840
841 void 
842 vm_map_wait_busy(vm_map_t map)
843 {
844
845         VM_MAP_ASSERT_LOCKED(map);
846         while (map->busy) {
847                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
848                 if (map->system_map)
849                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
850                 else
851                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
852         }
853         map->timestamp++;
854 }
855
856 long
857 vmspace_resident_count(struct vmspace *vmspace)
858 {
859         return pmap_resident_count(vmspace_pmap(vmspace));
860 }
861
862 /*
863  *      vm_map_create:
864  *
865  *      Creates and returns a new empty VM map with
866  *      the given physical map structure, and having
867  *      the given lower and upper address bounds.
868  */
869 vm_map_t
870 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
871 {
872         vm_map_t result;
873
874         result = uma_zalloc(mapzone, M_WAITOK);
875         CTR1(KTR_VM, "vm_map_create: %p", result);
876         _vm_map_init(result, pmap, min, max);
877         return (result);
878 }
879
880 /*
881  * Initialize an existing vm_map structure
882  * such as that in the vmspace structure.
883  */
884 static void
885 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
886 {
887
888         map->header.next = map->header.prev = &map->header;
889         map->header.eflags = MAP_ENTRY_HEADER;
890         map->needs_wakeup = FALSE;
891         map->system_map = 0;
892         map->pmap = pmap;
893         map->header.end = min;
894         map->header.start = max;
895         map->flags = 0;
896         map->root = NULL;
897         map->timestamp = 0;
898         map->busy = 0;
899         map->anon_loc = 0;
900 }
901
902 void
903 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
904 {
905
906         _vm_map_init(map, pmap, min, max);
907         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
908         sx_init(&map->lock, "user map");
909 }
910
911 /*
912  *      vm_map_entry_dispose:   [ internal use only ]
913  *
914  *      Inverse of vm_map_entry_create.
915  */
916 static void
917 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
918 {
919         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
920 }
921
922 /*
923  *      vm_map_entry_create:    [ internal use only ]
924  *
925  *      Allocates a VM map entry for insertion.
926  *      No entry fields are filled in.
927  */
928 static vm_map_entry_t
929 vm_map_entry_create(vm_map_t map)
930 {
931         vm_map_entry_t new_entry;
932
933         if (map->system_map)
934                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
935         else
936                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
937         if (new_entry == NULL)
938                 panic("vm_map_entry_create: kernel resources exhausted");
939         return (new_entry);
940 }
941
942 /*
943  *      vm_map_entry_set_behavior:
944  *
945  *      Set the expected access behavior, either normal, random, or
946  *      sequential.
947  */
948 static inline void
949 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
950 {
951         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
952             (behavior & MAP_ENTRY_BEHAV_MASK);
953 }
954
955 /*
956  *      vm_map_entry_set_max_free:
957  *
958  *      Set the max_free field in a vm_map_entry.
959  */
960 static inline void
961 vm_map_entry_set_max_free(vm_map_entry_t entry)
962 {
963         vm_map_entry_t child;
964         vm_size_t max_left, max_right;
965
966         child = entry->left;
967         max_left = (child != NULL) ? child->max_free :
968             entry->start - entry->prev->end;
969         child = entry->right;
970         max_right = (child != NULL) ? child->max_free :
971             entry->next->start - entry->end;
972         entry->max_free = MAX(max_left, max_right);
973 }
974
975 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {      \
976         y = root->left;                                 \
977         if (y != NULL && (test)) {                      \
978                 /* Rotate right and make y root. */     \
979                 root->left = y->right;                  \
980                 y->right = root;                        \
981                 vm_map_entry_set_max_free(root);        \
982                 root = y;                               \
983                 y = root->left;                         \
984         }                                               \
985         /* Put root on rlist. */                        \
986         root->left = rlist;                             \
987         rlist = root;                                   \
988         root = y;                                       \
989 } while (0)
990
991 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {     \
992         y = root->right;                                \
993         if (y != NULL && (test)) {                      \
994                 /* Rotate left and make y root. */      \
995                 root->right = y->left;                  \
996                 y->left = root;                         \
997                 vm_map_entry_set_max_free(root);        \
998                 root = y;                               \
999                 y = root->right;                        \
1000         }                                               \
1001         /* Put root on llist. */                        \
1002         root->right = llist;                            \
1003         llist = root;                                   \
1004         root = y;                                       \
1005 } while (0)
1006
1007 /*
1008  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1009  * breaking off left and right subtrees of nodes less than, or greater than
1010  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1011  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1012  * linked by the right pointer and rlist linked by the left pointer in the
1013  * vm_map_entry.
1014  */
1015 static vm_map_entry_t
1016 vm_map_splay_split(vm_offset_t addr, vm_size_t length,
1017     vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1018 {
1019         vm_map_entry_t llist, rlist;
1020         vm_map_entry_t y;
1021
1022         llist = NULL;
1023         rlist = NULL;
1024         while (root != NULL && root->max_free >= length) {
1025                 if (addr < root->start) {
1026                         SPLAY_LEFT_STEP(root, y, rlist,
1027                             y->max_free >= length && addr < y->start);
1028                 } else if (addr >= root->end) {
1029                         SPLAY_RIGHT_STEP(root, y, llist,
1030                             y->max_free >= length && addr >= y->end);
1031                 } else
1032                         break;
1033         }
1034         *out_llist = llist;
1035         *out_rlist = rlist;
1036         return (root);
1037 }
1038
1039 static void
1040 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1041 {
1042         vm_map_entry_t rlist, y;
1043
1044         root = root->right;
1045         rlist = *iolist;
1046         while (root != NULL)
1047                 SPLAY_LEFT_STEP(root, y, rlist, true);
1048         *iolist = rlist;
1049 }
1050
1051 static void
1052 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1053 {
1054         vm_map_entry_t llist, y;
1055
1056         root = root->left;
1057         llist = *iolist;
1058         while (root != NULL)
1059                 SPLAY_RIGHT_STEP(root, y, llist, true);
1060         *iolist = llist;
1061 }
1062
1063 /*
1064  * Walk back up the two spines, flip the pointers and set max_free.  The
1065  * subtrees of the root go at the bottom of llist and rlist.
1066  */
1067 static vm_map_entry_t
1068 vm_map_splay_merge(vm_map_entry_t root,
1069     vm_map_entry_t llist, vm_map_entry_t rlist,
1070     vm_map_entry_t ltree, vm_map_entry_t rtree)
1071 {
1072         vm_map_entry_t y;
1073
1074         while (llist != NULL) {
1075                 y = llist->right;
1076                 llist->right = ltree;
1077                 vm_map_entry_set_max_free(llist);
1078                 ltree = llist;
1079                 llist = y;
1080         }
1081         while (rlist != NULL) {
1082                 y = rlist->left;
1083                 rlist->left = rtree;
1084                 vm_map_entry_set_max_free(rlist);
1085                 rtree = rlist;
1086                 rlist = y;
1087         }
1088
1089         /*
1090          * Final assembly: add ltree and rtree as subtrees of root.
1091          */
1092         root->left = ltree;
1093         root->right = rtree;
1094         vm_map_entry_set_max_free(root);
1095
1096         return (root);
1097 }
1098
1099 /*
1100  *      vm_map_entry_splay:
1101  *
1102  *      The Sleator and Tarjan top-down splay algorithm with the
1103  *      following variation.  Max_free must be computed bottom-up, so
1104  *      on the downward pass, maintain the left and right spines in
1105  *      reverse order.  Then, make a second pass up each side to fix
1106  *      the pointers and compute max_free.  The time bound is O(log n)
1107  *      amortized.
1108  *
1109  *      The new root is the vm_map_entry containing "addr", or else an
1110  *      adjacent entry (lower if possible) if addr is not in the tree.
1111  *
1112  *      The map must be locked, and leaves it so.
1113  *
1114  *      Returns: the new root.
1115  */
1116 static vm_map_entry_t
1117 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
1118 {
1119         vm_map_entry_t llist, rlist;
1120
1121         root = vm_map_splay_split(addr, 0, root, &llist, &rlist);
1122         if (root != NULL) {
1123                 /* do nothing */
1124         } else if (llist != NULL) {
1125                 /*
1126                  * Recover the greatest node in the left
1127                  * subtree and make it the root.
1128                  */
1129                 root = llist;
1130                 llist = root->right;
1131                 root->right = NULL;
1132         } else if (rlist != NULL) {
1133                 /*
1134                  * Recover the least node in the right
1135                  * subtree and make it the root.
1136                  */
1137                 root = rlist;
1138                 rlist = root->left;
1139                 root->left = NULL;
1140         } else {
1141                 /* There is no root. */
1142                 return (NULL);
1143         }
1144         return (vm_map_splay_merge(root, llist, rlist,
1145             root->left, root->right));
1146 }
1147
1148 /*
1149  *      vm_map_entry_{un,}link:
1150  *
1151  *      Insert/remove entries from maps.
1152  */
1153 static void
1154 vm_map_entry_link(vm_map_t map,
1155                   vm_map_entry_t entry)
1156 {
1157         vm_map_entry_t llist, rlist, root;
1158
1159         CTR3(KTR_VM,
1160             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1161             map->nentries, entry);
1162         VM_MAP_ASSERT_LOCKED(map);
1163         map->nentries++;
1164         root = map->root;
1165         root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1166         KASSERT(root == NULL,
1167             ("vm_map_entry_link: link object already mapped"));
1168         entry->prev = (llist == NULL) ? &map->header : llist;
1169         entry->next = (rlist == NULL) ? &map->header : rlist;
1170         entry->prev->next = entry->next->prev = entry;
1171         root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL);
1172         map->root = entry;
1173         VM_MAP_ASSERT_CONSISTENT(map);
1174 }
1175
1176 enum unlink_merge_type {
1177         UNLINK_MERGE_PREV,
1178         UNLINK_MERGE_NONE,
1179         UNLINK_MERGE_NEXT
1180 };
1181
1182 static void
1183 vm_map_entry_unlink(vm_map_t map,
1184                     vm_map_entry_t entry,
1185                     enum unlink_merge_type op)
1186 {
1187         vm_map_entry_t llist, rlist, root, y;
1188
1189         VM_MAP_ASSERT_LOCKED(map);
1190         llist = entry->prev;
1191         rlist = entry->next;
1192         llist->next = rlist;
1193         rlist->prev = llist;
1194         root = map->root;
1195         root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1196         KASSERT(root != NULL,
1197             ("vm_map_entry_unlink: unlink object not mapped"));
1198
1199         switch (op) {
1200         case UNLINK_MERGE_PREV:
1201                 vm_map_splay_findprev(root, &llist);
1202                 llist->end = root->end;
1203                 y = root->right;
1204                 root = llist;
1205                 llist = root->right;
1206                 root->right = y;
1207                 break;
1208         case UNLINK_MERGE_NEXT:
1209                 vm_map_splay_findnext(root, &rlist);
1210                 rlist->start = root->start;
1211                 rlist->offset = root->offset;
1212                 y = root->left;
1213                 root = rlist;
1214                 rlist = root->left;
1215                 root->left = y;
1216                 break;
1217         case UNLINK_MERGE_NONE:
1218                 vm_map_splay_findprev(root, &llist);
1219                 vm_map_splay_findnext(root, &rlist);
1220                 if (llist != NULL) {
1221                         root = llist;
1222                         llist = root->right;
1223                         root->right = NULL;
1224                 } else if (rlist != NULL) {
1225                         root = rlist;
1226                         rlist = root->left;
1227                         root->left = NULL;
1228                 } else
1229                         root = NULL;
1230                 break;
1231         }
1232         if (root != NULL)
1233                 root = vm_map_splay_merge(root, llist, rlist,
1234                     root->left, root->right);
1235         map->root = root;
1236         VM_MAP_ASSERT_CONSISTENT(map);
1237         map->nentries--;
1238         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1239             map->nentries, entry);
1240 }
1241
1242 /*
1243  *      vm_map_entry_resize_free:
1244  *
1245  *      Recompute the amount of free space following a modified vm_map_entry
1246  *      and propagate those values up the tree.  Call this function after
1247  *      resizing a map entry in-place by changing the end value, without a
1248  *      call to vm_map_entry_link() or _unlink().
1249  *
1250  *      The map must be locked, and leaves it so.
1251  */
1252 static void
1253 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1254 {
1255         vm_map_entry_t llist, rlist, root;
1256
1257         VM_MAP_ASSERT_LOCKED(map);
1258         root = map->root;
1259         root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1260         KASSERT(root != NULL,
1261             ("vm_map_entry_resize_free: resize_free object not mapped"));
1262         vm_map_splay_findnext(root, &rlist);
1263         root->right = NULL;
1264         map->root = vm_map_splay_merge(root, llist, rlist,
1265             root->left, root->right);
1266         VM_MAP_ASSERT_CONSISTENT(map);
1267         CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map,
1268             map->nentries, entry);
1269 }
1270
1271 /*
1272  *      vm_map_lookup_entry:    [ internal use only ]
1273  *
1274  *      Finds the map entry containing (or
1275  *      immediately preceding) the specified address
1276  *      in the given map; the entry is returned
1277  *      in the "entry" parameter.  The boolean
1278  *      result indicates whether the address is
1279  *      actually contained in the map.
1280  */
1281 boolean_t
1282 vm_map_lookup_entry(
1283         vm_map_t map,
1284         vm_offset_t address,
1285         vm_map_entry_t *entry)  /* OUT */
1286 {
1287         vm_map_entry_t cur, lbound;
1288         boolean_t locked;
1289
1290         /*
1291          * If the map is empty, then the map entry immediately preceding
1292          * "address" is the map's header.
1293          */
1294         cur = map->root;
1295         if (cur == NULL) {
1296                 *entry = &map->header;
1297                 return (FALSE);
1298         }
1299         if (address >= cur->start && cur->end > address) {
1300                 *entry = cur;
1301                 return (TRUE);
1302         }
1303         if ((locked = vm_map_locked(map)) ||
1304             sx_try_upgrade(&map->lock)) {
1305                 /*
1306                  * Splay requires a write lock on the map.  However, it only
1307                  * restructures the binary search tree; it does not otherwise
1308                  * change the map.  Thus, the map's timestamp need not change
1309                  * on a temporary upgrade.
1310                  */
1311                 map->root = cur = vm_map_entry_splay(address, cur);
1312                 VM_MAP_ASSERT_CONSISTENT(map);
1313                 if (!locked)
1314                         sx_downgrade(&map->lock);
1315
1316                 /*
1317                  * If "address" is contained within a map entry, the new root
1318                  * is that map entry.  Otherwise, the new root is a map entry
1319                  * immediately before or after "address".
1320                  */
1321                 if (address < cur->start) {
1322                         *entry = &map->header;
1323                         return (FALSE);
1324                 }
1325                 *entry = cur;
1326                 return (address < cur->end);
1327         }
1328         /*
1329          * Since the map is only locked for read access, perform a
1330          * standard binary search tree lookup for "address".
1331          */
1332         lbound = &map->header;
1333         do {
1334                 if (address < cur->start) {
1335                         cur = cur->left;
1336                 } else if (cur->end <= address) {
1337                         lbound = cur;
1338                         cur = cur->right;
1339                 } else {
1340                         *entry = cur;
1341                         return (TRUE);
1342                 }
1343         } while (cur != NULL);
1344         *entry = lbound;
1345         return (FALSE);
1346 }
1347
1348 /*
1349  *      vm_map_insert:
1350  *
1351  *      Inserts the given whole VM object into the target
1352  *      map at the specified address range.  The object's
1353  *      size should match that of the address range.
1354  *
1355  *      Requires that the map be locked, and leaves it so.
1356  *
1357  *      If object is non-NULL, ref count must be bumped by caller
1358  *      prior to making call to account for the new entry.
1359  */
1360 int
1361 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1362     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1363 {
1364         vm_map_entry_t new_entry, prev_entry, temp_entry;
1365         struct ucred *cred;
1366         vm_eflags_t protoeflags;
1367         vm_inherit_t inheritance;
1368
1369         VM_MAP_ASSERT_LOCKED(map);
1370         KASSERT(object != kernel_object ||
1371             (cow & MAP_COPY_ON_WRITE) == 0,
1372             ("vm_map_insert: kernel object and COW"));
1373         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1374             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1375         KASSERT((prot & ~max) == 0,
1376             ("prot %#x is not subset of max_prot %#x", prot, max));
1377
1378         /*
1379          * Check that the start and end points are not bogus.
1380          */
1381         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1382             start >= end)
1383                 return (KERN_INVALID_ADDRESS);
1384
1385         /*
1386          * Find the entry prior to the proposed starting address; if it's part
1387          * of an existing entry, this range is bogus.
1388          */
1389         if (vm_map_lookup_entry(map, start, &temp_entry))
1390                 return (KERN_NO_SPACE);
1391
1392         prev_entry = temp_entry;
1393
1394         /*
1395          * Assert that the next entry doesn't overlap the end point.
1396          */
1397         if (prev_entry->next->start < end)
1398                 return (KERN_NO_SPACE);
1399
1400         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1401             max != VM_PROT_NONE))
1402                 return (KERN_INVALID_ARGUMENT);
1403
1404         protoeflags = 0;
1405         if (cow & MAP_COPY_ON_WRITE)
1406                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1407         if (cow & MAP_NOFAULT)
1408                 protoeflags |= MAP_ENTRY_NOFAULT;
1409         if (cow & MAP_DISABLE_SYNCER)
1410                 protoeflags |= MAP_ENTRY_NOSYNC;
1411         if (cow & MAP_DISABLE_COREDUMP)
1412                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1413         if (cow & MAP_STACK_GROWS_DOWN)
1414                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1415         if (cow & MAP_STACK_GROWS_UP)
1416                 protoeflags |= MAP_ENTRY_GROWS_UP;
1417         if (cow & MAP_VN_WRITECOUNT)
1418                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1419         if (cow & MAP_VN_EXEC)
1420                 protoeflags |= MAP_ENTRY_VN_EXEC;
1421         if ((cow & MAP_CREATE_GUARD) != 0)
1422                 protoeflags |= MAP_ENTRY_GUARD;
1423         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1424                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1425         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1426                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1427         if (cow & MAP_INHERIT_SHARE)
1428                 inheritance = VM_INHERIT_SHARE;
1429         else
1430                 inheritance = VM_INHERIT_DEFAULT;
1431
1432         cred = NULL;
1433         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1434                 goto charged;
1435         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1436             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1437                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1438                         return (KERN_RESOURCE_SHORTAGE);
1439                 KASSERT(object == NULL ||
1440                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1441                     object->cred == NULL,
1442                     ("overcommit: vm_map_insert o %p", object));
1443                 cred = curthread->td_ucred;
1444         }
1445
1446 charged:
1447         /* Expand the kernel pmap, if necessary. */
1448         if (map == kernel_map && end > kernel_vm_end)
1449                 pmap_growkernel(end);
1450         if (object != NULL) {
1451                 /*
1452                  * OBJ_ONEMAPPING must be cleared unless this mapping
1453                  * is trivially proven to be the only mapping for any
1454                  * of the object's pages.  (Object granularity
1455                  * reference counting is insufficient to recognize
1456                  * aliases with precision.)
1457                  */
1458                 VM_OBJECT_WLOCK(object);
1459                 if (object->ref_count > 1 || object->shadow_count != 0)
1460                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1461                 VM_OBJECT_WUNLOCK(object);
1462         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1463             protoeflags &&
1464             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1465             MAP_VN_EXEC)) == 0 &&
1466             prev_entry->end == start && (prev_entry->cred == cred ||
1467             (prev_entry->object.vm_object != NULL &&
1468             prev_entry->object.vm_object->cred == cred)) &&
1469             vm_object_coalesce(prev_entry->object.vm_object,
1470             prev_entry->offset,
1471             (vm_size_t)(prev_entry->end - prev_entry->start),
1472             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1473             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1474                 /*
1475                  * We were able to extend the object.  Determine if we
1476                  * can extend the previous map entry to include the
1477                  * new range as well.
1478                  */
1479                 if (prev_entry->inheritance == inheritance &&
1480                     prev_entry->protection == prot &&
1481                     prev_entry->max_protection == max &&
1482                     prev_entry->wired_count == 0) {
1483                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1484                             0, ("prev_entry %p has incoherent wiring",
1485                             prev_entry));
1486                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1487                                 map->size += end - prev_entry->end;
1488                         prev_entry->end = end;
1489                         vm_map_entry_resize_free(map, prev_entry);
1490                         vm_map_simplify_entry(map, prev_entry);
1491                         return (KERN_SUCCESS);
1492                 }
1493
1494                 /*
1495                  * If we can extend the object but cannot extend the
1496                  * map entry, we have to create a new map entry.  We
1497                  * must bump the ref count on the extended object to
1498                  * account for it.  object may be NULL.
1499                  */
1500                 object = prev_entry->object.vm_object;
1501                 offset = prev_entry->offset +
1502                     (prev_entry->end - prev_entry->start);
1503                 vm_object_reference(object);
1504                 if (cred != NULL && object != NULL && object->cred != NULL &&
1505                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1506                         /* Object already accounts for this uid. */
1507                         cred = NULL;
1508                 }
1509         }
1510         if (cred != NULL)
1511                 crhold(cred);
1512
1513         /*
1514          * Create a new entry
1515          */
1516         new_entry = vm_map_entry_create(map);
1517         new_entry->start = start;
1518         new_entry->end = end;
1519         new_entry->cred = NULL;
1520
1521         new_entry->eflags = protoeflags;
1522         new_entry->object.vm_object = object;
1523         new_entry->offset = offset;
1524
1525         new_entry->inheritance = inheritance;
1526         new_entry->protection = prot;
1527         new_entry->max_protection = max;
1528         new_entry->wired_count = 0;
1529         new_entry->wiring_thread = NULL;
1530         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1531         new_entry->next_read = start;
1532
1533         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1534             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1535         new_entry->cred = cred;
1536
1537         /*
1538          * Insert the new entry into the list
1539          */
1540         vm_map_entry_link(map, new_entry);
1541         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1542                 map->size += new_entry->end - new_entry->start;
1543
1544         /*
1545          * Try to coalesce the new entry with both the previous and next
1546          * entries in the list.  Previously, we only attempted to coalesce
1547          * with the previous entry when object is NULL.  Here, we handle the
1548          * other cases, which are less common.
1549          */
1550         vm_map_simplify_entry(map, new_entry);
1551
1552         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1553                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1554                     end - start, cow & MAP_PREFAULT_PARTIAL);
1555         }
1556
1557         return (KERN_SUCCESS);
1558 }
1559
1560 /*
1561  *      vm_map_findspace:
1562  *
1563  *      Find the first fit (lowest VM address) for "length" free bytes
1564  *      beginning at address >= start in the given map.
1565  *
1566  *      In a vm_map_entry, "max_free" is the maximum amount of
1567  *      contiguous free space between an entry in its subtree and a
1568  *      neighbor of that entry.  This allows finding a free region in
1569  *      one path down the tree, so O(log n) amortized with splay
1570  *      trees.
1571  *
1572  *      The map must be locked, and leaves it so.
1573  *
1574  *      Returns: starting address if sufficient space,
1575  *               vm_map_max(map)-length+1 if insufficient space.
1576  */
1577 vm_offset_t
1578 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1579 {
1580         vm_map_entry_t llist, rlist, root, y;
1581         vm_size_t left_length;
1582
1583         /*
1584          * Request must fit within min/max VM address and must avoid
1585          * address wrap.
1586          */
1587         start = MAX(start, vm_map_min(map));
1588         if (start + length > vm_map_max(map) || start + length < start)
1589                 return (vm_map_max(map) - length + 1);
1590
1591         /* Empty tree means wide open address space. */
1592         if (map->root == NULL)
1593                 return (start);
1594
1595         /*
1596          * After splay, if start comes before root node, then there
1597          * must be a gap from start to the root.
1598          */
1599         root = vm_map_splay_split(start, length, map->root,
1600             &llist, &rlist);
1601         if (root != NULL)
1602                 start = root->end;
1603         else if (rlist != NULL) {
1604                 root = rlist;
1605                 rlist = root->left;
1606                 root->left = NULL;
1607         } else {
1608                 root = llist;
1609                 llist = root->right;
1610                 root->right = NULL;
1611         }
1612         map->root = vm_map_splay_merge(root, llist, rlist,
1613             root->left, root->right);
1614         VM_MAP_ASSERT_CONSISTENT(map);
1615         if (start + length <= root->start)
1616                 return (start);
1617
1618         /*
1619          * Root is the last node that might begin its gap before
1620          * start, and this is the last comparison where address
1621          * wrap might be a problem.
1622          */
1623         if (root->right == NULL &&
1624             start + length <= vm_map_max(map))
1625                 return (start);
1626
1627         /* With max_free, can immediately tell if no solution. */
1628         if (root->right == NULL || length > root->right->max_free)
1629                 return (vm_map_max(map) - length + 1);
1630
1631         /*
1632          * Splay for the least large-enough gap in the right subtree.
1633          */
1634         llist = NULL;
1635         rlist = NULL;
1636         for (left_length = 0; ;
1637              left_length = root->left != NULL ?
1638              root->left->max_free : root->start - llist->end) {
1639                 if (length <= left_length)
1640                         SPLAY_LEFT_STEP(root, y, rlist,
1641                             length <= (y->left != NULL ?
1642                             y->left->max_free : y->start - llist->end));
1643                 else
1644                         SPLAY_RIGHT_STEP(root, y, llist,
1645                             length > (y->left != NULL ?
1646                             y->left->max_free : y->start - root->end));
1647                 if (root == NULL)
1648                         break;
1649         }
1650         root = llist;
1651         llist = root->right;
1652         if ((y = rlist) == NULL)
1653                 root->right = NULL;
1654         else {
1655                 rlist = y->left;
1656                 y->left = NULL;
1657                 root->right = y->right;
1658         }
1659         root = vm_map_splay_merge(root, llist, rlist,
1660             root->left, root->right);
1661         if (y != NULL) {
1662                 y->right = root->right;
1663                 vm_map_entry_set_max_free(y);
1664                 root->right = y;
1665                 vm_map_entry_set_max_free(root);
1666         }
1667         map->root = root;
1668         VM_MAP_ASSERT_CONSISTENT(map);
1669         return (root->end);
1670 }
1671
1672 int
1673 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1674     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1675     vm_prot_t max, int cow)
1676 {
1677         vm_offset_t end;
1678         int result;
1679
1680         end = start + length;
1681         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1682             object == NULL,
1683             ("vm_map_fixed: non-NULL backing object for stack"));
1684         vm_map_lock(map);
1685         VM_MAP_RANGE_CHECK(map, start, end);
1686         if ((cow & MAP_CHECK_EXCL) == 0)
1687                 vm_map_delete(map, start, end);
1688         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1689                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1690                     prot, max, cow);
1691         } else {
1692                 result = vm_map_insert(map, object, offset, start, end,
1693                     prot, max, cow);
1694         }
1695         vm_map_unlock(map);
1696         return (result);
1697 }
1698
1699 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1700 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1701
1702 static int cluster_anon = 1;
1703 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1704     &cluster_anon, 0,
1705     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1706
1707 static bool
1708 clustering_anon_allowed(vm_offset_t addr)
1709 {
1710
1711         switch (cluster_anon) {
1712         case 0:
1713                 return (false);
1714         case 1:
1715                 return (addr == 0);
1716         case 2:
1717         default:
1718                 return (true);
1719         }
1720 }
1721
1722 static long aslr_restarts;
1723 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1724     &aslr_restarts, 0,
1725     "Number of aslr failures");
1726
1727 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1728
1729 /*
1730  * Searches for the specified amount of free space in the given map with the
1731  * specified alignment.  Performs an address-ordered, first-fit search from
1732  * the given address "*addr", with an optional upper bound "max_addr".  If the
1733  * parameter "alignment" is zero, then the alignment is computed from the
1734  * given (object, offset) pair so as to enable the greatest possible use of
1735  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1736  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1737  *
1738  * The map must be locked.  Initially, there must be at least "length" bytes
1739  * of free space at the given address.
1740  */
1741 static int
1742 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1743     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1744     vm_offset_t alignment)
1745 {
1746         vm_offset_t aligned_addr, free_addr;
1747
1748         VM_MAP_ASSERT_LOCKED(map);
1749         free_addr = *addr;
1750         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1751             ("caller failed to provide space %d at address %p",
1752              (int)length, (void*)free_addr));
1753         for (;;) {
1754                 /*
1755                  * At the start of every iteration, the free space at address
1756                  * "*addr" is at least "length" bytes.
1757                  */
1758                 if (alignment == 0)
1759                         pmap_align_superpage(object, offset, addr, length);
1760                 else if ((*addr & (alignment - 1)) != 0) {
1761                         *addr &= ~(alignment - 1);
1762                         *addr += alignment;
1763                 }
1764                 aligned_addr = *addr;
1765                 if (aligned_addr == free_addr) {
1766                         /*
1767                          * Alignment did not change "*addr", so "*addr" must
1768                          * still provide sufficient free space.
1769                          */
1770                         return (KERN_SUCCESS);
1771                 }
1772
1773                 /*
1774                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1775                  * be a valid address, in which case vm_map_findspace() cannot
1776                  * be relied upon to fail.
1777                  */
1778                 if (aligned_addr < free_addr)
1779                         return (KERN_NO_SPACE);
1780                 *addr = vm_map_findspace(map, aligned_addr, length);
1781                 if (*addr + length > vm_map_max(map) ||
1782                     (max_addr != 0 && *addr + length > max_addr))
1783                         return (KERN_NO_SPACE);
1784                 free_addr = *addr;
1785                 if (free_addr == aligned_addr) {
1786                         /*
1787                          * If a successful call to vm_map_findspace() did not
1788                          * change "*addr", then "*addr" must still be aligned
1789                          * and provide sufficient free space.
1790                          */
1791                         return (KERN_SUCCESS);
1792                 }
1793         }
1794 }
1795
1796 /*
1797  *      vm_map_find finds an unallocated region in the target address
1798  *      map with the given length.  The search is defined to be
1799  *      first-fit from the specified address; the region found is
1800  *      returned in the same parameter.
1801  *
1802  *      If object is non-NULL, ref count must be bumped by caller
1803  *      prior to making call to account for the new entry.
1804  */
1805 int
1806 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1807             vm_offset_t *addr,  /* IN/OUT */
1808             vm_size_t length, vm_offset_t max_addr, int find_space,
1809             vm_prot_t prot, vm_prot_t max, int cow)
1810 {
1811         vm_offset_t alignment, curr_min_addr, min_addr;
1812         int gap, pidx, rv, try;
1813         bool cluster, en_aslr, update_anon;
1814
1815         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1816             object == NULL,
1817             ("vm_map_find: non-NULL backing object for stack"));
1818         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1819             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1820         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1821             (object->flags & OBJ_COLORED) == 0))
1822                 find_space = VMFS_ANY_SPACE;
1823         if (find_space >> 8 != 0) {
1824                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1825                 alignment = (vm_offset_t)1 << (find_space >> 8);
1826         } else
1827                 alignment = 0;
1828         en_aslr = (map->flags & MAP_ASLR) != 0;
1829         update_anon = cluster = clustering_anon_allowed(*addr) &&
1830             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1831             find_space != VMFS_NO_SPACE && object == NULL &&
1832             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1833             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1834         curr_min_addr = min_addr = *addr;
1835         if (en_aslr && min_addr == 0 && !cluster &&
1836             find_space != VMFS_NO_SPACE &&
1837             (map->flags & MAP_ASLR_IGNSTART) != 0)
1838                 curr_min_addr = min_addr = vm_map_min(map);
1839         try = 0;
1840         vm_map_lock(map);
1841         if (cluster) {
1842                 curr_min_addr = map->anon_loc;
1843                 if (curr_min_addr == 0)
1844                         cluster = false;
1845         }
1846         if (find_space != VMFS_NO_SPACE) {
1847                 KASSERT(find_space == VMFS_ANY_SPACE ||
1848                     find_space == VMFS_OPTIMAL_SPACE ||
1849                     find_space == VMFS_SUPER_SPACE ||
1850                     alignment != 0, ("unexpected VMFS flag"));
1851 again:
1852                 /*
1853                  * When creating an anonymous mapping, try clustering
1854                  * with an existing anonymous mapping first.
1855                  *
1856                  * We make up to two attempts to find address space
1857                  * for a given find_space value. The first attempt may
1858                  * apply randomization or may cluster with an existing
1859                  * anonymous mapping. If this first attempt fails,
1860                  * perform a first-fit search of the available address
1861                  * space.
1862                  *
1863                  * If all tries failed, and find_space is
1864                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1865                  * Again enable clustering and randomization.
1866                  */
1867                 try++;
1868                 MPASS(try <= 2);
1869
1870                 if (try == 2) {
1871                         /*
1872                          * Second try: we failed either to find a
1873                          * suitable region for randomizing the
1874                          * allocation, or to cluster with an existing
1875                          * mapping.  Retry with free run.
1876                          */
1877                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1878                             vm_map_min(map) : min_addr;
1879                         atomic_add_long(&aslr_restarts, 1);
1880                 }
1881
1882                 if (try == 1 && en_aslr && !cluster) {
1883                         /*
1884                          * Find space for allocation, including
1885                          * gap needed for later randomization.
1886                          */
1887                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1888                             (find_space == VMFS_SUPER_SPACE || find_space ==
1889                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1890                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1891                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1892                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1893                         *addr = vm_map_findspace(map, curr_min_addr,
1894                             length + gap * pagesizes[pidx]);
1895                         if (*addr + length + gap * pagesizes[pidx] >
1896                             vm_map_max(map))
1897                                 goto again;
1898                         /* And randomize the start address. */
1899                         *addr += (arc4random() % gap) * pagesizes[pidx];
1900                         if (max_addr != 0 && *addr + length > max_addr)
1901                                 goto again;
1902                 } else {
1903                         *addr = vm_map_findspace(map, curr_min_addr, length);
1904                         if (*addr + length > vm_map_max(map) ||
1905                             (max_addr != 0 && *addr + length > max_addr)) {
1906                                 if (cluster) {
1907                                         cluster = false;
1908                                         MPASS(try == 1);
1909                                         goto again;
1910                                 }
1911                                 rv = KERN_NO_SPACE;
1912                                 goto done;
1913                         }
1914                 }
1915
1916                 if (find_space != VMFS_ANY_SPACE &&
1917                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1918                     max_addr, alignment)) != KERN_SUCCESS) {
1919                         if (find_space == VMFS_OPTIMAL_SPACE) {
1920                                 find_space = VMFS_ANY_SPACE;
1921                                 curr_min_addr = min_addr;
1922                                 cluster = update_anon;
1923                                 try = 0;
1924                                 goto again;
1925                         }
1926                         goto done;
1927                 }
1928         } else if ((cow & MAP_REMAP) != 0) {
1929                 if (*addr < vm_map_min(map) ||
1930                     *addr + length > vm_map_max(map) ||
1931                     *addr + length <= length) {
1932                         rv = KERN_INVALID_ADDRESS;
1933                         goto done;
1934                 }
1935                 vm_map_delete(map, *addr, *addr + length);
1936         }
1937         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1938                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1939                     max, cow);
1940         } else {
1941                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1942                     prot, max, cow);
1943         }
1944         if (rv == KERN_SUCCESS && update_anon)
1945                 map->anon_loc = *addr + length;
1946 done:
1947         vm_map_unlock(map);
1948         return (rv);
1949 }
1950
1951 /*
1952  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1953  *      additional parameter (min_addr) and treats the given address
1954  *      (*addr) differently.  Specifically, it treats *addr as a hint
1955  *      and not as the minimum address where the mapping is created.
1956  *
1957  *      This function works in two phases.  First, it tries to
1958  *      allocate above the hint.  If that fails and the hint is
1959  *      greater than min_addr, it performs a second pass, replacing
1960  *      the hint with min_addr as the minimum address for the
1961  *      allocation.
1962  */
1963 int
1964 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1965     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1966     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1967     int cow)
1968 {
1969         vm_offset_t hint;
1970         int rv;
1971
1972         hint = *addr;
1973         for (;;) {
1974                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1975                     find_space, prot, max, cow);
1976                 if (rv == KERN_SUCCESS || min_addr >= hint)
1977                         return (rv);
1978                 *addr = hint = min_addr;
1979         }
1980 }
1981
1982 /*
1983  * A map entry with any of the following flags set must not be merged with
1984  * another entry.
1985  */
1986 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1987             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
1988
1989 static bool
1990 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1991 {
1992
1993         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1994             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1995             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1996             prev, entry));
1997         return (prev->end == entry->start &&
1998             prev->object.vm_object == entry->object.vm_object &&
1999             (prev->object.vm_object == NULL ||
2000             prev->offset + (prev->end - prev->start) == entry->offset) &&
2001             prev->eflags == entry->eflags &&
2002             prev->protection == entry->protection &&
2003             prev->max_protection == entry->max_protection &&
2004             prev->inheritance == entry->inheritance &&
2005             prev->wired_count == entry->wired_count &&
2006             prev->cred == entry->cred);
2007 }
2008
2009 static void
2010 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2011 {
2012
2013         /*
2014          * If the backing object is a vnode object, vm_object_deallocate()
2015          * calls vrele().  However, vrele() does not lock the vnode because
2016          * the vnode has additional references.  Thus, the map lock can be
2017          * kept without causing a lock-order reversal with the vnode lock.
2018          *
2019          * Since we count the number of virtual page mappings in
2020          * object->un_pager.vnp.writemappings, the writemappings value
2021          * should not be adjusted when the entry is disposed of.
2022          */
2023         if (entry->object.vm_object != NULL)
2024                 vm_object_deallocate(entry->object.vm_object);
2025         if (entry->cred != NULL)
2026                 crfree(entry->cred);
2027         vm_map_entry_dispose(map, entry);
2028 }
2029
2030 /*
2031  *      vm_map_simplify_entry:
2032  *
2033  *      Simplify the given map entry by merging with either neighbor.  This
2034  *      routine also has the ability to merge with both neighbors.
2035  *
2036  *      The map must be locked.
2037  *
2038  *      This routine guarantees that the passed entry remains valid (though
2039  *      possibly extended).  When merging, this routine may delete one or
2040  *      both neighbors.
2041  */
2042 void
2043 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2044 {
2045         vm_map_entry_t next, prev;
2046
2047         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2048                 return;
2049         prev = entry->prev;
2050         if (vm_map_mergeable_neighbors(prev, entry)) {
2051                 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2052                 vm_map_merged_neighbor_dispose(map, prev);
2053         }
2054         next = entry->next;
2055         if (vm_map_mergeable_neighbors(entry, next)) {
2056                 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2057                 vm_map_merged_neighbor_dispose(map, next);
2058         }
2059 }
2060
2061 /*
2062  *      vm_map_clip_start:      [ internal use only ]
2063  *
2064  *      Asserts that the given entry begins at or after
2065  *      the specified address; if necessary,
2066  *      it splits the entry into two.
2067  */
2068 #define vm_map_clip_start(map, entry, startaddr) \
2069 { \
2070         if (startaddr > entry->start) \
2071                 _vm_map_clip_start(map, entry, startaddr); \
2072 }
2073
2074 /*
2075  *      This routine is called only when it is known that
2076  *      the entry must be split.
2077  */
2078 static void
2079 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2080 {
2081         vm_map_entry_t new_entry;
2082
2083         VM_MAP_ASSERT_LOCKED(map);
2084         KASSERT(entry->end > start && entry->start < start,
2085             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2086
2087         /*
2088          * Split off the front portion -- note that we must insert the new
2089          * entry BEFORE this one, so that this entry has the specified
2090          * starting address.
2091          */
2092         vm_map_simplify_entry(map, entry);
2093
2094         /*
2095          * If there is no object backing this entry, we might as well create
2096          * one now.  If we defer it, an object can get created after the map
2097          * is clipped, and individual objects will be created for the split-up
2098          * map.  This is a bit of a hack, but is also about the best place to
2099          * put this improvement.
2100          */
2101         if (entry->object.vm_object == NULL && !map->system_map &&
2102             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2103                 vm_object_t object;
2104                 object = vm_object_allocate(OBJT_DEFAULT,
2105                                 atop(entry->end - entry->start));
2106                 entry->object.vm_object = object;
2107                 entry->offset = 0;
2108                 if (entry->cred != NULL) {
2109                         object->cred = entry->cred;
2110                         object->charge = entry->end - entry->start;
2111                         entry->cred = NULL;
2112                 }
2113         } else if (entry->object.vm_object != NULL &&
2114                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2115                    entry->cred != NULL) {
2116                 VM_OBJECT_WLOCK(entry->object.vm_object);
2117                 KASSERT(entry->object.vm_object->cred == NULL,
2118                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2119                 entry->object.vm_object->cred = entry->cred;
2120                 entry->object.vm_object->charge = entry->end - entry->start;
2121                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2122                 entry->cred = NULL;
2123         }
2124
2125         new_entry = vm_map_entry_create(map);
2126         *new_entry = *entry;
2127
2128         new_entry->end = start;
2129         entry->offset += (start - entry->start);
2130         entry->start = start;
2131         if (new_entry->cred != NULL)
2132                 crhold(entry->cred);
2133
2134         vm_map_entry_link(map, new_entry);
2135
2136         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2137                 vm_object_reference(new_entry->object.vm_object);
2138                 vm_map_entry_set_vnode_text(new_entry, true);
2139                 /*
2140                  * The object->un_pager.vnp.writemappings for the
2141                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2142                  * kept as is here.  The virtual pages are
2143                  * re-distributed among the clipped entries, so the sum is
2144                  * left the same.
2145                  */
2146         }
2147 }
2148
2149 /*
2150  *      vm_map_clip_end:        [ internal use only ]
2151  *
2152  *      Asserts that the given entry ends at or before
2153  *      the specified address; if necessary,
2154  *      it splits the entry into two.
2155  */
2156 #define vm_map_clip_end(map, entry, endaddr) \
2157 { \
2158         if ((endaddr) < (entry->end)) \
2159                 _vm_map_clip_end((map), (entry), (endaddr)); \
2160 }
2161
2162 /*
2163  *      This routine is called only when it is known that
2164  *      the entry must be split.
2165  */
2166 static void
2167 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2168 {
2169         vm_map_entry_t new_entry;
2170
2171         VM_MAP_ASSERT_LOCKED(map);
2172         KASSERT(entry->start < end && entry->end > end,
2173             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2174
2175         /*
2176          * If there is no object backing this entry, we might as well create
2177          * one now.  If we defer it, an object can get created after the map
2178          * is clipped, and individual objects will be created for the split-up
2179          * map.  This is a bit of a hack, but is also about the best place to
2180          * put this improvement.
2181          */
2182         if (entry->object.vm_object == NULL && !map->system_map &&
2183             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2184                 vm_object_t object;
2185                 object = vm_object_allocate(OBJT_DEFAULT,
2186                                 atop(entry->end - entry->start));
2187                 entry->object.vm_object = object;
2188                 entry->offset = 0;
2189                 if (entry->cred != NULL) {
2190                         object->cred = entry->cred;
2191                         object->charge = entry->end - entry->start;
2192                         entry->cred = NULL;
2193                 }
2194         } else if (entry->object.vm_object != NULL &&
2195                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2196                    entry->cred != NULL) {
2197                 VM_OBJECT_WLOCK(entry->object.vm_object);
2198                 KASSERT(entry->object.vm_object->cred == NULL,
2199                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2200                 entry->object.vm_object->cred = entry->cred;
2201                 entry->object.vm_object->charge = entry->end - entry->start;
2202                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2203                 entry->cred = NULL;
2204         }
2205
2206         /*
2207          * Create a new entry and insert it AFTER the specified entry
2208          */
2209         new_entry = vm_map_entry_create(map);
2210         *new_entry = *entry;
2211
2212         new_entry->start = entry->end = end;
2213         new_entry->offset += (end - entry->start);
2214         if (new_entry->cred != NULL)
2215                 crhold(entry->cred);
2216
2217         vm_map_entry_link(map, new_entry);
2218
2219         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2220                 vm_object_reference(new_entry->object.vm_object);
2221                 vm_map_entry_set_vnode_text(new_entry, true);
2222         }
2223 }
2224
2225 /*
2226  *      vm_map_submap:          [ kernel use only ]
2227  *
2228  *      Mark the given range as handled by a subordinate map.
2229  *
2230  *      This range must have been created with vm_map_find,
2231  *      and no other operations may have been performed on this
2232  *      range prior to calling vm_map_submap.
2233  *
2234  *      Only a limited number of operations can be performed
2235  *      within this rage after calling vm_map_submap:
2236  *              vm_fault
2237  *      [Don't try vm_map_copy!]
2238  *
2239  *      To remove a submapping, one must first remove the
2240  *      range from the superior map, and then destroy the
2241  *      submap (if desired).  [Better yet, don't try it.]
2242  */
2243 int
2244 vm_map_submap(
2245         vm_map_t map,
2246         vm_offset_t start,
2247         vm_offset_t end,
2248         vm_map_t submap)
2249 {
2250         vm_map_entry_t entry;
2251         int result;
2252
2253         result = KERN_INVALID_ARGUMENT;
2254
2255         vm_map_lock(submap);
2256         submap->flags |= MAP_IS_SUB_MAP;
2257         vm_map_unlock(submap);
2258
2259         vm_map_lock(map);
2260
2261         VM_MAP_RANGE_CHECK(map, start, end);
2262
2263         if (vm_map_lookup_entry(map, start, &entry)) {
2264                 vm_map_clip_start(map, entry, start);
2265         } else
2266                 entry = entry->next;
2267
2268         vm_map_clip_end(map, entry, end);
2269
2270         if ((entry->start == start) && (entry->end == end) &&
2271             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2272             (entry->object.vm_object == NULL)) {
2273                 entry->object.sub_map = submap;
2274                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2275                 result = KERN_SUCCESS;
2276         }
2277         vm_map_unlock(map);
2278
2279         if (result != KERN_SUCCESS) {
2280                 vm_map_lock(submap);
2281                 submap->flags &= ~MAP_IS_SUB_MAP;
2282                 vm_map_unlock(submap);
2283         }
2284         return (result);
2285 }
2286
2287 /*
2288  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2289  */
2290 #define MAX_INIT_PT     96
2291
2292 /*
2293  *      vm_map_pmap_enter:
2294  *
2295  *      Preload the specified map's pmap with mappings to the specified
2296  *      object's memory-resident pages.  No further physical pages are
2297  *      allocated, and no further virtual pages are retrieved from secondary
2298  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2299  *      limited number of page mappings are created at the low-end of the
2300  *      specified address range.  (For this purpose, a superpage mapping
2301  *      counts as one page mapping.)  Otherwise, all resident pages within
2302  *      the specified address range are mapped.
2303  */
2304 static void
2305 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2306     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2307 {
2308         vm_offset_t start;
2309         vm_page_t p, p_start;
2310         vm_pindex_t mask, psize, threshold, tmpidx;
2311
2312         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2313                 return;
2314         VM_OBJECT_RLOCK(object);
2315         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2316                 VM_OBJECT_RUNLOCK(object);
2317                 VM_OBJECT_WLOCK(object);
2318                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2319                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2320                             size);
2321                         VM_OBJECT_WUNLOCK(object);
2322                         return;
2323                 }
2324                 VM_OBJECT_LOCK_DOWNGRADE(object);
2325         }
2326
2327         psize = atop(size);
2328         if (psize + pindex > object->size) {
2329                 if (object->size < pindex) {
2330                         VM_OBJECT_RUNLOCK(object);
2331                         return;
2332                 }
2333                 psize = object->size - pindex;
2334         }
2335
2336         start = 0;
2337         p_start = NULL;
2338         threshold = MAX_INIT_PT;
2339
2340         p = vm_page_find_least(object, pindex);
2341         /*
2342          * Assert: the variable p is either (1) the page with the
2343          * least pindex greater than or equal to the parameter pindex
2344          * or (2) NULL.
2345          */
2346         for (;
2347              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2348              p = TAILQ_NEXT(p, listq)) {
2349                 /*
2350                  * don't allow an madvise to blow away our really
2351                  * free pages allocating pv entries.
2352                  */
2353                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2354                     vm_page_count_severe()) ||
2355                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2356                     tmpidx >= threshold)) {
2357                         psize = tmpidx;
2358                         break;
2359                 }
2360                 if (p->valid == VM_PAGE_BITS_ALL) {
2361                         if (p_start == NULL) {
2362                                 start = addr + ptoa(tmpidx);
2363                                 p_start = p;
2364                         }
2365                         /* Jump ahead if a superpage mapping is possible. */
2366                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2367                             (pagesizes[p->psind] - 1)) == 0) {
2368                                 mask = atop(pagesizes[p->psind]) - 1;
2369                                 if (tmpidx + mask < psize &&
2370                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2371                                         p += mask;
2372                                         threshold += mask;
2373                                 }
2374                         }
2375                 } else if (p_start != NULL) {
2376                         pmap_enter_object(map->pmap, start, addr +
2377                             ptoa(tmpidx), p_start, prot);
2378                         p_start = NULL;
2379                 }
2380         }
2381         if (p_start != NULL)
2382                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2383                     p_start, prot);
2384         VM_OBJECT_RUNLOCK(object);
2385 }
2386
2387 /*
2388  *      vm_map_protect:
2389  *
2390  *      Sets the protection of the specified address
2391  *      region in the target map.  If "set_max" is
2392  *      specified, the maximum protection is to be set;
2393  *      otherwise, only the current protection is affected.
2394  */
2395 int
2396 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2397                vm_prot_t new_prot, boolean_t set_max)
2398 {
2399         vm_map_entry_t current, entry, in_tran;
2400         vm_object_t obj;
2401         struct ucred *cred;
2402         vm_prot_t old_prot;
2403
2404         if (start == end)
2405                 return (KERN_SUCCESS);
2406
2407 again:
2408         in_tran = NULL;
2409         vm_map_lock(map);
2410
2411         /*
2412          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2413          * need to fault pages into the map and will drop the map lock while
2414          * doing so, and the VM object may end up in an inconsistent state if we
2415          * update the protection on the map entry in between faults.
2416          */
2417         vm_map_wait_busy(map);
2418
2419         VM_MAP_RANGE_CHECK(map, start, end);
2420
2421         if (vm_map_lookup_entry(map, start, &entry)) {
2422                 vm_map_clip_start(map, entry, start);
2423         } else {
2424                 entry = entry->next;
2425         }
2426
2427         /*
2428          * Make a first pass to check for protection violations.
2429          */
2430         for (current = entry; current->start < end; current = current->next) {
2431                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2432                         continue;
2433                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2434                         vm_map_unlock(map);
2435                         return (KERN_INVALID_ARGUMENT);
2436                 }
2437                 if ((new_prot & current->max_protection) != new_prot) {
2438                         vm_map_unlock(map);
2439                         return (KERN_PROTECTION_FAILURE);
2440                 }
2441                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2442                         in_tran = entry;
2443         }
2444
2445         /*
2446          * Postpone the operation until all in transition map entries
2447          * are stabilized.  In-transition entry might already have its
2448          * pages wired and wired_count incremented, but
2449          * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2450          * threads because the map lock is dropped.  In this case we
2451          * would miss our call to vm_fault_copy_entry().
2452          */
2453         if (in_tran != NULL) {
2454                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2455                 vm_map_unlock_and_wait(map, 0);
2456                 goto again;
2457         }
2458
2459         /*
2460          * Do an accounting pass for private read-only mappings that
2461          * now will do cow due to allowed write (e.g. debugger sets
2462          * breakpoint on text segment)
2463          */
2464         for (current = entry; current->start < end; current = current->next) {
2465
2466                 vm_map_clip_end(map, current, end);
2467
2468                 if (set_max ||
2469                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2470                     ENTRY_CHARGED(current) ||
2471                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2472                         continue;
2473                 }
2474
2475                 cred = curthread->td_ucred;
2476                 obj = current->object.vm_object;
2477
2478                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2479                         if (!swap_reserve(current->end - current->start)) {
2480                                 vm_map_unlock(map);
2481                                 return (KERN_RESOURCE_SHORTAGE);
2482                         }
2483                         crhold(cred);
2484                         current->cred = cred;
2485                         continue;
2486                 }
2487
2488                 VM_OBJECT_WLOCK(obj);
2489                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2490                         VM_OBJECT_WUNLOCK(obj);
2491                         continue;
2492                 }
2493
2494                 /*
2495                  * Charge for the whole object allocation now, since
2496                  * we cannot distinguish between non-charged and
2497                  * charged clipped mapping of the same object later.
2498                  */
2499                 KASSERT(obj->charge == 0,
2500                     ("vm_map_protect: object %p overcharged (entry %p)",
2501                     obj, current));
2502                 if (!swap_reserve(ptoa(obj->size))) {
2503                         VM_OBJECT_WUNLOCK(obj);
2504                         vm_map_unlock(map);
2505                         return (KERN_RESOURCE_SHORTAGE);
2506                 }
2507
2508                 crhold(cred);
2509                 obj->cred = cred;
2510                 obj->charge = ptoa(obj->size);
2511                 VM_OBJECT_WUNLOCK(obj);
2512         }
2513
2514         /*
2515          * Go back and fix up protections. [Note that clipping is not
2516          * necessary the second time.]
2517          */
2518         for (current = entry; current->start < end; current = current->next) {
2519                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2520                         continue;
2521
2522                 old_prot = current->protection;
2523
2524                 if (set_max)
2525                         current->protection =
2526                             (current->max_protection = new_prot) &
2527                             old_prot;
2528                 else
2529                         current->protection = new_prot;
2530
2531                 /*
2532                  * For user wired map entries, the normal lazy evaluation of
2533                  * write access upgrades through soft page faults is
2534                  * undesirable.  Instead, immediately copy any pages that are
2535                  * copy-on-write and enable write access in the physical map.
2536                  */
2537                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2538                     (current->protection & VM_PROT_WRITE) != 0 &&
2539                     (old_prot & VM_PROT_WRITE) == 0)
2540                         vm_fault_copy_entry(map, map, current, current, NULL);
2541
2542                 /*
2543                  * When restricting access, update the physical map.  Worry
2544                  * about copy-on-write here.
2545                  */
2546                 if ((old_prot & ~current->protection) != 0) {
2547 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2548                                                         VM_PROT_ALL)
2549                         pmap_protect(map->pmap, current->start,
2550                             current->end,
2551                             current->protection & MASK(current));
2552 #undef  MASK
2553                 }
2554                 vm_map_simplify_entry(map, current);
2555         }
2556         vm_map_unlock(map);
2557         return (KERN_SUCCESS);
2558 }
2559
2560 /*
2561  *      vm_map_madvise:
2562  *
2563  *      This routine traverses a processes map handling the madvise
2564  *      system call.  Advisories are classified as either those effecting
2565  *      the vm_map_entry structure, or those effecting the underlying
2566  *      objects.
2567  */
2568 int
2569 vm_map_madvise(
2570         vm_map_t map,
2571         vm_offset_t start,
2572         vm_offset_t end,
2573         int behav)
2574 {
2575         vm_map_entry_t current, entry;
2576         bool modify_map;
2577
2578         /*
2579          * Some madvise calls directly modify the vm_map_entry, in which case
2580          * we need to use an exclusive lock on the map and we need to perform
2581          * various clipping operations.  Otherwise we only need a read-lock
2582          * on the map.
2583          */
2584         switch(behav) {
2585         case MADV_NORMAL:
2586         case MADV_SEQUENTIAL:
2587         case MADV_RANDOM:
2588         case MADV_NOSYNC:
2589         case MADV_AUTOSYNC:
2590         case MADV_NOCORE:
2591         case MADV_CORE:
2592                 if (start == end)
2593                         return (0);
2594                 modify_map = true;
2595                 vm_map_lock(map);
2596                 break;
2597         case MADV_WILLNEED:
2598         case MADV_DONTNEED:
2599         case MADV_FREE:
2600                 if (start == end)
2601                         return (0);
2602                 modify_map = false;
2603                 vm_map_lock_read(map);
2604                 break;
2605         default:
2606                 return (EINVAL);
2607         }
2608
2609         /*
2610          * Locate starting entry and clip if necessary.
2611          */
2612         VM_MAP_RANGE_CHECK(map, start, end);
2613
2614         if (vm_map_lookup_entry(map, start, &entry)) {
2615                 if (modify_map)
2616                         vm_map_clip_start(map, entry, start);
2617         } else {
2618                 entry = entry->next;
2619         }
2620
2621         if (modify_map) {
2622                 /*
2623                  * madvise behaviors that are implemented in the vm_map_entry.
2624                  *
2625                  * We clip the vm_map_entry so that behavioral changes are
2626                  * limited to the specified address range.
2627                  */
2628                 for (current = entry; current->start < end;
2629                     current = current->next) {
2630                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2631                                 continue;
2632
2633                         vm_map_clip_end(map, current, end);
2634
2635                         switch (behav) {
2636                         case MADV_NORMAL:
2637                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2638                                 break;
2639                         case MADV_SEQUENTIAL:
2640                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2641                                 break;
2642                         case MADV_RANDOM:
2643                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2644                                 break;
2645                         case MADV_NOSYNC:
2646                                 current->eflags |= MAP_ENTRY_NOSYNC;
2647                                 break;
2648                         case MADV_AUTOSYNC:
2649                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2650                                 break;
2651                         case MADV_NOCORE:
2652                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2653                                 break;
2654                         case MADV_CORE:
2655                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2656                                 break;
2657                         default:
2658                                 break;
2659                         }
2660                         vm_map_simplify_entry(map, current);
2661                 }
2662                 vm_map_unlock(map);
2663         } else {
2664                 vm_pindex_t pstart, pend;
2665
2666                 /*
2667                  * madvise behaviors that are implemented in the underlying
2668                  * vm_object.
2669                  *
2670                  * Since we don't clip the vm_map_entry, we have to clip
2671                  * the vm_object pindex and count.
2672                  */
2673                 for (current = entry; current->start < end;
2674                     current = current->next) {
2675                         vm_offset_t useEnd, useStart;
2676
2677                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2678                                 continue;
2679
2680                         pstart = OFF_TO_IDX(current->offset);
2681                         pend = pstart + atop(current->end - current->start);
2682                         useStart = current->start;
2683                         useEnd = current->end;
2684
2685                         if (current->start < start) {
2686                                 pstart += atop(start - current->start);
2687                                 useStart = start;
2688                         }
2689                         if (current->end > end) {
2690                                 pend -= atop(current->end - end);
2691                                 useEnd = end;
2692                         }
2693
2694                         if (pstart >= pend)
2695                                 continue;
2696
2697                         /*
2698                          * Perform the pmap_advise() before clearing
2699                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2700                          * concurrent pmap operation, such as pmap_remove(),
2701                          * could clear a reference in the pmap and set
2702                          * PGA_REFERENCED on the page before the pmap_advise()
2703                          * had completed.  Consequently, the page would appear
2704                          * referenced based upon an old reference that
2705                          * occurred before this pmap_advise() ran.
2706                          */
2707                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2708                                 pmap_advise(map->pmap, useStart, useEnd,
2709                                     behav);
2710
2711                         vm_object_madvise(current->object.vm_object, pstart,
2712                             pend, behav);
2713
2714                         /*
2715                          * Pre-populate paging structures in the
2716                          * WILLNEED case.  For wired entries, the
2717                          * paging structures are already populated.
2718                          */
2719                         if (behav == MADV_WILLNEED &&
2720                             current->wired_count == 0) {
2721                                 vm_map_pmap_enter(map,
2722                                     useStart,
2723                                     current->protection,
2724                                     current->object.vm_object,
2725                                     pstart,
2726                                     ptoa(pend - pstart),
2727                                     MAP_PREFAULT_MADVISE
2728                                 );
2729                         }
2730                 }
2731                 vm_map_unlock_read(map);
2732         }
2733         return (0);
2734 }
2735
2736
2737 /*
2738  *      vm_map_inherit:
2739  *
2740  *      Sets the inheritance of the specified address
2741  *      range in the target map.  Inheritance
2742  *      affects how the map will be shared with
2743  *      child maps at the time of vmspace_fork.
2744  */
2745 int
2746 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2747                vm_inherit_t new_inheritance)
2748 {
2749         vm_map_entry_t entry;
2750         vm_map_entry_t temp_entry;
2751
2752         switch (new_inheritance) {
2753         case VM_INHERIT_NONE:
2754         case VM_INHERIT_COPY:
2755         case VM_INHERIT_SHARE:
2756         case VM_INHERIT_ZERO:
2757                 break;
2758         default:
2759                 return (KERN_INVALID_ARGUMENT);
2760         }
2761         if (start == end)
2762                 return (KERN_SUCCESS);
2763         vm_map_lock(map);
2764         VM_MAP_RANGE_CHECK(map, start, end);
2765         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2766                 entry = temp_entry;
2767                 vm_map_clip_start(map, entry, start);
2768         } else
2769                 entry = temp_entry->next;
2770         while (entry->start < end) {
2771                 vm_map_clip_end(map, entry, end);
2772                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2773                     new_inheritance != VM_INHERIT_ZERO)
2774                         entry->inheritance = new_inheritance;
2775                 vm_map_simplify_entry(map, entry);
2776                 entry = entry->next;
2777         }
2778         vm_map_unlock(map);
2779         return (KERN_SUCCESS);
2780 }
2781
2782 /*
2783  *      vm_map_unwire:
2784  *
2785  *      Implements both kernel and user unwiring.
2786  */
2787 int
2788 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2789     int flags)
2790 {
2791         vm_map_entry_t entry, first_entry, tmp_entry;
2792         vm_offset_t saved_start;
2793         unsigned int last_timestamp;
2794         int rv;
2795         boolean_t need_wakeup, result, user_unwire;
2796
2797         if (start == end)
2798                 return (KERN_SUCCESS);
2799         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2800         vm_map_lock(map);
2801         VM_MAP_RANGE_CHECK(map, start, end);
2802         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2803                 if (flags & VM_MAP_WIRE_HOLESOK)
2804                         first_entry = first_entry->next;
2805                 else {
2806                         vm_map_unlock(map);
2807                         return (KERN_INVALID_ADDRESS);
2808                 }
2809         }
2810         last_timestamp = map->timestamp;
2811         entry = first_entry;
2812         while (entry->start < end) {
2813                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2814                         /*
2815                          * We have not yet clipped the entry.
2816                          */
2817                         saved_start = (start >= entry->start) ? start :
2818                             entry->start;
2819                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2820                         if (vm_map_unlock_and_wait(map, 0)) {
2821                                 /*
2822                                  * Allow interruption of user unwiring?
2823                                  */
2824                         }
2825                         vm_map_lock(map);
2826                         if (last_timestamp+1 != map->timestamp) {
2827                                 /*
2828                                  * Look again for the entry because the map was
2829                                  * modified while it was unlocked.
2830                                  * Specifically, the entry may have been
2831                                  * clipped, merged, or deleted.
2832                                  */
2833                                 if (!vm_map_lookup_entry(map, saved_start,
2834                                     &tmp_entry)) {
2835                                         if (flags & VM_MAP_WIRE_HOLESOK)
2836                                                 tmp_entry = tmp_entry->next;
2837                                         else {
2838                                                 if (saved_start == start) {
2839                                                         /*
2840                                                          * First_entry has been deleted.
2841                                                          */
2842                                                         vm_map_unlock(map);
2843                                                         return (KERN_INVALID_ADDRESS);
2844                                                 }
2845                                                 end = saved_start;
2846                                                 rv = KERN_INVALID_ADDRESS;
2847                                                 goto done;
2848                                         }
2849                                 }
2850                                 if (entry == first_entry)
2851                                         first_entry = tmp_entry;
2852                                 else
2853                                         first_entry = NULL;
2854                                 entry = tmp_entry;
2855                         }
2856                         last_timestamp = map->timestamp;
2857                         continue;
2858                 }
2859                 vm_map_clip_start(map, entry, start);
2860                 vm_map_clip_end(map, entry, end);
2861                 /*
2862                  * Mark the entry in case the map lock is released.  (See
2863                  * above.)
2864                  */
2865                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2866                     entry->wiring_thread == NULL,
2867                     ("owned map entry %p", entry));
2868                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2869                 entry->wiring_thread = curthread;
2870                 /*
2871                  * Check the map for holes in the specified region.
2872                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2873                  */
2874                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2875                     (entry->end < end && entry->next->start > entry->end)) {
2876                         end = entry->end;
2877                         rv = KERN_INVALID_ADDRESS;
2878                         goto done;
2879                 }
2880                 /*
2881                  * If system unwiring, require that the entry is system wired.
2882                  */
2883                 if (!user_unwire &&
2884                     vm_map_entry_system_wired_count(entry) == 0) {
2885                         end = entry->end;
2886                         rv = KERN_INVALID_ARGUMENT;
2887                         goto done;
2888                 }
2889                 entry = entry->next;
2890         }
2891         rv = KERN_SUCCESS;
2892 done:
2893         need_wakeup = FALSE;
2894         if (first_entry == NULL) {
2895                 result = vm_map_lookup_entry(map, start, &first_entry);
2896                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2897                         first_entry = first_entry->next;
2898                 else
2899                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2900         }
2901         for (entry = first_entry; entry->start < end; entry = entry->next) {
2902                 /*
2903                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2904                  * space in the unwired region could have been mapped
2905                  * while the map lock was dropped for draining
2906                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2907                  * could be simultaneously wiring this new mapping
2908                  * entry.  Detect these cases and skip any entries
2909                  * marked as in transition by us.
2910                  */
2911                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2912                     entry->wiring_thread != curthread) {
2913                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2914                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2915                         continue;
2916                 }
2917
2918                 if (rv == KERN_SUCCESS && (!user_unwire ||
2919                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2920                         if (user_unwire)
2921                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2922                         if (entry->wired_count == 1)
2923                                 vm_map_entry_unwire(map, entry);
2924                         else
2925                                 entry->wired_count--;
2926                 }
2927                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2928                     ("vm_map_unwire: in-transition flag missing %p", entry));
2929                 KASSERT(entry->wiring_thread == curthread,
2930                     ("vm_map_unwire: alien wire %p", entry));
2931                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2932                 entry->wiring_thread = NULL;
2933                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2934                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2935                         need_wakeup = TRUE;
2936                 }
2937                 vm_map_simplify_entry(map, entry);
2938         }
2939         vm_map_unlock(map);
2940         if (need_wakeup)
2941                 vm_map_wakeup(map);
2942         return (rv);
2943 }
2944
2945 /*
2946  *      vm_map_wire_entry_failure:
2947  *
2948  *      Handle a wiring failure on the given entry.
2949  *
2950  *      The map should be locked.
2951  */
2952 static void
2953 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2954     vm_offset_t failed_addr)
2955 {
2956
2957         VM_MAP_ASSERT_LOCKED(map);
2958         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2959             entry->wired_count == 1,
2960             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2961         KASSERT(failed_addr < entry->end,
2962             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2963
2964         /*
2965          * If any pages at the start of this entry were successfully wired,
2966          * then unwire them.
2967          */
2968         if (failed_addr > entry->start) {
2969                 pmap_unwire(map->pmap, entry->start, failed_addr);
2970                 vm_object_unwire(entry->object.vm_object, entry->offset,
2971                     failed_addr - entry->start, PQ_ACTIVE);
2972         }
2973
2974         /*
2975          * Assign an out-of-range value to represent the failure to wire this
2976          * entry.
2977          */
2978         entry->wired_count = -1;
2979 }
2980
2981 /*
2982  *      vm_map_wire:
2983  *
2984  *      Implements both kernel and user wiring.
2985  */
2986 int
2987 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2988     int flags)
2989 {
2990         vm_map_entry_t entry, first_entry, tmp_entry;
2991         vm_offset_t faddr, saved_end, saved_start;
2992         unsigned int last_timestamp;
2993         int rv;
2994         boolean_t need_wakeup, result, user_wire;
2995         vm_prot_t prot;
2996
2997         if (start == end)
2998                 return (KERN_SUCCESS);
2999         prot = 0;
3000         if (flags & VM_MAP_WIRE_WRITE)
3001                 prot |= VM_PROT_WRITE;
3002         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3003         vm_map_lock(map);
3004         VM_MAP_RANGE_CHECK(map, start, end);
3005         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3006                 if (flags & VM_MAP_WIRE_HOLESOK)
3007                         first_entry = first_entry->next;
3008                 else {
3009                         vm_map_unlock(map);
3010                         return (KERN_INVALID_ADDRESS);
3011                 }
3012         }
3013         last_timestamp = map->timestamp;
3014         entry = first_entry;
3015         while (entry->start < end) {
3016                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3017                         /*
3018                          * We have not yet clipped the entry.
3019                          */
3020                         saved_start = (start >= entry->start) ? start :
3021                             entry->start;
3022                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3023                         if (vm_map_unlock_and_wait(map, 0)) {
3024                                 /*
3025                                  * Allow interruption of user wiring?
3026                                  */
3027                         }
3028                         vm_map_lock(map);
3029                         if (last_timestamp + 1 != map->timestamp) {
3030                                 /*
3031                                  * Look again for the entry because the map was
3032                                  * modified while it was unlocked.
3033                                  * Specifically, the entry may have been
3034                                  * clipped, merged, or deleted.
3035                                  */
3036                                 if (!vm_map_lookup_entry(map, saved_start,
3037                                     &tmp_entry)) {
3038                                         if (flags & VM_MAP_WIRE_HOLESOK)
3039                                                 tmp_entry = tmp_entry->next;
3040                                         else {
3041                                                 if (saved_start == start) {
3042                                                         /*
3043                                                          * first_entry has been deleted.
3044                                                          */
3045                                                         vm_map_unlock(map);
3046                                                         return (KERN_INVALID_ADDRESS);
3047                                                 }
3048                                                 end = saved_start;
3049                                                 rv = KERN_INVALID_ADDRESS;
3050                                                 goto done;
3051                                         }
3052                                 }
3053                                 if (entry == first_entry)
3054                                         first_entry = tmp_entry;
3055                                 else
3056                                         first_entry = NULL;
3057                                 entry = tmp_entry;
3058                         }
3059                         last_timestamp = map->timestamp;
3060                         continue;
3061                 }
3062                 vm_map_clip_start(map, entry, start);
3063                 vm_map_clip_end(map, entry, end);
3064                 /*
3065                  * Mark the entry in case the map lock is released.  (See
3066                  * above.)
3067                  */
3068                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3069                     entry->wiring_thread == NULL,
3070                     ("owned map entry %p", entry));
3071                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3072                 entry->wiring_thread = curthread;
3073                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3074                     || (entry->protection & prot) != prot) {
3075                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3076                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3077                                 end = entry->end;
3078                                 rv = KERN_INVALID_ADDRESS;
3079                                 goto done;
3080                         }
3081                         goto next_entry;
3082                 }
3083                 if (entry->wired_count == 0) {
3084                         entry->wired_count++;
3085                         saved_start = entry->start;
3086                         saved_end = entry->end;
3087
3088                         /*
3089                          * Release the map lock, relying on the in-transition
3090                          * mark.  Mark the map busy for fork.
3091                          */
3092                         vm_map_busy(map);
3093                         vm_map_unlock(map);
3094
3095                         faddr = saved_start;
3096                         do {
3097                                 /*
3098                                  * Simulate a fault to get the page and enter
3099                                  * it into the physical map.
3100                                  */
3101                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3102                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
3103                                         break;
3104                         } while ((faddr += PAGE_SIZE) < saved_end);
3105                         vm_map_lock(map);
3106                         vm_map_unbusy(map);
3107                         if (last_timestamp + 1 != map->timestamp) {
3108                                 /*
3109                                  * Look again for the entry because the map was
3110                                  * modified while it was unlocked.  The entry
3111                                  * may have been clipped, but NOT merged or
3112                                  * deleted.
3113                                  */
3114                                 result = vm_map_lookup_entry(map, saved_start,
3115                                     &tmp_entry);
3116                                 KASSERT(result, ("vm_map_wire: lookup failed"));
3117                                 if (entry == first_entry)
3118                                         first_entry = tmp_entry;
3119                                 else
3120                                         first_entry = NULL;
3121                                 entry = tmp_entry;
3122                                 while (entry->end < saved_end) {
3123                                         /*
3124                                          * In case of failure, handle entries
3125                                          * that were not fully wired here;
3126                                          * fully wired entries are handled
3127                                          * later.
3128                                          */
3129                                         if (rv != KERN_SUCCESS &&
3130                                             faddr < entry->end)
3131                                                 vm_map_wire_entry_failure(map,
3132                                                     entry, faddr);
3133                                         entry = entry->next;
3134                                 }
3135                         }
3136                         last_timestamp = map->timestamp;
3137                         if (rv != KERN_SUCCESS) {
3138                                 vm_map_wire_entry_failure(map, entry, faddr);
3139                                 end = entry->end;
3140                                 goto done;
3141                         }
3142                 } else if (!user_wire ||
3143                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3144                         entry->wired_count++;
3145                 }
3146                 /*
3147                  * Check the map for holes in the specified region.
3148                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3149                  */
3150         next_entry:
3151                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3152                     entry->end < end && entry->next->start > entry->end) {
3153                         end = entry->end;
3154                         rv = KERN_INVALID_ADDRESS;
3155                         goto done;
3156                 }
3157                 entry = entry->next;
3158         }
3159         rv = KERN_SUCCESS;
3160 done:
3161         need_wakeup = FALSE;
3162         if (first_entry == NULL) {
3163                 result = vm_map_lookup_entry(map, start, &first_entry);
3164                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3165                         first_entry = first_entry->next;
3166                 else
3167                         KASSERT(result, ("vm_map_wire: lookup failed"));
3168         }
3169         for (entry = first_entry; entry->start < end; entry = entry->next) {
3170                 /*
3171                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
3172                  * space in the unwired region could have been mapped
3173                  * while the map lock was dropped for faulting in the
3174                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3175                  * Moreover, another thread could be simultaneously
3176                  * wiring this new mapping entry.  Detect these cases
3177                  * and skip any entries marked as in transition not by us.
3178                  */
3179                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3180                     entry->wiring_thread != curthread) {
3181                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3182                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3183                         continue;
3184                 }
3185
3186                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3187                         goto next_entry_done;
3188
3189                 if (rv == KERN_SUCCESS) {
3190                         if (user_wire)
3191                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3192                 } else if (entry->wired_count == -1) {
3193                         /*
3194                          * Wiring failed on this entry.  Thus, unwiring is
3195                          * unnecessary.
3196                          */
3197                         entry->wired_count = 0;
3198                 } else if (!user_wire ||
3199                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3200                         /*
3201                          * Undo the wiring.  Wiring succeeded on this entry
3202                          * but failed on a later entry.  
3203                          */
3204                         if (entry->wired_count == 1)
3205                                 vm_map_entry_unwire(map, entry);
3206                         else
3207                                 entry->wired_count--;
3208                 }
3209         next_entry_done:
3210                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3211                     ("vm_map_wire: in-transition flag missing %p", entry));
3212                 KASSERT(entry->wiring_thread == curthread,
3213                     ("vm_map_wire: alien wire %p", entry));
3214                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3215                     MAP_ENTRY_WIRE_SKIPPED);
3216                 entry->wiring_thread = NULL;
3217                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3218                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3219                         need_wakeup = TRUE;
3220                 }
3221                 vm_map_simplify_entry(map, entry);
3222         }
3223         vm_map_unlock(map);
3224         if (need_wakeup)
3225                 vm_map_wakeup(map);
3226         return (rv);
3227 }
3228
3229 /*
3230  * vm_map_sync
3231  *
3232  * Push any dirty cached pages in the address range to their pager.
3233  * If syncio is TRUE, dirty pages are written synchronously.
3234  * If invalidate is TRUE, any cached pages are freed as well.
3235  *
3236  * If the size of the region from start to end is zero, we are
3237  * supposed to flush all modified pages within the region containing
3238  * start.  Unfortunately, a region can be split or coalesced with
3239  * neighboring regions, making it difficult to determine what the
3240  * original region was.  Therefore, we approximate this requirement by
3241  * flushing the current region containing start.
3242  *
3243  * Returns an error if any part of the specified range is not mapped.
3244  */
3245 int
3246 vm_map_sync(
3247         vm_map_t map,
3248         vm_offset_t start,
3249         vm_offset_t end,
3250         boolean_t syncio,
3251         boolean_t invalidate)
3252 {
3253         vm_map_entry_t current;
3254         vm_map_entry_t entry;
3255         vm_size_t size;
3256         vm_object_t object;
3257         vm_ooffset_t offset;
3258         unsigned int last_timestamp;
3259         boolean_t failed;
3260
3261         vm_map_lock_read(map);
3262         VM_MAP_RANGE_CHECK(map, start, end);
3263         if (!vm_map_lookup_entry(map, start, &entry)) {
3264                 vm_map_unlock_read(map);
3265                 return (KERN_INVALID_ADDRESS);
3266         } else if (start == end) {
3267                 start = entry->start;
3268                 end = entry->end;
3269         }
3270         /*
3271          * Make a first pass to check for user-wired memory and holes.
3272          */
3273         for (current = entry; current->start < end; current = current->next) {
3274                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3275                         vm_map_unlock_read(map);
3276                         return (KERN_INVALID_ARGUMENT);
3277                 }
3278                 if (end > current->end &&
3279                     current->end != current->next->start) {
3280                         vm_map_unlock_read(map);
3281                         return (KERN_INVALID_ADDRESS);
3282                 }
3283         }
3284
3285         if (invalidate)
3286                 pmap_remove(map->pmap, start, end);
3287         failed = FALSE;
3288
3289         /*
3290          * Make a second pass, cleaning/uncaching pages from the indicated
3291          * objects as we go.
3292          */
3293         for (current = entry; current->start < end;) {
3294                 offset = current->offset + (start - current->start);
3295                 size = (end <= current->end ? end : current->end) - start;
3296                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3297                         vm_map_t smap;
3298                         vm_map_entry_t tentry;
3299                         vm_size_t tsize;
3300
3301                         smap = current->object.sub_map;
3302                         vm_map_lock_read(smap);
3303                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3304                         tsize = tentry->end - offset;
3305                         if (tsize < size)
3306                                 size = tsize;
3307                         object = tentry->object.vm_object;
3308                         offset = tentry->offset + (offset - tentry->start);
3309                         vm_map_unlock_read(smap);
3310                 } else {
3311                         object = current->object.vm_object;
3312                 }
3313                 vm_object_reference(object);
3314                 last_timestamp = map->timestamp;
3315                 vm_map_unlock_read(map);
3316                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3317                         failed = TRUE;
3318                 start += size;
3319                 vm_object_deallocate(object);
3320                 vm_map_lock_read(map);
3321                 if (last_timestamp == map->timestamp ||
3322                     !vm_map_lookup_entry(map, start, &current))
3323                         current = current->next;
3324         }
3325
3326         vm_map_unlock_read(map);
3327         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3328 }
3329
3330 /*
3331  *      vm_map_entry_unwire:    [ internal use only ]
3332  *
3333  *      Make the region specified by this entry pageable.
3334  *
3335  *      The map in question should be locked.
3336  *      [This is the reason for this routine's existence.]
3337  */
3338 static void
3339 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3340 {
3341
3342         VM_MAP_ASSERT_LOCKED(map);
3343         KASSERT(entry->wired_count > 0,
3344             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3345         pmap_unwire(map->pmap, entry->start, entry->end);
3346         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3347             entry->start, PQ_ACTIVE);
3348         entry->wired_count = 0;
3349 }
3350
3351 static void
3352 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3353 {
3354
3355         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3356                 vm_object_deallocate(entry->object.vm_object);
3357         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3358 }
3359
3360 /*
3361  *      vm_map_entry_delete:    [ internal use only ]
3362  *
3363  *      Deallocate the given entry from the target map.
3364  */
3365 static void
3366 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3367 {
3368         vm_object_t object;
3369         vm_pindex_t offidxstart, offidxend, count, size1;
3370         vm_size_t size;
3371
3372         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3373         object = entry->object.vm_object;
3374
3375         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3376                 MPASS(entry->cred == NULL);
3377                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3378                 MPASS(object == NULL);
3379                 vm_map_entry_deallocate(entry, map->system_map);
3380                 return;
3381         }
3382
3383         size = entry->end - entry->start;
3384         map->size -= size;
3385
3386         if (entry->cred != NULL) {
3387                 swap_release_by_cred(size, entry->cred);
3388                 crfree(entry->cred);
3389         }
3390
3391         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3392             (object != NULL)) {
3393                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3394                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3395                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3396                 count = atop(size);
3397                 offidxstart = OFF_TO_IDX(entry->offset);
3398                 offidxend = offidxstart + count;
3399                 VM_OBJECT_WLOCK(object);
3400                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3401                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3402                     object == kernel_object)) {
3403                         vm_object_collapse(object);
3404
3405                         /*
3406                          * The option OBJPR_NOTMAPPED can be passed here
3407                          * because vm_map_delete() already performed
3408                          * pmap_remove() on the only mapping to this range
3409                          * of pages. 
3410                          */
3411                         vm_object_page_remove(object, offidxstart, offidxend,
3412                             OBJPR_NOTMAPPED);
3413                         if (object->type == OBJT_SWAP)
3414                                 swap_pager_freespace(object, offidxstart,
3415                                     count);
3416                         if (offidxend >= object->size &&
3417                             offidxstart < object->size) {
3418                                 size1 = object->size;
3419                                 object->size = offidxstart;
3420                                 if (object->cred != NULL) {
3421                                         size1 -= object->size;
3422                                         KASSERT(object->charge >= ptoa(size1),
3423                                             ("object %p charge < 0", object));
3424                                         swap_release_by_cred(ptoa(size1),
3425                                             object->cred);
3426                                         object->charge -= ptoa(size1);
3427                                 }
3428                         }
3429                 }
3430                 VM_OBJECT_WUNLOCK(object);
3431         } else
3432                 entry->object.vm_object = NULL;
3433         if (map->system_map)
3434                 vm_map_entry_deallocate(entry, TRUE);
3435         else {
3436                 entry->next = curthread->td_map_def_user;
3437                 curthread->td_map_def_user = entry;
3438         }
3439 }
3440
3441 /*
3442  *      vm_map_delete:  [ internal use only ]
3443  *
3444  *      Deallocates the given address range from the target
3445  *      map.
3446  */
3447 int
3448 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3449 {
3450         vm_map_entry_t entry;
3451         vm_map_entry_t first_entry;
3452
3453         VM_MAP_ASSERT_LOCKED(map);
3454         if (start == end)
3455                 return (KERN_SUCCESS);
3456
3457         /*
3458          * Find the start of the region, and clip it
3459          */
3460         if (!vm_map_lookup_entry(map, start, &first_entry))
3461                 entry = first_entry->next;
3462         else {
3463                 entry = first_entry;
3464                 vm_map_clip_start(map, entry, start);
3465         }
3466
3467         /*
3468          * Step through all entries in this region
3469          */
3470         while (entry->start < end) {
3471                 vm_map_entry_t next;
3472
3473                 /*
3474                  * Wait for wiring or unwiring of an entry to complete.
3475                  * Also wait for any system wirings to disappear on
3476                  * user maps.
3477                  */
3478                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3479                     (vm_map_pmap(map) != kernel_pmap &&
3480                     vm_map_entry_system_wired_count(entry) != 0)) {
3481                         unsigned int last_timestamp;
3482                         vm_offset_t saved_start;
3483                         vm_map_entry_t tmp_entry;
3484
3485                         saved_start = entry->start;
3486                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3487                         last_timestamp = map->timestamp;
3488                         (void) vm_map_unlock_and_wait(map, 0);
3489                         vm_map_lock(map);
3490                         if (last_timestamp + 1 != map->timestamp) {
3491                                 /*
3492                                  * Look again for the entry because the map was
3493                                  * modified while it was unlocked.
3494                                  * Specifically, the entry may have been
3495                                  * clipped, merged, or deleted.
3496                                  */
3497                                 if (!vm_map_lookup_entry(map, saved_start,
3498                                                          &tmp_entry))
3499                                         entry = tmp_entry->next;
3500                                 else {
3501                                         entry = tmp_entry;
3502                                         vm_map_clip_start(map, entry,
3503                                                           saved_start);
3504                                 }
3505                         }
3506                         continue;
3507                 }
3508                 vm_map_clip_end(map, entry, end);
3509
3510                 next = entry->next;
3511
3512                 /*
3513                  * Unwire before removing addresses from the pmap; otherwise,
3514                  * unwiring will put the entries back in the pmap.
3515                  */
3516                 if (entry->wired_count != 0)
3517                         vm_map_entry_unwire(map, entry);
3518
3519                 /*
3520                  * Remove mappings for the pages, but only if the
3521                  * mappings could exist.  For instance, it does not
3522                  * make sense to call pmap_remove() for guard entries.
3523                  */
3524                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3525                     entry->object.vm_object != NULL)
3526                         pmap_remove(map->pmap, entry->start, entry->end);
3527
3528                 if (entry->end == map->anon_loc)
3529                         map->anon_loc = entry->start;
3530
3531                 /*
3532                  * Delete the entry only after removing all pmap
3533                  * entries pointing to its pages.  (Otherwise, its
3534                  * page frames may be reallocated, and any modify bits
3535                  * will be set in the wrong object!)
3536                  */
3537                 vm_map_entry_delete(map, entry);
3538                 entry = next;
3539         }
3540         return (KERN_SUCCESS);
3541 }
3542
3543 /*
3544  *      vm_map_remove:
3545  *
3546  *      Remove the given address range from the target map.
3547  *      This is the exported form of vm_map_delete.
3548  */
3549 int
3550 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3551 {
3552         int result;
3553
3554         vm_map_lock(map);
3555         VM_MAP_RANGE_CHECK(map, start, end);
3556         result = vm_map_delete(map, start, end);
3557         vm_map_unlock(map);
3558         return (result);
3559 }
3560
3561 /*
3562  *      vm_map_check_protection:
3563  *
3564  *      Assert that the target map allows the specified privilege on the
3565  *      entire address region given.  The entire region must be allocated.
3566  *
3567  *      WARNING!  This code does not and should not check whether the
3568  *      contents of the region is accessible.  For example a smaller file
3569  *      might be mapped into a larger address space.
3570  *
3571  *      NOTE!  This code is also called by munmap().
3572  *
3573  *      The map must be locked.  A read lock is sufficient.
3574  */
3575 boolean_t
3576 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3577                         vm_prot_t protection)
3578 {
3579         vm_map_entry_t entry;
3580         vm_map_entry_t tmp_entry;
3581
3582         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3583                 return (FALSE);
3584         entry = tmp_entry;
3585
3586         while (start < end) {
3587                 /*
3588                  * No holes allowed!
3589                  */
3590                 if (start < entry->start)
3591                         return (FALSE);
3592                 /*
3593                  * Check protection associated with entry.
3594                  */
3595                 if ((entry->protection & protection) != protection)
3596                         return (FALSE);
3597                 /* go to next entry */
3598                 start = entry->end;
3599                 entry = entry->next;
3600         }
3601         return (TRUE);
3602 }
3603
3604 /*
3605  *      vm_map_copy_entry:
3606  *
3607  *      Copies the contents of the source entry to the destination
3608  *      entry.  The entries *must* be aligned properly.
3609  */
3610 static void
3611 vm_map_copy_entry(
3612         vm_map_t src_map,
3613         vm_map_t dst_map,
3614         vm_map_entry_t src_entry,
3615         vm_map_entry_t dst_entry,
3616         vm_ooffset_t *fork_charge)
3617 {
3618         vm_object_t src_object;
3619         vm_map_entry_t fake_entry;
3620         vm_offset_t size;
3621         struct ucred *cred;
3622         int charged;
3623
3624         VM_MAP_ASSERT_LOCKED(dst_map);
3625
3626         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3627                 return;
3628
3629         if (src_entry->wired_count == 0 ||
3630             (src_entry->protection & VM_PROT_WRITE) == 0) {
3631                 /*
3632                  * If the source entry is marked needs_copy, it is already
3633                  * write-protected.
3634                  */
3635                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3636                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3637                         pmap_protect(src_map->pmap,
3638                             src_entry->start,
3639                             src_entry->end,
3640                             src_entry->protection & ~VM_PROT_WRITE);
3641                 }
3642
3643                 /*
3644                  * Make a copy of the object.
3645                  */
3646                 size = src_entry->end - src_entry->start;
3647                 if ((src_object = src_entry->object.vm_object) != NULL) {
3648                         VM_OBJECT_WLOCK(src_object);
3649                         charged = ENTRY_CHARGED(src_entry);
3650                         if (src_object->handle == NULL &&
3651                             (src_object->type == OBJT_DEFAULT ||
3652                             src_object->type == OBJT_SWAP)) {
3653                                 vm_object_collapse(src_object);
3654                                 if ((src_object->flags & (OBJ_NOSPLIT |
3655                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3656                                         vm_object_split(src_entry);
3657                                         src_object =
3658                                             src_entry->object.vm_object;
3659                                 }
3660                         }
3661                         vm_object_reference_locked(src_object);
3662                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3663                         if (src_entry->cred != NULL &&
3664                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3665                                 KASSERT(src_object->cred == NULL,
3666                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3667                                      src_object));
3668                                 src_object->cred = src_entry->cred;
3669                                 src_object->charge = size;
3670                         }
3671                         VM_OBJECT_WUNLOCK(src_object);
3672                         dst_entry->object.vm_object = src_object;
3673                         if (charged) {
3674                                 cred = curthread->td_ucred;
3675                                 crhold(cred);
3676                                 dst_entry->cred = cred;
3677                                 *fork_charge += size;
3678                                 if (!(src_entry->eflags &
3679                                       MAP_ENTRY_NEEDS_COPY)) {
3680                                         crhold(cred);
3681                                         src_entry->cred = cred;
3682                                         *fork_charge += size;
3683                                 }
3684                         }
3685                         src_entry->eflags |= MAP_ENTRY_COW |
3686                             MAP_ENTRY_NEEDS_COPY;
3687                         dst_entry->eflags |= MAP_ENTRY_COW |
3688                             MAP_ENTRY_NEEDS_COPY;
3689                         dst_entry->offset = src_entry->offset;
3690                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3691                                 /*
3692                                  * MAP_ENTRY_VN_WRITECNT cannot
3693                                  * indicate write reference from
3694                                  * src_entry, since the entry is
3695                                  * marked as needs copy.  Allocate a
3696                                  * fake entry that is used to
3697                                  * decrement object->un_pager.vnp.writecount
3698                                  * at the appropriate time.  Attach
3699                                  * fake_entry to the deferred list.
3700                                  */
3701                                 fake_entry = vm_map_entry_create(dst_map);
3702                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3703                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3704                                 vm_object_reference(src_object);
3705                                 fake_entry->object.vm_object = src_object;
3706                                 fake_entry->start = src_entry->start;
3707                                 fake_entry->end = src_entry->end;
3708                                 fake_entry->next = curthread->td_map_def_user;
3709                                 curthread->td_map_def_user = fake_entry;
3710                         }
3711
3712                         pmap_copy(dst_map->pmap, src_map->pmap,
3713                             dst_entry->start, dst_entry->end - dst_entry->start,
3714                             src_entry->start);
3715                 } else {
3716                         dst_entry->object.vm_object = NULL;
3717                         dst_entry->offset = 0;
3718                         if (src_entry->cred != NULL) {
3719                                 dst_entry->cred = curthread->td_ucred;
3720                                 crhold(dst_entry->cred);
3721                                 *fork_charge += size;
3722                         }
3723                 }
3724         } else {
3725                 /*
3726                  * We don't want to make writeable wired pages copy-on-write.
3727                  * Immediately copy these pages into the new map by simulating
3728                  * page faults.  The new pages are pageable.
3729                  */
3730                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3731                     fork_charge);
3732         }
3733 }
3734
3735 /*
3736  * vmspace_map_entry_forked:
3737  * Update the newly-forked vmspace each time a map entry is inherited
3738  * or copied.  The values for vm_dsize and vm_tsize are approximate
3739  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3740  */
3741 static void
3742 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3743     vm_map_entry_t entry)
3744 {
3745         vm_size_t entrysize;
3746         vm_offset_t newend;
3747
3748         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3749                 return;
3750         entrysize = entry->end - entry->start;
3751         vm2->vm_map.size += entrysize;
3752         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3753                 vm2->vm_ssize += btoc(entrysize);
3754         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3755             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3756                 newend = MIN(entry->end,
3757                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3758                 vm2->vm_dsize += btoc(newend - entry->start);
3759         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3760             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3761                 newend = MIN(entry->end,
3762                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3763                 vm2->vm_tsize += btoc(newend - entry->start);
3764         }
3765 }
3766
3767 /*
3768  * vmspace_fork:
3769  * Create a new process vmspace structure and vm_map
3770  * based on those of an existing process.  The new map
3771  * is based on the old map, according to the inheritance
3772  * values on the regions in that map.
3773  *
3774  * XXX It might be worth coalescing the entries added to the new vmspace.
3775  *
3776  * The source map must not be locked.
3777  */
3778 struct vmspace *
3779 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3780 {
3781         struct vmspace *vm2;
3782         vm_map_t new_map, old_map;
3783         vm_map_entry_t new_entry, old_entry;
3784         vm_object_t object;
3785         int error, locked;
3786         vm_inherit_t inh;
3787
3788         old_map = &vm1->vm_map;
3789         /* Copy immutable fields of vm1 to vm2. */
3790         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3791             pmap_pinit);
3792         if (vm2 == NULL)
3793                 return (NULL);
3794
3795         vm2->vm_taddr = vm1->vm_taddr;
3796         vm2->vm_daddr = vm1->vm_daddr;
3797         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3798         vm_map_lock(old_map);
3799         if (old_map->busy)
3800                 vm_map_wait_busy(old_map);
3801         new_map = &vm2->vm_map;
3802         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3803         KASSERT(locked, ("vmspace_fork: lock failed"));
3804
3805         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3806         if (error != 0) {
3807                 sx_xunlock(&old_map->lock);
3808                 sx_xunlock(&new_map->lock);
3809                 vm_map_process_deferred();
3810                 vmspace_free(vm2);
3811                 return (NULL);
3812         }
3813
3814         new_map->anon_loc = old_map->anon_loc;
3815
3816         old_entry = old_map->header.next;
3817
3818         while (old_entry != &old_map->header) {
3819                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3820                         panic("vm_map_fork: encountered a submap");
3821
3822                 inh = old_entry->inheritance;
3823                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3824                     inh != VM_INHERIT_NONE)
3825                         inh = VM_INHERIT_COPY;
3826
3827                 switch (inh) {
3828                 case VM_INHERIT_NONE:
3829                         break;
3830
3831                 case VM_INHERIT_SHARE:
3832                         /*
3833                          * Clone the entry, creating the shared object if necessary.
3834                          */
3835                         object = old_entry->object.vm_object;
3836                         if (object == NULL) {
3837                                 object = vm_object_allocate(OBJT_DEFAULT,
3838                                         atop(old_entry->end - old_entry->start));
3839                                 old_entry->object.vm_object = object;
3840                                 old_entry->offset = 0;
3841                                 if (old_entry->cred != NULL) {
3842                                         object->cred = old_entry->cred;
3843                                         object->charge = old_entry->end -
3844                                             old_entry->start;
3845                                         old_entry->cred = NULL;
3846                                 }
3847                         }
3848
3849                         /*
3850                          * Add the reference before calling vm_object_shadow
3851                          * to insure that a shadow object is created.
3852                          */
3853                         vm_object_reference(object);
3854                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3855                                 vm_object_shadow(&old_entry->object.vm_object,
3856                                     &old_entry->offset,
3857                                     old_entry->end - old_entry->start);
3858                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3859                                 /* Transfer the second reference too. */
3860                                 vm_object_reference(
3861                                     old_entry->object.vm_object);
3862
3863                                 /*
3864                                  * As in vm_map_simplify_entry(), the
3865                                  * vnode lock will not be acquired in
3866                                  * this call to vm_object_deallocate().
3867                                  */
3868                                 vm_object_deallocate(object);
3869                                 object = old_entry->object.vm_object;
3870                         }
3871                         VM_OBJECT_WLOCK(object);
3872                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3873                         if (old_entry->cred != NULL) {
3874                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3875                                 object->cred = old_entry->cred;
3876                                 object->charge = old_entry->end - old_entry->start;
3877                                 old_entry->cred = NULL;
3878                         }
3879
3880                         /*
3881                          * Assert the correct state of the vnode
3882                          * v_writecount while the object is locked, to
3883                          * not relock it later for the assertion
3884                          * correctness.
3885                          */
3886                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3887                             object->type == OBJT_VNODE) {
3888                                 KASSERT(((struct vnode *)object->handle)->
3889                                     v_writecount > 0,
3890                                     ("vmspace_fork: v_writecount %p", object));
3891                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3892                                     ("vmspace_fork: vnp.writecount %p",
3893                                     object));
3894                         }
3895                         VM_OBJECT_WUNLOCK(object);
3896
3897                         /*
3898                          * Clone the entry, referencing the shared object.
3899                          */
3900                         new_entry = vm_map_entry_create(new_map);
3901                         *new_entry = *old_entry;
3902                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3903                             MAP_ENTRY_IN_TRANSITION);
3904                         new_entry->wiring_thread = NULL;
3905                         new_entry->wired_count = 0;
3906                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3907                                 vnode_pager_update_writecount(object,
3908                                     new_entry->start, new_entry->end);
3909                         }
3910                         vm_map_entry_set_vnode_text(new_entry, true);
3911
3912                         /*
3913                          * Insert the entry into the new map -- we know we're
3914                          * inserting at the end of the new map.
3915                          */
3916                         vm_map_entry_link(new_map, new_entry);
3917                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3918
3919                         /*
3920                          * Update the physical map
3921                          */
3922                         pmap_copy(new_map->pmap, old_map->pmap,
3923                             new_entry->start,
3924                             (old_entry->end - old_entry->start),
3925                             old_entry->start);
3926                         break;
3927
3928                 case VM_INHERIT_COPY:
3929                         /*
3930                          * Clone the entry and link into the map.
3931                          */
3932                         new_entry = vm_map_entry_create(new_map);
3933                         *new_entry = *old_entry;
3934                         /*
3935                          * Copied entry is COW over the old object.
3936                          */
3937                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3938                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3939                         new_entry->wiring_thread = NULL;
3940                         new_entry->wired_count = 0;
3941                         new_entry->object.vm_object = NULL;
3942                         new_entry->cred = NULL;
3943                         vm_map_entry_link(new_map, new_entry);
3944                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3945                         vm_map_copy_entry(old_map, new_map, old_entry,
3946                             new_entry, fork_charge);
3947                         vm_map_entry_set_vnode_text(new_entry, true);
3948                         break;
3949
3950                 case VM_INHERIT_ZERO:
3951                         /*
3952                          * Create a new anonymous mapping entry modelled from
3953                          * the old one.
3954                          */
3955                         new_entry = vm_map_entry_create(new_map);
3956                         memset(new_entry, 0, sizeof(*new_entry));
3957
3958                         new_entry->start = old_entry->start;
3959                         new_entry->end = old_entry->end;
3960                         new_entry->eflags = old_entry->eflags &
3961                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3962                             MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
3963                         new_entry->protection = old_entry->protection;
3964                         new_entry->max_protection = old_entry->max_protection;
3965                         new_entry->inheritance = VM_INHERIT_ZERO;
3966
3967                         vm_map_entry_link(new_map, new_entry);
3968                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3969
3970                         new_entry->cred = curthread->td_ucred;
3971                         crhold(new_entry->cred);
3972                         *fork_charge += (new_entry->end - new_entry->start);
3973
3974                         break;
3975                 }
3976                 old_entry = old_entry->next;
3977         }
3978         /*
3979          * Use inlined vm_map_unlock() to postpone handling the deferred
3980          * map entries, which cannot be done until both old_map and
3981          * new_map locks are released.
3982          */
3983         sx_xunlock(&old_map->lock);
3984         sx_xunlock(&new_map->lock);
3985         vm_map_process_deferred();
3986
3987         return (vm2);
3988 }
3989
3990 /*
3991  * Create a process's stack for exec_new_vmspace().  This function is never
3992  * asked to wire the newly created stack.
3993  */
3994 int
3995 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3996     vm_prot_t prot, vm_prot_t max, int cow)
3997 {
3998         vm_size_t growsize, init_ssize;
3999         rlim_t vmemlim;
4000         int rv;
4001
4002         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4003         growsize = sgrowsiz;
4004         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4005         vm_map_lock(map);
4006         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4007         /* If we would blow our VMEM resource limit, no go */
4008         if (map->size + init_ssize > vmemlim) {
4009                 rv = KERN_NO_SPACE;
4010                 goto out;
4011         }
4012         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4013             max, cow);
4014 out:
4015         vm_map_unlock(map);
4016         return (rv);
4017 }
4018
4019 static int stack_guard_page = 1;
4020 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4021     &stack_guard_page, 0,
4022     "Specifies the number of guard pages for a stack that grows");
4023
4024 static int
4025 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4026     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4027 {
4028         vm_map_entry_t new_entry, prev_entry;
4029         vm_offset_t bot, gap_bot, gap_top, top;
4030         vm_size_t init_ssize, sgp;
4031         int orient, rv;
4032
4033         /*
4034          * The stack orientation is piggybacked with the cow argument.
4035          * Extract it into orient and mask the cow argument so that we
4036          * don't pass it around further.
4037          */
4038         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4039         KASSERT(orient != 0, ("No stack grow direction"));
4040         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4041             ("bi-dir stack"));
4042
4043         if (addrbos < vm_map_min(map) ||
4044             addrbos + max_ssize > vm_map_max(map) ||
4045             addrbos + max_ssize <= addrbos)
4046                 return (KERN_INVALID_ADDRESS);
4047         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4048         if (sgp >= max_ssize)
4049                 return (KERN_INVALID_ARGUMENT);
4050
4051         init_ssize = growsize;
4052         if (max_ssize < init_ssize + sgp)
4053                 init_ssize = max_ssize - sgp;
4054
4055         /* If addr is already mapped, no go */
4056         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4057                 return (KERN_NO_SPACE);
4058
4059         /*
4060          * If we can't accommodate max_ssize in the current mapping, no go.
4061          */
4062         if (prev_entry->next->start < addrbos + max_ssize)
4063                 return (KERN_NO_SPACE);
4064
4065         /*
4066          * We initially map a stack of only init_ssize.  We will grow as
4067          * needed later.  Depending on the orientation of the stack (i.e.
4068          * the grow direction) we either map at the top of the range, the
4069          * bottom of the range or in the middle.
4070          *
4071          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4072          * and cow to be 0.  Possibly we should eliminate these as input
4073          * parameters, and just pass these values here in the insert call.
4074          */
4075         if (orient == MAP_STACK_GROWS_DOWN) {
4076                 bot = addrbos + max_ssize - init_ssize;
4077                 top = bot + init_ssize;
4078                 gap_bot = addrbos;
4079                 gap_top = bot;
4080         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4081                 bot = addrbos;
4082                 top = bot + init_ssize;
4083                 gap_bot = top;
4084                 gap_top = addrbos + max_ssize;
4085         }
4086         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4087         if (rv != KERN_SUCCESS)
4088                 return (rv);
4089         new_entry = prev_entry->next;
4090         KASSERT(new_entry->end == top || new_entry->start == bot,
4091             ("Bad entry start/end for new stack entry"));
4092         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4093             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4094             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4095         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4096             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4097             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4098         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4099             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4100             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4101         if (rv != KERN_SUCCESS)
4102                 (void)vm_map_delete(map, bot, top);
4103         return (rv);
4104 }
4105
4106 /*
4107  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4108  * successfully grow the stack.
4109  */
4110 static int
4111 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4112 {
4113         vm_map_entry_t stack_entry;
4114         struct proc *p;
4115         struct vmspace *vm;
4116         struct ucred *cred;
4117         vm_offset_t gap_end, gap_start, grow_start;
4118         size_t grow_amount, guard, max_grow;
4119         rlim_t lmemlim, stacklim, vmemlim;
4120         int rv, rv1;
4121         bool gap_deleted, grow_down, is_procstack;
4122 #ifdef notyet
4123         uint64_t limit;
4124 #endif
4125 #ifdef RACCT
4126         int error;
4127 #endif
4128
4129         p = curproc;
4130         vm = p->p_vmspace;
4131
4132         /*
4133          * Disallow stack growth when the access is performed by a
4134          * debugger or AIO daemon.  The reason is that the wrong
4135          * resource limits are applied.
4136          */
4137         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4138                 return (KERN_FAILURE);
4139
4140         MPASS(!map->system_map);
4141
4142         guard = stack_guard_page * PAGE_SIZE;
4143         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4144         stacklim = lim_cur(curthread, RLIMIT_STACK);
4145         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4146 retry:
4147         /* If addr is not in a hole for a stack grow area, no need to grow. */
4148         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4149                 return (KERN_FAILURE);
4150         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4151                 return (KERN_SUCCESS);
4152         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4153                 stack_entry = gap_entry->next;
4154                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4155                     stack_entry->start != gap_entry->end)
4156                         return (KERN_FAILURE);
4157                 grow_amount = round_page(stack_entry->start - addr);
4158                 grow_down = true;
4159         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4160                 stack_entry = gap_entry->prev;
4161                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4162                     stack_entry->end != gap_entry->start)
4163                         return (KERN_FAILURE);
4164                 grow_amount = round_page(addr + 1 - stack_entry->end);
4165                 grow_down = false;
4166         } else {
4167                 return (KERN_FAILURE);
4168         }
4169         max_grow = gap_entry->end - gap_entry->start;
4170         if (guard > max_grow)
4171                 return (KERN_NO_SPACE);
4172         max_grow -= guard;
4173         if (grow_amount > max_grow)
4174                 return (KERN_NO_SPACE);
4175
4176         /*
4177          * If this is the main process stack, see if we're over the stack
4178          * limit.
4179          */
4180         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4181             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4182         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4183                 return (KERN_NO_SPACE);
4184
4185 #ifdef RACCT
4186         if (racct_enable) {
4187                 PROC_LOCK(p);
4188                 if (is_procstack && racct_set(p, RACCT_STACK,
4189                     ctob(vm->vm_ssize) + grow_amount)) {
4190                         PROC_UNLOCK(p);
4191                         return (KERN_NO_SPACE);
4192                 }
4193                 PROC_UNLOCK(p);
4194         }
4195 #endif
4196
4197         grow_amount = roundup(grow_amount, sgrowsiz);
4198         if (grow_amount > max_grow)
4199                 grow_amount = max_grow;
4200         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4201                 grow_amount = trunc_page((vm_size_t)stacklim) -
4202                     ctob(vm->vm_ssize);
4203         }
4204
4205 #ifdef notyet
4206         PROC_LOCK(p);
4207         limit = racct_get_available(p, RACCT_STACK);
4208         PROC_UNLOCK(p);
4209         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4210                 grow_amount = limit - ctob(vm->vm_ssize);
4211 #endif
4212
4213         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4214                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4215                         rv = KERN_NO_SPACE;
4216                         goto out;
4217                 }
4218 #ifdef RACCT
4219                 if (racct_enable) {
4220                         PROC_LOCK(p);
4221                         if (racct_set(p, RACCT_MEMLOCK,
4222                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4223                                 PROC_UNLOCK(p);
4224                                 rv = KERN_NO_SPACE;
4225                                 goto out;
4226                         }
4227                         PROC_UNLOCK(p);
4228                 }
4229 #endif
4230         }
4231
4232         /* If we would blow our VMEM resource limit, no go */
4233         if (map->size + grow_amount > vmemlim) {
4234                 rv = KERN_NO_SPACE;
4235                 goto out;
4236         }
4237 #ifdef RACCT
4238         if (racct_enable) {
4239                 PROC_LOCK(p);
4240                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4241                         PROC_UNLOCK(p);
4242                         rv = KERN_NO_SPACE;
4243                         goto out;
4244                 }
4245                 PROC_UNLOCK(p);
4246         }
4247 #endif
4248
4249         if (vm_map_lock_upgrade(map)) {
4250                 gap_entry = NULL;
4251                 vm_map_lock_read(map);
4252                 goto retry;
4253         }
4254
4255         if (grow_down) {
4256                 grow_start = gap_entry->end - grow_amount;
4257                 if (gap_entry->start + grow_amount == gap_entry->end) {
4258                         gap_start = gap_entry->start;
4259                         gap_end = gap_entry->end;
4260                         vm_map_entry_delete(map, gap_entry);
4261                         gap_deleted = true;
4262                 } else {
4263                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4264                         gap_entry->end -= grow_amount;
4265                         vm_map_entry_resize_free(map, gap_entry);
4266                         gap_deleted = false;
4267                 }
4268                 rv = vm_map_insert(map, NULL, 0, grow_start,
4269                     grow_start + grow_amount,
4270                     stack_entry->protection, stack_entry->max_protection,
4271                     MAP_STACK_GROWS_DOWN);
4272                 if (rv != KERN_SUCCESS) {
4273                         if (gap_deleted) {
4274                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4275                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4276                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4277                                 MPASS(rv1 == KERN_SUCCESS);
4278                         } else {
4279                                 gap_entry->end += grow_amount;
4280                                 vm_map_entry_resize_free(map, gap_entry);
4281                         }
4282                 }
4283         } else {
4284                 grow_start = stack_entry->end;
4285                 cred = stack_entry->cred;
4286                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4287                         cred = stack_entry->object.vm_object->cred;
4288                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4289                         rv = KERN_NO_SPACE;
4290                 /* Grow the underlying object if applicable. */
4291                 else if (stack_entry->object.vm_object == NULL ||
4292                     vm_object_coalesce(stack_entry->object.vm_object,
4293                     stack_entry->offset,
4294                     (vm_size_t)(stack_entry->end - stack_entry->start),
4295                     (vm_size_t)grow_amount, cred != NULL)) {
4296                         if (gap_entry->start + grow_amount == gap_entry->end)
4297                                 vm_map_entry_delete(map, gap_entry);
4298                         else
4299                                 gap_entry->start += grow_amount;
4300                         stack_entry->end += grow_amount;
4301                         map->size += grow_amount;
4302                         vm_map_entry_resize_free(map, stack_entry);
4303                         rv = KERN_SUCCESS;
4304                 } else
4305                         rv = KERN_FAILURE;
4306         }
4307         if (rv == KERN_SUCCESS && is_procstack)
4308                 vm->vm_ssize += btoc(grow_amount);
4309
4310         /*
4311          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4312          */
4313         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4314                 vm_map_unlock(map);
4315                 vm_map_wire(map, grow_start, grow_start + grow_amount,
4316                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4317                 vm_map_lock_read(map);
4318         } else
4319                 vm_map_lock_downgrade(map);
4320
4321 out:
4322 #ifdef RACCT
4323         if (racct_enable && rv != KERN_SUCCESS) {
4324                 PROC_LOCK(p);
4325                 error = racct_set(p, RACCT_VMEM, map->size);
4326                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4327                 if (!old_mlock) {
4328                         error = racct_set(p, RACCT_MEMLOCK,
4329                             ptoa(pmap_wired_count(map->pmap)));
4330                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4331                 }
4332                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4333                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4334                 PROC_UNLOCK(p);
4335         }
4336 #endif
4337
4338         return (rv);
4339 }
4340
4341 /*
4342  * Unshare the specified VM space for exec.  If other processes are
4343  * mapped to it, then create a new one.  The new vmspace is null.
4344  */
4345 int
4346 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4347 {
4348         struct vmspace *oldvmspace = p->p_vmspace;
4349         struct vmspace *newvmspace;
4350
4351         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4352             ("vmspace_exec recursed"));
4353         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4354         if (newvmspace == NULL)
4355                 return (ENOMEM);
4356         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4357         /*
4358          * This code is written like this for prototype purposes.  The
4359          * goal is to avoid running down the vmspace here, but let the
4360          * other process's that are still using the vmspace to finally
4361          * run it down.  Even though there is little or no chance of blocking
4362          * here, it is a good idea to keep this form for future mods.
4363          */
4364         PROC_VMSPACE_LOCK(p);
4365         p->p_vmspace = newvmspace;
4366         PROC_VMSPACE_UNLOCK(p);
4367         if (p == curthread->td_proc)
4368                 pmap_activate(curthread);
4369         curthread->td_pflags |= TDP_EXECVMSPC;
4370         return (0);
4371 }
4372
4373 /*
4374  * Unshare the specified VM space for forcing COW.  This
4375  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4376  */
4377 int
4378 vmspace_unshare(struct proc *p)
4379 {
4380         struct vmspace *oldvmspace = p->p_vmspace;
4381         struct vmspace *newvmspace;
4382         vm_ooffset_t fork_charge;
4383
4384         if (oldvmspace->vm_refcnt == 1)
4385                 return (0);
4386         fork_charge = 0;
4387         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4388         if (newvmspace == NULL)
4389                 return (ENOMEM);
4390         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4391                 vmspace_free(newvmspace);
4392                 return (ENOMEM);
4393         }
4394         PROC_VMSPACE_LOCK(p);
4395         p->p_vmspace = newvmspace;
4396         PROC_VMSPACE_UNLOCK(p);
4397         if (p == curthread->td_proc)
4398                 pmap_activate(curthread);
4399         vmspace_free(oldvmspace);
4400         return (0);
4401 }
4402
4403 /*
4404  *      vm_map_lookup:
4405  *
4406  *      Finds the VM object, offset, and
4407  *      protection for a given virtual address in the
4408  *      specified map, assuming a page fault of the
4409  *      type specified.
4410  *
4411  *      Leaves the map in question locked for read; return
4412  *      values are guaranteed until a vm_map_lookup_done
4413  *      call is performed.  Note that the map argument
4414  *      is in/out; the returned map must be used in
4415  *      the call to vm_map_lookup_done.
4416  *
4417  *      A handle (out_entry) is returned for use in
4418  *      vm_map_lookup_done, to make that fast.
4419  *
4420  *      If a lookup is requested with "write protection"
4421  *      specified, the map may be changed to perform virtual
4422  *      copying operations, although the data referenced will
4423  *      remain the same.
4424  */
4425 int
4426 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4427               vm_offset_t vaddr,
4428               vm_prot_t fault_typea,
4429               vm_map_entry_t *out_entry,        /* OUT */
4430               vm_object_t *object,              /* OUT */
4431               vm_pindex_t *pindex,              /* OUT */
4432               vm_prot_t *out_prot,              /* OUT */
4433               boolean_t *wired)                 /* OUT */
4434 {
4435         vm_map_entry_t entry;
4436         vm_map_t map = *var_map;
4437         vm_prot_t prot;
4438         vm_prot_t fault_type = fault_typea;
4439         vm_object_t eobject;
4440         vm_size_t size;
4441         struct ucred *cred;
4442
4443 RetryLookup:
4444
4445         vm_map_lock_read(map);
4446
4447 RetryLookupLocked:
4448         /*
4449          * Lookup the faulting address.
4450          */
4451         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4452                 vm_map_unlock_read(map);
4453                 return (KERN_INVALID_ADDRESS);
4454         }
4455
4456         entry = *out_entry;
4457
4458         /*
4459          * Handle submaps.
4460          */
4461         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4462                 vm_map_t old_map = map;
4463
4464                 *var_map = map = entry->object.sub_map;
4465                 vm_map_unlock_read(old_map);
4466                 goto RetryLookup;
4467         }
4468
4469         /*
4470          * Check whether this task is allowed to have this page.
4471          */
4472         prot = entry->protection;
4473         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4474                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4475                 if (prot == VM_PROT_NONE && map != kernel_map &&
4476                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4477                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4478                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4479                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4480                         goto RetryLookupLocked;
4481         }
4482         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4483         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4484                 vm_map_unlock_read(map);
4485                 return (KERN_PROTECTION_FAILURE);
4486         }
4487         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4488             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4489             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4490             ("entry %p flags %x", entry, entry->eflags));
4491         if ((fault_typea & VM_PROT_COPY) != 0 &&
4492             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4493             (entry->eflags & MAP_ENTRY_COW) == 0) {
4494                 vm_map_unlock_read(map);
4495                 return (KERN_PROTECTION_FAILURE);
4496         }
4497
4498         /*
4499          * If this page is not pageable, we have to get it for all possible
4500          * accesses.
4501          */
4502         *wired = (entry->wired_count != 0);
4503         if (*wired)
4504                 fault_type = entry->protection;
4505         size = entry->end - entry->start;
4506         /*
4507          * If the entry was copy-on-write, we either ...
4508          */
4509         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4510                 /*
4511                  * If we want to write the page, we may as well handle that
4512                  * now since we've got the map locked.
4513                  *
4514                  * If we don't need to write the page, we just demote the
4515                  * permissions allowed.
4516                  */
4517                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4518                     (fault_typea & VM_PROT_COPY) != 0) {
4519                         /*
4520                          * Make a new object, and place it in the object
4521                          * chain.  Note that no new references have appeared
4522                          * -- one just moved from the map to the new
4523                          * object.
4524                          */
4525                         if (vm_map_lock_upgrade(map))
4526                                 goto RetryLookup;
4527
4528                         if (entry->cred == NULL) {
4529                                 /*
4530                                  * The debugger owner is charged for
4531                                  * the memory.
4532                                  */
4533                                 cred = curthread->td_ucred;
4534                                 crhold(cred);
4535                                 if (!swap_reserve_by_cred(size, cred)) {
4536                                         crfree(cred);
4537                                         vm_map_unlock(map);
4538                                         return (KERN_RESOURCE_SHORTAGE);
4539                                 }
4540                                 entry->cred = cred;
4541                         }
4542                         vm_object_shadow(&entry->object.vm_object,
4543                             &entry->offset, size);
4544                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4545                         eobject = entry->object.vm_object;
4546                         if (eobject->cred != NULL) {
4547                                 /*
4548                                  * The object was not shadowed.
4549                                  */
4550                                 swap_release_by_cred(size, entry->cred);
4551                                 crfree(entry->cred);
4552                                 entry->cred = NULL;
4553                         } else if (entry->cred != NULL) {
4554                                 VM_OBJECT_WLOCK(eobject);
4555                                 eobject->cred = entry->cred;
4556                                 eobject->charge = size;
4557                                 VM_OBJECT_WUNLOCK(eobject);
4558                                 entry->cred = NULL;
4559                         }
4560
4561                         vm_map_lock_downgrade(map);
4562                 } else {
4563                         /*
4564                          * We're attempting to read a copy-on-write page --
4565                          * don't allow writes.
4566                          */
4567                         prot &= ~VM_PROT_WRITE;
4568                 }
4569         }
4570
4571         /*
4572          * Create an object if necessary.
4573          */
4574         if (entry->object.vm_object == NULL &&
4575             !map->system_map) {
4576                 if (vm_map_lock_upgrade(map))
4577                         goto RetryLookup;
4578                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4579                     atop(size));
4580                 entry->offset = 0;
4581                 if (entry->cred != NULL) {
4582                         VM_OBJECT_WLOCK(entry->object.vm_object);
4583                         entry->object.vm_object->cred = entry->cred;
4584                         entry->object.vm_object->charge = size;
4585                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4586                         entry->cred = NULL;
4587                 }
4588                 vm_map_lock_downgrade(map);
4589         }
4590
4591         /*
4592          * Return the object/offset from this entry.  If the entry was
4593          * copy-on-write or empty, it has been fixed up.
4594          */
4595         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4596         *object = entry->object.vm_object;
4597
4598         *out_prot = prot;
4599         return (KERN_SUCCESS);
4600 }
4601
4602 /*
4603  *      vm_map_lookup_locked:
4604  *
4605  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4606  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4607  */
4608 int
4609 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4610                      vm_offset_t vaddr,
4611                      vm_prot_t fault_typea,
4612                      vm_map_entry_t *out_entry, /* OUT */
4613                      vm_object_t *object,       /* OUT */
4614                      vm_pindex_t *pindex,       /* OUT */
4615                      vm_prot_t *out_prot,       /* OUT */
4616                      boolean_t *wired)          /* OUT */
4617 {
4618         vm_map_entry_t entry;
4619         vm_map_t map = *var_map;
4620         vm_prot_t prot;
4621         vm_prot_t fault_type = fault_typea;
4622
4623         /*
4624          * Lookup the faulting address.
4625          */
4626         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4627                 return (KERN_INVALID_ADDRESS);
4628
4629         entry = *out_entry;
4630
4631         /*
4632          * Fail if the entry refers to a submap.
4633          */
4634         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4635                 return (KERN_FAILURE);
4636
4637         /*
4638          * Check whether this task is allowed to have this page.
4639          */
4640         prot = entry->protection;
4641         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4642         if ((fault_type & prot) != fault_type)
4643                 return (KERN_PROTECTION_FAILURE);
4644
4645         /*
4646          * If this page is not pageable, we have to get it for all possible
4647          * accesses.
4648          */
4649         *wired = (entry->wired_count != 0);
4650         if (*wired)
4651                 fault_type = entry->protection;
4652
4653         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4654                 /*
4655                  * Fail if the entry was copy-on-write for a write fault.
4656                  */
4657                 if (fault_type & VM_PROT_WRITE)
4658                         return (KERN_FAILURE);
4659                 /*
4660                  * We're attempting to read a copy-on-write page --
4661                  * don't allow writes.
4662                  */
4663                 prot &= ~VM_PROT_WRITE;
4664         }
4665
4666         /*
4667          * Fail if an object should be created.
4668          */
4669         if (entry->object.vm_object == NULL && !map->system_map)
4670                 return (KERN_FAILURE);
4671
4672         /*
4673          * Return the object/offset from this entry.  If the entry was
4674          * copy-on-write or empty, it has been fixed up.
4675          */
4676         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4677         *object = entry->object.vm_object;
4678
4679         *out_prot = prot;
4680         return (KERN_SUCCESS);
4681 }
4682
4683 /*
4684  *      vm_map_lookup_done:
4685  *
4686  *      Releases locks acquired by a vm_map_lookup
4687  *      (according to the handle returned by that lookup).
4688  */
4689 void
4690 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4691 {
4692         /*
4693          * Unlock the main-level map
4694          */
4695         vm_map_unlock_read(map);
4696 }
4697
4698 vm_offset_t
4699 vm_map_max_KBI(const struct vm_map *map)
4700 {
4701
4702         return (vm_map_max(map));
4703 }
4704
4705 vm_offset_t
4706 vm_map_min_KBI(const struct vm_map *map)
4707 {
4708
4709         return (vm_map_min(map));
4710 }
4711
4712 pmap_t
4713 vm_map_pmap_KBI(vm_map_t map)
4714 {
4715
4716         return (map->pmap);
4717 }
4718
4719 #include "opt_ddb.h"
4720 #ifdef DDB
4721 #include <sys/kernel.h>
4722
4723 #include <ddb/ddb.h>
4724
4725 static void
4726 vm_map_print(vm_map_t map)
4727 {
4728         vm_map_entry_t entry;
4729
4730         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4731             (void *)map,
4732             (void *)map->pmap, map->nentries, map->timestamp);
4733
4734         db_indent += 2;
4735         for (entry = map->header.next; entry != &map->header;
4736             entry = entry->next) {
4737                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4738                     (void *)entry, (void *)entry->start, (void *)entry->end,
4739                     entry->eflags);
4740                 {
4741                         static char *inheritance_name[4] =
4742                         {"share", "copy", "none", "donate_copy"};
4743
4744                         db_iprintf(" prot=%x/%x/%s",
4745                             entry->protection,
4746                             entry->max_protection,
4747                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4748                         if (entry->wired_count != 0)
4749                                 db_printf(", wired");
4750                 }
4751                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4752                         db_printf(", share=%p, offset=0x%jx\n",
4753                             (void *)entry->object.sub_map,
4754                             (uintmax_t)entry->offset);
4755                         if ((entry->prev == &map->header) ||
4756                             (entry->prev->object.sub_map !=
4757                                 entry->object.sub_map)) {
4758                                 db_indent += 2;
4759                                 vm_map_print((vm_map_t)entry->object.sub_map);
4760                                 db_indent -= 2;
4761                         }
4762                 } else {
4763                         if (entry->cred != NULL)
4764                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4765                         db_printf(", object=%p, offset=0x%jx",
4766                             (void *)entry->object.vm_object,
4767                             (uintmax_t)entry->offset);
4768                         if (entry->object.vm_object && entry->object.vm_object->cred)
4769                                 db_printf(", obj ruid %d charge %jx",
4770                                     entry->object.vm_object->cred->cr_ruid,
4771                                     (uintmax_t)entry->object.vm_object->charge);
4772                         if (entry->eflags & MAP_ENTRY_COW)
4773                                 db_printf(", copy (%s)",
4774                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4775                         db_printf("\n");
4776
4777                         if ((entry->prev == &map->header) ||
4778                             (entry->prev->object.vm_object !=
4779                                 entry->object.vm_object)) {
4780                                 db_indent += 2;
4781                                 vm_object_print((db_expr_t)(intptr_t)
4782                                                 entry->object.vm_object,
4783                                                 0, 0, (char *)0);
4784                                 db_indent -= 2;
4785                         }
4786                 }
4787         }
4788         db_indent -= 2;
4789 }
4790
4791 DB_SHOW_COMMAND(map, map)
4792 {
4793
4794         if (!have_addr) {
4795                 db_printf("usage: show map <addr>\n");
4796                 return;
4797         }
4798         vm_map_print((vm_map_t)addr);
4799 }
4800
4801 DB_SHOW_COMMAND(procvm, procvm)
4802 {
4803         struct proc *p;
4804
4805         if (have_addr) {
4806                 p = db_lookup_proc(addr);
4807         } else {
4808                 p = curproc;
4809         }
4810
4811         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4812             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4813             (void *)vmspace_pmap(p->p_vmspace));
4814
4815         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4816 }
4817
4818 #endif /* DDB */