]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Eliminate kmem_arena and kmem_object in preparation for further NUMA commits.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vm_map_zdtor(void *mem, int size, void *arg);
144 static void vmspace_zdtor(void *mem, int size, void *arg);
145 #endif
146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
147     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
148     int cow);
149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
150     vm_offset_t failed_addr);
151
152 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
153     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
154      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
155
156 /* 
157  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
158  * stable.
159  */
160 #define PROC_VMSPACE_LOCK(p) do { } while (0)
161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
162
163 /*
164  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
165  *
166  *      Asserts that the starting and ending region
167  *      addresses fall within the valid range of the map.
168  */
169 #define VM_MAP_RANGE_CHECK(map, start, end)             \
170                 {                                       \
171                 if (start < vm_map_min(map))            \
172                         start = vm_map_min(map);        \
173                 if (end > vm_map_max(map))              \
174                         end = vm_map_max(map);          \
175                 if (start > end)                        \
176                         start = end;                    \
177                 }
178
179 /*
180  *      vm_map_startup:
181  *
182  *      Initialize the vm_map module.  Must be called before
183  *      any other vm_map routines.
184  *
185  *      Map and entry structures are allocated from the general
186  *      purpose memory pool with some exceptions:
187  *
188  *      - The kernel map and kmem submap are allocated statically.
189  *      - Kernel map entries are allocated out of a static pool.
190  *
191  *      These restrictions are necessary since malloc() uses the
192  *      maps and requires map entries.
193  */
194
195 void
196 vm_map_startup(void)
197 {
198         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
199         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
200 #ifdef INVARIANTS
201             vm_map_zdtor,
202 #else
203             NULL,
204 #endif
205             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206         uma_prealloc(mapzone, MAX_KMAP);
207         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
208             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
209             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
210         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
213 #ifdef INVARIANTS
214             vmspace_zdtor,
215 #else
216             NULL,
217 #endif
218             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
219 }
220
221 static int
222 vmspace_zinit(void *mem, int size, int flags)
223 {
224         struct vmspace *vm;
225
226         vm = (struct vmspace *)mem;
227
228         vm->vm_map.pmap = NULL;
229         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
230         PMAP_LOCK_INIT(vmspace_pmap(vm));
231         return (0);
232 }
233
234 static int
235 vm_map_zinit(void *mem, int size, int flags)
236 {
237         vm_map_t map;
238
239         map = (vm_map_t)mem;
240         memset(map, 0, sizeof(*map));
241         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
242         sx_init(&map->lock, "vm map (user)");
243         return (0);
244 }
245
246 #ifdef INVARIANTS
247 static void
248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250         struct vmspace *vm;
251
252         vm = (struct vmspace *)mem;
253
254         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259         vm_map_t map;
260
261         map = (vm_map_t)mem;
262         KASSERT(map->nentries == 0,
263             ("map %p nentries == %d on free.",
264             map, map->nentries));
265         KASSERT(map->size == 0,
266             ("map %p size == %lu on free.",
267             map, (unsigned long)map->size));
268 }
269 #endif  /* INVARIANTS */
270
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  *
275  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
276  */
277 struct vmspace *
278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
279 {
280         struct vmspace *vm;
281
282         vm = uma_zalloc(vmspace_zone, M_WAITOK);
283
284         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285
286         if (pinit == NULL)
287                 pinit = &pmap_pinit;
288
289         if (!pinit(vmspace_pmap(vm))) {
290                 uma_zfree(vmspace_zone, vm);
291                 return (NULL);
292         }
293         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
294         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
295         vm->vm_refcnt = 1;
296         vm->vm_shm = NULL;
297         vm->vm_swrss = 0;
298         vm->vm_tsize = 0;
299         vm->vm_dsize = 0;
300         vm->vm_ssize = 0;
301         vm->vm_taddr = 0;
302         vm->vm_daddr = 0;
303         vm->vm_maxsaddr = 0;
304         return (vm);
305 }
306
307 #ifdef RACCT
308 static void
309 vmspace_container_reset(struct proc *p)
310 {
311
312         PROC_LOCK(p);
313         racct_set(p, RACCT_DATA, 0);
314         racct_set(p, RACCT_STACK, 0);
315         racct_set(p, RACCT_RSS, 0);
316         racct_set(p, RACCT_MEMLOCK, 0);
317         racct_set(p, RACCT_VMEM, 0);
318         PROC_UNLOCK(p);
319 }
320 #endif
321
322 static inline void
323 vmspace_dofree(struct vmspace *vm)
324 {
325
326         CTR1(KTR_VM, "vmspace_free: %p", vm);
327
328         /*
329          * Make sure any SysV shm is freed, it might not have been in
330          * exit1().
331          */
332         shmexit(vm);
333
334         /*
335          * Lock the map, to wait out all other references to it.
336          * Delete all of the mappings and pages they hold, then call
337          * the pmap module to reclaim anything left.
338          */
339         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
340             vm->vm_map.max_offset);
341
342         pmap_release(vmspace_pmap(vm));
343         vm->vm_map.pmap = NULL;
344         uma_zfree(vmspace_zone, vm);
345 }
346
347 void
348 vmspace_free(struct vmspace *vm)
349 {
350
351         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
352             "vmspace_free() called");
353
354         if (vm->vm_refcnt == 0)
355                 panic("vmspace_free: attempt to free already freed vmspace");
356
357         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
358                 vmspace_dofree(vm);
359 }
360
361 void
362 vmspace_exitfree(struct proc *p)
363 {
364         struct vmspace *vm;
365
366         PROC_VMSPACE_LOCK(p);
367         vm = p->p_vmspace;
368         p->p_vmspace = NULL;
369         PROC_VMSPACE_UNLOCK(p);
370         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
371         vmspace_free(vm);
372 }
373
374 void
375 vmspace_exit(struct thread *td)
376 {
377         int refcnt;
378         struct vmspace *vm;
379         struct proc *p;
380
381         /*
382          * Release user portion of address space.
383          * This releases references to vnodes,
384          * which could cause I/O if the file has been unlinked.
385          * Need to do this early enough that we can still sleep.
386          *
387          * The last exiting process to reach this point releases as
388          * much of the environment as it can. vmspace_dofree() is the
389          * slower fallback in case another process had a temporary
390          * reference to the vmspace.
391          */
392
393         p = td->td_proc;
394         vm = p->p_vmspace;
395         atomic_add_int(&vmspace0.vm_refcnt, 1);
396         do {
397                 refcnt = vm->vm_refcnt;
398                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
399                         /* Switch now since other proc might free vmspace */
400                         PROC_VMSPACE_LOCK(p);
401                         p->p_vmspace = &vmspace0;
402                         PROC_VMSPACE_UNLOCK(p);
403                         pmap_activate(td);
404                 }
405         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
406         if (refcnt == 1) {
407                 if (p->p_vmspace != vm) {
408                         /* vmspace not yet freed, switch back */
409                         PROC_VMSPACE_LOCK(p);
410                         p->p_vmspace = vm;
411                         PROC_VMSPACE_UNLOCK(p);
412                         pmap_activate(td);
413                 }
414                 pmap_remove_pages(vmspace_pmap(vm));
415                 /* Switch now since this proc will free vmspace */
416                 PROC_VMSPACE_LOCK(p);
417                 p->p_vmspace = &vmspace0;
418                 PROC_VMSPACE_UNLOCK(p);
419                 pmap_activate(td);
420                 vmspace_dofree(vm);
421         }
422 #ifdef RACCT
423         if (racct_enable)
424                 vmspace_container_reset(p);
425 #endif
426 }
427
428 /* Acquire reference to vmspace owned by another process. */
429
430 struct vmspace *
431 vmspace_acquire_ref(struct proc *p)
432 {
433         struct vmspace *vm;
434         int refcnt;
435
436         PROC_VMSPACE_LOCK(p);
437         vm = p->p_vmspace;
438         if (vm == NULL) {
439                 PROC_VMSPACE_UNLOCK(p);
440                 return (NULL);
441         }
442         do {
443                 refcnt = vm->vm_refcnt;
444                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
445                         PROC_VMSPACE_UNLOCK(p);
446                         return (NULL);
447                 }
448         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
449         if (vm != p->p_vmspace) {
450                 PROC_VMSPACE_UNLOCK(p);
451                 vmspace_free(vm);
452                 return (NULL);
453         }
454         PROC_VMSPACE_UNLOCK(p);
455         return (vm);
456 }
457
458 /*
459  * Switch between vmspaces in an AIO kernel process.
460  *
461  * The AIO kernel processes switch to and from a user process's
462  * vmspace while performing an I/O operation on behalf of a user
463  * process.  The new vmspace is either the vmspace of a user process
464  * obtained from an active AIO request or the initial vmspace of the
465  * AIO kernel process (when it is idling).  Because user processes
466  * will block to drain any active AIO requests before proceeding in
467  * exit() or execve(), the vmspace reference count for these vmspaces
468  * can never be 0.  This allows for a much simpler implementation than
469  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
470  * processes hold an extra reference on their initial vmspace for the
471  * life of the process so that this guarantee is true for any vmspace
472  * passed as 'newvm'.
473  */
474 void
475 vmspace_switch_aio(struct vmspace *newvm)
476 {
477         struct vmspace *oldvm;
478
479         /* XXX: Need some way to assert that this is an aio daemon. */
480
481         KASSERT(newvm->vm_refcnt > 0,
482             ("vmspace_switch_aio: newvm unreferenced"));
483
484         oldvm = curproc->p_vmspace;
485         if (oldvm == newvm)
486                 return;
487
488         /*
489          * Point to the new address space and refer to it.
490          */
491         curproc->p_vmspace = newvm;
492         atomic_add_int(&newvm->vm_refcnt, 1);
493
494         /* Activate the new mapping. */
495         pmap_activate(curthread);
496
497         /* Remove the daemon's reference to the old address space. */
498         KASSERT(oldvm->vm_refcnt > 1,
499             ("vmspace_switch_aio: oldvm dropping last reference"));
500         vmspace_free(oldvm);
501 }
502
503 void
504 _vm_map_lock(vm_map_t map, const char *file, int line)
505 {
506
507         if (map->system_map)
508                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
509         else
510                 sx_xlock_(&map->lock, file, line);
511         map->timestamp++;
512 }
513
514 static void
515 vm_map_process_deferred(void)
516 {
517         struct thread *td;
518         vm_map_entry_t entry, next;
519         vm_object_t object;
520
521         td = curthread;
522         entry = td->td_map_def_user;
523         td->td_map_def_user = NULL;
524         while (entry != NULL) {
525                 next = entry->next;
526                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
527                         /*
528                          * Decrement the object's writemappings and
529                          * possibly the vnode's v_writecount.
530                          */
531                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
532                             ("Submap with writecount"));
533                         object = entry->object.vm_object;
534                         KASSERT(object != NULL, ("No object for writecount"));
535                         vnode_pager_release_writecount(object, entry->start,
536                             entry->end);
537                 }
538                 vm_map_entry_deallocate(entry, FALSE);
539                 entry = next;
540         }
541 }
542
543 void
544 _vm_map_unlock(vm_map_t map, const char *file, int line)
545 {
546
547         if (map->system_map)
548                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
549         else {
550                 sx_xunlock_(&map->lock, file, line);
551                 vm_map_process_deferred();
552         }
553 }
554
555 void
556 _vm_map_lock_read(vm_map_t map, const char *file, int line)
557 {
558
559         if (map->system_map)
560                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
561         else
562                 sx_slock_(&map->lock, file, line);
563 }
564
565 void
566 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
567 {
568
569         if (map->system_map)
570                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
571         else {
572                 sx_sunlock_(&map->lock, file, line);
573                 vm_map_process_deferred();
574         }
575 }
576
577 int
578 _vm_map_trylock(vm_map_t map, const char *file, int line)
579 {
580         int error;
581
582         error = map->system_map ?
583             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
584             !sx_try_xlock_(&map->lock, file, line);
585         if (error == 0)
586                 map->timestamp++;
587         return (error == 0);
588 }
589
590 int
591 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
592 {
593         int error;
594
595         error = map->system_map ?
596             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
597             !sx_try_slock_(&map->lock, file, line);
598         return (error == 0);
599 }
600
601 /*
602  *      _vm_map_lock_upgrade:   [ internal use only ]
603  *
604  *      Tries to upgrade a read (shared) lock on the specified map to a write
605  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
606  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
607  *      returned without a read or write lock held.
608  *
609  *      Requires that the map be read locked.
610  */
611 int
612 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
613 {
614         unsigned int last_timestamp;
615
616         if (map->system_map) {
617                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
618         } else {
619                 if (!sx_try_upgrade_(&map->lock, file, line)) {
620                         last_timestamp = map->timestamp;
621                         sx_sunlock_(&map->lock, file, line);
622                         vm_map_process_deferred();
623                         /*
624                          * If the map's timestamp does not change while the
625                          * map is unlocked, then the upgrade succeeds.
626                          */
627                         sx_xlock_(&map->lock, file, line);
628                         if (last_timestamp != map->timestamp) {
629                                 sx_xunlock_(&map->lock, file, line);
630                                 return (1);
631                         }
632                 }
633         }
634         map->timestamp++;
635         return (0);
636 }
637
638 void
639 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
640 {
641
642         if (map->system_map) {
643                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
644         } else
645                 sx_downgrade_(&map->lock, file, line);
646 }
647
648 /*
649  *      vm_map_locked:
650  *
651  *      Returns a non-zero value if the caller holds a write (exclusive) lock
652  *      on the specified map and the value "0" otherwise.
653  */
654 int
655 vm_map_locked(vm_map_t map)
656 {
657
658         if (map->system_map)
659                 return (mtx_owned(&map->system_mtx));
660         else
661                 return (sx_xlocked(&map->lock));
662 }
663
664 #ifdef INVARIANTS
665 static void
666 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
667 {
668
669         if (map->system_map)
670                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
671         else
672                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
673 }
674
675 #define VM_MAP_ASSERT_LOCKED(map) \
676     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
677 #else
678 #define VM_MAP_ASSERT_LOCKED(map)
679 #endif
680
681 /*
682  *      _vm_map_unlock_and_wait:
683  *
684  *      Atomically releases the lock on the specified map and puts the calling
685  *      thread to sleep.  The calling thread will remain asleep until either
686  *      vm_map_wakeup() is performed on the map or the specified timeout is
687  *      exceeded.
688  *
689  *      WARNING!  This function does not perform deferred deallocations of
690  *      objects and map entries.  Therefore, the calling thread is expected to
691  *      reacquire the map lock after reawakening and later perform an ordinary
692  *      unlock operation, such as vm_map_unlock(), before completing its
693  *      operation on the map.
694  */
695 int
696 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
697 {
698
699         mtx_lock(&map_sleep_mtx);
700         if (map->system_map)
701                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
702         else
703                 sx_xunlock_(&map->lock, file, line);
704         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
705             timo));
706 }
707
708 /*
709  *      vm_map_wakeup:
710  *
711  *      Awaken any threads that have slept on the map using
712  *      vm_map_unlock_and_wait().
713  */
714 void
715 vm_map_wakeup(vm_map_t map)
716 {
717
718         /*
719          * Acquire and release map_sleep_mtx to prevent a wakeup()
720          * from being performed (and lost) between the map unlock
721          * and the msleep() in _vm_map_unlock_and_wait().
722          */
723         mtx_lock(&map_sleep_mtx);
724         mtx_unlock(&map_sleep_mtx);
725         wakeup(&map->root);
726 }
727
728 void
729 vm_map_busy(vm_map_t map)
730 {
731
732         VM_MAP_ASSERT_LOCKED(map);
733         map->busy++;
734 }
735
736 void
737 vm_map_unbusy(vm_map_t map)
738 {
739
740         VM_MAP_ASSERT_LOCKED(map);
741         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
742         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
743                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
744                 wakeup(&map->busy);
745         }
746 }
747
748 void 
749 vm_map_wait_busy(vm_map_t map)
750 {
751
752         VM_MAP_ASSERT_LOCKED(map);
753         while (map->busy) {
754                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
755                 if (map->system_map)
756                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
757                 else
758                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
759         }
760         map->timestamp++;
761 }
762
763 long
764 vmspace_resident_count(struct vmspace *vmspace)
765 {
766         return pmap_resident_count(vmspace_pmap(vmspace));
767 }
768
769 /*
770  *      vm_map_create:
771  *
772  *      Creates and returns a new empty VM map with
773  *      the given physical map structure, and having
774  *      the given lower and upper address bounds.
775  */
776 vm_map_t
777 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
778 {
779         vm_map_t result;
780
781         result = uma_zalloc(mapzone, M_WAITOK);
782         CTR1(KTR_VM, "vm_map_create: %p", result);
783         _vm_map_init(result, pmap, min, max);
784         return (result);
785 }
786
787 /*
788  * Initialize an existing vm_map structure
789  * such as that in the vmspace structure.
790  */
791 static void
792 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
793 {
794
795         map->header.next = map->header.prev = &map->header;
796         map->needs_wakeup = FALSE;
797         map->system_map = 0;
798         map->pmap = pmap;
799         map->min_offset = min;
800         map->max_offset = max;
801         map->flags = 0;
802         map->root = NULL;
803         map->timestamp = 0;
804         map->busy = 0;
805 }
806
807 void
808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
809 {
810
811         _vm_map_init(map, pmap, min, max);
812         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
813         sx_init(&map->lock, "user map");
814 }
815
816 /*
817  *      vm_map_entry_dispose:   [ internal use only ]
818  *
819  *      Inverse of vm_map_entry_create.
820  */
821 static void
822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
823 {
824         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
825 }
826
827 /*
828  *      vm_map_entry_create:    [ internal use only ]
829  *
830  *      Allocates a VM map entry for insertion.
831  *      No entry fields are filled in.
832  */
833 static vm_map_entry_t
834 vm_map_entry_create(vm_map_t map)
835 {
836         vm_map_entry_t new_entry;
837
838         if (map->system_map)
839                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
840         else
841                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
842         if (new_entry == NULL)
843                 panic("vm_map_entry_create: kernel resources exhausted");
844         return (new_entry);
845 }
846
847 /*
848  *      vm_map_entry_set_behavior:
849  *
850  *      Set the expected access behavior, either normal, random, or
851  *      sequential.
852  */
853 static inline void
854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
855 {
856         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
857             (behavior & MAP_ENTRY_BEHAV_MASK);
858 }
859
860 /*
861  *      vm_map_entry_set_max_free:
862  *
863  *      Set the max_free field in a vm_map_entry.
864  */
865 static inline void
866 vm_map_entry_set_max_free(vm_map_entry_t entry)
867 {
868
869         entry->max_free = entry->adj_free;
870         if (entry->left != NULL && entry->left->max_free > entry->max_free)
871                 entry->max_free = entry->left->max_free;
872         if (entry->right != NULL && entry->right->max_free > entry->max_free)
873                 entry->max_free = entry->right->max_free;
874 }
875
876 /*
877  *      vm_map_entry_splay:
878  *
879  *      The Sleator and Tarjan top-down splay algorithm with the
880  *      following variation.  Max_free must be computed bottom-up, so
881  *      on the downward pass, maintain the left and right spines in
882  *      reverse order.  Then, make a second pass up each side to fix
883  *      the pointers and compute max_free.  The time bound is O(log n)
884  *      amortized.
885  *
886  *      The new root is the vm_map_entry containing "addr", or else an
887  *      adjacent entry (lower or higher) if addr is not in the tree.
888  *
889  *      The map must be locked, and leaves it so.
890  *
891  *      Returns: the new root.
892  */
893 static vm_map_entry_t
894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
895 {
896         vm_map_entry_t llist, rlist;
897         vm_map_entry_t ltree, rtree;
898         vm_map_entry_t y;
899
900         /* Special case of empty tree. */
901         if (root == NULL)
902                 return (root);
903
904         /*
905          * Pass One: Splay down the tree until we find addr or a NULL
906          * pointer where addr would go.  llist and rlist are the two
907          * sides in reverse order (bottom-up), with llist linked by
908          * the right pointer and rlist linked by the left pointer in
909          * the vm_map_entry.  Wait until Pass Two to set max_free on
910          * the two spines.
911          */
912         llist = NULL;
913         rlist = NULL;
914         for (;;) {
915                 /* root is never NULL in here. */
916                 if (addr < root->start) {
917                         y = root->left;
918                         if (y == NULL)
919                                 break;
920                         if (addr < y->start && y->left != NULL) {
921                                 /* Rotate right and put y on rlist. */
922                                 root->left = y->right;
923                                 y->right = root;
924                                 vm_map_entry_set_max_free(root);
925                                 root = y->left;
926                                 y->left = rlist;
927                                 rlist = y;
928                         } else {
929                                 /* Put root on rlist. */
930                                 root->left = rlist;
931                                 rlist = root;
932                                 root = y;
933                         }
934                 } else if (addr >= root->end) {
935                         y = root->right;
936                         if (y == NULL)
937                                 break;
938                         if (addr >= y->end && y->right != NULL) {
939                                 /* Rotate left and put y on llist. */
940                                 root->right = y->left;
941                                 y->left = root;
942                                 vm_map_entry_set_max_free(root);
943                                 root = y->right;
944                                 y->right = llist;
945                                 llist = y;
946                         } else {
947                                 /* Put root on llist. */
948                                 root->right = llist;
949                                 llist = root;
950                                 root = y;
951                         }
952                 } else
953                         break;
954         }
955
956         /*
957          * Pass Two: Walk back up the two spines, flip the pointers
958          * and set max_free.  The subtrees of the root go at the
959          * bottom of llist and rlist.
960          */
961         ltree = root->left;
962         while (llist != NULL) {
963                 y = llist->right;
964                 llist->right = ltree;
965                 vm_map_entry_set_max_free(llist);
966                 ltree = llist;
967                 llist = y;
968         }
969         rtree = root->right;
970         while (rlist != NULL) {
971                 y = rlist->left;
972                 rlist->left = rtree;
973                 vm_map_entry_set_max_free(rlist);
974                 rtree = rlist;
975                 rlist = y;
976         }
977
978         /*
979          * Final assembly: add ltree and rtree as subtrees of root.
980          */
981         root->left = ltree;
982         root->right = rtree;
983         vm_map_entry_set_max_free(root);
984
985         return (root);
986 }
987
988 /*
989  *      vm_map_entry_{un,}link:
990  *
991  *      Insert/remove entries from maps.
992  */
993 static void
994 vm_map_entry_link(vm_map_t map,
995                   vm_map_entry_t after_where,
996                   vm_map_entry_t entry)
997 {
998
999         CTR4(KTR_VM,
1000             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1001             map->nentries, entry, after_where);
1002         VM_MAP_ASSERT_LOCKED(map);
1003         KASSERT(after_where == &map->header ||
1004             after_where->end <= entry->start,
1005             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1006             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1007         KASSERT(after_where->next == &map->header ||
1008             entry->end <= after_where->next->start,
1009             ("vm_map_entry_link: new end %jx next start %jx overlap",
1010             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1011
1012         map->nentries++;
1013         entry->prev = after_where;
1014         entry->next = after_where->next;
1015         entry->next->prev = entry;
1016         after_where->next = entry;
1017
1018         if (after_where != &map->header) {
1019                 if (after_where != map->root)
1020                         vm_map_entry_splay(after_where->start, map->root);
1021                 entry->right = after_where->right;
1022                 entry->left = after_where;
1023                 after_where->right = NULL;
1024                 after_where->adj_free = entry->start - after_where->end;
1025                 vm_map_entry_set_max_free(after_where);
1026         } else {
1027                 entry->right = map->root;
1028                 entry->left = NULL;
1029         }
1030         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1031             entry->next->start) - entry->end;
1032         vm_map_entry_set_max_free(entry);
1033         map->root = entry;
1034 }
1035
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038                     vm_map_entry_t entry)
1039 {
1040         vm_map_entry_t next, prev, root;
1041
1042         VM_MAP_ASSERT_LOCKED(map);
1043         if (entry != map->root)
1044                 vm_map_entry_splay(entry->start, map->root);
1045         if (entry->left == NULL)
1046                 root = entry->right;
1047         else {
1048                 root = vm_map_entry_splay(entry->start, entry->left);
1049                 root->right = entry->right;
1050                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1051                     entry->next->start) - root->end;
1052                 vm_map_entry_set_max_free(root);
1053         }
1054         map->root = root;
1055
1056         prev = entry->prev;
1057         next = entry->next;
1058         next->prev = prev;
1059         prev->next = next;
1060         map->nentries--;
1061         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1062             map->nentries, entry);
1063 }
1064
1065 /*
1066  *      vm_map_entry_resize_free:
1067  *
1068  *      Recompute the amount of free space following a vm_map_entry
1069  *      and propagate that value up the tree.  Call this function after
1070  *      resizing a map entry in-place, that is, without a call to
1071  *      vm_map_entry_link() or _unlink().
1072  *
1073  *      The map must be locked, and leaves it so.
1074  */
1075 static void
1076 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1077 {
1078
1079         /*
1080          * Using splay trees without parent pointers, propagating
1081          * max_free up the tree is done by moving the entry to the
1082          * root and making the change there.
1083          */
1084         if (entry != map->root)
1085                 map->root = vm_map_entry_splay(entry->start, map->root);
1086
1087         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1088             entry->next->start) - entry->end;
1089         vm_map_entry_set_max_free(entry);
1090 }
1091
1092 /*
1093  *      vm_map_lookup_entry:    [ internal use only ]
1094  *
1095  *      Finds the map entry containing (or
1096  *      immediately preceding) the specified address
1097  *      in the given map; the entry is returned
1098  *      in the "entry" parameter.  The boolean
1099  *      result indicates whether the address is
1100  *      actually contained in the map.
1101  */
1102 boolean_t
1103 vm_map_lookup_entry(
1104         vm_map_t map,
1105         vm_offset_t address,
1106         vm_map_entry_t *entry)  /* OUT */
1107 {
1108         vm_map_entry_t cur;
1109         boolean_t locked;
1110
1111         /*
1112          * If the map is empty, then the map entry immediately preceding
1113          * "address" is the map's header.
1114          */
1115         cur = map->root;
1116         if (cur == NULL)
1117                 *entry = &map->header;
1118         else if (address >= cur->start && cur->end > address) {
1119                 *entry = cur;
1120                 return (TRUE);
1121         } else if ((locked = vm_map_locked(map)) ||
1122             sx_try_upgrade(&map->lock)) {
1123                 /*
1124                  * Splay requires a write lock on the map.  However, it only
1125                  * restructures the binary search tree; it does not otherwise
1126                  * change the map.  Thus, the map's timestamp need not change
1127                  * on a temporary upgrade.
1128                  */
1129                 map->root = cur = vm_map_entry_splay(address, cur);
1130                 if (!locked)
1131                         sx_downgrade(&map->lock);
1132
1133                 /*
1134                  * If "address" is contained within a map entry, the new root
1135                  * is that map entry.  Otherwise, the new root is a map entry
1136                  * immediately before or after "address".
1137                  */
1138                 if (address >= cur->start) {
1139                         *entry = cur;
1140                         if (cur->end > address)
1141                                 return (TRUE);
1142                 } else
1143                         *entry = cur->prev;
1144         } else
1145                 /*
1146                  * Since the map is only locked for read access, perform a
1147                  * standard binary search tree lookup for "address".
1148                  */
1149                 for (;;) {
1150                         if (address < cur->start) {
1151                                 if (cur->left == NULL) {
1152                                         *entry = cur->prev;
1153                                         break;
1154                                 }
1155                                 cur = cur->left;
1156                         } else if (cur->end > address) {
1157                                 *entry = cur;
1158                                 return (TRUE);
1159                         } else {
1160                                 if (cur->right == NULL) {
1161                                         *entry = cur;
1162                                         break;
1163                                 }
1164                                 cur = cur->right;
1165                         }
1166                 }
1167         return (FALSE);
1168 }
1169
1170 /*
1171  *      vm_map_insert:
1172  *
1173  *      Inserts the given whole VM object into the target
1174  *      map at the specified address range.  The object's
1175  *      size should match that of the address range.
1176  *
1177  *      Requires that the map be locked, and leaves it so.
1178  *
1179  *      If object is non-NULL, ref count must be bumped by caller
1180  *      prior to making call to account for the new entry.
1181  */
1182 int
1183 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1184     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1185 {
1186         vm_map_entry_t new_entry, prev_entry, temp_entry;
1187         struct ucred *cred;
1188         vm_eflags_t protoeflags;
1189         vm_inherit_t inheritance;
1190
1191         VM_MAP_ASSERT_LOCKED(map);
1192         KASSERT(object != kernel_object ||
1193             (cow & MAP_COPY_ON_WRITE) == 0,
1194             ("vm_map_insert: kernel object and COW"));
1195         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1196             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1197         KASSERT((prot & ~max) == 0,
1198             ("prot %#x is not subset of max_prot %#x", prot, max));
1199
1200         /*
1201          * Check that the start and end points are not bogus.
1202          */
1203         if (start < map->min_offset || end > map->max_offset || start >= end)
1204                 return (KERN_INVALID_ADDRESS);
1205
1206         /*
1207          * Find the entry prior to the proposed starting address; if it's part
1208          * of an existing entry, this range is bogus.
1209          */
1210         if (vm_map_lookup_entry(map, start, &temp_entry))
1211                 return (KERN_NO_SPACE);
1212
1213         prev_entry = temp_entry;
1214
1215         /*
1216          * Assert that the next entry doesn't overlap the end point.
1217          */
1218         if (prev_entry->next != &map->header && prev_entry->next->start < end)
1219                 return (KERN_NO_SPACE);
1220
1221         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1222             max != VM_PROT_NONE))
1223                 return (KERN_INVALID_ARGUMENT);
1224
1225         protoeflags = 0;
1226         if (cow & MAP_COPY_ON_WRITE)
1227                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1228         if (cow & MAP_NOFAULT)
1229                 protoeflags |= MAP_ENTRY_NOFAULT;
1230         if (cow & MAP_DISABLE_SYNCER)
1231                 protoeflags |= MAP_ENTRY_NOSYNC;
1232         if (cow & MAP_DISABLE_COREDUMP)
1233                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1234         if (cow & MAP_STACK_GROWS_DOWN)
1235                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1236         if (cow & MAP_STACK_GROWS_UP)
1237                 protoeflags |= MAP_ENTRY_GROWS_UP;
1238         if (cow & MAP_VN_WRITECOUNT)
1239                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1240         if ((cow & MAP_CREATE_GUARD) != 0)
1241                 protoeflags |= MAP_ENTRY_GUARD;
1242         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1243                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1244         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1245                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1246         if (cow & MAP_INHERIT_SHARE)
1247                 inheritance = VM_INHERIT_SHARE;
1248         else
1249                 inheritance = VM_INHERIT_DEFAULT;
1250
1251         cred = NULL;
1252         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1253                 goto charged;
1254         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1255             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1256                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1257                         return (KERN_RESOURCE_SHORTAGE);
1258                 KASSERT(object == NULL ||
1259                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1260                     object->cred == NULL,
1261                     ("overcommit: vm_map_insert o %p", object));
1262                 cred = curthread->td_ucred;
1263         }
1264
1265 charged:
1266         /* Expand the kernel pmap, if necessary. */
1267         if (map == kernel_map && end > kernel_vm_end)
1268                 pmap_growkernel(end);
1269         if (object != NULL) {
1270                 /*
1271                  * OBJ_ONEMAPPING must be cleared unless this mapping
1272                  * is trivially proven to be the only mapping for any
1273                  * of the object's pages.  (Object granularity
1274                  * reference counting is insufficient to recognize
1275                  * aliases with precision.)
1276                  */
1277                 VM_OBJECT_WLOCK(object);
1278                 if (object->ref_count > 1 || object->shadow_count != 0)
1279                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1280                 VM_OBJECT_WUNLOCK(object);
1281         } else if (prev_entry != &map->header &&
1282             prev_entry->eflags == protoeflags &&
1283             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1284             prev_entry->end == start && prev_entry->wired_count == 0 &&
1285             (prev_entry->cred == cred ||
1286             (prev_entry->object.vm_object != NULL &&
1287             prev_entry->object.vm_object->cred == cred)) &&
1288             vm_object_coalesce(prev_entry->object.vm_object,
1289             prev_entry->offset,
1290             (vm_size_t)(prev_entry->end - prev_entry->start),
1291             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1292             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1293                 /*
1294                  * We were able to extend the object.  Determine if we
1295                  * can extend the previous map entry to include the
1296                  * new range as well.
1297                  */
1298                 if (prev_entry->inheritance == inheritance &&
1299                     prev_entry->protection == prot &&
1300                     prev_entry->max_protection == max) {
1301                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1302                                 map->size += end - prev_entry->end;
1303                         prev_entry->end = end;
1304                         vm_map_entry_resize_free(map, prev_entry);
1305                         vm_map_simplify_entry(map, prev_entry);
1306                         return (KERN_SUCCESS);
1307                 }
1308
1309                 /*
1310                  * If we can extend the object but cannot extend the
1311                  * map entry, we have to create a new map entry.  We
1312                  * must bump the ref count on the extended object to
1313                  * account for it.  object may be NULL.
1314                  */
1315                 object = prev_entry->object.vm_object;
1316                 offset = prev_entry->offset +
1317                     (prev_entry->end - prev_entry->start);
1318                 vm_object_reference(object);
1319                 if (cred != NULL && object != NULL && object->cred != NULL &&
1320                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1321                         /* Object already accounts for this uid. */
1322                         cred = NULL;
1323                 }
1324         }
1325         if (cred != NULL)
1326                 crhold(cred);
1327
1328         /*
1329          * Create a new entry
1330          */
1331         new_entry = vm_map_entry_create(map);
1332         new_entry->start = start;
1333         new_entry->end = end;
1334         new_entry->cred = NULL;
1335
1336         new_entry->eflags = protoeflags;
1337         new_entry->object.vm_object = object;
1338         new_entry->offset = offset;
1339
1340         new_entry->inheritance = inheritance;
1341         new_entry->protection = prot;
1342         new_entry->max_protection = max;
1343         new_entry->wired_count = 0;
1344         new_entry->wiring_thread = NULL;
1345         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1346         new_entry->next_read = start;
1347
1348         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1349             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1350         new_entry->cred = cred;
1351
1352         /*
1353          * Insert the new entry into the list
1354          */
1355         vm_map_entry_link(map, prev_entry, new_entry);
1356         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1357                 map->size += new_entry->end - new_entry->start;
1358
1359         /*
1360          * Try to coalesce the new entry with both the previous and next
1361          * entries in the list.  Previously, we only attempted to coalesce
1362          * with the previous entry when object is NULL.  Here, we handle the
1363          * other cases, which are less common.
1364          */
1365         vm_map_simplify_entry(map, new_entry);
1366
1367         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1368                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1369                     end - start, cow & MAP_PREFAULT_PARTIAL);
1370         }
1371
1372         return (KERN_SUCCESS);
1373 }
1374
1375 /*
1376  *      vm_map_findspace:
1377  *
1378  *      Find the first fit (lowest VM address) for "length" free bytes
1379  *      beginning at address >= start in the given map.
1380  *
1381  *      In a vm_map_entry, "adj_free" is the amount of free space
1382  *      adjacent (higher address) to this entry, and "max_free" is the
1383  *      maximum amount of contiguous free space in its subtree.  This
1384  *      allows finding a free region in one path down the tree, so
1385  *      O(log n) amortized with splay trees.
1386  *
1387  *      The map must be locked, and leaves it so.
1388  *
1389  *      Returns: 0 on success, and starting address in *addr,
1390  *               1 if insufficient space.
1391  */
1392 int
1393 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1394     vm_offset_t *addr)  /* OUT */
1395 {
1396         vm_map_entry_t entry;
1397         vm_offset_t st;
1398
1399         /*
1400          * Request must fit within min/max VM address and must avoid
1401          * address wrap.
1402          */
1403         if (start < map->min_offset)
1404                 start = map->min_offset;
1405         if (start + length > map->max_offset || start + length < start)
1406                 return (1);
1407
1408         /* Empty tree means wide open address space. */
1409         if (map->root == NULL) {
1410                 *addr = start;
1411                 return (0);
1412         }
1413
1414         /*
1415          * After splay, if start comes before root node, then there
1416          * must be a gap from start to the root.
1417          */
1418         map->root = vm_map_entry_splay(start, map->root);
1419         if (start + length <= map->root->start) {
1420                 *addr = start;
1421                 return (0);
1422         }
1423
1424         /*
1425          * Root is the last node that might begin its gap before
1426          * start, and this is the last comparison where address
1427          * wrap might be a problem.
1428          */
1429         st = (start > map->root->end) ? start : map->root->end;
1430         if (length <= map->root->end + map->root->adj_free - st) {
1431                 *addr = st;
1432                 return (0);
1433         }
1434
1435         /* With max_free, can immediately tell if no solution. */
1436         entry = map->root->right;
1437         if (entry == NULL || length > entry->max_free)
1438                 return (1);
1439
1440         /*
1441          * Search the right subtree in the order: left subtree, root,
1442          * right subtree (first fit).  The previous splay implies that
1443          * all regions in the right subtree have addresses > start.
1444          */
1445         while (entry != NULL) {
1446                 if (entry->left != NULL && entry->left->max_free >= length)
1447                         entry = entry->left;
1448                 else if (entry->adj_free >= length) {
1449                         *addr = entry->end;
1450                         return (0);
1451                 } else
1452                         entry = entry->right;
1453         }
1454
1455         /* Can't get here, so panic if we do. */
1456         panic("vm_map_findspace: max_free corrupt");
1457 }
1458
1459 int
1460 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1461     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1462     vm_prot_t max, int cow)
1463 {
1464         vm_offset_t end;
1465         int result;
1466
1467         end = start + length;
1468         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1469             object == NULL,
1470             ("vm_map_fixed: non-NULL backing object for stack"));
1471         vm_map_lock(map);
1472         VM_MAP_RANGE_CHECK(map, start, end);
1473         if ((cow & MAP_CHECK_EXCL) == 0)
1474                 vm_map_delete(map, start, end);
1475         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1476                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1477                     prot, max, cow);
1478         } else {
1479                 result = vm_map_insert(map, object, offset, start, end,
1480                     prot, max, cow);
1481         }
1482         vm_map_unlock(map);
1483         return (result);
1484 }
1485
1486 /*
1487  *      vm_map_find finds an unallocated region in the target address
1488  *      map with the given length.  The search is defined to be
1489  *      first-fit from the specified address; the region found is
1490  *      returned in the same parameter.
1491  *
1492  *      If object is non-NULL, ref count must be bumped by caller
1493  *      prior to making call to account for the new entry.
1494  */
1495 int
1496 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1497             vm_offset_t *addr,  /* IN/OUT */
1498             vm_size_t length, vm_offset_t max_addr, int find_space,
1499             vm_prot_t prot, vm_prot_t max, int cow)
1500 {
1501         vm_offset_t alignment, initial_addr, start;
1502         int result;
1503
1504         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1505             object == NULL,
1506             ("vm_map_find: non-NULL backing object for stack"));
1507         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1508             (object->flags & OBJ_COLORED) == 0))
1509                 find_space = VMFS_ANY_SPACE;
1510         if (find_space >> 8 != 0) {
1511                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1512                 alignment = (vm_offset_t)1 << (find_space >> 8);
1513         } else
1514                 alignment = 0;
1515         initial_addr = *addr;
1516         vm_map_lock(map);
1517 again:
1518         start = initial_addr;
1519         do {
1520                 if (find_space != VMFS_NO_SPACE) {
1521                         if (vm_map_findspace(map, start, length, addr) ||
1522                             (max_addr != 0 && *addr + length > max_addr)) {
1523                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1524                                         find_space = VMFS_ANY_SPACE;
1525                                         goto again;
1526                                 }
1527                                 vm_map_unlock(map);
1528                                 return (KERN_NO_SPACE);
1529                         }
1530                         switch (find_space) {
1531                         case VMFS_SUPER_SPACE:
1532                         case VMFS_OPTIMAL_SPACE:
1533                                 pmap_align_superpage(object, offset, addr,
1534                                     length);
1535                                 break;
1536                         case VMFS_ANY_SPACE:
1537                                 break;
1538                         default:
1539                                 if ((*addr & (alignment - 1)) != 0) {
1540                                         *addr &= ~(alignment - 1);
1541                                         *addr += alignment;
1542                                 }
1543                                 break;
1544                         }
1545
1546                         start = *addr;
1547                 }
1548                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1549                         result = vm_map_stack_locked(map, start, length,
1550                             sgrowsiz, prot, max, cow);
1551                 } else {
1552                         result = vm_map_insert(map, object, offset, start,
1553                             start + length, prot, max, cow);
1554                 }
1555         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1556             find_space != VMFS_ANY_SPACE);
1557         vm_map_unlock(map);
1558         return (result);
1559 }
1560
1561 int
1562 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1563     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1564     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1565     int cow)
1566 {
1567         vm_offset_t hint;
1568         int rv;
1569
1570         hint = *addr;
1571         for (;;) {
1572                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1573                     find_space, prot, max, cow);
1574                 if (rv == KERN_SUCCESS || min_addr >= hint)
1575                         return (rv);
1576                 *addr = hint = min_addr;
1577         }
1578 }
1579
1580 /*
1581  *      vm_map_simplify_entry:
1582  *
1583  *      Simplify the given map entry by merging with either neighbor.  This
1584  *      routine also has the ability to merge with both neighbors.
1585  *
1586  *      The map must be locked.
1587  *
1588  *      This routine guarantees that the passed entry remains valid (though
1589  *      possibly extended).  When merging, this routine may delete one or
1590  *      both neighbors.
1591  */
1592 void
1593 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1594 {
1595         vm_map_entry_t next, prev;
1596         vm_size_t prevsize, esize;
1597
1598         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1599             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1600                 return;
1601
1602         prev = entry->prev;
1603         if (prev != &map->header) {
1604                 prevsize = prev->end - prev->start;
1605                 if ( (prev->end == entry->start) &&
1606                      (prev->object.vm_object == entry->object.vm_object) &&
1607                      (!prev->object.vm_object ||
1608                         (prev->offset + prevsize == entry->offset)) &&
1609                      (prev->eflags == entry->eflags) &&
1610                      (prev->protection == entry->protection) &&
1611                      (prev->max_protection == entry->max_protection) &&
1612                      (prev->inheritance == entry->inheritance) &&
1613                      (prev->wired_count == entry->wired_count) &&
1614                      (prev->cred == entry->cred)) {
1615                         vm_map_entry_unlink(map, prev);
1616                         entry->start = prev->start;
1617                         entry->offset = prev->offset;
1618                         if (entry->prev != &map->header)
1619                                 vm_map_entry_resize_free(map, entry->prev);
1620
1621                         /*
1622                          * If the backing object is a vnode object,
1623                          * vm_object_deallocate() calls vrele().
1624                          * However, vrele() does not lock the vnode
1625                          * because the vnode has additional
1626                          * references.  Thus, the map lock can be kept
1627                          * without causing a lock-order reversal with
1628                          * the vnode lock.
1629                          *
1630                          * Since we count the number of virtual page
1631                          * mappings in object->un_pager.vnp.writemappings,
1632                          * the writemappings value should not be adjusted
1633                          * when the entry is disposed of.
1634                          */
1635                         if (prev->object.vm_object)
1636                                 vm_object_deallocate(prev->object.vm_object);
1637                         if (prev->cred != NULL)
1638                                 crfree(prev->cred);
1639                         vm_map_entry_dispose(map, prev);
1640                 }
1641         }
1642
1643         next = entry->next;
1644         if (next != &map->header) {
1645                 esize = entry->end - entry->start;
1646                 if ((entry->end == next->start) &&
1647                     (next->object.vm_object == entry->object.vm_object) &&
1648                      (!entry->object.vm_object ||
1649                         (entry->offset + esize == next->offset)) &&
1650                     (next->eflags == entry->eflags) &&
1651                     (next->protection == entry->protection) &&
1652                     (next->max_protection == entry->max_protection) &&
1653                     (next->inheritance == entry->inheritance) &&
1654                     (next->wired_count == entry->wired_count) &&
1655                     (next->cred == entry->cred)) {
1656                         vm_map_entry_unlink(map, next);
1657                         entry->end = next->end;
1658                         vm_map_entry_resize_free(map, entry);
1659
1660                         /*
1661                          * See comment above.
1662                          */
1663                         if (next->object.vm_object)
1664                                 vm_object_deallocate(next->object.vm_object);
1665                         if (next->cred != NULL)
1666                                 crfree(next->cred);
1667                         vm_map_entry_dispose(map, next);
1668                 }
1669         }
1670 }
1671 /*
1672  *      vm_map_clip_start:      [ internal use only ]
1673  *
1674  *      Asserts that the given entry begins at or after
1675  *      the specified address; if necessary,
1676  *      it splits the entry into two.
1677  */
1678 #define vm_map_clip_start(map, entry, startaddr) \
1679 { \
1680         if (startaddr > entry->start) \
1681                 _vm_map_clip_start(map, entry, startaddr); \
1682 }
1683
1684 /*
1685  *      This routine is called only when it is known that
1686  *      the entry must be split.
1687  */
1688 static void
1689 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1690 {
1691         vm_map_entry_t new_entry;
1692
1693         VM_MAP_ASSERT_LOCKED(map);
1694         KASSERT(entry->end > start && entry->start < start,
1695             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1696
1697         /*
1698          * Split off the front portion -- note that we must insert the new
1699          * entry BEFORE this one, so that this entry has the specified
1700          * starting address.
1701          */
1702         vm_map_simplify_entry(map, entry);
1703
1704         /*
1705          * If there is no object backing this entry, we might as well create
1706          * one now.  If we defer it, an object can get created after the map
1707          * is clipped, and individual objects will be created for the split-up
1708          * map.  This is a bit of a hack, but is also about the best place to
1709          * put this improvement.
1710          */
1711         if (entry->object.vm_object == NULL && !map->system_map &&
1712             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1713                 vm_object_t object;
1714                 object = vm_object_allocate(OBJT_DEFAULT,
1715                                 atop(entry->end - entry->start));
1716                 entry->object.vm_object = object;
1717                 entry->offset = 0;
1718                 if (entry->cred != NULL) {
1719                         object->cred = entry->cred;
1720                         object->charge = entry->end - entry->start;
1721                         entry->cred = NULL;
1722                 }
1723         } else if (entry->object.vm_object != NULL &&
1724                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1725                    entry->cred != NULL) {
1726                 VM_OBJECT_WLOCK(entry->object.vm_object);
1727                 KASSERT(entry->object.vm_object->cred == NULL,
1728                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1729                 entry->object.vm_object->cred = entry->cred;
1730                 entry->object.vm_object->charge = entry->end - entry->start;
1731                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1732                 entry->cred = NULL;
1733         }
1734
1735         new_entry = vm_map_entry_create(map);
1736         *new_entry = *entry;
1737
1738         new_entry->end = start;
1739         entry->offset += (start - entry->start);
1740         entry->start = start;
1741         if (new_entry->cred != NULL)
1742                 crhold(entry->cred);
1743
1744         vm_map_entry_link(map, entry->prev, new_entry);
1745
1746         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1747                 vm_object_reference(new_entry->object.vm_object);
1748                 /*
1749                  * The object->un_pager.vnp.writemappings for the
1750                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1751                  * kept as is here.  The virtual pages are
1752                  * re-distributed among the clipped entries, so the sum is
1753                  * left the same.
1754                  */
1755         }
1756 }
1757
1758 /*
1759  *      vm_map_clip_end:        [ internal use only ]
1760  *
1761  *      Asserts that the given entry ends at or before
1762  *      the specified address; if necessary,
1763  *      it splits the entry into two.
1764  */
1765 #define vm_map_clip_end(map, entry, endaddr) \
1766 { \
1767         if ((endaddr) < (entry->end)) \
1768                 _vm_map_clip_end((map), (entry), (endaddr)); \
1769 }
1770
1771 /*
1772  *      This routine is called only when it is known that
1773  *      the entry must be split.
1774  */
1775 static void
1776 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1777 {
1778         vm_map_entry_t new_entry;
1779
1780         VM_MAP_ASSERT_LOCKED(map);
1781         KASSERT(entry->start < end && entry->end > end,
1782             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1783
1784         /*
1785          * If there is no object backing this entry, we might as well create
1786          * one now.  If we defer it, an object can get created after the map
1787          * is clipped, and individual objects will be created for the split-up
1788          * map.  This is a bit of a hack, but is also about the best place to
1789          * put this improvement.
1790          */
1791         if (entry->object.vm_object == NULL && !map->system_map &&
1792             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1793                 vm_object_t object;
1794                 object = vm_object_allocate(OBJT_DEFAULT,
1795                                 atop(entry->end - entry->start));
1796                 entry->object.vm_object = object;
1797                 entry->offset = 0;
1798                 if (entry->cred != NULL) {
1799                         object->cred = entry->cred;
1800                         object->charge = entry->end - entry->start;
1801                         entry->cred = NULL;
1802                 }
1803         } else if (entry->object.vm_object != NULL &&
1804                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1805                    entry->cred != NULL) {
1806                 VM_OBJECT_WLOCK(entry->object.vm_object);
1807                 KASSERT(entry->object.vm_object->cred == NULL,
1808                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1809                 entry->object.vm_object->cred = entry->cred;
1810                 entry->object.vm_object->charge = entry->end - entry->start;
1811                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1812                 entry->cred = NULL;
1813         }
1814
1815         /*
1816          * Create a new entry and insert it AFTER the specified entry
1817          */
1818         new_entry = vm_map_entry_create(map);
1819         *new_entry = *entry;
1820
1821         new_entry->start = entry->end = end;
1822         new_entry->offset += (end - entry->start);
1823         if (new_entry->cred != NULL)
1824                 crhold(entry->cred);
1825
1826         vm_map_entry_link(map, entry, new_entry);
1827
1828         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1829                 vm_object_reference(new_entry->object.vm_object);
1830         }
1831 }
1832
1833 /*
1834  *      vm_map_submap:          [ kernel use only ]
1835  *
1836  *      Mark the given range as handled by a subordinate map.
1837  *
1838  *      This range must have been created with vm_map_find,
1839  *      and no other operations may have been performed on this
1840  *      range prior to calling vm_map_submap.
1841  *
1842  *      Only a limited number of operations can be performed
1843  *      within this rage after calling vm_map_submap:
1844  *              vm_fault
1845  *      [Don't try vm_map_copy!]
1846  *
1847  *      To remove a submapping, one must first remove the
1848  *      range from the superior map, and then destroy the
1849  *      submap (if desired).  [Better yet, don't try it.]
1850  */
1851 int
1852 vm_map_submap(
1853         vm_map_t map,
1854         vm_offset_t start,
1855         vm_offset_t end,
1856         vm_map_t submap)
1857 {
1858         vm_map_entry_t entry;
1859         int result = KERN_INVALID_ARGUMENT;
1860
1861         vm_map_lock(map);
1862
1863         VM_MAP_RANGE_CHECK(map, start, end);
1864
1865         if (vm_map_lookup_entry(map, start, &entry)) {
1866                 vm_map_clip_start(map, entry, start);
1867         } else
1868                 entry = entry->next;
1869
1870         vm_map_clip_end(map, entry, end);
1871
1872         if ((entry->start == start) && (entry->end == end) &&
1873             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1874             (entry->object.vm_object == NULL)) {
1875                 entry->object.sub_map = submap;
1876                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1877                 result = KERN_SUCCESS;
1878         }
1879         vm_map_unlock(map);
1880
1881         return (result);
1882 }
1883
1884 /*
1885  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1886  */
1887 #define MAX_INIT_PT     96
1888
1889 /*
1890  *      vm_map_pmap_enter:
1891  *
1892  *      Preload the specified map's pmap with mappings to the specified
1893  *      object's memory-resident pages.  No further physical pages are
1894  *      allocated, and no further virtual pages are retrieved from secondary
1895  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1896  *      limited number of page mappings are created at the low-end of the
1897  *      specified address range.  (For this purpose, a superpage mapping
1898  *      counts as one page mapping.)  Otherwise, all resident pages within
1899  *      the specified address range are mapped.
1900  */
1901 static void
1902 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1903     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1904 {
1905         vm_offset_t start;
1906         vm_page_t p, p_start;
1907         vm_pindex_t mask, psize, threshold, tmpidx;
1908
1909         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1910                 return;
1911         VM_OBJECT_RLOCK(object);
1912         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1913                 VM_OBJECT_RUNLOCK(object);
1914                 VM_OBJECT_WLOCK(object);
1915                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1916                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1917                             size);
1918                         VM_OBJECT_WUNLOCK(object);
1919                         return;
1920                 }
1921                 VM_OBJECT_LOCK_DOWNGRADE(object);
1922         }
1923
1924         psize = atop(size);
1925         if (psize + pindex > object->size) {
1926                 if (object->size < pindex) {
1927                         VM_OBJECT_RUNLOCK(object);
1928                         return;
1929                 }
1930                 psize = object->size - pindex;
1931         }
1932
1933         start = 0;
1934         p_start = NULL;
1935         threshold = MAX_INIT_PT;
1936
1937         p = vm_page_find_least(object, pindex);
1938         /*
1939          * Assert: the variable p is either (1) the page with the
1940          * least pindex greater than or equal to the parameter pindex
1941          * or (2) NULL.
1942          */
1943         for (;
1944              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1945              p = TAILQ_NEXT(p, listq)) {
1946                 /*
1947                  * don't allow an madvise to blow away our really
1948                  * free pages allocating pv entries.
1949                  */
1950                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1951                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1952                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1953                     tmpidx >= threshold)) {
1954                         psize = tmpidx;
1955                         break;
1956                 }
1957                 if (p->valid == VM_PAGE_BITS_ALL) {
1958                         if (p_start == NULL) {
1959                                 start = addr + ptoa(tmpidx);
1960                                 p_start = p;
1961                         }
1962                         /* Jump ahead if a superpage mapping is possible. */
1963                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1964                             (pagesizes[p->psind] - 1)) == 0) {
1965                                 mask = atop(pagesizes[p->psind]) - 1;
1966                                 if (tmpidx + mask < psize &&
1967                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
1968                                         p += mask;
1969                                         threshold += mask;
1970                                 }
1971                         }
1972                 } else if (p_start != NULL) {
1973                         pmap_enter_object(map->pmap, start, addr +
1974                             ptoa(tmpidx), p_start, prot);
1975                         p_start = NULL;
1976                 }
1977         }
1978         if (p_start != NULL)
1979                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1980                     p_start, prot);
1981         VM_OBJECT_RUNLOCK(object);
1982 }
1983
1984 /*
1985  *      vm_map_protect:
1986  *
1987  *      Sets the protection of the specified address
1988  *      region in the target map.  If "set_max" is
1989  *      specified, the maximum protection is to be set;
1990  *      otherwise, only the current protection is affected.
1991  */
1992 int
1993 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1994                vm_prot_t new_prot, boolean_t set_max)
1995 {
1996         vm_map_entry_t current, entry;
1997         vm_object_t obj;
1998         struct ucred *cred;
1999         vm_prot_t old_prot;
2000
2001         if (start == end)
2002                 return (KERN_SUCCESS);
2003
2004         vm_map_lock(map);
2005
2006         /*
2007          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2008          * need to fault pages into the map and will drop the map lock while
2009          * doing so, and the VM object may end up in an inconsistent state if we
2010          * update the protection on the map entry in between faults.
2011          */
2012         vm_map_wait_busy(map);
2013
2014         VM_MAP_RANGE_CHECK(map, start, end);
2015
2016         if (vm_map_lookup_entry(map, start, &entry)) {
2017                 vm_map_clip_start(map, entry, start);
2018         } else {
2019                 entry = entry->next;
2020         }
2021
2022         /*
2023          * Make a first pass to check for protection violations.
2024          */
2025         for (current = entry; current != &map->header && current->start < end;
2026             current = current->next) {
2027                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2028                         continue;
2029                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2030                         vm_map_unlock(map);
2031                         return (KERN_INVALID_ARGUMENT);
2032                 }
2033                 if ((new_prot & current->max_protection) != new_prot) {
2034                         vm_map_unlock(map);
2035                         return (KERN_PROTECTION_FAILURE);
2036                 }
2037         }
2038
2039         /*
2040          * Do an accounting pass for private read-only mappings that
2041          * now will do cow due to allowed write (e.g. debugger sets
2042          * breakpoint on text segment)
2043          */
2044         for (current = entry; current != &map->header && current->start < end;
2045             current = current->next) {
2046
2047                 vm_map_clip_end(map, current, end);
2048
2049                 if (set_max ||
2050                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2051                     ENTRY_CHARGED(current) ||
2052                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2053                         continue;
2054                 }
2055
2056                 cred = curthread->td_ucred;
2057                 obj = current->object.vm_object;
2058
2059                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2060                         if (!swap_reserve(current->end - current->start)) {
2061                                 vm_map_unlock(map);
2062                                 return (KERN_RESOURCE_SHORTAGE);
2063                         }
2064                         crhold(cred);
2065                         current->cred = cred;
2066                         continue;
2067                 }
2068
2069                 VM_OBJECT_WLOCK(obj);
2070                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2071                         VM_OBJECT_WUNLOCK(obj);
2072                         continue;
2073                 }
2074
2075                 /*
2076                  * Charge for the whole object allocation now, since
2077                  * we cannot distinguish between non-charged and
2078                  * charged clipped mapping of the same object later.
2079                  */
2080                 KASSERT(obj->charge == 0,
2081                     ("vm_map_protect: object %p overcharged (entry %p)",
2082                     obj, current));
2083                 if (!swap_reserve(ptoa(obj->size))) {
2084                         VM_OBJECT_WUNLOCK(obj);
2085                         vm_map_unlock(map);
2086                         return (KERN_RESOURCE_SHORTAGE);
2087                 }
2088
2089                 crhold(cred);
2090                 obj->cred = cred;
2091                 obj->charge = ptoa(obj->size);
2092                 VM_OBJECT_WUNLOCK(obj);
2093         }
2094
2095         /*
2096          * Go back and fix up protections. [Note that clipping is not
2097          * necessary the second time.]
2098          */
2099         for (current = entry; current != &map->header && current->start < end;
2100             current = current->next) {
2101                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2102                         continue;
2103
2104                 old_prot = current->protection;
2105
2106                 if (set_max)
2107                         current->protection =
2108                             (current->max_protection = new_prot) &
2109                             old_prot;
2110                 else
2111                         current->protection = new_prot;
2112
2113                 /*
2114                  * For user wired map entries, the normal lazy evaluation of
2115                  * write access upgrades through soft page faults is
2116                  * undesirable.  Instead, immediately copy any pages that are
2117                  * copy-on-write and enable write access in the physical map.
2118                  */
2119                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2120                     (current->protection & VM_PROT_WRITE) != 0 &&
2121                     (old_prot & VM_PROT_WRITE) == 0)
2122                         vm_fault_copy_entry(map, map, current, current, NULL);
2123
2124                 /*
2125                  * When restricting access, update the physical map.  Worry
2126                  * about copy-on-write here.
2127                  */
2128                 if ((old_prot & ~current->protection) != 0) {
2129 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2130                                                         VM_PROT_ALL)
2131                         pmap_protect(map->pmap, current->start,
2132                             current->end,
2133                             current->protection & MASK(current));
2134 #undef  MASK
2135                 }
2136                 vm_map_simplify_entry(map, current);
2137         }
2138         vm_map_unlock(map);
2139         return (KERN_SUCCESS);
2140 }
2141
2142 /*
2143  *      vm_map_madvise:
2144  *
2145  *      This routine traverses a processes map handling the madvise
2146  *      system call.  Advisories are classified as either those effecting
2147  *      the vm_map_entry structure, or those effecting the underlying
2148  *      objects.
2149  */
2150 int
2151 vm_map_madvise(
2152         vm_map_t map,
2153         vm_offset_t start,
2154         vm_offset_t end,
2155         int behav)
2156 {
2157         vm_map_entry_t current, entry;
2158         int modify_map = 0;
2159
2160         /*
2161          * Some madvise calls directly modify the vm_map_entry, in which case
2162          * we need to use an exclusive lock on the map and we need to perform
2163          * various clipping operations.  Otherwise we only need a read-lock
2164          * on the map.
2165          */
2166         switch(behav) {
2167         case MADV_NORMAL:
2168         case MADV_SEQUENTIAL:
2169         case MADV_RANDOM:
2170         case MADV_NOSYNC:
2171         case MADV_AUTOSYNC:
2172         case MADV_NOCORE:
2173         case MADV_CORE:
2174                 if (start == end)
2175                         return (KERN_SUCCESS);
2176                 modify_map = 1;
2177                 vm_map_lock(map);
2178                 break;
2179         case MADV_WILLNEED:
2180         case MADV_DONTNEED:
2181         case MADV_FREE:
2182                 if (start == end)
2183                         return (KERN_SUCCESS);
2184                 vm_map_lock_read(map);
2185                 break;
2186         default:
2187                 return (KERN_INVALID_ARGUMENT);
2188         }
2189
2190         /*
2191          * Locate starting entry and clip if necessary.
2192          */
2193         VM_MAP_RANGE_CHECK(map, start, end);
2194
2195         if (vm_map_lookup_entry(map, start, &entry)) {
2196                 if (modify_map)
2197                         vm_map_clip_start(map, entry, start);
2198         } else {
2199                 entry = entry->next;
2200         }
2201
2202         if (modify_map) {
2203                 /*
2204                  * madvise behaviors that are implemented in the vm_map_entry.
2205                  *
2206                  * We clip the vm_map_entry so that behavioral changes are
2207                  * limited to the specified address range.
2208                  */
2209                 for (current = entry;
2210                      (current != &map->header) && (current->start < end);
2211                      current = current->next
2212                 ) {
2213                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2214                                 continue;
2215
2216                         vm_map_clip_end(map, current, end);
2217
2218                         switch (behav) {
2219                         case MADV_NORMAL:
2220                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2221                                 break;
2222                         case MADV_SEQUENTIAL:
2223                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2224                                 break;
2225                         case MADV_RANDOM:
2226                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2227                                 break;
2228                         case MADV_NOSYNC:
2229                                 current->eflags |= MAP_ENTRY_NOSYNC;
2230                                 break;
2231                         case MADV_AUTOSYNC:
2232                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2233                                 break;
2234                         case MADV_NOCORE:
2235                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2236                                 break;
2237                         case MADV_CORE:
2238                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2239                                 break;
2240                         default:
2241                                 break;
2242                         }
2243                         vm_map_simplify_entry(map, current);
2244                 }
2245                 vm_map_unlock(map);
2246         } else {
2247                 vm_pindex_t pstart, pend;
2248
2249                 /*
2250                  * madvise behaviors that are implemented in the underlying
2251                  * vm_object.
2252                  *
2253                  * Since we don't clip the vm_map_entry, we have to clip
2254                  * the vm_object pindex and count.
2255                  */
2256                 for (current = entry;
2257                      (current != &map->header) && (current->start < end);
2258                      current = current->next
2259                 ) {
2260                         vm_offset_t useEnd, useStart;
2261
2262                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2263                                 continue;
2264
2265                         pstart = OFF_TO_IDX(current->offset);
2266                         pend = pstart + atop(current->end - current->start);
2267                         useStart = current->start;
2268                         useEnd = current->end;
2269
2270                         if (current->start < start) {
2271                                 pstart += atop(start - current->start);
2272                                 useStart = start;
2273                         }
2274                         if (current->end > end) {
2275                                 pend -= atop(current->end - end);
2276                                 useEnd = end;
2277                         }
2278
2279                         if (pstart >= pend)
2280                                 continue;
2281
2282                         /*
2283                          * Perform the pmap_advise() before clearing
2284                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2285                          * concurrent pmap operation, such as pmap_remove(),
2286                          * could clear a reference in the pmap and set
2287                          * PGA_REFERENCED on the page before the pmap_advise()
2288                          * had completed.  Consequently, the page would appear
2289                          * referenced based upon an old reference that
2290                          * occurred before this pmap_advise() ran.
2291                          */
2292                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2293                                 pmap_advise(map->pmap, useStart, useEnd,
2294                                     behav);
2295
2296                         vm_object_madvise(current->object.vm_object, pstart,
2297                             pend, behav);
2298
2299                         /*
2300                          * Pre-populate paging structures in the
2301                          * WILLNEED case.  For wired entries, the
2302                          * paging structures are already populated.
2303                          */
2304                         if (behav == MADV_WILLNEED &&
2305                             current->wired_count == 0) {
2306                                 vm_map_pmap_enter(map,
2307                                     useStart,
2308                                     current->protection,
2309                                     current->object.vm_object,
2310                                     pstart,
2311                                     ptoa(pend - pstart),
2312                                     MAP_PREFAULT_MADVISE
2313                                 );
2314                         }
2315                 }
2316                 vm_map_unlock_read(map);
2317         }
2318         return (0);
2319 }
2320
2321
2322 /*
2323  *      vm_map_inherit:
2324  *
2325  *      Sets the inheritance of the specified address
2326  *      range in the target map.  Inheritance
2327  *      affects how the map will be shared with
2328  *      child maps at the time of vmspace_fork.
2329  */
2330 int
2331 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2332                vm_inherit_t new_inheritance)
2333 {
2334         vm_map_entry_t entry;
2335         vm_map_entry_t temp_entry;
2336
2337         switch (new_inheritance) {
2338         case VM_INHERIT_NONE:
2339         case VM_INHERIT_COPY:
2340         case VM_INHERIT_SHARE:
2341         case VM_INHERIT_ZERO:
2342                 break;
2343         default:
2344                 return (KERN_INVALID_ARGUMENT);
2345         }
2346         if (start == end)
2347                 return (KERN_SUCCESS);
2348         vm_map_lock(map);
2349         VM_MAP_RANGE_CHECK(map, start, end);
2350         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2351                 entry = temp_entry;
2352                 vm_map_clip_start(map, entry, start);
2353         } else
2354                 entry = temp_entry->next;
2355         while ((entry != &map->header) && (entry->start < end)) {
2356                 vm_map_clip_end(map, entry, end);
2357                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2358                     new_inheritance != VM_INHERIT_ZERO)
2359                         entry->inheritance = new_inheritance;
2360                 vm_map_simplify_entry(map, entry);
2361                 entry = entry->next;
2362         }
2363         vm_map_unlock(map);
2364         return (KERN_SUCCESS);
2365 }
2366
2367 /*
2368  *      vm_map_unwire:
2369  *
2370  *      Implements both kernel and user unwiring.
2371  */
2372 int
2373 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2374     int flags)
2375 {
2376         vm_map_entry_t entry, first_entry, tmp_entry;
2377         vm_offset_t saved_start;
2378         unsigned int last_timestamp;
2379         int rv;
2380         boolean_t need_wakeup, result, user_unwire;
2381
2382         if (start == end)
2383                 return (KERN_SUCCESS);
2384         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2385         vm_map_lock(map);
2386         VM_MAP_RANGE_CHECK(map, start, end);
2387         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2388                 if (flags & VM_MAP_WIRE_HOLESOK)
2389                         first_entry = first_entry->next;
2390                 else {
2391                         vm_map_unlock(map);
2392                         return (KERN_INVALID_ADDRESS);
2393                 }
2394         }
2395         last_timestamp = map->timestamp;
2396         entry = first_entry;
2397         while (entry != &map->header && entry->start < end) {
2398                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2399                         /*
2400                          * We have not yet clipped the entry.
2401                          */
2402                         saved_start = (start >= entry->start) ? start :
2403                             entry->start;
2404                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2405                         if (vm_map_unlock_and_wait(map, 0)) {
2406                                 /*
2407                                  * Allow interruption of user unwiring?
2408                                  */
2409                         }
2410                         vm_map_lock(map);
2411                         if (last_timestamp+1 != map->timestamp) {
2412                                 /*
2413                                  * Look again for the entry because the map was
2414                                  * modified while it was unlocked.
2415                                  * Specifically, the entry may have been
2416                                  * clipped, merged, or deleted.
2417                                  */
2418                                 if (!vm_map_lookup_entry(map, saved_start,
2419                                     &tmp_entry)) {
2420                                         if (flags & VM_MAP_WIRE_HOLESOK)
2421                                                 tmp_entry = tmp_entry->next;
2422                                         else {
2423                                                 if (saved_start == start) {
2424                                                         /*
2425                                                          * First_entry has been deleted.
2426                                                          */
2427                                                         vm_map_unlock(map);
2428                                                         return (KERN_INVALID_ADDRESS);
2429                                                 }
2430                                                 end = saved_start;
2431                                                 rv = KERN_INVALID_ADDRESS;
2432                                                 goto done;
2433                                         }
2434                                 }
2435                                 if (entry == first_entry)
2436                                         first_entry = tmp_entry;
2437                                 else
2438                                         first_entry = NULL;
2439                                 entry = tmp_entry;
2440                         }
2441                         last_timestamp = map->timestamp;
2442                         continue;
2443                 }
2444                 vm_map_clip_start(map, entry, start);
2445                 vm_map_clip_end(map, entry, end);
2446                 /*
2447                  * Mark the entry in case the map lock is released.  (See
2448                  * above.)
2449                  */
2450                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2451                     entry->wiring_thread == NULL,
2452                     ("owned map entry %p", entry));
2453                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2454                 entry->wiring_thread = curthread;
2455                 /*
2456                  * Check the map for holes in the specified region.
2457                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2458                  */
2459                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2460                     (entry->end < end && (entry->next == &map->header ||
2461                     entry->next->start > entry->end))) {
2462                         end = entry->end;
2463                         rv = KERN_INVALID_ADDRESS;
2464                         goto done;
2465                 }
2466                 /*
2467                  * If system unwiring, require that the entry is system wired.
2468                  */
2469                 if (!user_unwire &&
2470                     vm_map_entry_system_wired_count(entry) == 0) {
2471                         end = entry->end;
2472                         rv = KERN_INVALID_ARGUMENT;
2473                         goto done;
2474                 }
2475                 entry = entry->next;
2476         }
2477         rv = KERN_SUCCESS;
2478 done:
2479         need_wakeup = FALSE;
2480         if (first_entry == NULL) {
2481                 result = vm_map_lookup_entry(map, start, &first_entry);
2482                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2483                         first_entry = first_entry->next;
2484                 else
2485                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2486         }
2487         for (entry = first_entry; entry != &map->header && entry->start < end;
2488             entry = entry->next) {
2489                 /*
2490                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2491                  * space in the unwired region could have been mapped
2492                  * while the map lock was dropped for draining
2493                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2494                  * could be simultaneously wiring this new mapping
2495                  * entry.  Detect these cases and skip any entries
2496                  * marked as in transition by us.
2497                  */
2498                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2499                     entry->wiring_thread != curthread) {
2500                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2501                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2502                         continue;
2503                 }
2504
2505                 if (rv == KERN_SUCCESS && (!user_unwire ||
2506                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2507                         if (user_unwire)
2508                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2509                         if (entry->wired_count == 1)
2510                                 vm_map_entry_unwire(map, entry);
2511                         else
2512                                 entry->wired_count--;
2513                 }
2514                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2515                     ("vm_map_unwire: in-transition flag missing %p", entry));
2516                 KASSERT(entry->wiring_thread == curthread,
2517                     ("vm_map_unwire: alien wire %p", entry));
2518                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2519                 entry->wiring_thread = NULL;
2520                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2521                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2522                         need_wakeup = TRUE;
2523                 }
2524                 vm_map_simplify_entry(map, entry);
2525         }
2526         vm_map_unlock(map);
2527         if (need_wakeup)
2528                 vm_map_wakeup(map);
2529         return (rv);
2530 }
2531
2532 /*
2533  *      vm_map_wire_entry_failure:
2534  *
2535  *      Handle a wiring failure on the given entry.
2536  *
2537  *      The map should be locked.
2538  */
2539 static void
2540 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2541     vm_offset_t failed_addr)
2542 {
2543
2544         VM_MAP_ASSERT_LOCKED(map);
2545         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2546             entry->wired_count == 1,
2547             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2548         KASSERT(failed_addr < entry->end,
2549             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2550
2551         /*
2552          * If any pages at the start of this entry were successfully wired,
2553          * then unwire them.
2554          */
2555         if (failed_addr > entry->start) {
2556                 pmap_unwire(map->pmap, entry->start, failed_addr);
2557                 vm_object_unwire(entry->object.vm_object, entry->offset,
2558                     failed_addr - entry->start, PQ_ACTIVE);
2559         }
2560
2561         /*
2562          * Assign an out-of-range value to represent the failure to wire this
2563          * entry.
2564          */
2565         entry->wired_count = -1;
2566 }
2567
2568 /*
2569  *      vm_map_wire:
2570  *
2571  *      Implements both kernel and user wiring.
2572  */
2573 int
2574 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2575     int flags)
2576 {
2577         vm_map_entry_t entry, first_entry, tmp_entry;
2578         vm_offset_t faddr, saved_end, saved_start;
2579         unsigned int last_timestamp;
2580         int rv;
2581         boolean_t need_wakeup, result, user_wire;
2582         vm_prot_t prot;
2583
2584         if (start == end)
2585                 return (KERN_SUCCESS);
2586         prot = 0;
2587         if (flags & VM_MAP_WIRE_WRITE)
2588                 prot |= VM_PROT_WRITE;
2589         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2590         vm_map_lock(map);
2591         VM_MAP_RANGE_CHECK(map, start, end);
2592         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2593                 if (flags & VM_MAP_WIRE_HOLESOK)
2594                         first_entry = first_entry->next;
2595                 else {
2596                         vm_map_unlock(map);
2597                         return (KERN_INVALID_ADDRESS);
2598                 }
2599         }
2600         last_timestamp = map->timestamp;
2601         entry = first_entry;
2602         while (entry != &map->header && entry->start < end) {
2603                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2604                         /*
2605                          * We have not yet clipped the entry.
2606                          */
2607                         saved_start = (start >= entry->start) ? start :
2608                             entry->start;
2609                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2610                         if (vm_map_unlock_and_wait(map, 0)) {
2611                                 /*
2612                                  * Allow interruption of user wiring?
2613                                  */
2614                         }
2615                         vm_map_lock(map);
2616                         if (last_timestamp + 1 != map->timestamp) {
2617                                 /*
2618                                  * Look again for the entry because the map was
2619                                  * modified while it was unlocked.
2620                                  * Specifically, the entry may have been
2621                                  * clipped, merged, or deleted.
2622                                  */
2623                                 if (!vm_map_lookup_entry(map, saved_start,
2624                                     &tmp_entry)) {
2625                                         if (flags & VM_MAP_WIRE_HOLESOK)
2626                                                 tmp_entry = tmp_entry->next;
2627                                         else {
2628                                                 if (saved_start == start) {
2629                                                         /*
2630                                                          * first_entry has been deleted.
2631                                                          */
2632                                                         vm_map_unlock(map);
2633                                                         return (KERN_INVALID_ADDRESS);
2634                                                 }
2635                                                 end = saved_start;
2636                                                 rv = KERN_INVALID_ADDRESS;
2637                                                 goto done;
2638                                         }
2639                                 }
2640                                 if (entry == first_entry)
2641                                         first_entry = tmp_entry;
2642                                 else
2643                                         first_entry = NULL;
2644                                 entry = tmp_entry;
2645                         }
2646                         last_timestamp = map->timestamp;
2647                         continue;
2648                 }
2649                 vm_map_clip_start(map, entry, start);
2650                 vm_map_clip_end(map, entry, end);
2651                 /*
2652                  * Mark the entry in case the map lock is released.  (See
2653                  * above.)
2654                  */
2655                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2656                     entry->wiring_thread == NULL,
2657                     ("owned map entry %p", entry));
2658                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2659                 entry->wiring_thread = curthread;
2660                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2661                     || (entry->protection & prot) != prot) {
2662                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2663                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2664                                 end = entry->end;
2665                                 rv = KERN_INVALID_ADDRESS;
2666                                 goto done;
2667                         }
2668                         goto next_entry;
2669                 }
2670                 if (entry->wired_count == 0) {
2671                         entry->wired_count++;
2672                         saved_start = entry->start;
2673                         saved_end = entry->end;
2674
2675                         /*
2676                          * Release the map lock, relying on the in-transition
2677                          * mark.  Mark the map busy for fork.
2678                          */
2679                         vm_map_busy(map);
2680                         vm_map_unlock(map);
2681
2682                         faddr = saved_start;
2683                         do {
2684                                 /*
2685                                  * Simulate a fault to get the page and enter
2686                                  * it into the physical map.
2687                                  */
2688                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2689                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2690                                         break;
2691                         } while ((faddr += PAGE_SIZE) < saved_end);
2692                         vm_map_lock(map);
2693                         vm_map_unbusy(map);
2694                         if (last_timestamp + 1 != map->timestamp) {
2695                                 /*
2696                                  * Look again for the entry because the map was
2697                                  * modified while it was unlocked.  The entry
2698                                  * may have been clipped, but NOT merged or
2699                                  * deleted.
2700                                  */
2701                                 result = vm_map_lookup_entry(map, saved_start,
2702                                     &tmp_entry);
2703                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2704                                 if (entry == first_entry)
2705                                         first_entry = tmp_entry;
2706                                 else
2707                                         first_entry = NULL;
2708                                 entry = tmp_entry;
2709                                 while (entry->end < saved_end) {
2710                                         /*
2711                                          * In case of failure, handle entries
2712                                          * that were not fully wired here;
2713                                          * fully wired entries are handled
2714                                          * later.
2715                                          */
2716                                         if (rv != KERN_SUCCESS &&
2717                                             faddr < entry->end)
2718                                                 vm_map_wire_entry_failure(map,
2719                                                     entry, faddr);
2720                                         entry = entry->next;
2721                                 }
2722                         }
2723                         last_timestamp = map->timestamp;
2724                         if (rv != KERN_SUCCESS) {
2725                                 vm_map_wire_entry_failure(map, entry, faddr);
2726                                 end = entry->end;
2727                                 goto done;
2728                         }
2729                 } else if (!user_wire ||
2730                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2731                         entry->wired_count++;
2732                 }
2733                 /*
2734                  * Check the map for holes in the specified region.
2735                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2736                  */
2737         next_entry:
2738                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2739                     entry->end < end && (entry->next == &map->header ||
2740                     entry->next->start > entry->end)) {
2741                         end = entry->end;
2742                         rv = KERN_INVALID_ADDRESS;
2743                         goto done;
2744                 }
2745                 entry = entry->next;
2746         }
2747         rv = KERN_SUCCESS;
2748 done:
2749         need_wakeup = FALSE;
2750         if (first_entry == NULL) {
2751                 result = vm_map_lookup_entry(map, start, &first_entry);
2752                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2753                         first_entry = first_entry->next;
2754                 else
2755                         KASSERT(result, ("vm_map_wire: lookup failed"));
2756         }
2757         for (entry = first_entry; entry != &map->header && entry->start < end;
2758             entry = entry->next) {
2759                 /*
2760                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2761                  * space in the unwired region could have been mapped
2762                  * while the map lock was dropped for faulting in the
2763                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2764                  * Moreover, another thread could be simultaneously
2765                  * wiring this new mapping entry.  Detect these cases
2766                  * and skip any entries marked as in transition not by us.
2767                  */
2768                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2769                     entry->wiring_thread != curthread) {
2770                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2771                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2772                         continue;
2773                 }
2774
2775                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2776                         goto next_entry_done;
2777
2778                 if (rv == KERN_SUCCESS) {
2779                         if (user_wire)
2780                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2781                 } else if (entry->wired_count == -1) {
2782                         /*
2783                          * Wiring failed on this entry.  Thus, unwiring is
2784                          * unnecessary.
2785                          */
2786                         entry->wired_count = 0;
2787                 } else if (!user_wire ||
2788                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2789                         /*
2790                          * Undo the wiring.  Wiring succeeded on this entry
2791                          * but failed on a later entry.  
2792                          */
2793                         if (entry->wired_count == 1)
2794                                 vm_map_entry_unwire(map, entry);
2795                         else
2796                                 entry->wired_count--;
2797                 }
2798         next_entry_done:
2799                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2800                     ("vm_map_wire: in-transition flag missing %p", entry));
2801                 KASSERT(entry->wiring_thread == curthread,
2802                     ("vm_map_wire: alien wire %p", entry));
2803                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2804                     MAP_ENTRY_WIRE_SKIPPED);
2805                 entry->wiring_thread = NULL;
2806                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2807                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2808                         need_wakeup = TRUE;
2809                 }
2810                 vm_map_simplify_entry(map, entry);
2811         }
2812         vm_map_unlock(map);
2813         if (need_wakeup)
2814                 vm_map_wakeup(map);
2815         return (rv);
2816 }
2817
2818 /*
2819  * vm_map_sync
2820  *
2821  * Push any dirty cached pages in the address range to their pager.
2822  * If syncio is TRUE, dirty pages are written synchronously.
2823  * If invalidate is TRUE, any cached pages are freed as well.
2824  *
2825  * If the size of the region from start to end is zero, we are
2826  * supposed to flush all modified pages within the region containing
2827  * start.  Unfortunately, a region can be split or coalesced with
2828  * neighboring regions, making it difficult to determine what the
2829  * original region was.  Therefore, we approximate this requirement by
2830  * flushing the current region containing start.
2831  *
2832  * Returns an error if any part of the specified range is not mapped.
2833  */
2834 int
2835 vm_map_sync(
2836         vm_map_t map,
2837         vm_offset_t start,
2838         vm_offset_t end,
2839         boolean_t syncio,
2840         boolean_t invalidate)
2841 {
2842         vm_map_entry_t current;
2843         vm_map_entry_t entry;
2844         vm_size_t size;
2845         vm_object_t object;
2846         vm_ooffset_t offset;
2847         unsigned int last_timestamp;
2848         boolean_t failed;
2849
2850         vm_map_lock_read(map);
2851         VM_MAP_RANGE_CHECK(map, start, end);
2852         if (!vm_map_lookup_entry(map, start, &entry)) {
2853                 vm_map_unlock_read(map);
2854                 return (KERN_INVALID_ADDRESS);
2855         } else if (start == end) {
2856                 start = entry->start;
2857                 end = entry->end;
2858         }
2859         /*
2860          * Make a first pass to check for user-wired memory and holes.
2861          */
2862         for (current = entry; current != &map->header && current->start < end;
2863             current = current->next) {
2864                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2865                         vm_map_unlock_read(map);
2866                         return (KERN_INVALID_ARGUMENT);
2867                 }
2868                 if (end > current->end &&
2869                     (current->next == &map->header ||
2870                         current->end != current->next->start)) {
2871                         vm_map_unlock_read(map);
2872                         return (KERN_INVALID_ADDRESS);
2873                 }
2874         }
2875
2876         if (invalidate)
2877                 pmap_remove(map->pmap, start, end);
2878         failed = FALSE;
2879
2880         /*
2881          * Make a second pass, cleaning/uncaching pages from the indicated
2882          * objects as we go.
2883          */
2884         for (current = entry; current != &map->header && current->start < end;) {
2885                 offset = current->offset + (start - current->start);
2886                 size = (end <= current->end ? end : current->end) - start;
2887                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2888                         vm_map_t smap;
2889                         vm_map_entry_t tentry;
2890                         vm_size_t tsize;
2891
2892                         smap = current->object.sub_map;
2893                         vm_map_lock_read(smap);
2894                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2895                         tsize = tentry->end - offset;
2896                         if (tsize < size)
2897                                 size = tsize;
2898                         object = tentry->object.vm_object;
2899                         offset = tentry->offset + (offset - tentry->start);
2900                         vm_map_unlock_read(smap);
2901                 } else {
2902                         object = current->object.vm_object;
2903                 }
2904                 vm_object_reference(object);
2905                 last_timestamp = map->timestamp;
2906                 vm_map_unlock_read(map);
2907                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2908                         failed = TRUE;
2909                 start += size;
2910                 vm_object_deallocate(object);
2911                 vm_map_lock_read(map);
2912                 if (last_timestamp == map->timestamp ||
2913                     !vm_map_lookup_entry(map, start, &current))
2914                         current = current->next;
2915         }
2916
2917         vm_map_unlock_read(map);
2918         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2919 }
2920
2921 /*
2922  *      vm_map_entry_unwire:    [ internal use only ]
2923  *
2924  *      Make the region specified by this entry pageable.
2925  *
2926  *      The map in question should be locked.
2927  *      [This is the reason for this routine's existence.]
2928  */
2929 static void
2930 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2931 {
2932
2933         VM_MAP_ASSERT_LOCKED(map);
2934         KASSERT(entry->wired_count > 0,
2935             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2936         pmap_unwire(map->pmap, entry->start, entry->end);
2937         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2938             entry->start, PQ_ACTIVE);
2939         entry->wired_count = 0;
2940 }
2941
2942 static void
2943 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2944 {
2945
2946         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2947                 vm_object_deallocate(entry->object.vm_object);
2948         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2949 }
2950
2951 /*
2952  *      vm_map_entry_delete:    [ internal use only ]
2953  *
2954  *      Deallocate the given entry from the target map.
2955  */
2956 static void
2957 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2958 {
2959         vm_object_t object;
2960         vm_pindex_t offidxstart, offidxend, count, size1;
2961         vm_size_t size;
2962
2963         vm_map_entry_unlink(map, entry);
2964         object = entry->object.vm_object;
2965
2966         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2967                 MPASS(entry->cred == NULL);
2968                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2969                 MPASS(object == NULL);
2970                 vm_map_entry_deallocate(entry, map->system_map);
2971                 return;
2972         }
2973
2974         size = entry->end - entry->start;
2975         map->size -= size;
2976
2977         if (entry->cred != NULL) {
2978                 swap_release_by_cred(size, entry->cred);
2979                 crfree(entry->cred);
2980         }
2981
2982         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2983             (object != NULL)) {
2984                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2985                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2986                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2987                 count = atop(size);
2988                 offidxstart = OFF_TO_IDX(entry->offset);
2989                 offidxend = offidxstart + count;
2990                 VM_OBJECT_WLOCK(object);
2991                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2992                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2993                     object == kernel_object)) {
2994                         vm_object_collapse(object);
2995
2996                         /*
2997                          * The option OBJPR_NOTMAPPED can be passed here
2998                          * because vm_map_delete() already performed
2999                          * pmap_remove() on the only mapping to this range
3000                          * of pages. 
3001                          */
3002                         vm_object_page_remove(object, offidxstart, offidxend,
3003                             OBJPR_NOTMAPPED);
3004                         if (object->type == OBJT_SWAP)
3005                                 swap_pager_freespace(object, offidxstart,
3006                                     count);
3007                         if (offidxend >= object->size &&
3008                             offidxstart < object->size) {
3009                                 size1 = object->size;
3010                                 object->size = offidxstart;
3011                                 if (object->cred != NULL) {
3012                                         size1 -= object->size;
3013                                         KASSERT(object->charge >= ptoa(size1),
3014                                             ("object %p charge < 0", object));
3015                                         swap_release_by_cred(ptoa(size1),
3016                                             object->cred);
3017                                         object->charge -= ptoa(size1);
3018                                 }
3019                         }
3020                 }
3021                 VM_OBJECT_WUNLOCK(object);
3022         } else
3023                 entry->object.vm_object = NULL;
3024         if (map->system_map)
3025                 vm_map_entry_deallocate(entry, TRUE);
3026         else {
3027                 entry->next = curthread->td_map_def_user;
3028                 curthread->td_map_def_user = entry;
3029         }
3030 }
3031
3032 /*
3033  *      vm_map_delete:  [ internal use only ]
3034  *
3035  *      Deallocates the given address range from the target
3036  *      map.
3037  */
3038 int
3039 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3040 {
3041         vm_map_entry_t entry;
3042         vm_map_entry_t first_entry;
3043
3044         VM_MAP_ASSERT_LOCKED(map);
3045         if (start == end)
3046                 return (KERN_SUCCESS);
3047
3048         /*
3049          * Find the start of the region, and clip it
3050          */
3051         if (!vm_map_lookup_entry(map, start, &first_entry))
3052                 entry = first_entry->next;
3053         else {
3054                 entry = first_entry;
3055                 vm_map_clip_start(map, entry, start);
3056         }
3057
3058         /*
3059          * Step through all entries in this region
3060          */
3061         while ((entry != &map->header) && (entry->start < end)) {
3062                 vm_map_entry_t next;
3063
3064                 /*
3065                  * Wait for wiring or unwiring of an entry to complete.
3066                  * Also wait for any system wirings to disappear on
3067                  * user maps.
3068                  */
3069                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3070                     (vm_map_pmap(map) != kernel_pmap &&
3071                     vm_map_entry_system_wired_count(entry) != 0)) {
3072                         unsigned int last_timestamp;
3073                         vm_offset_t saved_start;
3074                         vm_map_entry_t tmp_entry;
3075
3076                         saved_start = entry->start;
3077                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3078                         last_timestamp = map->timestamp;
3079                         (void) vm_map_unlock_and_wait(map, 0);
3080                         vm_map_lock(map);
3081                         if (last_timestamp + 1 != map->timestamp) {
3082                                 /*
3083                                  * Look again for the entry because the map was
3084                                  * modified while it was unlocked.
3085                                  * Specifically, the entry may have been
3086                                  * clipped, merged, or deleted.
3087                                  */
3088                                 if (!vm_map_lookup_entry(map, saved_start,
3089                                                          &tmp_entry))
3090                                         entry = tmp_entry->next;
3091                                 else {
3092                                         entry = tmp_entry;
3093                                         vm_map_clip_start(map, entry,
3094                                                           saved_start);
3095                                 }
3096                         }
3097                         continue;
3098                 }
3099                 vm_map_clip_end(map, entry, end);
3100
3101                 next = entry->next;
3102
3103                 /*
3104                  * Unwire before removing addresses from the pmap; otherwise,
3105                  * unwiring will put the entries back in the pmap.
3106                  */
3107                 if (entry->wired_count != 0) {
3108                         vm_map_entry_unwire(map, entry);
3109                 }
3110
3111                 pmap_remove(map->pmap, entry->start, entry->end);
3112
3113                 /*
3114                  * Delete the entry only after removing all pmap
3115                  * entries pointing to its pages.  (Otherwise, its
3116                  * page frames may be reallocated, and any modify bits
3117                  * will be set in the wrong object!)
3118                  */
3119                 vm_map_entry_delete(map, entry);
3120                 entry = next;
3121         }
3122         return (KERN_SUCCESS);
3123 }
3124
3125 /*
3126  *      vm_map_remove:
3127  *
3128  *      Remove the given address range from the target map.
3129  *      This is the exported form of vm_map_delete.
3130  */
3131 int
3132 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3133 {
3134         int result;
3135
3136         vm_map_lock(map);
3137         VM_MAP_RANGE_CHECK(map, start, end);
3138         result = vm_map_delete(map, start, end);
3139         vm_map_unlock(map);
3140         return (result);
3141 }
3142
3143 /*
3144  *      vm_map_check_protection:
3145  *
3146  *      Assert that the target map allows the specified privilege on the
3147  *      entire address region given.  The entire region must be allocated.
3148  *
3149  *      WARNING!  This code does not and should not check whether the
3150  *      contents of the region is accessible.  For example a smaller file
3151  *      might be mapped into a larger address space.
3152  *
3153  *      NOTE!  This code is also called by munmap().
3154  *
3155  *      The map must be locked.  A read lock is sufficient.
3156  */
3157 boolean_t
3158 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3159                         vm_prot_t protection)
3160 {
3161         vm_map_entry_t entry;
3162         vm_map_entry_t tmp_entry;
3163
3164         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3165                 return (FALSE);
3166         entry = tmp_entry;
3167
3168         while (start < end) {
3169                 if (entry == &map->header)
3170                         return (FALSE);
3171                 /*
3172                  * No holes allowed!
3173                  */
3174                 if (start < entry->start)
3175                         return (FALSE);
3176                 /*
3177                  * Check protection associated with entry.
3178                  */
3179                 if ((entry->protection & protection) != protection)
3180                         return (FALSE);
3181                 /* go to next entry */
3182                 start = entry->end;
3183                 entry = entry->next;
3184         }
3185         return (TRUE);
3186 }
3187
3188 /*
3189  *      vm_map_copy_entry:
3190  *
3191  *      Copies the contents of the source entry to the destination
3192  *      entry.  The entries *must* be aligned properly.
3193  */
3194 static void
3195 vm_map_copy_entry(
3196         vm_map_t src_map,
3197         vm_map_t dst_map,
3198         vm_map_entry_t src_entry,
3199         vm_map_entry_t dst_entry,
3200         vm_ooffset_t *fork_charge)
3201 {
3202         vm_object_t src_object;
3203         vm_map_entry_t fake_entry;
3204         vm_offset_t size;
3205         struct ucred *cred;
3206         int charged;
3207
3208         VM_MAP_ASSERT_LOCKED(dst_map);
3209
3210         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3211                 return;
3212
3213         if (src_entry->wired_count == 0 ||
3214             (src_entry->protection & VM_PROT_WRITE) == 0) {
3215                 /*
3216                  * If the source entry is marked needs_copy, it is already
3217                  * write-protected.
3218                  */
3219                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3220                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3221                         pmap_protect(src_map->pmap,
3222                             src_entry->start,
3223                             src_entry->end,
3224                             src_entry->protection & ~VM_PROT_WRITE);
3225                 }
3226
3227                 /*
3228                  * Make a copy of the object.
3229                  */
3230                 size = src_entry->end - src_entry->start;
3231                 if ((src_object = src_entry->object.vm_object) != NULL) {
3232                         VM_OBJECT_WLOCK(src_object);
3233                         charged = ENTRY_CHARGED(src_entry);
3234                         if (src_object->handle == NULL &&
3235                             (src_object->type == OBJT_DEFAULT ||
3236                             src_object->type == OBJT_SWAP)) {
3237                                 vm_object_collapse(src_object);
3238                                 if ((src_object->flags & (OBJ_NOSPLIT |
3239                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3240                                         vm_object_split(src_entry);
3241                                         src_object =
3242                                             src_entry->object.vm_object;
3243                                 }
3244                         }
3245                         vm_object_reference_locked(src_object);
3246                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3247                         if (src_entry->cred != NULL &&
3248                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3249                                 KASSERT(src_object->cred == NULL,
3250                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3251                                      src_object));
3252                                 src_object->cred = src_entry->cred;
3253                                 src_object->charge = size;
3254                         }
3255                         VM_OBJECT_WUNLOCK(src_object);
3256                         dst_entry->object.vm_object = src_object;
3257                         if (charged) {
3258                                 cred = curthread->td_ucred;
3259                                 crhold(cred);
3260                                 dst_entry->cred = cred;
3261                                 *fork_charge += size;
3262                                 if (!(src_entry->eflags &
3263                                       MAP_ENTRY_NEEDS_COPY)) {
3264                                         crhold(cred);
3265                                         src_entry->cred = cred;
3266                                         *fork_charge += size;
3267                                 }
3268                         }
3269                         src_entry->eflags |= MAP_ENTRY_COW |
3270                             MAP_ENTRY_NEEDS_COPY;
3271                         dst_entry->eflags |= MAP_ENTRY_COW |
3272                             MAP_ENTRY_NEEDS_COPY;
3273                         dst_entry->offset = src_entry->offset;
3274                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3275                                 /*
3276                                  * MAP_ENTRY_VN_WRITECNT cannot
3277                                  * indicate write reference from
3278                                  * src_entry, since the entry is
3279                                  * marked as needs copy.  Allocate a
3280                                  * fake entry that is used to
3281                                  * decrement object->un_pager.vnp.writecount
3282                                  * at the appropriate time.  Attach
3283                                  * fake_entry to the deferred list.
3284                                  */
3285                                 fake_entry = vm_map_entry_create(dst_map);
3286                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3287                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3288                                 vm_object_reference(src_object);
3289                                 fake_entry->object.vm_object = src_object;
3290                                 fake_entry->start = src_entry->start;
3291                                 fake_entry->end = src_entry->end;
3292                                 fake_entry->next = curthread->td_map_def_user;
3293                                 curthread->td_map_def_user = fake_entry;
3294                         }
3295
3296                         pmap_copy(dst_map->pmap, src_map->pmap,
3297                             dst_entry->start, dst_entry->end - dst_entry->start,
3298                             src_entry->start);
3299                 } else {
3300                         dst_entry->object.vm_object = NULL;
3301                         dst_entry->offset = 0;
3302                         if (src_entry->cred != NULL) {
3303                                 dst_entry->cred = curthread->td_ucred;
3304                                 crhold(dst_entry->cred);
3305                                 *fork_charge += size;
3306                         }
3307                 }
3308         } else {
3309                 /*
3310                  * We don't want to make writeable wired pages copy-on-write.
3311                  * Immediately copy these pages into the new map by simulating
3312                  * page faults.  The new pages are pageable.
3313                  */
3314                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3315                     fork_charge);
3316         }
3317 }
3318
3319 /*
3320  * vmspace_map_entry_forked:
3321  * Update the newly-forked vmspace each time a map entry is inherited
3322  * or copied.  The values for vm_dsize and vm_tsize are approximate
3323  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3324  */
3325 static void
3326 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3327     vm_map_entry_t entry)
3328 {
3329         vm_size_t entrysize;
3330         vm_offset_t newend;
3331
3332         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3333                 return;
3334         entrysize = entry->end - entry->start;
3335         vm2->vm_map.size += entrysize;
3336         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3337                 vm2->vm_ssize += btoc(entrysize);
3338         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3339             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3340                 newend = MIN(entry->end,
3341                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3342                 vm2->vm_dsize += btoc(newend - entry->start);
3343         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3344             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3345                 newend = MIN(entry->end,
3346                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3347                 vm2->vm_tsize += btoc(newend - entry->start);
3348         }
3349 }
3350
3351 /*
3352  * vmspace_fork:
3353  * Create a new process vmspace structure and vm_map
3354  * based on those of an existing process.  The new map
3355  * is based on the old map, according to the inheritance
3356  * values on the regions in that map.
3357  *
3358  * XXX It might be worth coalescing the entries added to the new vmspace.
3359  *
3360  * The source map must not be locked.
3361  */
3362 struct vmspace *
3363 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3364 {
3365         struct vmspace *vm2;
3366         vm_map_t new_map, old_map;
3367         vm_map_entry_t new_entry, old_entry;
3368         vm_object_t object;
3369         int locked;
3370         vm_inherit_t inh;
3371
3372         old_map = &vm1->vm_map;
3373         /* Copy immutable fields of vm1 to vm2. */
3374         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3375         if (vm2 == NULL)
3376                 return (NULL);
3377         vm2->vm_taddr = vm1->vm_taddr;
3378         vm2->vm_daddr = vm1->vm_daddr;
3379         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3380         vm_map_lock(old_map);
3381         if (old_map->busy)
3382                 vm_map_wait_busy(old_map);
3383         new_map = &vm2->vm_map;
3384         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3385         KASSERT(locked, ("vmspace_fork: lock failed"));
3386
3387         old_entry = old_map->header.next;
3388
3389         while (old_entry != &old_map->header) {
3390                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3391                         panic("vm_map_fork: encountered a submap");
3392
3393                 inh = old_entry->inheritance;
3394                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3395                     inh != VM_INHERIT_NONE)
3396                         inh = VM_INHERIT_COPY;
3397
3398                 switch (inh) {
3399                 case VM_INHERIT_NONE:
3400                         break;
3401
3402                 case VM_INHERIT_SHARE:
3403                         /*
3404                          * Clone the entry, creating the shared object if necessary.
3405                          */
3406                         object = old_entry->object.vm_object;
3407                         if (object == NULL) {
3408                                 object = vm_object_allocate(OBJT_DEFAULT,
3409                                         atop(old_entry->end - old_entry->start));
3410                                 old_entry->object.vm_object = object;
3411                                 old_entry->offset = 0;
3412                                 if (old_entry->cred != NULL) {
3413                                         object->cred = old_entry->cred;
3414                                         object->charge = old_entry->end -
3415                                             old_entry->start;
3416                                         old_entry->cred = NULL;
3417                                 }
3418                         }
3419
3420                         /*
3421                          * Add the reference before calling vm_object_shadow
3422                          * to insure that a shadow object is created.
3423                          */
3424                         vm_object_reference(object);
3425                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3426                                 vm_object_shadow(&old_entry->object.vm_object,
3427                                     &old_entry->offset,
3428                                     old_entry->end - old_entry->start);
3429                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3430                                 /* Transfer the second reference too. */
3431                                 vm_object_reference(
3432                                     old_entry->object.vm_object);
3433
3434                                 /*
3435                                  * As in vm_map_simplify_entry(), the
3436                                  * vnode lock will not be acquired in
3437                                  * this call to vm_object_deallocate().
3438                                  */
3439                                 vm_object_deallocate(object);
3440                                 object = old_entry->object.vm_object;
3441                         }
3442                         VM_OBJECT_WLOCK(object);
3443                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3444                         if (old_entry->cred != NULL) {
3445                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3446                                 object->cred = old_entry->cred;
3447                                 object->charge = old_entry->end - old_entry->start;
3448                                 old_entry->cred = NULL;
3449                         }
3450
3451                         /*
3452                          * Assert the correct state of the vnode
3453                          * v_writecount while the object is locked, to
3454                          * not relock it later for the assertion
3455                          * correctness.
3456                          */
3457                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3458                             object->type == OBJT_VNODE) {
3459                                 KASSERT(((struct vnode *)object->handle)->
3460                                     v_writecount > 0,
3461                                     ("vmspace_fork: v_writecount %p", object));
3462                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3463                                     ("vmspace_fork: vnp.writecount %p",
3464                                     object));
3465                         }
3466                         VM_OBJECT_WUNLOCK(object);
3467
3468                         /*
3469                          * Clone the entry, referencing the shared object.
3470                          */
3471                         new_entry = vm_map_entry_create(new_map);
3472                         *new_entry = *old_entry;
3473                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3474                             MAP_ENTRY_IN_TRANSITION);
3475                         new_entry->wiring_thread = NULL;
3476                         new_entry->wired_count = 0;
3477                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3478                                 vnode_pager_update_writecount(object,
3479                                     new_entry->start, new_entry->end);
3480                         }
3481
3482                         /*
3483                          * Insert the entry into the new map -- we know we're
3484                          * inserting at the end of the new map.
3485                          */
3486                         vm_map_entry_link(new_map, new_map->header.prev,
3487                             new_entry);
3488                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3489
3490                         /*
3491                          * Update the physical map
3492                          */
3493                         pmap_copy(new_map->pmap, old_map->pmap,
3494                             new_entry->start,
3495                             (old_entry->end - old_entry->start),
3496                             old_entry->start);
3497                         break;
3498
3499                 case VM_INHERIT_COPY:
3500                         /*
3501                          * Clone the entry and link into the map.
3502                          */
3503                         new_entry = vm_map_entry_create(new_map);
3504                         *new_entry = *old_entry;
3505                         /*
3506                          * Copied entry is COW over the old object.
3507                          */
3508                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3509                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3510                         new_entry->wiring_thread = NULL;
3511                         new_entry->wired_count = 0;
3512                         new_entry->object.vm_object = NULL;
3513                         new_entry->cred = NULL;
3514                         vm_map_entry_link(new_map, new_map->header.prev,
3515                             new_entry);
3516                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3517                         vm_map_copy_entry(old_map, new_map, old_entry,
3518                             new_entry, fork_charge);
3519                         break;
3520
3521                 case VM_INHERIT_ZERO:
3522                         /*
3523                          * Create a new anonymous mapping entry modelled from
3524                          * the old one.
3525                          */
3526                         new_entry = vm_map_entry_create(new_map);
3527                         memset(new_entry, 0, sizeof(*new_entry));
3528
3529                         new_entry->start = old_entry->start;
3530                         new_entry->end = old_entry->end;
3531                         new_entry->eflags = old_entry->eflags &
3532                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3533                             MAP_ENTRY_VN_WRITECNT);
3534                         new_entry->protection = old_entry->protection;
3535                         new_entry->max_protection = old_entry->max_protection;
3536                         new_entry->inheritance = VM_INHERIT_ZERO;
3537
3538                         vm_map_entry_link(new_map, new_map->header.prev,
3539                             new_entry);
3540                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3541
3542                         new_entry->cred = curthread->td_ucred;
3543                         crhold(new_entry->cred);
3544                         *fork_charge += (new_entry->end - new_entry->start);
3545
3546                         break;
3547                 }
3548                 old_entry = old_entry->next;
3549         }
3550         /*
3551          * Use inlined vm_map_unlock() to postpone handling the deferred
3552          * map entries, which cannot be done until both old_map and
3553          * new_map locks are released.
3554          */
3555         sx_xunlock(&old_map->lock);
3556         sx_xunlock(&new_map->lock);
3557         vm_map_process_deferred();
3558
3559         return (vm2);
3560 }
3561
3562 /*
3563  * Create a process's stack for exec_new_vmspace().  This function is never
3564  * asked to wire the newly created stack.
3565  */
3566 int
3567 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3568     vm_prot_t prot, vm_prot_t max, int cow)
3569 {
3570         vm_size_t growsize, init_ssize;
3571         rlim_t vmemlim;
3572         int rv;
3573
3574         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3575         growsize = sgrowsiz;
3576         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3577         vm_map_lock(map);
3578         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3579         /* If we would blow our VMEM resource limit, no go */
3580         if (map->size + init_ssize > vmemlim) {
3581                 rv = KERN_NO_SPACE;
3582                 goto out;
3583         }
3584         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3585             max, cow);
3586 out:
3587         vm_map_unlock(map);
3588         return (rv);
3589 }
3590
3591 static int stack_guard_page = 1;
3592 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3593     &stack_guard_page, 0,
3594     "Specifies the number of guard pages for a stack that grows");
3595
3596 static int
3597 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3598     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3599 {
3600         vm_map_entry_t new_entry, prev_entry;
3601         vm_offset_t bot, gap_bot, gap_top, top;
3602         vm_size_t init_ssize, sgp;
3603         int orient, rv;
3604
3605         /*
3606          * The stack orientation is piggybacked with the cow argument.
3607          * Extract it into orient and mask the cow argument so that we
3608          * don't pass it around further.
3609          */
3610         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3611         KASSERT(orient != 0, ("No stack grow direction"));
3612         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3613             ("bi-dir stack"));
3614
3615         if (addrbos < vm_map_min(map) ||
3616             addrbos + max_ssize > vm_map_max(map) ||
3617             addrbos + max_ssize <= addrbos)
3618                 return (KERN_INVALID_ADDRESS);
3619         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3620         if (sgp >= max_ssize)
3621                 return (KERN_INVALID_ARGUMENT);
3622
3623         init_ssize = growsize;
3624         if (max_ssize < init_ssize + sgp)
3625                 init_ssize = max_ssize - sgp;
3626
3627         /* If addr is already mapped, no go */
3628         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3629                 return (KERN_NO_SPACE);
3630
3631         /*
3632          * If we can't accommodate max_ssize in the current mapping, no go.
3633          */
3634         if ((prev_entry->next != &map->header) &&
3635             (prev_entry->next->start < addrbos + max_ssize))
3636                 return (KERN_NO_SPACE);
3637
3638         /*
3639          * We initially map a stack of only init_ssize.  We will grow as
3640          * needed later.  Depending on the orientation of the stack (i.e.
3641          * the grow direction) we either map at the top of the range, the
3642          * bottom of the range or in the middle.
3643          *
3644          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3645          * and cow to be 0.  Possibly we should eliminate these as input
3646          * parameters, and just pass these values here in the insert call.
3647          */
3648         if (orient == MAP_STACK_GROWS_DOWN) {
3649                 bot = addrbos + max_ssize - init_ssize;
3650                 top = bot + init_ssize;
3651                 gap_bot = addrbos;
3652                 gap_top = bot;
3653         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3654                 bot = addrbos;
3655                 top = bot + init_ssize;
3656                 gap_bot = top;
3657                 gap_top = addrbos + max_ssize;
3658         }
3659         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3660         if (rv != KERN_SUCCESS)
3661                 return (rv);
3662         new_entry = prev_entry->next;
3663         KASSERT(new_entry->end == top || new_entry->start == bot,
3664             ("Bad entry start/end for new stack entry"));
3665         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3666             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3667             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3668         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3669             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3670             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3671         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3672             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3673             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3674         if (rv != KERN_SUCCESS)
3675                 (void)vm_map_delete(map, bot, top);
3676         return (rv);
3677 }
3678
3679 /*
3680  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3681  * successfully grow the stack.
3682  */
3683 static int
3684 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3685 {
3686         vm_map_entry_t stack_entry;
3687         struct proc *p;
3688         struct vmspace *vm;
3689         struct ucred *cred;
3690         vm_offset_t gap_end, gap_start, grow_start;
3691         size_t grow_amount, guard, max_grow;
3692         rlim_t lmemlim, stacklim, vmemlim;
3693         int rv, rv1;
3694         bool gap_deleted, grow_down, is_procstack;
3695 #ifdef notyet
3696         uint64_t limit;
3697 #endif
3698 #ifdef RACCT
3699         int error;
3700 #endif
3701
3702         p = curproc;
3703         vm = p->p_vmspace;
3704
3705         /*
3706          * Disallow stack growth when the access is performed by a
3707          * debugger or AIO daemon.  The reason is that the wrong
3708          * resource limits are applied.
3709          */
3710         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3711                 return (KERN_FAILURE);
3712
3713         MPASS(!map->system_map);
3714
3715         guard = stack_guard_page * PAGE_SIZE;
3716         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3717         stacklim = lim_cur(curthread, RLIMIT_STACK);
3718         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3719 retry:
3720         /* If addr is not in a hole for a stack grow area, no need to grow. */
3721         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3722                 return (KERN_FAILURE);
3723         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3724                 return (KERN_SUCCESS);
3725         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3726                 stack_entry = gap_entry->next;
3727                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3728                     stack_entry->start != gap_entry->end)
3729                         return (KERN_FAILURE);
3730                 grow_amount = round_page(stack_entry->start - addr);
3731                 grow_down = true;
3732         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3733                 stack_entry = gap_entry->prev;
3734                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3735                     stack_entry->end != gap_entry->start)
3736                         return (KERN_FAILURE);
3737                 grow_amount = round_page(addr + 1 - stack_entry->end);
3738                 grow_down = false;
3739         } else {
3740                 return (KERN_FAILURE);
3741         }
3742         max_grow = gap_entry->end - gap_entry->start;
3743         if (guard > max_grow)
3744                 return (KERN_NO_SPACE);
3745         max_grow -= guard;
3746         if (grow_amount > max_grow)
3747                 return (KERN_NO_SPACE);
3748
3749         /*
3750          * If this is the main process stack, see if we're over the stack
3751          * limit.
3752          */
3753         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3754             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3755         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3756                 return (KERN_NO_SPACE);
3757
3758 #ifdef RACCT
3759         if (racct_enable) {
3760                 PROC_LOCK(p);
3761                 if (is_procstack && racct_set(p, RACCT_STACK,
3762                     ctob(vm->vm_ssize) + grow_amount)) {
3763                         PROC_UNLOCK(p);
3764                         return (KERN_NO_SPACE);
3765                 }
3766                 PROC_UNLOCK(p);
3767         }
3768 #endif
3769
3770         grow_amount = roundup(grow_amount, sgrowsiz);
3771         if (grow_amount > max_grow)
3772                 grow_amount = max_grow;
3773         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3774                 grow_amount = trunc_page((vm_size_t)stacklim) -
3775                     ctob(vm->vm_ssize);
3776         }
3777
3778 #ifdef notyet
3779         PROC_LOCK(p);
3780         limit = racct_get_available(p, RACCT_STACK);
3781         PROC_UNLOCK(p);
3782         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3783                 grow_amount = limit - ctob(vm->vm_ssize);
3784 #endif
3785
3786         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3787                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3788                         rv = KERN_NO_SPACE;
3789                         goto out;
3790                 }
3791 #ifdef RACCT
3792                 if (racct_enable) {
3793                         PROC_LOCK(p);
3794                         if (racct_set(p, RACCT_MEMLOCK,
3795                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3796                                 PROC_UNLOCK(p);
3797                                 rv = KERN_NO_SPACE;
3798                                 goto out;
3799                         }
3800                         PROC_UNLOCK(p);
3801                 }
3802 #endif
3803         }
3804
3805         /* If we would blow our VMEM resource limit, no go */
3806         if (map->size + grow_amount > vmemlim) {
3807                 rv = KERN_NO_SPACE;
3808                 goto out;
3809         }
3810 #ifdef RACCT
3811         if (racct_enable) {
3812                 PROC_LOCK(p);
3813                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3814                         PROC_UNLOCK(p);
3815                         rv = KERN_NO_SPACE;
3816                         goto out;
3817                 }
3818                 PROC_UNLOCK(p);
3819         }
3820 #endif
3821
3822         if (vm_map_lock_upgrade(map)) {
3823                 gap_entry = NULL;
3824                 vm_map_lock_read(map);
3825                 goto retry;
3826         }
3827
3828         if (grow_down) {
3829                 grow_start = gap_entry->end - grow_amount;
3830                 if (gap_entry->start + grow_amount == gap_entry->end) {
3831                         gap_start = gap_entry->start;
3832                         gap_end = gap_entry->end;
3833                         vm_map_entry_delete(map, gap_entry);
3834                         gap_deleted = true;
3835                 } else {
3836                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3837                         gap_entry->end -= grow_amount;
3838                         vm_map_entry_resize_free(map, gap_entry);
3839                         gap_deleted = false;
3840                 }
3841                 rv = vm_map_insert(map, NULL, 0, grow_start,
3842                     grow_start + grow_amount,
3843                     stack_entry->protection, stack_entry->max_protection,
3844                     MAP_STACK_GROWS_DOWN);
3845                 if (rv != KERN_SUCCESS) {
3846                         if (gap_deleted) {
3847                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3848                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3849                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3850                                 MPASS(rv1 == KERN_SUCCESS);
3851                         } else {
3852                                 gap_entry->end += grow_amount;
3853                                 vm_map_entry_resize_free(map, gap_entry);
3854                         }
3855                 }
3856         } else {
3857                 grow_start = stack_entry->end;
3858                 cred = stack_entry->cred;
3859                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3860                         cred = stack_entry->object.vm_object->cred;
3861                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3862                         rv = KERN_NO_SPACE;
3863                 /* Grow the underlying object if applicable. */
3864                 else if (stack_entry->object.vm_object == NULL ||
3865                     vm_object_coalesce(stack_entry->object.vm_object,
3866                     stack_entry->offset,
3867                     (vm_size_t)(stack_entry->end - stack_entry->start),
3868                     (vm_size_t)grow_amount, cred != NULL)) {
3869                         if (gap_entry->start + grow_amount == gap_entry->end)
3870                                 vm_map_entry_delete(map, gap_entry);
3871                         else
3872                                 gap_entry->start += grow_amount;
3873                         stack_entry->end += grow_amount;
3874                         map->size += grow_amount;
3875                         vm_map_entry_resize_free(map, stack_entry);
3876                         rv = KERN_SUCCESS;
3877                 } else
3878                         rv = KERN_FAILURE;
3879         }
3880         if (rv == KERN_SUCCESS && is_procstack)
3881                 vm->vm_ssize += btoc(grow_amount);
3882
3883         /*
3884          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3885          */
3886         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3887                 vm_map_unlock(map);
3888                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3889                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3890                 vm_map_lock_read(map);
3891         } else
3892                 vm_map_lock_downgrade(map);
3893
3894 out:
3895 #ifdef RACCT
3896         if (racct_enable && rv != KERN_SUCCESS) {
3897                 PROC_LOCK(p);
3898                 error = racct_set(p, RACCT_VMEM, map->size);
3899                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3900                 if (!old_mlock) {
3901                         error = racct_set(p, RACCT_MEMLOCK,
3902                             ptoa(pmap_wired_count(map->pmap)));
3903                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3904                 }
3905                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3906                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3907                 PROC_UNLOCK(p);
3908         }
3909 #endif
3910
3911         return (rv);
3912 }
3913
3914 /*
3915  * Unshare the specified VM space for exec.  If other processes are
3916  * mapped to it, then create a new one.  The new vmspace is null.
3917  */
3918 int
3919 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3920 {
3921         struct vmspace *oldvmspace = p->p_vmspace;
3922         struct vmspace *newvmspace;
3923
3924         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3925             ("vmspace_exec recursed"));
3926         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3927         if (newvmspace == NULL)
3928                 return (ENOMEM);
3929         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3930         /*
3931          * This code is written like this for prototype purposes.  The
3932          * goal is to avoid running down the vmspace here, but let the
3933          * other process's that are still using the vmspace to finally
3934          * run it down.  Even though there is little or no chance of blocking
3935          * here, it is a good idea to keep this form for future mods.
3936          */
3937         PROC_VMSPACE_LOCK(p);
3938         p->p_vmspace = newvmspace;
3939         PROC_VMSPACE_UNLOCK(p);
3940         if (p == curthread->td_proc)
3941                 pmap_activate(curthread);
3942         curthread->td_pflags |= TDP_EXECVMSPC;
3943         return (0);
3944 }
3945
3946 /*
3947  * Unshare the specified VM space for forcing COW.  This
3948  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3949  */
3950 int
3951 vmspace_unshare(struct proc *p)
3952 {
3953         struct vmspace *oldvmspace = p->p_vmspace;
3954         struct vmspace *newvmspace;
3955         vm_ooffset_t fork_charge;
3956
3957         if (oldvmspace->vm_refcnt == 1)
3958                 return (0);
3959         fork_charge = 0;
3960         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3961         if (newvmspace == NULL)
3962                 return (ENOMEM);
3963         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3964                 vmspace_free(newvmspace);
3965                 return (ENOMEM);
3966         }
3967         PROC_VMSPACE_LOCK(p);
3968         p->p_vmspace = newvmspace;
3969         PROC_VMSPACE_UNLOCK(p);
3970         if (p == curthread->td_proc)
3971                 pmap_activate(curthread);
3972         vmspace_free(oldvmspace);
3973         return (0);
3974 }
3975
3976 /*
3977  *      vm_map_lookup:
3978  *
3979  *      Finds the VM object, offset, and
3980  *      protection for a given virtual address in the
3981  *      specified map, assuming a page fault of the
3982  *      type specified.
3983  *
3984  *      Leaves the map in question locked for read; return
3985  *      values are guaranteed until a vm_map_lookup_done
3986  *      call is performed.  Note that the map argument
3987  *      is in/out; the returned map must be used in
3988  *      the call to vm_map_lookup_done.
3989  *
3990  *      A handle (out_entry) is returned for use in
3991  *      vm_map_lookup_done, to make that fast.
3992  *
3993  *      If a lookup is requested with "write protection"
3994  *      specified, the map may be changed to perform virtual
3995  *      copying operations, although the data referenced will
3996  *      remain the same.
3997  */
3998 int
3999 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4000               vm_offset_t vaddr,
4001               vm_prot_t fault_typea,
4002               vm_map_entry_t *out_entry,        /* OUT */
4003               vm_object_t *object,              /* OUT */
4004               vm_pindex_t *pindex,              /* OUT */
4005               vm_prot_t *out_prot,              /* OUT */
4006               boolean_t *wired)                 /* OUT */
4007 {
4008         vm_map_entry_t entry;
4009         vm_map_t map = *var_map;
4010         vm_prot_t prot;
4011         vm_prot_t fault_type = fault_typea;
4012         vm_object_t eobject;
4013         vm_size_t size;
4014         struct ucred *cred;
4015
4016 RetryLookup:
4017
4018         vm_map_lock_read(map);
4019
4020 RetryLookupLocked:
4021         /*
4022          * Lookup the faulting address.
4023          */
4024         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4025                 vm_map_unlock_read(map);
4026                 return (KERN_INVALID_ADDRESS);
4027         }
4028
4029         entry = *out_entry;
4030
4031         /*
4032          * Handle submaps.
4033          */
4034         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4035                 vm_map_t old_map = map;
4036
4037                 *var_map = map = entry->object.sub_map;
4038                 vm_map_unlock_read(old_map);
4039                 goto RetryLookup;
4040         }
4041
4042         /*
4043          * Check whether this task is allowed to have this page.
4044          */
4045         prot = entry->protection;
4046         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4047                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4048                 if (prot == VM_PROT_NONE && map != kernel_map &&
4049                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4050                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4051                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4052                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4053                         goto RetryLookupLocked;
4054         }
4055         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4056         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4057                 vm_map_unlock_read(map);
4058                 return (KERN_PROTECTION_FAILURE);
4059         }
4060         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4061             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4062             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4063             ("entry %p flags %x", entry, entry->eflags));
4064         if ((fault_typea & VM_PROT_COPY) != 0 &&
4065             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4066             (entry->eflags & MAP_ENTRY_COW) == 0) {
4067                 vm_map_unlock_read(map);
4068                 return (KERN_PROTECTION_FAILURE);
4069         }
4070
4071         /*
4072          * If this page is not pageable, we have to get it for all possible
4073          * accesses.
4074          */
4075         *wired = (entry->wired_count != 0);
4076         if (*wired)
4077                 fault_type = entry->protection;
4078         size = entry->end - entry->start;
4079         /*
4080          * If the entry was copy-on-write, we either ...
4081          */
4082         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4083                 /*
4084                  * If we want to write the page, we may as well handle that
4085                  * now since we've got the map locked.
4086                  *
4087                  * If we don't need to write the page, we just demote the
4088                  * permissions allowed.
4089                  */
4090                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4091                     (fault_typea & VM_PROT_COPY) != 0) {
4092                         /*
4093                          * Make a new object, and place it in the object
4094                          * chain.  Note that no new references have appeared
4095                          * -- one just moved from the map to the new
4096                          * object.
4097                          */
4098                         if (vm_map_lock_upgrade(map))
4099                                 goto RetryLookup;
4100
4101                         if (entry->cred == NULL) {
4102                                 /*
4103                                  * The debugger owner is charged for
4104                                  * the memory.
4105                                  */
4106                                 cred = curthread->td_ucred;
4107                                 crhold(cred);
4108                                 if (!swap_reserve_by_cred(size, cred)) {
4109                                         crfree(cred);
4110                                         vm_map_unlock(map);
4111                                         return (KERN_RESOURCE_SHORTAGE);
4112                                 }
4113                                 entry->cred = cred;
4114                         }
4115                         vm_object_shadow(&entry->object.vm_object,
4116                             &entry->offset, size);
4117                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4118                         eobject = entry->object.vm_object;
4119                         if (eobject->cred != NULL) {
4120                                 /*
4121                                  * The object was not shadowed.
4122                                  */
4123                                 swap_release_by_cred(size, entry->cred);
4124                                 crfree(entry->cred);
4125                                 entry->cred = NULL;
4126                         } else if (entry->cred != NULL) {
4127                                 VM_OBJECT_WLOCK(eobject);
4128                                 eobject->cred = entry->cred;
4129                                 eobject->charge = size;
4130                                 VM_OBJECT_WUNLOCK(eobject);
4131                                 entry->cred = NULL;
4132                         }
4133
4134                         vm_map_lock_downgrade(map);
4135                 } else {
4136                         /*
4137                          * We're attempting to read a copy-on-write page --
4138                          * don't allow writes.
4139                          */
4140                         prot &= ~VM_PROT_WRITE;
4141                 }
4142         }
4143
4144         /*
4145          * Create an object if necessary.
4146          */
4147         if (entry->object.vm_object == NULL &&
4148             !map->system_map) {
4149                 if (vm_map_lock_upgrade(map))
4150                         goto RetryLookup;
4151                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4152                     atop(size));
4153                 entry->offset = 0;
4154                 if (entry->cred != NULL) {
4155                         VM_OBJECT_WLOCK(entry->object.vm_object);
4156                         entry->object.vm_object->cred = entry->cred;
4157                         entry->object.vm_object->charge = size;
4158                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4159                         entry->cred = NULL;
4160                 }
4161                 vm_map_lock_downgrade(map);
4162         }
4163
4164         /*
4165          * Return the object/offset from this entry.  If the entry was
4166          * copy-on-write or empty, it has been fixed up.
4167          */
4168         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4169         *object = entry->object.vm_object;
4170
4171         *out_prot = prot;
4172         return (KERN_SUCCESS);
4173 }
4174
4175 /*
4176  *      vm_map_lookup_locked:
4177  *
4178  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4179  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4180  */
4181 int
4182 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4183                      vm_offset_t vaddr,
4184                      vm_prot_t fault_typea,
4185                      vm_map_entry_t *out_entry, /* OUT */
4186                      vm_object_t *object,       /* OUT */
4187                      vm_pindex_t *pindex,       /* OUT */
4188                      vm_prot_t *out_prot,       /* OUT */
4189                      boolean_t *wired)          /* OUT */
4190 {
4191         vm_map_entry_t entry;
4192         vm_map_t map = *var_map;
4193         vm_prot_t prot;
4194         vm_prot_t fault_type = fault_typea;
4195
4196         /*
4197          * Lookup the faulting address.
4198          */
4199         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4200                 return (KERN_INVALID_ADDRESS);
4201
4202         entry = *out_entry;
4203
4204         /*
4205          * Fail if the entry refers to a submap.
4206          */
4207         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4208                 return (KERN_FAILURE);
4209
4210         /*
4211          * Check whether this task is allowed to have this page.
4212          */
4213         prot = entry->protection;
4214         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4215         if ((fault_type & prot) != fault_type)
4216                 return (KERN_PROTECTION_FAILURE);
4217
4218         /*
4219          * If this page is not pageable, we have to get it for all possible
4220          * accesses.
4221          */
4222         *wired = (entry->wired_count != 0);
4223         if (*wired)
4224                 fault_type = entry->protection;
4225
4226         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4227                 /*
4228                  * Fail if the entry was copy-on-write for a write fault.
4229                  */
4230                 if (fault_type & VM_PROT_WRITE)
4231                         return (KERN_FAILURE);
4232                 /*
4233                  * We're attempting to read a copy-on-write page --
4234                  * don't allow writes.
4235                  */
4236                 prot &= ~VM_PROT_WRITE;
4237         }
4238
4239         /*
4240          * Fail if an object should be created.
4241          */
4242         if (entry->object.vm_object == NULL && !map->system_map)
4243                 return (KERN_FAILURE);
4244
4245         /*
4246          * Return the object/offset from this entry.  If the entry was
4247          * copy-on-write or empty, it has been fixed up.
4248          */
4249         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4250         *object = entry->object.vm_object;
4251
4252         *out_prot = prot;
4253         return (KERN_SUCCESS);
4254 }
4255
4256 /*
4257  *      vm_map_lookup_done:
4258  *
4259  *      Releases locks acquired by a vm_map_lookup
4260  *      (according to the handle returned by that lookup).
4261  */
4262 void
4263 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4264 {
4265         /*
4266          * Unlock the main-level map
4267          */
4268         vm_map_unlock_read(map);
4269 }
4270
4271 #include "opt_ddb.h"
4272 #ifdef DDB
4273 #include <sys/kernel.h>
4274
4275 #include <ddb/ddb.h>
4276
4277 static void
4278 vm_map_print(vm_map_t map)
4279 {
4280         vm_map_entry_t entry;
4281
4282         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4283             (void *)map,
4284             (void *)map->pmap, map->nentries, map->timestamp);
4285
4286         db_indent += 2;
4287         for (entry = map->header.next; entry != &map->header;
4288             entry = entry->next) {
4289                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4290                     (void *)entry, (void *)entry->start, (void *)entry->end,
4291                     entry->eflags);
4292                 {
4293                         static char *inheritance_name[4] =
4294                         {"share", "copy", "none", "donate_copy"};
4295
4296                         db_iprintf(" prot=%x/%x/%s",
4297                             entry->protection,
4298                             entry->max_protection,
4299                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4300                         if (entry->wired_count != 0)
4301                                 db_printf(", wired");
4302                 }
4303                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4304                         db_printf(", share=%p, offset=0x%jx\n",
4305                             (void *)entry->object.sub_map,
4306                             (uintmax_t)entry->offset);
4307                         if ((entry->prev == &map->header) ||
4308                             (entry->prev->object.sub_map !=
4309                                 entry->object.sub_map)) {
4310                                 db_indent += 2;
4311                                 vm_map_print((vm_map_t)entry->object.sub_map);
4312                                 db_indent -= 2;
4313                         }
4314                 } else {
4315                         if (entry->cred != NULL)
4316                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4317                         db_printf(", object=%p, offset=0x%jx",
4318                             (void *)entry->object.vm_object,
4319                             (uintmax_t)entry->offset);
4320                         if (entry->object.vm_object && entry->object.vm_object->cred)
4321                                 db_printf(", obj ruid %d charge %jx",
4322                                     entry->object.vm_object->cred->cr_ruid,
4323                                     (uintmax_t)entry->object.vm_object->charge);
4324                         if (entry->eflags & MAP_ENTRY_COW)
4325                                 db_printf(", copy (%s)",
4326                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4327                         db_printf("\n");
4328
4329                         if ((entry->prev == &map->header) ||
4330                             (entry->prev->object.vm_object !=
4331                                 entry->object.vm_object)) {
4332                                 db_indent += 2;
4333                                 vm_object_print((db_expr_t)(intptr_t)
4334                                                 entry->object.vm_object,
4335                                                 0, 0, (char *)0);
4336                                 db_indent -= 2;
4337                         }
4338                 }
4339         }
4340         db_indent -= 2;
4341 }
4342
4343 DB_SHOW_COMMAND(map, map)
4344 {
4345
4346         if (!have_addr) {
4347                 db_printf("usage: show map <addr>\n");
4348                 return;
4349         }
4350         vm_map_print((vm_map_t)addr);
4351 }
4352
4353 DB_SHOW_COMMAND(procvm, procvm)
4354 {
4355         struct proc *p;
4356
4357         if (have_addr) {
4358                 p = db_lookup_proc(addr);
4359         } else {
4360                 p = curproc;
4361         }
4362
4363         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4364             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4365             (void *)vmspace_pmap(p->p_vmspace));
4366
4367         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4368 }
4369
4370 #endif /* DDB */