]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFV r333789: libpcap 1.9.0 (pre-release)
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286
287         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288
289         if (pinit == NULL)
290                 pinit = &pmap_pinit;
291
292         if (!pinit(vmspace_pmap(vm))) {
293                 uma_zfree(vmspace_zone, vm);
294                 return (NULL);
295         }
296         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298         vm->vm_refcnt = 1;
299         vm->vm_shm = NULL;
300         vm->vm_swrss = 0;
301         vm->vm_tsize = 0;
302         vm->vm_dsize = 0;
303         vm->vm_ssize = 0;
304         vm->vm_taddr = 0;
305         vm->vm_daddr = 0;
306         vm->vm_maxsaddr = 0;
307         return (vm);
308 }
309
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314
315         PROC_LOCK(p);
316         racct_set(p, RACCT_DATA, 0);
317         racct_set(p, RACCT_STACK, 0);
318         racct_set(p, RACCT_RSS, 0);
319         racct_set(p, RACCT_MEMLOCK, 0);
320         racct_set(p, RACCT_VMEM, 0);
321         PROC_UNLOCK(p);
322 }
323 #endif
324
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328
329         CTR1(KTR_VM, "vmspace_free: %p", vm);
330
331         /*
332          * Make sure any SysV shm is freed, it might not have been in
333          * exit1().
334          */
335         shmexit(vm);
336
337         /*
338          * Lock the map, to wait out all other references to it.
339          * Delete all of the mappings and pages they hold, then call
340          * the pmap module to reclaim anything left.
341          */
342         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
343             vm->vm_map.max_offset);
344
345         pmap_release(vmspace_pmap(vm));
346         vm->vm_map.pmap = NULL;
347         uma_zfree(vmspace_zone, vm);
348 }
349
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353
354         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355             "vmspace_free() called");
356
357         if (vm->vm_refcnt == 0)
358                 panic("vmspace_free: attempt to free already freed vmspace");
359
360         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361                 vmspace_dofree(vm);
362 }
363
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367         struct vmspace *vm;
368
369         PROC_VMSPACE_LOCK(p);
370         vm = p->p_vmspace;
371         p->p_vmspace = NULL;
372         PROC_VMSPACE_UNLOCK(p);
373         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374         vmspace_free(vm);
375 }
376
377 void
378 vmspace_exit(struct thread *td)
379 {
380         int refcnt;
381         struct vmspace *vm;
382         struct proc *p;
383
384         /*
385          * Release user portion of address space.
386          * This releases references to vnodes,
387          * which could cause I/O if the file has been unlinked.
388          * Need to do this early enough that we can still sleep.
389          *
390          * The last exiting process to reach this point releases as
391          * much of the environment as it can. vmspace_dofree() is the
392          * slower fallback in case another process had a temporary
393          * reference to the vmspace.
394          */
395
396         p = td->td_proc;
397         vm = p->p_vmspace;
398         atomic_add_int(&vmspace0.vm_refcnt, 1);
399         do {
400                 refcnt = vm->vm_refcnt;
401                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402                         /* Switch now since other proc might free vmspace */
403                         PROC_VMSPACE_LOCK(p);
404                         p->p_vmspace = &vmspace0;
405                         PROC_VMSPACE_UNLOCK(p);
406                         pmap_activate(td);
407                 }
408         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409         if (refcnt == 1) {
410                 if (p->p_vmspace != vm) {
411                         /* vmspace not yet freed, switch back */
412                         PROC_VMSPACE_LOCK(p);
413                         p->p_vmspace = vm;
414                         PROC_VMSPACE_UNLOCK(p);
415                         pmap_activate(td);
416                 }
417                 pmap_remove_pages(vmspace_pmap(vm));
418                 /* Switch now since this proc will free vmspace */
419                 PROC_VMSPACE_LOCK(p);
420                 p->p_vmspace = &vmspace0;
421                 PROC_VMSPACE_UNLOCK(p);
422                 pmap_activate(td);
423                 vmspace_dofree(vm);
424         }
425 #ifdef RACCT
426         if (racct_enable)
427                 vmspace_container_reset(p);
428 #endif
429 }
430
431 /* Acquire reference to vmspace owned by another process. */
432
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436         struct vmspace *vm;
437         int refcnt;
438
439         PROC_VMSPACE_LOCK(p);
440         vm = p->p_vmspace;
441         if (vm == NULL) {
442                 PROC_VMSPACE_UNLOCK(p);
443                 return (NULL);
444         }
445         do {
446                 refcnt = vm->vm_refcnt;
447                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
448                         PROC_VMSPACE_UNLOCK(p);
449                         return (NULL);
450                 }
451         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452         if (vm != p->p_vmspace) {
453                 PROC_VMSPACE_UNLOCK(p);
454                 vmspace_free(vm);
455                 return (NULL);
456         }
457         PROC_VMSPACE_UNLOCK(p);
458         return (vm);
459 }
460
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480         struct vmspace *oldvm;
481
482         /* XXX: Need some way to assert that this is an aio daemon. */
483
484         KASSERT(newvm->vm_refcnt > 0,
485             ("vmspace_switch_aio: newvm unreferenced"));
486
487         oldvm = curproc->p_vmspace;
488         if (oldvm == newvm)
489                 return;
490
491         /*
492          * Point to the new address space and refer to it.
493          */
494         curproc->p_vmspace = newvm;
495         atomic_add_int(&newvm->vm_refcnt, 1);
496
497         /* Activate the new mapping. */
498         pmap_activate(curthread);
499
500         /* Remove the daemon's reference to the old address space. */
501         KASSERT(oldvm->vm_refcnt > 1,
502             ("vmspace_switch_aio: oldvm dropping last reference"));
503         vmspace_free(oldvm);
504 }
505
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509
510         if (map->system_map)
511                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
512         else
513                 sx_xlock_(&map->lock, file, line);
514         map->timestamp++;
515 }
516
517 static void
518 vm_map_process_deferred(void)
519 {
520         struct thread *td;
521         vm_map_entry_t entry, next;
522         vm_object_t object;
523
524         td = curthread;
525         entry = td->td_map_def_user;
526         td->td_map_def_user = NULL;
527         while (entry != NULL) {
528                 next = entry->next;
529                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530                         /*
531                          * Decrement the object's writemappings and
532                          * possibly the vnode's v_writecount.
533                          */
534                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535                             ("Submap with writecount"));
536                         object = entry->object.vm_object;
537                         KASSERT(object != NULL, ("No object for writecount"));
538                         vnode_pager_release_writecount(object, entry->start,
539                             entry->end);
540                 }
541                 vm_map_entry_deallocate(entry, FALSE);
542                 entry = next;
543         }
544 }
545
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549
550         if (map->system_map)
551                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552         else {
553                 sx_xunlock_(&map->lock, file, line);
554                 vm_map_process_deferred();
555         }
556 }
557
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561
562         if (map->system_map)
563                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
564         else
565                 sx_slock_(&map->lock, file, line);
566 }
567
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571
572         if (map->system_map)
573                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574         else {
575                 sx_sunlock_(&map->lock, file, line);
576                 vm_map_process_deferred();
577         }
578 }
579
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583         int error;
584
585         error = map->system_map ?
586             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587             !sx_try_xlock_(&map->lock, file, line);
588         if (error == 0)
589                 map->timestamp++;
590         return (error == 0);
591 }
592
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596         int error;
597
598         error = map->system_map ?
599             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600             !sx_try_slock_(&map->lock, file, line);
601         return (error == 0);
602 }
603
604 /*
605  *      _vm_map_lock_upgrade:   [ internal use only ]
606  *
607  *      Tries to upgrade a read (shared) lock on the specified map to a write
608  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *      returned without a read or write lock held.
611  *
612  *      Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617         unsigned int last_timestamp;
618
619         if (map->system_map) {
620                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621         } else {
622                 if (!sx_try_upgrade_(&map->lock, file, line)) {
623                         last_timestamp = map->timestamp;
624                         sx_sunlock_(&map->lock, file, line);
625                         vm_map_process_deferred();
626                         /*
627                          * If the map's timestamp does not change while the
628                          * map is unlocked, then the upgrade succeeds.
629                          */
630                         sx_xlock_(&map->lock, file, line);
631                         if (last_timestamp != map->timestamp) {
632                                 sx_xunlock_(&map->lock, file, line);
633                                 return (1);
634                         }
635                 }
636         }
637         map->timestamp++;
638         return (0);
639 }
640
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644
645         if (map->system_map) {
646                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647         } else
648                 sx_downgrade_(&map->lock, file, line);
649 }
650
651 /*
652  *      vm_map_locked:
653  *
654  *      Returns a non-zero value if the caller holds a write (exclusive) lock
655  *      on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660
661         if (map->system_map)
662                 return (mtx_owned(&map->system_mtx));
663         else
664                 return (sx_xlocked(&map->lock));
665 }
666
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671
672         if (map->system_map)
673                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674         else
675                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677
678 #define VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define VM_MAP_ASSERT_LOCKED(map)
682 #endif
683
684 /*
685  *      _vm_map_unlock_and_wait:
686  *
687  *      Atomically releases the lock on the specified map and puts the calling
688  *      thread to sleep.  The calling thread will remain asleep until either
689  *      vm_map_wakeup() is performed on the map or the specified timeout is
690  *      exceeded.
691  *
692  *      WARNING!  This function does not perform deferred deallocations of
693  *      objects and map entries.  Therefore, the calling thread is expected to
694  *      reacquire the map lock after reawakening and later perform an ordinary
695  *      unlock operation, such as vm_map_unlock(), before completing its
696  *      operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701
702         mtx_lock(&map_sleep_mtx);
703         if (map->system_map)
704                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705         else
706                 sx_xunlock_(&map->lock, file, line);
707         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708             timo));
709 }
710
711 /*
712  *      vm_map_wakeup:
713  *
714  *      Awaken any threads that have slept on the map using
715  *      vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720
721         /*
722          * Acquire and release map_sleep_mtx to prevent a wakeup()
723          * from being performed (and lost) between the map unlock
724          * and the msleep() in _vm_map_unlock_and_wait().
725          */
726         mtx_lock(&map_sleep_mtx);
727         mtx_unlock(&map_sleep_mtx);
728         wakeup(&map->root);
729 }
730
731 void
732 vm_map_busy(vm_map_t map)
733 {
734
735         VM_MAP_ASSERT_LOCKED(map);
736         map->busy++;
737 }
738
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742
743         VM_MAP_ASSERT_LOCKED(map);
744         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747                 wakeup(&map->busy);
748         }
749 }
750
751 void 
752 vm_map_wait_busy(vm_map_t map)
753 {
754
755         VM_MAP_ASSERT_LOCKED(map);
756         while (map->busy) {
757                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758                 if (map->system_map)
759                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760                 else
761                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762         }
763         map->timestamp++;
764 }
765
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769         return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771
772 /*
773  *      vm_map_create:
774  *
775  *      Creates and returns a new empty VM map with
776  *      the given physical map structure, and having
777  *      the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782         vm_map_t result;
783
784         result = uma_zalloc(mapzone, M_WAITOK);
785         CTR1(KTR_VM, "vm_map_create: %p", result);
786         _vm_map_init(result, pmap, min, max);
787         return (result);
788 }
789
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797
798         map->header.next = map->header.prev = &map->header;
799         map->needs_wakeup = FALSE;
800         map->system_map = 0;
801         map->pmap = pmap;
802         map->min_offset = min;
803         map->max_offset = max;
804         map->flags = 0;
805         map->root = NULL;
806         map->timestamp = 0;
807         map->busy = 0;
808 }
809
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813
814         _vm_map_init(map, pmap, min, max);
815         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816         sx_init(&map->lock, "user map");
817 }
818
819 /*
820  *      vm_map_entry_dispose:   [ internal use only ]
821  *
822  *      Inverse of vm_map_entry_create.
823  */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829
830 /*
831  *      vm_map_entry_create:    [ internal use only ]
832  *
833  *      Allocates a VM map entry for insertion.
834  *      No entry fields are filled in.
835  */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839         vm_map_entry_t new_entry;
840
841         if (map->system_map)
842                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843         else
844                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
845         if (new_entry == NULL)
846                 panic("vm_map_entry_create: kernel resources exhausted");
847         return (new_entry);
848 }
849
850 /*
851  *      vm_map_entry_set_behavior:
852  *
853  *      Set the expected access behavior, either normal, random, or
854  *      sequential.
855  */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860             (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862
863 /*
864  *      vm_map_entry_set_max_free:
865  *
866  *      Set the max_free field in a vm_map_entry.
867  */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871
872         entry->max_free = entry->adj_free;
873         if (entry->left != NULL && entry->left->max_free > entry->max_free)
874                 entry->max_free = entry->left->max_free;
875         if (entry->right != NULL && entry->right->max_free > entry->max_free)
876                 entry->max_free = entry->right->max_free;
877 }
878
879 /*
880  *      vm_map_entry_splay:
881  *
882  *      The Sleator and Tarjan top-down splay algorithm with the
883  *      following variation.  Max_free must be computed bottom-up, so
884  *      on the downward pass, maintain the left and right spines in
885  *      reverse order.  Then, make a second pass up each side to fix
886  *      the pointers and compute max_free.  The time bound is O(log n)
887  *      amortized.
888  *
889  *      The new root is the vm_map_entry containing "addr", or else an
890  *      adjacent entry (lower or higher) if addr is not in the tree.
891  *
892  *      The map must be locked, and leaves it so.
893  *
894  *      Returns: the new root.
895  */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899         vm_map_entry_t llist, rlist;
900         vm_map_entry_t ltree, rtree;
901         vm_map_entry_t y;
902
903         /* Special case of empty tree. */
904         if (root == NULL)
905                 return (root);
906
907         /*
908          * Pass One: Splay down the tree until we find addr or a NULL
909          * pointer where addr would go.  llist and rlist are the two
910          * sides in reverse order (bottom-up), with llist linked by
911          * the right pointer and rlist linked by the left pointer in
912          * the vm_map_entry.  Wait until Pass Two to set max_free on
913          * the two spines.
914          */
915         llist = NULL;
916         rlist = NULL;
917         for (;;) {
918                 /* root is never NULL in here. */
919                 if (addr < root->start) {
920                         y = root->left;
921                         if (y == NULL)
922                                 break;
923                         if (addr < y->start && y->left != NULL) {
924                                 /* Rotate right and put y on rlist. */
925                                 root->left = y->right;
926                                 y->right = root;
927                                 vm_map_entry_set_max_free(root);
928                                 root = y->left;
929                                 y->left = rlist;
930                                 rlist = y;
931                         } else {
932                                 /* Put root on rlist. */
933                                 root->left = rlist;
934                                 rlist = root;
935                                 root = y;
936                         }
937                 } else if (addr >= root->end) {
938                         y = root->right;
939                         if (y == NULL)
940                                 break;
941                         if (addr >= y->end && y->right != NULL) {
942                                 /* Rotate left and put y on llist. */
943                                 root->right = y->left;
944                                 y->left = root;
945                                 vm_map_entry_set_max_free(root);
946                                 root = y->right;
947                                 y->right = llist;
948                                 llist = y;
949                         } else {
950                                 /* Put root on llist. */
951                                 root->right = llist;
952                                 llist = root;
953                                 root = y;
954                         }
955                 } else
956                         break;
957         }
958
959         /*
960          * Pass Two: Walk back up the two spines, flip the pointers
961          * and set max_free.  The subtrees of the root go at the
962          * bottom of llist and rlist.
963          */
964         ltree = root->left;
965         while (llist != NULL) {
966                 y = llist->right;
967                 llist->right = ltree;
968                 vm_map_entry_set_max_free(llist);
969                 ltree = llist;
970                 llist = y;
971         }
972         rtree = root->right;
973         while (rlist != NULL) {
974                 y = rlist->left;
975                 rlist->left = rtree;
976                 vm_map_entry_set_max_free(rlist);
977                 rtree = rlist;
978                 rlist = y;
979         }
980
981         /*
982          * Final assembly: add ltree and rtree as subtrees of root.
983          */
984         root->left = ltree;
985         root->right = rtree;
986         vm_map_entry_set_max_free(root);
987
988         return (root);
989 }
990
991 /*
992  *      vm_map_entry_{un,}link:
993  *
994  *      Insert/remove entries from maps.
995  */
996 static void
997 vm_map_entry_link(vm_map_t map,
998                   vm_map_entry_t after_where,
999                   vm_map_entry_t entry)
1000 {
1001
1002         CTR4(KTR_VM,
1003             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004             map->nentries, entry, after_where);
1005         VM_MAP_ASSERT_LOCKED(map);
1006         KASSERT(after_where->end <= entry->start,
1007             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1008             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1009         KASSERT(entry->end <= after_where->next->start,
1010             ("vm_map_entry_link: new end %jx next start %jx overlap",
1011             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1012
1013         map->nentries++;
1014         entry->prev = after_where;
1015         entry->next = after_where->next;
1016         entry->next->prev = entry;
1017         after_where->next = entry;
1018
1019         if (after_where != &map->header) {
1020                 if (after_where != map->root)
1021                         vm_map_entry_splay(after_where->start, map->root);
1022                 entry->right = after_where->right;
1023                 entry->left = after_where;
1024                 after_where->right = NULL;
1025                 after_where->adj_free = entry->start - after_where->end;
1026                 vm_map_entry_set_max_free(after_where);
1027         } else {
1028                 entry->right = map->root;
1029                 entry->left = NULL;
1030         }
1031         entry->adj_free = entry->next->start - entry->end;
1032         vm_map_entry_set_max_free(entry);
1033         map->root = entry;
1034 }
1035
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038                     vm_map_entry_t entry)
1039 {
1040         vm_map_entry_t next, prev, root;
1041
1042         VM_MAP_ASSERT_LOCKED(map);
1043         if (entry != map->root)
1044                 vm_map_entry_splay(entry->start, map->root);
1045         if (entry->left == NULL)
1046                 root = entry->right;
1047         else {
1048                 root = vm_map_entry_splay(entry->start, entry->left);
1049                 root->right = entry->right;
1050                 root->adj_free = entry->next->start - root->end;
1051                 vm_map_entry_set_max_free(root);
1052         }
1053         map->root = root;
1054
1055         prev = entry->prev;
1056         next = entry->next;
1057         next->prev = prev;
1058         prev->next = next;
1059         map->nentries--;
1060         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1061             map->nentries, entry);
1062 }
1063
1064 /*
1065  *      vm_map_entry_resize_free:
1066  *
1067  *      Recompute the amount of free space following a vm_map_entry
1068  *      and propagate that value up the tree.  Call this function after
1069  *      resizing a map entry in-place, that is, without a call to
1070  *      vm_map_entry_link() or _unlink().
1071  *
1072  *      The map must be locked, and leaves it so.
1073  */
1074 static void
1075 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1076 {
1077
1078         /*
1079          * Using splay trees without parent pointers, propagating
1080          * max_free up the tree is done by moving the entry to the
1081          * root and making the change there.
1082          */
1083         if (entry != map->root)
1084                 map->root = vm_map_entry_splay(entry->start, map->root);
1085
1086         entry->adj_free = entry->next->start - entry->end;
1087         vm_map_entry_set_max_free(entry);
1088 }
1089
1090 /*
1091  *      vm_map_lookup_entry:    [ internal use only ]
1092  *
1093  *      Finds the map entry containing (or
1094  *      immediately preceding) the specified address
1095  *      in the given map; the entry is returned
1096  *      in the "entry" parameter.  The boolean
1097  *      result indicates whether the address is
1098  *      actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102         vm_map_t map,
1103         vm_offset_t address,
1104         vm_map_entry_t *entry)  /* OUT */
1105 {
1106         vm_map_entry_t cur;
1107         boolean_t locked;
1108
1109         /*
1110          * If the map is empty, then the map entry immediately preceding
1111          * "address" is the map's header.
1112          */
1113         cur = map->root;
1114         if (cur == NULL)
1115                 *entry = &map->header;
1116         else if (address >= cur->start && cur->end > address) {
1117                 *entry = cur;
1118                 return (TRUE);
1119         } else if ((locked = vm_map_locked(map)) ||
1120             sx_try_upgrade(&map->lock)) {
1121                 /*
1122                  * Splay requires a write lock on the map.  However, it only
1123                  * restructures the binary search tree; it does not otherwise
1124                  * change the map.  Thus, the map's timestamp need not change
1125                  * on a temporary upgrade.
1126                  */
1127                 map->root = cur = vm_map_entry_splay(address, cur);
1128                 if (!locked)
1129                         sx_downgrade(&map->lock);
1130
1131                 /*
1132                  * If "address" is contained within a map entry, the new root
1133                  * is that map entry.  Otherwise, the new root is a map entry
1134                  * immediately before or after "address".
1135                  */
1136                 if (address >= cur->start) {
1137                         *entry = cur;
1138                         if (cur->end > address)
1139                                 return (TRUE);
1140                 } else
1141                         *entry = cur->prev;
1142         } else
1143                 /*
1144                  * Since the map is only locked for read access, perform a
1145                  * standard binary search tree lookup for "address".
1146                  */
1147                 for (;;) {
1148                         if (address < cur->start) {
1149                                 if (cur->left == NULL) {
1150                                         *entry = cur->prev;
1151                                         break;
1152                                 }
1153                                 cur = cur->left;
1154                         } else if (cur->end > address) {
1155                                 *entry = cur;
1156                                 return (TRUE);
1157                         } else {
1158                                 if (cur->right == NULL) {
1159                                         *entry = cur;
1160                                         break;
1161                                 }
1162                                 cur = cur->right;
1163                         }
1164                 }
1165         return (FALSE);
1166 }
1167
1168 /*
1169  *      vm_map_insert:
1170  *
1171  *      Inserts the given whole VM object into the target
1172  *      map at the specified address range.  The object's
1173  *      size should match that of the address range.
1174  *
1175  *      Requires that the map be locked, and leaves it so.
1176  *
1177  *      If object is non-NULL, ref count must be bumped by caller
1178  *      prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184         vm_map_entry_t new_entry, prev_entry, temp_entry;
1185         struct ucred *cred;
1186         vm_eflags_t protoeflags;
1187         vm_inherit_t inheritance;
1188
1189         VM_MAP_ASSERT_LOCKED(map);
1190         KASSERT(object != kernel_object ||
1191             (cow & MAP_COPY_ON_WRITE) == 0,
1192             ("vm_map_insert: kernel object and COW"));
1193         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195         KASSERT((prot & ~max) == 0,
1196             ("prot %#x is not subset of max_prot %#x", prot, max));
1197
1198         /*
1199          * Check that the start and end points are not bogus.
1200          */
1201         if (start < map->min_offset || end > map->max_offset || start >= end)
1202                 return (KERN_INVALID_ADDRESS);
1203
1204         /*
1205          * Find the entry prior to the proposed starting address; if it's part
1206          * of an existing entry, this range is bogus.
1207          */
1208         if (vm_map_lookup_entry(map, start, &temp_entry))
1209                 return (KERN_NO_SPACE);
1210
1211         prev_entry = temp_entry;
1212
1213         /*
1214          * Assert that the next entry doesn't overlap the end point.
1215          */
1216         if (prev_entry->next->start < end)
1217                 return (KERN_NO_SPACE);
1218
1219         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1220             max != VM_PROT_NONE))
1221                 return (KERN_INVALID_ARGUMENT);
1222
1223         protoeflags = 0;
1224         if (cow & MAP_COPY_ON_WRITE)
1225                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1226         if (cow & MAP_NOFAULT)
1227                 protoeflags |= MAP_ENTRY_NOFAULT;
1228         if (cow & MAP_DISABLE_SYNCER)
1229                 protoeflags |= MAP_ENTRY_NOSYNC;
1230         if (cow & MAP_DISABLE_COREDUMP)
1231                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1232         if (cow & MAP_STACK_GROWS_DOWN)
1233                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1234         if (cow & MAP_STACK_GROWS_UP)
1235                 protoeflags |= MAP_ENTRY_GROWS_UP;
1236         if (cow & MAP_VN_WRITECOUNT)
1237                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1238         if ((cow & MAP_CREATE_GUARD) != 0)
1239                 protoeflags |= MAP_ENTRY_GUARD;
1240         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1241                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1242         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1243                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1244         if (cow & MAP_INHERIT_SHARE)
1245                 inheritance = VM_INHERIT_SHARE;
1246         else
1247                 inheritance = VM_INHERIT_DEFAULT;
1248
1249         cred = NULL;
1250         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1251                 goto charged;
1252         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1253             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1254                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1255                         return (KERN_RESOURCE_SHORTAGE);
1256                 KASSERT(object == NULL ||
1257                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1258                     object->cred == NULL,
1259                     ("overcommit: vm_map_insert o %p", object));
1260                 cred = curthread->td_ucred;
1261         }
1262
1263 charged:
1264         /* Expand the kernel pmap, if necessary. */
1265         if (map == kernel_map && end > kernel_vm_end)
1266                 pmap_growkernel(end);
1267         if (object != NULL) {
1268                 /*
1269                  * OBJ_ONEMAPPING must be cleared unless this mapping
1270                  * is trivially proven to be the only mapping for any
1271                  * of the object's pages.  (Object granularity
1272                  * reference counting is insufficient to recognize
1273                  * aliases with precision.)
1274                  */
1275                 VM_OBJECT_WLOCK(object);
1276                 if (object->ref_count > 1 || object->shadow_count != 0)
1277                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1278                 VM_OBJECT_WUNLOCK(object);
1279         } else if (prev_entry != &map->header &&
1280             prev_entry->eflags == protoeflags &&
1281             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1282             prev_entry->end == start && prev_entry->wired_count == 0 &&
1283             (prev_entry->cred == cred ||
1284             (prev_entry->object.vm_object != NULL &&
1285             prev_entry->object.vm_object->cred == cred)) &&
1286             vm_object_coalesce(prev_entry->object.vm_object,
1287             prev_entry->offset,
1288             (vm_size_t)(prev_entry->end - prev_entry->start),
1289             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1290             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1291                 /*
1292                  * We were able to extend the object.  Determine if we
1293                  * can extend the previous map entry to include the
1294                  * new range as well.
1295                  */
1296                 if (prev_entry->inheritance == inheritance &&
1297                     prev_entry->protection == prot &&
1298                     prev_entry->max_protection == max) {
1299                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300                                 map->size += end - prev_entry->end;
1301                         prev_entry->end = end;
1302                         vm_map_entry_resize_free(map, prev_entry);
1303                         vm_map_simplify_entry(map, prev_entry);
1304                         return (KERN_SUCCESS);
1305                 }
1306
1307                 /*
1308                  * If we can extend the object but cannot extend the
1309                  * map entry, we have to create a new map entry.  We
1310                  * must bump the ref count on the extended object to
1311                  * account for it.  object may be NULL.
1312                  */
1313                 object = prev_entry->object.vm_object;
1314                 offset = prev_entry->offset +
1315                     (prev_entry->end - prev_entry->start);
1316                 vm_object_reference(object);
1317                 if (cred != NULL && object != NULL && object->cred != NULL &&
1318                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319                         /* Object already accounts for this uid. */
1320                         cred = NULL;
1321                 }
1322         }
1323         if (cred != NULL)
1324                 crhold(cred);
1325
1326         /*
1327          * Create a new entry
1328          */
1329         new_entry = vm_map_entry_create(map);
1330         new_entry->start = start;
1331         new_entry->end = end;
1332         new_entry->cred = NULL;
1333
1334         new_entry->eflags = protoeflags;
1335         new_entry->object.vm_object = object;
1336         new_entry->offset = offset;
1337
1338         new_entry->inheritance = inheritance;
1339         new_entry->protection = prot;
1340         new_entry->max_protection = max;
1341         new_entry->wired_count = 0;
1342         new_entry->wiring_thread = NULL;
1343         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344         new_entry->next_read = start;
1345
1346         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348         new_entry->cred = cred;
1349
1350         /*
1351          * Insert the new entry into the list
1352          */
1353         vm_map_entry_link(map, prev_entry, new_entry);
1354         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355                 map->size += new_entry->end - new_entry->start;
1356
1357         /*
1358          * Try to coalesce the new entry with both the previous and next
1359          * entries in the list.  Previously, we only attempted to coalesce
1360          * with the previous entry when object is NULL.  Here, we handle the
1361          * other cases, which are less common.
1362          */
1363         vm_map_simplify_entry(map, new_entry);
1364
1365         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367                     end - start, cow & MAP_PREFAULT_PARTIAL);
1368         }
1369
1370         return (KERN_SUCCESS);
1371 }
1372
1373 /*
1374  *      vm_map_findspace:
1375  *
1376  *      Find the first fit (lowest VM address) for "length" free bytes
1377  *      beginning at address >= start in the given map.
1378  *
1379  *      In a vm_map_entry, "adj_free" is the amount of free space
1380  *      adjacent (higher address) to this entry, and "max_free" is the
1381  *      maximum amount of contiguous free space in its subtree.  This
1382  *      allows finding a free region in one path down the tree, so
1383  *      O(log n) amortized with splay trees.
1384  *
1385  *      The map must be locked, and leaves it so.
1386  *
1387  *      Returns: 0 on success, and starting address in *addr,
1388  *               1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)  /* OUT */
1393 {
1394         vm_map_entry_t entry;
1395         vm_offset_t st;
1396
1397         /*
1398          * Request must fit within min/max VM address and must avoid
1399          * address wrap.
1400          */
1401         if (start < map->min_offset)
1402                 start = map->min_offset;
1403         if (start + length > map->max_offset || start + length < start)
1404                 return (1);
1405
1406         /* Empty tree means wide open address space. */
1407         if (map->root == NULL) {
1408                 *addr = start;
1409                 return (0);
1410         }
1411
1412         /*
1413          * After splay, if start comes before root node, then there
1414          * must be a gap from start to the root.
1415          */
1416         map->root = vm_map_entry_splay(start, map->root);
1417         if (start + length <= map->root->start) {
1418                 *addr = start;
1419                 return (0);
1420         }
1421
1422         /*
1423          * Root is the last node that might begin its gap before
1424          * start, and this is the last comparison where address
1425          * wrap might be a problem.
1426          */
1427         st = (start > map->root->end) ? start : map->root->end;
1428         if (length <= map->root->end + map->root->adj_free - st) {
1429                 *addr = st;
1430                 return (0);
1431         }
1432
1433         /* With max_free, can immediately tell if no solution. */
1434         entry = map->root->right;
1435         if (entry == NULL || length > entry->max_free)
1436                 return (1);
1437
1438         /*
1439          * Search the right subtree in the order: left subtree, root,
1440          * right subtree (first fit).  The previous splay implies that
1441          * all regions in the right subtree have addresses > start.
1442          */
1443         while (entry != NULL) {
1444                 if (entry->left != NULL && entry->left->max_free >= length)
1445                         entry = entry->left;
1446                 else if (entry->adj_free >= length) {
1447                         *addr = entry->end;
1448                         return (0);
1449                 } else
1450                         entry = entry->right;
1451         }
1452
1453         /* Can't get here, so panic if we do. */
1454         panic("vm_map_findspace: max_free corrupt");
1455 }
1456
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462         vm_offset_t end;
1463         int result;
1464
1465         end = start + length;
1466         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467             object == NULL,
1468             ("vm_map_fixed: non-NULL backing object for stack"));
1469         vm_map_lock(map);
1470         VM_MAP_RANGE_CHECK(map, start, end);
1471         if ((cow & MAP_CHECK_EXCL) == 0)
1472                 vm_map_delete(map, start, end);
1473         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475                     prot, max, cow);
1476         } else {
1477                 result = vm_map_insert(map, object, offset, start, end,
1478                     prot, max, cow);
1479         }
1480         vm_map_unlock(map);
1481         return (result);
1482 }
1483
1484 /*
1485  * Searches for the specified amount of free space in the given map with the
1486  * specified alignment.  Performs an address-ordered, first-fit search from
1487  * the given address "*addr", with an optional upper bound "max_addr".  If the
1488  * parameter "alignment" is zero, then the alignment is computed from the
1489  * given (object, offset) pair so as to enable the greatest possible use of
1490  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1491  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1492  *
1493  * The map must be locked.  Initially, there must be at least "length" bytes
1494  * of free space at the given address.
1495  */
1496 static int
1497 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1498     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1499     vm_offset_t alignment)
1500 {
1501         vm_offset_t aligned_addr, free_addr;
1502
1503         VM_MAP_ASSERT_LOCKED(map);
1504         free_addr = *addr;
1505         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1506             free_addr == *addr, ("caller provided insufficient free space"));
1507         for (;;) {
1508                 /*
1509                  * At the start of every iteration, the free space at address
1510                  * "*addr" is at least "length" bytes.
1511                  */
1512                 if (alignment == 0)
1513                         pmap_align_superpage(object, offset, addr, length);
1514                 else if ((*addr & (alignment - 1)) != 0) {
1515                         *addr &= ~(alignment - 1);
1516                         *addr += alignment;
1517                 }
1518                 aligned_addr = *addr;
1519                 if (aligned_addr == free_addr) {
1520                         /*
1521                          * Alignment did not change "*addr", so "*addr" must
1522                          * still provide sufficient free space.
1523                          */
1524                         return (KERN_SUCCESS);
1525                 }
1526
1527                 /*
1528                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1529                  * be a valid address, in which case vm_map_findspace() cannot
1530                  * be relied upon to fail.
1531                  */
1532                 if (aligned_addr < free_addr ||
1533                     vm_map_findspace(map, aligned_addr, length, addr) ||
1534                     (max_addr != 0 && *addr + length > max_addr))
1535                         return (KERN_NO_SPACE);
1536                 free_addr = *addr;
1537                 if (free_addr == aligned_addr) {
1538                         /*
1539                          * If a successful call to vm_map_findspace() did not
1540                          * change "*addr", then "*addr" must still be aligned
1541                          * and provide sufficient free space.
1542                          */
1543                         return (KERN_SUCCESS);
1544                 }
1545         }
1546 }
1547
1548 /*
1549  *      vm_map_find finds an unallocated region in the target address
1550  *      map with the given length.  The search is defined to be
1551  *      first-fit from the specified address; the region found is
1552  *      returned in the same parameter.
1553  *
1554  *      If object is non-NULL, ref count must be bumped by caller
1555  *      prior to making call to account for the new entry.
1556  */
1557 int
1558 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1559             vm_offset_t *addr,  /* IN/OUT */
1560             vm_size_t length, vm_offset_t max_addr, int find_space,
1561             vm_prot_t prot, vm_prot_t max, int cow)
1562 {
1563         vm_offset_t alignment, min_addr;
1564         int rv;
1565
1566         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1567             object == NULL,
1568             ("vm_map_find: non-NULL backing object for stack"));
1569         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1570             (object->flags & OBJ_COLORED) == 0))
1571                 find_space = VMFS_ANY_SPACE;
1572         if (find_space >> 8 != 0) {
1573                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1574                 alignment = (vm_offset_t)1 << (find_space >> 8);
1575         } else
1576                 alignment = 0;
1577         vm_map_lock(map);
1578         if (find_space != VMFS_NO_SPACE) {
1579                 KASSERT(find_space == VMFS_ANY_SPACE ||
1580                     find_space == VMFS_OPTIMAL_SPACE ||
1581                     find_space == VMFS_SUPER_SPACE ||
1582                     alignment != 0, ("unexpected VMFS flag"));
1583                 min_addr = *addr;
1584 again:
1585                 if (vm_map_findspace(map, min_addr, length, addr) ||
1586                     (max_addr != 0 && *addr + length > max_addr)) {
1587                         rv = KERN_NO_SPACE;
1588                         goto done;
1589                 }
1590                 if (find_space != VMFS_ANY_SPACE &&
1591                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1592                     max_addr, alignment)) != KERN_SUCCESS) {
1593                         if (find_space == VMFS_OPTIMAL_SPACE) {
1594                                 find_space = VMFS_ANY_SPACE;
1595                                 goto again;
1596                         }
1597                         goto done;
1598                 }
1599         }
1600         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1601                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1602                     max, cow);
1603         } else {
1604                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1605                     prot, max, cow);
1606         }
1607 done:
1608         vm_map_unlock(map);
1609         return (rv);
1610 }
1611
1612 /*
1613  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1614  *      additional parameter (min_addr) and treats the given address
1615  *      (*addr) differently.  Specifically, it treats *addr as a hint
1616  *      and not as the minimum address where the mapping is created.
1617  *
1618  *      This function works in two phases.  First, it tries to
1619  *      allocate above the hint.  If that fails and the hint is
1620  *      greater than min_addr, it performs a second pass, replacing
1621  *      the hint with min_addr as the minimum address for the
1622  *      allocation.
1623  */
1624 int
1625 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1626     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1627     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1628     int cow)
1629 {
1630         vm_offset_t hint;
1631         int rv;
1632
1633         hint = *addr;
1634         for (;;) {
1635                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1636                     find_space, prot, max, cow);
1637                 if (rv == KERN_SUCCESS || min_addr >= hint)
1638                         return (rv);
1639                 *addr = hint = min_addr;
1640         }
1641 }
1642
1643 /*
1644  *      vm_map_simplify_entry:
1645  *
1646  *      Simplify the given map entry by merging with either neighbor.  This
1647  *      routine also has the ability to merge with both neighbors.
1648  *
1649  *      The map must be locked.
1650  *
1651  *      This routine guarantees that the passed entry remains valid (though
1652  *      possibly extended).  When merging, this routine may delete one or
1653  *      both neighbors.
1654  */
1655 void
1656 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1657 {
1658         vm_map_entry_t next, prev;
1659         vm_size_t prevsize, esize;
1660
1661         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1662             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1663                 return;
1664
1665         prev = entry->prev;
1666         if (prev != &map->header) {
1667                 prevsize = prev->end - prev->start;
1668                 if ( (prev->end == entry->start) &&
1669                      (prev->object.vm_object == entry->object.vm_object) &&
1670                      (!prev->object.vm_object ||
1671                         (prev->offset + prevsize == entry->offset)) &&
1672                      (prev->eflags == entry->eflags) &&
1673                      (prev->protection == entry->protection) &&
1674                      (prev->max_protection == entry->max_protection) &&
1675                      (prev->inheritance == entry->inheritance) &&
1676                      (prev->wired_count == entry->wired_count) &&
1677                      (prev->cred == entry->cred)) {
1678                         vm_map_entry_unlink(map, prev);
1679                         entry->start = prev->start;
1680                         entry->offset = prev->offset;
1681                         if (entry->prev != &map->header)
1682                                 vm_map_entry_resize_free(map, entry->prev);
1683
1684                         /*
1685                          * If the backing object is a vnode object,
1686                          * vm_object_deallocate() calls vrele().
1687                          * However, vrele() does not lock the vnode
1688                          * because the vnode has additional
1689                          * references.  Thus, the map lock can be kept
1690                          * without causing a lock-order reversal with
1691                          * the vnode lock.
1692                          *
1693                          * Since we count the number of virtual page
1694                          * mappings in object->un_pager.vnp.writemappings,
1695                          * the writemappings value should not be adjusted
1696                          * when the entry is disposed of.
1697                          */
1698                         if (prev->object.vm_object)
1699                                 vm_object_deallocate(prev->object.vm_object);
1700                         if (prev->cred != NULL)
1701                                 crfree(prev->cred);
1702                         vm_map_entry_dispose(map, prev);
1703                 }
1704         }
1705
1706         next = entry->next;
1707         if (next != &map->header) {
1708                 esize = entry->end - entry->start;
1709                 if ((entry->end == next->start) &&
1710                     (next->object.vm_object == entry->object.vm_object) &&
1711                      (!entry->object.vm_object ||
1712                         (entry->offset + esize == next->offset)) &&
1713                     (next->eflags == entry->eflags) &&
1714                     (next->protection == entry->protection) &&
1715                     (next->max_protection == entry->max_protection) &&
1716                     (next->inheritance == entry->inheritance) &&
1717                     (next->wired_count == entry->wired_count) &&
1718                     (next->cred == entry->cred)) {
1719                         vm_map_entry_unlink(map, next);
1720                         entry->end = next->end;
1721                         vm_map_entry_resize_free(map, entry);
1722
1723                         /*
1724                          * See comment above.
1725                          */
1726                         if (next->object.vm_object)
1727                                 vm_object_deallocate(next->object.vm_object);
1728                         if (next->cred != NULL)
1729                                 crfree(next->cred);
1730                         vm_map_entry_dispose(map, next);
1731                 }
1732         }
1733 }
1734 /*
1735  *      vm_map_clip_start:      [ internal use only ]
1736  *
1737  *      Asserts that the given entry begins at or after
1738  *      the specified address; if necessary,
1739  *      it splits the entry into two.
1740  */
1741 #define vm_map_clip_start(map, entry, startaddr) \
1742 { \
1743         if (startaddr > entry->start) \
1744                 _vm_map_clip_start(map, entry, startaddr); \
1745 }
1746
1747 /*
1748  *      This routine is called only when it is known that
1749  *      the entry must be split.
1750  */
1751 static void
1752 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1753 {
1754         vm_map_entry_t new_entry;
1755
1756         VM_MAP_ASSERT_LOCKED(map);
1757         KASSERT(entry->end > start && entry->start < start,
1758             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1759
1760         /*
1761          * Split off the front portion -- note that we must insert the new
1762          * entry BEFORE this one, so that this entry has the specified
1763          * starting address.
1764          */
1765         vm_map_simplify_entry(map, entry);
1766
1767         /*
1768          * If there is no object backing this entry, we might as well create
1769          * one now.  If we defer it, an object can get created after the map
1770          * is clipped, and individual objects will be created for the split-up
1771          * map.  This is a bit of a hack, but is also about the best place to
1772          * put this improvement.
1773          */
1774         if (entry->object.vm_object == NULL && !map->system_map &&
1775             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1776                 vm_object_t object;
1777                 object = vm_object_allocate(OBJT_DEFAULT,
1778                                 atop(entry->end - entry->start));
1779                 entry->object.vm_object = object;
1780                 entry->offset = 0;
1781                 if (entry->cred != NULL) {
1782                         object->cred = entry->cred;
1783                         object->charge = entry->end - entry->start;
1784                         entry->cred = NULL;
1785                 }
1786         } else if (entry->object.vm_object != NULL &&
1787                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1788                    entry->cred != NULL) {
1789                 VM_OBJECT_WLOCK(entry->object.vm_object);
1790                 KASSERT(entry->object.vm_object->cred == NULL,
1791                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1792                 entry->object.vm_object->cred = entry->cred;
1793                 entry->object.vm_object->charge = entry->end - entry->start;
1794                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1795                 entry->cred = NULL;
1796         }
1797
1798         new_entry = vm_map_entry_create(map);
1799         *new_entry = *entry;
1800
1801         new_entry->end = start;
1802         entry->offset += (start - entry->start);
1803         entry->start = start;
1804         if (new_entry->cred != NULL)
1805                 crhold(entry->cred);
1806
1807         vm_map_entry_link(map, entry->prev, new_entry);
1808
1809         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1810                 vm_object_reference(new_entry->object.vm_object);
1811                 /*
1812                  * The object->un_pager.vnp.writemappings for the
1813                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1814                  * kept as is here.  The virtual pages are
1815                  * re-distributed among the clipped entries, so the sum is
1816                  * left the same.
1817                  */
1818         }
1819 }
1820
1821 /*
1822  *      vm_map_clip_end:        [ internal use only ]
1823  *
1824  *      Asserts that the given entry ends at or before
1825  *      the specified address; if necessary,
1826  *      it splits the entry into two.
1827  */
1828 #define vm_map_clip_end(map, entry, endaddr) \
1829 { \
1830         if ((endaddr) < (entry->end)) \
1831                 _vm_map_clip_end((map), (entry), (endaddr)); \
1832 }
1833
1834 /*
1835  *      This routine is called only when it is known that
1836  *      the entry must be split.
1837  */
1838 static void
1839 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1840 {
1841         vm_map_entry_t new_entry;
1842
1843         VM_MAP_ASSERT_LOCKED(map);
1844         KASSERT(entry->start < end && entry->end > end,
1845             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1846
1847         /*
1848          * If there is no object backing this entry, we might as well create
1849          * one now.  If we defer it, an object can get created after the map
1850          * is clipped, and individual objects will be created for the split-up
1851          * map.  This is a bit of a hack, but is also about the best place to
1852          * put this improvement.
1853          */
1854         if (entry->object.vm_object == NULL && !map->system_map &&
1855             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1856                 vm_object_t object;
1857                 object = vm_object_allocate(OBJT_DEFAULT,
1858                                 atop(entry->end - entry->start));
1859                 entry->object.vm_object = object;
1860                 entry->offset = 0;
1861                 if (entry->cred != NULL) {
1862                         object->cred = entry->cred;
1863                         object->charge = entry->end - entry->start;
1864                         entry->cred = NULL;
1865                 }
1866         } else if (entry->object.vm_object != NULL &&
1867                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1868                    entry->cred != NULL) {
1869                 VM_OBJECT_WLOCK(entry->object.vm_object);
1870                 KASSERT(entry->object.vm_object->cred == NULL,
1871                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1872                 entry->object.vm_object->cred = entry->cred;
1873                 entry->object.vm_object->charge = entry->end - entry->start;
1874                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1875                 entry->cred = NULL;
1876         }
1877
1878         /*
1879          * Create a new entry and insert it AFTER the specified entry
1880          */
1881         new_entry = vm_map_entry_create(map);
1882         *new_entry = *entry;
1883
1884         new_entry->start = entry->end = end;
1885         new_entry->offset += (end - entry->start);
1886         if (new_entry->cred != NULL)
1887                 crhold(entry->cred);
1888
1889         vm_map_entry_link(map, entry, new_entry);
1890
1891         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1892                 vm_object_reference(new_entry->object.vm_object);
1893         }
1894 }
1895
1896 /*
1897  *      vm_map_submap:          [ kernel use only ]
1898  *
1899  *      Mark the given range as handled by a subordinate map.
1900  *
1901  *      This range must have been created with vm_map_find,
1902  *      and no other operations may have been performed on this
1903  *      range prior to calling vm_map_submap.
1904  *
1905  *      Only a limited number of operations can be performed
1906  *      within this rage after calling vm_map_submap:
1907  *              vm_fault
1908  *      [Don't try vm_map_copy!]
1909  *
1910  *      To remove a submapping, one must first remove the
1911  *      range from the superior map, and then destroy the
1912  *      submap (if desired).  [Better yet, don't try it.]
1913  */
1914 int
1915 vm_map_submap(
1916         vm_map_t map,
1917         vm_offset_t start,
1918         vm_offset_t end,
1919         vm_map_t submap)
1920 {
1921         vm_map_entry_t entry;
1922         int result = KERN_INVALID_ARGUMENT;
1923
1924         vm_map_lock(map);
1925
1926         VM_MAP_RANGE_CHECK(map, start, end);
1927
1928         if (vm_map_lookup_entry(map, start, &entry)) {
1929                 vm_map_clip_start(map, entry, start);
1930         } else
1931                 entry = entry->next;
1932
1933         vm_map_clip_end(map, entry, end);
1934
1935         if ((entry->start == start) && (entry->end == end) &&
1936             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1937             (entry->object.vm_object == NULL)) {
1938                 entry->object.sub_map = submap;
1939                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1940                 result = KERN_SUCCESS;
1941         }
1942         vm_map_unlock(map);
1943
1944         return (result);
1945 }
1946
1947 /*
1948  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1949  */
1950 #define MAX_INIT_PT     96
1951
1952 /*
1953  *      vm_map_pmap_enter:
1954  *
1955  *      Preload the specified map's pmap with mappings to the specified
1956  *      object's memory-resident pages.  No further physical pages are
1957  *      allocated, and no further virtual pages are retrieved from secondary
1958  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1959  *      limited number of page mappings are created at the low-end of the
1960  *      specified address range.  (For this purpose, a superpage mapping
1961  *      counts as one page mapping.)  Otherwise, all resident pages within
1962  *      the specified address range are mapped.
1963  */
1964 static void
1965 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1966     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1967 {
1968         vm_offset_t start;
1969         vm_page_t p, p_start;
1970         vm_pindex_t mask, psize, threshold, tmpidx;
1971
1972         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1973                 return;
1974         VM_OBJECT_RLOCK(object);
1975         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1976                 VM_OBJECT_RUNLOCK(object);
1977                 VM_OBJECT_WLOCK(object);
1978                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1980                             size);
1981                         VM_OBJECT_WUNLOCK(object);
1982                         return;
1983                 }
1984                 VM_OBJECT_LOCK_DOWNGRADE(object);
1985         }
1986
1987         psize = atop(size);
1988         if (psize + pindex > object->size) {
1989                 if (object->size < pindex) {
1990                         VM_OBJECT_RUNLOCK(object);
1991                         return;
1992                 }
1993                 psize = object->size - pindex;
1994         }
1995
1996         start = 0;
1997         p_start = NULL;
1998         threshold = MAX_INIT_PT;
1999
2000         p = vm_page_find_least(object, pindex);
2001         /*
2002          * Assert: the variable p is either (1) the page with the
2003          * least pindex greater than or equal to the parameter pindex
2004          * or (2) NULL.
2005          */
2006         for (;
2007              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2008              p = TAILQ_NEXT(p, listq)) {
2009                 /*
2010                  * don't allow an madvise to blow away our really
2011                  * free pages allocating pv entries.
2012                  */
2013                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2014                     vm_page_count_severe()) ||
2015                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2016                     tmpidx >= threshold)) {
2017                         psize = tmpidx;
2018                         break;
2019                 }
2020                 if (p->valid == VM_PAGE_BITS_ALL) {
2021                         if (p_start == NULL) {
2022                                 start = addr + ptoa(tmpidx);
2023                                 p_start = p;
2024                         }
2025                         /* Jump ahead if a superpage mapping is possible. */
2026                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2027                             (pagesizes[p->psind] - 1)) == 0) {
2028                                 mask = atop(pagesizes[p->psind]) - 1;
2029                                 if (tmpidx + mask < psize &&
2030                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2031                                         p += mask;
2032                                         threshold += mask;
2033                                 }
2034                         }
2035                 } else if (p_start != NULL) {
2036                         pmap_enter_object(map->pmap, start, addr +
2037                             ptoa(tmpidx), p_start, prot);
2038                         p_start = NULL;
2039                 }
2040         }
2041         if (p_start != NULL)
2042                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2043                     p_start, prot);
2044         VM_OBJECT_RUNLOCK(object);
2045 }
2046
2047 /*
2048  *      vm_map_protect:
2049  *
2050  *      Sets the protection of the specified address
2051  *      region in the target map.  If "set_max" is
2052  *      specified, the maximum protection is to be set;
2053  *      otherwise, only the current protection is affected.
2054  */
2055 int
2056 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2057                vm_prot_t new_prot, boolean_t set_max)
2058 {
2059         vm_map_entry_t current, entry;
2060         vm_object_t obj;
2061         struct ucred *cred;
2062         vm_prot_t old_prot;
2063
2064         if (start == end)
2065                 return (KERN_SUCCESS);
2066
2067         vm_map_lock(map);
2068
2069         /*
2070          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2071          * need to fault pages into the map and will drop the map lock while
2072          * doing so, and the VM object may end up in an inconsistent state if we
2073          * update the protection on the map entry in between faults.
2074          */
2075         vm_map_wait_busy(map);
2076
2077         VM_MAP_RANGE_CHECK(map, start, end);
2078
2079         if (vm_map_lookup_entry(map, start, &entry)) {
2080                 vm_map_clip_start(map, entry, start);
2081         } else {
2082                 entry = entry->next;
2083         }
2084
2085         /*
2086          * Make a first pass to check for protection violations.
2087          */
2088         for (current = entry; current->start < end; current = current->next) {
2089                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2090                         continue;
2091                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2092                         vm_map_unlock(map);
2093                         return (KERN_INVALID_ARGUMENT);
2094                 }
2095                 if ((new_prot & current->max_protection) != new_prot) {
2096                         vm_map_unlock(map);
2097                         return (KERN_PROTECTION_FAILURE);
2098                 }
2099         }
2100
2101         /*
2102          * Do an accounting pass for private read-only mappings that
2103          * now will do cow due to allowed write (e.g. debugger sets
2104          * breakpoint on text segment)
2105          */
2106         for (current = entry; current->start < end; current = current->next) {
2107
2108                 vm_map_clip_end(map, current, end);
2109
2110                 if (set_max ||
2111                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2112                     ENTRY_CHARGED(current) ||
2113                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2114                         continue;
2115                 }
2116
2117                 cred = curthread->td_ucred;
2118                 obj = current->object.vm_object;
2119
2120                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2121                         if (!swap_reserve(current->end - current->start)) {
2122                                 vm_map_unlock(map);
2123                                 return (KERN_RESOURCE_SHORTAGE);
2124                         }
2125                         crhold(cred);
2126                         current->cred = cred;
2127                         continue;
2128                 }
2129
2130                 VM_OBJECT_WLOCK(obj);
2131                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2132                         VM_OBJECT_WUNLOCK(obj);
2133                         continue;
2134                 }
2135
2136                 /*
2137                  * Charge for the whole object allocation now, since
2138                  * we cannot distinguish between non-charged and
2139                  * charged clipped mapping of the same object later.
2140                  */
2141                 KASSERT(obj->charge == 0,
2142                     ("vm_map_protect: object %p overcharged (entry %p)",
2143                     obj, current));
2144                 if (!swap_reserve(ptoa(obj->size))) {
2145                         VM_OBJECT_WUNLOCK(obj);
2146                         vm_map_unlock(map);
2147                         return (KERN_RESOURCE_SHORTAGE);
2148                 }
2149
2150                 crhold(cred);
2151                 obj->cred = cred;
2152                 obj->charge = ptoa(obj->size);
2153                 VM_OBJECT_WUNLOCK(obj);
2154         }
2155
2156         /*
2157          * Go back and fix up protections. [Note that clipping is not
2158          * necessary the second time.]
2159          */
2160         for (current = entry; current->start < end; current = current->next) {
2161                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2162                         continue;
2163
2164                 old_prot = current->protection;
2165
2166                 if (set_max)
2167                         current->protection =
2168                             (current->max_protection = new_prot) &
2169                             old_prot;
2170                 else
2171                         current->protection = new_prot;
2172
2173                 /*
2174                  * For user wired map entries, the normal lazy evaluation of
2175                  * write access upgrades through soft page faults is
2176                  * undesirable.  Instead, immediately copy any pages that are
2177                  * copy-on-write and enable write access in the physical map.
2178                  */
2179                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2180                     (current->protection & VM_PROT_WRITE) != 0 &&
2181                     (old_prot & VM_PROT_WRITE) == 0)
2182                         vm_fault_copy_entry(map, map, current, current, NULL);
2183
2184                 /*
2185                  * When restricting access, update the physical map.  Worry
2186                  * about copy-on-write here.
2187                  */
2188                 if ((old_prot & ~current->protection) != 0) {
2189 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2190                                                         VM_PROT_ALL)
2191                         pmap_protect(map->pmap, current->start,
2192                             current->end,
2193                             current->protection & MASK(current));
2194 #undef  MASK
2195                 }
2196                 vm_map_simplify_entry(map, current);
2197         }
2198         vm_map_unlock(map);
2199         return (KERN_SUCCESS);
2200 }
2201
2202 /*
2203  *      vm_map_madvise:
2204  *
2205  *      This routine traverses a processes map handling the madvise
2206  *      system call.  Advisories are classified as either those effecting
2207  *      the vm_map_entry structure, or those effecting the underlying
2208  *      objects.
2209  */
2210 int
2211 vm_map_madvise(
2212         vm_map_t map,
2213         vm_offset_t start,
2214         vm_offset_t end,
2215         int behav)
2216 {
2217         vm_map_entry_t current, entry;
2218         int modify_map = 0;
2219
2220         /*
2221          * Some madvise calls directly modify the vm_map_entry, in which case
2222          * we need to use an exclusive lock on the map and we need to perform
2223          * various clipping operations.  Otherwise we only need a read-lock
2224          * on the map.
2225          */
2226         switch(behav) {
2227         case MADV_NORMAL:
2228         case MADV_SEQUENTIAL:
2229         case MADV_RANDOM:
2230         case MADV_NOSYNC:
2231         case MADV_AUTOSYNC:
2232         case MADV_NOCORE:
2233         case MADV_CORE:
2234                 if (start == end)
2235                         return (KERN_SUCCESS);
2236                 modify_map = 1;
2237                 vm_map_lock(map);
2238                 break;
2239         case MADV_WILLNEED:
2240         case MADV_DONTNEED:
2241         case MADV_FREE:
2242                 if (start == end)
2243                         return (KERN_SUCCESS);
2244                 vm_map_lock_read(map);
2245                 break;
2246         default:
2247                 return (KERN_INVALID_ARGUMENT);
2248         }
2249
2250         /*
2251          * Locate starting entry and clip if necessary.
2252          */
2253         VM_MAP_RANGE_CHECK(map, start, end);
2254
2255         if (vm_map_lookup_entry(map, start, &entry)) {
2256                 if (modify_map)
2257                         vm_map_clip_start(map, entry, start);
2258         } else {
2259                 entry = entry->next;
2260         }
2261
2262         if (modify_map) {
2263                 /*
2264                  * madvise behaviors that are implemented in the vm_map_entry.
2265                  *
2266                  * We clip the vm_map_entry so that behavioral changes are
2267                  * limited to the specified address range.
2268                  */
2269                 for (current = entry; current->start < end;
2270                     current = current->next) {
2271                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2272                                 continue;
2273
2274                         vm_map_clip_end(map, current, end);
2275
2276                         switch (behav) {
2277                         case MADV_NORMAL:
2278                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2279                                 break;
2280                         case MADV_SEQUENTIAL:
2281                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2282                                 break;
2283                         case MADV_RANDOM:
2284                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2285                                 break;
2286                         case MADV_NOSYNC:
2287                                 current->eflags |= MAP_ENTRY_NOSYNC;
2288                                 break;
2289                         case MADV_AUTOSYNC:
2290                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2291                                 break;
2292                         case MADV_NOCORE:
2293                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2294                                 break;
2295                         case MADV_CORE:
2296                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2297                                 break;
2298                         default:
2299                                 break;
2300                         }
2301                         vm_map_simplify_entry(map, current);
2302                 }
2303                 vm_map_unlock(map);
2304         } else {
2305                 vm_pindex_t pstart, pend;
2306
2307                 /*
2308                  * madvise behaviors that are implemented in the underlying
2309                  * vm_object.
2310                  *
2311                  * Since we don't clip the vm_map_entry, we have to clip
2312                  * the vm_object pindex and count.
2313                  */
2314                 for (current = entry; current->start < end;
2315                     current = current->next) {
2316                         vm_offset_t useEnd, useStart;
2317
2318                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2319                                 continue;
2320
2321                         pstart = OFF_TO_IDX(current->offset);
2322                         pend = pstart + atop(current->end - current->start);
2323                         useStart = current->start;
2324                         useEnd = current->end;
2325
2326                         if (current->start < start) {
2327                                 pstart += atop(start - current->start);
2328                                 useStart = start;
2329                         }
2330                         if (current->end > end) {
2331                                 pend -= atop(current->end - end);
2332                                 useEnd = end;
2333                         }
2334
2335                         if (pstart >= pend)
2336                                 continue;
2337
2338                         /*
2339                          * Perform the pmap_advise() before clearing
2340                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2341                          * concurrent pmap operation, such as pmap_remove(),
2342                          * could clear a reference in the pmap and set
2343                          * PGA_REFERENCED on the page before the pmap_advise()
2344                          * had completed.  Consequently, the page would appear
2345                          * referenced based upon an old reference that
2346                          * occurred before this pmap_advise() ran.
2347                          */
2348                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2349                                 pmap_advise(map->pmap, useStart, useEnd,
2350                                     behav);
2351
2352                         vm_object_madvise(current->object.vm_object, pstart,
2353                             pend, behav);
2354
2355                         /*
2356                          * Pre-populate paging structures in the
2357                          * WILLNEED case.  For wired entries, the
2358                          * paging structures are already populated.
2359                          */
2360                         if (behav == MADV_WILLNEED &&
2361                             current->wired_count == 0) {
2362                                 vm_map_pmap_enter(map,
2363                                     useStart,
2364                                     current->protection,
2365                                     current->object.vm_object,
2366                                     pstart,
2367                                     ptoa(pend - pstart),
2368                                     MAP_PREFAULT_MADVISE
2369                                 );
2370                         }
2371                 }
2372                 vm_map_unlock_read(map);
2373         }
2374         return (0);
2375 }
2376
2377
2378 /*
2379  *      vm_map_inherit:
2380  *
2381  *      Sets the inheritance of the specified address
2382  *      range in the target map.  Inheritance
2383  *      affects how the map will be shared with
2384  *      child maps at the time of vmspace_fork.
2385  */
2386 int
2387 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2388                vm_inherit_t new_inheritance)
2389 {
2390         vm_map_entry_t entry;
2391         vm_map_entry_t temp_entry;
2392
2393         switch (new_inheritance) {
2394         case VM_INHERIT_NONE:
2395         case VM_INHERIT_COPY:
2396         case VM_INHERIT_SHARE:
2397         case VM_INHERIT_ZERO:
2398                 break;
2399         default:
2400                 return (KERN_INVALID_ARGUMENT);
2401         }
2402         if (start == end)
2403                 return (KERN_SUCCESS);
2404         vm_map_lock(map);
2405         VM_MAP_RANGE_CHECK(map, start, end);
2406         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2407                 entry = temp_entry;
2408                 vm_map_clip_start(map, entry, start);
2409         } else
2410                 entry = temp_entry->next;
2411         while (entry->start < end) {
2412                 vm_map_clip_end(map, entry, end);
2413                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2414                     new_inheritance != VM_INHERIT_ZERO)
2415                         entry->inheritance = new_inheritance;
2416                 vm_map_simplify_entry(map, entry);
2417                 entry = entry->next;
2418         }
2419         vm_map_unlock(map);
2420         return (KERN_SUCCESS);
2421 }
2422
2423 /*
2424  *      vm_map_unwire:
2425  *
2426  *      Implements both kernel and user unwiring.
2427  */
2428 int
2429 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2430     int flags)
2431 {
2432         vm_map_entry_t entry, first_entry, tmp_entry;
2433         vm_offset_t saved_start;
2434         unsigned int last_timestamp;
2435         int rv;
2436         boolean_t need_wakeup, result, user_unwire;
2437
2438         if (start == end)
2439                 return (KERN_SUCCESS);
2440         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2441         vm_map_lock(map);
2442         VM_MAP_RANGE_CHECK(map, start, end);
2443         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2444                 if (flags & VM_MAP_WIRE_HOLESOK)
2445                         first_entry = first_entry->next;
2446                 else {
2447                         vm_map_unlock(map);
2448                         return (KERN_INVALID_ADDRESS);
2449                 }
2450         }
2451         last_timestamp = map->timestamp;
2452         entry = first_entry;
2453         while (entry->start < end) {
2454                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2455                         /*
2456                          * We have not yet clipped the entry.
2457                          */
2458                         saved_start = (start >= entry->start) ? start :
2459                             entry->start;
2460                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2461                         if (vm_map_unlock_and_wait(map, 0)) {
2462                                 /*
2463                                  * Allow interruption of user unwiring?
2464                                  */
2465                         }
2466                         vm_map_lock(map);
2467                         if (last_timestamp+1 != map->timestamp) {
2468                                 /*
2469                                  * Look again for the entry because the map was
2470                                  * modified while it was unlocked.
2471                                  * Specifically, the entry may have been
2472                                  * clipped, merged, or deleted.
2473                                  */
2474                                 if (!vm_map_lookup_entry(map, saved_start,
2475                                     &tmp_entry)) {
2476                                         if (flags & VM_MAP_WIRE_HOLESOK)
2477                                                 tmp_entry = tmp_entry->next;
2478                                         else {
2479                                                 if (saved_start == start) {
2480                                                         /*
2481                                                          * First_entry has been deleted.
2482                                                          */
2483                                                         vm_map_unlock(map);
2484                                                         return (KERN_INVALID_ADDRESS);
2485                                                 }
2486                                                 end = saved_start;
2487                                                 rv = KERN_INVALID_ADDRESS;
2488                                                 goto done;
2489                                         }
2490                                 }
2491                                 if (entry == first_entry)
2492                                         first_entry = tmp_entry;
2493                                 else
2494                                         first_entry = NULL;
2495                                 entry = tmp_entry;
2496                         }
2497                         last_timestamp = map->timestamp;
2498                         continue;
2499                 }
2500                 vm_map_clip_start(map, entry, start);
2501                 vm_map_clip_end(map, entry, end);
2502                 /*
2503                  * Mark the entry in case the map lock is released.  (See
2504                  * above.)
2505                  */
2506                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2507                     entry->wiring_thread == NULL,
2508                     ("owned map entry %p", entry));
2509                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2510                 entry->wiring_thread = curthread;
2511                 /*
2512                  * Check the map for holes in the specified region.
2513                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2514                  */
2515                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2516                     (entry->end < end && entry->next->start > entry->end)) {
2517                         end = entry->end;
2518                         rv = KERN_INVALID_ADDRESS;
2519                         goto done;
2520                 }
2521                 /*
2522                  * If system unwiring, require that the entry is system wired.
2523                  */
2524                 if (!user_unwire &&
2525                     vm_map_entry_system_wired_count(entry) == 0) {
2526                         end = entry->end;
2527                         rv = KERN_INVALID_ARGUMENT;
2528                         goto done;
2529                 }
2530                 entry = entry->next;
2531         }
2532         rv = KERN_SUCCESS;
2533 done:
2534         need_wakeup = FALSE;
2535         if (first_entry == NULL) {
2536                 result = vm_map_lookup_entry(map, start, &first_entry);
2537                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2538                         first_entry = first_entry->next;
2539                 else
2540                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2541         }
2542         for (entry = first_entry; entry->start < end; entry = entry->next) {
2543                 /*
2544                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2545                  * space in the unwired region could have been mapped
2546                  * while the map lock was dropped for draining
2547                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2548                  * could be simultaneously wiring this new mapping
2549                  * entry.  Detect these cases and skip any entries
2550                  * marked as in transition by us.
2551                  */
2552                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2553                     entry->wiring_thread != curthread) {
2554                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2555                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2556                         continue;
2557                 }
2558
2559                 if (rv == KERN_SUCCESS && (!user_unwire ||
2560                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2561                         if (user_unwire)
2562                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2563                         if (entry->wired_count == 1)
2564                                 vm_map_entry_unwire(map, entry);
2565                         else
2566                                 entry->wired_count--;
2567                 }
2568                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2569                     ("vm_map_unwire: in-transition flag missing %p", entry));
2570                 KASSERT(entry->wiring_thread == curthread,
2571                     ("vm_map_unwire: alien wire %p", entry));
2572                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2573                 entry->wiring_thread = NULL;
2574                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2575                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2576                         need_wakeup = TRUE;
2577                 }
2578                 vm_map_simplify_entry(map, entry);
2579         }
2580         vm_map_unlock(map);
2581         if (need_wakeup)
2582                 vm_map_wakeup(map);
2583         return (rv);
2584 }
2585
2586 /*
2587  *      vm_map_wire_entry_failure:
2588  *
2589  *      Handle a wiring failure on the given entry.
2590  *
2591  *      The map should be locked.
2592  */
2593 static void
2594 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2595     vm_offset_t failed_addr)
2596 {
2597
2598         VM_MAP_ASSERT_LOCKED(map);
2599         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2600             entry->wired_count == 1,
2601             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2602         KASSERT(failed_addr < entry->end,
2603             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2604
2605         /*
2606          * If any pages at the start of this entry were successfully wired,
2607          * then unwire them.
2608          */
2609         if (failed_addr > entry->start) {
2610                 pmap_unwire(map->pmap, entry->start, failed_addr);
2611                 vm_object_unwire(entry->object.vm_object, entry->offset,
2612                     failed_addr - entry->start, PQ_ACTIVE);
2613         }
2614
2615         /*
2616          * Assign an out-of-range value to represent the failure to wire this
2617          * entry.
2618          */
2619         entry->wired_count = -1;
2620 }
2621
2622 /*
2623  *      vm_map_wire:
2624  *
2625  *      Implements both kernel and user wiring.
2626  */
2627 int
2628 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2629     int flags)
2630 {
2631         vm_map_entry_t entry, first_entry, tmp_entry;
2632         vm_offset_t faddr, saved_end, saved_start;
2633         unsigned int last_timestamp;
2634         int rv;
2635         boolean_t need_wakeup, result, user_wire;
2636         vm_prot_t prot;
2637
2638         if (start == end)
2639                 return (KERN_SUCCESS);
2640         prot = 0;
2641         if (flags & VM_MAP_WIRE_WRITE)
2642                 prot |= VM_PROT_WRITE;
2643         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2644         vm_map_lock(map);
2645         VM_MAP_RANGE_CHECK(map, start, end);
2646         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2647                 if (flags & VM_MAP_WIRE_HOLESOK)
2648                         first_entry = first_entry->next;
2649                 else {
2650                         vm_map_unlock(map);
2651                         return (KERN_INVALID_ADDRESS);
2652                 }
2653         }
2654         last_timestamp = map->timestamp;
2655         entry = first_entry;
2656         while (entry->start < end) {
2657                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2658                         /*
2659                          * We have not yet clipped the entry.
2660                          */
2661                         saved_start = (start >= entry->start) ? start :
2662                             entry->start;
2663                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2664                         if (vm_map_unlock_and_wait(map, 0)) {
2665                                 /*
2666                                  * Allow interruption of user wiring?
2667                                  */
2668                         }
2669                         vm_map_lock(map);
2670                         if (last_timestamp + 1 != map->timestamp) {
2671                                 /*
2672                                  * Look again for the entry because the map was
2673                                  * modified while it was unlocked.
2674                                  * Specifically, the entry may have been
2675                                  * clipped, merged, or deleted.
2676                                  */
2677                                 if (!vm_map_lookup_entry(map, saved_start,
2678                                     &tmp_entry)) {
2679                                         if (flags & VM_MAP_WIRE_HOLESOK)
2680                                                 tmp_entry = tmp_entry->next;
2681                                         else {
2682                                                 if (saved_start == start) {
2683                                                         /*
2684                                                          * first_entry has been deleted.
2685                                                          */
2686                                                         vm_map_unlock(map);
2687                                                         return (KERN_INVALID_ADDRESS);
2688                                                 }
2689                                                 end = saved_start;
2690                                                 rv = KERN_INVALID_ADDRESS;
2691                                                 goto done;
2692                                         }
2693                                 }
2694                                 if (entry == first_entry)
2695                                         first_entry = tmp_entry;
2696                                 else
2697                                         first_entry = NULL;
2698                                 entry = tmp_entry;
2699                         }
2700                         last_timestamp = map->timestamp;
2701                         continue;
2702                 }
2703                 vm_map_clip_start(map, entry, start);
2704                 vm_map_clip_end(map, entry, end);
2705                 /*
2706                  * Mark the entry in case the map lock is released.  (See
2707                  * above.)
2708                  */
2709                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2710                     entry->wiring_thread == NULL,
2711                     ("owned map entry %p", entry));
2712                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2713                 entry->wiring_thread = curthread;
2714                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2715                     || (entry->protection & prot) != prot) {
2716                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2717                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2718                                 end = entry->end;
2719                                 rv = KERN_INVALID_ADDRESS;
2720                                 goto done;
2721                         }
2722                         goto next_entry;
2723                 }
2724                 if (entry->wired_count == 0) {
2725                         entry->wired_count++;
2726                         saved_start = entry->start;
2727                         saved_end = entry->end;
2728
2729                         /*
2730                          * Release the map lock, relying on the in-transition
2731                          * mark.  Mark the map busy for fork.
2732                          */
2733                         vm_map_busy(map);
2734                         vm_map_unlock(map);
2735
2736                         faddr = saved_start;
2737                         do {
2738                                 /*
2739                                  * Simulate a fault to get the page and enter
2740                                  * it into the physical map.
2741                                  */
2742                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2743                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2744                                         break;
2745                         } while ((faddr += PAGE_SIZE) < saved_end);
2746                         vm_map_lock(map);
2747                         vm_map_unbusy(map);
2748                         if (last_timestamp + 1 != map->timestamp) {
2749                                 /*
2750                                  * Look again for the entry because the map was
2751                                  * modified while it was unlocked.  The entry
2752                                  * may have been clipped, but NOT merged or
2753                                  * deleted.
2754                                  */
2755                                 result = vm_map_lookup_entry(map, saved_start,
2756                                     &tmp_entry);
2757                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2758                                 if (entry == first_entry)
2759                                         first_entry = tmp_entry;
2760                                 else
2761                                         first_entry = NULL;
2762                                 entry = tmp_entry;
2763                                 while (entry->end < saved_end) {
2764                                         /*
2765                                          * In case of failure, handle entries
2766                                          * that were not fully wired here;
2767                                          * fully wired entries are handled
2768                                          * later.
2769                                          */
2770                                         if (rv != KERN_SUCCESS &&
2771                                             faddr < entry->end)
2772                                                 vm_map_wire_entry_failure(map,
2773                                                     entry, faddr);
2774                                         entry = entry->next;
2775                                 }
2776                         }
2777                         last_timestamp = map->timestamp;
2778                         if (rv != KERN_SUCCESS) {
2779                                 vm_map_wire_entry_failure(map, entry, faddr);
2780                                 end = entry->end;
2781                                 goto done;
2782                         }
2783                 } else if (!user_wire ||
2784                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2785                         entry->wired_count++;
2786                 }
2787                 /*
2788                  * Check the map for holes in the specified region.
2789                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2790                  */
2791         next_entry:
2792                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2793                     entry->end < end && entry->next->start > entry->end) {
2794                         end = entry->end;
2795                         rv = KERN_INVALID_ADDRESS;
2796                         goto done;
2797                 }
2798                 entry = entry->next;
2799         }
2800         rv = KERN_SUCCESS;
2801 done:
2802         need_wakeup = FALSE;
2803         if (first_entry == NULL) {
2804                 result = vm_map_lookup_entry(map, start, &first_entry);
2805                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2806                         first_entry = first_entry->next;
2807                 else
2808                         KASSERT(result, ("vm_map_wire: lookup failed"));
2809         }
2810         for (entry = first_entry; entry->start < end; entry = entry->next) {
2811                 /*
2812                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2813                  * space in the unwired region could have been mapped
2814                  * while the map lock was dropped for faulting in the
2815                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2816                  * Moreover, another thread could be simultaneously
2817                  * wiring this new mapping entry.  Detect these cases
2818                  * and skip any entries marked as in transition not by us.
2819                  */
2820                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2821                     entry->wiring_thread != curthread) {
2822                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2823                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2824                         continue;
2825                 }
2826
2827                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2828                         goto next_entry_done;
2829
2830                 if (rv == KERN_SUCCESS) {
2831                         if (user_wire)
2832                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2833                 } else if (entry->wired_count == -1) {
2834                         /*
2835                          * Wiring failed on this entry.  Thus, unwiring is
2836                          * unnecessary.
2837                          */
2838                         entry->wired_count = 0;
2839                 } else if (!user_wire ||
2840                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2841                         /*
2842                          * Undo the wiring.  Wiring succeeded on this entry
2843                          * but failed on a later entry.  
2844                          */
2845                         if (entry->wired_count == 1)
2846                                 vm_map_entry_unwire(map, entry);
2847                         else
2848                                 entry->wired_count--;
2849                 }
2850         next_entry_done:
2851                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2852                     ("vm_map_wire: in-transition flag missing %p", entry));
2853                 KASSERT(entry->wiring_thread == curthread,
2854                     ("vm_map_wire: alien wire %p", entry));
2855                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2856                     MAP_ENTRY_WIRE_SKIPPED);
2857                 entry->wiring_thread = NULL;
2858                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2859                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2860                         need_wakeup = TRUE;
2861                 }
2862                 vm_map_simplify_entry(map, entry);
2863         }
2864         vm_map_unlock(map);
2865         if (need_wakeup)
2866                 vm_map_wakeup(map);
2867         return (rv);
2868 }
2869
2870 /*
2871  * vm_map_sync
2872  *
2873  * Push any dirty cached pages in the address range to their pager.
2874  * If syncio is TRUE, dirty pages are written synchronously.
2875  * If invalidate is TRUE, any cached pages are freed as well.
2876  *
2877  * If the size of the region from start to end is zero, we are
2878  * supposed to flush all modified pages within the region containing
2879  * start.  Unfortunately, a region can be split or coalesced with
2880  * neighboring regions, making it difficult to determine what the
2881  * original region was.  Therefore, we approximate this requirement by
2882  * flushing the current region containing start.
2883  *
2884  * Returns an error if any part of the specified range is not mapped.
2885  */
2886 int
2887 vm_map_sync(
2888         vm_map_t map,
2889         vm_offset_t start,
2890         vm_offset_t end,
2891         boolean_t syncio,
2892         boolean_t invalidate)
2893 {
2894         vm_map_entry_t current;
2895         vm_map_entry_t entry;
2896         vm_size_t size;
2897         vm_object_t object;
2898         vm_ooffset_t offset;
2899         unsigned int last_timestamp;
2900         boolean_t failed;
2901
2902         vm_map_lock_read(map);
2903         VM_MAP_RANGE_CHECK(map, start, end);
2904         if (!vm_map_lookup_entry(map, start, &entry)) {
2905                 vm_map_unlock_read(map);
2906                 return (KERN_INVALID_ADDRESS);
2907         } else if (start == end) {
2908                 start = entry->start;
2909                 end = entry->end;
2910         }
2911         /*
2912          * Make a first pass to check for user-wired memory and holes.
2913          */
2914         for (current = entry; current->start < end; current = current->next) {
2915                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2916                         vm_map_unlock_read(map);
2917                         return (KERN_INVALID_ARGUMENT);
2918                 }
2919                 if (end > current->end &&
2920                     current->end != current->next->start) {
2921                         vm_map_unlock_read(map);
2922                         return (KERN_INVALID_ADDRESS);
2923                 }
2924         }
2925
2926         if (invalidate)
2927                 pmap_remove(map->pmap, start, end);
2928         failed = FALSE;
2929
2930         /*
2931          * Make a second pass, cleaning/uncaching pages from the indicated
2932          * objects as we go.
2933          */
2934         for (current = entry; current->start < end;) {
2935                 offset = current->offset + (start - current->start);
2936                 size = (end <= current->end ? end : current->end) - start;
2937                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2938                         vm_map_t smap;
2939                         vm_map_entry_t tentry;
2940                         vm_size_t tsize;
2941
2942                         smap = current->object.sub_map;
2943                         vm_map_lock_read(smap);
2944                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2945                         tsize = tentry->end - offset;
2946                         if (tsize < size)
2947                                 size = tsize;
2948                         object = tentry->object.vm_object;
2949                         offset = tentry->offset + (offset - tentry->start);
2950                         vm_map_unlock_read(smap);
2951                 } else {
2952                         object = current->object.vm_object;
2953                 }
2954                 vm_object_reference(object);
2955                 last_timestamp = map->timestamp;
2956                 vm_map_unlock_read(map);
2957                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2958                         failed = TRUE;
2959                 start += size;
2960                 vm_object_deallocate(object);
2961                 vm_map_lock_read(map);
2962                 if (last_timestamp == map->timestamp ||
2963                     !vm_map_lookup_entry(map, start, &current))
2964                         current = current->next;
2965         }
2966
2967         vm_map_unlock_read(map);
2968         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2969 }
2970
2971 /*
2972  *      vm_map_entry_unwire:    [ internal use only ]
2973  *
2974  *      Make the region specified by this entry pageable.
2975  *
2976  *      The map in question should be locked.
2977  *      [This is the reason for this routine's existence.]
2978  */
2979 static void
2980 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2981 {
2982
2983         VM_MAP_ASSERT_LOCKED(map);
2984         KASSERT(entry->wired_count > 0,
2985             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2986         pmap_unwire(map->pmap, entry->start, entry->end);
2987         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2988             entry->start, PQ_ACTIVE);
2989         entry->wired_count = 0;
2990 }
2991
2992 static void
2993 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2994 {
2995
2996         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2997                 vm_object_deallocate(entry->object.vm_object);
2998         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2999 }
3000
3001 /*
3002  *      vm_map_entry_delete:    [ internal use only ]
3003  *
3004  *      Deallocate the given entry from the target map.
3005  */
3006 static void
3007 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3008 {
3009         vm_object_t object;
3010         vm_pindex_t offidxstart, offidxend, count, size1;
3011         vm_size_t size;
3012
3013         vm_map_entry_unlink(map, entry);
3014         object = entry->object.vm_object;
3015
3016         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3017                 MPASS(entry->cred == NULL);
3018                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3019                 MPASS(object == NULL);
3020                 vm_map_entry_deallocate(entry, map->system_map);
3021                 return;
3022         }
3023
3024         size = entry->end - entry->start;
3025         map->size -= size;
3026
3027         if (entry->cred != NULL) {
3028                 swap_release_by_cred(size, entry->cred);
3029                 crfree(entry->cred);
3030         }
3031
3032         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3033             (object != NULL)) {
3034                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3035                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3036                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3037                 count = atop(size);
3038                 offidxstart = OFF_TO_IDX(entry->offset);
3039                 offidxend = offidxstart + count;
3040                 VM_OBJECT_WLOCK(object);
3041                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3042                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3043                     object == kernel_object)) {
3044                         vm_object_collapse(object);
3045
3046                         /*
3047                          * The option OBJPR_NOTMAPPED can be passed here
3048                          * because vm_map_delete() already performed
3049                          * pmap_remove() on the only mapping to this range
3050                          * of pages. 
3051                          */
3052                         vm_object_page_remove(object, offidxstart, offidxend,
3053                             OBJPR_NOTMAPPED);
3054                         if (object->type == OBJT_SWAP)
3055                                 swap_pager_freespace(object, offidxstart,
3056                                     count);
3057                         if (offidxend >= object->size &&
3058                             offidxstart < object->size) {
3059                                 size1 = object->size;
3060                                 object->size = offidxstart;
3061                                 if (object->cred != NULL) {
3062                                         size1 -= object->size;
3063                                         KASSERT(object->charge >= ptoa(size1),
3064                                             ("object %p charge < 0", object));
3065                                         swap_release_by_cred(ptoa(size1),
3066                                             object->cred);
3067                                         object->charge -= ptoa(size1);
3068                                 }
3069                         }
3070                 }
3071                 VM_OBJECT_WUNLOCK(object);
3072         } else
3073                 entry->object.vm_object = NULL;
3074         if (map->system_map)
3075                 vm_map_entry_deallocate(entry, TRUE);
3076         else {
3077                 entry->next = curthread->td_map_def_user;
3078                 curthread->td_map_def_user = entry;
3079         }
3080 }
3081
3082 /*
3083  *      vm_map_delete:  [ internal use only ]
3084  *
3085  *      Deallocates the given address range from the target
3086  *      map.
3087  */
3088 int
3089 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3090 {
3091         vm_map_entry_t entry;
3092         vm_map_entry_t first_entry;
3093
3094         VM_MAP_ASSERT_LOCKED(map);
3095         if (start == end)
3096                 return (KERN_SUCCESS);
3097
3098         /*
3099          * Find the start of the region, and clip it
3100          */
3101         if (!vm_map_lookup_entry(map, start, &first_entry))
3102                 entry = first_entry->next;
3103         else {
3104                 entry = first_entry;
3105                 vm_map_clip_start(map, entry, start);
3106         }
3107
3108         /*
3109          * Step through all entries in this region
3110          */
3111         while (entry->start < end) {
3112                 vm_map_entry_t next;
3113
3114                 /*
3115                  * Wait for wiring or unwiring of an entry to complete.
3116                  * Also wait for any system wirings to disappear on
3117                  * user maps.
3118                  */
3119                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3120                     (vm_map_pmap(map) != kernel_pmap &&
3121                     vm_map_entry_system_wired_count(entry) != 0)) {
3122                         unsigned int last_timestamp;
3123                         vm_offset_t saved_start;
3124                         vm_map_entry_t tmp_entry;
3125
3126                         saved_start = entry->start;
3127                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3128                         last_timestamp = map->timestamp;
3129                         (void) vm_map_unlock_and_wait(map, 0);
3130                         vm_map_lock(map);
3131                         if (last_timestamp + 1 != map->timestamp) {
3132                                 /*
3133                                  * Look again for the entry because the map was
3134                                  * modified while it was unlocked.
3135                                  * Specifically, the entry may have been
3136                                  * clipped, merged, or deleted.
3137                                  */
3138                                 if (!vm_map_lookup_entry(map, saved_start,
3139                                                          &tmp_entry))
3140                                         entry = tmp_entry->next;
3141                                 else {
3142                                         entry = tmp_entry;
3143                                         vm_map_clip_start(map, entry,
3144                                                           saved_start);
3145                                 }
3146                         }
3147                         continue;
3148                 }
3149                 vm_map_clip_end(map, entry, end);
3150
3151                 next = entry->next;
3152
3153                 /*
3154                  * Unwire before removing addresses from the pmap; otherwise,
3155                  * unwiring will put the entries back in the pmap.
3156                  */
3157                 if (entry->wired_count != 0) {
3158                         vm_map_entry_unwire(map, entry);
3159                 }
3160
3161                 pmap_remove(map->pmap, entry->start, entry->end);
3162
3163                 /*
3164                  * Delete the entry only after removing all pmap
3165                  * entries pointing to its pages.  (Otherwise, its
3166                  * page frames may be reallocated, and any modify bits
3167                  * will be set in the wrong object!)
3168                  */
3169                 vm_map_entry_delete(map, entry);
3170                 entry = next;
3171         }
3172         return (KERN_SUCCESS);
3173 }
3174
3175 /*
3176  *      vm_map_remove:
3177  *
3178  *      Remove the given address range from the target map.
3179  *      This is the exported form of vm_map_delete.
3180  */
3181 int
3182 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3183 {
3184         int result;
3185
3186         vm_map_lock(map);
3187         VM_MAP_RANGE_CHECK(map, start, end);
3188         result = vm_map_delete(map, start, end);
3189         vm_map_unlock(map);
3190         return (result);
3191 }
3192
3193 /*
3194  *      vm_map_check_protection:
3195  *
3196  *      Assert that the target map allows the specified privilege on the
3197  *      entire address region given.  The entire region must be allocated.
3198  *
3199  *      WARNING!  This code does not and should not check whether the
3200  *      contents of the region is accessible.  For example a smaller file
3201  *      might be mapped into a larger address space.
3202  *
3203  *      NOTE!  This code is also called by munmap().
3204  *
3205  *      The map must be locked.  A read lock is sufficient.
3206  */
3207 boolean_t
3208 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3209                         vm_prot_t protection)
3210 {
3211         vm_map_entry_t entry;
3212         vm_map_entry_t tmp_entry;
3213
3214         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3215                 return (FALSE);
3216         entry = tmp_entry;
3217
3218         while (start < end) {
3219                 /*
3220                  * No holes allowed!
3221                  */
3222                 if (start < entry->start)
3223                         return (FALSE);
3224                 /*
3225                  * Check protection associated with entry.
3226                  */
3227                 if ((entry->protection & protection) != protection)
3228                         return (FALSE);
3229                 /* go to next entry */
3230                 start = entry->end;
3231                 entry = entry->next;
3232         }
3233         return (TRUE);
3234 }
3235
3236 /*
3237  *      vm_map_copy_entry:
3238  *
3239  *      Copies the contents of the source entry to the destination
3240  *      entry.  The entries *must* be aligned properly.
3241  */
3242 static void
3243 vm_map_copy_entry(
3244         vm_map_t src_map,
3245         vm_map_t dst_map,
3246         vm_map_entry_t src_entry,
3247         vm_map_entry_t dst_entry,
3248         vm_ooffset_t *fork_charge)
3249 {
3250         vm_object_t src_object;
3251         vm_map_entry_t fake_entry;
3252         vm_offset_t size;
3253         struct ucred *cred;
3254         int charged;
3255
3256         VM_MAP_ASSERT_LOCKED(dst_map);
3257
3258         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3259                 return;
3260
3261         if (src_entry->wired_count == 0 ||
3262             (src_entry->protection & VM_PROT_WRITE) == 0) {
3263                 /*
3264                  * If the source entry is marked needs_copy, it is already
3265                  * write-protected.
3266                  */
3267                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3268                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3269                         pmap_protect(src_map->pmap,
3270                             src_entry->start,
3271                             src_entry->end,
3272                             src_entry->protection & ~VM_PROT_WRITE);
3273                 }
3274
3275                 /*
3276                  * Make a copy of the object.
3277                  */
3278                 size = src_entry->end - src_entry->start;
3279                 if ((src_object = src_entry->object.vm_object) != NULL) {
3280                         VM_OBJECT_WLOCK(src_object);
3281                         charged = ENTRY_CHARGED(src_entry);
3282                         if (src_object->handle == NULL &&
3283                             (src_object->type == OBJT_DEFAULT ||
3284                             src_object->type == OBJT_SWAP)) {
3285                                 vm_object_collapse(src_object);
3286                                 if ((src_object->flags & (OBJ_NOSPLIT |
3287                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3288                                         vm_object_split(src_entry);
3289                                         src_object =
3290                                             src_entry->object.vm_object;
3291                                 }
3292                         }
3293                         vm_object_reference_locked(src_object);
3294                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3295                         if (src_entry->cred != NULL &&
3296                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3297                                 KASSERT(src_object->cred == NULL,
3298                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3299                                      src_object));
3300                                 src_object->cred = src_entry->cred;
3301                                 src_object->charge = size;
3302                         }
3303                         VM_OBJECT_WUNLOCK(src_object);
3304                         dst_entry->object.vm_object = src_object;
3305                         if (charged) {
3306                                 cred = curthread->td_ucred;
3307                                 crhold(cred);
3308                                 dst_entry->cred = cred;
3309                                 *fork_charge += size;
3310                                 if (!(src_entry->eflags &
3311                                       MAP_ENTRY_NEEDS_COPY)) {
3312                                         crhold(cred);
3313                                         src_entry->cred = cred;
3314                                         *fork_charge += size;
3315                                 }
3316                         }
3317                         src_entry->eflags |= MAP_ENTRY_COW |
3318                             MAP_ENTRY_NEEDS_COPY;
3319                         dst_entry->eflags |= MAP_ENTRY_COW |
3320                             MAP_ENTRY_NEEDS_COPY;
3321                         dst_entry->offset = src_entry->offset;
3322                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3323                                 /*
3324                                  * MAP_ENTRY_VN_WRITECNT cannot
3325                                  * indicate write reference from
3326                                  * src_entry, since the entry is
3327                                  * marked as needs copy.  Allocate a
3328                                  * fake entry that is used to
3329                                  * decrement object->un_pager.vnp.writecount
3330                                  * at the appropriate time.  Attach
3331                                  * fake_entry to the deferred list.
3332                                  */
3333                                 fake_entry = vm_map_entry_create(dst_map);
3334                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3335                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3336                                 vm_object_reference(src_object);
3337                                 fake_entry->object.vm_object = src_object;
3338                                 fake_entry->start = src_entry->start;
3339                                 fake_entry->end = src_entry->end;
3340                                 fake_entry->next = curthread->td_map_def_user;
3341                                 curthread->td_map_def_user = fake_entry;
3342                         }
3343
3344                         pmap_copy(dst_map->pmap, src_map->pmap,
3345                             dst_entry->start, dst_entry->end - dst_entry->start,
3346                             src_entry->start);
3347                 } else {
3348                         dst_entry->object.vm_object = NULL;
3349                         dst_entry->offset = 0;
3350                         if (src_entry->cred != NULL) {
3351                                 dst_entry->cred = curthread->td_ucred;
3352                                 crhold(dst_entry->cred);
3353                                 *fork_charge += size;
3354                         }
3355                 }
3356         } else {
3357                 /*
3358                  * We don't want to make writeable wired pages copy-on-write.
3359                  * Immediately copy these pages into the new map by simulating
3360                  * page faults.  The new pages are pageable.
3361                  */
3362                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3363                     fork_charge);
3364         }
3365 }
3366
3367 /*
3368  * vmspace_map_entry_forked:
3369  * Update the newly-forked vmspace each time a map entry is inherited
3370  * or copied.  The values for vm_dsize and vm_tsize are approximate
3371  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3372  */
3373 static void
3374 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3375     vm_map_entry_t entry)
3376 {
3377         vm_size_t entrysize;
3378         vm_offset_t newend;
3379
3380         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3381                 return;
3382         entrysize = entry->end - entry->start;
3383         vm2->vm_map.size += entrysize;
3384         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3385                 vm2->vm_ssize += btoc(entrysize);
3386         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3387             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3388                 newend = MIN(entry->end,
3389                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3390                 vm2->vm_dsize += btoc(newend - entry->start);
3391         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3392             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3393                 newend = MIN(entry->end,
3394                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3395                 vm2->vm_tsize += btoc(newend - entry->start);
3396         }
3397 }
3398
3399 /*
3400  * vmspace_fork:
3401  * Create a new process vmspace structure and vm_map
3402  * based on those of an existing process.  The new map
3403  * is based on the old map, according to the inheritance
3404  * values on the regions in that map.
3405  *
3406  * XXX It might be worth coalescing the entries added to the new vmspace.
3407  *
3408  * The source map must not be locked.
3409  */
3410 struct vmspace *
3411 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3412 {
3413         struct vmspace *vm2;
3414         vm_map_t new_map, old_map;
3415         vm_map_entry_t new_entry, old_entry;
3416         vm_object_t object;
3417         int locked;
3418         vm_inherit_t inh;
3419
3420         old_map = &vm1->vm_map;
3421         /* Copy immutable fields of vm1 to vm2. */
3422         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3423         if (vm2 == NULL)
3424                 return (NULL);
3425         vm2->vm_taddr = vm1->vm_taddr;
3426         vm2->vm_daddr = vm1->vm_daddr;
3427         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3428         vm_map_lock(old_map);
3429         if (old_map->busy)
3430                 vm_map_wait_busy(old_map);
3431         new_map = &vm2->vm_map;
3432         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3433         KASSERT(locked, ("vmspace_fork: lock failed"));
3434
3435         old_entry = old_map->header.next;
3436
3437         while (old_entry != &old_map->header) {
3438                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3439                         panic("vm_map_fork: encountered a submap");
3440
3441                 inh = old_entry->inheritance;
3442                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3443                     inh != VM_INHERIT_NONE)
3444                         inh = VM_INHERIT_COPY;
3445
3446                 switch (inh) {
3447                 case VM_INHERIT_NONE:
3448                         break;
3449
3450                 case VM_INHERIT_SHARE:
3451                         /*
3452                          * Clone the entry, creating the shared object if necessary.
3453                          */
3454                         object = old_entry->object.vm_object;
3455                         if (object == NULL) {
3456                                 object = vm_object_allocate(OBJT_DEFAULT,
3457                                         atop(old_entry->end - old_entry->start));
3458                                 old_entry->object.vm_object = object;
3459                                 old_entry->offset = 0;
3460                                 if (old_entry->cred != NULL) {
3461                                         object->cred = old_entry->cred;
3462                                         object->charge = old_entry->end -
3463                                             old_entry->start;
3464                                         old_entry->cred = NULL;
3465                                 }
3466                         }
3467
3468                         /*
3469                          * Add the reference before calling vm_object_shadow
3470                          * to insure that a shadow object is created.
3471                          */
3472                         vm_object_reference(object);
3473                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3474                                 vm_object_shadow(&old_entry->object.vm_object,
3475                                     &old_entry->offset,
3476                                     old_entry->end - old_entry->start);
3477                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3478                                 /* Transfer the second reference too. */
3479                                 vm_object_reference(
3480                                     old_entry->object.vm_object);
3481
3482                                 /*
3483                                  * As in vm_map_simplify_entry(), the
3484                                  * vnode lock will not be acquired in
3485                                  * this call to vm_object_deallocate().
3486                                  */
3487                                 vm_object_deallocate(object);
3488                                 object = old_entry->object.vm_object;
3489                         }
3490                         VM_OBJECT_WLOCK(object);
3491                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3492                         if (old_entry->cred != NULL) {
3493                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3494                                 object->cred = old_entry->cred;
3495                                 object->charge = old_entry->end - old_entry->start;
3496                                 old_entry->cred = NULL;
3497                         }
3498
3499                         /*
3500                          * Assert the correct state of the vnode
3501                          * v_writecount while the object is locked, to
3502                          * not relock it later for the assertion
3503                          * correctness.
3504                          */
3505                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3506                             object->type == OBJT_VNODE) {
3507                                 KASSERT(((struct vnode *)object->handle)->
3508                                     v_writecount > 0,
3509                                     ("vmspace_fork: v_writecount %p", object));
3510                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3511                                     ("vmspace_fork: vnp.writecount %p",
3512                                     object));
3513                         }
3514                         VM_OBJECT_WUNLOCK(object);
3515
3516                         /*
3517                          * Clone the entry, referencing the shared object.
3518                          */
3519                         new_entry = vm_map_entry_create(new_map);
3520                         *new_entry = *old_entry;
3521                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3522                             MAP_ENTRY_IN_TRANSITION);
3523                         new_entry->wiring_thread = NULL;
3524                         new_entry->wired_count = 0;
3525                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3526                                 vnode_pager_update_writecount(object,
3527                                     new_entry->start, new_entry->end);
3528                         }
3529
3530                         /*
3531                          * Insert the entry into the new map -- we know we're
3532                          * inserting at the end of the new map.
3533                          */
3534                         vm_map_entry_link(new_map, new_map->header.prev,
3535                             new_entry);
3536                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3537
3538                         /*
3539                          * Update the physical map
3540                          */
3541                         pmap_copy(new_map->pmap, old_map->pmap,
3542                             new_entry->start,
3543                             (old_entry->end - old_entry->start),
3544                             old_entry->start);
3545                         break;
3546
3547                 case VM_INHERIT_COPY:
3548                         /*
3549                          * Clone the entry and link into the map.
3550                          */
3551                         new_entry = vm_map_entry_create(new_map);
3552                         *new_entry = *old_entry;
3553                         /*
3554                          * Copied entry is COW over the old object.
3555                          */
3556                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3557                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3558                         new_entry->wiring_thread = NULL;
3559                         new_entry->wired_count = 0;
3560                         new_entry->object.vm_object = NULL;
3561                         new_entry->cred = NULL;
3562                         vm_map_entry_link(new_map, new_map->header.prev,
3563                             new_entry);
3564                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3565                         vm_map_copy_entry(old_map, new_map, old_entry,
3566                             new_entry, fork_charge);
3567                         break;
3568
3569                 case VM_INHERIT_ZERO:
3570                         /*
3571                          * Create a new anonymous mapping entry modelled from
3572                          * the old one.
3573                          */
3574                         new_entry = vm_map_entry_create(new_map);
3575                         memset(new_entry, 0, sizeof(*new_entry));
3576
3577                         new_entry->start = old_entry->start;
3578                         new_entry->end = old_entry->end;
3579                         new_entry->eflags = old_entry->eflags &
3580                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3581                             MAP_ENTRY_VN_WRITECNT);
3582                         new_entry->protection = old_entry->protection;
3583                         new_entry->max_protection = old_entry->max_protection;
3584                         new_entry->inheritance = VM_INHERIT_ZERO;
3585
3586                         vm_map_entry_link(new_map, new_map->header.prev,
3587                             new_entry);
3588                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3589
3590                         new_entry->cred = curthread->td_ucred;
3591                         crhold(new_entry->cred);
3592                         *fork_charge += (new_entry->end - new_entry->start);
3593
3594                         break;
3595                 }
3596                 old_entry = old_entry->next;
3597         }
3598         /*
3599          * Use inlined vm_map_unlock() to postpone handling the deferred
3600          * map entries, which cannot be done until both old_map and
3601          * new_map locks are released.
3602          */
3603         sx_xunlock(&old_map->lock);
3604         sx_xunlock(&new_map->lock);
3605         vm_map_process_deferred();
3606
3607         return (vm2);
3608 }
3609
3610 /*
3611  * Create a process's stack for exec_new_vmspace().  This function is never
3612  * asked to wire the newly created stack.
3613  */
3614 int
3615 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3616     vm_prot_t prot, vm_prot_t max, int cow)
3617 {
3618         vm_size_t growsize, init_ssize;
3619         rlim_t vmemlim;
3620         int rv;
3621
3622         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3623         growsize = sgrowsiz;
3624         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3625         vm_map_lock(map);
3626         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3627         /* If we would blow our VMEM resource limit, no go */
3628         if (map->size + init_ssize > vmemlim) {
3629                 rv = KERN_NO_SPACE;
3630                 goto out;
3631         }
3632         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3633             max, cow);
3634 out:
3635         vm_map_unlock(map);
3636         return (rv);
3637 }
3638
3639 static int stack_guard_page = 1;
3640 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3641     &stack_guard_page, 0,
3642     "Specifies the number of guard pages for a stack that grows");
3643
3644 static int
3645 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3646     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3647 {
3648         vm_map_entry_t new_entry, prev_entry;
3649         vm_offset_t bot, gap_bot, gap_top, top;
3650         vm_size_t init_ssize, sgp;
3651         int orient, rv;
3652
3653         /*
3654          * The stack orientation is piggybacked with the cow argument.
3655          * Extract it into orient and mask the cow argument so that we
3656          * don't pass it around further.
3657          */
3658         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3659         KASSERT(orient != 0, ("No stack grow direction"));
3660         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3661             ("bi-dir stack"));
3662
3663         if (addrbos < vm_map_min(map) ||
3664             addrbos + max_ssize > vm_map_max(map) ||
3665             addrbos + max_ssize <= addrbos)
3666                 return (KERN_INVALID_ADDRESS);
3667         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3668         if (sgp >= max_ssize)
3669                 return (KERN_INVALID_ARGUMENT);
3670
3671         init_ssize = growsize;
3672         if (max_ssize < init_ssize + sgp)
3673                 init_ssize = max_ssize - sgp;
3674
3675         /* If addr is already mapped, no go */
3676         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3677                 return (KERN_NO_SPACE);
3678
3679         /*
3680          * If we can't accommodate max_ssize in the current mapping, no go.
3681          */
3682         if (prev_entry->next->start < addrbos + max_ssize)
3683                 return (KERN_NO_SPACE);
3684
3685         /*
3686          * We initially map a stack of only init_ssize.  We will grow as
3687          * needed later.  Depending on the orientation of the stack (i.e.
3688          * the grow direction) we either map at the top of the range, the
3689          * bottom of the range or in the middle.
3690          *
3691          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3692          * and cow to be 0.  Possibly we should eliminate these as input
3693          * parameters, and just pass these values here in the insert call.
3694          */
3695         if (orient == MAP_STACK_GROWS_DOWN) {
3696                 bot = addrbos + max_ssize - init_ssize;
3697                 top = bot + init_ssize;
3698                 gap_bot = addrbos;
3699                 gap_top = bot;
3700         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3701                 bot = addrbos;
3702                 top = bot + init_ssize;
3703                 gap_bot = top;
3704                 gap_top = addrbos + max_ssize;
3705         }
3706         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3707         if (rv != KERN_SUCCESS)
3708                 return (rv);
3709         new_entry = prev_entry->next;
3710         KASSERT(new_entry->end == top || new_entry->start == bot,
3711             ("Bad entry start/end for new stack entry"));
3712         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3713             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3714             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3715         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3716             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3717             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3718         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3719             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3720             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3721         if (rv != KERN_SUCCESS)
3722                 (void)vm_map_delete(map, bot, top);
3723         return (rv);
3724 }
3725
3726 /*
3727  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3728  * successfully grow the stack.
3729  */
3730 static int
3731 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3732 {
3733         vm_map_entry_t stack_entry;
3734         struct proc *p;
3735         struct vmspace *vm;
3736         struct ucred *cred;
3737         vm_offset_t gap_end, gap_start, grow_start;
3738         size_t grow_amount, guard, max_grow;
3739         rlim_t lmemlim, stacklim, vmemlim;
3740         int rv, rv1;
3741         bool gap_deleted, grow_down, is_procstack;
3742 #ifdef notyet
3743         uint64_t limit;
3744 #endif
3745 #ifdef RACCT
3746         int error;
3747 #endif
3748
3749         p = curproc;
3750         vm = p->p_vmspace;
3751
3752         /*
3753          * Disallow stack growth when the access is performed by a
3754          * debugger or AIO daemon.  The reason is that the wrong
3755          * resource limits are applied.
3756          */
3757         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3758                 return (KERN_FAILURE);
3759
3760         MPASS(!map->system_map);
3761
3762         guard = stack_guard_page * PAGE_SIZE;
3763         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3764         stacklim = lim_cur(curthread, RLIMIT_STACK);
3765         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3766 retry:
3767         /* If addr is not in a hole for a stack grow area, no need to grow. */
3768         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3769                 return (KERN_FAILURE);
3770         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3771                 return (KERN_SUCCESS);
3772         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3773                 stack_entry = gap_entry->next;
3774                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3775                     stack_entry->start != gap_entry->end)
3776                         return (KERN_FAILURE);
3777                 grow_amount = round_page(stack_entry->start - addr);
3778                 grow_down = true;
3779         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3780                 stack_entry = gap_entry->prev;
3781                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3782                     stack_entry->end != gap_entry->start)
3783                         return (KERN_FAILURE);
3784                 grow_amount = round_page(addr + 1 - stack_entry->end);
3785                 grow_down = false;
3786         } else {
3787                 return (KERN_FAILURE);
3788         }
3789         max_grow = gap_entry->end - gap_entry->start;
3790         if (guard > max_grow)
3791                 return (KERN_NO_SPACE);
3792         max_grow -= guard;
3793         if (grow_amount > max_grow)
3794                 return (KERN_NO_SPACE);
3795
3796         /*
3797          * If this is the main process stack, see if we're over the stack
3798          * limit.
3799          */
3800         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3801             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3802         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3803                 return (KERN_NO_SPACE);
3804
3805 #ifdef RACCT
3806         if (racct_enable) {
3807                 PROC_LOCK(p);
3808                 if (is_procstack && racct_set(p, RACCT_STACK,
3809                     ctob(vm->vm_ssize) + grow_amount)) {
3810                         PROC_UNLOCK(p);
3811                         return (KERN_NO_SPACE);
3812                 }
3813                 PROC_UNLOCK(p);
3814         }
3815 #endif
3816
3817         grow_amount = roundup(grow_amount, sgrowsiz);
3818         if (grow_amount > max_grow)
3819                 grow_amount = max_grow;
3820         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3821                 grow_amount = trunc_page((vm_size_t)stacklim) -
3822                     ctob(vm->vm_ssize);
3823         }
3824
3825 #ifdef notyet
3826         PROC_LOCK(p);
3827         limit = racct_get_available(p, RACCT_STACK);
3828         PROC_UNLOCK(p);
3829         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3830                 grow_amount = limit - ctob(vm->vm_ssize);
3831 #endif
3832
3833         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3834                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3835                         rv = KERN_NO_SPACE;
3836                         goto out;
3837                 }
3838 #ifdef RACCT
3839                 if (racct_enable) {
3840                         PROC_LOCK(p);
3841                         if (racct_set(p, RACCT_MEMLOCK,
3842                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3843                                 PROC_UNLOCK(p);
3844                                 rv = KERN_NO_SPACE;
3845                                 goto out;
3846                         }
3847                         PROC_UNLOCK(p);
3848                 }
3849 #endif
3850         }
3851
3852         /* If we would blow our VMEM resource limit, no go */
3853         if (map->size + grow_amount > vmemlim) {
3854                 rv = KERN_NO_SPACE;
3855                 goto out;
3856         }
3857 #ifdef RACCT
3858         if (racct_enable) {
3859                 PROC_LOCK(p);
3860                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3861                         PROC_UNLOCK(p);
3862                         rv = KERN_NO_SPACE;
3863                         goto out;
3864                 }
3865                 PROC_UNLOCK(p);
3866         }
3867 #endif
3868
3869         if (vm_map_lock_upgrade(map)) {
3870                 gap_entry = NULL;
3871                 vm_map_lock_read(map);
3872                 goto retry;
3873         }
3874
3875         if (grow_down) {
3876                 grow_start = gap_entry->end - grow_amount;
3877                 if (gap_entry->start + grow_amount == gap_entry->end) {
3878                         gap_start = gap_entry->start;
3879                         gap_end = gap_entry->end;
3880                         vm_map_entry_delete(map, gap_entry);
3881                         gap_deleted = true;
3882                 } else {
3883                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3884                         gap_entry->end -= grow_amount;
3885                         vm_map_entry_resize_free(map, gap_entry);
3886                         gap_deleted = false;
3887                 }
3888                 rv = vm_map_insert(map, NULL, 0, grow_start,
3889                     grow_start + grow_amount,
3890                     stack_entry->protection, stack_entry->max_protection,
3891                     MAP_STACK_GROWS_DOWN);
3892                 if (rv != KERN_SUCCESS) {
3893                         if (gap_deleted) {
3894                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3895                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3896                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3897                                 MPASS(rv1 == KERN_SUCCESS);
3898                         } else {
3899                                 gap_entry->end += grow_amount;
3900                                 vm_map_entry_resize_free(map, gap_entry);
3901                         }
3902                 }
3903         } else {
3904                 grow_start = stack_entry->end;
3905                 cred = stack_entry->cred;
3906                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3907                         cred = stack_entry->object.vm_object->cred;
3908                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3909                         rv = KERN_NO_SPACE;
3910                 /* Grow the underlying object if applicable. */
3911                 else if (stack_entry->object.vm_object == NULL ||
3912                     vm_object_coalesce(stack_entry->object.vm_object,
3913                     stack_entry->offset,
3914                     (vm_size_t)(stack_entry->end - stack_entry->start),
3915                     (vm_size_t)grow_amount, cred != NULL)) {
3916                         if (gap_entry->start + grow_amount == gap_entry->end)
3917                                 vm_map_entry_delete(map, gap_entry);
3918                         else
3919                                 gap_entry->start += grow_amount;
3920                         stack_entry->end += grow_amount;
3921                         map->size += grow_amount;
3922                         vm_map_entry_resize_free(map, stack_entry);
3923                         rv = KERN_SUCCESS;
3924                 } else
3925                         rv = KERN_FAILURE;
3926         }
3927         if (rv == KERN_SUCCESS && is_procstack)
3928                 vm->vm_ssize += btoc(grow_amount);
3929
3930         /*
3931          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3932          */
3933         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3934                 vm_map_unlock(map);
3935                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3936                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3937                 vm_map_lock_read(map);
3938         } else
3939                 vm_map_lock_downgrade(map);
3940
3941 out:
3942 #ifdef RACCT
3943         if (racct_enable && rv != KERN_SUCCESS) {
3944                 PROC_LOCK(p);
3945                 error = racct_set(p, RACCT_VMEM, map->size);
3946                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3947                 if (!old_mlock) {
3948                         error = racct_set(p, RACCT_MEMLOCK,
3949                             ptoa(pmap_wired_count(map->pmap)));
3950                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3951                 }
3952                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3953                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3954                 PROC_UNLOCK(p);
3955         }
3956 #endif
3957
3958         return (rv);
3959 }
3960
3961 /*
3962  * Unshare the specified VM space for exec.  If other processes are
3963  * mapped to it, then create a new one.  The new vmspace is null.
3964  */
3965 int
3966 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3967 {
3968         struct vmspace *oldvmspace = p->p_vmspace;
3969         struct vmspace *newvmspace;
3970
3971         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3972             ("vmspace_exec recursed"));
3973         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3974         if (newvmspace == NULL)
3975                 return (ENOMEM);
3976         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3977         /*
3978          * This code is written like this for prototype purposes.  The
3979          * goal is to avoid running down the vmspace here, but let the
3980          * other process's that are still using the vmspace to finally
3981          * run it down.  Even though there is little or no chance of blocking
3982          * here, it is a good idea to keep this form for future mods.
3983          */
3984         PROC_VMSPACE_LOCK(p);
3985         p->p_vmspace = newvmspace;
3986         PROC_VMSPACE_UNLOCK(p);
3987         if (p == curthread->td_proc)
3988                 pmap_activate(curthread);
3989         curthread->td_pflags |= TDP_EXECVMSPC;
3990         return (0);
3991 }
3992
3993 /*
3994  * Unshare the specified VM space for forcing COW.  This
3995  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3996  */
3997 int
3998 vmspace_unshare(struct proc *p)
3999 {
4000         struct vmspace *oldvmspace = p->p_vmspace;
4001         struct vmspace *newvmspace;
4002         vm_ooffset_t fork_charge;
4003
4004         if (oldvmspace->vm_refcnt == 1)
4005                 return (0);
4006         fork_charge = 0;
4007         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4008         if (newvmspace == NULL)
4009                 return (ENOMEM);
4010         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4011                 vmspace_free(newvmspace);
4012                 return (ENOMEM);
4013         }
4014         PROC_VMSPACE_LOCK(p);
4015         p->p_vmspace = newvmspace;
4016         PROC_VMSPACE_UNLOCK(p);
4017         if (p == curthread->td_proc)
4018                 pmap_activate(curthread);
4019         vmspace_free(oldvmspace);
4020         return (0);
4021 }
4022
4023 /*
4024  *      vm_map_lookup:
4025  *
4026  *      Finds the VM object, offset, and
4027  *      protection for a given virtual address in the
4028  *      specified map, assuming a page fault of the
4029  *      type specified.
4030  *
4031  *      Leaves the map in question locked for read; return
4032  *      values are guaranteed until a vm_map_lookup_done
4033  *      call is performed.  Note that the map argument
4034  *      is in/out; the returned map must be used in
4035  *      the call to vm_map_lookup_done.
4036  *
4037  *      A handle (out_entry) is returned for use in
4038  *      vm_map_lookup_done, to make that fast.
4039  *
4040  *      If a lookup is requested with "write protection"
4041  *      specified, the map may be changed to perform virtual
4042  *      copying operations, although the data referenced will
4043  *      remain the same.
4044  */
4045 int
4046 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4047               vm_offset_t vaddr,
4048               vm_prot_t fault_typea,
4049               vm_map_entry_t *out_entry,        /* OUT */
4050               vm_object_t *object,              /* OUT */
4051               vm_pindex_t *pindex,              /* OUT */
4052               vm_prot_t *out_prot,              /* OUT */
4053               boolean_t *wired)                 /* OUT */
4054 {
4055         vm_map_entry_t entry;
4056         vm_map_t map = *var_map;
4057         vm_prot_t prot;
4058         vm_prot_t fault_type = fault_typea;
4059         vm_object_t eobject;
4060         vm_size_t size;
4061         struct ucred *cred;
4062
4063 RetryLookup:
4064
4065         vm_map_lock_read(map);
4066
4067 RetryLookupLocked:
4068         /*
4069          * Lookup the faulting address.
4070          */
4071         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4072                 vm_map_unlock_read(map);
4073                 return (KERN_INVALID_ADDRESS);
4074         }
4075
4076         entry = *out_entry;
4077
4078         /*
4079          * Handle submaps.
4080          */
4081         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4082                 vm_map_t old_map = map;
4083
4084                 *var_map = map = entry->object.sub_map;
4085                 vm_map_unlock_read(old_map);
4086                 goto RetryLookup;
4087         }
4088
4089         /*
4090          * Check whether this task is allowed to have this page.
4091          */
4092         prot = entry->protection;
4093         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4094                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4095                 if (prot == VM_PROT_NONE && map != kernel_map &&
4096                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4097                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4098                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4099                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4100                         goto RetryLookupLocked;
4101         }
4102         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4103         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4104                 vm_map_unlock_read(map);
4105                 return (KERN_PROTECTION_FAILURE);
4106         }
4107         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4108             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4109             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4110             ("entry %p flags %x", entry, entry->eflags));
4111         if ((fault_typea & VM_PROT_COPY) != 0 &&
4112             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4113             (entry->eflags & MAP_ENTRY_COW) == 0) {
4114                 vm_map_unlock_read(map);
4115                 return (KERN_PROTECTION_FAILURE);
4116         }
4117
4118         /*
4119          * If this page is not pageable, we have to get it for all possible
4120          * accesses.
4121          */
4122         *wired = (entry->wired_count != 0);
4123         if (*wired)
4124                 fault_type = entry->protection;
4125         size = entry->end - entry->start;
4126         /*
4127          * If the entry was copy-on-write, we either ...
4128          */
4129         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4130                 /*
4131                  * If we want to write the page, we may as well handle that
4132                  * now since we've got the map locked.
4133                  *
4134                  * If we don't need to write the page, we just demote the
4135                  * permissions allowed.
4136                  */
4137                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4138                     (fault_typea & VM_PROT_COPY) != 0) {
4139                         /*
4140                          * Make a new object, and place it in the object
4141                          * chain.  Note that no new references have appeared
4142                          * -- one just moved from the map to the new
4143                          * object.
4144                          */
4145                         if (vm_map_lock_upgrade(map))
4146                                 goto RetryLookup;
4147
4148                         if (entry->cred == NULL) {
4149                                 /*
4150                                  * The debugger owner is charged for
4151                                  * the memory.
4152                                  */
4153                                 cred = curthread->td_ucred;
4154                                 crhold(cred);
4155                                 if (!swap_reserve_by_cred(size, cred)) {
4156                                         crfree(cred);
4157                                         vm_map_unlock(map);
4158                                         return (KERN_RESOURCE_SHORTAGE);
4159                                 }
4160                                 entry->cred = cred;
4161                         }
4162                         vm_object_shadow(&entry->object.vm_object,
4163                             &entry->offset, size);
4164                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4165                         eobject = entry->object.vm_object;
4166                         if (eobject->cred != NULL) {
4167                                 /*
4168                                  * The object was not shadowed.
4169                                  */
4170                                 swap_release_by_cred(size, entry->cred);
4171                                 crfree(entry->cred);
4172                                 entry->cred = NULL;
4173                         } else if (entry->cred != NULL) {
4174                                 VM_OBJECT_WLOCK(eobject);
4175                                 eobject->cred = entry->cred;
4176                                 eobject->charge = size;
4177                                 VM_OBJECT_WUNLOCK(eobject);
4178                                 entry->cred = NULL;
4179                         }
4180
4181                         vm_map_lock_downgrade(map);
4182                 } else {
4183                         /*
4184                          * We're attempting to read a copy-on-write page --
4185                          * don't allow writes.
4186                          */
4187                         prot &= ~VM_PROT_WRITE;
4188                 }
4189         }
4190
4191         /*
4192          * Create an object if necessary.
4193          */
4194         if (entry->object.vm_object == NULL &&
4195             !map->system_map) {
4196                 if (vm_map_lock_upgrade(map))
4197                         goto RetryLookup;
4198                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4199                     atop(size));
4200                 entry->offset = 0;
4201                 if (entry->cred != NULL) {
4202                         VM_OBJECT_WLOCK(entry->object.vm_object);
4203                         entry->object.vm_object->cred = entry->cred;
4204                         entry->object.vm_object->charge = size;
4205                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4206                         entry->cred = NULL;
4207                 }
4208                 vm_map_lock_downgrade(map);
4209         }
4210
4211         /*
4212          * Return the object/offset from this entry.  If the entry was
4213          * copy-on-write or empty, it has been fixed up.
4214          */
4215         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4216         *object = entry->object.vm_object;
4217
4218         *out_prot = prot;
4219         return (KERN_SUCCESS);
4220 }
4221
4222 /*
4223  *      vm_map_lookup_locked:
4224  *
4225  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4226  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4227  */
4228 int
4229 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4230                      vm_offset_t vaddr,
4231                      vm_prot_t fault_typea,
4232                      vm_map_entry_t *out_entry, /* OUT */
4233                      vm_object_t *object,       /* OUT */
4234                      vm_pindex_t *pindex,       /* OUT */
4235                      vm_prot_t *out_prot,       /* OUT */
4236                      boolean_t *wired)          /* OUT */
4237 {
4238         vm_map_entry_t entry;
4239         vm_map_t map = *var_map;
4240         vm_prot_t prot;
4241         vm_prot_t fault_type = fault_typea;
4242
4243         /*
4244          * Lookup the faulting address.
4245          */
4246         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4247                 return (KERN_INVALID_ADDRESS);
4248
4249         entry = *out_entry;
4250
4251         /*
4252          * Fail if the entry refers to a submap.
4253          */
4254         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4255                 return (KERN_FAILURE);
4256
4257         /*
4258          * Check whether this task is allowed to have this page.
4259          */
4260         prot = entry->protection;
4261         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4262         if ((fault_type & prot) != fault_type)
4263                 return (KERN_PROTECTION_FAILURE);
4264
4265         /*
4266          * If this page is not pageable, we have to get it for all possible
4267          * accesses.
4268          */
4269         *wired = (entry->wired_count != 0);
4270         if (*wired)
4271                 fault_type = entry->protection;
4272
4273         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4274                 /*
4275                  * Fail if the entry was copy-on-write for a write fault.
4276                  */
4277                 if (fault_type & VM_PROT_WRITE)
4278                         return (KERN_FAILURE);
4279                 /*
4280                  * We're attempting to read a copy-on-write page --
4281                  * don't allow writes.
4282                  */
4283                 prot &= ~VM_PROT_WRITE;
4284         }
4285
4286         /*
4287          * Fail if an object should be created.
4288          */
4289         if (entry->object.vm_object == NULL && !map->system_map)
4290                 return (KERN_FAILURE);
4291
4292         /*
4293          * Return the object/offset from this entry.  If the entry was
4294          * copy-on-write or empty, it has been fixed up.
4295          */
4296         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4297         *object = entry->object.vm_object;
4298
4299         *out_prot = prot;
4300         return (KERN_SUCCESS);
4301 }
4302
4303 /*
4304  *      vm_map_lookup_done:
4305  *
4306  *      Releases locks acquired by a vm_map_lookup
4307  *      (according to the handle returned by that lookup).
4308  */
4309 void
4310 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4311 {
4312         /*
4313          * Unlock the main-level map
4314          */
4315         vm_map_unlock_read(map);
4316 }
4317
4318 vm_offset_t
4319 vm_map_max_KBI(const struct vm_map *map)
4320 {
4321
4322         return (map->max_offset);
4323 }
4324
4325 vm_offset_t
4326 vm_map_min_KBI(const struct vm_map *map)
4327 {
4328
4329         return (map->min_offset);
4330 }
4331
4332 pmap_t
4333 vm_map_pmap_KBI(vm_map_t map)
4334 {
4335
4336         return (map->pmap);
4337 }
4338
4339 #include "opt_ddb.h"
4340 #ifdef DDB
4341 #include <sys/kernel.h>
4342
4343 #include <ddb/ddb.h>
4344
4345 static void
4346 vm_map_print(vm_map_t map)
4347 {
4348         vm_map_entry_t entry;
4349
4350         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4351             (void *)map,
4352             (void *)map->pmap, map->nentries, map->timestamp);
4353
4354         db_indent += 2;
4355         for (entry = map->header.next; entry != &map->header;
4356             entry = entry->next) {
4357                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4358                     (void *)entry, (void *)entry->start, (void *)entry->end,
4359                     entry->eflags);
4360                 {
4361                         static char *inheritance_name[4] =
4362                         {"share", "copy", "none", "donate_copy"};
4363
4364                         db_iprintf(" prot=%x/%x/%s",
4365                             entry->protection,
4366                             entry->max_protection,
4367                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4368                         if (entry->wired_count != 0)
4369                                 db_printf(", wired");
4370                 }
4371                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4372                         db_printf(", share=%p, offset=0x%jx\n",
4373                             (void *)entry->object.sub_map,
4374                             (uintmax_t)entry->offset);
4375                         if ((entry->prev == &map->header) ||
4376                             (entry->prev->object.sub_map !=
4377                                 entry->object.sub_map)) {
4378                                 db_indent += 2;
4379                                 vm_map_print((vm_map_t)entry->object.sub_map);
4380                                 db_indent -= 2;
4381                         }
4382                 } else {
4383                         if (entry->cred != NULL)
4384                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4385                         db_printf(", object=%p, offset=0x%jx",
4386                             (void *)entry->object.vm_object,
4387                             (uintmax_t)entry->offset);
4388                         if (entry->object.vm_object && entry->object.vm_object->cred)
4389                                 db_printf(", obj ruid %d charge %jx",
4390                                     entry->object.vm_object->cred->cr_ruid,
4391                                     (uintmax_t)entry->object.vm_object->charge);
4392                         if (entry->eflags & MAP_ENTRY_COW)
4393                                 db_printf(", copy (%s)",
4394                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4395                         db_printf("\n");
4396
4397                         if ((entry->prev == &map->header) ||
4398                             (entry->prev->object.vm_object !=
4399                                 entry->object.vm_object)) {
4400                                 db_indent += 2;
4401                                 vm_object_print((db_expr_t)(intptr_t)
4402                                                 entry->object.vm_object,
4403                                                 0, 0, (char *)0);
4404                                 db_indent -= 2;
4405                         }
4406                 }
4407         }
4408         db_indent -= 2;
4409 }
4410
4411 DB_SHOW_COMMAND(map, map)
4412 {
4413
4414         if (!have_addr) {
4415                 db_printf("usage: show map <addr>\n");
4416                 return;
4417         }
4418         vm_map_print((vm_map_t)addr);
4419 }
4420
4421 DB_SHOW_COMMAND(procvm, procvm)
4422 {
4423         struct proc *p;
4424
4425         if (have_addr) {
4426                 p = db_lookup_proc(addr);
4427         } else {
4428                 p = curproc;
4429         }
4430
4431         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4432             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4433             (void *)vmspace_pmap(p->p_vmspace));
4434
4435         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4436 }
4437
4438 #endif /* DDB */