]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFV r356143:
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153
154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157
158 /* 
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164
165 /*
166  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
167  *
168  *      Asserts that the starting and ending region
169  *      addresses fall within the valid range of the map.
170  */
171 #define VM_MAP_RANGE_CHECK(map, start, end)             \
172                 {                                       \
173                 if (start < vm_map_min(map))            \
174                         start = vm_map_min(map);        \
175                 if (end > vm_map_max(map))              \
176                         end = vm_map_max(map);          \
177                 if (start > end)                        \
178                         start = end;                    \
179                 }
180
181 /*
182  *      vm_map_startup:
183  *
184  *      Initialize the vm_map module.  Must be called before
185  *      any other vm_map routines.
186  *
187  *      Map and entry structures are allocated from the general
188  *      purpose memory pool with some exceptions:
189  *
190  *      - The kernel map and kmem submap are allocated statically.
191  *      - Kernel map entries are allocated out of a static pool.
192  *
193  *      These restrictions are necessary since malloc() uses the
194  *      maps and requires map entries.
195  */
196
197 void
198 vm_map_startup(void)
199 {
200         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203             vm_map_zdtor,
204 #else
205             NULL,
206 #endif
207             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208         uma_prealloc(mapzone, MAX_KMAP);
209         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216             vmspace_zdtor,
217 #else
218             NULL,
219 #endif
220             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226         struct vmspace *vm;
227
228         vm = (struct vmspace *)mem;
229
230         vm->vm_map.pmap = NULL;
231         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232         PMAP_LOCK_INIT(vmspace_pmap(vm));
233         return (0);
234 }
235
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239         vm_map_t map;
240
241         map = (vm_map_t)mem;
242         memset(map, 0, sizeof(*map));
243         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244         sx_init(&map->lock, "vm map (user)");
245         return (0);
246 }
247
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252         struct vmspace *vm;
253
254         vm = (struct vmspace *)mem;
255
256         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261         vm_map_t map;
262
263         map = (vm_map_t)mem;
264         KASSERT(map->nentries == 0,
265             ("map %p nentries == %d on free.",
266             map, map->nentries));
267         KASSERT(map->size == 0,
268             ("map %p size == %lu on free.",
269             map, (unsigned long)map->size));
270 }
271 #endif  /* INVARIANTS */
272
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282         struct vmspace *vm;
283
284         vm = uma_zalloc(vmspace_zone, M_WAITOK);
285         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286         if (!pinit(vmspace_pmap(vm))) {
287                 uma_zfree(vmspace_zone, vm);
288                 return (NULL);
289         }
290         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292         vm->vm_refcnt = 1;
293         vm->vm_shm = NULL;
294         vm->vm_swrss = 0;
295         vm->vm_tsize = 0;
296         vm->vm_dsize = 0;
297         vm->vm_ssize = 0;
298         vm->vm_taddr = 0;
299         vm->vm_daddr = 0;
300         vm->vm_maxsaddr = 0;
301         return (vm);
302 }
303
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308
309         PROC_LOCK(p);
310         racct_set(p, RACCT_DATA, 0);
311         racct_set(p, RACCT_STACK, 0);
312         racct_set(p, RACCT_RSS, 0);
313         racct_set(p, RACCT_MEMLOCK, 0);
314         racct_set(p, RACCT_VMEM, 0);
315         PROC_UNLOCK(p);
316 }
317 #endif
318
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322
323         CTR1(KTR_VM, "vmspace_free: %p", vm);
324
325         /*
326          * Make sure any SysV shm is freed, it might not have been in
327          * exit1().
328          */
329         shmexit(vm);
330
331         /*
332          * Lock the map, to wait out all other references to it.
333          * Delete all of the mappings and pages they hold, then call
334          * the pmap module to reclaim anything left.
335          */
336         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337             vm_map_max(&vm->vm_map));
338
339         pmap_release(vmspace_pmap(vm));
340         vm->vm_map.pmap = NULL;
341         uma_zfree(vmspace_zone, vm);
342 }
343
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347
348         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349             "vmspace_free() called");
350
351         if (vm->vm_refcnt == 0)
352                 panic("vmspace_free: attempt to free already freed vmspace");
353
354         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355                 vmspace_dofree(vm);
356 }
357
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361         struct vmspace *vm;
362
363         PROC_VMSPACE_LOCK(p);
364         vm = p->p_vmspace;
365         p->p_vmspace = NULL;
366         PROC_VMSPACE_UNLOCK(p);
367         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368         vmspace_free(vm);
369 }
370
371 void
372 vmspace_exit(struct thread *td)
373 {
374         int refcnt;
375         struct vmspace *vm;
376         struct proc *p;
377
378         /*
379          * Release user portion of address space.
380          * This releases references to vnodes,
381          * which could cause I/O if the file has been unlinked.
382          * Need to do this early enough that we can still sleep.
383          *
384          * The last exiting process to reach this point releases as
385          * much of the environment as it can. vmspace_dofree() is the
386          * slower fallback in case another process had a temporary
387          * reference to the vmspace.
388          */
389
390         p = td->td_proc;
391         vm = p->p_vmspace;
392         atomic_add_int(&vmspace0.vm_refcnt, 1);
393         refcnt = vm->vm_refcnt;
394         do {
395                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396                         /* Switch now since other proc might free vmspace */
397                         PROC_VMSPACE_LOCK(p);
398                         p->p_vmspace = &vmspace0;
399                         PROC_VMSPACE_UNLOCK(p);
400                         pmap_activate(td);
401                 }
402         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403         if (refcnt == 1) {
404                 if (p->p_vmspace != vm) {
405                         /* vmspace not yet freed, switch back */
406                         PROC_VMSPACE_LOCK(p);
407                         p->p_vmspace = vm;
408                         PROC_VMSPACE_UNLOCK(p);
409                         pmap_activate(td);
410                 }
411                 pmap_remove_pages(vmspace_pmap(vm));
412                 /* Switch now since this proc will free vmspace */
413                 PROC_VMSPACE_LOCK(p);
414                 p->p_vmspace = &vmspace0;
415                 PROC_VMSPACE_UNLOCK(p);
416                 pmap_activate(td);
417                 vmspace_dofree(vm);
418         }
419 #ifdef RACCT
420         if (racct_enable)
421                 vmspace_container_reset(p);
422 #endif
423 }
424
425 /* Acquire reference to vmspace owned by another process. */
426
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430         struct vmspace *vm;
431         int refcnt;
432
433         PROC_VMSPACE_LOCK(p);
434         vm = p->p_vmspace;
435         if (vm == NULL) {
436                 PROC_VMSPACE_UNLOCK(p);
437                 return (NULL);
438         }
439         refcnt = vm->vm_refcnt;
440         do {
441                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
442                         PROC_VMSPACE_UNLOCK(p);
443                         return (NULL);
444                 }
445         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446         if (vm != p->p_vmspace) {
447                 PROC_VMSPACE_UNLOCK(p);
448                 vmspace_free(vm);
449                 return (NULL);
450         }
451         PROC_VMSPACE_UNLOCK(p);
452         return (vm);
453 }
454
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         vmspace_free(oldvm);
494 }
495
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499
500         if (map->system_map)
501                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
502         else
503                 sx_xlock_(&map->lock, file, line);
504         map->timestamp++;
505 }
506
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510         vm_object_t object;
511         struct vnode *vp;
512         bool vp_held;
513
514         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515                 return;
516         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517             ("Submap with execs"));
518         object = entry->object.vm_object;
519         KASSERT(object != NULL, ("No object for text, entry %p", entry));
520         if ((object->flags & OBJ_ANON) != 0)
521                 object = object->handle;
522         else
523                 KASSERT(object->backing_object == NULL,
524                     ("non-anon object %p shadows", object));
525         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526             entry, entry->object.vm_object));
527
528         /*
529          * Mostly, we do not lock the backing object.  It is
530          * referenced by the entry we are processing, so it cannot go
531          * away.
532          */
533         vp = NULL;
534         vp_held = false;
535         if (object->type == OBJT_DEAD) {
536                 /*
537                  * For OBJT_DEAD objects, v_writecount was handled in
538                  * vnode_pager_dealloc().
539                  */
540         } else if (object->type == OBJT_VNODE) {
541                 vp = object->handle;
542         } else if (object->type == OBJT_SWAP) {
543                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545                     "entry %p, object %p, add %d", entry, object, add));
546                 /*
547                  * Tmpfs VREG node, which was reclaimed, has
548                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549                  * this case there is no v_writecount to adjust.
550                  */
551                 VM_OBJECT_RLOCK(object);
552                 if ((object->flags & OBJ_TMPFS) != 0) {
553                         vp = object->un_pager.swp.swp_tmpfs;
554                         if (vp != NULL) {
555                                 vhold(vp);
556                                 vp_held = true;
557                         }
558                 }
559                 VM_OBJECT_RUNLOCK(object);
560         } else {
561                 KASSERT(0,
562                     ("vm_map_entry_set_vnode_text: wrong object type, "
563                     "entry %p, object %p, add %d", entry, object, add));
564         }
565         if (vp != NULL) {
566                 if (add) {
567                         VOP_SET_TEXT_CHECKED(vp);
568                 } else {
569                         vn_lock(vp, LK_SHARED | LK_RETRY);
570                         VOP_UNSET_TEXT_CHECKED(vp);
571                         VOP_UNLOCK(vp, 0);
572                 }
573                 if (vp_held)
574                         vdrop(vp);
575         }
576 }
577
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587         struct thread *td;
588         vm_map_entry_t entry, next;
589         vm_object_t object;
590
591         td = curthread;
592         entry = td->td_map_def_user;
593         td->td_map_def_user = NULL;
594         while (entry != NULL) {
595                 next = entry->defer_next;
596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC));
599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600                         /*
601                          * Decrement the object's writemappings and
602                          * possibly the vnode's v_writecount.
603                          */
604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605                             ("Submap with writecount"));
606                         object = entry->object.vm_object;
607                         KASSERT(object != NULL, ("No object for writecount"));
608                         vm_pager_release_writecount(object, entry->start,
609                             entry->end);
610                 }
611                 vm_map_entry_set_vnode_text(entry, false);
612                 vm_map_entry_deallocate(entry, FALSE);
613                 entry = next;
614         }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622         if (map->system_map)
623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624         else
625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
646         if (map->nupdates > map->nentries) {                            \
647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
648                 map->nupdates = 0;                                      \
649         }                                                               \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664         VM_MAP_UNLOCK_CONSISTENT(map);
665         if (map->system_map)
666                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667         else {
668                 sx_xunlock_(&map->lock, file, line);
669                 vm_map_process_deferred();
670         }
671 }
672
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676
677         if (map->system_map)
678                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
679         else
680                 sx_slock_(&map->lock, file, line);
681 }
682
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686
687         if (map->system_map)
688                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689         else {
690                 sx_sunlock_(&map->lock, file, line);
691                 vm_map_process_deferred();
692         }
693 }
694
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698         int error;
699
700         error = map->system_map ?
701             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702             !sx_try_xlock_(&map->lock, file, line);
703         if (error == 0)
704                 map->timestamp++;
705         return (error == 0);
706 }
707
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711         int error;
712
713         error = map->system_map ?
714             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715             !sx_try_slock_(&map->lock, file, line);
716         return (error == 0);
717 }
718
719 /*
720  *      _vm_map_lock_upgrade:   [ internal use only ]
721  *
722  *      Tries to upgrade a read (shared) lock on the specified map to a write
723  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *      returned without a read or write lock held.
726  *
727  *      Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732         unsigned int last_timestamp;
733
734         if (map->system_map) {
735                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736         } else {
737                 if (!sx_try_upgrade_(&map->lock, file, line)) {
738                         last_timestamp = map->timestamp;
739                         sx_sunlock_(&map->lock, file, line);
740                         vm_map_process_deferred();
741                         /*
742                          * If the map's timestamp does not change while the
743                          * map is unlocked, then the upgrade succeeds.
744                          */
745                         sx_xlock_(&map->lock, file, line);
746                         if (last_timestamp != map->timestamp) {
747                                 sx_xunlock_(&map->lock, file, line);
748                                 return (1);
749                         }
750                 }
751         }
752         map->timestamp++;
753         return (0);
754 }
755
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759
760         if (map->system_map) {
761                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762         } else {
763                 VM_MAP_UNLOCK_CONSISTENT(map);
764                 sx_downgrade_(&map->lock, file, line);
765         }
766 }
767
768 /*
769  *      vm_map_locked:
770  *
771  *      Returns a non-zero value if the caller holds a write (exclusive) lock
772  *      on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777
778         if (map->system_map)
779                 return (mtx_owned(&map->system_mtx));
780         else
781                 return (sx_xlocked(&map->lock));
782 }
783
784 /*
785  *      _vm_map_unlock_and_wait:
786  *
787  *      Atomically releases the lock on the specified map and puts the calling
788  *      thread to sleep.  The calling thread will remain asleep until either
789  *      vm_map_wakeup() is performed on the map or the specified timeout is
790  *      exceeded.
791  *
792  *      WARNING!  This function does not perform deferred deallocations of
793  *      objects and map entries.  Therefore, the calling thread is expected to
794  *      reacquire the map lock after reawakening and later perform an ordinary
795  *      unlock operation, such as vm_map_unlock(), before completing its
796  *      operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801
802         VM_MAP_UNLOCK_CONSISTENT(map);
803         mtx_lock(&map_sleep_mtx);
804         if (map->system_map)
805                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806         else
807                 sx_xunlock_(&map->lock, file, line);
808         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809             timo));
810 }
811
812 /*
813  *      vm_map_wakeup:
814  *
815  *      Awaken any threads that have slept on the map using
816  *      vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821
822         /*
823          * Acquire and release map_sleep_mtx to prevent a wakeup()
824          * from being performed (and lost) between the map unlock
825          * and the msleep() in _vm_map_unlock_and_wait().
826          */
827         mtx_lock(&map_sleep_mtx);
828         mtx_unlock(&map_sleep_mtx);
829         wakeup(&map->root);
830 }
831
832 void
833 vm_map_busy(vm_map_t map)
834 {
835
836         VM_MAP_ASSERT_LOCKED(map);
837         map->busy++;
838 }
839
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843
844         VM_MAP_ASSERT_LOCKED(map);
845         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848                 wakeup(&map->busy);
849         }
850 }
851
852 void 
853 vm_map_wait_busy(vm_map_t map)
854 {
855
856         VM_MAP_ASSERT_LOCKED(map);
857         while (map->busy) {
858                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859                 if (map->system_map)
860                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861                 else
862                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863         }
864         map->timestamp++;
865 }
866
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870         return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872
873 /*
874  *      vm_map_create:
875  *
876  *      Creates and returns a new empty VM map with
877  *      the given physical map structure, and having
878  *      the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883         vm_map_t result;
884
885         result = uma_zalloc(mapzone, M_WAITOK);
886         CTR1(KTR_VM, "vm_map_create: %p", result);
887         _vm_map_init(result, pmap, min, max);
888         return (result);
889 }
890
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898
899         map->header.eflags = MAP_ENTRY_HEADER;
900         map->needs_wakeup = FALSE;
901         map->system_map = 0;
902         map->pmap = pmap;
903         map->header.end = min;
904         map->header.start = max;
905         map->flags = 0;
906         map->header.left = map->header.right = &map->header;
907         map->root = NULL;
908         map->timestamp = 0;
909         map->busy = 0;
910         map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912         map->nupdates = 0;
913 #endif
914 }
915
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919
920         _vm_map_init(map, pmap, min, max);
921         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922         sx_init(&map->lock, "user map");
923 }
924
925 /*
926  *      vm_map_entry_dispose:   [ internal use only ]
927  *
928  *      Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935
936 /*
937  *      vm_map_entry_create:    [ internal use only ]
938  *
939  *      Allocates a VM map entry for insertion.
940  *      No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945         vm_map_entry_t new_entry;
946
947         if (map->system_map)
948                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949         else
950                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
951         if (new_entry == NULL)
952                 panic("vm_map_entry_create: kernel resources exhausted");
953         return (new_entry);
954 }
955
956 /*
957  *      vm_map_entry_set_behavior:
958  *
959  *      Set the expected access behavior, either normal, random, or
960  *      sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966             (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968
969 /*
970  *      vm_map_entry_max_free_{left,right}:
971  *
972  *      Compute the size of the largest free gap between two entries,
973  *      one the root of a tree and the other the ancestor of that root
974  *      that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979
980         return (root->left != left_ancestor ?
981             root->left->max_free : root->start - left_ancestor->end);
982 }
983
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987
988         return (root->right != right_ancestor ?
989             root->right->max_free : right_ancestor->start - root->end);
990 }
991
992 /*
993  *      vm_map_entry_{pred,succ}:
994  *
995  *      Find the {predecessor, successor} of the entry by taking one step
996  *      in the appropriate direction and backtracking as much as necessary.
997  *      vm_map_entry_succ is defined in vm_map.h.
998  */
999 static inline vm_map_entry_t
1000 vm_map_entry_pred(vm_map_entry_t entry)
1001 {
1002         vm_map_entry_t prior;
1003
1004         prior = entry->left;
1005         if (prior->right->start < entry->start) {
1006                 do
1007                         prior = prior->right;
1008                 while (prior->right != entry);
1009         }
1010         return (prior);
1011 }
1012
1013 static inline vm_size_t
1014 vm_size_max(vm_size_t a, vm_size_t b)
1015 {
1016
1017         return (a > b ? a : b);
1018 }
1019
1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1021         vm_map_entry_t z;                                               \
1022         vm_size_t max_free;                                             \
1023                                                                         \
1024         /*                                                              \
1025          * Infer root->right->max_free == root->max_free when           \
1026          * y->max_free < root->max_free || root->max_free == 0.         \
1027          * Otherwise, look right to find it.                            \
1028          */                                                             \
1029         y = root->left;                                                 \
1030         max_free = root->max_free;                                      \
1031         KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),   \
1032             ("%s: max_free invariant fails", __func__));                \
1033         if (y == llist ? max_free > 0 : max_free - 1 < y->max_free)     \
1034                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1035         if (y != llist && (test)) {                                     \
1036                 /* Rotate right and make y root. */                     \
1037                 z = y->right;                                           \
1038                 if (z != root) {                                        \
1039                         root->left = z;                                 \
1040                         y->right = root;                                \
1041                         if (max_free < y->max_free)                     \
1042                             root->max_free = max_free =                 \
1043                             vm_size_max(max_free, z->max_free);         \
1044                 } else if (max_free < y->max_free)                      \
1045                         root->max_free = max_free =                     \
1046                             vm_size_max(max_free, root->start - y->end);\
1047                 root = y;                                               \
1048                 y = root->left;                                         \
1049         }                                                               \
1050         /* Copy right->max_free.  Put root on rlist. */                 \
1051         root->max_free = max_free;                                      \
1052         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1053             ("%s: max_free not copied from right", __func__));          \
1054         root->left = rlist;                                             \
1055         rlist = root;                                                   \
1056         root = y != llist ? y : NULL;                                   \
1057 } while (0)
1058
1059 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1060         vm_map_entry_t z;                                               \
1061         vm_size_t max_free;                                             \
1062                                                                         \
1063         /*                                                              \
1064          * Infer root->left->max_free == root->max_free when            \
1065          * y->max_free < root->max_free || root->max_free == 0.         \
1066          * Otherwise, look left to find it.                             \
1067          */                                                             \
1068         y = root->right;                                                \
1069         max_free = root->max_free;                                      \
1070         KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),    \
1071             ("%s: max_free invariant fails", __func__));                \
1072         if (y == rlist ? max_free > 0 : max_free - 1 < y->max_free)     \
1073                 max_free = vm_map_entry_max_free_left(root, llist);     \
1074         if (y != rlist && (test)) {                                     \
1075                 /* Rotate left and make y root. */                      \
1076                 z = y->left;                                            \
1077                 if (z != root) {                                        \
1078                         root->right = z;                                \
1079                         y->left = root;                                 \
1080                         if (max_free < y->max_free)                     \
1081                             root->max_free = max_free =                 \
1082                             vm_size_max(max_free, z->max_free);         \
1083                 } else if (max_free < y->max_free)                      \
1084                         root->max_free = max_free =                     \
1085                             vm_size_max(max_free, y->start - root->end);\
1086                 root = y;                                               \
1087                 y = root->right;                                        \
1088         }                                                               \
1089         /* Copy left->max_free.  Put root on llist. */                  \
1090         root->max_free = max_free;                                      \
1091         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1092             ("%s: max_free not copied from left", __func__));           \
1093         root->right = llist;                                            \
1094         llist = root;                                                   \
1095         root = y != rlist ? y : NULL;                                   \
1096 } while (0)
1097
1098 /*
1099  * Walk down the tree until we find addr or a gap where addr would go, breaking
1100  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1101  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1102  * the two sides in reverse order (bottom-up), with llist linked by the right
1103  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1104  * lists terminated by &map->header.  This function, and the subsequent call to
1105  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1106  * values in &map->header.
1107  */
1108 static __always_inline vm_map_entry_t
1109 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1110     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1111 {
1112         vm_map_entry_t left, right, root, y;
1113
1114         left = right = &map->header;
1115         root = map->root;
1116         while (root != NULL && root->max_free >= length) {
1117                 KASSERT(left->end <= root->start &&
1118                     root->end <= right->start,
1119                     ("%s: root not within tree bounds", __func__));
1120                 if (addr < root->start) {
1121                         SPLAY_LEFT_STEP(root, y, left, right,
1122                             y->max_free >= length && addr < y->start);
1123                 } else if (addr >= root->end) {
1124                         SPLAY_RIGHT_STEP(root, y, left, right,
1125                             y->max_free >= length && addr >= y->end);
1126                 } else
1127                         break;
1128         }
1129         *llist = left;
1130         *rlist = right;
1131         return (root);
1132 }
1133
1134 static __always_inline void
1135 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1136 {
1137         vm_map_entry_t hi, right, y;
1138
1139         right = *rlist;
1140         hi = root->right == right ? NULL : root->right;
1141         if (hi == NULL)
1142                 return;
1143         do
1144                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1145         while (hi != NULL);
1146         *rlist = right;
1147 }
1148
1149 static __always_inline void
1150 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1151 {
1152         vm_map_entry_t left, lo, y;
1153
1154         left = *llist;
1155         lo = root->left == left ? NULL : root->left;
1156         if (lo == NULL)
1157                 return;
1158         do
1159                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1160         while (lo != NULL);
1161         *llist = left;
1162 }
1163
1164 static inline void
1165 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1166 {
1167         vm_map_entry_t tmp;
1168
1169         tmp = *b;
1170         *b = *a;
1171         *a = tmp;
1172 }
1173
1174 /*
1175  * Walk back up the two spines, flip the pointers and set max_free.  The
1176  * subtrees of the root go at the bottom of llist and rlist.
1177  */
1178 static vm_size_t
1179 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1180     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1181 {
1182         do {
1183                 /*
1184                  * The max_free values of the children of llist are in
1185                  * llist->max_free and max_free.  Update with the
1186                  * max value.
1187                  */
1188                 llist->max_free = max_free =
1189                     vm_size_max(llist->max_free, max_free);
1190                 vm_map_entry_swap(&llist->right, &tail);
1191                 vm_map_entry_swap(&tail, &llist);
1192         } while (llist != header);
1193         root->left = tail;
1194         return (max_free);
1195 }
1196
1197 /*
1198  * When llist is known to be the predecessor of root.
1199  */
1200 static inline vm_size_t
1201 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1202     vm_map_entry_t llist)
1203 {
1204         vm_size_t max_free;
1205
1206         max_free = root->start - llist->end;
1207         if (llist != header) {
1208                 max_free = vm_map_splay_merge_left_walk(header, root,
1209                     root, max_free, llist);
1210         } else {
1211                 root->left = header;
1212                 header->right = root;
1213         }
1214         return (max_free);
1215 }
1216
1217 /*
1218  * When llist may or may not be the predecessor of root.
1219  */
1220 static inline vm_size_t
1221 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1222     vm_map_entry_t llist)
1223 {
1224         vm_size_t max_free;
1225
1226         max_free = vm_map_entry_max_free_left(root, llist);
1227         if (llist != header) {
1228                 max_free = vm_map_splay_merge_left_walk(header, root,
1229                     root->left == llist ? root : root->left,
1230                     max_free, llist);
1231         }
1232         return (max_free);
1233 }
1234
1235 static vm_size_t
1236 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1237     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1238 {
1239         do {
1240                 /*
1241                  * The max_free values of the children of rlist are in
1242                  * rlist->max_free and max_free.  Update with the
1243                  * max value.
1244                  */
1245                 rlist->max_free = max_free =
1246                     vm_size_max(rlist->max_free, max_free);
1247                 vm_map_entry_swap(&rlist->left, &tail);
1248                 vm_map_entry_swap(&tail, &rlist);
1249         } while (rlist != header);
1250         root->right = tail;
1251         return (max_free);
1252 }
1253
1254 /*
1255  * When rlist is known to be the succecessor of root.
1256  */
1257 static inline vm_size_t
1258 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1259     vm_map_entry_t rlist)
1260 {
1261         vm_size_t max_free;
1262
1263         max_free = rlist->start - root->end;
1264         if (rlist != header) {
1265                 max_free = vm_map_splay_merge_right_walk(header, root,
1266                     root, max_free, rlist);
1267         } else {
1268                 root->right = header;
1269                 header->left = root;
1270         }
1271         return (max_free);
1272 }
1273
1274 /*
1275  * When rlist may or may not be the succecessor of root.
1276  */
1277 static inline vm_size_t
1278 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1279     vm_map_entry_t rlist)
1280 {
1281         vm_size_t max_free;
1282
1283         max_free = vm_map_entry_max_free_right(root, rlist);
1284         if (rlist != header) {
1285                 max_free = vm_map_splay_merge_right_walk(header, root,
1286                     root->right == rlist ? root : root->right,
1287                     max_free, rlist);
1288         }
1289         return (max_free);
1290 }
1291
1292 /*
1293  *      vm_map_splay:
1294  *
1295  *      The Sleator and Tarjan top-down splay algorithm with the
1296  *      following variation.  Max_free must be computed bottom-up, so
1297  *      on the downward pass, maintain the left and right spines in
1298  *      reverse order.  Then, make a second pass up each side to fix
1299  *      the pointers and compute max_free.  The time bound is O(log n)
1300  *      amortized.
1301  *
1302  *      The tree is threaded, which means that there are no null pointers.
1303  *      When a node has no left child, its left pointer points to its
1304  *      predecessor, which the last ancestor on the search path from the root
1305  *      where the search branched right.  Likewise, when a node has no right
1306  *      child, its right pointer points to its successor.  The map header node
1307  *      is the predecessor of the first map entry, and the successor of the
1308  *      last.
1309  *
1310  *      The new root is the vm_map_entry containing "addr", or else an
1311  *      adjacent entry (lower if possible) if addr is not in the tree.
1312  *
1313  *      The map must be locked, and leaves it so.
1314  *
1315  *      Returns: the new root.
1316  */
1317 static vm_map_entry_t
1318 vm_map_splay(vm_map_t map, vm_offset_t addr)
1319 {
1320         vm_map_entry_t header, llist, rlist, root;
1321         vm_size_t max_free_left, max_free_right;
1322
1323         header = &map->header;
1324         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1325         if (root != NULL) {
1326                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1327                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1328         } else if (llist != header) {
1329                 /*
1330                  * Recover the greatest node in the left
1331                  * subtree and make it the root.
1332                  */
1333                 root = llist;
1334                 llist = root->right;
1335                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1336                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1337         } else if (rlist != header) {
1338                 /*
1339                  * Recover the least node in the right
1340                  * subtree and make it the root.
1341                  */
1342                 root = rlist;
1343                 rlist = root->left;
1344                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1345                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346         } else {
1347                 /* There is no root. */
1348                 return (NULL);
1349         }
1350         root->max_free = vm_size_max(max_free_left, max_free_right);
1351         map->root = root;
1352         VM_MAP_ASSERT_CONSISTENT(map);
1353         return (root);
1354 }
1355
1356 /*
1357  *      vm_map_entry_{un,}link:
1358  *
1359  *      Insert/remove entries from maps.
1360  */
1361 static void
1362 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1363 {
1364         vm_map_entry_t header, llist, rlist, root;
1365
1366         CTR3(KTR_VM,
1367             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1368             map->nentries, entry);
1369         VM_MAP_ASSERT_LOCKED(map);
1370         map->nentries++;
1371         header = &map->header;
1372         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1373         KASSERT(root == NULL,
1374             ("vm_map_entry_link: link object already mapped"));
1375         root = entry;
1376         root->max_free = vm_size_max(
1377             vm_map_splay_merge_pred(header, root, llist),
1378             vm_map_splay_merge_succ(header, root, rlist));
1379         map->root = root;
1380         VM_MAP_ASSERT_CONSISTENT(map);
1381 }
1382
1383 enum unlink_merge_type {
1384         UNLINK_MERGE_NONE,
1385         UNLINK_MERGE_NEXT
1386 };
1387
1388 static void
1389 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1390     enum unlink_merge_type op)
1391 {
1392         vm_map_entry_t header, llist, rlist, root;
1393         vm_size_t max_free_left, max_free_right;
1394
1395         VM_MAP_ASSERT_LOCKED(map);
1396         header = &map->header;
1397         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1398         KASSERT(root != NULL,
1399             ("vm_map_entry_unlink: unlink object not mapped"));
1400
1401         vm_map_splay_findprev(root, &llist);
1402         vm_map_splay_findnext(root, &rlist);
1403         if (op == UNLINK_MERGE_NEXT) {
1404                 rlist->start = root->start;
1405                 rlist->offset = root->offset;
1406         }
1407         if (llist != header) {
1408                 root = llist;
1409                 llist = root->right;
1410                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1411                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1412         } else if (rlist != header) {
1413                 root = rlist;
1414                 rlist = root->left;
1415                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1416                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1417         } else {
1418                 header->left = header->right = header;
1419                 root = NULL;
1420         }
1421         if (root != NULL)
1422                 root->max_free = vm_size_max(max_free_left, max_free_right);
1423         map->root = root;
1424         VM_MAP_ASSERT_CONSISTENT(map);
1425         map->nentries--;
1426         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1427             map->nentries, entry);
1428 }
1429
1430 /*
1431  *      vm_map_entry_resize:
1432  *
1433  *      Resize a vm_map_entry, recompute the amount of free space that
1434  *      follows it and propagate that value up the tree.
1435  *
1436  *      The map must be locked, and leaves it so.
1437  */
1438 static void
1439 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1440 {
1441         vm_map_entry_t header, llist, rlist, root;
1442
1443         VM_MAP_ASSERT_LOCKED(map);
1444         header = &map->header;
1445         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1446         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1447         vm_map_splay_findnext(root, &rlist);
1448         entry->end += grow_amount;
1449         root->max_free = vm_size_max(
1450             vm_map_splay_merge_left(header, root, llist),
1451             vm_map_splay_merge_succ(header, root, rlist));
1452         map->root = root;
1453         VM_MAP_ASSERT_CONSISTENT(map);
1454         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1455             __func__, map, map->nentries, entry);
1456 }
1457
1458 /*
1459  *      vm_map_lookup_entry:    [ internal use only ]
1460  *
1461  *      Finds the map entry containing (or
1462  *      immediately preceding) the specified address
1463  *      in the given map; the entry is returned
1464  *      in the "entry" parameter.  The boolean
1465  *      result indicates whether the address is
1466  *      actually contained in the map.
1467  */
1468 boolean_t
1469 vm_map_lookup_entry(
1470         vm_map_t map,
1471         vm_offset_t address,
1472         vm_map_entry_t *entry)  /* OUT */
1473 {
1474         vm_map_entry_t cur, header, lbound, ubound;
1475         boolean_t locked;
1476
1477         /*
1478          * If the map is empty, then the map entry immediately preceding
1479          * "address" is the map's header.
1480          */
1481         header = &map->header;
1482         cur = map->root;
1483         if (cur == NULL) {
1484                 *entry = header;
1485                 return (FALSE);
1486         }
1487         if (address >= cur->start && cur->end > address) {
1488                 *entry = cur;
1489                 return (TRUE);
1490         }
1491         if ((locked = vm_map_locked(map)) ||
1492             sx_try_upgrade(&map->lock)) {
1493                 /*
1494                  * Splay requires a write lock on the map.  However, it only
1495                  * restructures the binary search tree; it does not otherwise
1496                  * change the map.  Thus, the map's timestamp need not change
1497                  * on a temporary upgrade.
1498                  */
1499                 cur = vm_map_splay(map, address);
1500                 if (!locked) {
1501                         VM_MAP_UNLOCK_CONSISTENT(map);
1502                         sx_downgrade(&map->lock);
1503                 }
1504
1505                 /*
1506                  * If "address" is contained within a map entry, the new root
1507                  * is that map entry.  Otherwise, the new root is a map entry
1508                  * immediately before or after "address".
1509                  */
1510                 if (address < cur->start) {
1511                         *entry = header;
1512                         return (FALSE);
1513                 }
1514                 *entry = cur;
1515                 return (address < cur->end);
1516         }
1517         /*
1518          * Since the map is only locked for read access, perform a
1519          * standard binary search tree lookup for "address".
1520          */
1521         lbound = ubound = header;
1522         for (;;) {
1523                 if (address < cur->start) {
1524                         ubound = cur;
1525                         cur = cur->left;
1526                         if (cur == lbound)
1527                                 break;
1528                 } else if (cur->end <= address) {
1529                         lbound = cur;
1530                         cur = cur->right;
1531                         if (cur == ubound)
1532                                 break;
1533                 } else {
1534                         *entry = cur;
1535                         return (TRUE);
1536                 }
1537         }
1538         *entry = lbound;
1539         return (FALSE);
1540 }
1541
1542 /*
1543  *      vm_map_insert:
1544  *
1545  *      Inserts the given whole VM object into the target
1546  *      map at the specified address range.  The object's
1547  *      size should match that of the address range.
1548  *
1549  *      Requires that the map be locked, and leaves it so.
1550  *
1551  *      If object is non-NULL, ref count must be bumped by caller
1552  *      prior to making call to account for the new entry.
1553  */
1554 int
1555 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1556     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1557 {
1558         vm_map_entry_t new_entry, next_entry, prev_entry;
1559         struct ucred *cred;
1560         vm_eflags_t protoeflags;
1561         vm_inherit_t inheritance;
1562
1563         VM_MAP_ASSERT_LOCKED(map);
1564         KASSERT(object != kernel_object ||
1565             (cow & MAP_COPY_ON_WRITE) == 0,
1566             ("vm_map_insert: kernel object and COW"));
1567         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1568             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1569         KASSERT((prot & ~max) == 0,
1570             ("prot %#x is not subset of max_prot %#x", prot, max));
1571
1572         /*
1573          * Check that the start and end points are not bogus.
1574          */
1575         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1576             start >= end)
1577                 return (KERN_INVALID_ADDRESS);
1578
1579         /*
1580          * Find the entry prior to the proposed starting address; if it's part
1581          * of an existing entry, this range is bogus.
1582          */
1583         if (vm_map_lookup_entry(map, start, &prev_entry))
1584                 return (KERN_NO_SPACE);
1585
1586         /*
1587          * Assert that the next entry doesn't overlap the end point.
1588          */
1589         next_entry = vm_map_entry_succ(prev_entry);
1590         if (next_entry->start < end)
1591                 return (KERN_NO_SPACE);
1592
1593         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1594             max != VM_PROT_NONE))
1595                 return (KERN_INVALID_ARGUMENT);
1596
1597         protoeflags = 0;
1598         if (cow & MAP_COPY_ON_WRITE)
1599                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1600         if (cow & MAP_NOFAULT)
1601                 protoeflags |= MAP_ENTRY_NOFAULT;
1602         if (cow & MAP_DISABLE_SYNCER)
1603                 protoeflags |= MAP_ENTRY_NOSYNC;
1604         if (cow & MAP_DISABLE_COREDUMP)
1605                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1606         if (cow & MAP_STACK_GROWS_DOWN)
1607                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1608         if (cow & MAP_STACK_GROWS_UP)
1609                 protoeflags |= MAP_ENTRY_GROWS_UP;
1610         if (cow & MAP_WRITECOUNT)
1611                 protoeflags |= MAP_ENTRY_WRITECNT;
1612         if (cow & MAP_VN_EXEC)
1613                 protoeflags |= MAP_ENTRY_VN_EXEC;
1614         if ((cow & MAP_CREATE_GUARD) != 0)
1615                 protoeflags |= MAP_ENTRY_GUARD;
1616         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1617                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1618         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1619                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1620         if (cow & MAP_INHERIT_SHARE)
1621                 inheritance = VM_INHERIT_SHARE;
1622         else
1623                 inheritance = VM_INHERIT_DEFAULT;
1624
1625         cred = NULL;
1626         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1627                 goto charged;
1628         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1629             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1630                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1631                         return (KERN_RESOURCE_SHORTAGE);
1632                 KASSERT(object == NULL ||
1633                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1634                     object->cred == NULL,
1635                     ("overcommit: vm_map_insert o %p", object));
1636                 cred = curthread->td_ucred;
1637         }
1638
1639 charged:
1640         /* Expand the kernel pmap, if necessary. */
1641         if (map == kernel_map && end > kernel_vm_end)
1642                 pmap_growkernel(end);
1643         if (object != NULL) {
1644                 /*
1645                  * OBJ_ONEMAPPING must be cleared unless this mapping
1646                  * is trivially proven to be the only mapping for any
1647                  * of the object's pages.  (Object granularity
1648                  * reference counting is insufficient to recognize
1649                  * aliases with precision.)
1650                  */
1651                 if ((object->flags & OBJ_ANON) != 0) {
1652                         VM_OBJECT_WLOCK(object);
1653                         if (object->ref_count > 1 || object->shadow_count != 0)
1654                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1655                         VM_OBJECT_WUNLOCK(object);
1656                 }
1657         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1658             protoeflags &&
1659             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1660             MAP_VN_EXEC)) == 0 &&
1661             prev_entry->end == start && (prev_entry->cred == cred ||
1662             (prev_entry->object.vm_object != NULL &&
1663             prev_entry->object.vm_object->cred == cred)) &&
1664             vm_object_coalesce(prev_entry->object.vm_object,
1665             prev_entry->offset,
1666             (vm_size_t)(prev_entry->end - prev_entry->start),
1667             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1668             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1669                 /*
1670                  * We were able to extend the object.  Determine if we
1671                  * can extend the previous map entry to include the
1672                  * new range as well.
1673                  */
1674                 if (prev_entry->inheritance == inheritance &&
1675                     prev_entry->protection == prot &&
1676                     prev_entry->max_protection == max &&
1677                     prev_entry->wired_count == 0) {
1678                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1679                             0, ("prev_entry %p has incoherent wiring",
1680                             prev_entry));
1681                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1682                                 map->size += end - prev_entry->end;
1683                         vm_map_entry_resize(map, prev_entry,
1684                             end - prev_entry->end);
1685                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1686                         return (KERN_SUCCESS);
1687                 }
1688
1689                 /*
1690                  * If we can extend the object but cannot extend the
1691                  * map entry, we have to create a new map entry.  We
1692                  * must bump the ref count on the extended object to
1693                  * account for it.  object may be NULL.
1694                  */
1695                 object = prev_entry->object.vm_object;
1696                 offset = prev_entry->offset +
1697                     (prev_entry->end - prev_entry->start);
1698                 vm_object_reference(object);
1699                 if (cred != NULL && object != NULL && object->cred != NULL &&
1700                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1701                         /* Object already accounts for this uid. */
1702                         cred = NULL;
1703                 }
1704         }
1705         if (cred != NULL)
1706                 crhold(cred);
1707
1708         /*
1709          * Create a new entry
1710          */
1711         new_entry = vm_map_entry_create(map);
1712         new_entry->start = start;
1713         new_entry->end = end;
1714         new_entry->cred = NULL;
1715
1716         new_entry->eflags = protoeflags;
1717         new_entry->object.vm_object = object;
1718         new_entry->offset = offset;
1719
1720         new_entry->inheritance = inheritance;
1721         new_entry->protection = prot;
1722         new_entry->max_protection = max;
1723         new_entry->wired_count = 0;
1724         new_entry->wiring_thread = NULL;
1725         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1726         new_entry->next_read = start;
1727
1728         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1729             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1730         new_entry->cred = cred;
1731
1732         /*
1733          * Insert the new entry into the list
1734          */
1735         vm_map_entry_link(map, new_entry);
1736         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1737                 map->size += new_entry->end - new_entry->start;
1738
1739         /*
1740          * Try to coalesce the new entry with both the previous and next
1741          * entries in the list.  Previously, we only attempted to coalesce
1742          * with the previous entry when object is NULL.  Here, we handle the
1743          * other cases, which are less common.
1744          */
1745         vm_map_try_merge_entries(map, prev_entry, new_entry);
1746         vm_map_try_merge_entries(map, new_entry, next_entry);
1747
1748         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1749                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1750                     end - start, cow & MAP_PREFAULT_PARTIAL);
1751         }
1752
1753         return (KERN_SUCCESS);
1754 }
1755
1756 /*
1757  *      vm_map_findspace:
1758  *
1759  *      Find the first fit (lowest VM address) for "length" free bytes
1760  *      beginning at address >= start in the given map.
1761  *
1762  *      In a vm_map_entry, "max_free" is the maximum amount of
1763  *      contiguous free space between an entry in its subtree and a
1764  *      neighbor of that entry.  This allows finding a free region in
1765  *      one path down the tree, so O(log n) amortized with splay
1766  *      trees.
1767  *
1768  *      The map must be locked, and leaves it so.
1769  *
1770  *      Returns: starting address if sufficient space,
1771  *               vm_map_max(map)-length+1 if insufficient space.
1772  */
1773 vm_offset_t
1774 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1775 {
1776         vm_map_entry_t header, llist, rlist, root, y;
1777         vm_size_t left_length, max_free_left, max_free_right;
1778         vm_offset_t gap_end;
1779
1780         /*
1781          * Request must fit within min/max VM address and must avoid
1782          * address wrap.
1783          */
1784         start = MAX(start, vm_map_min(map));
1785         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1786                 return (vm_map_max(map) - length + 1);
1787
1788         /* Empty tree means wide open address space. */
1789         if (map->root == NULL)
1790                 return (start);
1791
1792         /*
1793          * After splay_split, if start is within an entry, push it to the start
1794          * of the following gap.  If rlist is at the end of the gap containing
1795          * start, save the end of that gap in gap_end to see if the gap is big
1796          * enough; otherwise set gap_end to start skip gap-checking and move
1797          * directly to a search of the right subtree.
1798          */
1799         header = &map->header;
1800         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1801         gap_end = rlist->start;
1802         if (root != NULL) {
1803                 start = root->end;
1804                 if (root->right != rlist)
1805                         gap_end = start;
1806                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1807                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1808         } else if (rlist != header) {
1809                 root = rlist;
1810                 rlist = root->left;
1811                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1812                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1813         } else {
1814                 root = llist;
1815                 llist = root->right;
1816                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1817                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1818         }
1819         root->max_free = vm_size_max(max_free_left, max_free_right);
1820         map->root = root;
1821         VM_MAP_ASSERT_CONSISTENT(map);
1822         if (length <= gap_end - start)
1823                 return (start);
1824
1825         /* With max_free, can immediately tell if no solution. */
1826         if (root->right == header || length > root->right->max_free)
1827                 return (vm_map_max(map) - length + 1);
1828
1829         /*
1830          * Splay for the least large-enough gap in the right subtree.
1831          */
1832         llist = rlist = header;
1833         for (left_length = 0;;
1834             left_length = vm_map_entry_max_free_left(root, llist)) {
1835                 if (length <= left_length)
1836                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1837                             length <= vm_map_entry_max_free_left(y, llist));
1838                 else
1839                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1840                             length > vm_map_entry_max_free_left(y, root));
1841                 if (root == NULL)
1842                         break;
1843         }
1844         root = llist;
1845         llist = root->right;
1846         max_free_left = vm_map_splay_merge_left(header, root, llist);
1847         if (rlist == header) {
1848                 root->max_free = vm_size_max(max_free_left,
1849                     vm_map_splay_merge_succ(header, root, rlist));
1850         } else {
1851                 y = rlist;
1852                 rlist = y->left;
1853                 y->max_free = vm_size_max(
1854                     vm_map_splay_merge_pred(root, y, root),
1855                     vm_map_splay_merge_right(header, y, rlist));
1856                 root->max_free = vm_size_max(max_free_left, y->max_free);
1857         }
1858         map->root = root;
1859         VM_MAP_ASSERT_CONSISTENT(map);
1860         return (root->end);
1861 }
1862
1863 int
1864 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1865     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1866     vm_prot_t max, int cow)
1867 {
1868         vm_offset_t end;
1869         int result;
1870
1871         end = start + length;
1872         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1873             object == NULL,
1874             ("vm_map_fixed: non-NULL backing object for stack"));
1875         vm_map_lock(map);
1876         VM_MAP_RANGE_CHECK(map, start, end);
1877         if ((cow & MAP_CHECK_EXCL) == 0)
1878                 vm_map_delete(map, start, end);
1879         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1880                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1881                     prot, max, cow);
1882         } else {
1883                 result = vm_map_insert(map, object, offset, start, end,
1884                     prot, max, cow);
1885         }
1886         vm_map_unlock(map);
1887         return (result);
1888 }
1889
1890 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1891 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1892
1893 static int cluster_anon = 1;
1894 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1895     &cluster_anon, 0,
1896     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1897
1898 static bool
1899 clustering_anon_allowed(vm_offset_t addr)
1900 {
1901
1902         switch (cluster_anon) {
1903         case 0:
1904                 return (false);
1905         case 1:
1906                 return (addr == 0);
1907         case 2:
1908         default:
1909                 return (true);
1910         }
1911 }
1912
1913 static long aslr_restarts;
1914 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1915     &aslr_restarts, 0,
1916     "Number of aslr failures");
1917
1918 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1919
1920 /*
1921  * Searches for the specified amount of free space in the given map with the
1922  * specified alignment.  Performs an address-ordered, first-fit search from
1923  * the given address "*addr", with an optional upper bound "max_addr".  If the
1924  * parameter "alignment" is zero, then the alignment is computed from the
1925  * given (object, offset) pair so as to enable the greatest possible use of
1926  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1927  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1928  *
1929  * The map must be locked.  Initially, there must be at least "length" bytes
1930  * of free space at the given address.
1931  */
1932 static int
1933 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1934     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1935     vm_offset_t alignment)
1936 {
1937         vm_offset_t aligned_addr, free_addr;
1938
1939         VM_MAP_ASSERT_LOCKED(map);
1940         free_addr = *addr;
1941         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1942             ("caller failed to provide space %#jx at address %p",
1943              (uintmax_t)length, (void *)free_addr));
1944         for (;;) {
1945                 /*
1946                  * At the start of every iteration, the free space at address
1947                  * "*addr" is at least "length" bytes.
1948                  */
1949                 if (alignment == 0)
1950                         pmap_align_superpage(object, offset, addr, length);
1951                 else if ((*addr & (alignment - 1)) != 0) {
1952                         *addr &= ~(alignment - 1);
1953                         *addr += alignment;
1954                 }
1955                 aligned_addr = *addr;
1956                 if (aligned_addr == free_addr) {
1957                         /*
1958                          * Alignment did not change "*addr", so "*addr" must
1959                          * still provide sufficient free space.
1960                          */
1961                         return (KERN_SUCCESS);
1962                 }
1963
1964                 /*
1965                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1966                  * be a valid address, in which case vm_map_findspace() cannot
1967                  * be relied upon to fail.
1968                  */
1969                 if (aligned_addr < free_addr)
1970                         return (KERN_NO_SPACE);
1971                 *addr = vm_map_findspace(map, aligned_addr, length);
1972                 if (*addr + length > vm_map_max(map) ||
1973                     (max_addr != 0 && *addr + length > max_addr))
1974                         return (KERN_NO_SPACE);
1975                 free_addr = *addr;
1976                 if (free_addr == aligned_addr) {
1977                         /*
1978                          * If a successful call to vm_map_findspace() did not
1979                          * change "*addr", then "*addr" must still be aligned
1980                          * and provide sufficient free space.
1981                          */
1982                         return (KERN_SUCCESS);
1983                 }
1984         }
1985 }
1986
1987 /*
1988  *      vm_map_find finds an unallocated region in the target address
1989  *      map with the given length.  The search is defined to be
1990  *      first-fit from the specified address; the region found is
1991  *      returned in the same parameter.
1992  *
1993  *      If object is non-NULL, ref count must be bumped by caller
1994  *      prior to making call to account for the new entry.
1995  */
1996 int
1997 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1998             vm_offset_t *addr,  /* IN/OUT */
1999             vm_size_t length, vm_offset_t max_addr, int find_space,
2000             vm_prot_t prot, vm_prot_t max, int cow)
2001 {
2002         vm_offset_t alignment, curr_min_addr, min_addr;
2003         int gap, pidx, rv, try;
2004         bool cluster, en_aslr, update_anon;
2005
2006         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2007             object == NULL,
2008             ("vm_map_find: non-NULL backing object for stack"));
2009         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2010             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2011         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2012             (object->flags & OBJ_COLORED) == 0))
2013                 find_space = VMFS_ANY_SPACE;
2014         if (find_space >> 8 != 0) {
2015                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2016                 alignment = (vm_offset_t)1 << (find_space >> 8);
2017         } else
2018                 alignment = 0;
2019         en_aslr = (map->flags & MAP_ASLR) != 0;
2020         update_anon = cluster = clustering_anon_allowed(*addr) &&
2021             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2022             find_space != VMFS_NO_SPACE && object == NULL &&
2023             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2024             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2025         curr_min_addr = min_addr = *addr;
2026         if (en_aslr && min_addr == 0 && !cluster &&
2027             find_space != VMFS_NO_SPACE &&
2028             (map->flags & MAP_ASLR_IGNSTART) != 0)
2029                 curr_min_addr = min_addr = vm_map_min(map);
2030         try = 0;
2031         vm_map_lock(map);
2032         if (cluster) {
2033                 curr_min_addr = map->anon_loc;
2034                 if (curr_min_addr == 0)
2035                         cluster = false;
2036         }
2037         if (find_space != VMFS_NO_SPACE) {
2038                 KASSERT(find_space == VMFS_ANY_SPACE ||
2039                     find_space == VMFS_OPTIMAL_SPACE ||
2040                     find_space == VMFS_SUPER_SPACE ||
2041                     alignment != 0, ("unexpected VMFS flag"));
2042 again:
2043                 /*
2044                  * When creating an anonymous mapping, try clustering
2045                  * with an existing anonymous mapping first.
2046                  *
2047                  * We make up to two attempts to find address space
2048                  * for a given find_space value. The first attempt may
2049                  * apply randomization or may cluster with an existing
2050                  * anonymous mapping. If this first attempt fails,
2051                  * perform a first-fit search of the available address
2052                  * space.
2053                  *
2054                  * If all tries failed, and find_space is
2055                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2056                  * Again enable clustering and randomization.
2057                  */
2058                 try++;
2059                 MPASS(try <= 2);
2060
2061                 if (try == 2) {
2062                         /*
2063                          * Second try: we failed either to find a
2064                          * suitable region for randomizing the
2065                          * allocation, or to cluster with an existing
2066                          * mapping.  Retry with free run.
2067                          */
2068                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2069                             vm_map_min(map) : min_addr;
2070                         atomic_add_long(&aslr_restarts, 1);
2071                 }
2072
2073                 if (try == 1 && en_aslr && !cluster) {
2074                         /*
2075                          * Find space for allocation, including
2076                          * gap needed for later randomization.
2077                          */
2078                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2079                             (find_space == VMFS_SUPER_SPACE || find_space ==
2080                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2081                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2082                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2083                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2084                         *addr = vm_map_findspace(map, curr_min_addr,
2085                             length + gap * pagesizes[pidx]);
2086                         if (*addr + length + gap * pagesizes[pidx] >
2087                             vm_map_max(map))
2088                                 goto again;
2089                         /* And randomize the start address. */
2090                         *addr += (arc4random() % gap) * pagesizes[pidx];
2091                         if (max_addr != 0 && *addr + length > max_addr)
2092                                 goto again;
2093                 } else {
2094                         *addr = vm_map_findspace(map, curr_min_addr, length);
2095                         if (*addr + length > vm_map_max(map) ||
2096                             (max_addr != 0 && *addr + length > max_addr)) {
2097                                 if (cluster) {
2098                                         cluster = false;
2099                                         MPASS(try == 1);
2100                                         goto again;
2101                                 }
2102                                 rv = KERN_NO_SPACE;
2103                                 goto done;
2104                         }
2105                 }
2106
2107                 if (find_space != VMFS_ANY_SPACE &&
2108                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2109                     max_addr, alignment)) != KERN_SUCCESS) {
2110                         if (find_space == VMFS_OPTIMAL_SPACE) {
2111                                 find_space = VMFS_ANY_SPACE;
2112                                 curr_min_addr = min_addr;
2113                                 cluster = update_anon;
2114                                 try = 0;
2115                                 goto again;
2116                         }
2117                         goto done;
2118                 }
2119         } else if ((cow & MAP_REMAP) != 0) {
2120                 if (*addr < vm_map_min(map) ||
2121                     *addr + length > vm_map_max(map) ||
2122                     *addr + length <= length) {
2123                         rv = KERN_INVALID_ADDRESS;
2124                         goto done;
2125                 }
2126                 vm_map_delete(map, *addr, *addr + length);
2127         }
2128         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2129                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2130                     max, cow);
2131         } else {
2132                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2133                     prot, max, cow);
2134         }
2135         if (rv == KERN_SUCCESS && update_anon)
2136                 map->anon_loc = *addr + length;
2137 done:
2138         vm_map_unlock(map);
2139         return (rv);
2140 }
2141
2142 /*
2143  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2144  *      additional parameter (min_addr) and treats the given address
2145  *      (*addr) differently.  Specifically, it treats *addr as a hint
2146  *      and not as the minimum address where the mapping is created.
2147  *
2148  *      This function works in two phases.  First, it tries to
2149  *      allocate above the hint.  If that fails and the hint is
2150  *      greater than min_addr, it performs a second pass, replacing
2151  *      the hint with min_addr as the minimum address for the
2152  *      allocation.
2153  */
2154 int
2155 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2156     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2157     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2158     int cow)
2159 {
2160         vm_offset_t hint;
2161         int rv;
2162
2163         hint = *addr;
2164         for (;;) {
2165                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2166                     find_space, prot, max, cow);
2167                 if (rv == KERN_SUCCESS || min_addr >= hint)
2168                         return (rv);
2169                 *addr = hint = min_addr;
2170         }
2171 }
2172
2173 /*
2174  * A map entry with any of the following flags set must not be merged with
2175  * another entry.
2176  */
2177 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2178             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2179
2180 static bool
2181 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2182 {
2183
2184         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2185             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2186             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2187             prev, entry));
2188         return (prev->end == entry->start &&
2189             prev->object.vm_object == entry->object.vm_object &&
2190             (prev->object.vm_object == NULL ||
2191             prev->offset + (prev->end - prev->start) == entry->offset) &&
2192             prev->eflags == entry->eflags &&
2193             prev->protection == entry->protection &&
2194             prev->max_protection == entry->max_protection &&
2195             prev->inheritance == entry->inheritance &&
2196             prev->wired_count == entry->wired_count &&
2197             prev->cred == entry->cred);
2198 }
2199
2200 static void
2201 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2202 {
2203
2204         /*
2205          * If the backing object is a vnode object, vm_object_deallocate()
2206          * calls vrele().  However, vrele() does not lock the vnode because
2207          * the vnode has additional references.  Thus, the map lock can be
2208          * kept without causing a lock-order reversal with the vnode lock.
2209          *
2210          * Since we count the number of virtual page mappings in
2211          * object->un_pager.vnp.writemappings, the writemappings value
2212          * should not be adjusted when the entry is disposed of.
2213          */
2214         if (entry->object.vm_object != NULL)
2215                 vm_object_deallocate(entry->object.vm_object);
2216         if (entry->cred != NULL)
2217                 crfree(entry->cred);
2218         vm_map_entry_dispose(map, entry);
2219 }
2220
2221 /*
2222  *      vm_map_try_merge_entries:
2223  *
2224  *      Compare the given map entry to its predecessor, and merge its precessor
2225  *      into it if possible.  The entry remains valid, and may be extended.
2226  *      The predecessor may be deleted.
2227  *
2228  *      The map must be locked.
2229  */
2230 void
2231 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2232     vm_map_entry_t entry)
2233 {
2234
2235         VM_MAP_ASSERT_LOCKED(map);
2236         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2237             vm_map_mergeable_neighbors(prev_entry, entry)) {
2238                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2239                 vm_map_merged_neighbor_dispose(map, prev_entry);
2240         }
2241 }
2242
2243 /*
2244  *      vm_map_entry_back:
2245  *
2246  *      Allocate an object to back a map entry.
2247  */
2248 static inline void
2249 vm_map_entry_back(vm_map_entry_t entry)
2250 {
2251         vm_object_t object;
2252
2253         KASSERT(entry->object.vm_object == NULL,
2254             ("map entry %p has backing object", entry));
2255         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2256             ("map entry %p is a submap", entry));
2257         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2258             entry->cred, entry->end - entry->start);
2259         entry->object.vm_object = object;
2260         entry->offset = 0;
2261         entry->cred = NULL;
2262 }
2263
2264 /*
2265  *      vm_map_entry_charge_object
2266  *
2267  *      If there is no object backing this entry, create one.  Otherwise, if
2268  *      the entry has cred, give it to the backing object.
2269  */
2270 static inline void
2271 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2272 {
2273
2274         VM_MAP_ASSERT_LOCKED(map);
2275         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2276             ("map entry %p is a submap", entry));
2277         if (entry->object.vm_object == NULL && !map->system_map &&
2278             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2279                 vm_map_entry_back(entry);
2280         else if (entry->object.vm_object != NULL &&
2281             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2282             entry->cred != NULL) {
2283                 VM_OBJECT_WLOCK(entry->object.vm_object);
2284                 KASSERT(entry->object.vm_object->cred == NULL,
2285                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2286                 entry->object.vm_object->cred = entry->cred;
2287                 entry->object.vm_object->charge = entry->end - entry->start;
2288                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2289                 entry->cred = NULL;
2290         }
2291 }
2292
2293 /*
2294  *      vm_map_entry_clone
2295  *
2296  *      Create a duplicate map entry for clipping.
2297  */
2298 static vm_map_entry_t
2299 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2300 {
2301         vm_map_entry_t new_entry;
2302
2303         VM_MAP_ASSERT_LOCKED(map);
2304
2305         /*
2306          * Create a backing object now, if none exists, so that more individual
2307          * objects won't be created after the map entry is split.
2308          */
2309         vm_map_entry_charge_object(map, entry);
2310
2311         /* Clone the entry. */
2312         new_entry = vm_map_entry_create(map);
2313         *new_entry = *entry;
2314         if (new_entry->cred != NULL)
2315                 crhold(entry->cred);
2316         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2317                 vm_object_reference(new_entry->object.vm_object);
2318                 vm_map_entry_set_vnode_text(new_entry, true);
2319                 /*
2320                  * The object->un_pager.vnp.writemappings for the object of
2321                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2322                  * virtual pages are re-distributed among the clipped entries,
2323                  * so the sum is left the same.
2324                  */
2325         }
2326         return (new_entry);
2327 }
2328
2329 /*
2330  *      vm_map_clip_start:      [ internal use only ]
2331  *
2332  *      Asserts that the given entry begins at or after
2333  *      the specified address; if necessary,
2334  *      it splits the entry into two.
2335  */
2336 #define vm_map_clip_start(map, entry, startaddr) \
2337 { \
2338         if (startaddr > entry->start) \
2339                 _vm_map_clip_start(map, entry, startaddr); \
2340 }
2341
2342 /*
2343  *      This routine is called only when it is known that
2344  *      the entry must be split.
2345  */
2346 static void
2347 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2348 {
2349         vm_map_entry_t new_entry;
2350
2351         VM_MAP_ASSERT_LOCKED(map);
2352         KASSERT(entry->end > start && entry->start < start,
2353             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2354
2355         new_entry = vm_map_entry_clone(map, entry);
2356
2357         /*
2358          * Split off the front portion.  Insert the new entry BEFORE this one,
2359          * so that this entry has the specified starting address.
2360          */
2361         new_entry->end = start;
2362         entry->offset += (start - entry->start);
2363         entry->start = start;
2364         vm_map_entry_link(map, new_entry);
2365 }
2366
2367 /*
2368  *      vm_map_clip_end:        [ internal use only ]
2369  *
2370  *      Asserts that the given entry ends at or before
2371  *      the specified address; if necessary,
2372  *      it splits the entry into two.
2373  */
2374 #define vm_map_clip_end(map, entry, endaddr) \
2375 { \
2376         if ((endaddr) < (entry->end)) \
2377                 _vm_map_clip_end((map), (entry), (endaddr)); \
2378 }
2379
2380 /*
2381  *      This routine is called only when it is known that
2382  *      the entry must be split.
2383  */
2384 static void
2385 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2386 {
2387         vm_map_entry_t new_entry;
2388
2389         VM_MAP_ASSERT_LOCKED(map);
2390         KASSERT(entry->start < end && entry->end > end,
2391             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2392
2393         new_entry = vm_map_entry_clone(map, entry);
2394
2395         /*
2396          * Split off the back portion.  Insert the new entry AFTER this one,
2397          * so that this entry has the specified ending address.
2398          */
2399         new_entry->start = entry->end = end;
2400         new_entry->offset += (end - entry->start);
2401         vm_map_entry_link(map, new_entry);
2402 }
2403
2404 /*
2405  *      vm_map_submap:          [ kernel use only ]
2406  *
2407  *      Mark the given range as handled by a subordinate map.
2408  *
2409  *      This range must have been created with vm_map_find,
2410  *      and no other operations may have been performed on this
2411  *      range prior to calling vm_map_submap.
2412  *
2413  *      Only a limited number of operations can be performed
2414  *      within this rage after calling vm_map_submap:
2415  *              vm_fault
2416  *      [Don't try vm_map_copy!]
2417  *
2418  *      To remove a submapping, one must first remove the
2419  *      range from the superior map, and then destroy the
2420  *      submap (if desired).  [Better yet, don't try it.]
2421  */
2422 int
2423 vm_map_submap(
2424         vm_map_t map,
2425         vm_offset_t start,
2426         vm_offset_t end,
2427         vm_map_t submap)
2428 {
2429         vm_map_entry_t entry;
2430         int result;
2431
2432         result = KERN_INVALID_ARGUMENT;
2433
2434         vm_map_lock(submap);
2435         submap->flags |= MAP_IS_SUB_MAP;
2436         vm_map_unlock(submap);
2437
2438         vm_map_lock(map);
2439
2440         VM_MAP_RANGE_CHECK(map, start, end);
2441
2442         if (vm_map_lookup_entry(map, start, &entry)) {
2443                 vm_map_clip_start(map, entry, start);
2444         } else
2445                 entry = vm_map_entry_succ(entry);
2446
2447         vm_map_clip_end(map, entry, end);
2448
2449         if ((entry->start == start) && (entry->end == end) &&
2450             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2451             (entry->object.vm_object == NULL)) {
2452                 entry->object.sub_map = submap;
2453                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2454                 result = KERN_SUCCESS;
2455         }
2456         vm_map_unlock(map);
2457
2458         if (result != KERN_SUCCESS) {
2459                 vm_map_lock(submap);
2460                 submap->flags &= ~MAP_IS_SUB_MAP;
2461                 vm_map_unlock(submap);
2462         }
2463         return (result);
2464 }
2465
2466 /*
2467  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2468  */
2469 #define MAX_INIT_PT     96
2470
2471 /*
2472  *      vm_map_pmap_enter:
2473  *
2474  *      Preload the specified map's pmap with mappings to the specified
2475  *      object's memory-resident pages.  No further physical pages are
2476  *      allocated, and no further virtual pages are retrieved from secondary
2477  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2478  *      limited number of page mappings are created at the low-end of the
2479  *      specified address range.  (For this purpose, a superpage mapping
2480  *      counts as one page mapping.)  Otherwise, all resident pages within
2481  *      the specified address range are mapped.
2482  */
2483 static void
2484 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2485     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2486 {
2487         vm_offset_t start;
2488         vm_page_t p, p_start;
2489         vm_pindex_t mask, psize, threshold, tmpidx;
2490
2491         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2492                 return;
2493         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2494                 VM_OBJECT_WLOCK(object);
2495                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2496                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2497                             size);
2498                         VM_OBJECT_WUNLOCK(object);
2499                         return;
2500                 }
2501                 VM_OBJECT_LOCK_DOWNGRADE(object);
2502         } else
2503                 VM_OBJECT_RLOCK(object);
2504
2505         psize = atop(size);
2506         if (psize + pindex > object->size) {
2507                 if (pindex >= object->size) {
2508                         VM_OBJECT_RUNLOCK(object);
2509                         return;
2510                 }
2511                 psize = object->size - pindex;
2512         }
2513
2514         start = 0;
2515         p_start = NULL;
2516         threshold = MAX_INIT_PT;
2517
2518         p = vm_page_find_least(object, pindex);
2519         /*
2520          * Assert: the variable p is either (1) the page with the
2521          * least pindex greater than or equal to the parameter pindex
2522          * or (2) NULL.
2523          */
2524         for (;
2525              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2526              p = TAILQ_NEXT(p, listq)) {
2527                 /*
2528                  * don't allow an madvise to blow away our really
2529                  * free pages allocating pv entries.
2530                  */
2531                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2532                     vm_page_count_severe()) ||
2533                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2534                     tmpidx >= threshold)) {
2535                         psize = tmpidx;
2536                         break;
2537                 }
2538                 if (vm_page_all_valid(p)) {
2539                         if (p_start == NULL) {
2540                                 start = addr + ptoa(tmpidx);
2541                                 p_start = p;
2542                         }
2543                         /* Jump ahead if a superpage mapping is possible. */
2544                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2545                             (pagesizes[p->psind] - 1)) == 0) {
2546                                 mask = atop(pagesizes[p->psind]) - 1;
2547                                 if (tmpidx + mask < psize &&
2548                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2549                                         p += mask;
2550                                         threshold += mask;
2551                                 }
2552                         }
2553                 } else if (p_start != NULL) {
2554                         pmap_enter_object(map->pmap, start, addr +
2555                             ptoa(tmpidx), p_start, prot);
2556                         p_start = NULL;
2557                 }
2558         }
2559         if (p_start != NULL)
2560                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2561                     p_start, prot);
2562         VM_OBJECT_RUNLOCK(object);
2563 }
2564
2565 /*
2566  *      vm_map_protect:
2567  *
2568  *      Sets the protection of the specified address
2569  *      region in the target map.  If "set_max" is
2570  *      specified, the maximum protection is to be set;
2571  *      otherwise, only the current protection is affected.
2572  */
2573 int
2574 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2575                vm_prot_t new_prot, boolean_t set_max)
2576 {
2577         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2578         vm_object_t obj;
2579         struct ucred *cred;
2580         vm_prot_t old_prot;
2581         int rv;
2582
2583         if (start == end)
2584                 return (KERN_SUCCESS);
2585
2586 again:
2587         in_tran = NULL;
2588         vm_map_lock(map);
2589
2590         /*
2591          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2592          * need to fault pages into the map and will drop the map lock while
2593          * doing so, and the VM object may end up in an inconsistent state if we
2594          * update the protection on the map entry in between faults.
2595          */
2596         vm_map_wait_busy(map);
2597
2598         VM_MAP_RANGE_CHECK(map, start, end);
2599
2600         if (!vm_map_lookup_entry(map, start, &first_entry))
2601                 first_entry = vm_map_entry_succ(first_entry);
2602
2603         /*
2604          * Make a first pass to check for protection violations.
2605          */
2606         for (entry = first_entry; entry->start < end;
2607             entry = vm_map_entry_succ(entry)) {
2608                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2609                         continue;
2610                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2611                         vm_map_unlock(map);
2612                         return (KERN_INVALID_ARGUMENT);
2613                 }
2614                 if ((new_prot & entry->max_protection) != new_prot) {
2615                         vm_map_unlock(map);
2616                         return (KERN_PROTECTION_FAILURE);
2617                 }
2618                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2619                         in_tran = entry;
2620         }
2621
2622         /*
2623          * Postpone the operation until all in-transition map entries have
2624          * stabilized.  An in-transition entry might already have its pages
2625          * wired and wired_count incremented, but not yet have its
2626          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2627          * vm_fault_copy_entry() in the final loop below.
2628          */
2629         if (in_tran != NULL) {
2630                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2631                 vm_map_unlock_and_wait(map, 0);
2632                 goto again;
2633         }
2634
2635         /*
2636          * Before changing the protections, try to reserve swap space for any
2637          * private (i.e., copy-on-write) mappings that are transitioning from
2638          * read-only to read/write access.  If a reservation fails, break out
2639          * of this loop early and let the next loop simplify the entries, since
2640          * some may now be mergeable.
2641          */
2642         rv = KERN_SUCCESS;
2643         vm_map_clip_start(map, first_entry, start);
2644         for (entry = first_entry; entry->start < end;
2645             entry = vm_map_entry_succ(entry)) {
2646                 vm_map_clip_end(map, entry, end);
2647
2648                 if (set_max ||
2649                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2650                     ENTRY_CHARGED(entry) ||
2651                     (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2652                         continue;
2653                 }
2654
2655                 cred = curthread->td_ucred;
2656                 obj = entry->object.vm_object;
2657
2658                 if (obj == NULL ||
2659                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2660                         if (!swap_reserve(entry->end - entry->start)) {
2661                                 rv = KERN_RESOURCE_SHORTAGE;
2662                                 end = entry->end;
2663                                 break;
2664                         }
2665                         crhold(cred);
2666                         entry->cred = cred;
2667                         continue;
2668                 }
2669
2670                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2671                         continue;
2672                 VM_OBJECT_WLOCK(obj);
2673                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2674                         VM_OBJECT_WUNLOCK(obj);
2675                         continue;
2676                 }
2677
2678                 /*
2679                  * Charge for the whole object allocation now, since
2680                  * we cannot distinguish between non-charged and
2681                  * charged clipped mapping of the same object later.
2682                  */
2683                 KASSERT(obj->charge == 0,
2684                     ("vm_map_protect: object %p overcharged (entry %p)",
2685                     obj, entry));
2686                 if (!swap_reserve(ptoa(obj->size))) {
2687                         VM_OBJECT_WUNLOCK(obj);
2688                         rv = KERN_RESOURCE_SHORTAGE;
2689                         end = entry->end;
2690                         break;
2691                 }
2692
2693                 crhold(cred);
2694                 obj->cred = cred;
2695                 obj->charge = ptoa(obj->size);
2696                 VM_OBJECT_WUNLOCK(obj);
2697         }
2698
2699         /*
2700          * If enough swap space was available, go back and fix up protections.
2701          * Otherwise, just simplify entries, since some may have been modified.
2702          * [Note that clipping is not necessary the second time.]
2703          */
2704         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2705             entry->start < end;
2706             vm_map_try_merge_entries(map, prev_entry, entry),
2707             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2708                 if (rv != KERN_SUCCESS ||
2709                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2710                         continue;
2711
2712                 old_prot = entry->protection;
2713
2714                 if (set_max)
2715                         entry->protection =
2716                             (entry->max_protection = new_prot) &
2717                             old_prot;
2718                 else
2719                         entry->protection = new_prot;
2720
2721                 /*
2722                  * For user wired map entries, the normal lazy evaluation of
2723                  * write access upgrades through soft page faults is
2724                  * undesirable.  Instead, immediately copy any pages that are
2725                  * copy-on-write and enable write access in the physical map.
2726                  */
2727                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2728                     (entry->protection & VM_PROT_WRITE) != 0 &&
2729                     (old_prot & VM_PROT_WRITE) == 0)
2730                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2731
2732                 /*
2733                  * When restricting access, update the physical map.  Worry
2734                  * about copy-on-write here.
2735                  */
2736                 if ((old_prot & ~entry->protection) != 0) {
2737 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2738                                                         VM_PROT_ALL)
2739                         pmap_protect(map->pmap, entry->start,
2740                             entry->end,
2741                             entry->protection & MASK(entry));
2742 #undef  MASK
2743                 }
2744         }
2745         vm_map_try_merge_entries(map, prev_entry, entry);
2746         vm_map_unlock(map);
2747         return (rv);
2748 }
2749
2750 /*
2751  *      vm_map_madvise:
2752  *
2753  *      This routine traverses a processes map handling the madvise
2754  *      system call.  Advisories are classified as either those effecting
2755  *      the vm_map_entry structure, or those effecting the underlying
2756  *      objects.
2757  */
2758 int
2759 vm_map_madvise(
2760         vm_map_t map,
2761         vm_offset_t start,
2762         vm_offset_t end,
2763         int behav)
2764 {
2765         vm_map_entry_t entry, prev_entry;
2766         bool modify_map;
2767
2768         /*
2769          * Some madvise calls directly modify the vm_map_entry, in which case
2770          * we need to use an exclusive lock on the map and we need to perform
2771          * various clipping operations.  Otherwise we only need a read-lock
2772          * on the map.
2773          */
2774         switch(behav) {
2775         case MADV_NORMAL:
2776         case MADV_SEQUENTIAL:
2777         case MADV_RANDOM:
2778         case MADV_NOSYNC:
2779         case MADV_AUTOSYNC:
2780         case MADV_NOCORE:
2781         case MADV_CORE:
2782                 if (start == end)
2783                         return (0);
2784                 modify_map = true;
2785                 vm_map_lock(map);
2786                 break;
2787         case MADV_WILLNEED:
2788         case MADV_DONTNEED:
2789         case MADV_FREE:
2790                 if (start == end)
2791                         return (0);
2792                 modify_map = false;
2793                 vm_map_lock_read(map);
2794                 break;
2795         default:
2796                 return (EINVAL);
2797         }
2798
2799         /*
2800          * Locate starting entry and clip if necessary.
2801          */
2802         VM_MAP_RANGE_CHECK(map, start, end);
2803
2804         if (vm_map_lookup_entry(map, start, &entry)) {
2805                 if (modify_map)
2806                         vm_map_clip_start(map, entry, start);
2807                 prev_entry = vm_map_entry_pred(entry);
2808         } else {
2809                 prev_entry = entry;
2810                 entry = vm_map_entry_succ(entry);
2811         }
2812
2813         if (modify_map) {
2814                 /*
2815                  * madvise behaviors that are implemented in the vm_map_entry.
2816                  *
2817                  * We clip the vm_map_entry so that behavioral changes are
2818                  * limited to the specified address range.
2819                  */
2820                 for (; entry->start < end;
2821                      prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2822                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2823                                 continue;
2824
2825                         vm_map_clip_end(map, entry, end);
2826
2827                         switch (behav) {
2828                         case MADV_NORMAL:
2829                                 vm_map_entry_set_behavior(entry,
2830                                     MAP_ENTRY_BEHAV_NORMAL);
2831                                 break;
2832                         case MADV_SEQUENTIAL:
2833                                 vm_map_entry_set_behavior(entry,
2834                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2835                                 break;
2836                         case MADV_RANDOM:
2837                                 vm_map_entry_set_behavior(entry,
2838                                     MAP_ENTRY_BEHAV_RANDOM);
2839                                 break;
2840                         case MADV_NOSYNC:
2841                                 entry->eflags |= MAP_ENTRY_NOSYNC;
2842                                 break;
2843                         case MADV_AUTOSYNC:
2844                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
2845                                 break;
2846                         case MADV_NOCORE:
2847                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2848                                 break;
2849                         case MADV_CORE:
2850                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2851                                 break;
2852                         default:
2853                                 break;
2854                         }
2855                         vm_map_try_merge_entries(map, prev_entry, entry);
2856                 }
2857                 vm_map_try_merge_entries(map, prev_entry, entry);
2858                 vm_map_unlock(map);
2859         } else {
2860                 vm_pindex_t pstart, pend;
2861
2862                 /*
2863                  * madvise behaviors that are implemented in the underlying
2864                  * vm_object.
2865                  *
2866                  * Since we don't clip the vm_map_entry, we have to clip
2867                  * the vm_object pindex and count.
2868                  */
2869                 for (; entry->start < end;
2870                     entry = vm_map_entry_succ(entry)) {
2871                         vm_offset_t useEnd, useStart;
2872
2873                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2874                                 continue;
2875
2876                         /*
2877                          * MADV_FREE would otherwise rewind time to
2878                          * the creation of the shadow object.  Because
2879                          * we hold the VM map read-locked, neither the
2880                          * entry's object nor the presence of a
2881                          * backing object can change.
2882                          */
2883                         if (behav == MADV_FREE &&
2884                             entry->object.vm_object != NULL &&
2885                             entry->object.vm_object->backing_object != NULL)
2886                                 continue;
2887
2888                         pstart = OFF_TO_IDX(entry->offset);
2889                         pend = pstart + atop(entry->end - entry->start);
2890                         useStart = entry->start;
2891                         useEnd = entry->end;
2892
2893                         if (entry->start < start) {
2894                                 pstart += atop(start - entry->start);
2895                                 useStart = start;
2896                         }
2897                         if (entry->end > end) {
2898                                 pend -= atop(entry->end - end);
2899                                 useEnd = end;
2900                         }
2901
2902                         if (pstart >= pend)
2903                                 continue;
2904
2905                         /*
2906                          * Perform the pmap_advise() before clearing
2907                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2908                          * concurrent pmap operation, such as pmap_remove(),
2909                          * could clear a reference in the pmap and set
2910                          * PGA_REFERENCED on the page before the pmap_advise()
2911                          * had completed.  Consequently, the page would appear
2912                          * referenced based upon an old reference that
2913                          * occurred before this pmap_advise() ran.
2914                          */
2915                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2916                                 pmap_advise(map->pmap, useStart, useEnd,
2917                                     behav);
2918
2919                         vm_object_madvise(entry->object.vm_object, pstart,
2920                             pend, behav);
2921
2922                         /*
2923                          * Pre-populate paging structures in the
2924                          * WILLNEED case.  For wired entries, the
2925                          * paging structures are already populated.
2926                          */
2927                         if (behav == MADV_WILLNEED &&
2928                             entry->wired_count == 0) {
2929                                 vm_map_pmap_enter(map,
2930                                     useStart,
2931                                     entry->protection,
2932                                     entry->object.vm_object,
2933                                     pstart,
2934                                     ptoa(pend - pstart),
2935                                     MAP_PREFAULT_MADVISE
2936                                 );
2937                         }
2938                 }
2939                 vm_map_unlock_read(map);
2940         }
2941         return (0);
2942 }
2943
2944
2945 /*
2946  *      vm_map_inherit:
2947  *
2948  *      Sets the inheritance of the specified address
2949  *      range in the target map.  Inheritance
2950  *      affects how the map will be shared with
2951  *      child maps at the time of vmspace_fork.
2952  */
2953 int
2954 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2955                vm_inherit_t new_inheritance)
2956 {
2957         vm_map_entry_t entry, prev_entry;
2958
2959         switch (new_inheritance) {
2960         case VM_INHERIT_NONE:
2961         case VM_INHERIT_COPY:
2962         case VM_INHERIT_SHARE:
2963         case VM_INHERIT_ZERO:
2964                 break;
2965         default:
2966                 return (KERN_INVALID_ARGUMENT);
2967         }
2968         if (start == end)
2969                 return (KERN_SUCCESS);
2970         vm_map_lock(map);
2971         VM_MAP_RANGE_CHECK(map, start, end);
2972         if (vm_map_lookup_entry(map, start, &prev_entry)) {
2973                 entry = prev_entry;
2974                 vm_map_clip_start(map, entry, start);
2975                 prev_entry = vm_map_entry_pred(entry);
2976         } else
2977                 entry = vm_map_entry_succ(prev_entry);
2978         for (; entry->start < end;
2979             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2980                 vm_map_clip_end(map, entry, end);
2981                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2982                     new_inheritance != VM_INHERIT_ZERO)
2983                         entry->inheritance = new_inheritance;
2984                 vm_map_try_merge_entries(map, prev_entry, entry);
2985         }
2986         vm_map_try_merge_entries(map, prev_entry, entry);
2987         vm_map_unlock(map);
2988         return (KERN_SUCCESS);
2989 }
2990
2991 /*
2992  *      vm_map_entry_in_transition:
2993  *
2994  *      Release the map lock, and sleep until the entry is no longer in
2995  *      transition.  Awake and acquire the map lock.  If the map changed while
2996  *      another held the lock, lookup a possibly-changed entry at or after the
2997  *      'start' position of the old entry.
2998  */
2999 static vm_map_entry_t
3000 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3001     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3002 {
3003         vm_map_entry_t entry;
3004         vm_offset_t start;
3005         u_int last_timestamp;
3006
3007         VM_MAP_ASSERT_LOCKED(map);
3008         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3009             ("not in-tranition map entry %p", in_entry));
3010         /*
3011          * We have not yet clipped the entry.
3012          */
3013         start = MAX(in_start, in_entry->start);
3014         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3015         last_timestamp = map->timestamp;
3016         if (vm_map_unlock_and_wait(map, 0)) {
3017                 /*
3018                  * Allow interruption of user wiring/unwiring?
3019                  */
3020         }
3021         vm_map_lock(map);
3022         if (last_timestamp + 1 == map->timestamp)
3023                 return (in_entry);
3024
3025         /*
3026          * Look again for the entry because the map was modified while it was
3027          * unlocked.  Specifically, the entry may have been clipped, merged, or
3028          * deleted.
3029          */
3030         if (!vm_map_lookup_entry(map, start, &entry)) {
3031                 if (!holes_ok) {
3032                         *io_end = start;
3033                         return (NULL);
3034                 }
3035                 entry = vm_map_entry_succ(entry);
3036         }
3037         return (entry);
3038 }
3039
3040 /*
3041  *      vm_map_unwire:
3042  *
3043  *      Implements both kernel and user unwiring.
3044  */
3045 int
3046 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3047     int flags)
3048 {
3049         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3050         int rv;
3051         bool holes_ok, need_wakeup, user_unwire;
3052
3053         if (start == end)
3054                 return (KERN_SUCCESS);
3055         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3056         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3057         vm_map_lock(map);
3058         VM_MAP_RANGE_CHECK(map, start, end);
3059         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3060                 if (holes_ok)
3061                         first_entry = vm_map_entry_succ(first_entry);
3062                 else {
3063                         vm_map_unlock(map);
3064                         return (KERN_INVALID_ADDRESS);
3065                 }
3066         }
3067         rv = KERN_SUCCESS;
3068         for (entry = first_entry; entry->start < end; entry = next_entry) {
3069                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3070                         /*
3071                          * We have not yet clipped the entry.
3072                          */
3073                         next_entry = vm_map_entry_in_transition(map, start,
3074                             &end, holes_ok, entry);
3075                         if (next_entry == NULL) {
3076                                 if (entry == first_entry) {
3077                                         vm_map_unlock(map);
3078                                         return (KERN_INVALID_ADDRESS);
3079                                 }
3080                                 rv = KERN_INVALID_ADDRESS;
3081                                 break;
3082                         }
3083                         first_entry = (entry == first_entry) ?
3084                             next_entry : NULL;
3085                         continue;
3086                 }
3087                 vm_map_clip_start(map, entry, start);
3088                 vm_map_clip_end(map, entry, end);
3089                 /*
3090                  * Mark the entry in case the map lock is released.  (See
3091                  * above.)
3092                  */
3093                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3094                     entry->wiring_thread == NULL,
3095                     ("owned map entry %p", entry));
3096                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3097                 entry->wiring_thread = curthread;
3098                 next_entry = vm_map_entry_succ(entry);
3099                 /*
3100                  * Check the map for holes in the specified region.
3101                  * If holes_ok, skip this check.
3102                  */
3103                 if (!holes_ok &&
3104                     entry->end < end && next_entry->start > entry->end) {
3105                         end = entry->end;
3106                         rv = KERN_INVALID_ADDRESS;
3107                         break;
3108                 }
3109                 /*
3110                  * If system unwiring, require that the entry is system wired.
3111                  */
3112                 if (!user_unwire &&
3113                     vm_map_entry_system_wired_count(entry) == 0) {
3114                         end = entry->end;
3115                         rv = KERN_INVALID_ARGUMENT;
3116                         break;
3117                 }
3118         }
3119         need_wakeup = false;
3120         if (first_entry == NULL &&
3121             !vm_map_lookup_entry(map, start, &first_entry)) {
3122                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3123                 prev_entry = first_entry;
3124                 entry = vm_map_entry_succ(first_entry);
3125         } else {
3126                 prev_entry = vm_map_entry_pred(first_entry);
3127                 entry = first_entry;
3128         }
3129         for (; entry->start < end;
3130             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3131                 /*
3132                  * If holes_ok was specified, an empty
3133                  * space in the unwired region could have been mapped
3134                  * while the map lock was dropped for draining
3135                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3136                  * could be simultaneously wiring this new mapping
3137                  * entry.  Detect these cases and skip any entries
3138                  * marked as in transition by us.
3139                  */
3140                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3141                     entry->wiring_thread != curthread) {
3142                         KASSERT(holes_ok,
3143                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3144                         continue;
3145                 }
3146
3147                 if (rv == KERN_SUCCESS && (!user_unwire ||
3148                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3149                         if (entry->wired_count == 1)
3150                                 vm_map_entry_unwire(map, entry);
3151                         else
3152                                 entry->wired_count--;
3153                         if (user_unwire)
3154                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3155                 }
3156                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3157                     ("vm_map_unwire: in-transition flag missing %p", entry));
3158                 KASSERT(entry->wiring_thread == curthread,
3159                     ("vm_map_unwire: alien wire %p", entry));
3160                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3161                 entry->wiring_thread = NULL;
3162                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3163                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3164                         need_wakeup = true;
3165                 }
3166                 vm_map_try_merge_entries(map, prev_entry, entry);
3167         }
3168         vm_map_try_merge_entries(map, prev_entry, entry);
3169         vm_map_unlock(map);
3170         if (need_wakeup)
3171                 vm_map_wakeup(map);
3172         return (rv);
3173 }
3174
3175 static void
3176 vm_map_wire_user_count_sub(u_long npages)
3177 {
3178
3179         atomic_subtract_long(&vm_user_wire_count, npages);
3180 }
3181
3182 static bool
3183 vm_map_wire_user_count_add(u_long npages)
3184 {
3185         u_long wired;
3186
3187         wired = vm_user_wire_count;
3188         do {
3189                 if (npages + wired > vm_page_max_user_wired)
3190                         return (false);
3191         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3192             npages + wired));
3193
3194         return (true);
3195 }
3196
3197 /*
3198  *      vm_map_wire_entry_failure:
3199  *
3200  *      Handle a wiring failure on the given entry.
3201  *
3202  *      The map should be locked.
3203  */
3204 static void
3205 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3206     vm_offset_t failed_addr)
3207 {
3208
3209         VM_MAP_ASSERT_LOCKED(map);
3210         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3211             entry->wired_count == 1,
3212             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3213         KASSERT(failed_addr < entry->end,
3214             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3215
3216         /*
3217          * If any pages at the start of this entry were successfully wired,
3218          * then unwire them.
3219          */
3220         if (failed_addr > entry->start) {
3221                 pmap_unwire(map->pmap, entry->start, failed_addr);
3222                 vm_object_unwire(entry->object.vm_object, entry->offset,
3223                     failed_addr - entry->start, PQ_ACTIVE);
3224         }
3225
3226         /*
3227          * Assign an out-of-range value to represent the failure to wire this
3228          * entry.
3229          */
3230         entry->wired_count = -1;
3231 }
3232
3233 int
3234 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3235 {
3236         int rv;
3237
3238         vm_map_lock(map);
3239         rv = vm_map_wire_locked(map, start, end, flags);
3240         vm_map_unlock(map);
3241         return (rv);
3242 }
3243
3244
3245 /*
3246  *      vm_map_wire_locked:
3247  *
3248  *      Implements both kernel and user wiring.  Returns with the map locked,
3249  *      the map lock may be dropped.
3250  */
3251 int
3252 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3253 {
3254         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3255         vm_offset_t faddr, saved_end, saved_start;
3256         u_long npages;
3257         u_int last_timestamp;
3258         int rv;
3259         bool holes_ok, need_wakeup, user_wire;
3260         vm_prot_t prot;
3261
3262         VM_MAP_ASSERT_LOCKED(map);
3263
3264         if (start == end)
3265                 return (KERN_SUCCESS);
3266         prot = 0;
3267         if (flags & VM_MAP_WIRE_WRITE)
3268                 prot |= VM_PROT_WRITE;
3269         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3270         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3271         VM_MAP_RANGE_CHECK(map, start, end);
3272         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3273                 if (holes_ok)
3274                         first_entry = vm_map_entry_succ(first_entry);
3275                 else
3276                         return (KERN_INVALID_ADDRESS);
3277         }
3278         for (entry = first_entry; entry->start < end; entry = next_entry) {
3279                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3280                         /*
3281                          * We have not yet clipped the entry.
3282                          */
3283                         next_entry = vm_map_entry_in_transition(map, start,
3284                             &end, holes_ok, entry);
3285                         if (next_entry == NULL) {
3286                                 if (entry == first_entry)
3287                                         return (KERN_INVALID_ADDRESS);
3288                                 rv = KERN_INVALID_ADDRESS;
3289                                 goto done;
3290                         }
3291                         first_entry = (entry == first_entry) ?
3292                             next_entry : NULL;
3293                         continue;
3294                 }
3295                 vm_map_clip_start(map, entry, start);
3296                 vm_map_clip_end(map, entry, end);
3297                 /*
3298                  * Mark the entry in case the map lock is released.  (See
3299                  * above.)
3300                  */
3301                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3302                     entry->wiring_thread == NULL,
3303                     ("owned map entry %p", entry));
3304                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3305                 entry->wiring_thread = curthread;
3306                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3307                     || (entry->protection & prot) != prot) {
3308                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3309                         if (!holes_ok) {
3310                                 end = entry->end;
3311                                 rv = KERN_INVALID_ADDRESS;
3312                                 goto done;
3313                         }
3314                 } else if (entry->wired_count == 0) {
3315                         entry->wired_count++;
3316
3317                         npages = atop(entry->end - entry->start);
3318                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3319                                 vm_map_wire_entry_failure(map, entry,
3320                                     entry->start);
3321                                 end = entry->end;
3322                                 rv = KERN_RESOURCE_SHORTAGE;
3323                                 goto done;
3324                         }
3325
3326                         /*
3327                          * Release the map lock, relying on the in-transition
3328                          * mark.  Mark the map busy for fork.
3329                          */
3330                         saved_start = entry->start;
3331                         saved_end = entry->end;
3332                         last_timestamp = map->timestamp;
3333                         vm_map_busy(map);
3334                         vm_map_unlock(map);
3335
3336                         faddr = saved_start;
3337                         do {
3338                                 /*
3339                                  * Simulate a fault to get the page and enter
3340                                  * it into the physical map.
3341                                  */
3342                                 if ((rv = vm_fault(map, faddr,
3343                                     VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3344                                     KERN_SUCCESS)
3345                                         break;
3346                         } while ((faddr += PAGE_SIZE) < saved_end);
3347                         vm_map_lock(map);
3348                         vm_map_unbusy(map);
3349                         if (last_timestamp + 1 != map->timestamp) {
3350                                 /*
3351                                  * Look again for the entry because the map was
3352                                  * modified while it was unlocked.  The entry
3353                                  * may have been clipped, but NOT merged or
3354                                  * deleted.
3355                                  */
3356                                 if (!vm_map_lookup_entry(map, saved_start,
3357                                     &next_entry))
3358                                         KASSERT(false,
3359                                             ("vm_map_wire: lookup failed"));
3360                                 first_entry = (entry == first_entry) ?
3361                                     next_entry : NULL;
3362                                 for (entry = next_entry; entry->end < saved_end;
3363                                     entry = vm_map_entry_succ(entry)) {
3364                                         /*
3365                                          * In case of failure, handle entries
3366                                          * that were not fully wired here;
3367                                          * fully wired entries are handled
3368                                          * later.
3369                                          */
3370                                         if (rv != KERN_SUCCESS &&
3371                                             faddr < entry->end)
3372                                                 vm_map_wire_entry_failure(map,
3373                                                     entry, faddr);
3374                                 }
3375                         }
3376                         if (rv != KERN_SUCCESS) {
3377                                 vm_map_wire_entry_failure(map, entry, faddr);
3378                                 if (user_wire)
3379                                         vm_map_wire_user_count_sub(npages);
3380                                 end = entry->end;
3381                                 goto done;
3382                         }
3383                 } else if (!user_wire ||
3384                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3385                         entry->wired_count++;
3386                 }
3387                 /*
3388                  * Check the map for holes in the specified region.
3389                  * If holes_ok was specified, skip this check.
3390                  */
3391                 next_entry = vm_map_entry_succ(entry);
3392                 if (!holes_ok &&
3393                     entry->end < end && next_entry->start > entry->end) {
3394                         end = entry->end;
3395                         rv = KERN_INVALID_ADDRESS;
3396                         goto done;
3397                 }
3398         }
3399         rv = KERN_SUCCESS;
3400 done:
3401         need_wakeup = false;
3402         if (first_entry == NULL &&
3403             !vm_map_lookup_entry(map, start, &first_entry)) {
3404                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3405                 prev_entry = first_entry;
3406                 entry = vm_map_entry_succ(first_entry);
3407         } else {
3408                 prev_entry = vm_map_entry_pred(first_entry);
3409                 entry = first_entry;
3410         }
3411         for (; entry->start < end;
3412             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3413                 /*
3414                  * If holes_ok was specified, an empty
3415                  * space in the unwired region could have been mapped
3416                  * while the map lock was dropped for faulting in the
3417                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3418                  * Moreover, another thread could be simultaneously
3419                  * wiring this new mapping entry.  Detect these cases
3420                  * and skip any entries marked as in transition not by us.
3421                  */
3422                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3423                     entry->wiring_thread != curthread) {
3424                         KASSERT(holes_ok,
3425                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3426                         continue;
3427                 }
3428
3429                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3430                         /* do nothing */
3431                 } else if (rv == KERN_SUCCESS) {
3432                         if (user_wire)
3433                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3434                 } else if (entry->wired_count == -1) {
3435                         /*
3436                          * Wiring failed on this entry.  Thus, unwiring is
3437                          * unnecessary.
3438                          */
3439                         entry->wired_count = 0;
3440                 } else if (!user_wire ||
3441                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3442                         /*
3443                          * Undo the wiring.  Wiring succeeded on this entry
3444                          * but failed on a later entry.  
3445                          */
3446                         if (entry->wired_count == 1) {
3447                                 vm_map_entry_unwire(map, entry);
3448                                 if (user_wire)
3449                                         vm_map_wire_user_count_sub(
3450                                             atop(entry->end - entry->start));
3451                         } else
3452                                 entry->wired_count--;
3453                 }
3454                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3455                     ("vm_map_wire: in-transition flag missing %p", entry));
3456                 KASSERT(entry->wiring_thread == curthread,
3457                     ("vm_map_wire: alien wire %p", entry));
3458                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3459                     MAP_ENTRY_WIRE_SKIPPED);
3460                 entry->wiring_thread = NULL;
3461                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3462                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3463                         need_wakeup = true;
3464                 }
3465                 vm_map_try_merge_entries(map, prev_entry, entry);
3466         }
3467         vm_map_try_merge_entries(map, prev_entry, entry);
3468         if (need_wakeup)
3469                 vm_map_wakeup(map);
3470         return (rv);
3471 }
3472
3473 /*
3474  * vm_map_sync
3475  *
3476  * Push any dirty cached pages in the address range to their pager.
3477  * If syncio is TRUE, dirty pages are written synchronously.
3478  * If invalidate is TRUE, any cached pages are freed as well.
3479  *
3480  * If the size of the region from start to end is zero, we are
3481  * supposed to flush all modified pages within the region containing
3482  * start.  Unfortunately, a region can be split or coalesced with
3483  * neighboring regions, making it difficult to determine what the
3484  * original region was.  Therefore, we approximate this requirement by
3485  * flushing the current region containing start.
3486  *
3487  * Returns an error if any part of the specified range is not mapped.
3488  */
3489 int
3490 vm_map_sync(
3491         vm_map_t map,
3492         vm_offset_t start,
3493         vm_offset_t end,
3494         boolean_t syncio,
3495         boolean_t invalidate)
3496 {
3497         vm_map_entry_t entry, first_entry, next_entry;
3498         vm_size_t size;
3499         vm_object_t object;
3500         vm_ooffset_t offset;
3501         unsigned int last_timestamp;
3502         boolean_t failed;
3503
3504         vm_map_lock_read(map);
3505         VM_MAP_RANGE_CHECK(map, start, end);
3506         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3507                 vm_map_unlock_read(map);
3508                 return (KERN_INVALID_ADDRESS);
3509         } else if (start == end) {
3510                 start = first_entry->start;
3511                 end = first_entry->end;
3512         }
3513         /*
3514          * Make a first pass to check for user-wired memory and holes.
3515          */
3516         for (entry = first_entry; entry->start < end; entry = next_entry) {
3517                 if (invalidate &&
3518                     (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3519                         vm_map_unlock_read(map);
3520                         return (KERN_INVALID_ARGUMENT);
3521                 }
3522                 next_entry = vm_map_entry_succ(entry);
3523                 if (end > entry->end &&
3524                     entry->end != next_entry->start) {
3525                         vm_map_unlock_read(map);
3526                         return (KERN_INVALID_ADDRESS);
3527                 }
3528         }
3529
3530         if (invalidate)
3531                 pmap_remove(map->pmap, start, end);
3532         failed = FALSE;
3533
3534         /*
3535          * Make a second pass, cleaning/uncaching pages from the indicated
3536          * objects as we go.
3537          */
3538         for (entry = first_entry; entry->start < end;) {
3539                 offset = entry->offset + (start - entry->start);
3540                 size = (end <= entry->end ? end : entry->end) - start;
3541                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3542                         vm_map_t smap;
3543                         vm_map_entry_t tentry;
3544                         vm_size_t tsize;
3545
3546                         smap = entry->object.sub_map;
3547                         vm_map_lock_read(smap);
3548                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3549                         tsize = tentry->end - offset;
3550                         if (tsize < size)
3551                                 size = tsize;
3552                         object = tentry->object.vm_object;
3553                         offset = tentry->offset + (offset - tentry->start);
3554                         vm_map_unlock_read(smap);
3555                 } else {
3556                         object = entry->object.vm_object;
3557                 }
3558                 vm_object_reference(object);
3559                 last_timestamp = map->timestamp;
3560                 vm_map_unlock_read(map);
3561                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3562                         failed = TRUE;
3563                 start += size;
3564                 vm_object_deallocate(object);
3565                 vm_map_lock_read(map);
3566                 if (last_timestamp == map->timestamp ||
3567                     !vm_map_lookup_entry(map, start, &entry))
3568                         entry = vm_map_entry_succ(entry);
3569         }
3570
3571         vm_map_unlock_read(map);
3572         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3573 }
3574
3575 /*
3576  *      vm_map_entry_unwire:    [ internal use only ]
3577  *
3578  *      Make the region specified by this entry pageable.
3579  *
3580  *      The map in question should be locked.
3581  *      [This is the reason for this routine's existence.]
3582  */
3583 static void
3584 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3585 {
3586         vm_size_t size;
3587
3588         VM_MAP_ASSERT_LOCKED(map);
3589         KASSERT(entry->wired_count > 0,
3590             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3591
3592         size = entry->end - entry->start;
3593         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3594                 vm_map_wire_user_count_sub(atop(size));
3595         pmap_unwire(map->pmap, entry->start, entry->end);
3596         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3597             PQ_ACTIVE);
3598         entry->wired_count = 0;
3599 }
3600
3601 static void
3602 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3603 {
3604
3605         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3606                 vm_object_deallocate(entry->object.vm_object);
3607         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3608 }
3609
3610 /*
3611  *      vm_map_entry_delete:    [ internal use only ]
3612  *
3613  *      Deallocate the given entry from the target map.
3614  */
3615 static void
3616 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3617 {
3618         vm_object_t object;
3619         vm_pindex_t offidxstart, offidxend, count, size1;
3620         vm_size_t size;
3621
3622         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3623         object = entry->object.vm_object;
3624
3625         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3626                 MPASS(entry->cred == NULL);
3627                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3628                 MPASS(object == NULL);
3629                 vm_map_entry_deallocate(entry, map->system_map);
3630                 return;
3631         }
3632
3633         size = entry->end - entry->start;
3634         map->size -= size;
3635
3636         if (entry->cred != NULL) {
3637                 swap_release_by_cred(size, entry->cred);
3638                 crfree(entry->cred);
3639         }
3640
3641         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3642                 entry->object.vm_object = NULL;
3643         } else if ((object->flags & OBJ_ANON) != 0 ||
3644             object == kernel_object) {
3645                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3646                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3647                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3648                 count = atop(size);
3649                 offidxstart = OFF_TO_IDX(entry->offset);
3650                 offidxend = offidxstart + count;
3651                 VM_OBJECT_WLOCK(object);
3652                 if (object->ref_count != 1 &&
3653                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3654                     object == kernel_object)) {
3655                         vm_object_collapse(object);
3656
3657                         /*
3658                          * The option OBJPR_NOTMAPPED can be passed here
3659                          * because vm_map_delete() already performed
3660                          * pmap_remove() on the only mapping to this range
3661                          * of pages. 
3662                          */
3663                         vm_object_page_remove(object, offidxstart, offidxend,
3664                             OBJPR_NOTMAPPED);
3665                         if (object->type == OBJT_SWAP)
3666                                 swap_pager_freespace(object, offidxstart,
3667                                     count);
3668                         if (offidxend >= object->size &&
3669                             offidxstart < object->size) {
3670                                 size1 = object->size;
3671                                 object->size = offidxstart;
3672                                 if (object->cred != NULL) {
3673                                         size1 -= object->size;
3674                                         KASSERT(object->charge >= ptoa(size1),
3675                                             ("object %p charge < 0", object));
3676                                         swap_release_by_cred(ptoa(size1),
3677                                             object->cred);
3678                                         object->charge -= ptoa(size1);
3679                                 }
3680                         }
3681                 }
3682                 VM_OBJECT_WUNLOCK(object);
3683         }
3684         if (map->system_map)
3685                 vm_map_entry_deallocate(entry, TRUE);
3686         else {
3687                 entry->defer_next = curthread->td_map_def_user;
3688                 curthread->td_map_def_user = entry;
3689         }
3690 }
3691
3692 /*
3693  *      vm_map_delete:  [ internal use only ]
3694  *
3695  *      Deallocates the given address range from the target
3696  *      map.
3697  */
3698 int
3699 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3700 {
3701         vm_map_entry_t entry;
3702         vm_map_entry_t first_entry;
3703
3704         VM_MAP_ASSERT_LOCKED(map);
3705         if (start == end)
3706                 return (KERN_SUCCESS);
3707
3708         /*
3709          * Find the start of the region, and clip it
3710          */
3711         if (!vm_map_lookup_entry(map, start, &first_entry))
3712                 entry = vm_map_entry_succ(first_entry);
3713         else {
3714                 entry = first_entry;
3715                 vm_map_clip_start(map, entry, start);
3716         }
3717
3718         /*
3719          * Step through all entries in this region
3720          */
3721         while (entry->start < end) {
3722                 vm_map_entry_t next;
3723
3724                 /*
3725                  * Wait for wiring or unwiring of an entry to complete.
3726                  * Also wait for any system wirings to disappear on
3727                  * user maps.
3728                  */
3729                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3730                     (vm_map_pmap(map) != kernel_pmap &&
3731                     vm_map_entry_system_wired_count(entry) != 0)) {
3732                         unsigned int last_timestamp;
3733                         vm_offset_t saved_start;
3734                         vm_map_entry_t tmp_entry;
3735
3736                         saved_start = entry->start;
3737                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3738                         last_timestamp = map->timestamp;
3739                         (void) vm_map_unlock_and_wait(map, 0);
3740                         vm_map_lock(map);
3741                         if (last_timestamp + 1 != map->timestamp) {
3742                                 /*
3743                                  * Look again for the entry because the map was
3744                                  * modified while it was unlocked.
3745                                  * Specifically, the entry may have been
3746                                  * clipped, merged, or deleted.
3747                                  */
3748                                 if (!vm_map_lookup_entry(map, saved_start,
3749                                                          &tmp_entry))
3750                                         entry = vm_map_entry_succ(tmp_entry);
3751                                 else {
3752                                         entry = tmp_entry;
3753                                         vm_map_clip_start(map, entry,
3754                                                           saved_start);
3755                                 }
3756                         }
3757                         continue;
3758                 }
3759                 vm_map_clip_end(map, entry, end);
3760
3761                 next = vm_map_entry_succ(entry);
3762
3763                 /*
3764                  * Unwire before removing addresses from the pmap; otherwise,
3765                  * unwiring will put the entries back in the pmap.
3766                  */
3767                 if (entry->wired_count != 0)
3768                         vm_map_entry_unwire(map, entry);
3769
3770                 /*
3771                  * Remove mappings for the pages, but only if the
3772                  * mappings could exist.  For instance, it does not
3773                  * make sense to call pmap_remove() for guard entries.
3774                  */
3775                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3776                     entry->object.vm_object != NULL)
3777                         pmap_remove(map->pmap, entry->start, entry->end);
3778
3779                 if (entry->end == map->anon_loc)
3780                         map->anon_loc = entry->start;
3781
3782                 /*
3783                  * Delete the entry only after removing all pmap
3784                  * entries pointing to its pages.  (Otherwise, its
3785                  * page frames may be reallocated, and any modify bits
3786                  * will be set in the wrong object!)
3787                  */
3788                 vm_map_entry_delete(map, entry);
3789                 entry = next;
3790         }
3791         return (KERN_SUCCESS);
3792 }
3793
3794 /*
3795  *      vm_map_remove:
3796  *
3797  *      Remove the given address range from the target map.
3798  *      This is the exported form of vm_map_delete.
3799  */
3800 int
3801 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3802 {
3803         int result;
3804
3805         vm_map_lock(map);
3806         VM_MAP_RANGE_CHECK(map, start, end);
3807         result = vm_map_delete(map, start, end);
3808         vm_map_unlock(map);
3809         return (result);
3810 }
3811
3812 /*
3813  *      vm_map_check_protection:
3814  *
3815  *      Assert that the target map allows the specified privilege on the
3816  *      entire address region given.  The entire region must be allocated.
3817  *
3818  *      WARNING!  This code does not and should not check whether the
3819  *      contents of the region is accessible.  For example a smaller file
3820  *      might be mapped into a larger address space.
3821  *
3822  *      NOTE!  This code is also called by munmap().
3823  *
3824  *      The map must be locked.  A read lock is sufficient.
3825  */
3826 boolean_t
3827 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3828                         vm_prot_t protection)
3829 {
3830         vm_map_entry_t entry;
3831         vm_map_entry_t tmp_entry;
3832
3833         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3834                 return (FALSE);
3835         entry = tmp_entry;
3836
3837         while (start < end) {
3838                 /*
3839                  * No holes allowed!
3840                  */
3841                 if (start < entry->start)
3842                         return (FALSE);
3843                 /*
3844                  * Check protection associated with entry.
3845                  */
3846                 if ((entry->protection & protection) != protection)
3847                         return (FALSE);
3848                 /* go to next entry */
3849                 start = entry->end;
3850                 entry = vm_map_entry_succ(entry);
3851         }
3852         return (TRUE);
3853 }
3854
3855
3856 /*
3857  *
3858  *      vm_map_copy_swap_object:
3859  *
3860  *      Copies a swap-backed object from an existing map entry to a
3861  *      new one.  Carries forward the swap charge.  May change the
3862  *      src object on return.
3863  */
3864 static void
3865 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3866     vm_offset_t size, vm_ooffset_t *fork_charge)
3867 {
3868         vm_object_t src_object;
3869         struct ucred *cred;
3870         int charged;
3871
3872         src_object = src_entry->object.vm_object;
3873         charged = ENTRY_CHARGED(src_entry);
3874         if ((src_object->flags & OBJ_ANON) != 0) {
3875                 VM_OBJECT_WLOCK(src_object);
3876                 vm_object_collapse(src_object);
3877                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3878                         vm_object_split(src_entry);
3879                         src_object = src_entry->object.vm_object;
3880                 }
3881                 vm_object_reference_locked(src_object);
3882                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3883                 VM_OBJECT_WUNLOCK(src_object);
3884         } else
3885                 vm_object_reference(src_object);
3886         if (src_entry->cred != NULL &&
3887             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3888                 KASSERT(src_object->cred == NULL,
3889                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3890                      src_object));
3891                 src_object->cred = src_entry->cred;
3892                 src_object->charge = size;
3893         }
3894         dst_entry->object.vm_object = src_object;
3895         if (charged) {
3896                 cred = curthread->td_ucred;
3897                 crhold(cred);
3898                 dst_entry->cred = cred;
3899                 *fork_charge += size;
3900                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3901                         crhold(cred);
3902                         src_entry->cred = cred;
3903                         *fork_charge += size;
3904                 }
3905         }
3906 }
3907
3908 /*
3909  *      vm_map_copy_entry:
3910  *
3911  *      Copies the contents of the source entry to the destination
3912  *      entry.  The entries *must* be aligned properly.
3913  */
3914 static void
3915 vm_map_copy_entry(
3916         vm_map_t src_map,
3917         vm_map_t dst_map,
3918         vm_map_entry_t src_entry,
3919         vm_map_entry_t dst_entry,
3920         vm_ooffset_t *fork_charge)
3921 {
3922         vm_object_t src_object;
3923         vm_map_entry_t fake_entry;
3924         vm_offset_t size;
3925
3926         VM_MAP_ASSERT_LOCKED(dst_map);
3927
3928         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3929                 return;
3930
3931         if (src_entry->wired_count == 0 ||
3932             (src_entry->protection & VM_PROT_WRITE) == 0) {
3933                 /*
3934                  * If the source entry is marked needs_copy, it is already
3935                  * write-protected.
3936                  */
3937                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3938                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3939                         pmap_protect(src_map->pmap,
3940                             src_entry->start,
3941                             src_entry->end,
3942                             src_entry->protection & ~VM_PROT_WRITE);
3943                 }
3944
3945                 /*
3946                  * Make a copy of the object.
3947                  */
3948                 size = src_entry->end - src_entry->start;
3949                 if ((src_object = src_entry->object.vm_object) != NULL) {
3950                         if (src_object->type == OBJT_DEFAULT ||
3951                             src_object->type == OBJT_SWAP) {
3952                                 vm_map_copy_swap_object(src_entry, dst_entry,
3953                                     size, fork_charge);
3954                                 /* May have split/collapsed, reload obj. */
3955                                 src_object = src_entry->object.vm_object;
3956                         } else {
3957                                 vm_object_reference(src_object);
3958                                 dst_entry->object.vm_object = src_object;
3959                         }
3960                         src_entry->eflags |= MAP_ENTRY_COW |
3961                             MAP_ENTRY_NEEDS_COPY;
3962                         dst_entry->eflags |= MAP_ENTRY_COW |
3963                             MAP_ENTRY_NEEDS_COPY;
3964                         dst_entry->offset = src_entry->offset;
3965                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3966                                 /*
3967                                  * MAP_ENTRY_WRITECNT cannot
3968                                  * indicate write reference from
3969                                  * src_entry, since the entry is
3970                                  * marked as needs copy.  Allocate a
3971                                  * fake entry that is used to
3972                                  * decrement object->un_pager writecount
3973                                  * at the appropriate time.  Attach
3974                                  * fake_entry to the deferred list.
3975                                  */
3976                                 fake_entry = vm_map_entry_create(dst_map);
3977                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
3978                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3979                                 vm_object_reference(src_object);
3980                                 fake_entry->object.vm_object = src_object;
3981                                 fake_entry->start = src_entry->start;
3982                                 fake_entry->end = src_entry->end;
3983                                 fake_entry->defer_next =
3984                                     curthread->td_map_def_user;
3985                                 curthread->td_map_def_user = fake_entry;
3986                         }
3987
3988                         pmap_copy(dst_map->pmap, src_map->pmap,
3989                             dst_entry->start, dst_entry->end - dst_entry->start,
3990                             src_entry->start);
3991                 } else {
3992                         dst_entry->object.vm_object = NULL;
3993                         dst_entry->offset = 0;
3994                         if (src_entry->cred != NULL) {
3995                                 dst_entry->cred = curthread->td_ucred;
3996                                 crhold(dst_entry->cred);
3997                                 *fork_charge += size;
3998                         }
3999                 }
4000         } else {
4001                 /*
4002                  * We don't want to make writeable wired pages copy-on-write.
4003                  * Immediately copy these pages into the new map by simulating
4004                  * page faults.  The new pages are pageable.
4005                  */
4006                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4007                     fork_charge);
4008         }
4009 }
4010
4011 /*
4012  * vmspace_map_entry_forked:
4013  * Update the newly-forked vmspace each time a map entry is inherited
4014  * or copied.  The values for vm_dsize and vm_tsize are approximate
4015  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4016  */
4017 static void
4018 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4019     vm_map_entry_t entry)
4020 {
4021         vm_size_t entrysize;
4022         vm_offset_t newend;
4023
4024         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4025                 return;
4026         entrysize = entry->end - entry->start;
4027         vm2->vm_map.size += entrysize;
4028         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4029                 vm2->vm_ssize += btoc(entrysize);
4030         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4031             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4032                 newend = MIN(entry->end,
4033                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4034                 vm2->vm_dsize += btoc(newend - entry->start);
4035         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4036             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4037                 newend = MIN(entry->end,
4038                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4039                 vm2->vm_tsize += btoc(newend - entry->start);
4040         }
4041 }
4042
4043 /*
4044  * vmspace_fork:
4045  * Create a new process vmspace structure and vm_map
4046  * based on those of an existing process.  The new map
4047  * is based on the old map, according to the inheritance
4048  * values on the regions in that map.
4049  *
4050  * XXX It might be worth coalescing the entries added to the new vmspace.
4051  *
4052  * The source map must not be locked.
4053  */
4054 struct vmspace *
4055 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4056 {
4057         struct vmspace *vm2;
4058         vm_map_t new_map, old_map;
4059         vm_map_entry_t new_entry, old_entry;
4060         vm_object_t object;
4061         int error, locked;
4062         vm_inherit_t inh;
4063
4064         old_map = &vm1->vm_map;
4065         /* Copy immutable fields of vm1 to vm2. */
4066         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4067             pmap_pinit);
4068         if (vm2 == NULL)
4069                 return (NULL);
4070
4071         vm2->vm_taddr = vm1->vm_taddr;
4072         vm2->vm_daddr = vm1->vm_daddr;
4073         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4074         vm_map_lock(old_map);
4075         if (old_map->busy)
4076                 vm_map_wait_busy(old_map);
4077         new_map = &vm2->vm_map;
4078         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4079         KASSERT(locked, ("vmspace_fork: lock failed"));
4080
4081         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4082         if (error != 0) {
4083                 sx_xunlock(&old_map->lock);
4084                 sx_xunlock(&new_map->lock);
4085                 vm_map_process_deferred();
4086                 vmspace_free(vm2);
4087                 return (NULL);
4088         }
4089
4090         new_map->anon_loc = old_map->anon_loc;
4091
4092         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4093                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4094                         panic("vm_map_fork: encountered a submap");
4095
4096                 inh = old_entry->inheritance;
4097                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4098                     inh != VM_INHERIT_NONE)
4099                         inh = VM_INHERIT_COPY;
4100
4101                 switch (inh) {
4102                 case VM_INHERIT_NONE:
4103                         break;
4104
4105                 case VM_INHERIT_SHARE:
4106                         /*
4107                          * Clone the entry, creating the shared object if
4108                          * necessary.
4109                          */
4110                         object = old_entry->object.vm_object;
4111                         if (object == NULL) {
4112                                 vm_map_entry_back(old_entry);
4113                                 object = old_entry->object.vm_object;
4114                         }
4115
4116                         /*
4117                          * Add the reference before calling vm_object_shadow
4118                          * to insure that a shadow object is created.
4119                          */
4120                         vm_object_reference(object);
4121                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4122                                 vm_object_shadow(&old_entry->object.vm_object,
4123                                     &old_entry->offset,
4124                                     old_entry->end - old_entry->start,
4125                                     old_entry->cred,
4126                                     /* Transfer the second reference too. */
4127                                     true);
4128                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4129                                 old_entry->cred = NULL;
4130
4131                                 /*
4132                                  * As in vm_map_merged_neighbor_dispose(),
4133                                  * the vnode lock will not be acquired in
4134                                  * this call to vm_object_deallocate().
4135                                  */
4136                                 vm_object_deallocate(object);
4137                                 object = old_entry->object.vm_object;
4138                         } else {
4139                                 VM_OBJECT_WLOCK(object);
4140                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4141                                 if (old_entry->cred != NULL) {
4142                                         KASSERT(object->cred == NULL,
4143                                             ("vmspace_fork both cred"));
4144                                         object->cred = old_entry->cred;
4145                                         object->charge = old_entry->end -
4146                                             old_entry->start;
4147                                         old_entry->cred = NULL;
4148                                 }
4149
4150                                 /*
4151                                  * Assert the correct state of the vnode
4152                                  * v_writecount while the object is locked, to
4153                                  * not relock it later for the assertion
4154                                  * correctness.
4155                                  */
4156                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4157                                     object->type == OBJT_VNODE) {
4158                                         KASSERT(((struct vnode *)object->
4159                                             handle)->v_writecount > 0,
4160                                             ("vmspace_fork: v_writecount %p",
4161                                             object));
4162                                         KASSERT(object->un_pager.vnp.
4163                                             writemappings > 0,
4164                                             ("vmspace_fork: vnp.writecount %p",
4165                                             object));
4166                                 }
4167                                 VM_OBJECT_WUNLOCK(object);
4168                         }
4169
4170                         /*
4171                          * Clone the entry, referencing the shared object.
4172                          */
4173                         new_entry = vm_map_entry_create(new_map);
4174                         *new_entry = *old_entry;
4175                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4176                             MAP_ENTRY_IN_TRANSITION);
4177                         new_entry->wiring_thread = NULL;
4178                         new_entry->wired_count = 0;
4179                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4180                                 vm_pager_update_writecount(object,
4181                                     new_entry->start, new_entry->end);
4182                         }
4183                         vm_map_entry_set_vnode_text(new_entry, true);
4184
4185                         /*
4186                          * Insert the entry into the new map -- we know we're
4187                          * inserting at the end of the new map.
4188                          */
4189                         vm_map_entry_link(new_map, new_entry);
4190                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4191
4192                         /*
4193                          * Update the physical map
4194                          */
4195                         pmap_copy(new_map->pmap, old_map->pmap,
4196                             new_entry->start,
4197                             (old_entry->end - old_entry->start),
4198                             old_entry->start);
4199                         break;
4200
4201                 case VM_INHERIT_COPY:
4202                         /*
4203                          * Clone the entry and link into the map.
4204                          */
4205                         new_entry = vm_map_entry_create(new_map);
4206                         *new_entry = *old_entry;
4207                         /*
4208                          * Copied entry is COW over the old object.
4209                          */
4210                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4211                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4212                         new_entry->wiring_thread = NULL;
4213                         new_entry->wired_count = 0;
4214                         new_entry->object.vm_object = NULL;
4215                         new_entry->cred = NULL;
4216                         vm_map_entry_link(new_map, new_entry);
4217                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4218                         vm_map_copy_entry(old_map, new_map, old_entry,
4219                             new_entry, fork_charge);
4220                         vm_map_entry_set_vnode_text(new_entry, true);
4221                         break;
4222
4223                 case VM_INHERIT_ZERO:
4224                         /*
4225                          * Create a new anonymous mapping entry modelled from
4226                          * the old one.
4227                          */
4228                         new_entry = vm_map_entry_create(new_map);
4229                         memset(new_entry, 0, sizeof(*new_entry));
4230
4231                         new_entry->start = old_entry->start;
4232                         new_entry->end = old_entry->end;
4233                         new_entry->eflags = old_entry->eflags &
4234                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4235                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4236                         new_entry->protection = old_entry->protection;
4237                         new_entry->max_protection = old_entry->max_protection;
4238                         new_entry->inheritance = VM_INHERIT_ZERO;
4239
4240                         vm_map_entry_link(new_map, new_entry);
4241                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4242
4243                         new_entry->cred = curthread->td_ucred;
4244                         crhold(new_entry->cred);
4245                         *fork_charge += (new_entry->end - new_entry->start);
4246
4247                         break;
4248                 }
4249         }
4250         /*
4251          * Use inlined vm_map_unlock() to postpone handling the deferred
4252          * map entries, which cannot be done until both old_map and
4253          * new_map locks are released.
4254          */
4255         sx_xunlock(&old_map->lock);
4256         sx_xunlock(&new_map->lock);
4257         vm_map_process_deferred();
4258
4259         return (vm2);
4260 }
4261
4262 /*
4263  * Create a process's stack for exec_new_vmspace().  This function is never
4264  * asked to wire the newly created stack.
4265  */
4266 int
4267 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4268     vm_prot_t prot, vm_prot_t max, int cow)
4269 {
4270         vm_size_t growsize, init_ssize;
4271         rlim_t vmemlim;
4272         int rv;
4273
4274         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4275         growsize = sgrowsiz;
4276         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4277         vm_map_lock(map);
4278         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4279         /* If we would blow our VMEM resource limit, no go */
4280         if (map->size + init_ssize > vmemlim) {
4281                 rv = KERN_NO_SPACE;
4282                 goto out;
4283         }
4284         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4285             max, cow);
4286 out:
4287         vm_map_unlock(map);
4288         return (rv);
4289 }
4290
4291 static int stack_guard_page = 1;
4292 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4293     &stack_guard_page, 0,
4294     "Specifies the number of guard pages for a stack that grows");
4295
4296 static int
4297 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4298     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4299 {
4300         vm_map_entry_t new_entry, prev_entry;
4301         vm_offset_t bot, gap_bot, gap_top, top;
4302         vm_size_t init_ssize, sgp;
4303         int orient, rv;
4304
4305         /*
4306          * The stack orientation is piggybacked with the cow argument.
4307          * Extract it into orient and mask the cow argument so that we
4308          * don't pass it around further.
4309          */
4310         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4311         KASSERT(orient != 0, ("No stack grow direction"));
4312         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4313             ("bi-dir stack"));
4314
4315         if (addrbos < vm_map_min(map) ||
4316             addrbos + max_ssize > vm_map_max(map) ||
4317             addrbos + max_ssize <= addrbos)
4318                 return (KERN_INVALID_ADDRESS);
4319         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4320             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4321             (vm_size_t)stack_guard_page * PAGE_SIZE;
4322         if (sgp >= max_ssize)
4323                 return (KERN_INVALID_ARGUMENT);
4324
4325         init_ssize = growsize;
4326         if (max_ssize < init_ssize + sgp)
4327                 init_ssize = max_ssize - sgp;
4328
4329         /* If addr is already mapped, no go */
4330         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4331                 return (KERN_NO_SPACE);
4332
4333         /*
4334          * If we can't accommodate max_ssize in the current mapping, no go.
4335          */
4336         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4337                 return (KERN_NO_SPACE);
4338
4339         /*
4340          * We initially map a stack of only init_ssize.  We will grow as
4341          * needed later.  Depending on the orientation of the stack (i.e.
4342          * the grow direction) we either map at the top of the range, the
4343          * bottom of the range or in the middle.
4344          *
4345          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4346          * and cow to be 0.  Possibly we should eliminate these as input
4347          * parameters, and just pass these values here in the insert call.
4348          */
4349         if (orient == MAP_STACK_GROWS_DOWN) {
4350                 bot = addrbos + max_ssize - init_ssize;
4351                 top = bot + init_ssize;
4352                 gap_bot = addrbos;
4353                 gap_top = bot;
4354         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4355                 bot = addrbos;
4356                 top = bot + init_ssize;
4357                 gap_bot = top;
4358                 gap_top = addrbos + max_ssize;
4359         }
4360         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4361         if (rv != KERN_SUCCESS)
4362                 return (rv);
4363         new_entry = vm_map_entry_succ(prev_entry);
4364         KASSERT(new_entry->end == top || new_entry->start == bot,
4365             ("Bad entry start/end for new stack entry"));
4366         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4367             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4368             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4369         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4370             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4371             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4372         if (gap_bot == gap_top)
4373                 return (KERN_SUCCESS);
4374         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4375             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4376             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4377         if (rv == KERN_SUCCESS) {
4378                 /*
4379                  * Gap can never successfully handle a fault, so
4380                  * read-ahead logic is never used for it.  Re-use
4381                  * next_read of the gap entry to store
4382                  * stack_guard_page for vm_map_growstack().
4383                  */
4384                 if (orient == MAP_STACK_GROWS_DOWN)
4385                         vm_map_entry_pred(new_entry)->next_read = sgp;
4386                 else
4387                         vm_map_entry_succ(new_entry)->next_read = sgp;
4388         } else {
4389                 (void)vm_map_delete(map, bot, top);
4390         }
4391         return (rv);
4392 }
4393
4394 /*
4395  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4396  * successfully grow the stack.
4397  */
4398 static int
4399 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4400 {
4401         vm_map_entry_t stack_entry;
4402         struct proc *p;
4403         struct vmspace *vm;
4404         struct ucred *cred;
4405         vm_offset_t gap_end, gap_start, grow_start;
4406         vm_size_t grow_amount, guard, max_grow;
4407         rlim_t lmemlim, stacklim, vmemlim;
4408         int rv, rv1;
4409         bool gap_deleted, grow_down, is_procstack;
4410 #ifdef notyet
4411         uint64_t limit;
4412 #endif
4413 #ifdef RACCT
4414         int error;
4415 #endif
4416
4417         p = curproc;
4418         vm = p->p_vmspace;
4419
4420         /*
4421          * Disallow stack growth when the access is performed by a
4422          * debugger or AIO daemon.  The reason is that the wrong
4423          * resource limits are applied.
4424          */
4425         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4426             p->p_textvp == NULL))
4427                 return (KERN_FAILURE);
4428
4429         MPASS(!map->system_map);
4430
4431         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4432         stacklim = lim_cur(curthread, RLIMIT_STACK);
4433         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4434 retry:
4435         /* If addr is not in a hole for a stack grow area, no need to grow. */
4436         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4437                 return (KERN_FAILURE);
4438         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4439                 return (KERN_SUCCESS);
4440         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4441                 stack_entry = vm_map_entry_succ(gap_entry);
4442                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4443                     stack_entry->start != gap_entry->end)
4444                         return (KERN_FAILURE);
4445                 grow_amount = round_page(stack_entry->start - addr);
4446                 grow_down = true;
4447         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4448                 stack_entry = vm_map_entry_pred(gap_entry);
4449                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4450                     stack_entry->end != gap_entry->start)
4451                         return (KERN_FAILURE);
4452                 grow_amount = round_page(addr + 1 - stack_entry->end);
4453                 grow_down = false;
4454         } else {
4455                 return (KERN_FAILURE);
4456         }
4457         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4458             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4459             gap_entry->next_read;
4460         max_grow = gap_entry->end - gap_entry->start;
4461         if (guard > max_grow)
4462                 return (KERN_NO_SPACE);
4463         max_grow -= guard;
4464         if (grow_amount > max_grow)
4465                 return (KERN_NO_SPACE);
4466
4467         /*
4468          * If this is the main process stack, see if we're over the stack
4469          * limit.
4470          */
4471         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4472             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4473         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4474                 return (KERN_NO_SPACE);
4475
4476 #ifdef RACCT
4477         if (racct_enable) {
4478                 PROC_LOCK(p);
4479                 if (is_procstack && racct_set(p, RACCT_STACK,
4480                     ctob(vm->vm_ssize) + grow_amount)) {
4481                         PROC_UNLOCK(p);
4482                         return (KERN_NO_SPACE);
4483                 }
4484                 PROC_UNLOCK(p);
4485         }
4486 #endif
4487
4488         grow_amount = roundup(grow_amount, sgrowsiz);
4489         if (grow_amount > max_grow)
4490                 grow_amount = max_grow;
4491         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4492                 grow_amount = trunc_page((vm_size_t)stacklim) -
4493                     ctob(vm->vm_ssize);
4494         }
4495
4496 #ifdef notyet
4497         PROC_LOCK(p);
4498         limit = racct_get_available(p, RACCT_STACK);
4499         PROC_UNLOCK(p);
4500         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4501                 grow_amount = limit - ctob(vm->vm_ssize);
4502 #endif
4503
4504         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4505                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4506                         rv = KERN_NO_SPACE;
4507                         goto out;
4508                 }
4509 #ifdef RACCT
4510                 if (racct_enable) {
4511                         PROC_LOCK(p);
4512                         if (racct_set(p, RACCT_MEMLOCK,
4513                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4514                                 PROC_UNLOCK(p);
4515                                 rv = KERN_NO_SPACE;
4516                                 goto out;
4517                         }
4518                         PROC_UNLOCK(p);
4519                 }
4520 #endif
4521         }
4522
4523         /* If we would blow our VMEM resource limit, no go */
4524         if (map->size + grow_amount > vmemlim) {
4525                 rv = KERN_NO_SPACE;
4526                 goto out;
4527         }
4528 #ifdef RACCT
4529         if (racct_enable) {
4530                 PROC_LOCK(p);
4531                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4532                         PROC_UNLOCK(p);
4533                         rv = KERN_NO_SPACE;
4534                         goto out;
4535                 }
4536                 PROC_UNLOCK(p);
4537         }
4538 #endif
4539
4540         if (vm_map_lock_upgrade(map)) {
4541                 gap_entry = NULL;
4542                 vm_map_lock_read(map);
4543                 goto retry;
4544         }
4545
4546         if (grow_down) {
4547                 grow_start = gap_entry->end - grow_amount;
4548                 if (gap_entry->start + grow_amount == gap_entry->end) {
4549                         gap_start = gap_entry->start;
4550                         gap_end = gap_entry->end;
4551                         vm_map_entry_delete(map, gap_entry);
4552                         gap_deleted = true;
4553                 } else {
4554                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4555                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4556                         gap_deleted = false;
4557                 }
4558                 rv = vm_map_insert(map, NULL, 0, grow_start,
4559                     grow_start + grow_amount,
4560                     stack_entry->protection, stack_entry->max_protection,
4561                     MAP_STACK_GROWS_DOWN);
4562                 if (rv != KERN_SUCCESS) {
4563                         if (gap_deleted) {
4564                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4565                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4566                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4567                                 MPASS(rv1 == KERN_SUCCESS);
4568                         } else
4569                                 vm_map_entry_resize(map, gap_entry,
4570                                     grow_amount);
4571                 }
4572         } else {
4573                 grow_start = stack_entry->end;
4574                 cred = stack_entry->cred;
4575                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4576                         cred = stack_entry->object.vm_object->cred;
4577                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4578                         rv = KERN_NO_SPACE;
4579                 /* Grow the underlying object if applicable. */
4580                 else if (stack_entry->object.vm_object == NULL ||
4581                     vm_object_coalesce(stack_entry->object.vm_object,
4582                     stack_entry->offset,
4583                     (vm_size_t)(stack_entry->end - stack_entry->start),
4584                     grow_amount, cred != NULL)) {
4585                         if (gap_entry->start + grow_amount == gap_entry->end) {
4586                                 vm_map_entry_delete(map, gap_entry);
4587                                 vm_map_entry_resize(map, stack_entry,
4588                                     grow_amount);
4589                         } else {
4590                                 gap_entry->start += grow_amount;
4591                                 stack_entry->end += grow_amount;
4592                         }
4593                         map->size += grow_amount;
4594                         rv = KERN_SUCCESS;
4595                 } else
4596                         rv = KERN_FAILURE;
4597         }
4598         if (rv == KERN_SUCCESS && is_procstack)
4599                 vm->vm_ssize += btoc(grow_amount);
4600
4601         /*
4602          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4603          */
4604         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4605                 rv = vm_map_wire_locked(map, grow_start,
4606                     grow_start + grow_amount,
4607                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4608         }
4609         vm_map_lock_downgrade(map);
4610
4611 out:
4612 #ifdef RACCT
4613         if (racct_enable && rv != KERN_SUCCESS) {
4614                 PROC_LOCK(p);
4615                 error = racct_set(p, RACCT_VMEM, map->size);
4616                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4617                 if (!old_mlock) {
4618                         error = racct_set(p, RACCT_MEMLOCK,
4619                             ptoa(pmap_wired_count(map->pmap)));
4620                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4621                 }
4622                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4623                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4624                 PROC_UNLOCK(p);
4625         }
4626 #endif
4627
4628         return (rv);
4629 }
4630
4631 /*
4632  * Unshare the specified VM space for exec.  If other processes are
4633  * mapped to it, then create a new one.  The new vmspace is null.
4634  */
4635 int
4636 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4637 {
4638         struct vmspace *oldvmspace = p->p_vmspace;
4639         struct vmspace *newvmspace;
4640
4641         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4642             ("vmspace_exec recursed"));
4643         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4644         if (newvmspace == NULL)
4645                 return (ENOMEM);
4646         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4647         /*
4648          * This code is written like this for prototype purposes.  The
4649          * goal is to avoid running down the vmspace here, but let the
4650          * other process's that are still using the vmspace to finally
4651          * run it down.  Even though there is little or no chance of blocking
4652          * here, it is a good idea to keep this form for future mods.
4653          */
4654         PROC_VMSPACE_LOCK(p);
4655         p->p_vmspace = newvmspace;
4656         PROC_VMSPACE_UNLOCK(p);
4657         if (p == curthread->td_proc)
4658                 pmap_activate(curthread);
4659         curthread->td_pflags |= TDP_EXECVMSPC;
4660         return (0);
4661 }
4662
4663 /*
4664  * Unshare the specified VM space for forcing COW.  This
4665  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4666  */
4667 int
4668 vmspace_unshare(struct proc *p)
4669 {
4670         struct vmspace *oldvmspace = p->p_vmspace;
4671         struct vmspace *newvmspace;
4672         vm_ooffset_t fork_charge;
4673
4674         if (oldvmspace->vm_refcnt == 1)
4675                 return (0);
4676         fork_charge = 0;
4677         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4678         if (newvmspace == NULL)
4679                 return (ENOMEM);
4680         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4681                 vmspace_free(newvmspace);
4682                 return (ENOMEM);
4683         }
4684         PROC_VMSPACE_LOCK(p);
4685         p->p_vmspace = newvmspace;
4686         PROC_VMSPACE_UNLOCK(p);
4687         if (p == curthread->td_proc)
4688                 pmap_activate(curthread);
4689         vmspace_free(oldvmspace);
4690         return (0);
4691 }
4692
4693 /*
4694  *      vm_map_lookup:
4695  *
4696  *      Finds the VM object, offset, and
4697  *      protection for a given virtual address in the
4698  *      specified map, assuming a page fault of the
4699  *      type specified.
4700  *
4701  *      Leaves the map in question locked for read; return
4702  *      values are guaranteed until a vm_map_lookup_done
4703  *      call is performed.  Note that the map argument
4704  *      is in/out; the returned map must be used in
4705  *      the call to vm_map_lookup_done.
4706  *
4707  *      A handle (out_entry) is returned for use in
4708  *      vm_map_lookup_done, to make that fast.
4709  *
4710  *      If a lookup is requested with "write protection"
4711  *      specified, the map may be changed to perform virtual
4712  *      copying operations, although the data referenced will
4713  *      remain the same.
4714  */
4715 int
4716 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4717               vm_offset_t vaddr,
4718               vm_prot_t fault_typea,
4719               vm_map_entry_t *out_entry,        /* OUT */
4720               vm_object_t *object,              /* OUT */
4721               vm_pindex_t *pindex,              /* OUT */
4722               vm_prot_t *out_prot,              /* OUT */
4723               boolean_t *wired)                 /* OUT */
4724 {
4725         vm_map_entry_t entry;
4726         vm_map_t map = *var_map;
4727         vm_prot_t prot;
4728         vm_prot_t fault_type;
4729         vm_object_t eobject;
4730         vm_size_t size;
4731         struct ucred *cred;
4732
4733 RetryLookup:
4734
4735         vm_map_lock_read(map);
4736
4737 RetryLookupLocked:
4738         /*
4739          * Lookup the faulting address.
4740          */
4741         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4742                 vm_map_unlock_read(map);
4743                 return (KERN_INVALID_ADDRESS);
4744         }
4745
4746         entry = *out_entry;
4747
4748         /*
4749          * Handle submaps.
4750          */
4751         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4752                 vm_map_t old_map = map;
4753
4754                 *var_map = map = entry->object.sub_map;
4755                 vm_map_unlock_read(old_map);
4756                 goto RetryLookup;
4757         }
4758
4759         /*
4760          * Check whether this task is allowed to have this page.
4761          */
4762         prot = entry->protection;
4763         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4764                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4765                 if (prot == VM_PROT_NONE && map != kernel_map &&
4766                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4767                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4768                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4769                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4770                         goto RetryLookupLocked;
4771         }
4772         fault_type = fault_typea & VM_PROT_ALL;
4773         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4774                 vm_map_unlock_read(map);
4775                 return (KERN_PROTECTION_FAILURE);
4776         }
4777         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4778             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4779             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4780             ("entry %p flags %x", entry, entry->eflags));
4781         if ((fault_typea & VM_PROT_COPY) != 0 &&
4782             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4783             (entry->eflags & MAP_ENTRY_COW) == 0) {
4784                 vm_map_unlock_read(map);
4785                 return (KERN_PROTECTION_FAILURE);
4786         }
4787
4788         /*
4789          * If this page is not pageable, we have to get it for all possible
4790          * accesses.
4791          */
4792         *wired = (entry->wired_count != 0);
4793         if (*wired)
4794                 fault_type = entry->protection;
4795         size = entry->end - entry->start;
4796
4797         /*
4798          * If the entry was copy-on-write, we either ...
4799          */
4800         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4801                 /*
4802                  * If we want to write the page, we may as well handle that
4803                  * now since we've got the map locked.
4804                  *
4805                  * If we don't need to write the page, we just demote the
4806                  * permissions allowed.
4807                  */
4808                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4809                     (fault_typea & VM_PROT_COPY) != 0) {
4810                         /*
4811                          * Make a new object, and place it in the object
4812                          * chain.  Note that no new references have appeared
4813                          * -- one just moved from the map to the new
4814                          * object.
4815                          */
4816                         if (vm_map_lock_upgrade(map))
4817                                 goto RetryLookup;
4818
4819                         if (entry->cred == NULL) {
4820                                 /*
4821                                  * The debugger owner is charged for
4822                                  * the memory.
4823                                  */
4824                                 cred = curthread->td_ucred;
4825                                 crhold(cred);
4826                                 if (!swap_reserve_by_cred(size, cred)) {
4827                                         crfree(cred);
4828                                         vm_map_unlock(map);
4829                                         return (KERN_RESOURCE_SHORTAGE);
4830                                 }
4831                                 entry->cred = cred;
4832                         }
4833                         eobject = entry->object.vm_object;
4834                         vm_object_shadow(&entry->object.vm_object,
4835                             &entry->offset, size, entry->cred, false);
4836                         if (eobject == entry->object.vm_object) {
4837                                 /*
4838                                  * The object was not shadowed.
4839                                  */
4840                                 swap_release_by_cred(size, entry->cred);
4841                                 crfree(entry->cred);
4842                         }
4843                         entry->cred = NULL;
4844                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4845
4846                         vm_map_lock_downgrade(map);
4847                 } else {
4848                         /*
4849                          * We're attempting to read a copy-on-write page --
4850                          * don't allow writes.
4851                          */
4852                         prot &= ~VM_PROT_WRITE;
4853                 }
4854         }
4855
4856         /*
4857          * Create an object if necessary.
4858          */
4859         if (entry->object.vm_object == NULL && !map->system_map) {
4860                 if (vm_map_lock_upgrade(map))
4861                         goto RetryLookup;
4862                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
4863                     NULL, entry->cred, entry->cred != NULL ? size : 0);
4864                 entry->offset = 0;
4865                 entry->cred = NULL;
4866                 vm_map_lock_downgrade(map);
4867         }
4868
4869         /*
4870          * Return the object/offset from this entry.  If the entry was
4871          * copy-on-write or empty, it has been fixed up.
4872          */
4873         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4874         *object = entry->object.vm_object;
4875
4876         *out_prot = prot;
4877         return (KERN_SUCCESS);
4878 }
4879
4880 /*
4881  *      vm_map_lookup_locked:
4882  *
4883  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4884  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4885  */
4886 int
4887 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4888                      vm_offset_t vaddr,
4889                      vm_prot_t fault_typea,
4890                      vm_map_entry_t *out_entry, /* OUT */
4891                      vm_object_t *object,       /* OUT */
4892                      vm_pindex_t *pindex,       /* OUT */
4893                      vm_prot_t *out_prot,       /* OUT */
4894                      boolean_t *wired)          /* OUT */
4895 {
4896         vm_map_entry_t entry;
4897         vm_map_t map = *var_map;
4898         vm_prot_t prot;
4899         vm_prot_t fault_type = fault_typea;
4900
4901         /*
4902          * Lookup the faulting address.
4903          */
4904         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4905                 return (KERN_INVALID_ADDRESS);
4906
4907         entry = *out_entry;
4908
4909         /*
4910          * Fail if the entry refers to a submap.
4911          */
4912         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4913                 return (KERN_FAILURE);
4914
4915         /*
4916          * Check whether this task is allowed to have this page.
4917          */
4918         prot = entry->protection;
4919         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4920         if ((fault_type & prot) != fault_type)
4921                 return (KERN_PROTECTION_FAILURE);
4922
4923         /*
4924          * If this page is not pageable, we have to get it for all possible
4925          * accesses.
4926          */
4927         *wired = (entry->wired_count != 0);
4928         if (*wired)
4929                 fault_type = entry->protection;
4930
4931         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4932                 /*
4933                  * Fail if the entry was copy-on-write for a write fault.
4934                  */
4935                 if (fault_type & VM_PROT_WRITE)
4936                         return (KERN_FAILURE);
4937                 /*
4938                  * We're attempting to read a copy-on-write page --
4939                  * don't allow writes.
4940                  */
4941                 prot &= ~VM_PROT_WRITE;
4942         }
4943
4944         /*
4945          * Fail if an object should be created.
4946          */
4947         if (entry->object.vm_object == NULL && !map->system_map)
4948                 return (KERN_FAILURE);
4949
4950         /*
4951          * Return the object/offset from this entry.  If the entry was
4952          * copy-on-write or empty, it has been fixed up.
4953          */
4954         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4955         *object = entry->object.vm_object;
4956
4957         *out_prot = prot;
4958         return (KERN_SUCCESS);
4959 }
4960
4961 /*
4962  *      vm_map_lookup_done:
4963  *
4964  *      Releases locks acquired by a vm_map_lookup
4965  *      (according to the handle returned by that lookup).
4966  */
4967 void
4968 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4969 {
4970         /*
4971          * Unlock the main-level map
4972          */
4973         vm_map_unlock_read(map);
4974 }
4975
4976 vm_offset_t
4977 vm_map_max_KBI(const struct vm_map *map)
4978 {
4979
4980         return (vm_map_max(map));
4981 }
4982
4983 vm_offset_t
4984 vm_map_min_KBI(const struct vm_map *map)
4985 {
4986
4987         return (vm_map_min(map));
4988 }
4989
4990 pmap_t
4991 vm_map_pmap_KBI(vm_map_t map)
4992 {
4993
4994         return (map->pmap);
4995 }
4996
4997 #ifdef INVARIANTS
4998 static void
4999 _vm_map_assert_consistent(vm_map_t map, int check)
5000 {
5001         vm_map_entry_t entry, prev;
5002         vm_map_entry_t cur, header, lbound, ubound;
5003         vm_size_t max_left, max_right;
5004
5005 #ifdef DIAGNOSTIC
5006         ++map->nupdates;
5007 #endif
5008         if (enable_vmmap_check != check)
5009                 return;
5010
5011         header = prev = &map->header;
5012         VM_MAP_ENTRY_FOREACH(entry, map) {
5013                 KASSERT(prev->end <= entry->start,
5014                     ("map %p prev->end = %jx, start = %jx", map,
5015                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5016                 KASSERT(entry->start < entry->end,
5017                     ("map %p start = %jx, end = %jx", map,
5018                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5019                 KASSERT(entry->left == header ||
5020                     entry->left->start < entry->start,
5021                     ("map %p left->start = %jx, start = %jx", map,
5022                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5023                 KASSERT(entry->right == header ||
5024                     entry->start < entry->right->start,
5025                     ("map %p start = %jx, right->start = %jx", map,
5026                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5027                 cur = map->root;
5028                 lbound = ubound = header;
5029                 for (;;) {
5030                         if (entry->start < cur->start) {
5031                                 ubound = cur;
5032                                 cur = cur->left;
5033                                 KASSERT(cur != lbound,
5034                                     ("map %p cannot find %jx",
5035                                     map, (uintmax_t)entry->start));
5036                         } else if (cur->end <= entry->start) {
5037                                 lbound = cur;
5038                                 cur = cur->right;
5039                                 KASSERT(cur != ubound,
5040                                     ("map %p cannot find %jx",
5041                                     map, (uintmax_t)entry->start));
5042                         } else {
5043                                 KASSERT(cur == entry,
5044                                     ("map %p cannot find %jx",
5045                                     map, (uintmax_t)entry->start));
5046                                 break;
5047                         }
5048                 }
5049                 max_left = vm_map_entry_max_free_left(entry, lbound);
5050                 max_right = vm_map_entry_max_free_right(entry, ubound);
5051                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5052                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5053                     (uintmax_t)entry->max_free,
5054                     (uintmax_t)max_left, (uintmax_t)max_right));
5055                 prev = entry;
5056         }
5057         KASSERT(prev->end <= entry->start,
5058             ("map %p prev->end = %jx, start = %jx", map,
5059             (uintmax_t)prev->end, (uintmax_t)entry->start));
5060 }
5061 #endif
5062
5063 #include "opt_ddb.h"
5064 #ifdef DDB
5065 #include <sys/kernel.h>
5066
5067 #include <ddb/ddb.h>
5068
5069 static void
5070 vm_map_print(vm_map_t map)
5071 {
5072         vm_map_entry_t entry, prev;
5073
5074         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5075             (void *)map,
5076             (void *)map->pmap, map->nentries, map->timestamp);
5077
5078         db_indent += 2;
5079         prev = &map->header;
5080         VM_MAP_ENTRY_FOREACH(entry, map) {
5081                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5082                     (void *)entry, (void *)entry->start, (void *)entry->end,
5083                     entry->eflags);
5084                 {
5085                         static char *inheritance_name[4] =
5086                         {"share", "copy", "none", "donate_copy"};
5087
5088                         db_iprintf(" prot=%x/%x/%s",
5089                             entry->protection,
5090                             entry->max_protection,
5091                             inheritance_name[(int)(unsigned char)
5092                             entry->inheritance]);
5093                         if (entry->wired_count != 0)
5094                                 db_printf(", wired");
5095                 }
5096                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5097                         db_printf(", share=%p, offset=0x%jx\n",
5098                             (void *)entry->object.sub_map,
5099                             (uintmax_t)entry->offset);
5100                         if (prev == &map->header ||
5101                             prev->object.sub_map !=
5102                                 entry->object.sub_map) {
5103                                 db_indent += 2;
5104                                 vm_map_print((vm_map_t)entry->object.sub_map);
5105                                 db_indent -= 2;
5106                         }
5107                 } else {
5108                         if (entry->cred != NULL)
5109                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5110                         db_printf(", object=%p, offset=0x%jx",
5111                             (void *)entry->object.vm_object,
5112                             (uintmax_t)entry->offset);
5113                         if (entry->object.vm_object && entry->object.vm_object->cred)
5114                                 db_printf(", obj ruid %d charge %jx",
5115                                     entry->object.vm_object->cred->cr_ruid,
5116                                     (uintmax_t)entry->object.vm_object->charge);
5117                         if (entry->eflags & MAP_ENTRY_COW)
5118                                 db_printf(", copy (%s)",
5119                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5120                         db_printf("\n");
5121
5122                         if (prev == &map->header ||
5123                             prev->object.vm_object !=
5124                                 entry->object.vm_object) {
5125                                 db_indent += 2;
5126                                 vm_object_print((db_expr_t)(intptr_t)
5127                                                 entry->object.vm_object,
5128                                                 0, 0, (char *)0);
5129                                 db_indent -= 2;
5130                         }
5131                 }
5132                 prev = entry;
5133         }
5134         db_indent -= 2;
5135 }
5136
5137 DB_SHOW_COMMAND(map, map)
5138 {
5139
5140         if (!have_addr) {
5141                 db_printf("usage: show map <addr>\n");
5142                 return;
5143         }
5144         vm_map_print((vm_map_t)addr);
5145 }
5146
5147 DB_SHOW_COMMAND(procvm, procvm)
5148 {
5149         struct proc *p;
5150
5151         if (have_addr) {
5152                 p = db_lookup_proc(addr);
5153         } else {
5154                 p = curproc;
5155         }
5156
5157         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5158             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5159             (void *)vmspace_pmap(p->p_vmspace));
5160
5161         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5162 }
5163
5164 #endif /* DDB */