]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFV r345495:
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
287         if (!pinit(vmspace_pmap(vm))) {
288                 uma_zfree(vmspace_zone, vm);
289                 return (NULL);
290         }
291         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293         vm->vm_refcnt = 1;
294         vm->vm_shm = NULL;
295         vm->vm_swrss = 0;
296         vm->vm_tsize = 0;
297         vm->vm_dsize = 0;
298         vm->vm_ssize = 0;
299         vm->vm_taddr = 0;
300         vm->vm_daddr = 0;
301         vm->vm_maxsaddr = 0;
302         return (vm);
303 }
304
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309
310         PROC_LOCK(p);
311         racct_set(p, RACCT_DATA, 0);
312         racct_set(p, RACCT_STACK, 0);
313         racct_set(p, RACCT_RSS, 0);
314         racct_set(p, RACCT_MEMLOCK, 0);
315         racct_set(p, RACCT_VMEM, 0);
316         PROC_UNLOCK(p);
317 }
318 #endif
319
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323
324         CTR1(KTR_VM, "vmspace_free: %p", vm);
325
326         /*
327          * Make sure any SysV shm is freed, it might not have been in
328          * exit1().
329          */
330         shmexit(vm);
331
332         /*
333          * Lock the map, to wait out all other references to it.
334          * Delete all of the mappings and pages they hold, then call
335          * the pmap module to reclaim anything left.
336          */
337         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
338             vm_map_max(&vm->vm_map));
339
340         pmap_release(vmspace_pmap(vm));
341         vm->vm_map.pmap = NULL;
342         uma_zfree(vmspace_zone, vm);
343 }
344
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348
349         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350             "vmspace_free() called");
351
352         if (vm->vm_refcnt == 0)
353                 panic("vmspace_free: attempt to free already freed vmspace");
354
355         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356                 vmspace_dofree(vm);
357 }
358
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362         struct vmspace *vm;
363
364         PROC_VMSPACE_LOCK(p);
365         vm = p->p_vmspace;
366         p->p_vmspace = NULL;
367         PROC_VMSPACE_UNLOCK(p);
368         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369         vmspace_free(vm);
370 }
371
372 void
373 vmspace_exit(struct thread *td)
374 {
375         int refcnt;
376         struct vmspace *vm;
377         struct proc *p;
378
379         /*
380          * Release user portion of address space.
381          * This releases references to vnodes,
382          * which could cause I/O if the file has been unlinked.
383          * Need to do this early enough that we can still sleep.
384          *
385          * The last exiting process to reach this point releases as
386          * much of the environment as it can. vmspace_dofree() is the
387          * slower fallback in case another process had a temporary
388          * reference to the vmspace.
389          */
390
391         p = td->td_proc;
392         vm = p->p_vmspace;
393         atomic_add_int(&vmspace0.vm_refcnt, 1);
394         refcnt = vm->vm_refcnt;
395         do {
396                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397                         /* Switch now since other proc might free vmspace */
398                         PROC_VMSPACE_LOCK(p);
399                         p->p_vmspace = &vmspace0;
400                         PROC_VMSPACE_UNLOCK(p);
401                         pmap_activate(td);
402                 }
403         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
404         if (refcnt == 1) {
405                 if (p->p_vmspace != vm) {
406                         /* vmspace not yet freed, switch back */
407                         PROC_VMSPACE_LOCK(p);
408                         p->p_vmspace = vm;
409                         PROC_VMSPACE_UNLOCK(p);
410                         pmap_activate(td);
411                 }
412                 pmap_remove_pages(vmspace_pmap(vm));
413                 /* Switch now since this proc will free vmspace */
414                 PROC_VMSPACE_LOCK(p);
415                 p->p_vmspace = &vmspace0;
416                 PROC_VMSPACE_UNLOCK(p);
417                 pmap_activate(td);
418                 vmspace_dofree(vm);
419         }
420 #ifdef RACCT
421         if (racct_enable)
422                 vmspace_container_reset(p);
423 #endif
424 }
425
426 /* Acquire reference to vmspace owned by another process. */
427
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431         struct vmspace *vm;
432         int refcnt;
433
434         PROC_VMSPACE_LOCK(p);
435         vm = p->p_vmspace;
436         if (vm == NULL) {
437                 PROC_VMSPACE_UNLOCK(p);
438                 return (NULL);
439         }
440         refcnt = vm->vm_refcnt;
441         do {
442                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
443                         PROC_VMSPACE_UNLOCK(p);
444                         return (NULL);
445                 }
446         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
447         if (vm != p->p_vmspace) {
448                 PROC_VMSPACE_UNLOCK(p);
449                 vmspace_free(vm);
450                 return (NULL);
451         }
452         PROC_VMSPACE_UNLOCK(p);
453         return (vm);
454 }
455
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475         struct vmspace *oldvm;
476
477         /* XXX: Need some way to assert that this is an aio daemon. */
478
479         KASSERT(newvm->vm_refcnt > 0,
480             ("vmspace_switch_aio: newvm unreferenced"));
481
482         oldvm = curproc->p_vmspace;
483         if (oldvm == newvm)
484                 return;
485
486         /*
487          * Point to the new address space and refer to it.
488          */
489         curproc->p_vmspace = newvm;
490         atomic_add_int(&newvm->vm_refcnt, 1);
491
492         /* Activate the new mapping. */
493         pmap_activate(curthread);
494
495         /* Remove the daemon's reference to the old address space. */
496         KASSERT(oldvm->vm_refcnt > 1,
497             ("vmspace_switch_aio: oldvm dropping last reference"));
498         vmspace_free(oldvm);
499 }
500
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504
505         if (map->system_map)
506                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
507         else
508                 sx_xlock_(&map->lock, file, line);
509         map->timestamp++;
510 }
511
512 static void
513 vm_map_process_deferred(void)
514 {
515         struct thread *td;
516         vm_map_entry_t entry, next;
517         vm_object_t object;
518
519         td = curthread;
520         entry = td->td_map_def_user;
521         td->td_map_def_user = NULL;
522         while (entry != NULL) {
523                 next = entry->next;
524                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525                         /*
526                          * Decrement the object's writemappings and
527                          * possibly the vnode's v_writecount.
528                          */
529                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530                             ("Submap with writecount"));
531                         object = entry->object.vm_object;
532                         KASSERT(object != NULL, ("No object for writecount"));
533                         vnode_pager_release_writecount(object, entry->start,
534                             entry->end);
535                 }
536                 vm_map_entry_deallocate(entry, FALSE);
537                 entry = next;
538         }
539 }
540
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544
545         if (map->system_map)
546                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547         else {
548                 sx_xunlock_(&map->lock, file, line);
549                 vm_map_process_deferred();
550         }
551 }
552
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556
557         if (map->system_map)
558                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
559         else
560                 sx_slock_(&map->lock, file, line);
561 }
562
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566
567         if (map->system_map)
568                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569         else {
570                 sx_sunlock_(&map->lock, file, line);
571                 vm_map_process_deferred();
572         }
573 }
574
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578         int error;
579
580         error = map->system_map ?
581             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582             !sx_try_xlock_(&map->lock, file, line);
583         if (error == 0)
584                 map->timestamp++;
585         return (error == 0);
586 }
587
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591         int error;
592
593         error = map->system_map ?
594             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595             !sx_try_slock_(&map->lock, file, line);
596         return (error == 0);
597 }
598
599 /*
600  *      _vm_map_lock_upgrade:   [ internal use only ]
601  *
602  *      Tries to upgrade a read (shared) lock on the specified map to a write
603  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *      returned without a read or write lock held.
606  *
607  *      Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612         unsigned int last_timestamp;
613
614         if (map->system_map) {
615                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616         } else {
617                 if (!sx_try_upgrade_(&map->lock, file, line)) {
618                         last_timestamp = map->timestamp;
619                         sx_sunlock_(&map->lock, file, line);
620                         vm_map_process_deferred();
621                         /*
622                          * If the map's timestamp does not change while the
623                          * map is unlocked, then the upgrade succeeds.
624                          */
625                         sx_xlock_(&map->lock, file, line);
626                         if (last_timestamp != map->timestamp) {
627                                 sx_xunlock_(&map->lock, file, line);
628                                 return (1);
629                         }
630                 }
631         }
632         map->timestamp++;
633         return (0);
634 }
635
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639
640         if (map->system_map) {
641                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642         } else
643                 sx_downgrade_(&map->lock, file, line);
644 }
645
646 /*
647  *      vm_map_locked:
648  *
649  *      Returns a non-zero value if the caller holds a write (exclusive) lock
650  *      on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655
656         if (map->system_map)
657                 return (mtx_owned(&map->system_mtx));
658         else
659                 return (sx_xlocked(&map->lock));
660 }
661
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666
667         if (map->system_map)
668                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669         else
670                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672
673 #define VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define VM_MAP_ASSERT_LOCKED(map)
677 #endif
678
679 /*
680  *      _vm_map_unlock_and_wait:
681  *
682  *      Atomically releases the lock on the specified map and puts the calling
683  *      thread to sleep.  The calling thread will remain asleep until either
684  *      vm_map_wakeup() is performed on the map or the specified timeout is
685  *      exceeded.
686  *
687  *      WARNING!  This function does not perform deferred deallocations of
688  *      objects and map entries.  Therefore, the calling thread is expected to
689  *      reacquire the map lock after reawakening and later perform an ordinary
690  *      unlock operation, such as vm_map_unlock(), before completing its
691  *      operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696
697         mtx_lock(&map_sleep_mtx);
698         if (map->system_map)
699                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700         else
701                 sx_xunlock_(&map->lock, file, line);
702         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703             timo));
704 }
705
706 /*
707  *      vm_map_wakeup:
708  *
709  *      Awaken any threads that have slept on the map using
710  *      vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715
716         /*
717          * Acquire and release map_sleep_mtx to prevent a wakeup()
718          * from being performed (and lost) between the map unlock
719          * and the msleep() in _vm_map_unlock_and_wait().
720          */
721         mtx_lock(&map_sleep_mtx);
722         mtx_unlock(&map_sleep_mtx);
723         wakeup(&map->root);
724 }
725
726 void
727 vm_map_busy(vm_map_t map)
728 {
729
730         VM_MAP_ASSERT_LOCKED(map);
731         map->busy++;
732 }
733
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737
738         VM_MAP_ASSERT_LOCKED(map);
739         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742                 wakeup(&map->busy);
743         }
744 }
745
746 void 
747 vm_map_wait_busy(vm_map_t map)
748 {
749
750         VM_MAP_ASSERT_LOCKED(map);
751         while (map->busy) {
752                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753                 if (map->system_map)
754                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755                 else
756                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757         }
758         map->timestamp++;
759 }
760
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764         return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766
767 /*
768  *      vm_map_create:
769  *
770  *      Creates and returns a new empty VM map with
771  *      the given physical map structure, and having
772  *      the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777         vm_map_t result;
778
779         result = uma_zalloc(mapzone, M_WAITOK);
780         CTR1(KTR_VM, "vm_map_create: %p", result);
781         _vm_map_init(result, pmap, min, max);
782         return (result);
783 }
784
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792
793         map->header.next = map->header.prev = &map->header;
794         map->header.eflags = MAP_ENTRY_HEADER;
795         map->needs_wakeup = FALSE;
796         map->system_map = 0;
797         map->pmap = pmap;
798         map->header.end = min;
799         map->header.start = max;
800         map->flags = 0;
801         map->root = NULL;
802         map->timestamp = 0;
803         map->busy = 0;
804         map->anon_loc = 0;
805 }
806
807 void
808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
809 {
810
811         _vm_map_init(map, pmap, min, max);
812         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
813         sx_init(&map->lock, "user map");
814 }
815
816 /*
817  *      vm_map_entry_dispose:   [ internal use only ]
818  *
819  *      Inverse of vm_map_entry_create.
820  */
821 static void
822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
823 {
824         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
825 }
826
827 /*
828  *      vm_map_entry_create:    [ internal use only ]
829  *
830  *      Allocates a VM map entry for insertion.
831  *      No entry fields are filled in.
832  */
833 static vm_map_entry_t
834 vm_map_entry_create(vm_map_t map)
835 {
836         vm_map_entry_t new_entry;
837
838         if (map->system_map)
839                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
840         else
841                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
842         if (new_entry == NULL)
843                 panic("vm_map_entry_create: kernel resources exhausted");
844         return (new_entry);
845 }
846
847 /*
848  *      vm_map_entry_set_behavior:
849  *
850  *      Set the expected access behavior, either normal, random, or
851  *      sequential.
852  */
853 static inline void
854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
855 {
856         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
857             (behavior & MAP_ENTRY_BEHAV_MASK);
858 }
859
860 /*
861  *      vm_map_entry_set_max_free:
862  *
863  *      Set the max_free field in a vm_map_entry.
864  */
865 static inline void
866 vm_map_entry_set_max_free(vm_map_entry_t entry)
867 {
868
869         entry->max_free = entry->adj_free;
870         if (entry->left != NULL && entry->left->max_free > entry->max_free)
871                 entry->max_free = entry->left->max_free;
872         if (entry->right != NULL && entry->right->max_free > entry->max_free)
873                 entry->max_free = entry->right->max_free;
874 }
875
876 /*
877  *      vm_map_entry_splay:
878  *
879  *      The Sleator and Tarjan top-down splay algorithm with the
880  *      following variation.  Max_free must be computed bottom-up, so
881  *      on the downward pass, maintain the left and right spines in
882  *      reverse order.  Then, make a second pass up each side to fix
883  *      the pointers and compute max_free.  The time bound is O(log n)
884  *      amortized.
885  *
886  *      The new root is the vm_map_entry containing "addr", or else an
887  *      adjacent entry (lower or higher) if addr is not in the tree.
888  *
889  *      The map must be locked, and leaves it so.
890  *
891  *      Returns: the new root.
892  */
893 static vm_map_entry_t
894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
895 {
896         vm_map_entry_t llist, rlist;
897         vm_map_entry_t ltree, rtree;
898         vm_map_entry_t y;
899
900         /* Special case of empty tree. */
901         if (root == NULL)
902                 return (root);
903
904         /*
905          * Pass One: Splay down the tree until we find addr or a NULL
906          * pointer where addr would go.  llist and rlist are the two
907          * sides in reverse order (bottom-up), with llist linked by
908          * the right pointer and rlist linked by the left pointer in
909          * the vm_map_entry.  Wait until Pass Two to set max_free on
910          * the two spines.
911          */
912         llist = NULL;
913         rlist = NULL;
914         for (;;) {
915                 /* root is never NULL in here. */
916                 if (addr < root->start) {
917                         y = root->left;
918                         if (y == NULL)
919                                 break;
920                         if (addr < y->start && y->left != NULL) {
921                                 /* Rotate right and put y on rlist. */
922                                 root->left = y->right;
923                                 y->right = root;
924                                 vm_map_entry_set_max_free(root);
925                                 root = y->left;
926                                 y->left = rlist;
927                                 rlist = y;
928                         } else {
929                                 /* Put root on rlist. */
930                                 root->left = rlist;
931                                 rlist = root;
932                                 root = y;
933                         }
934                 } else if (addr >= root->end) {
935                         y = root->right;
936                         if (y == NULL)
937                                 break;
938                         if (addr >= y->end && y->right != NULL) {
939                                 /* Rotate left and put y on llist. */
940                                 root->right = y->left;
941                                 y->left = root;
942                                 vm_map_entry_set_max_free(root);
943                                 root = y->right;
944                                 y->right = llist;
945                                 llist = y;
946                         } else {
947                                 /* Put root on llist. */
948                                 root->right = llist;
949                                 llist = root;
950                                 root = y;
951                         }
952                 } else
953                         break;
954         }
955
956         /*
957          * Pass Two: Walk back up the two spines, flip the pointers
958          * and set max_free.  The subtrees of the root go at the
959          * bottom of llist and rlist.
960          */
961         ltree = root->left;
962         while (llist != NULL) {
963                 y = llist->right;
964                 llist->right = ltree;
965                 vm_map_entry_set_max_free(llist);
966                 ltree = llist;
967                 llist = y;
968         }
969         rtree = root->right;
970         while (rlist != NULL) {
971                 y = rlist->left;
972                 rlist->left = rtree;
973                 vm_map_entry_set_max_free(rlist);
974                 rtree = rlist;
975                 rlist = y;
976         }
977
978         /*
979          * Final assembly: add ltree and rtree as subtrees of root.
980          */
981         root->left = ltree;
982         root->right = rtree;
983         vm_map_entry_set_max_free(root);
984
985         return (root);
986 }
987
988 /*
989  *      vm_map_entry_{un,}link:
990  *
991  *      Insert/remove entries from maps.
992  */
993 static void
994 vm_map_entry_link(vm_map_t map,
995                   vm_map_entry_t after_where,
996                   vm_map_entry_t entry)
997 {
998
999         CTR4(KTR_VM,
1000             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1001             map->nentries, entry, after_where);
1002         VM_MAP_ASSERT_LOCKED(map);
1003         KASSERT(after_where->end <= entry->start,
1004             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1005             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1006         KASSERT(entry->end <= after_where->next->start,
1007             ("vm_map_entry_link: new end %jx next start %jx overlap",
1008             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1009
1010         map->nentries++;
1011         entry->prev = after_where;
1012         entry->next = after_where->next;
1013         entry->next->prev = entry;
1014         after_where->next = entry;
1015
1016         if (after_where != &map->header) {
1017                 if (after_where != map->root)
1018                         vm_map_entry_splay(after_where->start, map->root);
1019                 entry->right = after_where->right;
1020                 entry->left = after_where;
1021                 after_where->right = NULL;
1022                 after_where->adj_free = entry->start - after_where->end;
1023                 vm_map_entry_set_max_free(after_where);
1024         } else {
1025                 entry->right = map->root;
1026                 entry->left = NULL;
1027         }
1028         entry->adj_free = entry->next->start - entry->end;
1029         vm_map_entry_set_max_free(entry);
1030         map->root = entry;
1031 }
1032
1033 static void
1034 vm_map_entry_unlink(vm_map_t map,
1035                     vm_map_entry_t entry)
1036 {
1037         vm_map_entry_t next, prev, root;
1038
1039         VM_MAP_ASSERT_LOCKED(map);
1040         if (entry != map->root)
1041                 vm_map_entry_splay(entry->start, map->root);
1042         if (entry->left == NULL)
1043                 root = entry->right;
1044         else {
1045                 root = vm_map_entry_splay(entry->start, entry->left);
1046                 root->right = entry->right;
1047                 root->adj_free = entry->next->start - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = entry->next->start - entry->end;
1084         vm_map_entry_set_max_free(entry);
1085 }
1086
1087 /*
1088  *      vm_map_lookup_entry:    [ internal use only ]
1089  *
1090  *      Finds the map entry containing (or
1091  *      immediately preceding) the specified address
1092  *      in the given map; the entry is returned
1093  *      in the "entry" parameter.  The boolean
1094  *      result indicates whether the address is
1095  *      actually contained in the map.
1096  */
1097 boolean_t
1098 vm_map_lookup_entry(
1099         vm_map_t map,
1100         vm_offset_t address,
1101         vm_map_entry_t *entry)  /* OUT */
1102 {
1103         vm_map_entry_t cur;
1104         boolean_t locked;
1105
1106         /*
1107          * If the map is empty, then the map entry immediately preceding
1108          * "address" is the map's header.
1109          */
1110         cur = map->root;
1111         if (cur == NULL)
1112                 *entry = &map->header;
1113         else if (address >= cur->start && cur->end > address) {
1114                 *entry = cur;
1115                 return (TRUE);
1116         } else if ((locked = vm_map_locked(map)) ||
1117             sx_try_upgrade(&map->lock)) {
1118                 /*
1119                  * Splay requires a write lock on the map.  However, it only
1120                  * restructures the binary search tree; it does not otherwise
1121                  * change the map.  Thus, the map's timestamp need not change
1122                  * on a temporary upgrade.
1123                  */
1124                 map->root = cur = vm_map_entry_splay(address, cur);
1125                 if (!locked)
1126                         sx_downgrade(&map->lock);
1127
1128                 /*
1129                  * If "address" is contained within a map entry, the new root
1130                  * is that map entry.  Otherwise, the new root is a map entry
1131                  * immediately before or after "address".
1132                  */
1133                 if (address >= cur->start) {
1134                         *entry = cur;
1135                         if (cur->end > address)
1136                                 return (TRUE);
1137                 } else
1138                         *entry = cur->prev;
1139         } else
1140                 /*
1141                  * Since the map is only locked for read access, perform a
1142                  * standard binary search tree lookup for "address".
1143                  */
1144                 for (;;) {
1145                         if (address < cur->start) {
1146                                 if (cur->left == NULL) {
1147                                         *entry = cur->prev;
1148                                         break;
1149                                 }
1150                                 cur = cur->left;
1151                         } else if (cur->end > address) {
1152                                 *entry = cur;
1153                                 return (TRUE);
1154                         } else {
1155                                 if (cur->right == NULL) {
1156                                         *entry = cur;
1157                                         break;
1158                                 }
1159                                 cur = cur->right;
1160                         }
1161                 }
1162         return (FALSE);
1163 }
1164
1165 /*
1166  *      vm_map_insert:
1167  *
1168  *      Inserts the given whole VM object into the target
1169  *      map at the specified address range.  The object's
1170  *      size should match that of the address range.
1171  *
1172  *      Requires that the map be locked, and leaves it so.
1173  *
1174  *      If object is non-NULL, ref count must be bumped by caller
1175  *      prior to making call to account for the new entry.
1176  */
1177 int
1178 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1179     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1180 {
1181         vm_map_entry_t new_entry, prev_entry, temp_entry;
1182         struct ucred *cred;
1183         vm_eflags_t protoeflags;
1184         vm_inherit_t inheritance;
1185
1186         VM_MAP_ASSERT_LOCKED(map);
1187         KASSERT(object != kernel_object ||
1188             (cow & MAP_COPY_ON_WRITE) == 0,
1189             ("vm_map_insert: kernel object and COW"));
1190         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1191             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1192         KASSERT((prot & ~max) == 0,
1193             ("prot %#x is not subset of max_prot %#x", prot, max));
1194
1195         /*
1196          * Check that the start and end points are not bogus.
1197          */
1198         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1199             start >= end)
1200                 return (KERN_INVALID_ADDRESS);
1201
1202         /*
1203          * Find the entry prior to the proposed starting address; if it's part
1204          * of an existing entry, this range is bogus.
1205          */
1206         if (vm_map_lookup_entry(map, start, &temp_entry))
1207                 return (KERN_NO_SPACE);
1208
1209         prev_entry = temp_entry;
1210
1211         /*
1212          * Assert that the next entry doesn't overlap the end point.
1213          */
1214         if (prev_entry->next->start < end)
1215                 return (KERN_NO_SPACE);
1216
1217         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1218             max != VM_PROT_NONE))
1219                 return (KERN_INVALID_ARGUMENT);
1220
1221         protoeflags = 0;
1222         if (cow & MAP_COPY_ON_WRITE)
1223                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1224         if (cow & MAP_NOFAULT)
1225                 protoeflags |= MAP_ENTRY_NOFAULT;
1226         if (cow & MAP_DISABLE_SYNCER)
1227                 protoeflags |= MAP_ENTRY_NOSYNC;
1228         if (cow & MAP_DISABLE_COREDUMP)
1229                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1230         if (cow & MAP_STACK_GROWS_DOWN)
1231                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1232         if (cow & MAP_STACK_GROWS_UP)
1233                 protoeflags |= MAP_ENTRY_GROWS_UP;
1234         if (cow & MAP_VN_WRITECOUNT)
1235                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1236         if ((cow & MAP_CREATE_GUARD) != 0)
1237                 protoeflags |= MAP_ENTRY_GUARD;
1238         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1239                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1240         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1241                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1242         if (cow & MAP_INHERIT_SHARE)
1243                 inheritance = VM_INHERIT_SHARE;
1244         else
1245                 inheritance = VM_INHERIT_DEFAULT;
1246
1247         cred = NULL;
1248         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1249                 goto charged;
1250         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1251             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1252                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1253                         return (KERN_RESOURCE_SHORTAGE);
1254                 KASSERT(object == NULL ||
1255                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1256                     object->cred == NULL,
1257                     ("overcommit: vm_map_insert o %p", object));
1258                 cred = curthread->td_ucred;
1259         }
1260
1261 charged:
1262         /* Expand the kernel pmap, if necessary. */
1263         if (map == kernel_map && end > kernel_vm_end)
1264                 pmap_growkernel(end);
1265         if (object != NULL) {
1266                 /*
1267                  * OBJ_ONEMAPPING must be cleared unless this mapping
1268                  * is trivially proven to be the only mapping for any
1269                  * of the object's pages.  (Object granularity
1270                  * reference counting is insufficient to recognize
1271                  * aliases with precision.)
1272                  */
1273                 VM_OBJECT_WLOCK(object);
1274                 if (object->ref_count > 1 || object->shadow_count != 0)
1275                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1276                 VM_OBJECT_WUNLOCK(object);
1277         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1278             protoeflags &&
1279             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1280             prev_entry->end == start && (prev_entry->cred == cred ||
1281             (prev_entry->object.vm_object != NULL &&
1282             prev_entry->object.vm_object->cred == cred)) &&
1283             vm_object_coalesce(prev_entry->object.vm_object,
1284             prev_entry->offset,
1285             (vm_size_t)(prev_entry->end - prev_entry->start),
1286             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1287             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1288                 /*
1289                  * We were able to extend the object.  Determine if we
1290                  * can extend the previous map entry to include the
1291                  * new range as well.
1292                  */
1293                 if (prev_entry->inheritance == inheritance &&
1294                     prev_entry->protection == prot &&
1295                     prev_entry->max_protection == max &&
1296                     prev_entry->wired_count == 0) {
1297                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1298                             0, ("prev_entry %p has incoherent wiring",
1299                             prev_entry));
1300                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1301                                 map->size += end - prev_entry->end;
1302                         prev_entry->end = end;
1303                         vm_map_entry_resize_free(map, prev_entry);
1304                         vm_map_simplify_entry(map, prev_entry);
1305                         return (KERN_SUCCESS);
1306                 }
1307
1308                 /*
1309                  * If we can extend the object but cannot extend the
1310                  * map entry, we have to create a new map entry.  We
1311                  * must bump the ref count on the extended object to
1312                  * account for it.  object may be NULL.
1313                  */
1314                 object = prev_entry->object.vm_object;
1315                 offset = prev_entry->offset +
1316                     (prev_entry->end - prev_entry->start);
1317                 vm_object_reference(object);
1318                 if (cred != NULL && object != NULL && object->cred != NULL &&
1319                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1320                         /* Object already accounts for this uid. */
1321                         cred = NULL;
1322                 }
1323         }
1324         if (cred != NULL)
1325                 crhold(cred);
1326
1327         /*
1328          * Create a new entry
1329          */
1330         new_entry = vm_map_entry_create(map);
1331         new_entry->start = start;
1332         new_entry->end = end;
1333         new_entry->cred = NULL;
1334
1335         new_entry->eflags = protoeflags;
1336         new_entry->object.vm_object = object;
1337         new_entry->offset = offset;
1338
1339         new_entry->inheritance = inheritance;
1340         new_entry->protection = prot;
1341         new_entry->max_protection = max;
1342         new_entry->wired_count = 0;
1343         new_entry->wiring_thread = NULL;
1344         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1345         new_entry->next_read = start;
1346
1347         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1348             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1349         new_entry->cred = cred;
1350
1351         /*
1352          * Insert the new entry into the list
1353          */
1354         vm_map_entry_link(map, prev_entry, new_entry);
1355         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1356                 map->size += new_entry->end - new_entry->start;
1357
1358         /*
1359          * Try to coalesce the new entry with both the previous and next
1360          * entries in the list.  Previously, we only attempted to coalesce
1361          * with the previous entry when object is NULL.  Here, we handle the
1362          * other cases, which are less common.
1363          */
1364         vm_map_simplify_entry(map, new_entry);
1365
1366         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1367                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1368                     end - start, cow & MAP_PREFAULT_PARTIAL);
1369         }
1370
1371         return (KERN_SUCCESS);
1372 }
1373
1374 /*
1375  *      vm_map_findspace:
1376  *
1377  *      Find the first fit (lowest VM address) for "length" free bytes
1378  *      beginning at address >= start in the given map.
1379  *
1380  *      In a vm_map_entry, "adj_free" is the amount of free space
1381  *      adjacent (higher address) to this entry, and "max_free" is the
1382  *      maximum amount of contiguous free space in its subtree.  This
1383  *      allows finding a free region in one path down the tree, so
1384  *      O(log n) amortized with splay trees.
1385  *
1386  *      The map must be locked, and leaves it so.
1387  *
1388  *      Returns: 0 on success, and starting address in *addr,
1389  *               1 if insufficient space.
1390  */
1391 int
1392 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1393     vm_offset_t *addr)  /* OUT */
1394 {
1395         vm_map_entry_t entry;
1396         vm_offset_t st;
1397
1398         /*
1399          * Request must fit within min/max VM address and must avoid
1400          * address wrap.
1401          */
1402         start = MAX(start, vm_map_min(map));
1403         if (start + length > vm_map_max(map) || start + length < start)
1404                 return (1);
1405
1406         /* Empty tree means wide open address space. */
1407         if (map->root == NULL) {
1408                 *addr = start;
1409                 return (0);
1410         }
1411
1412         /*
1413          * After splay, if start comes before root node, then there
1414          * must be a gap from start to the root.
1415          */
1416         map->root = vm_map_entry_splay(start, map->root);
1417         if (start + length <= map->root->start) {
1418                 *addr = start;
1419                 return (0);
1420         }
1421
1422         /*
1423          * Root is the last node that might begin its gap before
1424          * start, and this is the last comparison where address
1425          * wrap might be a problem.
1426          */
1427         st = (start > map->root->end) ? start : map->root->end;
1428         if (length <= map->root->end + map->root->adj_free - st) {
1429                 *addr = st;
1430                 return (0);
1431         }
1432
1433         /* With max_free, can immediately tell if no solution. */
1434         entry = map->root->right;
1435         if (entry == NULL || length > entry->max_free)
1436                 return (1);
1437
1438         /*
1439          * Search the right subtree in the order: left subtree, root,
1440          * right subtree (first fit).  The previous splay implies that
1441          * all regions in the right subtree have addresses > start.
1442          */
1443         while (entry != NULL) {
1444                 if (entry->left != NULL && entry->left->max_free >= length)
1445                         entry = entry->left;
1446                 else if (entry->adj_free >= length) {
1447                         *addr = entry->end;
1448                         return (0);
1449                 } else
1450                         entry = entry->right;
1451         }
1452
1453         /* Can't get here, so panic if we do. */
1454         panic("vm_map_findspace: max_free corrupt");
1455 }
1456
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462         vm_offset_t end;
1463         int result;
1464
1465         end = start + length;
1466         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467             object == NULL,
1468             ("vm_map_fixed: non-NULL backing object for stack"));
1469         vm_map_lock(map);
1470         VM_MAP_RANGE_CHECK(map, start, end);
1471         if ((cow & MAP_CHECK_EXCL) == 0)
1472                 vm_map_delete(map, start, end);
1473         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475                     prot, max, cow);
1476         } else {
1477                 result = vm_map_insert(map, object, offset, start, end,
1478                     prot, max, cow);
1479         }
1480         vm_map_unlock(map);
1481         return (result);
1482 }
1483
1484 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1485 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1486
1487 static int cluster_anon = 1;
1488 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1489     &cluster_anon, 0,
1490     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1491
1492 static bool
1493 clustering_anon_allowed(vm_offset_t addr)
1494 {
1495
1496         switch (cluster_anon) {
1497         case 0:
1498                 return (false);
1499         case 1:
1500                 return (addr == 0);
1501         case 2:
1502         default:
1503                 return (true);
1504         }
1505 }
1506
1507 static long aslr_restarts;
1508 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1509     &aslr_restarts, 0,
1510     "Number of aslr failures");
1511
1512 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1513
1514 /*
1515  * Searches for the specified amount of free space in the given map with the
1516  * specified alignment.  Performs an address-ordered, first-fit search from
1517  * the given address "*addr", with an optional upper bound "max_addr".  If the
1518  * parameter "alignment" is zero, then the alignment is computed from the
1519  * given (object, offset) pair so as to enable the greatest possible use of
1520  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1521  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1522  *
1523  * The map must be locked.  Initially, there must be at least "length" bytes
1524  * of free space at the given address.
1525  */
1526 static int
1527 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1528     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1529     vm_offset_t alignment)
1530 {
1531         vm_offset_t aligned_addr, free_addr;
1532
1533         VM_MAP_ASSERT_LOCKED(map);
1534         free_addr = *addr;
1535         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1536             free_addr == *addr, ("caller provided insufficient free space"));
1537         for (;;) {
1538                 /*
1539                  * At the start of every iteration, the free space at address
1540                  * "*addr" is at least "length" bytes.
1541                  */
1542                 if (alignment == 0)
1543                         pmap_align_superpage(object, offset, addr, length);
1544                 else if ((*addr & (alignment - 1)) != 0) {
1545                         *addr &= ~(alignment - 1);
1546                         *addr += alignment;
1547                 }
1548                 aligned_addr = *addr;
1549                 if (aligned_addr == free_addr) {
1550                         /*
1551                          * Alignment did not change "*addr", so "*addr" must
1552                          * still provide sufficient free space.
1553                          */
1554                         return (KERN_SUCCESS);
1555                 }
1556
1557                 /*
1558                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1559                  * be a valid address, in which case vm_map_findspace() cannot
1560                  * be relied upon to fail.
1561                  */
1562                 if (aligned_addr < free_addr ||
1563                     vm_map_findspace(map, aligned_addr, length, addr) ||
1564                     (max_addr != 0 && *addr + length > max_addr))
1565                         return (KERN_NO_SPACE);
1566                 free_addr = *addr;
1567                 if (free_addr == aligned_addr) {
1568                         /*
1569                          * If a successful call to vm_map_findspace() did not
1570                          * change "*addr", then "*addr" must still be aligned
1571                          * and provide sufficient free space.
1572                          */
1573                         return (KERN_SUCCESS);
1574                 }
1575         }
1576 }
1577
1578 /*
1579  *      vm_map_find finds an unallocated region in the target address
1580  *      map with the given length.  The search is defined to be
1581  *      first-fit from the specified address; the region found is
1582  *      returned in the same parameter.
1583  *
1584  *      If object is non-NULL, ref count must be bumped by caller
1585  *      prior to making call to account for the new entry.
1586  */
1587 int
1588 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1589             vm_offset_t *addr,  /* IN/OUT */
1590             vm_size_t length, vm_offset_t max_addr, int find_space,
1591             vm_prot_t prot, vm_prot_t max, int cow)
1592 {
1593         vm_offset_t alignment, curr_min_addr, min_addr;
1594         int gap, pidx, rv, try;
1595         bool cluster, en_aslr, update_anon;
1596
1597         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1598             object == NULL,
1599             ("vm_map_find: non-NULL backing object for stack"));
1600         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1601             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1602         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1603             (object->flags & OBJ_COLORED) == 0))
1604                 find_space = VMFS_ANY_SPACE;
1605         if (find_space >> 8 != 0) {
1606                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1607                 alignment = (vm_offset_t)1 << (find_space >> 8);
1608         } else
1609                 alignment = 0;
1610         en_aslr = (map->flags & MAP_ASLR) != 0;
1611         update_anon = cluster = clustering_anon_allowed(*addr) &&
1612             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1613             find_space != VMFS_NO_SPACE && object == NULL &&
1614             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1615             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1616         curr_min_addr = min_addr = *addr;
1617         if (en_aslr && min_addr == 0 && !cluster &&
1618             find_space != VMFS_NO_SPACE &&
1619             (map->flags & MAP_ASLR_IGNSTART) != 0)
1620                 curr_min_addr = min_addr = vm_map_min(map);
1621         try = 0;
1622         vm_map_lock(map);
1623         if (cluster) {
1624                 curr_min_addr = map->anon_loc;
1625                 if (curr_min_addr == 0)
1626                         cluster = false;
1627         }
1628         if (find_space != VMFS_NO_SPACE) {
1629                 KASSERT(find_space == VMFS_ANY_SPACE ||
1630                     find_space == VMFS_OPTIMAL_SPACE ||
1631                     find_space == VMFS_SUPER_SPACE ||
1632                     alignment != 0, ("unexpected VMFS flag"));
1633 again:
1634                 /*
1635                  * When creating an anonymous mapping, try clustering
1636                  * with an existing anonymous mapping first.
1637                  *
1638                  * We make up to two attempts to find address space
1639                  * for a given find_space value. The first attempt may
1640                  * apply randomization or may cluster with an existing
1641                  * anonymous mapping. If this first attempt fails,
1642                  * perform a first-fit search of the available address
1643                  * space.
1644                  *
1645                  * If all tries failed, and find_space is
1646                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1647                  * Again enable clustering and randomization.
1648                  */
1649                 try++;
1650                 MPASS(try <= 2);
1651
1652                 if (try == 2) {
1653                         /*
1654                          * Second try: we failed either to find a
1655                          * suitable region for randomizing the
1656                          * allocation, or to cluster with an existing
1657                          * mapping.  Retry with free run.
1658                          */
1659                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1660                             vm_map_min(map) : min_addr;
1661                         atomic_add_long(&aslr_restarts, 1);
1662                 }
1663
1664                 if (try == 1 && en_aslr && !cluster) {
1665                         /*
1666                          * Find space for allocation, including
1667                          * gap needed for later randomization.
1668                          */
1669                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1670                             (find_space == VMFS_SUPER_SPACE || find_space ==
1671                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1672                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1673                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1674                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1675                         if (vm_map_findspace(map, curr_min_addr, length +
1676                             gap * pagesizes[pidx], addr))
1677                                 goto again;
1678                         /* And randomize the start address. */
1679                         *addr += (arc4random() % gap) * pagesizes[pidx];
1680                         if (max_addr != 0 && *addr + length > max_addr)
1681                                 goto again;
1682                 } else if (vm_map_findspace(map, curr_min_addr, length, addr) ||
1683                     (max_addr != 0 && *addr + length > max_addr)) {
1684                         if (cluster) {
1685                                 cluster = false;
1686                                 MPASS(try == 1);
1687                                 goto again;
1688                         }
1689                         rv = KERN_NO_SPACE;
1690                         goto done;
1691                 }
1692
1693                 if (find_space != VMFS_ANY_SPACE &&
1694                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1695                     max_addr, alignment)) != KERN_SUCCESS) {
1696                         if (find_space == VMFS_OPTIMAL_SPACE) {
1697                                 find_space = VMFS_ANY_SPACE;
1698                                 curr_min_addr = min_addr;
1699                                 cluster = update_anon;
1700                                 try = 0;
1701                                 goto again;
1702                         }
1703                         goto done;
1704                 }
1705         } else if ((cow & MAP_REMAP) != 0) {
1706                 if (*addr < vm_map_min(map) ||
1707                     *addr + length > vm_map_max(map) ||
1708                     *addr + length <= length) {
1709                         rv = KERN_INVALID_ADDRESS;
1710                         goto done;
1711                 }
1712                 vm_map_delete(map, *addr, *addr + length);
1713         }
1714         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1715                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1716                     max, cow);
1717         } else {
1718                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1719                     prot, max, cow);
1720         }
1721         if (rv == KERN_SUCCESS && update_anon)
1722                 map->anon_loc = *addr + length;
1723 done:
1724         vm_map_unlock(map);
1725         return (rv);
1726 }
1727
1728 /*
1729  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1730  *      additional parameter (min_addr) and treats the given address
1731  *      (*addr) differently.  Specifically, it treats *addr as a hint
1732  *      and not as the minimum address where the mapping is created.
1733  *
1734  *      This function works in two phases.  First, it tries to
1735  *      allocate above the hint.  If that fails and the hint is
1736  *      greater than min_addr, it performs a second pass, replacing
1737  *      the hint with min_addr as the minimum address for the
1738  *      allocation.
1739  */
1740 int
1741 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1742     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1743     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1744     int cow)
1745 {
1746         vm_offset_t hint;
1747         int rv;
1748
1749         hint = *addr;
1750         for (;;) {
1751                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1752                     find_space, prot, max, cow);
1753                 if (rv == KERN_SUCCESS || min_addr >= hint)
1754                         return (rv);
1755                 *addr = hint = min_addr;
1756         }
1757 }
1758
1759 /*
1760  * A map entry with any of the following flags set must not be merged with
1761  * another entry.
1762  */
1763 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1764             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1765
1766 static bool
1767 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1768 {
1769
1770         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1771             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1772             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1773             prev, entry));
1774         return (prev->end == entry->start &&
1775             prev->object.vm_object == entry->object.vm_object &&
1776             (prev->object.vm_object == NULL ||
1777             prev->offset + (prev->end - prev->start) == entry->offset) &&
1778             prev->eflags == entry->eflags &&
1779             prev->protection == entry->protection &&
1780             prev->max_protection == entry->max_protection &&
1781             prev->inheritance == entry->inheritance &&
1782             prev->wired_count == entry->wired_count &&
1783             prev->cred == entry->cred);
1784 }
1785
1786 static void
1787 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1788 {
1789
1790         /*
1791          * If the backing object is a vnode object, vm_object_deallocate()
1792          * calls vrele().  However, vrele() does not lock the vnode because
1793          * the vnode has additional references.  Thus, the map lock can be
1794          * kept without causing a lock-order reversal with the vnode lock.
1795          *
1796          * Since we count the number of virtual page mappings in
1797          * object->un_pager.vnp.writemappings, the writemappings value
1798          * should not be adjusted when the entry is disposed of.
1799          */
1800         if (entry->object.vm_object != NULL)
1801                 vm_object_deallocate(entry->object.vm_object);
1802         if (entry->cred != NULL)
1803                 crfree(entry->cred);
1804         vm_map_entry_dispose(map, entry);
1805 }
1806
1807 /*
1808  *      vm_map_simplify_entry:
1809  *
1810  *      Simplify the given map entry by merging with either neighbor.  This
1811  *      routine also has the ability to merge with both neighbors.
1812  *
1813  *      The map must be locked.
1814  *
1815  *      This routine guarantees that the passed entry remains valid (though
1816  *      possibly extended).  When merging, this routine may delete one or
1817  *      both neighbors.
1818  */
1819 void
1820 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1821 {
1822         vm_map_entry_t next, prev;
1823
1824         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1825                 return;
1826         prev = entry->prev;
1827         if (vm_map_mergeable_neighbors(prev, entry)) {
1828                 vm_map_entry_unlink(map, prev);
1829                 entry->start = prev->start;
1830                 entry->offset = prev->offset;
1831                 if (entry->prev != &map->header)
1832                         vm_map_entry_resize_free(map, entry->prev);
1833                 vm_map_merged_neighbor_dispose(map, prev);
1834         }
1835         next = entry->next;
1836         if (vm_map_mergeable_neighbors(entry, next)) {
1837                 vm_map_entry_unlink(map, next);
1838                 entry->end = next->end;
1839                 vm_map_entry_resize_free(map, entry);
1840                 vm_map_merged_neighbor_dispose(map, next);
1841         }
1842 }
1843
1844 /*
1845  *      vm_map_clip_start:      [ internal use only ]
1846  *
1847  *      Asserts that the given entry begins at or after
1848  *      the specified address; if necessary,
1849  *      it splits the entry into two.
1850  */
1851 #define vm_map_clip_start(map, entry, startaddr) \
1852 { \
1853         if (startaddr > entry->start) \
1854                 _vm_map_clip_start(map, entry, startaddr); \
1855 }
1856
1857 /*
1858  *      This routine is called only when it is known that
1859  *      the entry must be split.
1860  */
1861 static void
1862 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1863 {
1864         vm_map_entry_t new_entry;
1865
1866         VM_MAP_ASSERT_LOCKED(map);
1867         KASSERT(entry->end > start && entry->start < start,
1868             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1869
1870         /*
1871          * Split off the front portion -- note that we must insert the new
1872          * entry BEFORE this one, so that this entry has the specified
1873          * starting address.
1874          */
1875         vm_map_simplify_entry(map, entry);
1876
1877         /*
1878          * If there is no object backing this entry, we might as well create
1879          * one now.  If we defer it, an object can get created after the map
1880          * is clipped, and individual objects will be created for the split-up
1881          * map.  This is a bit of a hack, but is also about the best place to
1882          * put this improvement.
1883          */
1884         if (entry->object.vm_object == NULL && !map->system_map &&
1885             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1886                 vm_object_t object;
1887                 object = vm_object_allocate(OBJT_DEFAULT,
1888                                 atop(entry->end - entry->start));
1889                 entry->object.vm_object = object;
1890                 entry->offset = 0;
1891                 if (entry->cred != NULL) {
1892                         object->cred = entry->cred;
1893                         object->charge = entry->end - entry->start;
1894                         entry->cred = NULL;
1895                 }
1896         } else if (entry->object.vm_object != NULL &&
1897                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1898                    entry->cred != NULL) {
1899                 VM_OBJECT_WLOCK(entry->object.vm_object);
1900                 KASSERT(entry->object.vm_object->cred == NULL,
1901                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1902                 entry->object.vm_object->cred = entry->cred;
1903                 entry->object.vm_object->charge = entry->end - entry->start;
1904                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1905                 entry->cred = NULL;
1906         }
1907
1908         new_entry = vm_map_entry_create(map);
1909         *new_entry = *entry;
1910
1911         new_entry->end = start;
1912         entry->offset += (start - entry->start);
1913         entry->start = start;
1914         if (new_entry->cred != NULL)
1915                 crhold(entry->cred);
1916
1917         vm_map_entry_link(map, entry->prev, new_entry);
1918
1919         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1920                 vm_object_reference(new_entry->object.vm_object);
1921                 /*
1922                  * The object->un_pager.vnp.writemappings for the
1923                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1924                  * kept as is here.  The virtual pages are
1925                  * re-distributed among the clipped entries, so the sum is
1926                  * left the same.
1927                  */
1928         }
1929 }
1930
1931 /*
1932  *      vm_map_clip_end:        [ internal use only ]
1933  *
1934  *      Asserts that the given entry ends at or before
1935  *      the specified address; if necessary,
1936  *      it splits the entry into two.
1937  */
1938 #define vm_map_clip_end(map, entry, endaddr) \
1939 { \
1940         if ((endaddr) < (entry->end)) \
1941                 _vm_map_clip_end((map), (entry), (endaddr)); \
1942 }
1943
1944 /*
1945  *      This routine is called only when it is known that
1946  *      the entry must be split.
1947  */
1948 static void
1949 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1950 {
1951         vm_map_entry_t new_entry;
1952
1953         VM_MAP_ASSERT_LOCKED(map);
1954         KASSERT(entry->start < end && entry->end > end,
1955             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1956
1957         /*
1958          * If there is no object backing this entry, we might as well create
1959          * one now.  If we defer it, an object can get created after the map
1960          * is clipped, and individual objects will be created for the split-up
1961          * map.  This is a bit of a hack, but is also about the best place to
1962          * put this improvement.
1963          */
1964         if (entry->object.vm_object == NULL && !map->system_map &&
1965             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1966                 vm_object_t object;
1967                 object = vm_object_allocate(OBJT_DEFAULT,
1968                                 atop(entry->end - entry->start));
1969                 entry->object.vm_object = object;
1970                 entry->offset = 0;
1971                 if (entry->cred != NULL) {
1972                         object->cred = entry->cred;
1973                         object->charge = entry->end - entry->start;
1974                         entry->cred = NULL;
1975                 }
1976         } else if (entry->object.vm_object != NULL &&
1977                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1978                    entry->cred != NULL) {
1979                 VM_OBJECT_WLOCK(entry->object.vm_object);
1980                 KASSERT(entry->object.vm_object->cred == NULL,
1981                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1982                 entry->object.vm_object->cred = entry->cred;
1983                 entry->object.vm_object->charge = entry->end - entry->start;
1984                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1985                 entry->cred = NULL;
1986         }
1987
1988         /*
1989          * Create a new entry and insert it AFTER the specified entry
1990          */
1991         new_entry = vm_map_entry_create(map);
1992         *new_entry = *entry;
1993
1994         new_entry->start = entry->end = end;
1995         new_entry->offset += (end - entry->start);
1996         if (new_entry->cred != NULL)
1997                 crhold(entry->cred);
1998
1999         vm_map_entry_link(map, entry, new_entry);
2000
2001         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2002                 vm_object_reference(new_entry->object.vm_object);
2003         }
2004 }
2005
2006 /*
2007  *      vm_map_submap:          [ kernel use only ]
2008  *
2009  *      Mark the given range as handled by a subordinate map.
2010  *
2011  *      This range must have been created with vm_map_find,
2012  *      and no other operations may have been performed on this
2013  *      range prior to calling vm_map_submap.
2014  *
2015  *      Only a limited number of operations can be performed
2016  *      within this rage after calling vm_map_submap:
2017  *              vm_fault
2018  *      [Don't try vm_map_copy!]
2019  *
2020  *      To remove a submapping, one must first remove the
2021  *      range from the superior map, and then destroy the
2022  *      submap (if desired).  [Better yet, don't try it.]
2023  */
2024 int
2025 vm_map_submap(
2026         vm_map_t map,
2027         vm_offset_t start,
2028         vm_offset_t end,
2029         vm_map_t submap)
2030 {
2031         vm_map_entry_t entry;
2032         int result;
2033
2034         result = KERN_INVALID_ARGUMENT;
2035
2036         vm_map_lock(submap);
2037         submap->flags |= MAP_IS_SUB_MAP;
2038         vm_map_unlock(submap);
2039
2040         vm_map_lock(map);
2041
2042         VM_MAP_RANGE_CHECK(map, start, end);
2043
2044         if (vm_map_lookup_entry(map, start, &entry)) {
2045                 vm_map_clip_start(map, entry, start);
2046         } else
2047                 entry = entry->next;
2048
2049         vm_map_clip_end(map, entry, end);
2050
2051         if ((entry->start == start) && (entry->end == end) &&
2052             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2053             (entry->object.vm_object == NULL)) {
2054                 entry->object.sub_map = submap;
2055                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2056                 result = KERN_SUCCESS;
2057         }
2058         vm_map_unlock(map);
2059
2060         if (result != KERN_SUCCESS) {
2061                 vm_map_lock(submap);
2062                 submap->flags &= ~MAP_IS_SUB_MAP;
2063                 vm_map_unlock(submap);
2064         }
2065         return (result);
2066 }
2067
2068 /*
2069  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2070  */
2071 #define MAX_INIT_PT     96
2072
2073 /*
2074  *      vm_map_pmap_enter:
2075  *
2076  *      Preload the specified map's pmap with mappings to the specified
2077  *      object's memory-resident pages.  No further physical pages are
2078  *      allocated, and no further virtual pages are retrieved from secondary
2079  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2080  *      limited number of page mappings are created at the low-end of the
2081  *      specified address range.  (For this purpose, a superpage mapping
2082  *      counts as one page mapping.)  Otherwise, all resident pages within
2083  *      the specified address range are mapped.
2084  */
2085 static void
2086 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2087     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2088 {
2089         vm_offset_t start;
2090         vm_page_t p, p_start;
2091         vm_pindex_t mask, psize, threshold, tmpidx;
2092
2093         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2094                 return;
2095         VM_OBJECT_RLOCK(object);
2096         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2097                 VM_OBJECT_RUNLOCK(object);
2098                 VM_OBJECT_WLOCK(object);
2099                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2100                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2101                             size);
2102                         VM_OBJECT_WUNLOCK(object);
2103                         return;
2104                 }
2105                 VM_OBJECT_LOCK_DOWNGRADE(object);
2106         }
2107
2108         psize = atop(size);
2109         if (psize + pindex > object->size) {
2110                 if (object->size < pindex) {
2111                         VM_OBJECT_RUNLOCK(object);
2112                         return;
2113                 }
2114                 psize = object->size - pindex;
2115         }
2116
2117         start = 0;
2118         p_start = NULL;
2119         threshold = MAX_INIT_PT;
2120
2121         p = vm_page_find_least(object, pindex);
2122         /*
2123          * Assert: the variable p is either (1) the page with the
2124          * least pindex greater than or equal to the parameter pindex
2125          * or (2) NULL.
2126          */
2127         for (;
2128              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2129              p = TAILQ_NEXT(p, listq)) {
2130                 /*
2131                  * don't allow an madvise to blow away our really
2132                  * free pages allocating pv entries.
2133                  */
2134                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2135                     vm_page_count_severe()) ||
2136                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2137                     tmpidx >= threshold)) {
2138                         psize = tmpidx;
2139                         break;
2140                 }
2141                 if (p->valid == VM_PAGE_BITS_ALL) {
2142                         if (p_start == NULL) {
2143                                 start = addr + ptoa(tmpidx);
2144                                 p_start = p;
2145                         }
2146                         /* Jump ahead if a superpage mapping is possible. */
2147                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2148                             (pagesizes[p->psind] - 1)) == 0) {
2149                                 mask = atop(pagesizes[p->psind]) - 1;
2150                                 if (tmpidx + mask < psize &&
2151                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2152                                         p += mask;
2153                                         threshold += mask;
2154                                 }
2155                         }
2156                 } else if (p_start != NULL) {
2157                         pmap_enter_object(map->pmap, start, addr +
2158                             ptoa(tmpidx), p_start, prot);
2159                         p_start = NULL;
2160                 }
2161         }
2162         if (p_start != NULL)
2163                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2164                     p_start, prot);
2165         VM_OBJECT_RUNLOCK(object);
2166 }
2167
2168 /*
2169  *      vm_map_protect:
2170  *
2171  *      Sets the protection of the specified address
2172  *      region in the target map.  If "set_max" is
2173  *      specified, the maximum protection is to be set;
2174  *      otherwise, only the current protection is affected.
2175  */
2176 int
2177 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2178                vm_prot_t new_prot, boolean_t set_max)
2179 {
2180         vm_map_entry_t current, entry;
2181         vm_object_t obj;
2182         struct ucred *cred;
2183         vm_prot_t old_prot;
2184
2185         if (start == end)
2186                 return (KERN_SUCCESS);
2187
2188         vm_map_lock(map);
2189
2190         /*
2191          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2192          * need to fault pages into the map and will drop the map lock while
2193          * doing so, and the VM object may end up in an inconsistent state if we
2194          * update the protection on the map entry in between faults.
2195          */
2196         vm_map_wait_busy(map);
2197
2198         VM_MAP_RANGE_CHECK(map, start, end);
2199
2200         if (vm_map_lookup_entry(map, start, &entry)) {
2201                 vm_map_clip_start(map, entry, start);
2202         } else {
2203                 entry = entry->next;
2204         }
2205
2206         /*
2207          * Make a first pass to check for protection violations.
2208          */
2209         for (current = entry; current->start < end; current = current->next) {
2210                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2211                         continue;
2212                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2213                         vm_map_unlock(map);
2214                         return (KERN_INVALID_ARGUMENT);
2215                 }
2216                 if ((new_prot & current->max_protection) != new_prot) {
2217                         vm_map_unlock(map);
2218                         return (KERN_PROTECTION_FAILURE);
2219                 }
2220         }
2221
2222         /*
2223          * Do an accounting pass for private read-only mappings that
2224          * now will do cow due to allowed write (e.g. debugger sets
2225          * breakpoint on text segment)
2226          */
2227         for (current = entry; current->start < end; current = current->next) {
2228
2229                 vm_map_clip_end(map, current, end);
2230
2231                 if (set_max ||
2232                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2233                     ENTRY_CHARGED(current) ||
2234                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2235                         continue;
2236                 }
2237
2238                 cred = curthread->td_ucred;
2239                 obj = current->object.vm_object;
2240
2241                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2242                         if (!swap_reserve(current->end - current->start)) {
2243                                 vm_map_unlock(map);
2244                                 return (KERN_RESOURCE_SHORTAGE);
2245                         }
2246                         crhold(cred);
2247                         current->cred = cred;
2248                         continue;
2249                 }
2250
2251                 VM_OBJECT_WLOCK(obj);
2252                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2253                         VM_OBJECT_WUNLOCK(obj);
2254                         continue;
2255                 }
2256
2257                 /*
2258                  * Charge for the whole object allocation now, since
2259                  * we cannot distinguish between non-charged and
2260                  * charged clipped mapping of the same object later.
2261                  */
2262                 KASSERT(obj->charge == 0,
2263                     ("vm_map_protect: object %p overcharged (entry %p)",
2264                     obj, current));
2265                 if (!swap_reserve(ptoa(obj->size))) {
2266                         VM_OBJECT_WUNLOCK(obj);
2267                         vm_map_unlock(map);
2268                         return (KERN_RESOURCE_SHORTAGE);
2269                 }
2270
2271                 crhold(cred);
2272                 obj->cred = cred;
2273                 obj->charge = ptoa(obj->size);
2274                 VM_OBJECT_WUNLOCK(obj);
2275         }
2276
2277         /*
2278          * Go back and fix up protections. [Note that clipping is not
2279          * necessary the second time.]
2280          */
2281         for (current = entry; current->start < end; current = current->next) {
2282                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2283                         continue;
2284
2285                 old_prot = current->protection;
2286
2287                 if (set_max)
2288                         current->protection =
2289                             (current->max_protection = new_prot) &
2290                             old_prot;
2291                 else
2292                         current->protection = new_prot;
2293
2294                 /*
2295                  * For user wired map entries, the normal lazy evaluation of
2296                  * write access upgrades through soft page faults is
2297                  * undesirable.  Instead, immediately copy any pages that are
2298                  * copy-on-write and enable write access in the physical map.
2299                  */
2300                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2301                     (current->protection & VM_PROT_WRITE) != 0 &&
2302                     (old_prot & VM_PROT_WRITE) == 0)
2303                         vm_fault_copy_entry(map, map, current, current, NULL);
2304
2305                 /*
2306                  * When restricting access, update the physical map.  Worry
2307                  * about copy-on-write here.
2308                  */
2309                 if ((old_prot & ~current->protection) != 0) {
2310 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2311                                                         VM_PROT_ALL)
2312                         pmap_protect(map->pmap, current->start,
2313                             current->end,
2314                             current->protection & MASK(current));
2315 #undef  MASK
2316                 }
2317                 vm_map_simplify_entry(map, current);
2318         }
2319         vm_map_unlock(map);
2320         return (KERN_SUCCESS);
2321 }
2322
2323 /*
2324  *      vm_map_madvise:
2325  *
2326  *      This routine traverses a processes map handling the madvise
2327  *      system call.  Advisories are classified as either those effecting
2328  *      the vm_map_entry structure, or those effecting the underlying
2329  *      objects.
2330  */
2331 int
2332 vm_map_madvise(
2333         vm_map_t map,
2334         vm_offset_t start,
2335         vm_offset_t end,
2336         int behav)
2337 {
2338         vm_map_entry_t current, entry;
2339         bool modify_map;
2340
2341         /*
2342          * Some madvise calls directly modify the vm_map_entry, in which case
2343          * we need to use an exclusive lock on the map and we need to perform
2344          * various clipping operations.  Otherwise we only need a read-lock
2345          * on the map.
2346          */
2347         switch(behav) {
2348         case MADV_NORMAL:
2349         case MADV_SEQUENTIAL:
2350         case MADV_RANDOM:
2351         case MADV_NOSYNC:
2352         case MADV_AUTOSYNC:
2353         case MADV_NOCORE:
2354         case MADV_CORE:
2355                 if (start == end)
2356                         return (0);
2357                 modify_map = true;
2358                 vm_map_lock(map);
2359                 break;
2360         case MADV_WILLNEED:
2361         case MADV_DONTNEED:
2362         case MADV_FREE:
2363                 if (start == end)
2364                         return (0);
2365                 modify_map = false;
2366                 vm_map_lock_read(map);
2367                 break;
2368         default:
2369                 return (EINVAL);
2370         }
2371
2372         /*
2373          * Locate starting entry and clip if necessary.
2374          */
2375         VM_MAP_RANGE_CHECK(map, start, end);
2376
2377         if (vm_map_lookup_entry(map, start, &entry)) {
2378                 if (modify_map)
2379                         vm_map_clip_start(map, entry, start);
2380         } else {
2381                 entry = entry->next;
2382         }
2383
2384         if (modify_map) {
2385                 /*
2386                  * madvise behaviors that are implemented in the vm_map_entry.
2387                  *
2388                  * We clip the vm_map_entry so that behavioral changes are
2389                  * limited to the specified address range.
2390                  */
2391                 for (current = entry; current->start < end;
2392                     current = current->next) {
2393                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2394                                 continue;
2395
2396                         vm_map_clip_end(map, current, end);
2397
2398                         switch (behav) {
2399                         case MADV_NORMAL:
2400                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2401                                 break;
2402                         case MADV_SEQUENTIAL:
2403                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2404                                 break;
2405                         case MADV_RANDOM:
2406                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2407                                 break;
2408                         case MADV_NOSYNC:
2409                                 current->eflags |= MAP_ENTRY_NOSYNC;
2410                                 break;
2411                         case MADV_AUTOSYNC:
2412                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2413                                 break;
2414                         case MADV_NOCORE:
2415                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2416                                 break;
2417                         case MADV_CORE:
2418                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2419                                 break;
2420                         default:
2421                                 break;
2422                         }
2423                         vm_map_simplify_entry(map, current);
2424                 }
2425                 vm_map_unlock(map);
2426         } else {
2427                 vm_pindex_t pstart, pend;
2428
2429                 /*
2430                  * madvise behaviors that are implemented in the underlying
2431                  * vm_object.
2432                  *
2433                  * Since we don't clip the vm_map_entry, we have to clip
2434                  * the vm_object pindex and count.
2435                  */
2436                 for (current = entry; current->start < end;
2437                     current = current->next) {
2438                         vm_offset_t useEnd, useStart;
2439
2440                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2441                                 continue;
2442
2443                         pstart = OFF_TO_IDX(current->offset);
2444                         pend = pstart + atop(current->end - current->start);
2445                         useStart = current->start;
2446                         useEnd = current->end;
2447
2448                         if (current->start < start) {
2449                                 pstart += atop(start - current->start);
2450                                 useStart = start;
2451                         }
2452                         if (current->end > end) {
2453                                 pend -= atop(current->end - end);
2454                                 useEnd = end;
2455                         }
2456
2457                         if (pstart >= pend)
2458                                 continue;
2459
2460                         /*
2461                          * Perform the pmap_advise() before clearing
2462                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2463                          * concurrent pmap operation, such as pmap_remove(),
2464                          * could clear a reference in the pmap and set
2465                          * PGA_REFERENCED on the page before the pmap_advise()
2466                          * had completed.  Consequently, the page would appear
2467                          * referenced based upon an old reference that
2468                          * occurred before this pmap_advise() ran.
2469                          */
2470                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2471                                 pmap_advise(map->pmap, useStart, useEnd,
2472                                     behav);
2473
2474                         vm_object_madvise(current->object.vm_object, pstart,
2475                             pend, behav);
2476
2477                         /*
2478                          * Pre-populate paging structures in the
2479                          * WILLNEED case.  For wired entries, the
2480                          * paging structures are already populated.
2481                          */
2482                         if (behav == MADV_WILLNEED &&
2483                             current->wired_count == 0) {
2484                                 vm_map_pmap_enter(map,
2485                                     useStart,
2486                                     current->protection,
2487                                     current->object.vm_object,
2488                                     pstart,
2489                                     ptoa(pend - pstart),
2490                                     MAP_PREFAULT_MADVISE
2491                                 );
2492                         }
2493                 }
2494                 vm_map_unlock_read(map);
2495         }
2496         return (0);
2497 }
2498
2499
2500 /*
2501  *      vm_map_inherit:
2502  *
2503  *      Sets the inheritance of the specified address
2504  *      range in the target map.  Inheritance
2505  *      affects how the map will be shared with
2506  *      child maps at the time of vmspace_fork.
2507  */
2508 int
2509 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2510                vm_inherit_t new_inheritance)
2511 {
2512         vm_map_entry_t entry;
2513         vm_map_entry_t temp_entry;
2514
2515         switch (new_inheritance) {
2516         case VM_INHERIT_NONE:
2517         case VM_INHERIT_COPY:
2518         case VM_INHERIT_SHARE:
2519         case VM_INHERIT_ZERO:
2520                 break;
2521         default:
2522                 return (KERN_INVALID_ARGUMENT);
2523         }
2524         if (start == end)
2525                 return (KERN_SUCCESS);
2526         vm_map_lock(map);
2527         VM_MAP_RANGE_CHECK(map, start, end);
2528         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2529                 entry = temp_entry;
2530                 vm_map_clip_start(map, entry, start);
2531         } else
2532                 entry = temp_entry->next;
2533         while (entry->start < end) {
2534                 vm_map_clip_end(map, entry, end);
2535                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2536                     new_inheritance != VM_INHERIT_ZERO)
2537                         entry->inheritance = new_inheritance;
2538                 vm_map_simplify_entry(map, entry);
2539                 entry = entry->next;
2540         }
2541         vm_map_unlock(map);
2542         return (KERN_SUCCESS);
2543 }
2544
2545 /*
2546  *      vm_map_unwire:
2547  *
2548  *      Implements both kernel and user unwiring.
2549  */
2550 int
2551 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2552     int flags)
2553 {
2554         vm_map_entry_t entry, first_entry, tmp_entry;
2555         vm_offset_t saved_start;
2556         unsigned int last_timestamp;
2557         int rv;
2558         boolean_t need_wakeup, result, user_unwire;
2559
2560         if (start == end)
2561                 return (KERN_SUCCESS);
2562         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2563         vm_map_lock(map);
2564         VM_MAP_RANGE_CHECK(map, start, end);
2565         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2566                 if (flags & VM_MAP_WIRE_HOLESOK)
2567                         first_entry = first_entry->next;
2568                 else {
2569                         vm_map_unlock(map);
2570                         return (KERN_INVALID_ADDRESS);
2571                 }
2572         }
2573         last_timestamp = map->timestamp;
2574         entry = first_entry;
2575         while (entry->start < end) {
2576                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2577                         /*
2578                          * We have not yet clipped the entry.
2579                          */
2580                         saved_start = (start >= entry->start) ? start :
2581                             entry->start;
2582                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2583                         if (vm_map_unlock_and_wait(map, 0)) {
2584                                 /*
2585                                  * Allow interruption of user unwiring?
2586                                  */
2587                         }
2588                         vm_map_lock(map);
2589                         if (last_timestamp+1 != map->timestamp) {
2590                                 /*
2591                                  * Look again for the entry because the map was
2592                                  * modified while it was unlocked.
2593                                  * Specifically, the entry may have been
2594                                  * clipped, merged, or deleted.
2595                                  */
2596                                 if (!vm_map_lookup_entry(map, saved_start,
2597                                     &tmp_entry)) {
2598                                         if (flags & VM_MAP_WIRE_HOLESOK)
2599                                                 tmp_entry = tmp_entry->next;
2600                                         else {
2601                                                 if (saved_start == start) {
2602                                                         /*
2603                                                          * First_entry has been deleted.
2604                                                          */
2605                                                         vm_map_unlock(map);
2606                                                         return (KERN_INVALID_ADDRESS);
2607                                                 }
2608                                                 end = saved_start;
2609                                                 rv = KERN_INVALID_ADDRESS;
2610                                                 goto done;
2611                                         }
2612                                 }
2613                                 if (entry == first_entry)
2614                                         first_entry = tmp_entry;
2615                                 else
2616                                         first_entry = NULL;
2617                                 entry = tmp_entry;
2618                         }
2619                         last_timestamp = map->timestamp;
2620                         continue;
2621                 }
2622                 vm_map_clip_start(map, entry, start);
2623                 vm_map_clip_end(map, entry, end);
2624                 /*
2625                  * Mark the entry in case the map lock is released.  (See
2626                  * above.)
2627                  */
2628                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2629                     entry->wiring_thread == NULL,
2630                     ("owned map entry %p", entry));
2631                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2632                 entry->wiring_thread = curthread;
2633                 /*
2634                  * Check the map for holes in the specified region.
2635                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2636                  */
2637                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2638                     (entry->end < end && entry->next->start > entry->end)) {
2639                         end = entry->end;
2640                         rv = KERN_INVALID_ADDRESS;
2641                         goto done;
2642                 }
2643                 /*
2644                  * If system unwiring, require that the entry is system wired.
2645                  */
2646                 if (!user_unwire &&
2647                     vm_map_entry_system_wired_count(entry) == 0) {
2648                         end = entry->end;
2649                         rv = KERN_INVALID_ARGUMENT;
2650                         goto done;
2651                 }
2652                 entry = entry->next;
2653         }
2654         rv = KERN_SUCCESS;
2655 done:
2656         need_wakeup = FALSE;
2657         if (first_entry == NULL) {
2658                 result = vm_map_lookup_entry(map, start, &first_entry);
2659                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2660                         first_entry = first_entry->next;
2661                 else
2662                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2663         }
2664         for (entry = first_entry; entry->start < end; entry = entry->next) {
2665                 /*
2666                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2667                  * space in the unwired region could have been mapped
2668                  * while the map lock was dropped for draining
2669                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2670                  * could be simultaneously wiring this new mapping
2671                  * entry.  Detect these cases and skip any entries
2672                  * marked as in transition by us.
2673                  */
2674                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2675                     entry->wiring_thread != curthread) {
2676                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2677                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2678                         continue;
2679                 }
2680
2681                 if (rv == KERN_SUCCESS && (!user_unwire ||
2682                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2683                         if (user_unwire)
2684                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2685                         if (entry->wired_count == 1)
2686                                 vm_map_entry_unwire(map, entry);
2687                         else
2688                                 entry->wired_count--;
2689                 }
2690                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2691                     ("vm_map_unwire: in-transition flag missing %p", entry));
2692                 KASSERT(entry->wiring_thread == curthread,
2693                     ("vm_map_unwire: alien wire %p", entry));
2694                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2695                 entry->wiring_thread = NULL;
2696                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2697                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2698                         need_wakeup = TRUE;
2699                 }
2700                 vm_map_simplify_entry(map, entry);
2701         }
2702         vm_map_unlock(map);
2703         if (need_wakeup)
2704                 vm_map_wakeup(map);
2705         return (rv);
2706 }
2707
2708 /*
2709  *      vm_map_wire_entry_failure:
2710  *
2711  *      Handle a wiring failure on the given entry.
2712  *
2713  *      The map should be locked.
2714  */
2715 static void
2716 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2717     vm_offset_t failed_addr)
2718 {
2719
2720         VM_MAP_ASSERT_LOCKED(map);
2721         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2722             entry->wired_count == 1,
2723             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2724         KASSERT(failed_addr < entry->end,
2725             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2726
2727         /*
2728          * If any pages at the start of this entry were successfully wired,
2729          * then unwire them.
2730          */
2731         if (failed_addr > entry->start) {
2732                 pmap_unwire(map->pmap, entry->start, failed_addr);
2733                 vm_object_unwire(entry->object.vm_object, entry->offset,
2734                     failed_addr - entry->start, PQ_ACTIVE);
2735         }
2736
2737         /*
2738          * Assign an out-of-range value to represent the failure to wire this
2739          * entry.
2740          */
2741         entry->wired_count = -1;
2742 }
2743
2744 /*
2745  *      vm_map_wire:
2746  *
2747  *      Implements both kernel and user wiring.
2748  */
2749 int
2750 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2751     int flags)
2752 {
2753         vm_map_entry_t entry, first_entry, tmp_entry;
2754         vm_offset_t faddr, saved_end, saved_start;
2755         unsigned int last_timestamp;
2756         int rv;
2757         boolean_t need_wakeup, result, user_wire;
2758         vm_prot_t prot;
2759
2760         if (start == end)
2761                 return (KERN_SUCCESS);
2762         prot = 0;
2763         if (flags & VM_MAP_WIRE_WRITE)
2764                 prot |= VM_PROT_WRITE;
2765         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2766         vm_map_lock(map);
2767         VM_MAP_RANGE_CHECK(map, start, end);
2768         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2769                 if (flags & VM_MAP_WIRE_HOLESOK)
2770                         first_entry = first_entry->next;
2771                 else {
2772                         vm_map_unlock(map);
2773                         return (KERN_INVALID_ADDRESS);
2774                 }
2775         }
2776         last_timestamp = map->timestamp;
2777         entry = first_entry;
2778         while (entry->start < end) {
2779                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2780                         /*
2781                          * We have not yet clipped the entry.
2782                          */
2783                         saved_start = (start >= entry->start) ? start :
2784                             entry->start;
2785                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2786                         if (vm_map_unlock_and_wait(map, 0)) {
2787                                 /*
2788                                  * Allow interruption of user wiring?
2789                                  */
2790                         }
2791                         vm_map_lock(map);
2792                         if (last_timestamp + 1 != map->timestamp) {
2793                                 /*
2794                                  * Look again for the entry because the map was
2795                                  * modified while it was unlocked.
2796                                  * Specifically, the entry may have been
2797                                  * clipped, merged, or deleted.
2798                                  */
2799                                 if (!vm_map_lookup_entry(map, saved_start,
2800                                     &tmp_entry)) {
2801                                         if (flags & VM_MAP_WIRE_HOLESOK)
2802                                                 tmp_entry = tmp_entry->next;
2803                                         else {
2804                                                 if (saved_start == start) {
2805                                                         /*
2806                                                          * first_entry has been deleted.
2807                                                          */
2808                                                         vm_map_unlock(map);
2809                                                         return (KERN_INVALID_ADDRESS);
2810                                                 }
2811                                                 end = saved_start;
2812                                                 rv = KERN_INVALID_ADDRESS;
2813                                                 goto done;
2814                                         }
2815                                 }
2816                                 if (entry == first_entry)
2817                                         first_entry = tmp_entry;
2818                                 else
2819                                         first_entry = NULL;
2820                                 entry = tmp_entry;
2821                         }
2822                         last_timestamp = map->timestamp;
2823                         continue;
2824                 }
2825                 vm_map_clip_start(map, entry, start);
2826                 vm_map_clip_end(map, entry, end);
2827                 /*
2828                  * Mark the entry in case the map lock is released.  (See
2829                  * above.)
2830                  */
2831                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2832                     entry->wiring_thread == NULL,
2833                     ("owned map entry %p", entry));
2834                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2835                 entry->wiring_thread = curthread;
2836                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2837                     || (entry->protection & prot) != prot) {
2838                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2839                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2840                                 end = entry->end;
2841                                 rv = KERN_INVALID_ADDRESS;
2842                                 goto done;
2843                         }
2844                         goto next_entry;
2845                 }
2846                 if (entry->wired_count == 0) {
2847                         entry->wired_count++;
2848                         saved_start = entry->start;
2849                         saved_end = entry->end;
2850
2851                         /*
2852                          * Release the map lock, relying on the in-transition
2853                          * mark.  Mark the map busy for fork.
2854                          */
2855                         vm_map_busy(map);
2856                         vm_map_unlock(map);
2857
2858                         faddr = saved_start;
2859                         do {
2860                                 /*
2861                                  * Simulate a fault to get the page and enter
2862                                  * it into the physical map.
2863                                  */
2864                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2865                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2866                                         break;
2867                         } while ((faddr += PAGE_SIZE) < saved_end);
2868                         vm_map_lock(map);
2869                         vm_map_unbusy(map);
2870                         if (last_timestamp + 1 != map->timestamp) {
2871                                 /*
2872                                  * Look again for the entry because the map was
2873                                  * modified while it was unlocked.  The entry
2874                                  * may have been clipped, but NOT merged or
2875                                  * deleted.
2876                                  */
2877                                 result = vm_map_lookup_entry(map, saved_start,
2878                                     &tmp_entry);
2879                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2880                                 if (entry == first_entry)
2881                                         first_entry = tmp_entry;
2882                                 else
2883                                         first_entry = NULL;
2884                                 entry = tmp_entry;
2885                                 while (entry->end < saved_end) {
2886                                         /*
2887                                          * In case of failure, handle entries
2888                                          * that were not fully wired here;
2889                                          * fully wired entries are handled
2890                                          * later.
2891                                          */
2892                                         if (rv != KERN_SUCCESS &&
2893                                             faddr < entry->end)
2894                                                 vm_map_wire_entry_failure(map,
2895                                                     entry, faddr);
2896                                         entry = entry->next;
2897                                 }
2898                         }
2899                         last_timestamp = map->timestamp;
2900                         if (rv != KERN_SUCCESS) {
2901                                 vm_map_wire_entry_failure(map, entry, faddr);
2902                                 end = entry->end;
2903                                 goto done;
2904                         }
2905                 } else if (!user_wire ||
2906                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2907                         entry->wired_count++;
2908                 }
2909                 /*
2910                  * Check the map for holes in the specified region.
2911                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2912                  */
2913         next_entry:
2914                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2915                     entry->end < end && entry->next->start > entry->end) {
2916                         end = entry->end;
2917                         rv = KERN_INVALID_ADDRESS;
2918                         goto done;
2919                 }
2920                 entry = entry->next;
2921         }
2922         rv = KERN_SUCCESS;
2923 done:
2924         need_wakeup = FALSE;
2925         if (first_entry == NULL) {
2926                 result = vm_map_lookup_entry(map, start, &first_entry);
2927                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2928                         first_entry = first_entry->next;
2929                 else
2930                         KASSERT(result, ("vm_map_wire: lookup failed"));
2931         }
2932         for (entry = first_entry; entry->start < end; entry = entry->next) {
2933                 /*
2934                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2935                  * space in the unwired region could have been mapped
2936                  * while the map lock was dropped for faulting in the
2937                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2938                  * Moreover, another thread could be simultaneously
2939                  * wiring this new mapping entry.  Detect these cases
2940                  * and skip any entries marked as in transition not by us.
2941                  */
2942                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2943                     entry->wiring_thread != curthread) {
2944                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2945                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2946                         continue;
2947                 }
2948
2949                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2950                         goto next_entry_done;
2951
2952                 if (rv == KERN_SUCCESS) {
2953                         if (user_wire)
2954                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2955                 } else if (entry->wired_count == -1) {
2956                         /*
2957                          * Wiring failed on this entry.  Thus, unwiring is
2958                          * unnecessary.
2959                          */
2960                         entry->wired_count = 0;
2961                 } else if (!user_wire ||
2962                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2963                         /*
2964                          * Undo the wiring.  Wiring succeeded on this entry
2965                          * but failed on a later entry.  
2966                          */
2967                         if (entry->wired_count == 1)
2968                                 vm_map_entry_unwire(map, entry);
2969                         else
2970                                 entry->wired_count--;
2971                 }
2972         next_entry_done:
2973                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2974                     ("vm_map_wire: in-transition flag missing %p", entry));
2975                 KASSERT(entry->wiring_thread == curthread,
2976                     ("vm_map_wire: alien wire %p", entry));
2977                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2978                     MAP_ENTRY_WIRE_SKIPPED);
2979                 entry->wiring_thread = NULL;
2980                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2981                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2982                         need_wakeup = TRUE;
2983                 }
2984                 vm_map_simplify_entry(map, entry);
2985         }
2986         vm_map_unlock(map);
2987         if (need_wakeup)
2988                 vm_map_wakeup(map);
2989         return (rv);
2990 }
2991
2992 /*
2993  * vm_map_sync
2994  *
2995  * Push any dirty cached pages in the address range to their pager.
2996  * If syncio is TRUE, dirty pages are written synchronously.
2997  * If invalidate is TRUE, any cached pages are freed as well.
2998  *
2999  * If the size of the region from start to end is zero, we are
3000  * supposed to flush all modified pages within the region containing
3001  * start.  Unfortunately, a region can be split or coalesced with
3002  * neighboring regions, making it difficult to determine what the
3003  * original region was.  Therefore, we approximate this requirement by
3004  * flushing the current region containing start.
3005  *
3006  * Returns an error if any part of the specified range is not mapped.
3007  */
3008 int
3009 vm_map_sync(
3010         vm_map_t map,
3011         vm_offset_t start,
3012         vm_offset_t end,
3013         boolean_t syncio,
3014         boolean_t invalidate)
3015 {
3016         vm_map_entry_t current;
3017         vm_map_entry_t entry;
3018         vm_size_t size;
3019         vm_object_t object;
3020         vm_ooffset_t offset;
3021         unsigned int last_timestamp;
3022         boolean_t failed;
3023
3024         vm_map_lock_read(map);
3025         VM_MAP_RANGE_CHECK(map, start, end);
3026         if (!vm_map_lookup_entry(map, start, &entry)) {
3027                 vm_map_unlock_read(map);
3028                 return (KERN_INVALID_ADDRESS);
3029         } else if (start == end) {
3030                 start = entry->start;
3031                 end = entry->end;
3032         }
3033         /*
3034          * Make a first pass to check for user-wired memory and holes.
3035          */
3036         for (current = entry; current->start < end; current = current->next) {
3037                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3038                         vm_map_unlock_read(map);
3039                         return (KERN_INVALID_ARGUMENT);
3040                 }
3041                 if (end > current->end &&
3042                     current->end != current->next->start) {
3043                         vm_map_unlock_read(map);
3044                         return (KERN_INVALID_ADDRESS);
3045                 }
3046         }
3047
3048         if (invalidate)
3049                 pmap_remove(map->pmap, start, end);
3050         failed = FALSE;
3051
3052         /*
3053          * Make a second pass, cleaning/uncaching pages from the indicated
3054          * objects as we go.
3055          */
3056         for (current = entry; current->start < end;) {
3057                 offset = current->offset + (start - current->start);
3058                 size = (end <= current->end ? end : current->end) - start;
3059                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3060                         vm_map_t smap;
3061                         vm_map_entry_t tentry;
3062                         vm_size_t tsize;
3063
3064                         smap = current->object.sub_map;
3065                         vm_map_lock_read(smap);
3066                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3067                         tsize = tentry->end - offset;
3068                         if (tsize < size)
3069                                 size = tsize;
3070                         object = tentry->object.vm_object;
3071                         offset = tentry->offset + (offset - tentry->start);
3072                         vm_map_unlock_read(smap);
3073                 } else {
3074                         object = current->object.vm_object;
3075                 }
3076                 vm_object_reference(object);
3077                 last_timestamp = map->timestamp;
3078                 vm_map_unlock_read(map);
3079                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3080                         failed = TRUE;
3081                 start += size;
3082                 vm_object_deallocate(object);
3083                 vm_map_lock_read(map);
3084                 if (last_timestamp == map->timestamp ||
3085                     !vm_map_lookup_entry(map, start, &current))
3086                         current = current->next;
3087         }
3088
3089         vm_map_unlock_read(map);
3090         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3091 }
3092
3093 /*
3094  *      vm_map_entry_unwire:    [ internal use only ]
3095  *
3096  *      Make the region specified by this entry pageable.
3097  *
3098  *      The map in question should be locked.
3099  *      [This is the reason for this routine's existence.]
3100  */
3101 static void
3102 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3103 {
3104
3105         VM_MAP_ASSERT_LOCKED(map);
3106         KASSERT(entry->wired_count > 0,
3107             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3108         pmap_unwire(map->pmap, entry->start, entry->end);
3109         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3110             entry->start, PQ_ACTIVE);
3111         entry->wired_count = 0;
3112 }
3113
3114 static void
3115 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3116 {
3117
3118         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3119                 vm_object_deallocate(entry->object.vm_object);
3120         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3121 }
3122
3123 /*
3124  *      vm_map_entry_delete:    [ internal use only ]
3125  *
3126  *      Deallocate the given entry from the target map.
3127  */
3128 static void
3129 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3130 {
3131         vm_object_t object;
3132         vm_pindex_t offidxstart, offidxend, count, size1;
3133         vm_size_t size;
3134
3135         vm_map_entry_unlink(map, entry);
3136         object = entry->object.vm_object;
3137
3138         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3139                 MPASS(entry->cred == NULL);
3140                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3141                 MPASS(object == NULL);
3142                 vm_map_entry_deallocate(entry, map->system_map);
3143                 return;
3144         }
3145
3146         size = entry->end - entry->start;
3147         map->size -= size;
3148
3149         if (entry->cred != NULL) {
3150                 swap_release_by_cred(size, entry->cred);
3151                 crfree(entry->cred);
3152         }
3153
3154         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3155             (object != NULL)) {
3156                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3157                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3158                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3159                 count = atop(size);
3160                 offidxstart = OFF_TO_IDX(entry->offset);
3161                 offidxend = offidxstart + count;
3162                 VM_OBJECT_WLOCK(object);
3163                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3164                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3165                     object == kernel_object)) {
3166                         vm_object_collapse(object);
3167
3168                         /*
3169                          * The option OBJPR_NOTMAPPED can be passed here
3170                          * because vm_map_delete() already performed
3171                          * pmap_remove() on the only mapping to this range
3172                          * of pages. 
3173                          */
3174                         vm_object_page_remove(object, offidxstart, offidxend,
3175                             OBJPR_NOTMAPPED);
3176                         if (object->type == OBJT_SWAP)
3177                                 swap_pager_freespace(object, offidxstart,
3178                                     count);
3179                         if (offidxend >= object->size &&
3180                             offidxstart < object->size) {
3181                                 size1 = object->size;
3182                                 object->size = offidxstart;
3183                                 if (object->cred != NULL) {
3184                                         size1 -= object->size;
3185                                         KASSERT(object->charge >= ptoa(size1),
3186                                             ("object %p charge < 0", object));
3187                                         swap_release_by_cred(ptoa(size1),
3188                                             object->cred);
3189                                         object->charge -= ptoa(size1);
3190                                 }
3191                         }
3192                 }
3193                 VM_OBJECT_WUNLOCK(object);
3194         } else
3195                 entry->object.vm_object = NULL;
3196         if (map->system_map)
3197                 vm_map_entry_deallocate(entry, TRUE);
3198         else {
3199                 entry->next = curthread->td_map_def_user;
3200                 curthread->td_map_def_user = entry;
3201         }
3202 }
3203
3204 /*
3205  *      vm_map_delete:  [ internal use only ]
3206  *
3207  *      Deallocates the given address range from the target
3208  *      map.
3209  */
3210 int
3211 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3212 {
3213         vm_map_entry_t entry;
3214         vm_map_entry_t first_entry;
3215
3216         VM_MAP_ASSERT_LOCKED(map);
3217         if (start == end)
3218                 return (KERN_SUCCESS);
3219
3220         /*
3221          * Find the start of the region, and clip it
3222          */
3223         if (!vm_map_lookup_entry(map, start, &first_entry))
3224                 entry = first_entry->next;
3225         else {
3226                 entry = first_entry;
3227                 vm_map_clip_start(map, entry, start);
3228         }
3229
3230         /*
3231          * Step through all entries in this region
3232          */
3233         while (entry->start < end) {
3234                 vm_map_entry_t next;
3235
3236                 /*
3237                  * Wait for wiring or unwiring of an entry to complete.
3238                  * Also wait for any system wirings to disappear on
3239                  * user maps.
3240                  */
3241                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3242                     (vm_map_pmap(map) != kernel_pmap &&
3243                     vm_map_entry_system_wired_count(entry) != 0)) {
3244                         unsigned int last_timestamp;
3245                         vm_offset_t saved_start;
3246                         vm_map_entry_t tmp_entry;
3247
3248                         saved_start = entry->start;
3249                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3250                         last_timestamp = map->timestamp;
3251                         (void) vm_map_unlock_and_wait(map, 0);
3252                         vm_map_lock(map);
3253                         if (last_timestamp + 1 != map->timestamp) {
3254                                 /*
3255                                  * Look again for the entry because the map was
3256                                  * modified while it was unlocked.
3257                                  * Specifically, the entry may have been
3258                                  * clipped, merged, or deleted.
3259                                  */
3260                                 if (!vm_map_lookup_entry(map, saved_start,
3261                                                          &tmp_entry))
3262                                         entry = tmp_entry->next;
3263                                 else {
3264                                         entry = tmp_entry;
3265                                         vm_map_clip_start(map, entry,
3266                                                           saved_start);
3267                                 }
3268                         }
3269                         continue;
3270                 }
3271                 vm_map_clip_end(map, entry, end);
3272
3273                 next = entry->next;
3274
3275                 /*
3276                  * Unwire before removing addresses from the pmap; otherwise,
3277                  * unwiring will put the entries back in the pmap.
3278                  */
3279                 if (entry->wired_count != 0)
3280                         vm_map_entry_unwire(map, entry);
3281
3282                 /*
3283                  * Remove mappings for the pages, but only if the
3284                  * mappings could exist.  For instance, it does not
3285                  * make sense to call pmap_remove() for guard entries.
3286                  */
3287                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3288                     entry->object.vm_object != NULL)
3289                         pmap_remove(map->pmap, entry->start, entry->end);
3290
3291                 if (entry->end == map->anon_loc)
3292                         map->anon_loc = entry->start;
3293
3294                 /*
3295                  * Delete the entry only after removing all pmap
3296                  * entries pointing to its pages.  (Otherwise, its
3297                  * page frames may be reallocated, and any modify bits
3298                  * will be set in the wrong object!)
3299                  */
3300                 vm_map_entry_delete(map, entry);
3301                 entry = next;
3302         }
3303         return (KERN_SUCCESS);
3304 }
3305
3306 /*
3307  *      vm_map_remove:
3308  *
3309  *      Remove the given address range from the target map.
3310  *      This is the exported form of vm_map_delete.
3311  */
3312 int
3313 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3314 {
3315         int result;
3316
3317         vm_map_lock(map);
3318         VM_MAP_RANGE_CHECK(map, start, end);
3319         result = vm_map_delete(map, start, end);
3320         vm_map_unlock(map);
3321         return (result);
3322 }
3323
3324 /*
3325  *      vm_map_check_protection:
3326  *
3327  *      Assert that the target map allows the specified privilege on the
3328  *      entire address region given.  The entire region must be allocated.
3329  *
3330  *      WARNING!  This code does not and should not check whether the
3331  *      contents of the region is accessible.  For example a smaller file
3332  *      might be mapped into a larger address space.
3333  *
3334  *      NOTE!  This code is also called by munmap().
3335  *
3336  *      The map must be locked.  A read lock is sufficient.
3337  */
3338 boolean_t
3339 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3340                         vm_prot_t protection)
3341 {
3342         vm_map_entry_t entry;
3343         vm_map_entry_t tmp_entry;
3344
3345         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3346                 return (FALSE);
3347         entry = tmp_entry;
3348
3349         while (start < end) {
3350                 /*
3351                  * No holes allowed!
3352                  */
3353                 if (start < entry->start)
3354                         return (FALSE);
3355                 /*
3356                  * Check protection associated with entry.
3357                  */
3358                 if ((entry->protection & protection) != protection)
3359                         return (FALSE);
3360                 /* go to next entry */
3361                 start = entry->end;
3362                 entry = entry->next;
3363         }
3364         return (TRUE);
3365 }
3366
3367 /*
3368  *      vm_map_copy_entry:
3369  *
3370  *      Copies the contents of the source entry to the destination
3371  *      entry.  The entries *must* be aligned properly.
3372  */
3373 static void
3374 vm_map_copy_entry(
3375         vm_map_t src_map,
3376         vm_map_t dst_map,
3377         vm_map_entry_t src_entry,
3378         vm_map_entry_t dst_entry,
3379         vm_ooffset_t *fork_charge)
3380 {
3381         vm_object_t src_object;
3382         vm_map_entry_t fake_entry;
3383         vm_offset_t size;
3384         struct ucred *cred;
3385         int charged;
3386
3387         VM_MAP_ASSERT_LOCKED(dst_map);
3388
3389         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3390                 return;
3391
3392         if (src_entry->wired_count == 0 ||
3393             (src_entry->protection & VM_PROT_WRITE) == 0) {
3394                 /*
3395                  * If the source entry is marked needs_copy, it is already
3396                  * write-protected.
3397                  */
3398                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3399                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3400                         pmap_protect(src_map->pmap,
3401                             src_entry->start,
3402                             src_entry->end,
3403                             src_entry->protection & ~VM_PROT_WRITE);
3404                 }
3405
3406                 /*
3407                  * Make a copy of the object.
3408                  */
3409                 size = src_entry->end - src_entry->start;
3410                 if ((src_object = src_entry->object.vm_object) != NULL) {
3411                         VM_OBJECT_WLOCK(src_object);
3412                         charged = ENTRY_CHARGED(src_entry);
3413                         if (src_object->handle == NULL &&
3414                             (src_object->type == OBJT_DEFAULT ||
3415                             src_object->type == OBJT_SWAP)) {
3416                                 vm_object_collapse(src_object);
3417                                 if ((src_object->flags & (OBJ_NOSPLIT |
3418                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3419                                         vm_object_split(src_entry);
3420                                         src_object =
3421                                             src_entry->object.vm_object;
3422                                 }
3423                         }
3424                         vm_object_reference_locked(src_object);
3425                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3426                         if (src_entry->cred != NULL &&
3427                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3428                                 KASSERT(src_object->cred == NULL,
3429                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3430                                      src_object));
3431                                 src_object->cred = src_entry->cred;
3432                                 src_object->charge = size;
3433                         }
3434                         VM_OBJECT_WUNLOCK(src_object);
3435                         dst_entry->object.vm_object = src_object;
3436                         if (charged) {
3437                                 cred = curthread->td_ucred;
3438                                 crhold(cred);
3439                                 dst_entry->cred = cred;
3440                                 *fork_charge += size;
3441                                 if (!(src_entry->eflags &
3442                                       MAP_ENTRY_NEEDS_COPY)) {
3443                                         crhold(cred);
3444                                         src_entry->cred = cred;
3445                                         *fork_charge += size;
3446                                 }
3447                         }
3448                         src_entry->eflags |= MAP_ENTRY_COW |
3449                             MAP_ENTRY_NEEDS_COPY;
3450                         dst_entry->eflags |= MAP_ENTRY_COW |
3451                             MAP_ENTRY_NEEDS_COPY;
3452                         dst_entry->offset = src_entry->offset;
3453                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3454                                 /*
3455                                  * MAP_ENTRY_VN_WRITECNT cannot
3456                                  * indicate write reference from
3457                                  * src_entry, since the entry is
3458                                  * marked as needs copy.  Allocate a
3459                                  * fake entry that is used to
3460                                  * decrement object->un_pager.vnp.writecount
3461                                  * at the appropriate time.  Attach
3462                                  * fake_entry to the deferred list.
3463                                  */
3464                                 fake_entry = vm_map_entry_create(dst_map);
3465                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3466                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3467                                 vm_object_reference(src_object);
3468                                 fake_entry->object.vm_object = src_object;
3469                                 fake_entry->start = src_entry->start;
3470                                 fake_entry->end = src_entry->end;
3471                                 fake_entry->next = curthread->td_map_def_user;
3472                                 curthread->td_map_def_user = fake_entry;
3473                         }
3474
3475                         pmap_copy(dst_map->pmap, src_map->pmap,
3476                             dst_entry->start, dst_entry->end - dst_entry->start,
3477                             src_entry->start);
3478                 } else {
3479                         dst_entry->object.vm_object = NULL;
3480                         dst_entry->offset = 0;
3481                         if (src_entry->cred != NULL) {
3482                                 dst_entry->cred = curthread->td_ucred;
3483                                 crhold(dst_entry->cred);
3484                                 *fork_charge += size;
3485                         }
3486                 }
3487         } else {
3488                 /*
3489                  * We don't want to make writeable wired pages copy-on-write.
3490                  * Immediately copy these pages into the new map by simulating
3491                  * page faults.  The new pages are pageable.
3492                  */
3493                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3494                     fork_charge);
3495         }
3496 }
3497
3498 /*
3499  * vmspace_map_entry_forked:
3500  * Update the newly-forked vmspace each time a map entry is inherited
3501  * or copied.  The values for vm_dsize and vm_tsize are approximate
3502  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3503  */
3504 static void
3505 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3506     vm_map_entry_t entry)
3507 {
3508         vm_size_t entrysize;
3509         vm_offset_t newend;
3510
3511         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3512                 return;
3513         entrysize = entry->end - entry->start;
3514         vm2->vm_map.size += entrysize;
3515         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3516                 vm2->vm_ssize += btoc(entrysize);
3517         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3518             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3519                 newend = MIN(entry->end,
3520                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3521                 vm2->vm_dsize += btoc(newend - entry->start);
3522         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3523             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3524                 newend = MIN(entry->end,
3525                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3526                 vm2->vm_tsize += btoc(newend - entry->start);
3527         }
3528 }
3529
3530 /*
3531  * vmspace_fork:
3532  * Create a new process vmspace structure and vm_map
3533  * based on those of an existing process.  The new map
3534  * is based on the old map, according to the inheritance
3535  * values on the regions in that map.
3536  *
3537  * XXX It might be worth coalescing the entries added to the new vmspace.
3538  *
3539  * The source map must not be locked.
3540  */
3541 struct vmspace *
3542 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3543 {
3544         struct vmspace *vm2;
3545         vm_map_t new_map, old_map;
3546         vm_map_entry_t new_entry, old_entry;
3547         vm_object_t object;
3548         int error, locked;
3549         vm_inherit_t inh;
3550
3551         old_map = &vm1->vm_map;
3552         /* Copy immutable fields of vm1 to vm2. */
3553         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3554             pmap_pinit);
3555         if (vm2 == NULL)
3556                 return (NULL);
3557
3558         vm2->vm_taddr = vm1->vm_taddr;
3559         vm2->vm_daddr = vm1->vm_daddr;
3560         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3561         vm_map_lock(old_map);
3562         if (old_map->busy)
3563                 vm_map_wait_busy(old_map);
3564         new_map = &vm2->vm_map;
3565         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3566         KASSERT(locked, ("vmspace_fork: lock failed"));
3567
3568         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3569         if (error != 0) {
3570                 sx_xunlock(&old_map->lock);
3571                 sx_xunlock(&new_map->lock);
3572                 vm_map_process_deferred();
3573                 vmspace_free(vm2);
3574                 return (NULL);
3575         }
3576
3577         new_map->anon_loc = old_map->anon_loc;
3578
3579         old_entry = old_map->header.next;
3580
3581         while (old_entry != &old_map->header) {
3582                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3583                         panic("vm_map_fork: encountered a submap");
3584
3585                 inh = old_entry->inheritance;
3586                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3587                     inh != VM_INHERIT_NONE)
3588                         inh = VM_INHERIT_COPY;
3589
3590                 switch (inh) {
3591                 case VM_INHERIT_NONE:
3592                         break;
3593
3594                 case VM_INHERIT_SHARE:
3595                         /*
3596                          * Clone the entry, creating the shared object if necessary.
3597                          */
3598                         object = old_entry->object.vm_object;
3599                         if (object == NULL) {
3600                                 object = vm_object_allocate(OBJT_DEFAULT,
3601                                         atop(old_entry->end - old_entry->start));
3602                                 old_entry->object.vm_object = object;
3603                                 old_entry->offset = 0;
3604                                 if (old_entry->cred != NULL) {
3605                                         object->cred = old_entry->cred;
3606                                         object->charge = old_entry->end -
3607                                             old_entry->start;
3608                                         old_entry->cred = NULL;
3609                                 }
3610                         }
3611
3612                         /*
3613                          * Add the reference before calling vm_object_shadow
3614                          * to insure that a shadow object is created.
3615                          */
3616                         vm_object_reference(object);
3617                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3618                                 vm_object_shadow(&old_entry->object.vm_object,
3619                                     &old_entry->offset,
3620                                     old_entry->end - old_entry->start);
3621                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3622                                 /* Transfer the second reference too. */
3623                                 vm_object_reference(
3624                                     old_entry->object.vm_object);
3625
3626                                 /*
3627                                  * As in vm_map_simplify_entry(), the
3628                                  * vnode lock will not be acquired in
3629                                  * this call to vm_object_deallocate().
3630                                  */
3631                                 vm_object_deallocate(object);
3632                                 object = old_entry->object.vm_object;
3633                         }
3634                         VM_OBJECT_WLOCK(object);
3635                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3636                         if (old_entry->cred != NULL) {
3637                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3638                                 object->cred = old_entry->cred;
3639                                 object->charge = old_entry->end - old_entry->start;
3640                                 old_entry->cred = NULL;
3641                         }
3642
3643                         /*
3644                          * Assert the correct state of the vnode
3645                          * v_writecount while the object is locked, to
3646                          * not relock it later for the assertion
3647                          * correctness.
3648                          */
3649                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3650                             object->type == OBJT_VNODE) {
3651                                 KASSERT(((struct vnode *)object->handle)->
3652                                     v_writecount > 0,
3653                                     ("vmspace_fork: v_writecount %p", object));
3654                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3655                                     ("vmspace_fork: vnp.writecount %p",
3656                                     object));
3657                         }
3658                         VM_OBJECT_WUNLOCK(object);
3659
3660                         /*
3661                          * Clone the entry, referencing the shared object.
3662                          */
3663                         new_entry = vm_map_entry_create(new_map);
3664                         *new_entry = *old_entry;
3665                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3666                             MAP_ENTRY_IN_TRANSITION);
3667                         new_entry->wiring_thread = NULL;
3668                         new_entry->wired_count = 0;
3669                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3670                                 vnode_pager_update_writecount(object,
3671                                     new_entry->start, new_entry->end);
3672                         }
3673
3674                         /*
3675                          * Insert the entry into the new map -- we know we're
3676                          * inserting at the end of the new map.
3677                          */
3678                         vm_map_entry_link(new_map, new_map->header.prev,
3679                             new_entry);
3680                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3681
3682                         /*
3683                          * Update the physical map
3684                          */
3685                         pmap_copy(new_map->pmap, old_map->pmap,
3686                             new_entry->start,
3687                             (old_entry->end - old_entry->start),
3688                             old_entry->start);
3689                         break;
3690
3691                 case VM_INHERIT_COPY:
3692                         /*
3693                          * Clone the entry and link into the map.
3694                          */
3695                         new_entry = vm_map_entry_create(new_map);
3696                         *new_entry = *old_entry;
3697                         /*
3698                          * Copied entry is COW over the old object.
3699                          */
3700                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3701                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3702                         new_entry->wiring_thread = NULL;
3703                         new_entry->wired_count = 0;
3704                         new_entry->object.vm_object = NULL;
3705                         new_entry->cred = NULL;
3706                         vm_map_entry_link(new_map, new_map->header.prev,
3707                             new_entry);
3708                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3709                         vm_map_copy_entry(old_map, new_map, old_entry,
3710                             new_entry, fork_charge);
3711                         break;
3712
3713                 case VM_INHERIT_ZERO:
3714                         /*
3715                          * Create a new anonymous mapping entry modelled from
3716                          * the old one.
3717                          */
3718                         new_entry = vm_map_entry_create(new_map);
3719                         memset(new_entry, 0, sizeof(*new_entry));
3720
3721                         new_entry->start = old_entry->start;
3722                         new_entry->end = old_entry->end;
3723                         new_entry->eflags = old_entry->eflags &
3724                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3725                             MAP_ENTRY_VN_WRITECNT);
3726                         new_entry->protection = old_entry->protection;
3727                         new_entry->max_protection = old_entry->max_protection;
3728                         new_entry->inheritance = VM_INHERIT_ZERO;
3729
3730                         vm_map_entry_link(new_map, new_map->header.prev,
3731                             new_entry);
3732                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3733
3734                         new_entry->cred = curthread->td_ucred;
3735                         crhold(new_entry->cred);
3736                         *fork_charge += (new_entry->end - new_entry->start);
3737
3738                         break;
3739                 }
3740                 old_entry = old_entry->next;
3741         }
3742         /*
3743          * Use inlined vm_map_unlock() to postpone handling the deferred
3744          * map entries, which cannot be done until both old_map and
3745          * new_map locks are released.
3746          */
3747         sx_xunlock(&old_map->lock);
3748         sx_xunlock(&new_map->lock);
3749         vm_map_process_deferred();
3750
3751         return (vm2);
3752 }
3753
3754 /*
3755  * Create a process's stack for exec_new_vmspace().  This function is never
3756  * asked to wire the newly created stack.
3757  */
3758 int
3759 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3760     vm_prot_t prot, vm_prot_t max, int cow)
3761 {
3762         vm_size_t growsize, init_ssize;
3763         rlim_t vmemlim;
3764         int rv;
3765
3766         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3767         growsize = sgrowsiz;
3768         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3769         vm_map_lock(map);
3770         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3771         /* If we would blow our VMEM resource limit, no go */
3772         if (map->size + init_ssize > vmemlim) {
3773                 rv = KERN_NO_SPACE;
3774                 goto out;
3775         }
3776         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3777             max, cow);
3778 out:
3779         vm_map_unlock(map);
3780         return (rv);
3781 }
3782
3783 static int stack_guard_page = 1;
3784 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3785     &stack_guard_page, 0,
3786     "Specifies the number of guard pages for a stack that grows");
3787
3788 static int
3789 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3790     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3791 {
3792         vm_map_entry_t new_entry, prev_entry;
3793         vm_offset_t bot, gap_bot, gap_top, top;
3794         vm_size_t init_ssize, sgp;
3795         int orient, rv;
3796
3797         /*
3798          * The stack orientation is piggybacked with the cow argument.
3799          * Extract it into orient and mask the cow argument so that we
3800          * don't pass it around further.
3801          */
3802         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3803         KASSERT(orient != 0, ("No stack grow direction"));
3804         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3805             ("bi-dir stack"));
3806
3807         if (addrbos < vm_map_min(map) ||
3808             addrbos + max_ssize > vm_map_max(map) ||
3809             addrbos + max_ssize <= addrbos)
3810                 return (KERN_INVALID_ADDRESS);
3811         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3812         if (sgp >= max_ssize)
3813                 return (KERN_INVALID_ARGUMENT);
3814
3815         init_ssize = growsize;
3816         if (max_ssize < init_ssize + sgp)
3817                 init_ssize = max_ssize - sgp;
3818
3819         /* If addr is already mapped, no go */
3820         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3821                 return (KERN_NO_SPACE);
3822
3823         /*
3824          * If we can't accommodate max_ssize in the current mapping, no go.
3825          */
3826         if (prev_entry->next->start < addrbos + max_ssize)
3827                 return (KERN_NO_SPACE);
3828
3829         /*
3830          * We initially map a stack of only init_ssize.  We will grow as
3831          * needed later.  Depending on the orientation of the stack (i.e.
3832          * the grow direction) we either map at the top of the range, the
3833          * bottom of the range or in the middle.
3834          *
3835          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3836          * and cow to be 0.  Possibly we should eliminate these as input
3837          * parameters, and just pass these values here in the insert call.
3838          */
3839         if (orient == MAP_STACK_GROWS_DOWN) {
3840                 bot = addrbos + max_ssize - init_ssize;
3841                 top = bot + init_ssize;
3842                 gap_bot = addrbos;
3843                 gap_top = bot;
3844         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3845                 bot = addrbos;
3846                 top = bot + init_ssize;
3847                 gap_bot = top;
3848                 gap_top = addrbos + max_ssize;
3849         }
3850         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3851         if (rv != KERN_SUCCESS)
3852                 return (rv);
3853         new_entry = prev_entry->next;
3854         KASSERT(new_entry->end == top || new_entry->start == bot,
3855             ("Bad entry start/end for new stack entry"));
3856         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3857             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3858             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3859         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3860             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3861             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3862         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3863             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3864             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3865         if (rv != KERN_SUCCESS)
3866                 (void)vm_map_delete(map, bot, top);
3867         return (rv);
3868 }
3869
3870 /*
3871  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3872  * successfully grow the stack.
3873  */
3874 static int
3875 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3876 {
3877         vm_map_entry_t stack_entry;
3878         struct proc *p;
3879         struct vmspace *vm;
3880         struct ucred *cred;
3881         vm_offset_t gap_end, gap_start, grow_start;
3882         size_t grow_amount, guard, max_grow;
3883         rlim_t lmemlim, stacklim, vmemlim;
3884         int rv, rv1;
3885         bool gap_deleted, grow_down, is_procstack;
3886 #ifdef notyet
3887         uint64_t limit;
3888 #endif
3889 #ifdef RACCT
3890         int error;
3891 #endif
3892
3893         p = curproc;
3894         vm = p->p_vmspace;
3895
3896         /*
3897          * Disallow stack growth when the access is performed by a
3898          * debugger or AIO daemon.  The reason is that the wrong
3899          * resource limits are applied.
3900          */
3901         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3902                 return (KERN_FAILURE);
3903
3904         MPASS(!map->system_map);
3905
3906         guard = stack_guard_page * PAGE_SIZE;
3907         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3908         stacklim = lim_cur(curthread, RLIMIT_STACK);
3909         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3910 retry:
3911         /* If addr is not in a hole for a stack grow area, no need to grow. */
3912         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3913                 return (KERN_FAILURE);
3914         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3915                 return (KERN_SUCCESS);
3916         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3917                 stack_entry = gap_entry->next;
3918                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3919                     stack_entry->start != gap_entry->end)
3920                         return (KERN_FAILURE);
3921                 grow_amount = round_page(stack_entry->start - addr);
3922                 grow_down = true;
3923         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3924                 stack_entry = gap_entry->prev;
3925                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3926                     stack_entry->end != gap_entry->start)
3927                         return (KERN_FAILURE);
3928                 grow_amount = round_page(addr + 1 - stack_entry->end);
3929                 grow_down = false;
3930         } else {
3931                 return (KERN_FAILURE);
3932         }
3933         max_grow = gap_entry->end - gap_entry->start;
3934         if (guard > max_grow)
3935                 return (KERN_NO_SPACE);
3936         max_grow -= guard;
3937         if (grow_amount > max_grow)
3938                 return (KERN_NO_SPACE);
3939
3940         /*
3941          * If this is the main process stack, see if we're over the stack
3942          * limit.
3943          */
3944         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3945             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3946         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3947                 return (KERN_NO_SPACE);
3948
3949 #ifdef RACCT
3950         if (racct_enable) {
3951                 PROC_LOCK(p);
3952                 if (is_procstack && racct_set(p, RACCT_STACK,
3953                     ctob(vm->vm_ssize) + grow_amount)) {
3954                         PROC_UNLOCK(p);
3955                         return (KERN_NO_SPACE);
3956                 }
3957                 PROC_UNLOCK(p);
3958         }
3959 #endif
3960
3961         grow_amount = roundup(grow_amount, sgrowsiz);
3962         if (grow_amount > max_grow)
3963                 grow_amount = max_grow;
3964         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3965                 grow_amount = trunc_page((vm_size_t)stacklim) -
3966                     ctob(vm->vm_ssize);
3967         }
3968
3969 #ifdef notyet
3970         PROC_LOCK(p);
3971         limit = racct_get_available(p, RACCT_STACK);
3972         PROC_UNLOCK(p);
3973         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3974                 grow_amount = limit - ctob(vm->vm_ssize);
3975 #endif
3976
3977         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3978                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3979                         rv = KERN_NO_SPACE;
3980                         goto out;
3981                 }
3982 #ifdef RACCT
3983                 if (racct_enable) {
3984                         PROC_LOCK(p);
3985                         if (racct_set(p, RACCT_MEMLOCK,
3986                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3987                                 PROC_UNLOCK(p);
3988                                 rv = KERN_NO_SPACE;
3989                                 goto out;
3990                         }
3991                         PROC_UNLOCK(p);
3992                 }
3993 #endif
3994         }
3995
3996         /* If we would blow our VMEM resource limit, no go */
3997         if (map->size + grow_amount > vmemlim) {
3998                 rv = KERN_NO_SPACE;
3999                 goto out;
4000         }
4001 #ifdef RACCT
4002         if (racct_enable) {
4003                 PROC_LOCK(p);
4004                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4005                         PROC_UNLOCK(p);
4006                         rv = KERN_NO_SPACE;
4007                         goto out;
4008                 }
4009                 PROC_UNLOCK(p);
4010         }
4011 #endif
4012
4013         if (vm_map_lock_upgrade(map)) {
4014                 gap_entry = NULL;
4015                 vm_map_lock_read(map);
4016                 goto retry;
4017         }
4018
4019         if (grow_down) {
4020                 grow_start = gap_entry->end - grow_amount;
4021                 if (gap_entry->start + grow_amount == gap_entry->end) {
4022                         gap_start = gap_entry->start;
4023                         gap_end = gap_entry->end;
4024                         vm_map_entry_delete(map, gap_entry);
4025                         gap_deleted = true;
4026                 } else {
4027                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4028                         gap_entry->end -= grow_amount;
4029                         vm_map_entry_resize_free(map, gap_entry);
4030                         gap_deleted = false;
4031                 }
4032                 rv = vm_map_insert(map, NULL, 0, grow_start,
4033                     grow_start + grow_amount,
4034                     stack_entry->protection, stack_entry->max_protection,
4035                     MAP_STACK_GROWS_DOWN);
4036                 if (rv != KERN_SUCCESS) {
4037                         if (gap_deleted) {
4038                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4039                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4040                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4041                                 MPASS(rv1 == KERN_SUCCESS);
4042                         } else {
4043                                 gap_entry->end += grow_amount;
4044                                 vm_map_entry_resize_free(map, gap_entry);
4045                         }
4046                 }
4047         } else {
4048                 grow_start = stack_entry->end;
4049                 cred = stack_entry->cred;
4050                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4051                         cred = stack_entry->object.vm_object->cred;
4052                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4053                         rv = KERN_NO_SPACE;
4054                 /* Grow the underlying object if applicable. */
4055                 else if (stack_entry->object.vm_object == NULL ||
4056                     vm_object_coalesce(stack_entry->object.vm_object,
4057                     stack_entry->offset,
4058                     (vm_size_t)(stack_entry->end - stack_entry->start),
4059                     (vm_size_t)grow_amount, cred != NULL)) {
4060                         if (gap_entry->start + grow_amount == gap_entry->end)
4061                                 vm_map_entry_delete(map, gap_entry);
4062                         else
4063                                 gap_entry->start += grow_amount;
4064                         stack_entry->end += grow_amount;
4065                         map->size += grow_amount;
4066                         vm_map_entry_resize_free(map, stack_entry);
4067                         rv = KERN_SUCCESS;
4068                 } else
4069                         rv = KERN_FAILURE;
4070         }
4071         if (rv == KERN_SUCCESS && is_procstack)
4072                 vm->vm_ssize += btoc(grow_amount);
4073
4074         /*
4075          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4076          */
4077         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4078                 vm_map_unlock(map);
4079                 vm_map_wire(map, grow_start, grow_start + grow_amount,
4080                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4081                 vm_map_lock_read(map);
4082         } else
4083                 vm_map_lock_downgrade(map);
4084
4085 out:
4086 #ifdef RACCT
4087         if (racct_enable && rv != KERN_SUCCESS) {
4088                 PROC_LOCK(p);
4089                 error = racct_set(p, RACCT_VMEM, map->size);
4090                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4091                 if (!old_mlock) {
4092                         error = racct_set(p, RACCT_MEMLOCK,
4093                             ptoa(pmap_wired_count(map->pmap)));
4094                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4095                 }
4096                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4097                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4098                 PROC_UNLOCK(p);
4099         }
4100 #endif
4101
4102         return (rv);
4103 }
4104
4105 /*
4106  * Unshare the specified VM space for exec.  If other processes are
4107  * mapped to it, then create a new one.  The new vmspace is null.
4108  */
4109 int
4110 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4111 {
4112         struct vmspace *oldvmspace = p->p_vmspace;
4113         struct vmspace *newvmspace;
4114
4115         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4116             ("vmspace_exec recursed"));
4117         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4118         if (newvmspace == NULL)
4119                 return (ENOMEM);
4120         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4121         /*
4122          * This code is written like this for prototype purposes.  The
4123          * goal is to avoid running down the vmspace here, but let the
4124          * other process's that are still using the vmspace to finally
4125          * run it down.  Even though there is little or no chance of blocking
4126          * here, it is a good idea to keep this form for future mods.
4127          */
4128         PROC_VMSPACE_LOCK(p);
4129         p->p_vmspace = newvmspace;
4130         PROC_VMSPACE_UNLOCK(p);
4131         if (p == curthread->td_proc)
4132                 pmap_activate(curthread);
4133         curthread->td_pflags |= TDP_EXECVMSPC;
4134         return (0);
4135 }
4136
4137 /*
4138  * Unshare the specified VM space for forcing COW.  This
4139  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4140  */
4141 int
4142 vmspace_unshare(struct proc *p)
4143 {
4144         struct vmspace *oldvmspace = p->p_vmspace;
4145         struct vmspace *newvmspace;
4146         vm_ooffset_t fork_charge;
4147
4148         if (oldvmspace->vm_refcnt == 1)
4149                 return (0);
4150         fork_charge = 0;
4151         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4152         if (newvmspace == NULL)
4153                 return (ENOMEM);
4154         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4155                 vmspace_free(newvmspace);
4156                 return (ENOMEM);
4157         }
4158         PROC_VMSPACE_LOCK(p);
4159         p->p_vmspace = newvmspace;
4160         PROC_VMSPACE_UNLOCK(p);
4161         if (p == curthread->td_proc)
4162                 pmap_activate(curthread);
4163         vmspace_free(oldvmspace);
4164         return (0);
4165 }
4166
4167 /*
4168  *      vm_map_lookup:
4169  *
4170  *      Finds the VM object, offset, and
4171  *      protection for a given virtual address in the
4172  *      specified map, assuming a page fault of the
4173  *      type specified.
4174  *
4175  *      Leaves the map in question locked for read; return
4176  *      values are guaranteed until a vm_map_lookup_done
4177  *      call is performed.  Note that the map argument
4178  *      is in/out; the returned map must be used in
4179  *      the call to vm_map_lookup_done.
4180  *
4181  *      A handle (out_entry) is returned for use in
4182  *      vm_map_lookup_done, to make that fast.
4183  *
4184  *      If a lookup is requested with "write protection"
4185  *      specified, the map may be changed to perform virtual
4186  *      copying operations, although the data referenced will
4187  *      remain the same.
4188  */
4189 int
4190 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4191               vm_offset_t vaddr,
4192               vm_prot_t fault_typea,
4193               vm_map_entry_t *out_entry,        /* OUT */
4194               vm_object_t *object,              /* OUT */
4195               vm_pindex_t *pindex,              /* OUT */
4196               vm_prot_t *out_prot,              /* OUT */
4197               boolean_t *wired)                 /* OUT */
4198 {
4199         vm_map_entry_t entry;
4200         vm_map_t map = *var_map;
4201         vm_prot_t prot;
4202         vm_prot_t fault_type = fault_typea;
4203         vm_object_t eobject;
4204         vm_size_t size;
4205         struct ucred *cred;
4206
4207 RetryLookup:
4208
4209         vm_map_lock_read(map);
4210
4211 RetryLookupLocked:
4212         /*
4213          * Lookup the faulting address.
4214          */
4215         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4216                 vm_map_unlock_read(map);
4217                 return (KERN_INVALID_ADDRESS);
4218         }
4219
4220         entry = *out_entry;
4221
4222         /*
4223          * Handle submaps.
4224          */
4225         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4226                 vm_map_t old_map = map;
4227
4228                 *var_map = map = entry->object.sub_map;
4229                 vm_map_unlock_read(old_map);
4230                 goto RetryLookup;
4231         }
4232
4233         /*
4234          * Check whether this task is allowed to have this page.
4235          */
4236         prot = entry->protection;
4237         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4238                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4239                 if (prot == VM_PROT_NONE && map != kernel_map &&
4240                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4241                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4242                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4243                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4244                         goto RetryLookupLocked;
4245         }
4246         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4247         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4248                 vm_map_unlock_read(map);
4249                 return (KERN_PROTECTION_FAILURE);
4250         }
4251         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4252             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4253             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4254             ("entry %p flags %x", entry, entry->eflags));
4255         if ((fault_typea & VM_PROT_COPY) != 0 &&
4256             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4257             (entry->eflags & MAP_ENTRY_COW) == 0) {
4258                 vm_map_unlock_read(map);
4259                 return (KERN_PROTECTION_FAILURE);
4260         }
4261
4262         /*
4263          * If this page is not pageable, we have to get it for all possible
4264          * accesses.
4265          */
4266         *wired = (entry->wired_count != 0);
4267         if (*wired)
4268                 fault_type = entry->protection;
4269         size = entry->end - entry->start;
4270         /*
4271          * If the entry was copy-on-write, we either ...
4272          */
4273         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4274                 /*
4275                  * If we want to write the page, we may as well handle that
4276                  * now since we've got the map locked.
4277                  *
4278                  * If we don't need to write the page, we just demote the
4279                  * permissions allowed.
4280                  */
4281                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4282                     (fault_typea & VM_PROT_COPY) != 0) {
4283                         /*
4284                          * Make a new object, and place it in the object
4285                          * chain.  Note that no new references have appeared
4286                          * -- one just moved from the map to the new
4287                          * object.
4288                          */
4289                         if (vm_map_lock_upgrade(map))
4290                                 goto RetryLookup;
4291
4292                         if (entry->cred == NULL) {
4293                                 /*
4294                                  * The debugger owner is charged for
4295                                  * the memory.
4296                                  */
4297                                 cred = curthread->td_ucred;
4298                                 crhold(cred);
4299                                 if (!swap_reserve_by_cred(size, cred)) {
4300                                         crfree(cred);
4301                                         vm_map_unlock(map);
4302                                         return (KERN_RESOURCE_SHORTAGE);
4303                                 }
4304                                 entry->cred = cred;
4305                         }
4306                         vm_object_shadow(&entry->object.vm_object,
4307                             &entry->offset, size);
4308                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4309                         eobject = entry->object.vm_object;
4310                         if (eobject->cred != NULL) {
4311                                 /*
4312                                  * The object was not shadowed.
4313                                  */
4314                                 swap_release_by_cred(size, entry->cred);
4315                                 crfree(entry->cred);
4316                                 entry->cred = NULL;
4317                         } else if (entry->cred != NULL) {
4318                                 VM_OBJECT_WLOCK(eobject);
4319                                 eobject->cred = entry->cred;
4320                                 eobject->charge = size;
4321                                 VM_OBJECT_WUNLOCK(eobject);
4322                                 entry->cred = NULL;
4323                         }
4324
4325                         vm_map_lock_downgrade(map);
4326                 } else {
4327                         /*
4328                          * We're attempting to read a copy-on-write page --
4329                          * don't allow writes.
4330                          */
4331                         prot &= ~VM_PROT_WRITE;
4332                 }
4333         }
4334
4335         /*
4336          * Create an object if necessary.
4337          */
4338         if (entry->object.vm_object == NULL &&
4339             !map->system_map) {
4340                 if (vm_map_lock_upgrade(map))
4341                         goto RetryLookup;
4342                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4343                     atop(size));
4344                 entry->offset = 0;
4345                 if (entry->cred != NULL) {
4346                         VM_OBJECT_WLOCK(entry->object.vm_object);
4347                         entry->object.vm_object->cred = entry->cred;
4348                         entry->object.vm_object->charge = size;
4349                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4350                         entry->cred = NULL;
4351                 }
4352                 vm_map_lock_downgrade(map);
4353         }
4354
4355         /*
4356          * Return the object/offset from this entry.  If the entry was
4357          * copy-on-write or empty, it has been fixed up.
4358          */
4359         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4360         *object = entry->object.vm_object;
4361
4362         *out_prot = prot;
4363         return (KERN_SUCCESS);
4364 }
4365
4366 /*
4367  *      vm_map_lookup_locked:
4368  *
4369  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4370  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4371  */
4372 int
4373 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4374                      vm_offset_t vaddr,
4375                      vm_prot_t fault_typea,
4376                      vm_map_entry_t *out_entry, /* OUT */
4377                      vm_object_t *object,       /* OUT */
4378                      vm_pindex_t *pindex,       /* OUT */
4379                      vm_prot_t *out_prot,       /* OUT */
4380                      boolean_t *wired)          /* OUT */
4381 {
4382         vm_map_entry_t entry;
4383         vm_map_t map = *var_map;
4384         vm_prot_t prot;
4385         vm_prot_t fault_type = fault_typea;
4386
4387         /*
4388          * Lookup the faulting address.
4389          */
4390         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4391                 return (KERN_INVALID_ADDRESS);
4392
4393         entry = *out_entry;
4394
4395         /*
4396          * Fail if the entry refers to a submap.
4397          */
4398         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4399                 return (KERN_FAILURE);
4400
4401         /*
4402          * Check whether this task is allowed to have this page.
4403          */
4404         prot = entry->protection;
4405         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4406         if ((fault_type & prot) != fault_type)
4407                 return (KERN_PROTECTION_FAILURE);
4408
4409         /*
4410          * If this page is not pageable, we have to get it for all possible
4411          * accesses.
4412          */
4413         *wired = (entry->wired_count != 0);
4414         if (*wired)
4415                 fault_type = entry->protection;
4416
4417         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4418                 /*
4419                  * Fail if the entry was copy-on-write for a write fault.
4420                  */
4421                 if (fault_type & VM_PROT_WRITE)
4422                         return (KERN_FAILURE);
4423                 /*
4424                  * We're attempting to read a copy-on-write page --
4425                  * don't allow writes.
4426                  */
4427                 prot &= ~VM_PROT_WRITE;
4428         }
4429
4430         /*
4431          * Fail if an object should be created.
4432          */
4433         if (entry->object.vm_object == NULL && !map->system_map)
4434                 return (KERN_FAILURE);
4435
4436         /*
4437          * Return the object/offset from this entry.  If the entry was
4438          * copy-on-write or empty, it has been fixed up.
4439          */
4440         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4441         *object = entry->object.vm_object;
4442
4443         *out_prot = prot;
4444         return (KERN_SUCCESS);
4445 }
4446
4447 /*
4448  *      vm_map_lookup_done:
4449  *
4450  *      Releases locks acquired by a vm_map_lookup
4451  *      (according to the handle returned by that lookup).
4452  */
4453 void
4454 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4455 {
4456         /*
4457          * Unlock the main-level map
4458          */
4459         vm_map_unlock_read(map);
4460 }
4461
4462 vm_offset_t
4463 vm_map_max_KBI(const struct vm_map *map)
4464 {
4465
4466         return (vm_map_max(map));
4467 }
4468
4469 vm_offset_t
4470 vm_map_min_KBI(const struct vm_map *map)
4471 {
4472
4473         return (vm_map_min(map));
4474 }
4475
4476 pmap_t
4477 vm_map_pmap_KBI(vm_map_t map)
4478 {
4479
4480         return (map->pmap);
4481 }
4482
4483 #include "opt_ddb.h"
4484 #ifdef DDB
4485 #include <sys/kernel.h>
4486
4487 #include <ddb/ddb.h>
4488
4489 static void
4490 vm_map_print(vm_map_t map)
4491 {
4492         vm_map_entry_t entry;
4493
4494         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4495             (void *)map,
4496             (void *)map->pmap, map->nentries, map->timestamp);
4497
4498         db_indent += 2;
4499         for (entry = map->header.next; entry != &map->header;
4500             entry = entry->next) {
4501                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4502                     (void *)entry, (void *)entry->start, (void *)entry->end,
4503                     entry->eflags);
4504                 {
4505                         static char *inheritance_name[4] =
4506                         {"share", "copy", "none", "donate_copy"};
4507
4508                         db_iprintf(" prot=%x/%x/%s",
4509                             entry->protection,
4510                             entry->max_protection,
4511                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4512                         if (entry->wired_count != 0)
4513                                 db_printf(", wired");
4514                 }
4515                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4516                         db_printf(", share=%p, offset=0x%jx\n",
4517                             (void *)entry->object.sub_map,
4518                             (uintmax_t)entry->offset);
4519                         if ((entry->prev == &map->header) ||
4520                             (entry->prev->object.sub_map !=
4521                                 entry->object.sub_map)) {
4522                                 db_indent += 2;
4523                                 vm_map_print((vm_map_t)entry->object.sub_map);
4524                                 db_indent -= 2;
4525                         }
4526                 } else {
4527                         if (entry->cred != NULL)
4528                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4529                         db_printf(", object=%p, offset=0x%jx",
4530                             (void *)entry->object.vm_object,
4531                             (uintmax_t)entry->offset);
4532                         if (entry->object.vm_object && entry->object.vm_object->cred)
4533                                 db_printf(", obj ruid %d charge %jx",
4534                                     entry->object.vm_object->cred->cr_ruid,
4535                                     (uintmax_t)entry->object.vm_object->charge);
4536                         if (entry->eflags & MAP_ENTRY_COW)
4537                                 db_printf(", copy (%s)",
4538                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4539                         db_printf("\n");
4540
4541                         if ((entry->prev == &map->header) ||
4542                             (entry->prev->object.vm_object !=
4543                                 entry->object.vm_object)) {
4544                                 db_indent += 2;
4545                                 vm_object_print((db_expr_t)(intptr_t)
4546                                                 entry->object.vm_object,
4547                                                 0, 0, (char *)0);
4548                                 db_indent -= 2;
4549                         }
4550                 }
4551         }
4552         db_indent -= 2;
4553 }
4554
4555 DB_SHOW_COMMAND(map, map)
4556 {
4557
4558         if (!have_addr) {
4559                 db_printf("usage: show map <addr>\n");
4560                 return;
4561         }
4562         vm_map_print((vm_map_t)addr);
4563 }
4564
4565 DB_SHOW_COMMAND(procvm, procvm)
4566 {
4567         struct proc *p;
4568
4569         if (have_addr) {
4570                 p = db_lookup_proc(addr);
4571         } else {
4572                 p = curproc;
4573         }
4574
4575         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4576             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4577             (void *)vmspace_pmap(p->p_vmspace));
4578
4579         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4580 }
4581
4582 #endif /* DDB */