]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge llvm-project release/18.x llvmorg-18.1.1-0-gdba2a75e9c7e
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97
98 /*
99  *      Virtual memory maps provide for the mapping, protection,
100  *      and sharing of virtual memory objects.  In addition,
101  *      this module provides for an efficient virtual copy of
102  *      memory from one map to another.
103  *
104  *      Synchronization is required prior to most operations.
105  *
106  *      Maps consist of an ordered doubly-linked list of simple
107  *      entries; a self-adjusting binary search tree of these
108  *      entries is used to speed up lookups.
109  *
110  *      Since portions of maps are specified by start/end addresses,
111  *      which may not align with existing map entries, all
112  *      routines merely "clip" entries to these start/end values.
113  *      [That is, an entry is split into two, bordering at a
114  *      start or end value.]  Note that these clippings may not
115  *      always be necessary (as the two resulting entries are then
116  *      not changed); however, the clipping is done for convenience.
117  *
118  *      As mentioned above, virtual copy operations are performed
119  *      by copying VM object references from one map to
120  *      another, and then marking both regions as copy-on-write.
121  */
122
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t vmspace_zone;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129     vm_offset_t max);
130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134     vm_map_entry_t gap_entry);
135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137 #ifdef INVARIANTS
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142     int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144     vm_offset_t failed_addr);
145
146 #define CONTAINS_BITS(set, bits)        ((~(set) & (bits)) == 0)
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /* 
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
161  *
162  *      Asserts that the starting and ending region
163  *      addresses fall within the valid range of the map.
164  */
165 #define VM_MAP_RANGE_CHECK(map, start, end)             \
166                 {                                       \
167                 if (start < vm_map_min(map))            \
168                         start = vm_map_min(map);        \
169                 if (end > vm_map_max(map))              \
170                         end = vm_map_max(map);          \
171                 if (start > end)                        \
172                         start = end;                    \
173                 }
174
175 #ifndef UMA_MD_SMALL_ALLOC
176
177 /*
178  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
179  * unlocked, depending on whether the request is coming from the kernel map or a
180  * submap.  This function allocates a virtual address range directly from the
181  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182  * lock and also to avoid triggering allocator recursion in the vmem boundary
183  * tag allocator.
184  */
185 static void *
186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187     int wait)
188 {
189         vm_offset_t addr;
190         int error, locked;
191
192         *pflag = UMA_SLAB_PRIV;
193
194         if (!(locked = vm_map_locked(kernel_map)))
195                 vm_map_lock(kernel_map);
196         addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197         if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198                 panic("%s: kernel map is exhausted", __func__);
199         error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201         if (error != KERN_SUCCESS)
202                 panic("%s: vm_map_insert() failed: %d", __func__, error);
203         if (!locked)
204                 vm_map_unlock(kernel_map);
205         error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206             M_USE_RESERVE | (wait & M_ZERO));
207         if (error == KERN_SUCCESS) {
208                 return ((void *)addr);
209         } else {
210                 if (!locked)
211                         vm_map_lock(kernel_map);
212                 vm_map_delete(kernel_map, addr, bytes);
213                 if (!locked)
214                         vm_map_unlock(kernel_map);
215                 return (NULL);
216         }
217 }
218
219 static void
220 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221 {
222         vm_offset_t addr;
223         int error __diagused;
224
225         if ((pflag & UMA_SLAB_PRIV) == 0)
226                 /* XXX leaked */
227                 return;
228
229         addr = (vm_offset_t)item;
230         kmem_unback(kernel_object, addr, size);
231         error = vm_map_remove(kernel_map, addr, addr + size);
232         KASSERT(error == KERN_SUCCESS,
233             ("%s: vm_map_remove failed: %d", __func__, error));
234 }
235
236 /*
237  * The worst-case upper bound on the number of kernel map entries that may be
238  * created before the zone must be replenished in _vm_map_unlock().
239  */
240 #define KMAPENT_RESERVE         1
241
242 #endif /* !UMD_MD_SMALL_ALLOC */
243
244 /*
245  *      vm_map_startup:
246  *
247  *      Initialize the vm_map module.  Must be called before any other vm_map
248  *      routines.
249  *
250  *      User map and entry structures are allocated from the general purpose
251  *      memory pool.  Kernel maps are statically defined.  Kernel map entries
252  *      require special handling to avoid recursion; see the comments above
253  *      kmapent_alloc() and in vm_map_entry_create().
254  */
255 void
256 vm_map_startup(void)
257 {
258         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259
260         /*
261          * Disable the use of per-CPU buckets: map entry allocation is
262          * serialized by the kernel map lock.
263          */
264         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266             UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267 #ifndef UMA_MD_SMALL_ALLOC
268         /* Reserve an extra map entry for use when replenishing the reserve. */
269         uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270         uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271         uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272         uma_zone_set_freef(kmapentzone, kmapent_free);
273 #endif
274
275         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278 #ifdef INVARIANTS
279             vmspace_zdtor,
280 #else
281             NULL,
282 #endif
283             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284 }
285
286 static int
287 vmspace_zinit(void *mem, int size, int flags)
288 {
289         struct vmspace *vm;
290         vm_map_t map;
291
292         vm = (struct vmspace *)mem;
293         map = &vm->vm_map;
294
295         memset(map, 0, sizeof(*map));
296         mtx_init(&map->system_mtx, "vm map (system)", NULL,
297             MTX_DEF | MTX_DUPOK);
298         sx_init(&map->lock, "vm map (user)");
299         PMAP_LOCK_INIT(vmspace_pmap(vm));
300         return (0);
301 }
302
303 #ifdef INVARIANTS
304 static void
305 vmspace_zdtor(void *mem, int size, void *arg)
306 {
307         struct vmspace *vm;
308
309         vm = (struct vmspace *)mem;
310         KASSERT(vm->vm_map.nentries == 0,
311             ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
312         KASSERT(vm->vm_map.size == 0,
313             ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
314 }
315 #endif  /* INVARIANTS */
316
317 /*
318  * Allocate a vmspace structure, including a vm_map and pmap,
319  * and initialize those structures.  The refcnt is set to 1.
320  */
321 struct vmspace *
322 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
323 {
324         struct vmspace *vm;
325
326         vm = uma_zalloc(vmspace_zone, M_WAITOK);
327         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
328         if (!pinit(vmspace_pmap(vm))) {
329                 uma_zfree(vmspace_zone, vm);
330                 return (NULL);
331         }
332         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
333         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
334         refcount_init(&vm->vm_refcnt, 1);
335         vm->vm_shm = NULL;
336         vm->vm_swrss = 0;
337         vm->vm_tsize = 0;
338         vm->vm_dsize = 0;
339         vm->vm_ssize = 0;
340         vm->vm_taddr = 0;
341         vm->vm_daddr = 0;
342         vm->vm_maxsaddr = 0;
343         return (vm);
344 }
345
346 #ifdef RACCT
347 static void
348 vmspace_container_reset(struct proc *p)
349 {
350
351         PROC_LOCK(p);
352         racct_set(p, RACCT_DATA, 0);
353         racct_set(p, RACCT_STACK, 0);
354         racct_set(p, RACCT_RSS, 0);
355         racct_set(p, RACCT_MEMLOCK, 0);
356         racct_set(p, RACCT_VMEM, 0);
357         PROC_UNLOCK(p);
358 }
359 #endif
360
361 static inline void
362 vmspace_dofree(struct vmspace *vm)
363 {
364
365         CTR1(KTR_VM, "vmspace_free: %p", vm);
366
367         /*
368          * Make sure any SysV shm is freed, it might not have been in
369          * exit1().
370          */
371         shmexit(vm);
372
373         /*
374          * Lock the map, to wait out all other references to it.
375          * Delete all of the mappings and pages they hold, then call
376          * the pmap module to reclaim anything left.
377          */
378         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
379             vm_map_max(&vm->vm_map));
380
381         pmap_release(vmspace_pmap(vm));
382         vm->vm_map.pmap = NULL;
383         uma_zfree(vmspace_zone, vm);
384 }
385
386 void
387 vmspace_free(struct vmspace *vm)
388 {
389
390         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
391             "vmspace_free() called");
392
393         if (refcount_release(&vm->vm_refcnt))
394                 vmspace_dofree(vm);
395 }
396
397 void
398 vmspace_exitfree(struct proc *p)
399 {
400         struct vmspace *vm;
401
402         PROC_VMSPACE_LOCK(p);
403         vm = p->p_vmspace;
404         p->p_vmspace = NULL;
405         PROC_VMSPACE_UNLOCK(p);
406         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
407         vmspace_free(vm);
408 }
409
410 void
411 vmspace_exit(struct thread *td)
412 {
413         struct vmspace *vm;
414         struct proc *p;
415         bool released;
416
417         p = td->td_proc;
418         vm = p->p_vmspace;
419
420         /*
421          * Prepare to release the vmspace reference.  The thread that releases
422          * the last reference is responsible for tearing down the vmspace.
423          * However, threads not releasing the final reference must switch to the
424          * kernel's vmspace0 before the decrement so that the subsequent pmap
425          * deactivation does not modify a freed vmspace.
426          */
427         refcount_acquire(&vmspace0.vm_refcnt);
428         if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
429                 if (p->p_vmspace != &vmspace0) {
430                         PROC_VMSPACE_LOCK(p);
431                         p->p_vmspace = &vmspace0;
432                         PROC_VMSPACE_UNLOCK(p);
433                         pmap_activate(td);
434                 }
435                 released = refcount_release(&vm->vm_refcnt);
436         }
437         if (released) {
438                 /*
439                  * pmap_remove_pages() expects the pmap to be active, so switch
440                  * back first if necessary.
441                  */
442                 if (p->p_vmspace != vm) {
443                         PROC_VMSPACE_LOCK(p);
444                         p->p_vmspace = vm;
445                         PROC_VMSPACE_UNLOCK(p);
446                         pmap_activate(td);
447                 }
448                 pmap_remove_pages(vmspace_pmap(vm));
449                 PROC_VMSPACE_LOCK(p);
450                 p->p_vmspace = &vmspace0;
451                 PROC_VMSPACE_UNLOCK(p);
452                 pmap_activate(td);
453                 vmspace_dofree(vm);
454         }
455 #ifdef RACCT
456         if (racct_enable)
457                 vmspace_container_reset(p);
458 #endif
459 }
460
461 /* Acquire reference to vmspace owned by another process. */
462
463 struct vmspace *
464 vmspace_acquire_ref(struct proc *p)
465 {
466         struct vmspace *vm;
467
468         PROC_VMSPACE_LOCK(p);
469         vm = p->p_vmspace;
470         if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
471                 PROC_VMSPACE_UNLOCK(p);
472                 return (NULL);
473         }
474         if (vm != p->p_vmspace) {
475                 PROC_VMSPACE_UNLOCK(p);
476                 vmspace_free(vm);
477                 return (NULL);
478         }
479         PROC_VMSPACE_UNLOCK(p);
480         return (vm);
481 }
482
483 /*
484  * Switch between vmspaces in an AIO kernel process.
485  *
486  * The new vmspace is either the vmspace of a user process obtained
487  * from an active AIO request or the initial vmspace of the AIO kernel
488  * process (when it is idling).  Because user processes will block to
489  * drain any active AIO requests before proceeding in exit() or
490  * execve(), the reference count for vmspaces from AIO requests can
491  * never be 0.  Similarly, AIO kernel processes hold an extra
492  * reference on their initial vmspace for the life of the process.  As
493  * a result, the 'newvm' vmspace always has a non-zero reference
494  * count.  This permits an additional reference on 'newvm' to be
495  * acquired via a simple atomic increment rather than the loop in
496  * vmspace_acquire_ref() above.
497  */
498 void
499 vmspace_switch_aio(struct vmspace *newvm)
500 {
501         struct vmspace *oldvm;
502
503         /* XXX: Need some way to assert that this is an aio daemon. */
504
505         KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
506             ("vmspace_switch_aio: newvm unreferenced"));
507
508         oldvm = curproc->p_vmspace;
509         if (oldvm == newvm)
510                 return;
511
512         /*
513          * Point to the new address space and refer to it.
514          */
515         curproc->p_vmspace = newvm;
516         refcount_acquire(&newvm->vm_refcnt);
517
518         /* Activate the new mapping. */
519         pmap_activate(curthread);
520
521         vmspace_free(oldvm);
522 }
523
524 void
525 _vm_map_lock(vm_map_t map, const char *file, int line)
526 {
527
528         if (map->system_map)
529                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
530         else
531                 sx_xlock_(&map->lock, file, line);
532         map->timestamp++;
533 }
534
535 void
536 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
537 {
538         vm_object_t object;
539         struct vnode *vp;
540         bool vp_held;
541
542         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
543                 return;
544         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
545             ("Submap with execs"));
546         object = entry->object.vm_object;
547         KASSERT(object != NULL, ("No object for text, entry %p", entry));
548         if ((object->flags & OBJ_ANON) != 0)
549                 object = object->handle;
550         else
551                 KASSERT(object->backing_object == NULL,
552                     ("non-anon object %p shadows", object));
553         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
554             entry, entry->object.vm_object));
555
556         /*
557          * Mostly, we do not lock the backing object.  It is
558          * referenced by the entry we are processing, so it cannot go
559          * away.
560          */
561         vm_pager_getvp(object, &vp, &vp_held);
562         if (vp != NULL) {
563                 if (add) {
564                         VOP_SET_TEXT_CHECKED(vp);
565                 } else {
566                         vn_lock(vp, LK_SHARED | LK_RETRY);
567                         VOP_UNSET_TEXT_CHECKED(vp);
568                         VOP_UNLOCK(vp);
569                 }
570                 if (vp_held)
571                         vdrop(vp);
572         }
573 }
574
575 /*
576  * Use a different name for this vm_map_entry field when it's use
577  * is not consistent with its use as part of an ordered search tree.
578  */
579 #define defer_next right
580
581 static void
582 vm_map_process_deferred(void)
583 {
584         struct thread *td;
585         vm_map_entry_t entry, next;
586         vm_object_t object;
587
588         td = curthread;
589         entry = td->td_map_def_user;
590         td->td_map_def_user = NULL;
591         while (entry != NULL) {
592                 next = entry->defer_next;
593                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
594                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
595                     MAP_ENTRY_VN_EXEC));
596                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
597                         /*
598                          * Decrement the object's writemappings and
599                          * possibly the vnode's v_writecount.
600                          */
601                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
602                             ("Submap with writecount"));
603                         object = entry->object.vm_object;
604                         KASSERT(object != NULL, ("No object for writecount"));
605                         vm_pager_release_writecount(object, entry->start,
606                             entry->end);
607                 }
608                 vm_map_entry_set_vnode_text(entry, false);
609                 vm_map_entry_deallocate(entry, FALSE);
610                 entry = next;
611         }
612 }
613
614 #ifdef INVARIANTS
615 static void
616 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
617 {
618
619         if (map->system_map)
620                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621         else
622                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
623 }
624
625 #define VM_MAP_ASSERT_LOCKED(map) \
626     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
627
628 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
629 #ifdef DIAGNOSTIC
630 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
631 #else
632 static int enable_vmmap_check = VMMAP_CHECK_NONE;
633 #endif
634 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
635     &enable_vmmap_check, 0, "Enable vm map consistency checking");
636
637 static void _vm_map_assert_consistent(vm_map_t map, int check);
638
639 #define VM_MAP_ASSERT_CONSISTENT(map) \
640     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
641 #ifdef DIAGNOSTIC
642 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
643         if (map->nupdates > map->nentries) {                            \
644                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
645                 map->nupdates = 0;                                      \
646         }                                                               \
647 } while (0)
648 #else
649 #define VM_MAP_UNLOCK_CONSISTENT(map)
650 #endif
651 #else
652 #define VM_MAP_ASSERT_LOCKED(map)
653 #define VM_MAP_ASSERT_CONSISTENT(map)
654 #define VM_MAP_UNLOCK_CONSISTENT(map)
655 #endif /* INVARIANTS */
656
657 void
658 _vm_map_unlock(vm_map_t map, const char *file, int line)
659 {
660
661         VM_MAP_UNLOCK_CONSISTENT(map);
662         if (map->system_map) {
663 #ifndef UMA_MD_SMALL_ALLOC
664                 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
665                         uma_prealloc(kmapentzone, 1);
666                         map->flags &= ~MAP_REPLENISH;
667                 }
668 #endif
669                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
670         } else {
671                 sx_xunlock_(&map->lock, file, line);
672                 vm_map_process_deferred();
673         }
674 }
675
676 void
677 _vm_map_lock_read(vm_map_t map, const char *file, int line)
678 {
679
680         if (map->system_map)
681                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
682         else
683                 sx_slock_(&map->lock, file, line);
684 }
685
686 void
687 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
688 {
689
690         if (map->system_map) {
691                 KASSERT((map->flags & MAP_REPLENISH) == 0,
692                     ("%s: MAP_REPLENISH leaked", __func__));
693                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
694         } else {
695                 sx_sunlock_(&map->lock, file, line);
696                 vm_map_process_deferred();
697         }
698 }
699
700 int
701 _vm_map_trylock(vm_map_t map, const char *file, int line)
702 {
703         int error;
704
705         error = map->system_map ?
706             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
707             !sx_try_xlock_(&map->lock, file, line);
708         if (error == 0)
709                 map->timestamp++;
710         return (error == 0);
711 }
712
713 int
714 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
715 {
716         int error;
717
718         error = map->system_map ?
719             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
720             !sx_try_slock_(&map->lock, file, line);
721         return (error == 0);
722 }
723
724 /*
725  *      _vm_map_lock_upgrade:   [ internal use only ]
726  *
727  *      Tries to upgrade a read (shared) lock on the specified map to a write
728  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
729  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
730  *      returned without a read or write lock held.
731  *
732  *      Requires that the map be read locked.
733  */
734 int
735 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
736 {
737         unsigned int last_timestamp;
738
739         if (map->system_map) {
740                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
741         } else {
742                 if (!sx_try_upgrade_(&map->lock, file, line)) {
743                         last_timestamp = map->timestamp;
744                         sx_sunlock_(&map->lock, file, line);
745                         vm_map_process_deferred();
746                         /*
747                          * If the map's timestamp does not change while the
748                          * map is unlocked, then the upgrade succeeds.
749                          */
750                         sx_xlock_(&map->lock, file, line);
751                         if (last_timestamp != map->timestamp) {
752                                 sx_xunlock_(&map->lock, file, line);
753                                 return (1);
754                         }
755                 }
756         }
757         map->timestamp++;
758         return (0);
759 }
760
761 void
762 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
763 {
764
765         if (map->system_map) {
766                 KASSERT((map->flags & MAP_REPLENISH) == 0,
767                     ("%s: MAP_REPLENISH leaked", __func__));
768                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
769         } else {
770                 VM_MAP_UNLOCK_CONSISTENT(map);
771                 sx_downgrade_(&map->lock, file, line);
772         }
773 }
774
775 /*
776  *      vm_map_locked:
777  *
778  *      Returns a non-zero value if the caller holds a write (exclusive) lock
779  *      on the specified map and the value "0" otherwise.
780  */
781 int
782 vm_map_locked(vm_map_t map)
783 {
784
785         if (map->system_map)
786                 return (mtx_owned(&map->system_mtx));
787         else
788                 return (sx_xlocked(&map->lock));
789 }
790
791 /*
792  *      _vm_map_unlock_and_wait:
793  *
794  *      Atomically releases the lock on the specified map and puts the calling
795  *      thread to sleep.  The calling thread will remain asleep until either
796  *      vm_map_wakeup() is performed on the map or the specified timeout is
797  *      exceeded.
798  *
799  *      WARNING!  This function does not perform deferred deallocations of
800  *      objects and map entries.  Therefore, the calling thread is expected to
801  *      reacquire the map lock after reawakening and later perform an ordinary
802  *      unlock operation, such as vm_map_unlock(), before completing its
803  *      operation on the map.
804  */
805 int
806 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
807 {
808
809         VM_MAP_UNLOCK_CONSISTENT(map);
810         mtx_lock(&map_sleep_mtx);
811         if (map->system_map) {
812                 KASSERT((map->flags & MAP_REPLENISH) == 0,
813                     ("%s: MAP_REPLENISH leaked", __func__));
814                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
815         } else {
816                 sx_xunlock_(&map->lock, file, line);
817         }
818         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
819             timo));
820 }
821
822 /*
823  *      vm_map_wakeup:
824  *
825  *      Awaken any threads that have slept on the map using
826  *      vm_map_unlock_and_wait().
827  */
828 void
829 vm_map_wakeup(vm_map_t map)
830 {
831
832         /*
833          * Acquire and release map_sleep_mtx to prevent a wakeup()
834          * from being performed (and lost) between the map unlock
835          * and the msleep() in _vm_map_unlock_and_wait().
836          */
837         mtx_lock(&map_sleep_mtx);
838         mtx_unlock(&map_sleep_mtx);
839         wakeup(&map->root);
840 }
841
842 void
843 vm_map_busy(vm_map_t map)
844 {
845
846         VM_MAP_ASSERT_LOCKED(map);
847         map->busy++;
848 }
849
850 void
851 vm_map_unbusy(vm_map_t map)
852 {
853
854         VM_MAP_ASSERT_LOCKED(map);
855         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
856         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
857                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
858                 wakeup(&map->busy);
859         }
860 }
861
862 void 
863 vm_map_wait_busy(vm_map_t map)
864 {
865
866         VM_MAP_ASSERT_LOCKED(map);
867         while (map->busy) {
868                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
869                 if (map->system_map)
870                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
871                 else
872                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
873         }
874         map->timestamp++;
875 }
876
877 long
878 vmspace_resident_count(struct vmspace *vmspace)
879 {
880         return pmap_resident_count(vmspace_pmap(vmspace));
881 }
882
883 /*
884  * Initialize an existing vm_map structure
885  * such as that in the vmspace structure.
886  */
887 static void
888 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
889 {
890
891         map->header.eflags = MAP_ENTRY_HEADER;
892         map->needs_wakeup = FALSE;
893         map->system_map = 0;
894         map->pmap = pmap;
895         map->header.end = min;
896         map->header.start = max;
897         map->flags = 0;
898         map->header.left = map->header.right = &map->header;
899         map->root = NULL;
900         map->timestamp = 0;
901         map->busy = 0;
902         map->anon_loc = 0;
903 #ifdef DIAGNOSTIC
904         map->nupdates = 0;
905 #endif
906 }
907
908 void
909 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
910 {
911
912         _vm_map_init(map, pmap, min, max);
913         mtx_init(&map->system_mtx, "vm map (system)", NULL,
914             MTX_DEF | MTX_DUPOK);
915         sx_init(&map->lock, "vm map (user)");
916 }
917
918 /*
919  *      vm_map_entry_dispose:   [ internal use only ]
920  *
921  *      Inverse of vm_map_entry_create.
922  */
923 static void
924 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
925 {
926         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
927 }
928
929 /*
930  *      vm_map_entry_create:    [ internal use only ]
931  *
932  *      Allocates a VM map entry for insertion.
933  *      No entry fields are filled in.
934  */
935 static vm_map_entry_t
936 vm_map_entry_create(vm_map_t map)
937 {
938         vm_map_entry_t new_entry;
939
940 #ifndef UMA_MD_SMALL_ALLOC
941         if (map == kernel_map) {
942                 VM_MAP_ASSERT_LOCKED(map);
943
944                 /*
945                  * A new slab of kernel map entries cannot be allocated at this
946                  * point because the kernel map has not yet been updated to
947                  * reflect the caller's request.  Therefore, we allocate a new
948                  * map entry, dipping into the reserve if necessary, and set a
949                  * flag indicating that the reserve must be replenished before
950                  * the map is unlocked.
951                  */
952                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
953                 if (new_entry == NULL) {
954                         new_entry = uma_zalloc(kmapentzone,
955                             M_NOWAIT | M_NOVM | M_USE_RESERVE);
956                         kernel_map->flags |= MAP_REPLENISH;
957                 }
958         } else
959 #endif
960         if (map->system_map) {
961                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
962         } else {
963                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
964         }
965         KASSERT(new_entry != NULL,
966             ("vm_map_entry_create: kernel resources exhausted"));
967         return (new_entry);
968 }
969
970 /*
971  *      vm_map_entry_set_behavior:
972  *
973  *      Set the expected access behavior, either normal, random, or
974  *      sequential.
975  */
976 static inline void
977 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
978 {
979         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
980             (behavior & MAP_ENTRY_BEHAV_MASK);
981 }
982
983 /*
984  *      vm_map_entry_max_free_{left,right}:
985  *
986  *      Compute the size of the largest free gap between two entries,
987  *      one the root of a tree and the other the ancestor of that root
988  *      that is the least or greatest ancestor found on the search path.
989  */
990 static inline vm_size_t
991 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
992 {
993
994         return (root->left != left_ancestor ?
995             root->left->max_free : root->start - left_ancestor->end);
996 }
997
998 static inline vm_size_t
999 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1000 {
1001
1002         return (root->right != right_ancestor ?
1003             root->right->max_free : right_ancestor->start - root->end);
1004 }
1005
1006 /*
1007  *      vm_map_entry_{pred,succ}:
1008  *
1009  *      Find the {predecessor, successor} of the entry by taking one step
1010  *      in the appropriate direction and backtracking as much as necessary.
1011  *      vm_map_entry_succ is defined in vm_map.h.
1012  */
1013 static inline vm_map_entry_t
1014 vm_map_entry_pred(vm_map_entry_t entry)
1015 {
1016         vm_map_entry_t prior;
1017
1018         prior = entry->left;
1019         if (prior->right->start < entry->start) {
1020                 do
1021                         prior = prior->right;
1022                 while (prior->right != entry);
1023         }
1024         return (prior);
1025 }
1026
1027 static inline vm_size_t
1028 vm_size_max(vm_size_t a, vm_size_t b)
1029 {
1030
1031         return (a > b ? a : b);
1032 }
1033
1034 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1035         vm_map_entry_t z;                                               \
1036         vm_size_t max_free;                                             \
1037                                                                         \
1038         /*                                                              \
1039          * Infer root->right->max_free == root->max_free when           \
1040          * y->max_free < root->max_free || root->max_free == 0.         \
1041          * Otherwise, look right to find it.                            \
1042          */                                                             \
1043         y = root->left;                                                 \
1044         max_free = root->max_free;                                      \
1045         KASSERT(max_free == vm_size_max(                                \
1046             vm_map_entry_max_free_left(root, llist),                    \
1047             vm_map_entry_max_free_right(root, rlist)),                  \
1048             ("%s: max_free invariant fails", __func__));                \
1049         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1050                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1051         if (y != llist && (test)) {                                     \
1052                 /* Rotate right and make y root. */                     \
1053                 z = y->right;                                           \
1054                 if (z != root) {                                        \
1055                         root->left = z;                                 \
1056                         y->right = root;                                \
1057                         if (max_free < y->max_free)                     \
1058                             root->max_free = max_free =                 \
1059                             vm_size_max(max_free, z->max_free);         \
1060                 } else if (max_free < y->max_free)                      \
1061                         root->max_free = max_free =                     \
1062                             vm_size_max(max_free, root->start - y->end);\
1063                 root = y;                                               \
1064                 y = root->left;                                         \
1065         }                                                               \
1066         /* Copy right->max_free.  Put root on rlist. */                 \
1067         root->max_free = max_free;                                      \
1068         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1069             ("%s: max_free not copied from right", __func__));          \
1070         root->left = rlist;                                             \
1071         rlist = root;                                                   \
1072         root = y != llist ? y : NULL;                                   \
1073 } while (0)
1074
1075 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1076         vm_map_entry_t z;                                               \
1077         vm_size_t max_free;                                             \
1078                                                                         \
1079         /*                                                              \
1080          * Infer root->left->max_free == root->max_free when            \
1081          * y->max_free < root->max_free || root->max_free == 0.         \
1082          * Otherwise, look left to find it.                             \
1083          */                                                             \
1084         y = root->right;                                                \
1085         max_free = root->max_free;                                      \
1086         KASSERT(max_free == vm_size_max(                                \
1087             vm_map_entry_max_free_left(root, llist),                    \
1088             vm_map_entry_max_free_right(root, rlist)),                  \
1089             ("%s: max_free invariant fails", __func__));                \
1090         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1091                 max_free = vm_map_entry_max_free_left(root, llist);     \
1092         if (y != rlist && (test)) {                                     \
1093                 /* Rotate left and make y root. */                      \
1094                 z = y->left;                                            \
1095                 if (z != root) {                                        \
1096                         root->right = z;                                \
1097                         y->left = root;                                 \
1098                         if (max_free < y->max_free)                     \
1099                             root->max_free = max_free =                 \
1100                             vm_size_max(max_free, z->max_free);         \
1101                 } else if (max_free < y->max_free)                      \
1102                         root->max_free = max_free =                     \
1103                             vm_size_max(max_free, y->start - root->end);\
1104                 root = y;                                               \
1105                 y = root->right;                                        \
1106         }                                                               \
1107         /* Copy left->max_free.  Put root on llist. */                  \
1108         root->max_free = max_free;                                      \
1109         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1110             ("%s: max_free not copied from left", __func__));           \
1111         root->right = llist;                                            \
1112         llist = root;                                                   \
1113         root = y != rlist ? y : NULL;                                   \
1114 } while (0)
1115
1116 /*
1117  * Walk down the tree until we find addr or a gap where addr would go, breaking
1118  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1119  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1120  * the two sides in reverse order (bottom-up), with llist linked by the right
1121  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1122  * lists terminated by &map->header.  This function, and the subsequent call to
1123  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1124  * values in &map->header.
1125  */
1126 static __always_inline vm_map_entry_t
1127 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1128     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1129 {
1130         vm_map_entry_t left, right, root, y;
1131
1132         left = right = &map->header;
1133         root = map->root;
1134         while (root != NULL && root->max_free >= length) {
1135                 KASSERT(left->end <= root->start &&
1136                     root->end <= right->start,
1137                     ("%s: root not within tree bounds", __func__));
1138                 if (addr < root->start) {
1139                         SPLAY_LEFT_STEP(root, y, left, right,
1140                             y->max_free >= length && addr < y->start);
1141                 } else if (addr >= root->end) {
1142                         SPLAY_RIGHT_STEP(root, y, left, right,
1143                             y->max_free >= length && addr >= y->end);
1144                 } else
1145                         break;
1146         }
1147         *llist = left;
1148         *rlist = right;
1149         return (root);
1150 }
1151
1152 static __always_inline void
1153 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1154 {
1155         vm_map_entry_t hi, right, y;
1156
1157         right = *rlist;
1158         hi = root->right == right ? NULL : root->right;
1159         if (hi == NULL)
1160                 return;
1161         do
1162                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1163         while (hi != NULL);
1164         *rlist = right;
1165 }
1166
1167 static __always_inline void
1168 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1169 {
1170         vm_map_entry_t left, lo, y;
1171
1172         left = *llist;
1173         lo = root->left == left ? NULL : root->left;
1174         if (lo == NULL)
1175                 return;
1176         do
1177                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1178         while (lo != NULL);
1179         *llist = left;
1180 }
1181
1182 static inline void
1183 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1184 {
1185         vm_map_entry_t tmp;
1186
1187         tmp = *b;
1188         *b = *a;
1189         *a = tmp;
1190 }
1191
1192 /*
1193  * Walk back up the two spines, flip the pointers and set max_free.  The
1194  * subtrees of the root go at the bottom of llist and rlist.
1195  */
1196 static vm_size_t
1197 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1198     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1199 {
1200         do {
1201                 /*
1202                  * The max_free values of the children of llist are in
1203                  * llist->max_free and max_free.  Update with the
1204                  * max value.
1205                  */
1206                 llist->max_free = max_free =
1207                     vm_size_max(llist->max_free, max_free);
1208                 vm_map_entry_swap(&llist->right, &tail);
1209                 vm_map_entry_swap(&tail, &llist);
1210         } while (llist != header);
1211         root->left = tail;
1212         return (max_free);
1213 }
1214
1215 /*
1216  * When llist is known to be the predecessor of root.
1217  */
1218 static inline vm_size_t
1219 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1220     vm_map_entry_t llist)
1221 {
1222         vm_size_t max_free;
1223
1224         max_free = root->start - llist->end;
1225         if (llist != header) {
1226                 max_free = vm_map_splay_merge_left_walk(header, root,
1227                     root, max_free, llist);
1228         } else {
1229                 root->left = header;
1230                 header->right = root;
1231         }
1232         return (max_free);
1233 }
1234
1235 /*
1236  * When llist may or may not be the predecessor of root.
1237  */
1238 static inline vm_size_t
1239 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1240     vm_map_entry_t llist)
1241 {
1242         vm_size_t max_free;
1243
1244         max_free = vm_map_entry_max_free_left(root, llist);
1245         if (llist != header) {
1246                 max_free = vm_map_splay_merge_left_walk(header, root,
1247                     root->left == llist ? root : root->left,
1248                     max_free, llist);
1249         }
1250         return (max_free);
1251 }
1252
1253 static vm_size_t
1254 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1255     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1256 {
1257         do {
1258                 /*
1259                  * The max_free values of the children of rlist are in
1260                  * rlist->max_free and max_free.  Update with the
1261                  * max value.
1262                  */
1263                 rlist->max_free = max_free =
1264                     vm_size_max(rlist->max_free, max_free);
1265                 vm_map_entry_swap(&rlist->left, &tail);
1266                 vm_map_entry_swap(&tail, &rlist);
1267         } while (rlist != header);
1268         root->right = tail;
1269         return (max_free);
1270 }
1271
1272 /*
1273  * When rlist is known to be the succecessor of root.
1274  */
1275 static inline vm_size_t
1276 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1277     vm_map_entry_t rlist)
1278 {
1279         vm_size_t max_free;
1280
1281         max_free = rlist->start - root->end;
1282         if (rlist != header) {
1283                 max_free = vm_map_splay_merge_right_walk(header, root,
1284                     root, max_free, rlist);
1285         } else {
1286                 root->right = header;
1287                 header->left = root;
1288         }
1289         return (max_free);
1290 }
1291
1292 /*
1293  * When rlist may or may not be the succecessor of root.
1294  */
1295 static inline vm_size_t
1296 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1297     vm_map_entry_t rlist)
1298 {
1299         vm_size_t max_free;
1300
1301         max_free = vm_map_entry_max_free_right(root, rlist);
1302         if (rlist != header) {
1303                 max_free = vm_map_splay_merge_right_walk(header, root,
1304                     root->right == rlist ? root : root->right,
1305                     max_free, rlist);
1306         }
1307         return (max_free);
1308 }
1309
1310 /*
1311  *      vm_map_splay:
1312  *
1313  *      The Sleator and Tarjan top-down splay algorithm with the
1314  *      following variation.  Max_free must be computed bottom-up, so
1315  *      on the downward pass, maintain the left and right spines in
1316  *      reverse order.  Then, make a second pass up each side to fix
1317  *      the pointers and compute max_free.  The time bound is O(log n)
1318  *      amortized.
1319  *
1320  *      The tree is threaded, which means that there are no null pointers.
1321  *      When a node has no left child, its left pointer points to its
1322  *      predecessor, which the last ancestor on the search path from the root
1323  *      where the search branched right.  Likewise, when a node has no right
1324  *      child, its right pointer points to its successor.  The map header node
1325  *      is the predecessor of the first map entry, and the successor of the
1326  *      last.
1327  *
1328  *      The new root is the vm_map_entry containing "addr", or else an
1329  *      adjacent entry (lower if possible) if addr is not in the tree.
1330  *
1331  *      The map must be locked, and leaves it so.
1332  *
1333  *      Returns: the new root.
1334  */
1335 static vm_map_entry_t
1336 vm_map_splay(vm_map_t map, vm_offset_t addr)
1337 {
1338         vm_map_entry_t header, llist, rlist, root;
1339         vm_size_t max_free_left, max_free_right;
1340
1341         header = &map->header;
1342         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1343         if (root != NULL) {
1344                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1345                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346         } else if (llist != header) {
1347                 /*
1348                  * Recover the greatest node in the left
1349                  * subtree and make it the root.
1350                  */
1351                 root = llist;
1352                 llist = root->right;
1353                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1354                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1355         } else if (rlist != header) {
1356                 /*
1357                  * Recover the least node in the right
1358                  * subtree and make it the root.
1359                  */
1360                 root = rlist;
1361                 rlist = root->left;
1362                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1363                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1364         } else {
1365                 /* There is no root. */
1366                 return (NULL);
1367         }
1368         root->max_free = vm_size_max(max_free_left, max_free_right);
1369         map->root = root;
1370         VM_MAP_ASSERT_CONSISTENT(map);
1371         return (root);
1372 }
1373
1374 /*
1375  *      vm_map_entry_{un,}link:
1376  *
1377  *      Insert/remove entries from maps.  On linking, if new entry clips
1378  *      existing entry, trim existing entry to avoid overlap, and manage
1379  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1380  *      called for, and manage offsets.  Callers should not modify fields in
1381  *      entries already mapped.
1382  */
1383 static void
1384 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1385 {
1386         vm_map_entry_t header, llist, rlist, root;
1387         vm_size_t max_free_left, max_free_right;
1388
1389         CTR3(KTR_VM,
1390             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1391             map->nentries, entry);
1392         VM_MAP_ASSERT_LOCKED(map);
1393         map->nentries++;
1394         header = &map->header;
1395         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1396         if (root == NULL) {
1397                 /*
1398                  * The new entry does not overlap any existing entry in the
1399                  * map, so it becomes the new root of the map tree.
1400                  */
1401                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1403         } else if (entry->start == root->start) {
1404                 /*
1405                  * The new entry is a clone of root, with only the end field
1406                  * changed.  The root entry will be shrunk to abut the new
1407                  * entry, and will be the right child of the new root entry in
1408                  * the modified map.
1409                  */
1410                 KASSERT(entry->end < root->end,
1411                     ("%s: clip_start not within entry", __func__));
1412                 vm_map_splay_findprev(root, &llist);
1413                 if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1414                     MAP_ENTRY_STACK_GAP_UP)) == 0)
1415                         root->offset += entry->end - root->start;
1416                 root->start = entry->end;
1417                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1418                 max_free_right = root->max_free = vm_size_max(
1419                     vm_map_splay_merge_pred(entry, root, entry),
1420                     vm_map_splay_merge_right(header, root, rlist));
1421         } else {
1422                 /*
1423                  * The new entry is a clone of root, with only the start field
1424                  * changed.  The root entry will be shrunk to abut the new
1425                  * entry, and will be the left child of the new root entry in
1426                  * the modified map.
1427                  */
1428                 KASSERT(entry->end == root->end,
1429                     ("%s: clip_start not within entry", __func__));
1430                 vm_map_splay_findnext(root, &rlist);
1431                 if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1432                     MAP_ENTRY_STACK_GAP_UP)) == 0)
1433                         entry->offset += entry->start - root->start;
1434                 root->end = entry->start;
1435                 max_free_left = root->max_free = vm_size_max(
1436                     vm_map_splay_merge_left(header, root, llist),
1437                     vm_map_splay_merge_succ(entry, root, entry));
1438                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439         }
1440         entry->max_free = vm_size_max(max_free_left, max_free_right);
1441         map->root = entry;
1442         VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444
1445 enum unlink_merge_type {
1446         UNLINK_MERGE_NONE,
1447         UNLINK_MERGE_NEXT
1448 };
1449
1450 static void
1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452     enum unlink_merge_type op)
1453 {
1454         vm_map_entry_t header, llist, rlist, root;
1455         vm_size_t max_free_left, max_free_right;
1456
1457         VM_MAP_ASSERT_LOCKED(map);
1458         header = &map->header;
1459         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460         KASSERT(root != NULL,
1461             ("vm_map_entry_unlink: unlink object not mapped"));
1462
1463         vm_map_splay_findprev(root, &llist);
1464         vm_map_splay_findnext(root, &rlist);
1465         if (op == UNLINK_MERGE_NEXT) {
1466                 rlist->start = root->start;
1467                 MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1468                     MAP_ENTRY_STACK_GAP_UP)) == 0);
1469                 rlist->offset = root->offset;
1470         }
1471         if (llist != header) {
1472                 root = llist;
1473                 llist = root->right;
1474                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1475                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1476         } else if (rlist != header) {
1477                 root = rlist;
1478                 rlist = root->left;
1479                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1480                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1481         } else {
1482                 header->left = header->right = header;
1483                 root = NULL;
1484         }
1485         if (root != NULL)
1486                 root->max_free = vm_size_max(max_free_left, max_free_right);
1487         map->root = root;
1488         VM_MAP_ASSERT_CONSISTENT(map);
1489         map->nentries--;
1490         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1491             map->nentries, entry);
1492 }
1493
1494 /*
1495  *      vm_map_entry_resize:
1496  *
1497  *      Resize a vm_map_entry, recompute the amount of free space that
1498  *      follows it and propagate that value up the tree.
1499  *
1500  *      The map must be locked, and leaves it so.
1501  */
1502 static void
1503 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1504 {
1505         vm_map_entry_t header, llist, rlist, root;
1506
1507         VM_MAP_ASSERT_LOCKED(map);
1508         header = &map->header;
1509         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1510         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1511         vm_map_splay_findnext(root, &rlist);
1512         entry->end += grow_amount;
1513         root->max_free = vm_size_max(
1514             vm_map_splay_merge_left(header, root, llist),
1515             vm_map_splay_merge_succ(header, root, rlist));
1516         map->root = root;
1517         VM_MAP_ASSERT_CONSISTENT(map);
1518         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1519             __func__, map, map->nentries, entry);
1520 }
1521
1522 /*
1523  *      vm_map_lookup_entry:    [ internal use only ]
1524  *
1525  *      Finds the map entry containing (or
1526  *      immediately preceding) the specified address
1527  *      in the given map; the entry is returned
1528  *      in the "entry" parameter.  The boolean
1529  *      result indicates whether the address is
1530  *      actually contained in the map.
1531  */
1532 boolean_t
1533 vm_map_lookup_entry(
1534         vm_map_t map,
1535         vm_offset_t address,
1536         vm_map_entry_t *entry)  /* OUT */
1537 {
1538         vm_map_entry_t cur, header, lbound, ubound;
1539         boolean_t locked;
1540
1541         /*
1542          * If the map is empty, then the map entry immediately preceding
1543          * "address" is the map's header.
1544          */
1545         header = &map->header;
1546         cur = map->root;
1547         if (cur == NULL) {
1548                 *entry = header;
1549                 return (FALSE);
1550         }
1551         if (address >= cur->start && cur->end > address) {
1552                 *entry = cur;
1553                 return (TRUE);
1554         }
1555         if ((locked = vm_map_locked(map)) ||
1556             sx_try_upgrade(&map->lock)) {
1557                 /*
1558                  * Splay requires a write lock on the map.  However, it only
1559                  * restructures the binary search tree; it does not otherwise
1560                  * change the map.  Thus, the map's timestamp need not change
1561                  * on a temporary upgrade.
1562                  */
1563                 cur = vm_map_splay(map, address);
1564                 if (!locked) {
1565                         VM_MAP_UNLOCK_CONSISTENT(map);
1566                         sx_downgrade(&map->lock);
1567                 }
1568
1569                 /*
1570                  * If "address" is contained within a map entry, the new root
1571                  * is that map entry.  Otherwise, the new root is a map entry
1572                  * immediately before or after "address".
1573                  */
1574                 if (address < cur->start) {
1575                         *entry = header;
1576                         return (FALSE);
1577                 }
1578                 *entry = cur;
1579                 return (address < cur->end);
1580         }
1581         /*
1582          * Since the map is only locked for read access, perform a
1583          * standard binary search tree lookup for "address".
1584          */
1585         lbound = ubound = header;
1586         for (;;) {
1587                 if (address < cur->start) {
1588                         ubound = cur;
1589                         cur = cur->left;
1590                         if (cur == lbound)
1591                                 break;
1592                 } else if (cur->end <= address) {
1593                         lbound = cur;
1594                         cur = cur->right;
1595                         if (cur == ubound)
1596                                 break;
1597                 } else {
1598                         *entry = cur;
1599                         return (TRUE);
1600                 }
1601         }
1602         *entry = lbound;
1603         return (FALSE);
1604 }
1605
1606 /*
1607  * vm_map_insert1() is identical to vm_map_insert() except that it
1608  * returns the newly inserted map entry in '*res'.  In case the new
1609  * entry is coalesced with a neighbor or an existing entry was
1610  * resized, that entry is returned.  In any case, the returned entry
1611  * covers the specified address range.
1612  */
1613 static int
1614 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1615     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1616     vm_map_entry_t *res)
1617 {
1618         vm_map_entry_t new_entry, next_entry, prev_entry;
1619         struct ucred *cred;
1620         vm_eflags_t protoeflags;
1621         vm_inherit_t inheritance;
1622         u_long bdry;
1623         u_int bidx;
1624
1625         VM_MAP_ASSERT_LOCKED(map);
1626         KASSERT(object != kernel_object ||
1627             (cow & MAP_COPY_ON_WRITE) == 0,
1628             ("vm_map_insert: kernel object and COW"));
1629         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1630             (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1631             ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1632             object, cow));
1633         KASSERT((prot & ~max) == 0,
1634             ("prot %#x is not subset of max_prot %#x", prot, max));
1635
1636         /*
1637          * Check that the start and end points are not bogus.
1638          */
1639         if (start == end || !vm_map_range_valid(map, start, end))
1640                 return (KERN_INVALID_ADDRESS);
1641
1642         if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1643             VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1644                 return (KERN_PROTECTION_FAILURE);
1645
1646         /*
1647          * Find the entry prior to the proposed starting address; if it's part
1648          * of an existing entry, this range is bogus.
1649          */
1650         if (vm_map_lookup_entry(map, start, &prev_entry))
1651                 return (KERN_NO_SPACE);
1652
1653         /*
1654          * Assert that the next entry doesn't overlap the end point.
1655          */
1656         next_entry = vm_map_entry_succ(prev_entry);
1657         if (next_entry->start < end)
1658                 return (KERN_NO_SPACE);
1659
1660         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1661             max != VM_PROT_NONE))
1662                 return (KERN_INVALID_ARGUMENT);
1663
1664         protoeflags = 0;
1665         if (cow & MAP_COPY_ON_WRITE)
1666                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1667         if (cow & MAP_NOFAULT)
1668                 protoeflags |= MAP_ENTRY_NOFAULT;
1669         if (cow & MAP_DISABLE_SYNCER)
1670                 protoeflags |= MAP_ENTRY_NOSYNC;
1671         if (cow & MAP_DISABLE_COREDUMP)
1672                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1673         if (cow & MAP_STACK_GROWS_DOWN)
1674                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1675         if (cow & MAP_STACK_GROWS_UP)
1676                 protoeflags |= MAP_ENTRY_GROWS_UP;
1677         if (cow & MAP_WRITECOUNT)
1678                 protoeflags |= MAP_ENTRY_WRITECNT;
1679         if (cow & MAP_VN_EXEC)
1680                 protoeflags |= MAP_ENTRY_VN_EXEC;
1681         if ((cow & MAP_CREATE_GUARD) != 0)
1682                 protoeflags |= MAP_ENTRY_GUARD;
1683         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1684                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1685         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1686                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1687         if (cow & MAP_INHERIT_SHARE)
1688                 inheritance = VM_INHERIT_SHARE;
1689         else
1690                 inheritance = VM_INHERIT_DEFAULT;
1691         if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1692                 /* This magically ignores index 0, for usual page size. */
1693                 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1694                     MAP_SPLIT_BOUNDARY_SHIFT;
1695                 if (bidx >= MAXPAGESIZES)
1696                         return (KERN_INVALID_ARGUMENT);
1697                 bdry = pagesizes[bidx] - 1;
1698                 if ((start & bdry) != 0 || (end & bdry) != 0)
1699                         return (KERN_INVALID_ARGUMENT);
1700                 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1701         }
1702
1703         cred = NULL;
1704         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1705                 goto charged;
1706         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1707             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1708                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1709                         return (KERN_RESOURCE_SHORTAGE);
1710                 KASSERT(object == NULL ||
1711                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1712                     object->cred == NULL,
1713                     ("overcommit: vm_map_insert o %p", object));
1714                 cred = curthread->td_ucred;
1715         }
1716
1717 charged:
1718         /* Expand the kernel pmap, if necessary. */
1719         if (map == kernel_map && end > kernel_vm_end)
1720                 pmap_growkernel(end);
1721         if (object != NULL) {
1722                 /*
1723                  * OBJ_ONEMAPPING must be cleared unless this mapping
1724                  * is trivially proven to be the only mapping for any
1725                  * of the object's pages.  (Object granularity
1726                  * reference counting is insufficient to recognize
1727                  * aliases with precision.)
1728                  */
1729                 if ((object->flags & OBJ_ANON) != 0) {
1730                         VM_OBJECT_WLOCK(object);
1731                         if (object->ref_count > 1 || object->shadow_count != 0)
1732                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1733                         VM_OBJECT_WUNLOCK(object);
1734                 }
1735         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1736             protoeflags &&
1737             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1738             MAP_VN_EXEC)) == 0 &&
1739             prev_entry->end == start && (prev_entry->cred == cred ||
1740             (prev_entry->object.vm_object != NULL &&
1741             prev_entry->object.vm_object->cred == cred)) &&
1742             vm_object_coalesce(prev_entry->object.vm_object,
1743             prev_entry->offset,
1744             (vm_size_t)(prev_entry->end - prev_entry->start),
1745             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1746             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1747                 /*
1748                  * We were able to extend the object.  Determine if we
1749                  * can extend the previous map entry to include the
1750                  * new range as well.
1751                  */
1752                 if (prev_entry->inheritance == inheritance &&
1753                     prev_entry->protection == prot &&
1754                     prev_entry->max_protection == max &&
1755                     prev_entry->wired_count == 0) {
1756                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1757                             0, ("prev_entry %p has incoherent wiring",
1758                             prev_entry));
1759                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1760                                 map->size += end - prev_entry->end;
1761                         vm_map_entry_resize(map, prev_entry,
1762                             end - prev_entry->end);
1763                         *res = vm_map_try_merge_entries(map, prev_entry,
1764                             next_entry);
1765                         return (KERN_SUCCESS);
1766                 }
1767
1768                 /*
1769                  * If we can extend the object but cannot extend the
1770                  * map entry, we have to create a new map entry.  We
1771                  * must bump the ref count on the extended object to
1772                  * account for it.  object may be NULL.
1773                  */
1774                 object = prev_entry->object.vm_object;
1775                 offset = prev_entry->offset +
1776                     (prev_entry->end - prev_entry->start);
1777                 vm_object_reference(object);
1778                 if (cred != NULL && object != NULL && object->cred != NULL &&
1779                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780                         /* Object already accounts for this uid. */
1781                         cred = NULL;
1782                 }
1783         }
1784         if (cred != NULL)
1785                 crhold(cred);
1786
1787         /*
1788          * Create a new entry
1789          */
1790         new_entry = vm_map_entry_create(map);
1791         new_entry->start = start;
1792         new_entry->end = end;
1793         new_entry->cred = NULL;
1794
1795         new_entry->eflags = protoeflags;
1796         new_entry->object.vm_object = object;
1797         new_entry->offset = offset;
1798
1799         new_entry->inheritance = inheritance;
1800         new_entry->protection = prot;
1801         new_entry->max_protection = max;
1802         new_entry->wired_count = 0;
1803         new_entry->wiring_thread = NULL;
1804         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805         new_entry->next_read = start;
1806
1807         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809         new_entry->cred = cred;
1810
1811         /*
1812          * Insert the new entry into the list
1813          */
1814         vm_map_entry_link(map, new_entry);
1815         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816                 map->size += new_entry->end - new_entry->start;
1817
1818         /*
1819          * Try to coalesce the new entry with both the previous and next
1820          * entries in the list.  Previously, we only attempted to coalesce
1821          * with the previous entry when object is NULL.  Here, we handle the
1822          * other cases, which are less common.
1823          */
1824         vm_map_try_merge_entries(map, prev_entry, new_entry);
1825         *res = vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829                     end - start, cow & MAP_PREFAULT_PARTIAL);
1830         }
1831
1832         return (KERN_SUCCESS);
1833 }
1834
1835 /*
1836  *      vm_map_insert:
1837  *
1838  *      Inserts the given VM object into the target map at the
1839  *      specified address range.
1840  *
1841  *      Requires that the map be locked, and leaves it so.
1842  *
1843  *      If object is non-NULL, ref count must be bumped by caller
1844  *      prior to making call to account for the new entry.
1845  */
1846 int
1847 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1848     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1849 {
1850         vm_map_entry_t res;
1851
1852         return (vm_map_insert1(map, object, offset, start, end, prot, max,
1853             cow, &res));
1854 }
1855
1856 /*
1857  *      vm_map_findspace:
1858  *
1859  *      Find the first fit (lowest VM address) for "length" free bytes
1860  *      beginning at address >= start in the given map.
1861  *
1862  *      In a vm_map_entry, "max_free" is the maximum amount of
1863  *      contiguous free space between an entry in its subtree and a
1864  *      neighbor of that entry.  This allows finding a free region in
1865  *      one path down the tree, so O(log n) amortized with splay
1866  *      trees.
1867  *
1868  *      The map must be locked, and leaves it so.
1869  *
1870  *      Returns: starting address if sufficient space,
1871  *               vm_map_max(map)-length+1 if insufficient space.
1872  */
1873 vm_offset_t
1874 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1875 {
1876         vm_map_entry_t header, llist, rlist, root, y;
1877         vm_size_t left_length, max_free_left, max_free_right;
1878         vm_offset_t gap_end;
1879
1880         VM_MAP_ASSERT_LOCKED(map);
1881
1882         /*
1883          * Request must fit within min/max VM address and must avoid
1884          * address wrap.
1885          */
1886         start = MAX(start, vm_map_min(map));
1887         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1888                 return (vm_map_max(map) - length + 1);
1889
1890         /* Empty tree means wide open address space. */
1891         if (map->root == NULL)
1892                 return (start);
1893
1894         /*
1895          * After splay_split, if start is within an entry, push it to the start
1896          * of the following gap.  If rlist is at the end of the gap containing
1897          * start, save the end of that gap in gap_end to see if the gap is big
1898          * enough; otherwise set gap_end to start skip gap-checking and move
1899          * directly to a search of the right subtree.
1900          */
1901         header = &map->header;
1902         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1903         gap_end = rlist->start;
1904         if (root != NULL) {
1905                 start = root->end;
1906                 if (root->right != rlist)
1907                         gap_end = start;
1908                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1909                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1910         } else if (rlist != header) {
1911                 root = rlist;
1912                 rlist = root->left;
1913                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1914                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1915         } else {
1916                 root = llist;
1917                 llist = root->right;
1918                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1919                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1920         }
1921         root->max_free = vm_size_max(max_free_left, max_free_right);
1922         map->root = root;
1923         VM_MAP_ASSERT_CONSISTENT(map);
1924         if (length <= gap_end - start)
1925                 return (start);
1926
1927         /* With max_free, can immediately tell if no solution. */
1928         if (root->right == header || length > root->right->max_free)
1929                 return (vm_map_max(map) - length + 1);
1930
1931         /*
1932          * Splay for the least large-enough gap in the right subtree.
1933          */
1934         llist = rlist = header;
1935         for (left_length = 0;;
1936             left_length = vm_map_entry_max_free_left(root, llist)) {
1937                 if (length <= left_length)
1938                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1939                             length <= vm_map_entry_max_free_left(y, llist));
1940                 else
1941                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1942                             length > vm_map_entry_max_free_left(y, root));
1943                 if (root == NULL)
1944                         break;
1945         }
1946         root = llist;
1947         llist = root->right;
1948         max_free_left = vm_map_splay_merge_left(header, root, llist);
1949         if (rlist == header) {
1950                 root->max_free = vm_size_max(max_free_left,
1951                     vm_map_splay_merge_succ(header, root, rlist));
1952         } else {
1953                 y = rlist;
1954                 rlist = y->left;
1955                 y->max_free = vm_size_max(
1956                     vm_map_splay_merge_pred(root, y, root),
1957                     vm_map_splay_merge_right(header, y, rlist));
1958                 root->max_free = vm_size_max(max_free_left, y->max_free);
1959         }
1960         map->root = root;
1961         VM_MAP_ASSERT_CONSISTENT(map);
1962         return (root->end);
1963 }
1964
1965 int
1966 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1967     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1968     vm_prot_t max, int cow)
1969 {
1970         vm_offset_t end;
1971         int result;
1972
1973         end = start + length;
1974         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1975             object == NULL,
1976             ("vm_map_fixed: non-NULL backing object for stack"));
1977         vm_map_lock(map);
1978         VM_MAP_RANGE_CHECK(map, start, end);
1979         if ((cow & MAP_CHECK_EXCL) == 0) {
1980                 result = vm_map_delete(map, start, end);
1981                 if (result != KERN_SUCCESS)
1982                         goto out;
1983         }
1984         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1985                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1986                     prot, max, cow);
1987         } else {
1988                 result = vm_map_insert(map, object, offset, start, end,
1989                     prot, max, cow);
1990         }
1991 out:
1992         vm_map_unlock(map);
1993         return (result);
1994 }
1995
1996 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1997 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1998
1999 static int cluster_anon = 1;
2000 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2001     &cluster_anon, 0,
2002     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2003
2004 static bool
2005 clustering_anon_allowed(vm_offset_t addr, int cow)
2006 {
2007
2008         switch (cluster_anon) {
2009         case 0:
2010                 return (false);
2011         case 1:
2012                 return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2013         case 2:
2014         default:
2015                 return (true);
2016         }
2017 }
2018
2019 static long aslr_restarts;
2020 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2021     &aslr_restarts, 0,
2022     "Number of aslr failures");
2023
2024 /*
2025  * Searches for the specified amount of free space in the given map with the
2026  * specified alignment.  Performs an address-ordered, first-fit search from
2027  * the given address "*addr", with an optional upper bound "max_addr".  If the
2028  * parameter "alignment" is zero, then the alignment is computed from the
2029  * given (object, offset) pair so as to enable the greatest possible use of
2030  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2031  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2032  *
2033  * The map must be locked.  Initially, there must be at least "length" bytes
2034  * of free space at the given address.
2035  */
2036 static int
2037 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2038     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2039     vm_offset_t alignment)
2040 {
2041         vm_offset_t aligned_addr, free_addr;
2042
2043         VM_MAP_ASSERT_LOCKED(map);
2044         free_addr = *addr;
2045         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2046             ("caller failed to provide space %#jx at address %p",
2047              (uintmax_t)length, (void *)free_addr));
2048         for (;;) {
2049                 /*
2050                  * At the start of every iteration, the free space at address
2051                  * "*addr" is at least "length" bytes.
2052                  */
2053                 if (alignment == 0)
2054                         pmap_align_superpage(object, offset, addr, length);
2055                 else
2056                         *addr = roundup2(*addr, alignment);
2057                 aligned_addr = *addr;
2058                 if (aligned_addr == free_addr) {
2059                         /*
2060                          * Alignment did not change "*addr", so "*addr" must
2061                          * still provide sufficient free space.
2062                          */
2063                         return (KERN_SUCCESS);
2064                 }
2065
2066                 /*
2067                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2068                  * be a valid address, in which case vm_map_findspace() cannot
2069                  * be relied upon to fail.
2070                  */
2071                 if (aligned_addr < free_addr)
2072                         return (KERN_NO_SPACE);
2073                 *addr = vm_map_findspace(map, aligned_addr, length);
2074                 if (*addr + length > vm_map_max(map) ||
2075                     (max_addr != 0 && *addr + length > max_addr))
2076                         return (KERN_NO_SPACE);
2077                 free_addr = *addr;
2078                 if (free_addr == aligned_addr) {
2079                         /*
2080                          * If a successful call to vm_map_findspace() did not
2081                          * change "*addr", then "*addr" must still be aligned
2082                          * and provide sufficient free space.
2083                          */
2084                         return (KERN_SUCCESS);
2085                 }
2086         }
2087 }
2088
2089 int
2090 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2091     vm_offset_t max_addr, vm_offset_t alignment)
2092 {
2093         /* XXXKIB ASLR eh ? */
2094         *addr = vm_map_findspace(map, *addr, length);
2095         if (*addr + length > vm_map_max(map) ||
2096             (max_addr != 0 && *addr + length > max_addr))
2097                 return (KERN_NO_SPACE);
2098         return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2099             alignment));
2100 }
2101
2102 /*
2103  *      vm_map_find finds an unallocated region in the target address
2104  *      map with the given length.  The search is defined to be
2105  *      first-fit from the specified address; the region found is
2106  *      returned in the same parameter.
2107  *
2108  *      If object is non-NULL, ref count must be bumped by caller
2109  *      prior to making call to account for the new entry.
2110  */
2111 int
2112 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2113             vm_offset_t *addr,  /* IN/OUT */
2114             vm_size_t length, vm_offset_t max_addr, int find_space,
2115             vm_prot_t prot, vm_prot_t max, int cow)
2116 {
2117         vm_offset_t alignment, curr_min_addr, min_addr;
2118         int gap, pidx, rv, try;
2119         bool cluster, en_aslr, update_anon;
2120
2121         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2122             object == NULL,
2123             ("vm_map_find: non-NULL backing object for stack"));
2124         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2125             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2126         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2127             (object->flags & OBJ_COLORED) == 0))
2128                 find_space = VMFS_ANY_SPACE;
2129         if (find_space >> 8 != 0) {
2130                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2131                 alignment = (vm_offset_t)1 << (find_space >> 8);
2132         } else
2133                 alignment = 0;
2134         en_aslr = (map->flags & MAP_ASLR) != 0;
2135         update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2136             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2137             find_space != VMFS_NO_SPACE && object == NULL &&
2138             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2139             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2140         curr_min_addr = min_addr = *addr;
2141         if (en_aslr && min_addr == 0 && !cluster &&
2142             find_space != VMFS_NO_SPACE &&
2143             (map->flags & MAP_ASLR_IGNSTART) != 0)
2144                 curr_min_addr = min_addr = vm_map_min(map);
2145         try = 0;
2146         vm_map_lock(map);
2147         if (cluster) {
2148                 curr_min_addr = map->anon_loc;
2149                 if (curr_min_addr == 0)
2150                         cluster = false;
2151         }
2152         if (find_space != VMFS_NO_SPACE) {
2153                 KASSERT(find_space == VMFS_ANY_SPACE ||
2154                     find_space == VMFS_OPTIMAL_SPACE ||
2155                     find_space == VMFS_SUPER_SPACE ||
2156                     alignment != 0, ("unexpected VMFS flag"));
2157 again:
2158                 /*
2159                  * When creating an anonymous mapping, try clustering
2160                  * with an existing anonymous mapping first.
2161                  *
2162                  * We make up to two attempts to find address space
2163                  * for a given find_space value. The first attempt may
2164                  * apply randomization or may cluster with an existing
2165                  * anonymous mapping. If this first attempt fails,
2166                  * perform a first-fit search of the available address
2167                  * space.
2168                  *
2169                  * If all tries failed, and find_space is
2170                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2171                  * Again enable clustering and randomization.
2172                  */
2173                 try++;
2174                 MPASS(try <= 2);
2175
2176                 if (try == 2) {
2177                         /*
2178                          * Second try: we failed either to find a
2179                          * suitable region for randomizing the
2180                          * allocation, or to cluster with an existing
2181                          * mapping.  Retry with free run.
2182                          */
2183                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2184                             vm_map_min(map) : min_addr;
2185                         atomic_add_long(&aslr_restarts, 1);
2186                 }
2187
2188                 if (try == 1 && en_aslr && !cluster) {
2189                         /*
2190                          * Find space for allocation, including
2191                          * gap needed for later randomization.
2192                          */
2193                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2194                             (find_space == VMFS_SUPER_SPACE || find_space ==
2195                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2196                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2197                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2198                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2199                         *addr = vm_map_findspace(map, curr_min_addr,
2200                             length + gap * pagesizes[pidx]);
2201                         if (*addr + length + gap * pagesizes[pidx] >
2202                             vm_map_max(map))
2203                                 goto again;
2204                         /* And randomize the start address. */
2205                         *addr += (arc4random() % gap) * pagesizes[pidx];
2206                         if (max_addr != 0 && *addr + length > max_addr)
2207                                 goto again;
2208                 } else {
2209                         *addr = vm_map_findspace(map, curr_min_addr, length);
2210                         if (*addr + length > vm_map_max(map) ||
2211                             (max_addr != 0 && *addr + length > max_addr)) {
2212                                 if (cluster) {
2213                                         cluster = false;
2214                                         MPASS(try == 1);
2215                                         goto again;
2216                                 }
2217                                 rv = KERN_NO_SPACE;
2218                                 goto done;
2219                         }
2220                 }
2221
2222                 if (find_space != VMFS_ANY_SPACE &&
2223                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2224                     max_addr, alignment)) != KERN_SUCCESS) {
2225                         if (find_space == VMFS_OPTIMAL_SPACE) {
2226                                 find_space = VMFS_ANY_SPACE;
2227                                 curr_min_addr = min_addr;
2228                                 cluster = update_anon;
2229                                 try = 0;
2230                                 goto again;
2231                         }
2232                         goto done;
2233                 }
2234         } else if ((cow & MAP_REMAP) != 0) {
2235                 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2236                         rv = KERN_INVALID_ADDRESS;
2237                         goto done;
2238                 }
2239                 rv = vm_map_delete(map, *addr, *addr + length);
2240                 if (rv != KERN_SUCCESS)
2241                         goto done;
2242         }
2243         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2244                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2245                     max, cow);
2246         } else {
2247                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2248                     prot, max, cow);
2249         }
2250         if (rv == KERN_SUCCESS && update_anon)
2251                 map->anon_loc = *addr + length;
2252 done:
2253         vm_map_unlock(map);
2254         return (rv);
2255 }
2256
2257 /*
2258  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2259  *      additional parameter ("default_addr") and treats the given address
2260  *      ("*addr") differently.  Specifically, it treats "*addr" as a hint
2261  *      and not as the minimum address where the mapping is created.
2262  *
2263  *      This function works in two phases.  First, it tries to
2264  *      allocate above the hint.  If that fails and the hint is
2265  *      greater than "default_addr", it performs a second pass, replacing
2266  *      the hint with "default_addr" as the minimum address for the
2267  *      allocation.
2268  */
2269 int
2270 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2271     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2272     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2273     int cow)
2274 {
2275         vm_offset_t hint;
2276         int rv;
2277
2278         hint = *addr;
2279         if (hint == 0) {
2280                 cow |= MAP_NO_HINT;
2281                 *addr = hint = default_addr;
2282         }
2283         for (;;) {
2284                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2285                     find_space, prot, max, cow);
2286                 if (rv == KERN_SUCCESS || default_addr >= hint)
2287                         return (rv);
2288                 *addr = hint = default_addr;
2289         }
2290 }
2291
2292 /*
2293  * A map entry with any of the following flags set must not be merged with
2294  * another entry.
2295  */
2296 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2297     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2298     MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2299
2300 static bool
2301 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2302 {
2303
2304         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2305             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2306             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2307             prev, entry));
2308         return (prev->end == entry->start &&
2309             prev->object.vm_object == entry->object.vm_object &&
2310             (prev->object.vm_object == NULL ||
2311             prev->offset + (prev->end - prev->start) == entry->offset) &&
2312             prev->eflags == entry->eflags &&
2313             prev->protection == entry->protection &&
2314             prev->max_protection == entry->max_protection &&
2315             prev->inheritance == entry->inheritance &&
2316             prev->wired_count == entry->wired_count &&
2317             prev->cred == entry->cred);
2318 }
2319
2320 static void
2321 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2322 {
2323
2324         /*
2325          * If the backing object is a vnode object, vm_object_deallocate()
2326          * calls vrele().  However, vrele() does not lock the vnode because
2327          * the vnode has additional references.  Thus, the map lock can be
2328          * kept without causing a lock-order reversal with the vnode lock.
2329          *
2330          * Since we count the number of virtual page mappings in
2331          * object->un_pager.vnp.writemappings, the writemappings value
2332          * should not be adjusted when the entry is disposed of.
2333          */
2334         if (entry->object.vm_object != NULL)
2335                 vm_object_deallocate(entry->object.vm_object);
2336         if (entry->cred != NULL)
2337                 crfree(entry->cred);
2338         vm_map_entry_dispose(map, entry);
2339 }
2340
2341 /*
2342  *      vm_map_try_merge_entries:
2343  *
2344  *      Compare two map entries that represent consecutive ranges. If
2345  *      the entries can be merged, expand the range of the second to
2346  *      cover the range of the first and delete the first. Then return
2347  *      the map entry that includes the first range.
2348  *
2349  *      The map must be locked.
2350  */
2351 vm_map_entry_t
2352 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2353     vm_map_entry_t entry)
2354 {
2355
2356         VM_MAP_ASSERT_LOCKED(map);
2357         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2358             vm_map_mergeable_neighbors(prev_entry, entry)) {
2359                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2360                 vm_map_merged_neighbor_dispose(map, prev_entry);
2361                 return (entry);
2362         }
2363         return (prev_entry);
2364 }
2365
2366 /*
2367  *      vm_map_entry_back:
2368  *
2369  *      Allocate an object to back a map entry.
2370  */
2371 static inline void
2372 vm_map_entry_back(vm_map_entry_t entry)
2373 {
2374         vm_object_t object;
2375
2376         KASSERT(entry->object.vm_object == NULL,
2377             ("map entry %p has backing object", entry));
2378         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2379             ("map entry %p is a submap", entry));
2380         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2381             entry->cred, entry->end - entry->start);
2382         entry->object.vm_object = object;
2383         entry->offset = 0;
2384         entry->cred = NULL;
2385 }
2386
2387 /*
2388  *      vm_map_entry_charge_object
2389  *
2390  *      If there is no object backing this entry, create one.  Otherwise, if
2391  *      the entry has cred, give it to the backing object.
2392  */
2393 static inline void
2394 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2395 {
2396
2397         VM_MAP_ASSERT_LOCKED(map);
2398         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2399             ("map entry %p is a submap", entry));
2400         if (entry->object.vm_object == NULL && !map->system_map &&
2401             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2402                 vm_map_entry_back(entry);
2403         else if (entry->object.vm_object != NULL &&
2404             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2405             entry->cred != NULL) {
2406                 VM_OBJECT_WLOCK(entry->object.vm_object);
2407                 KASSERT(entry->object.vm_object->cred == NULL,
2408                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2409                 entry->object.vm_object->cred = entry->cred;
2410                 entry->object.vm_object->charge = entry->end - entry->start;
2411                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2412                 entry->cred = NULL;
2413         }
2414 }
2415
2416 /*
2417  *      vm_map_entry_clone
2418  *
2419  *      Create a duplicate map entry for clipping.
2420  */
2421 static vm_map_entry_t
2422 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2423 {
2424         vm_map_entry_t new_entry;
2425
2426         VM_MAP_ASSERT_LOCKED(map);
2427
2428         /*
2429          * Create a backing object now, if none exists, so that more individual
2430          * objects won't be created after the map entry is split.
2431          */
2432         vm_map_entry_charge_object(map, entry);
2433
2434         /* Clone the entry. */
2435         new_entry = vm_map_entry_create(map);
2436         *new_entry = *entry;
2437         if (new_entry->cred != NULL)
2438                 crhold(entry->cred);
2439         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2440                 vm_object_reference(new_entry->object.vm_object);
2441                 vm_map_entry_set_vnode_text(new_entry, true);
2442                 /*
2443                  * The object->un_pager.vnp.writemappings for the object of
2444                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2445                  * virtual pages are re-distributed among the clipped entries,
2446                  * so the sum is left the same.
2447                  */
2448         }
2449         return (new_entry);
2450 }
2451
2452 /*
2453  *      vm_map_clip_start:      [ internal use only ]
2454  *
2455  *      Asserts that the given entry begins at or after
2456  *      the specified address; if necessary,
2457  *      it splits the entry into two.
2458  */
2459 static int
2460 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2461 {
2462         vm_map_entry_t new_entry;
2463         int bdry_idx;
2464
2465         if (!map->system_map)
2466                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2467                     "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2468                     (uintmax_t)startaddr);
2469
2470         if (startaddr <= entry->start)
2471                 return (KERN_SUCCESS);
2472
2473         VM_MAP_ASSERT_LOCKED(map);
2474         KASSERT(entry->end > startaddr && entry->start < startaddr,
2475             ("%s: invalid clip of entry %p", __func__, entry));
2476
2477         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2478         if (bdry_idx != 0) {
2479                 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2480                         return (KERN_INVALID_ARGUMENT);
2481         }
2482
2483         new_entry = vm_map_entry_clone(map, entry);
2484
2485         /*
2486          * Split off the front portion.  Insert the new entry BEFORE this one,
2487          * so that this entry has the specified starting address.
2488          */
2489         new_entry->end = startaddr;
2490         vm_map_entry_link(map, new_entry);
2491         return (KERN_SUCCESS);
2492 }
2493
2494 /*
2495  *      vm_map_lookup_clip_start:
2496  *
2497  *      Find the entry at or just after 'start', and clip it if 'start' is in
2498  *      the interior of the entry.  Return entry after 'start', and in
2499  *      prev_entry set the entry before 'start'.
2500  */
2501 static int
2502 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2503     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2504 {
2505         vm_map_entry_t entry;
2506         int rv;
2507
2508         if (!map->system_map)
2509                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2510                     "%s: map %p start 0x%jx prev %p", __func__, map,
2511                     (uintmax_t)start, prev_entry);
2512
2513         if (vm_map_lookup_entry(map, start, prev_entry)) {
2514                 entry = *prev_entry;
2515                 rv = vm_map_clip_start(map, entry, start);
2516                 if (rv != KERN_SUCCESS)
2517                         return (rv);
2518                 *prev_entry = vm_map_entry_pred(entry);
2519         } else
2520                 entry = vm_map_entry_succ(*prev_entry);
2521         *res_entry = entry;
2522         return (KERN_SUCCESS);
2523 }
2524
2525 /*
2526  *      vm_map_clip_end:        [ internal use only ]
2527  *
2528  *      Asserts that the given entry ends at or before
2529  *      the specified address; if necessary,
2530  *      it splits the entry into two.
2531  */
2532 static int
2533 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2534 {
2535         vm_map_entry_t new_entry;
2536         int bdry_idx;
2537
2538         if (!map->system_map)
2539                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2540                     "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2541                     (uintmax_t)endaddr);
2542
2543         if (endaddr >= entry->end)
2544                 return (KERN_SUCCESS);
2545
2546         VM_MAP_ASSERT_LOCKED(map);
2547         KASSERT(entry->start < endaddr && entry->end > endaddr,
2548             ("%s: invalid clip of entry %p", __func__, entry));
2549
2550         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2551         if (bdry_idx != 0) {
2552                 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2553                         return (KERN_INVALID_ARGUMENT);
2554         }
2555
2556         new_entry = vm_map_entry_clone(map, entry);
2557
2558         /*
2559          * Split off the back portion.  Insert the new entry AFTER this one,
2560          * so that this entry has the specified ending address.
2561          */
2562         new_entry->start = endaddr;
2563         vm_map_entry_link(map, new_entry);
2564
2565         return (KERN_SUCCESS);
2566 }
2567
2568 /*
2569  *      vm_map_submap:          [ kernel use only ]
2570  *
2571  *      Mark the given range as handled by a subordinate map.
2572  *
2573  *      This range must have been created with vm_map_find,
2574  *      and no other operations may have been performed on this
2575  *      range prior to calling vm_map_submap.
2576  *
2577  *      Only a limited number of operations can be performed
2578  *      within this rage after calling vm_map_submap:
2579  *              vm_fault
2580  *      [Don't try vm_map_copy!]
2581  *
2582  *      To remove a submapping, one must first remove the
2583  *      range from the superior map, and then destroy the
2584  *      submap (if desired).  [Better yet, don't try it.]
2585  */
2586 int
2587 vm_map_submap(
2588         vm_map_t map,
2589         vm_offset_t start,
2590         vm_offset_t end,
2591         vm_map_t submap)
2592 {
2593         vm_map_entry_t entry;
2594         int result;
2595
2596         result = KERN_INVALID_ARGUMENT;
2597
2598         vm_map_lock(submap);
2599         submap->flags |= MAP_IS_SUB_MAP;
2600         vm_map_unlock(submap);
2601
2602         vm_map_lock(map);
2603         VM_MAP_RANGE_CHECK(map, start, end);
2604         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2605             (entry->eflags & MAP_ENTRY_COW) == 0 &&
2606             entry->object.vm_object == NULL) {
2607                 result = vm_map_clip_start(map, entry, start);
2608                 if (result != KERN_SUCCESS)
2609                         goto unlock;
2610                 result = vm_map_clip_end(map, entry, end);
2611                 if (result != KERN_SUCCESS)
2612                         goto unlock;
2613                 entry->object.sub_map = submap;
2614                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2615                 result = KERN_SUCCESS;
2616         }
2617 unlock:
2618         vm_map_unlock(map);
2619
2620         if (result != KERN_SUCCESS) {
2621                 vm_map_lock(submap);
2622                 submap->flags &= ~MAP_IS_SUB_MAP;
2623                 vm_map_unlock(submap);
2624         }
2625         return (result);
2626 }
2627
2628 /*
2629  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2630  */
2631 #define MAX_INIT_PT     96
2632
2633 /*
2634  *      vm_map_pmap_enter:
2635  *
2636  *      Preload the specified map's pmap with mappings to the specified
2637  *      object's memory-resident pages.  No further physical pages are
2638  *      allocated, and no further virtual pages are retrieved from secondary
2639  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2640  *      limited number of page mappings are created at the low-end of the
2641  *      specified address range.  (For this purpose, a superpage mapping
2642  *      counts as one page mapping.)  Otherwise, all resident pages within
2643  *      the specified address range are mapped.
2644  */
2645 static void
2646 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2647     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2648 {
2649         vm_offset_t start;
2650         vm_page_t p, p_start;
2651         vm_pindex_t mask, psize, threshold, tmpidx;
2652
2653         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2654                 return;
2655         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2656                 VM_OBJECT_WLOCK(object);
2657                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2658                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2659                             size);
2660                         VM_OBJECT_WUNLOCK(object);
2661                         return;
2662                 }
2663                 VM_OBJECT_LOCK_DOWNGRADE(object);
2664         } else
2665                 VM_OBJECT_RLOCK(object);
2666
2667         psize = atop(size);
2668         if (psize + pindex > object->size) {
2669                 if (pindex >= object->size) {
2670                         VM_OBJECT_RUNLOCK(object);
2671                         return;
2672                 }
2673                 psize = object->size - pindex;
2674         }
2675
2676         start = 0;
2677         p_start = NULL;
2678         threshold = MAX_INIT_PT;
2679
2680         p = vm_page_find_least(object, pindex);
2681         /*
2682          * Assert: the variable p is either (1) the page with the
2683          * least pindex greater than or equal to the parameter pindex
2684          * or (2) NULL.
2685          */
2686         for (;
2687              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2688              p = TAILQ_NEXT(p, listq)) {
2689                 /*
2690                  * don't allow an madvise to blow away our really
2691                  * free pages allocating pv entries.
2692                  */
2693                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2694                     vm_page_count_severe()) ||
2695                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2696                     tmpidx >= threshold)) {
2697                         psize = tmpidx;
2698                         break;
2699                 }
2700                 if (vm_page_all_valid(p)) {
2701                         if (p_start == NULL) {
2702                                 start = addr + ptoa(tmpidx);
2703                                 p_start = p;
2704                         }
2705                         /* Jump ahead if a superpage mapping is possible. */
2706                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2707                             (pagesizes[p->psind] - 1)) == 0) {
2708                                 mask = atop(pagesizes[p->psind]) - 1;
2709                                 if (tmpidx + mask < psize &&
2710                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2711                                         p += mask;
2712                                         threshold += mask;
2713                                 }
2714                         }
2715                 } else if (p_start != NULL) {
2716                         pmap_enter_object(map->pmap, start, addr +
2717                             ptoa(tmpidx), p_start, prot);
2718                         p_start = NULL;
2719                 }
2720         }
2721         if (p_start != NULL)
2722                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2723                     p_start, prot);
2724         VM_OBJECT_RUNLOCK(object);
2725 }
2726
2727 static void
2728 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2729     vm_prot_t new_maxprot, int flags)
2730 {
2731         vm_prot_t old_prot;
2732
2733         MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2734         if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2735             MAP_ENTRY_STACK_GAP_DN)) == 0)
2736                 return;
2737
2738         old_prot = PROT_EXTRACT(entry->offset);
2739         if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2740                 entry->offset = PROT_MAX(new_maxprot) |
2741                     (new_maxprot & old_prot);
2742         }
2743         if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2744                 entry->offset = new_prot | PROT_MAX(
2745                     PROT_MAX_EXTRACT(entry->offset));
2746         }
2747 }
2748
2749 /*
2750  *      vm_map_protect:
2751  *
2752  *      Sets the protection and/or the maximum protection of the
2753  *      specified address region in the target map.
2754  */
2755 int
2756 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2757     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2758 {
2759         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2760         vm_object_t obj;
2761         struct ucred *cred;
2762         vm_offset_t orig_start;
2763         vm_prot_t check_prot, max_prot, old_prot;
2764         int rv;
2765
2766         if (start == end)
2767                 return (KERN_SUCCESS);
2768
2769         if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2770             VM_MAP_PROTECT_SET_MAXPROT) &&
2771             !CONTAINS_BITS(new_maxprot, new_prot))
2772                 return (KERN_OUT_OF_BOUNDS);
2773
2774         orig_start = start;
2775 again:
2776         in_tran = NULL;
2777         start = orig_start;
2778         vm_map_lock(map);
2779
2780         if ((map->flags & MAP_WXORX) != 0 &&
2781             (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2782             CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2783                 vm_map_unlock(map);
2784                 return (KERN_PROTECTION_FAILURE);
2785         }
2786
2787         /*
2788          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2789          * need to fault pages into the map and will drop the map lock while
2790          * doing so, and the VM object may end up in an inconsistent state if we
2791          * update the protection on the map entry in between faults.
2792          */
2793         vm_map_wait_busy(map);
2794
2795         VM_MAP_RANGE_CHECK(map, start, end);
2796
2797         if (!vm_map_lookup_entry(map, start, &first_entry))
2798                 first_entry = vm_map_entry_succ(first_entry);
2799
2800         if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2801             (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2802                 /*
2803                  * Handle Linux's PROT_GROWSDOWN flag.
2804                  * It means that protection is applied down to the
2805                  * whole stack, including the specified range of the
2806                  * mapped region, and the grow down region (AKA
2807                  * guard).
2808                  */
2809                 while (!CONTAINS_BITS(first_entry->eflags,
2810                     MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2811                     first_entry != vm_map_entry_first(map))
2812                         first_entry = vm_map_entry_pred(first_entry);
2813                 start = first_entry->start;
2814         }
2815
2816         /*
2817          * Make a first pass to check for protection violations.
2818          */
2819         check_prot = 0;
2820         if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2821                 check_prot |= new_prot;
2822         if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2823                 check_prot |= new_maxprot;
2824         for (entry = first_entry; entry->start < end;
2825             entry = vm_map_entry_succ(entry)) {
2826                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2827                         vm_map_unlock(map);
2828                         return (KERN_INVALID_ARGUMENT);
2829                 }
2830                 if ((entry->eflags & (MAP_ENTRY_GUARD |
2831                     MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2832                     MAP_ENTRY_GUARD)
2833                         continue;
2834                 max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2835                     MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2836                     PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2837                 if (!CONTAINS_BITS(max_prot, check_prot)) {
2838                         vm_map_unlock(map);
2839                         return (KERN_PROTECTION_FAILURE);
2840                 }
2841                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2842                         in_tran = entry;
2843         }
2844
2845         /*
2846          * Postpone the operation until all in-transition map entries have
2847          * stabilized.  An in-transition entry might already have its pages
2848          * wired and wired_count incremented, but not yet have its
2849          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2850          * vm_fault_copy_entry() in the final loop below.
2851          */
2852         if (in_tran != NULL) {
2853                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2854                 vm_map_unlock_and_wait(map, 0);
2855                 goto again;
2856         }
2857
2858         /*
2859          * Before changing the protections, try to reserve swap space for any
2860          * private (i.e., copy-on-write) mappings that are transitioning from
2861          * read-only to read/write access.  If a reservation fails, break out
2862          * of this loop early and let the next loop simplify the entries, since
2863          * some may now be mergeable.
2864          */
2865         rv = vm_map_clip_start(map, first_entry, start);
2866         if (rv != KERN_SUCCESS) {
2867                 vm_map_unlock(map);
2868                 return (rv);
2869         }
2870         for (entry = first_entry; entry->start < end;
2871             entry = vm_map_entry_succ(entry)) {
2872                 rv = vm_map_clip_end(map, entry, end);
2873                 if (rv != KERN_SUCCESS) {
2874                         vm_map_unlock(map);
2875                         return (rv);
2876                 }
2877
2878                 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2879                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2880                     ENTRY_CHARGED(entry) ||
2881                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2882                         continue;
2883
2884                 cred = curthread->td_ucred;
2885                 obj = entry->object.vm_object;
2886
2887                 if (obj == NULL ||
2888                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2889                         if (!swap_reserve(entry->end - entry->start)) {
2890                                 rv = KERN_RESOURCE_SHORTAGE;
2891                                 end = entry->end;
2892                                 break;
2893                         }
2894                         crhold(cred);
2895                         entry->cred = cred;
2896                         continue;
2897                 }
2898
2899                 VM_OBJECT_WLOCK(obj);
2900                 if ((obj->flags & OBJ_SWAP) == 0) {
2901                         VM_OBJECT_WUNLOCK(obj);
2902                         continue;
2903                 }
2904
2905                 /*
2906                  * Charge for the whole object allocation now, since
2907                  * we cannot distinguish between non-charged and
2908                  * charged clipped mapping of the same object later.
2909                  */
2910                 KASSERT(obj->charge == 0,
2911                     ("vm_map_protect: object %p overcharged (entry %p)",
2912                     obj, entry));
2913                 if (!swap_reserve(ptoa(obj->size))) {
2914                         VM_OBJECT_WUNLOCK(obj);
2915                         rv = KERN_RESOURCE_SHORTAGE;
2916                         end = entry->end;
2917                         break;
2918                 }
2919
2920                 crhold(cred);
2921                 obj->cred = cred;
2922                 obj->charge = ptoa(obj->size);
2923                 VM_OBJECT_WUNLOCK(obj);
2924         }
2925
2926         /*
2927          * If enough swap space was available, go back and fix up protections.
2928          * Otherwise, just simplify entries, since some may have been modified.
2929          * [Note that clipping is not necessary the second time.]
2930          */
2931         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2932             entry->start < end;
2933             vm_map_try_merge_entries(map, prev_entry, entry),
2934             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2935                 if (rv != KERN_SUCCESS)
2936                         continue;
2937
2938                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2939                         vm_map_protect_guard(entry, new_prot, new_maxprot,
2940                             flags);
2941                         continue;
2942                 }
2943
2944                 old_prot = entry->protection;
2945
2946                 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2947                         entry->max_protection = new_maxprot;
2948                         entry->protection = new_maxprot & old_prot;
2949                 }
2950                 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2951                         entry->protection = new_prot;
2952
2953                 /*
2954                  * For user wired map entries, the normal lazy evaluation of
2955                  * write access upgrades through soft page faults is
2956                  * undesirable.  Instead, immediately copy any pages that are
2957                  * copy-on-write and enable write access in the physical map.
2958                  */
2959                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2960                     (entry->protection & VM_PROT_WRITE) != 0 &&
2961                     (old_prot & VM_PROT_WRITE) == 0)
2962                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2963
2964                 /*
2965                  * When restricting access, update the physical map.  Worry
2966                  * about copy-on-write here.
2967                  */
2968                 if ((old_prot & ~entry->protection) != 0) {
2969 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2970                                                         VM_PROT_ALL)
2971                         pmap_protect(map->pmap, entry->start,
2972                             entry->end,
2973                             entry->protection & MASK(entry));
2974 #undef  MASK
2975                 }
2976         }
2977         vm_map_try_merge_entries(map, prev_entry, entry);
2978         vm_map_unlock(map);
2979         return (rv);
2980 }
2981
2982 /*
2983  *      vm_map_madvise:
2984  *
2985  *      This routine traverses a processes map handling the madvise
2986  *      system call.  Advisories are classified as either those effecting
2987  *      the vm_map_entry structure, or those effecting the underlying
2988  *      objects.
2989  */
2990 int
2991 vm_map_madvise(
2992         vm_map_t map,
2993         vm_offset_t start,
2994         vm_offset_t end,
2995         int behav)
2996 {
2997         vm_map_entry_t entry, prev_entry;
2998         int rv;
2999         bool modify_map;
3000
3001         /*
3002          * Some madvise calls directly modify the vm_map_entry, in which case
3003          * we need to use an exclusive lock on the map and we need to perform
3004          * various clipping operations.  Otherwise we only need a read-lock
3005          * on the map.
3006          */
3007         switch(behav) {
3008         case MADV_NORMAL:
3009         case MADV_SEQUENTIAL:
3010         case MADV_RANDOM:
3011         case MADV_NOSYNC:
3012         case MADV_AUTOSYNC:
3013         case MADV_NOCORE:
3014         case MADV_CORE:
3015                 if (start == end)
3016                         return (0);
3017                 modify_map = true;
3018                 vm_map_lock(map);
3019                 break;
3020         case MADV_WILLNEED:
3021         case MADV_DONTNEED:
3022         case MADV_FREE:
3023                 if (start == end)
3024                         return (0);
3025                 modify_map = false;
3026                 vm_map_lock_read(map);
3027                 break;
3028         default:
3029                 return (EINVAL);
3030         }
3031
3032         /*
3033          * Locate starting entry and clip if necessary.
3034          */
3035         VM_MAP_RANGE_CHECK(map, start, end);
3036
3037         if (modify_map) {
3038                 /*
3039                  * madvise behaviors that are implemented in the vm_map_entry.
3040                  *
3041                  * We clip the vm_map_entry so that behavioral changes are
3042                  * limited to the specified address range.
3043                  */
3044                 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3045                 if (rv != KERN_SUCCESS) {
3046                         vm_map_unlock(map);
3047                         return (vm_mmap_to_errno(rv));
3048                 }
3049
3050                 for (; entry->start < end; prev_entry = entry,
3051                     entry = vm_map_entry_succ(entry)) {
3052                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3053                                 continue;
3054
3055                         rv = vm_map_clip_end(map, entry, end);
3056                         if (rv != KERN_SUCCESS) {
3057                                 vm_map_unlock(map);
3058                                 return (vm_mmap_to_errno(rv));
3059                         }
3060
3061                         switch (behav) {
3062                         case MADV_NORMAL:
3063                                 vm_map_entry_set_behavior(entry,
3064                                     MAP_ENTRY_BEHAV_NORMAL);
3065                                 break;
3066                         case MADV_SEQUENTIAL:
3067                                 vm_map_entry_set_behavior(entry,
3068                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
3069                                 break;
3070                         case MADV_RANDOM:
3071                                 vm_map_entry_set_behavior(entry,
3072                                     MAP_ENTRY_BEHAV_RANDOM);
3073                                 break;
3074                         case MADV_NOSYNC:
3075                                 entry->eflags |= MAP_ENTRY_NOSYNC;
3076                                 break;
3077                         case MADV_AUTOSYNC:
3078                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3079                                 break;
3080                         case MADV_NOCORE:
3081                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3082                                 break;
3083                         case MADV_CORE:
3084                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3085                                 break;
3086                         default:
3087                                 break;
3088                         }
3089                         vm_map_try_merge_entries(map, prev_entry, entry);
3090                 }
3091                 vm_map_try_merge_entries(map, prev_entry, entry);
3092                 vm_map_unlock(map);
3093         } else {
3094                 vm_pindex_t pstart, pend;
3095
3096                 /*
3097                  * madvise behaviors that are implemented in the underlying
3098                  * vm_object.
3099                  *
3100                  * Since we don't clip the vm_map_entry, we have to clip
3101                  * the vm_object pindex and count.
3102                  */
3103                 if (!vm_map_lookup_entry(map, start, &entry))
3104                         entry = vm_map_entry_succ(entry);
3105                 for (; entry->start < end;
3106                     entry = vm_map_entry_succ(entry)) {
3107                         vm_offset_t useEnd, useStart;
3108
3109                         if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3110                             MAP_ENTRY_GUARD)) != 0)
3111                                 continue;
3112
3113                         /*
3114                          * MADV_FREE would otherwise rewind time to
3115                          * the creation of the shadow object.  Because
3116                          * we hold the VM map read-locked, neither the
3117                          * entry's object nor the presence of a
3118                          * backing object can change.
3119                          */
3120                         if (behav == MADV_FREE &&
3121                             entry->object.vm_object != NULL &&
3122                             entry->object.vm_object->backing_object != NULL)
3123                                 continue;
3124
3125                         pstart = OFF_TO_IDX(entry->offset);
3126                         pend = pstart + atop(entry->end - entry->start);
3127                         useStart = entry->start;
3128                         useEnd = entry->end;
3129
3130                         if (entry->start < start) {
3131                                 pstart += atop(start - entry->start);
3132                                 useStart = start;
3133                         }
3134                         if (entry->end > end) {
3135                                 pend -= atop(entry->end - end);
3136                                 useEnd = end;
3137                         }
3138
3139                         if (pstart >= pend)
3140                                 continue;
3141
3142                         /*
3143                          * Perform the pmap_advise() before clearing
3144                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3145                          * concurrent pmap operation, such as pmap_remove(),
3146                          * could clear a reference in the pmap and set
3147                          * PGA_REFERENCED on the page before the pmap_advise()
3148                          * had completed.  Consequently, the page would appear
3149                          * referenced based upon an old reference that
3150                          * occurred before this pmap_advise() ran.
3151                          */
3152                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
3153                                 pmap_advise(map->pmap, useStart, useEnd,
3154                                     behav);
3155
3156                         vm_object_madvise(entry->object.vm_object, pstart,
3157                             pend, behav);
3158
3159                         /*
3160                          * Pre-populate paging structures in the
3161                          * WILLNEED case.  For wired entries, the
3162                          * paging structures are already populated.
3163                          */
3164                         if (behav == MADV_WILLNEED &&
3165                             entry->wired_count == 0) {
3166                                 vm_map_pmap_enter(map,
3167                                     useStart,
3168                                     entry->protection,
3169                                     entry->object.vm_object,
3170                                     pstart,
3171                                     ptoa(pend - pstart),
3172                                     MAP_PREFAULT_MADVISE
3173                                 );
3174                         }
3175                 }
3176                 vm_map_unlock_read(map);
3177         }
3178         return (0);
3179 }
3180
3181 /*
3182  *      vm_map_inherit:
3183  *
3184  *      Sets the inheritance of the specified address
3185  *      range in the target map.  Inheritance
3186  *      affects how the map will be shared with
3187  *      child maps at the time of vmspace_fork.
3188  */
3189 int
3190 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3191                vm_inherit_t new_inheritance)
3192 {
3193         vm_map_entry_t entry, lentry, prev_entry, start_entry;
3194         int rv;
3195
3196         switch (new_inheritance) {
3197         case VM_INHERIT_NONE:
3198         case VM_INHERIT_COPY:
3199         case VM_INHERIT_SHARE:
3200         case VM_INHERIT_ZERO:
3201                 break;
3202         default:
3203                 return (KERN_INVALID_ARGUMENT);
3204         }
3205         if (start == end)
3206                 return (KERN_SUCCESS);
3207         vm_map_lock(map);
3208         VM_MAP_RANGE_CHECK(map, start, end);
3209         rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3210         if (rv != KERN_SUCCESS)
3211                 goto unlock;
3212         if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3213                 rv = vm_map_clip_end(map, lentry, end);
3214                 if (rv != KERN_SUCCESS)
3215                         goto unlock;
3216         }
3217         if (new_inheritance == VM_INHERIT_COPY) {
3218                 for (entry = start_entry; entry->start < end;
3219                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3220                         if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3221                             != 0) {
3222                                 rv = KERN_INVALID_ARGUMENT;
3223                                 goto unlock;
3224                         }
3225                 }
3226         }
3227         for (entry = start_entry; entry->start < end; prev_entry = entry,
3228             entry = vm_map_entry_succ(entry)) {
3229                 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3230                     entry, (uintmax_t)entry->end, (uintmax_t)end));
3231                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3232                     new_inheritance != VM_INHERIT_ZERO)
3233                         entry->inheritance = new_inheritance;
3234                 vm_map_try_merge_entries(map, prev_entry, entry);
3235         }
3236         vm_map_try_merge_entries(map, prev_entry, entry);
3237 unlock:
3238         vm_map_unlock(map);
3239         return (rv);
3240 }
3241
3242 /*
3243  *      vm_map_entry_in_transition:
3244  *
3245  *      Release the map lock, and sleep until the entry is no longer in
3246  *      transition.  Awake and acquire the map lock.  If the map changed while
3247  *      another held the lock, lookup a possibly-changed entry at or after the
3248  *      'start' position of the old entry.
3249  */
3250 static vm_map_entry_t
3251 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3252     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3253 {
3254         vm_map_entry_t entry;
3255         vm_offset_t start;
3256         u_int last_timestamp;
3257
3258         VM_MAP_ASSERT_LOCKED(map);
3259         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3260             ("not in-tranition map entry %p", in_entry));
3261         /*
3262          * We have not yet clipped the entry.
3263          */
3264         start = MAX(in_start, in_entry->start);
3265         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3266         last_timestamp = map->timestamp;
3267         if (vm_map_unlock_and_wait(map, 0)) {
3268                 /*
3269                  * Allow interruption of user wiring/unwiring?
3270                  */
3271         }
3272         vm_map_lock(map);
3273         if (last_timestamp + 1 == map->timestamp)
3274                 return (in_entry);
3275
3276         /*
3277          * Look again for the entry because the map was modified while it was
3278          * unlocked.  Specifically, the entry may have been clipped, merged, or
3279          * deleted.
3280          */
3281         if (!vm_map_lookup_entry(map, start, &entry)) {
3282                 if (!holes_ok) {
3283                         *io_end = start;
3284                         return (NULL);
3285                 }
3286                 entry = vm_map_entry_succ(entry);
3287         }
3288         return (entry);
3289 }
3290
3291 /*
3292  *      vm_map_unwire:
3293  *
3294  *      Implements both kernel and user unwiring.
3295  */
3296 int
3297 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3298     int flags)
3299 {
3300         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3301         int rv;
3302         bool holes_ok, need_wakeup, user_unwire;
3303
3304         if (start == end)
3305                 return (KERN_SUCCESS);
3306         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3307         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3308         vm_map_lock(map);
3309         VM_MAP_RANGE_CHECK(map, start, end);
3310         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3311                 if (holes_ok)
3312                         first_entry = vm_map_entry_succ(first_entry);
3313                 else {
3314                         vm_map_unlock(map);
3315                         return (KERN_INVALID_ADDRESS);
3316                 }
3317         }
3318         rv = KERN_SUCCESS;
3319         for (entry = first_entry; entry->start < end; entry = next_entry) {
3320                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3321                         /*
3322                          * We have not yet clipped the entry.
3323                          */
3324                         next_entry = vm_map_entry_in_transition(map, start,
3325                             &end, holes_ok, entry);
3326                         if (next_entry == NULL) {
3327                                 if (entry == first_entry) {
3328                                         vm_map_unlock(map);
3329                                         return (KERN_INVALID_ADDRESS);
3330                                 }
3331                                 rv = KERN_INVALID_ADDRESS;
3332                                 break;
3333                         }
3334                         first_entry = (entry == first_entry) ?
3335                             next_entry : NULL;
3336                         continue;
3337                 }
3338                 rv = vm_map_clip_start(map, entry, start);
3339                 if (rv != KERN_SUCCESS)
3340                         break;
3341                 rv = vm_map_clip_end(map, entry, end);
3342                 if (rv != KERN_SUCCESS)
3343                         break;
3344
3345                 /*
3346                  * Mark the entry in case the map lock is released.  (See
3347                  * above.)
3348                  */
3349                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3350                     entry->wiring_thread == NULL,
3351                     ("owned map entry %p", entry));
3352                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3353                 entry->wiring_thread = curthread;
3354                 next_entry = vm_map_entry_succ(entry);
3355                 /*
3356                  * Check the map for holes in the specified region.
3357                  * If holes_ok, skip this check.
3358                  */
3359                 if (!holes_ok &&
3360                     entry->end < end && next_entry->start > entry->end) {
3361                         end = entry->end;
3362                         rv = KERN_INVALID_ADDRESS;
3363                         break;
3364                 }
3365                 /*
3366                  * If system unwiring, require that the entry is system wired.
3367                  */
3368                 if (!user_unwire &&
3369                     vm_map_entry_system_wired_count(entry) == 0) {
3370                         end = entry->end;
3371                         rv = KERN_INVALID_ARGUMENT;
3372                         break;
3373                 }
3374         }
3375         need_wakeup = false;
3376         if (first_entry == NULL &&
3377             !vm_map_lookup_entry(map, start, &first_entry)) {
3378                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3379                 prev_entry = first_entry;
3380                 entry = vm_map_entry_succ(first_entry);
3381         } else {
3382                 prev_entry = vm_map_entry_pred(first_entry);
3383                 entry = first_entry;
3384         }
3385         for (; entry->start < end;
3386             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3387                 /*
3388                  * If holes_ok was specified, an empty
3389                  * space in the unwired region could have been mapped
3390                  * while the map lock was dropped for draining
3391                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3392                  * could be simultaneously wiring this new mapping
3393                  * entry.  Detect these cases and skip any entries
3394                  * marked as in transition by us.
3395                  */
3396                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3397                     entry->wiring_thread != curthread) {
3398                         KASSERT(holes_ok,
3399                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3400                         continue;
3401                 }
3402
3403                 if (rv == KERN_SUCCESS && (!user_unwire ||
3404                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3405                         if (entry->wired_count == 1)
3406                                 vm_map_entry_unwire(map, entry);
3407                         else
3408                                 entry->wired_count--;
3409                         if (user_unwire)
3410                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3411                 }
3412                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3413                     ("vm_map_unwire: in-transition flag missing %p", entry));
3414                 KASSERT(entry->wiring_thread == curthread,
3415                     ("vm_map_unwire: alien wire %p", entry));
3416                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3417                 entry->wiring_thread = NULL;
3418                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3419                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3420                         need_wakeup = true;
3421                 }
3422                 vm_map_try_merge_entries(map, prev_entry, entry);
3423         }
3424         vm_map_try_merge_entries(map, prev_entry, entry);
3425         vm_map_unlock(map);
3426         if (need_wakeup)
3427                 vm_map_wakeup(map);
3428         return (rv);
3429 }
3430
3431 static void
3432 vm_map_wire_user_count_sub(u_long npages)
3433 {
3434
3435         atomic_subtract_long(&vm_user_wire_count, npages);
3436 }
3437
3438 static bool
3439 vm_map_wire_user_count_add(u_long npages)
3440 {
3441         u_long wired;
3442
3443         wired = vm_user_wire_count;
3444         do {
3445                 if (npages + wired > vm_page_max_user_wired)
3446                         return (false);
3447         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3448             npages + wired));
3449
3450         return (true);
3451 }
3452
3453 /*
3454  *      vm_map_wire_entry_failure:
3455  *
3456  *      Handle a wiring failure on the given entry.
3457  *
3458  *      The map should be locked.
3459  */
3460 static void
3461 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3462     vm_offset_t failed_addr)
3463 {
3464
3465         VM_MAP_ASSERT_LOCKED(map);
3466         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3467             entry->wired_count == 1,
3468             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3469         KASSERT(failed_addr < entry->end,
3470             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3471
3472         /*
3473          * If any pages at the start of this entry were successfully wired,
3474          * then unwire them.
3475          */
3476         if (failed_addr > entry->start) {
3477                 pmap_unwire(map->pmap, entry->start, failed_addr);
3478                 vm_object_unwire(entry->object.vm_object, entry->offset,
3479                     failed_addr - entry->start, PQ_ACTIVE);
3480         }
3481
3482         /*
3483          * Assign an out-of-range value to represent the failure to wire this
3484          * entry.
3485          */
3486         entry->wired_count = -1;
3487 }
3488
3489 int
3490 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3491 {
3492         int rv;
3493
3494         vm_map_lock(map);
3495         rv = vm_map_wire_locked(map, start, end, flags);
3496         vm_map_unlock(map);
3497         return (rv);
3498 }
3499
3500 /*
3501  *      vm_map_wire_locked:
3502  *
3503  *      Implements both kernel and user wiring.  Returns with the map locked,
3504  *      the map lock may be dropped.
3505  */
3506 int
3507 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3508 {
3509         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3510         vm_offset_t faddr, saved_end, saved_start;
3511         u_long incr, npages;
3512         u_int bidx, last_timestamp;
3513         int rv;
3514         bool holes_ok, need_wakeup, user_wire;
3515         vm_prot_t prot;
3516
3517         VM_MAP_ASSERT_LOCKED(map);
3518
3519         if (start == end)
3520                 return (KERN_SUCCESS);
3521         prot = 0;
3522         if (flags & VM_MAP_WIRE_WRITE)
3523                 prot |= VM_PROT_WRITE;
3524         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3525         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3526         VM_MAP_RANGE_CHECK(map, start, end);
3527         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3528                 if (holes_ok)
3529                         first_entry = vm_map_entry_succ(first_entry);
3530                 else
3531                         return (KERN_INVALID_ADDRESS);
3532         }
3533         for (entry = first_entry; entry->start < end; entry = next_entry) {
3534                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3535                         /*
3536                          * We have not yet clipped the entry.
3537                          */
3538                         next_entry = vm_map_entry_in_transition(map, start,
3539                             &end, holes_ok, entry);
3540                         if (next_entry == NULL) {
3541                                 if (entry == first_entry)
3542                                         return (KERN_INVALID_ADDRESS);
3543                                 rv = KERN_INVALID_ADDRESS;
3544                                 goto done;
3545                         }
3546                         first_entry = (entry == first_entry) ?
3547                             next_entry : NULL;
3548                         continue;
3549                 }
3550                 rv = vm_map_clip_start(map, entry, start);
3551                 if (rv != KERN_SUCCESS)
3552                         goto done;
3553                 rv = vm_map_clip_end(map, entry, end);
3554                 if (rv != KERN_SUCCESS)
3555                         goto done;
3556
3557                 /*
3558                  * Mark the entry in case the map lock is released.  (See
3559                  * above.)
3560                  */
3561                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3562                     entry->wiring_thread == NULL,
3563                     ("owned map entry %p", entry));
3564                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3565                 entry->wiring_thread = curthread;
3566                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3567                     || (entry->protection & prot) != prot) {
3568                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3569                         if (!holes_ok) {
3570                                 end = entry->end;
3571                                 rv = KERN_INVALID_ADDRESS;
3572                                 goto done;
3573                         }
3574                 } else if (entry->wired_count == 0) {
3575                         entry->wired_count++;
3576
3577                         npages = atop(entry->end - entry->start);
3578                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3579                                 vm_map_wire_entry_failure(map, entry,
3580                                     entry->start);
3581                                 end = entry->end;
3582                                 rv = KERN_RESOURCE_SHORTAGE;
3583                                 goto done;
3584                         }
3585
3586                         /*
3587                          * Release the map lock, relying on the in-transition
3588                          * mark.  Mark the map busy for fork.
3589                          */
3590                         saved_start = entry->start;
3591                         saved_end = entry->end;
3592                         last_timestamp = map->timestamp;
3593                         bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3594                         incr =  pagesizes[bidx];
3595                         vm_map_busy(map);
3596                         vm_map_unlock(map);
3597
3598                         for (faddr = saved_start; faddr < saved_end;
3599                             faddr += incr) {
3600                                 /*
3601                                  * Simulate a fault to get the page and enter
3602                                  * it into the physical map.
3603                                  */
3604                                 rv = vm_fault(map, faddr, VM_PROT_NONE,
3605                                     VM_FAULT_WIRE, NULL);
3606                                 if (rv != KERN_SUCCESS)
3607                                         break;
3608                         }
3609                         vm_map_lock(map);
3610                         vm_map_unbusy(map);
3611                         if (last_timestamp + 1 != map->timestamp) {
3612                                 /*
3613                                  * Look again for the entry because the map was
3614                                  * modified while it was unlocked.  The entry
3615                                  * may have been clipped, but NOT merged or
3616                                  * deleted.
3617                                  */
3618                                 if (!vm_map_lookup_entry(map, saved_start,
3619                                     &next_entry))
3620                                         KASSERT(false,
3621                                             ("vm_map_wire: lookup failed"));
3622                                 first_entry = (entry == first_entry) ?
3623                                     next_entry : NULL;
3624                                 for (entry = next_entry; entry->end < saved_end;
3625                                     entry = vm_map_entry_succ(entry)) {
3626                                         /*
3627                                          * In case of failure, handle entries
3628                                          * that were not fully wired here;
3629                                          * fully wired entries are handled
3630                                          * later.
3631                                          */
3632                                         if (rv != KERN_SUCCESS &&
3633                                             faddr < entry->end)
3634                                                 vm_map_wire_entry_failure(map,
3635                                                     entry, faddr);
3636                                 }
3637                         }
3638                         if (rv != KERN_SUCCESS) {
3639                                 vm_map_wire_entry_failure(map, entry, faddr);
3640                                 if (user_wire)
3641                                         vm_map_wire_user_count_sub(npages);
3642                                 end = entry->end;
3643                                 goto done;
3644                         }
3645                 } else if (!user_wire ||
3646                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3647                         entry->wired_count++;
3648                 }
3649                 /*
3650                  * Check the map for holes in the specified region.
3651                  * If holes_ok was specified, skip this check.
3652                  */
3653                 next_entry = vm_map_entry_succ(entry);
3654                 if (!holes_ok &&
3655                     entry->end < end && next_entry->start > entry->end) {
3656                         end = entry->end;
3657                         rv = KERN_INVALID_ADDRESS;
3658                         goto done;
3659                 }
3660         }
3661         rv = KERN_SUCCESS;
3662 done:
3663         need_wakeup = false;
3664         if (first_entry == NULL &&
3665             !vm_map_lookup_entry(map, start, &first_entry)) {
3666                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3667                 prev_entry = first_entry;
3668                 entry = vm_map_entry_succ(first_entry);
3669         } else {
3670                 prev_entry = vm_map_entry_pred(first_entry);
3671                 entry = first_entry;
3672         }
3673         for (; entry->start < end;
3674             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3675                 /*
3676                  * If holes_ok was specified, an empty
3677                  * space in the unwired region could have been mapped
3678                  * while the map lock was dropped for faulting in the
3679                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3680                  * Moreover, another thread could be simultaneously
3681                  * wiring this new mapping entry.  Detect these cases
3682                  * and skip any entries marked as in transition not by us.
3683                  *
3684                  * Another way to get an entry not marked with
3685                  * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3686                  * which set rv to KERN_INVALID_ARGUMENT.
3687                  */
3688                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3689                     entry->wiring_thread != curthread) {
3690                         KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3691                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3692                         continue;
3693                 }
3694
3695                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3696                         /* do nothing */
3697                 } else if (rv == KERN_SUCCESS) {
3698                         if (user_wire)
3699                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3700                 } else if (entry->wired_count == -1) {
3701                         /*
3702                          * Wiring failed on this entry.  Thus, unwiring is
3703                          * unnecessary.
3704                          */
3705                         entry->wired_count = 0;
3706                 } else if (!user_wire ||
3707                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3708                         /*
3709                          * Undo the wiring.  Wiring succeeded on this entry
3710                          * but failed on a later entry.  
3711                          */
3712                         if (entry->wired_count == 1) {
3713                                 vm_map_entry_unwire(map, entry);
3714                                 if (user_wire)
3715                                         vm_map_wire_user_count_sub(
3716                                             atop(entry->end - entry->start));
3717                         } else
3718                                 entry->wired_count--;
3719                 }
3720                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3721                     ("vm_map_wire: in-transition flag missing %p", entry));
3722                 KASSERT(entry->wiring_thread == curthread,
3723                     ("vm_map_wire: alien wire %p", entry));
3724                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3725                     MAP_ENTRY_WIRE_SKIPPED);
3726                 entry->wiring_thread = NULL;
3727                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3728                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3729                         need_wakeup = true;
3730                 }
3731                 vm_map_try_merge_entries(map, prev_entry, entry);
3732         }
3733         vm_map_try_merge_entries(map, prev_entry, entry);
3734         if (need_wakeup)
3735                 vm_map_wakeup(map);
3736         return (rv);
3737 }
3738
3739 /*
3740  * vm_map_sync
3741  *
3742  * Push any dirty cached pages in the address range to their pager.
3743  * If syncio is TRUE, dirty pages are written synchronously.
3744  * If invalidate is TRUE, any cached pages are freed as well.
3745  *
3746  * If the size of the region from start to end is zero, we are
3747  * supposed to flush all modified pages within the region containing
3748  * start.  Unfortunately, a region can be split or coalesced with
3749  * neighboring regions, making it difficult to determine what the
3750  * original region was.  Therefore, we approximate this requirement by
3751  * flushing the current region containing start.
3752  *
3753  * Returns an error if any part of the specified range is not mapped.
3754  */
3755 int
3756 vm_map_sync(
3757         vm_map_t map,
3758         vm_offset_t start,
3759         vm_offset_t end,
3760         boolean_t syncio,
3761         boolean_t invalidate)
3762 {
3763         vm_map_entry_t entry, first_entry, next_entry;
3764         vm_size_t size;
3765         vm_object_t object;
3766         vm_ooffset_t offset;
3767         unsigned int last_timestamp;
3768         int bdry_idx;
3769         boolean_t failed;
3770
3771         vm_map_lock_read(map);
3772         VM_MAP_RANGE_CHECK(map, start, end);
3773         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3774                 vm_map_unlock_read(map);
3775                 return (KERN_INVALID_ADDRESS);
3776         } else if (start == end) {
3777                 start = first_entry->start;
3778                 end = first_entry->end;
3779         }
3780
3781         /*
3782          * Make a first pass to check for user-wired memory, holes,
3783          * and partial invalidation of largepage mappings.
3784          */
3785         for (entry = first_entry; entry->start < end; entry = next_entry) {
3786                 if (invalidate) {
3787                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3788                                 vm_map_unlock_read(map);
3789                                 return (KERN_INVALID_ARGUMENT);
3790                         }
3791                         bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3792                         if (bdry_idx != 0 &&
3793                             ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3794                             (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3795                                 vm_map_unlock_read(map);
3796                                 return (KERN_INVALID_ARGUMENT);
3797                         }
3798                 }
3799                 next_entry = vm_map_entry_succ(entry);
3800                 if (end > entry->end &&
3801                     entry->end != next_entry->start) {
3802                         vm_map_unlock_read(map);
3803                         return (KERN_INVALID_ADDRESS);
3804                 }
3805         }
3806
3807         if (invalidate)
3808                 pmap_remove(map->pmap, start, end);
3809         failed = FALSE;
3810
3811         /*
3812          * Make a second pass, cleaning/uncaching pages from the indicated
3813          * objects as we go.
3814          */
3815         for (entry = first_entry; entry->start < end;) {
3816                 offset = entry->offset + (start - entry->start);
3817                 size = (end <= entry->end ? end : entry->end) - start;
3818                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3819                         vm_map_t smap;
3820                         vm_map_entry_t tentry;
3821                         vm_size_t tsize;
3822
3823                         smap = entry->object.sub_map;
3824                         vm_map_lock_read(smap);
3825                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3826                         tsize = tentry->end - offset;
3827                         if (tsize < size)
3828                                 size = tsize;
3829                         object = tentry->object.vm_object;
3830                         offset = tentry->offset + (offset - tentry->start);
3831                         vm_map_unlock_read(smap);
3832                 } else {
3833                         object = entry->object.vm_object;
3834                 }
3835                 vm_object_reference(object);
3836                 last_timestamp = map->timestamp;
3837                 vm_map_unlock_read(map);
3838                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3839                         failed = TRUE;
3840                 start += size;
3841                 vm_object_deallocate(object);
3842                 vm_map_lock_read(map);
3843                 if (last_timestamp == map->timestamp ||
3844                     !vm_map_lookup_entry(map, start, &entry))
3845                         entry = vm_map_entry_succ(entry);
3846         }
3847
3848         vm_map_unlock_read(map);
3849         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3850 }
3851
3852 /*
3853  *      vm_map_entry_unwire:    [ internal use only ]
3854  *
3855  *      Make the region specified by this entry pageable.
3856  *
3857  *      The map in question should be locked.
3858  *      [This is the reason for this routine's existence.]
3859  */
3860 static void
3861 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3862 {
3863         vm_size_t size;
3864
3865         VM_MAP_ASSERT_LOCKED(map);
3866         KASSERT(entry->wired_count > 0,
3867             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3868
3869         size = entry->end - entry->start;
3870         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3871                 vm_map_wire_user_count_sub(atop(size));
3872         pmap_unwire(map->pmap, entry->start, entry->end);
3873         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3874             PQ_ACTIVE);
3875         entry->wired_count = 0;
3876 }
3877
3878 static void
3879 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3880 {
3881
3882         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3883                 vm_object_deallocate(entry->object.vm_object);
3884         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3885 }
3886
3887 /*
3888  *      vm_map_entry_delete:    [ internal use only ]
3889  *
3890  *      Deallocate the given entry from the target map.
3891  */
3892 static void
3893 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3894 {
3895         vm_object_t object;
3896         vm_pindex_t offidxstart, offidxend, size1;
3897         vm_size_t size;
3898
3899         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3900         object = entry->object.vm_object;
3901
3902         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3903                 MPASS(entry->cred == NULL);
3904                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3905                 MPASS(object == NULL);
3906                 vm_map_entry_deallocate(entry, map->system_map);
3907                 return;
3908         }
3909
3910         size = entry->end - entry->start;
3911         map->size -= size;
3912
3913         if (entry->cred != NULL) {
3914                 swap_release_by_cred(size, entry->cred);
3915                 crfree(entry->cred);
3916         }
3917
3918         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3919                 entry->object.vm_object = NULL;
3920         } else if ((object->flags & OBJ_ANON) != 0 ||
3921             object == kernel_object) {
3922                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3923                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3924                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3925                 offidxstart = OFF_TO_IDX(entry->offset);
3926                 offidxend = offidxstart + atop(size);
3927                 VM_OBJECT_WLOCK(object);
3928                 if (object->ref_count != 1 &&
3929                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3930                     object == kernel_object)) {
3931                         vm_object_collapse(object);
3932
3933                         /*
3934                          * The option OBJPR_NOTMAPPED can be passed here
3935                          * because vm_map_delete() already performed
3936                          * pmap_remove() on the only mapping to this range
3937                          * of pages. 
3938                          */
3939                         vm_object_page_remove(object, offidxstart, offidxend,
3940                             OBJPR_NOTMAPPED);
3941                         if (offidxend >= object->size &&
3942                             offidxstart < object->size) {
3943                                 size1 = object->size;
3944                                 object->size = offidxstart;
3945                                 if (object->cred != NULL) {
3946                                         size1 -= object->size;
3947                                         KASSERT(object->charge >= ptoa(size1),
3948                                             ("object %p charge < 0", object));
3949                                         swap_release_by_cred(ptoa(size1),
3950                                             object->cred);
3951                                         object->charge -= ptoa(size1);
3952                                 }
3953                         }
3954                 }
3955                 VM_OBJECT_WUNLOCK(object);
3956         }
3957         if (map->system_map)
3958                 vm_map_entry_deallocate(entry, TRUE);
3959         else {
3960                 entry->defer_next = curthread->td_map_def_user;
3961                 curthread->td_map_def_user = entry;
3962         }
3963 }
3964
3965 /*
3966  *      vm_map_delete:  [ internal use only ]
3967  *
3968  *      Deallocates the given address range from the target
3969  *      map.
3970  */
3971 int
3972 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3973 {
3974         vm_map_entry_t entry, next_entry, scratch_entry;
3975         int rv;
3976
3977         VM_MAP_ASSERT_LOCKED(map);
3978
3979         if (start == end)
3980                 return (KERN_SUCCESS);
3981
3982         /*
3983          * Find the start of the region, and clip it.
3984          * Step through all entries in this region.
3985          */
3986         rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3987         if (rv != KERN_SUCCESS)
3988                 return (rv);
3989         for (; entry->start < end; entry = next_entry) {
3990                 /*
3991                  * Wait for wiring or unwiring of an entry to complete.
3992                  * Also wait for any system wirings to disappear on
3993                  * user maps.
3994                  */
3995                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3996                     (vm_map_pmap(map) != kernel_pmap &&
3997                     vm_map_entry_system_wired_count(entry) != 0)) {
3998                         unsigned int last_timestamp;
3999                         vm_offset_t saved_start;
4000
4001                         saved_start = entry->start;
4002                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4003                         last_timestamp = map->timestamp;
4004                         (void) vm_map_unlock_and_wait(map, 0);
4005                         vm_map_lock(map);
4006                         if (last_timestamp + 1 != map->timestamp) {
4007                                 /*
4008                                  * Look again for the entry because the map was
4009                                  * modified while it was unlocked.
4010                                  * Specifically, the entry may have been
4011                                  * clipped, merged, or deleted.
4012                                  */
4013                                 rv = vm_map_lookup_clip_start(map, saved_start,
4014                                     &next_entry, &scratch_entry);
4015                                 if (rv != KERN_SUCCESS)
4016                                         break;
4017                         } else
4018                                 next_entry = entry;
4019                         continue;
4020                 }
4021
4022                 /* XXXKIB or delete to the upper superpage boundary ? */
4023                 rv = vm_map_clip_end(map, entry, end);
4024                 if (rv != KERN_SUCCESS)
4025                         break;
4026                 next_entry = vm_map_entry_succ(entry);
4027
4028                 /*
4029                  * Unwire before removing addresses from the pmap; otherwise,
4030                  * unwiring will put the entries back in the pmap.
4031                  */
4032                 if (entry->wired_count != 0)
4033                         vm_map_entry_unwire(map, entry);
4034
4035                 /*
4036                  * Remove mappings for the pages, but only if the
4037                  * mappings could exist.  For instance, it does not
4038                  * make sense to call pmap_remove() for guard entries.
4039                  */
4040                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4041                     entry->object.vm_object != NULL)
4042                         pmap_map_delete(map->pmap, entry->start, entry->end);
4043
4044                 if (entry->end == map->anon_loc)
4045                         map->anon_loc = entry->start;
4046
4047                 /*
4048                  * Delete the entry only after removing all pmap
4049                  * entries pointing to its pages.  (Otherwise, its
4050                  * page frames may be reallocated, and any modify bits
4051                  * will be set in the wrong object!)
4052                  */
4053                 vm_map_entry_delete(map, entry);
4054         }
4055         return (rv);
4056 }
4057
4058 /*
4059  *      vm_map_remove:
4060  *
4061  *      Remove the given address range from the target map.
4062  *      This is the exported form of vm_map_delete.
4063  */
4064 int
4065 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4066 {
4067         int result;
4068
4069         vm_map_lock(map);
4070         VM_MAP_RANGE_CHECK(map, start, end);
4071         result = vm_map_delete(map, start, end);
4072         vm_map_unlock(map);
4073         return (result);
4074 }
4075
4076 /*
4077  *      vm_map_check_protection:
4078  *
4079  *      Assert that the target map allows the specified privilege on the
4080  *      entire address region given.  The entire region must be allocated.
4081  *
4082  *      WARNING!  This code does not and should not check whether the
4083  *      contents of the region is accessible.  For example a smaller file
4084  *      might be mapped into a larger address space.
4085  *
4086  *      NOTE!  This code is also called by munmap().
4087  *
4088  *      The map must be locked.  A read lock is sufficient.
4089  */
4090 boolean_t
4091 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4092                         vm_prot_t protection)
4093 {
4094         vm_map_entry_t entry;
4095         vm_map_entry_t tmp_entry;
4096
4097         if (!vm_map_lookup_entry(map, start, &tmp_entry))
4098                 return (FALSE);
4099         entry = tmp_entry;
4100
4101         while (start < end) {
4102                 /*
4103                  * No holes allowed!
4104                  */
4105                 if (start < entry->start)
4106                         return (FALSE);
4107                 /*
4108                  * Check protection associated with entry.
4109                  */
4110                 if ((entry->protection & protection) != protection)
4111                         return (FALSE);
4112                 /* go to next entry */
4113                 start = entry->end;
4114                 entry = vm_map_entry_succ(entry);
4115         }
4116         return (TRUE);
4117 }
4118
4119 /*
4120  *
4121  *      vm_map_copy_swap_object:
4122  *
4123  *      Copies a swap-backed object from an existing map entry to a
4124  *      new one.  Carries forward the swap charge.  May change the
4125  *      src object on return.
4126  */
4127 static void
4128 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4129     vm_offset_t size, vm_ooffset_t *fork_charge)
4130 {
4131         vm_object_t src_object;
4132         struct ucred *cred;
4133         int charged;
4134
4135         src_object = src_entry->object.vm_object;
4136         charged = ENTRY_CHARGED(src_entry);
4137         if ((src_object->flags & OBJ_ANON) != 0) {
4138                 VM_OBJECT_WLOCK(src_object);
4139                 vm_object_collapse(src_object);
4140                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4141                         vm_object_split(src_entry);
4142                         src_object = src_entry->object.vm_object;
4143                 }
4144                 vm_object_reference_locked(src_object);
4145                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4146                 VM_OBJECT_WUNLOCK(src_object);
4147         } else
4148                 vm_object_reference(src_object);
4149         if (src_entry->cred != NULL &&
4150             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4151                 KASSERT(src_object->cred == NULL,
4152                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4153                      src_object));
4154                 src_object->cred = src_entry->cred;
4155                 src_object->charge = size;
4156         }
4157         dst_entry->object.vm_object = src_object;
4158         if (charged) {
4159                 cred = curthread->td_ucred;
4160                 crhold(cred);
4161                 dst_entry->cred = cred;
4162                 *fork_charge += size;
4163                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4164                         crhold(cred);
4165                         src_entry->cred = cred;
4166                         *fork_charge += size;
4167                 }
4168         }
4169 }
4170
4171 /*
4172  *      vm_map_copy_entry:
4173  *
4174  *      Copies the contents of the source entry to the destination
4175  *      entry.  The entries *must* be aligned properly.
4176  */
4177 static void
4178 vm_map_copy_entry(
4179         vm_map_t src_map,
4180         vm_map_t dst_map,
4181         vm_map_entry_t src_entry,
4182         vm_map_entry_t dst_entry,
4183         vm_ooffset_t *fork_charge)
4184 {
4185         vm_object_t src_object;
4186         vm_map_entry_t fake_entry;
4187         vm_offset_t size;
4188
4189         VM_MAP_ASSERT_LOCKED(dst_map);
4190
4191         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4192                 return;
4193
4194         if (src_entry->wired_count == 0 ||
4195             (src_entry->protection & VM_PROT_WRITE) == 0) {
4196                 /*
4197                  * If the source entry is marked needs_copy, it is already
4198                  * write-protected.
4199                  */
4200                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4201                     (src_entry->protection & VM_PROT_WRITE) != 0) {
4202                         pmap_protect(src_map->pmap,
4203                             src_entry->start,
4204                             src_entry->end,
4205                             src_entry->protection & ~VM_PROT_WRITE);
4206                 }
4207
4208                 /*
4209                  * Make a copy of the object.
4210                  */
4211                 size = src_entry->end - src_entry->start;
4212                 if ((src_object = src_entry->object.vm_object) != NULL) {
4213                         if ((src_object->flags & OBJ_SWAP) != 0) {
4214                                 vm_map_copy_swap_object(src_entry, dst_entry,
4215                                     size, fork_charge);
4216                                 /* May have split/collapsed, reload obj. */
4217                                 src_object = src_entry->object.vm_object;
4218                         } else {
4219                                 vm_object_reference(src_object);
4220                                 dst_entry->object.vm_object = src_object;
4221                         }
4222                         src_entry->eflags |= MAP_ENTRY_COW |
4223                             MAP_ENTRY_NEEDS_COPY;
4224                         dst_entry->eflags |= MAP_ENTRY_COW |
4225                             MAP_ENTRY_NEEDS_COPY;
4226                         dst_entry->offset = src_entry->offset;
4227                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4228                                 /*
4229                                  * MAP_ENTRY_WRITECNT cannot
4230                                  * indicate write reference from
4231                                  * src_entry, since the entry is
4232                                  * marked as needs copy.  Allocate a
4233                                  * fake entry that is used to
4234                                  * decrement object->un_pager writecount
4235                                  * at the appropriate time.  Attach
4236                                  * fake_entry to the deferred list.
4237                                  */
4238                                 fake_entry = vm_map_entry_create(dst_map);
4239                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4240                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4241                                 vm_object_reference(src_object);
4242                                 fake_entry->object.vm_object = src_object;
4243                                 fake_entry->start = src_entry->start;
4244                                 fake_entry->end = src_entry->end;
4245                                 fake_entry->defer_next =
4246                                     curthread->td_map_def_user;
4247                                 curthread->td_map_def_user = fake_entry;
4248                         }
4249
4250                         pmap_copy(dst_map->pmap, src_map->pmap,
4251                             dst_entry->start, dst_entry->end - dst_entry->start,
4252                             src_entry->start);
4253                 } else {
4254                         dst_entry->object.vm_object = NULL;
4255                         if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4256                                 dst_entry->offset = 0;
4257                         if (src_entry->cred != NULL) {
4258                                 dst_entry->cred = curthread->td_ucred;
4259                                 crhold(dst_entry->cred);
4260                                 *fork_charge += size;
4261                         }
4262                 }
4263         } else {
4264                 /*
4265                  * We don't want to make writeable wired pages copy-on-write.
4266                  * Immediately copy these pages into the new map by simulating
4267                  * page faults.  The new pages are pageable.
4268                  */
4269                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4270                     fork_charge);
4271         }
4272 }
4273
4274 /*
4275  * vmspace_map_entry_forked:
4276  * Update the newly-forked vmspace each time a map entry is inherited
4277  * or copied.  The values for vm_dsize and vm_tsize are approximate
4278  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4279  */
4280 static void
4281 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4282     vm_map_entry_t entry)
4283 {
4284         vm_size_t entrysize;
4285         vm_offset_t newend;
4286
4287         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4288                 return;
4289         entrysize = entry->end - entry->start;
4290         vm2->vm_map.size += entrysize;
4291         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4292                 vm2->vm_ssize += btoc(entrysize);
4293         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4294             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4295                 newend = MIN(entry->end,
4296                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4297                 vm2->vm_dsize += btoc(newend - entry->start);
4298         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4299             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4300                 newend = MIN(entry->end,
4301                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4302                 vm2->vm_tsize += btoc(newend - entry->start);
4303         }
4304 }
4305
4306 /*
4307  * vmspace_fork:
4308  * Create a new process vmspace structure and vm_map
4309  * based on those of an existing process.  The new map
4310  * is based on the old map, according to the inheritance
4311  * values on the regions in that map.
4312  *
4313  * XXX It might be worth coalescing the entries added to the new vmspace.
4314  *
4315  * The source map must not be locked.
4316  */
4317 struct vmspace *
4318 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4319 {
4320         struct vmspace *vm2;
4321         vm_map_t new_map, old_map;
4322         vm_map_entry_t new_entry, old_entry;
4323         vm_object_t object;
4324         int error, locked __diagused;
4325         vm_inherit_t inh;
4326
4327         old_map = &vm1->vm_map;
4328         /* Copy immutable fields of vm1 to vm2. */
4329         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4330             pmap_pinit);
4331         if (vm2 == NULL)
4332                 return (NULL);
4333
4334         vm2->vm_taddr = vm1->vm_taddr;
4335         vm2->vm_daddr = vm1->vm_daddr;
4336         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4337         vm2->vm_stacktop = vm1->vm_stacktop;
4338         vm2->vm_shp_base = vm1->vm_shp_base;
4339         vm_map_lock(old_map);
4340         if (old_map->busy)
4341                 vm_map_wait_busy(old_map);
4342         new_map = &vm2->vm_map;
4343         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4344         KASSERT(locked, ("vmspace_fork: lock failed"));
4345
4346         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4347         if (error != 0) {
4348                 sx_xunlock(&old_map->lock);
4349                 sx_xunlock(&new_map->lock);
4350                 vm_map_process_deferred();
4351                 vmspace_free(vm2);
4352                 return (NULL);
4353         }
4354
4355         new_map->anon_loc = old_map->anon_loc;
4356         new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4357             MAP_ASLR_STACK | MAP_WXORX);
4358
4359         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4360                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4361                         panic("vm_map_fork: encountered a submap");
4362
4363                 inh = old_entry->inheritance;
4364                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4365                     inh != VM_INHERIT_NONE)
4366                         inh = VM_INHERIT_COPY;
4367
4368                 switch (inh) {
4369                 case VM_INHERIT_NONE:
4370                         break;
4371
4372                 case VM_INHERIT_SHARE:
4373                         /*
4374                          * Clone the entry, creating the shared object if
4375                          * necessary.
4376                          */
4377                         object = old_entry->object.vm_object;
4378                         if (object == NULL) {
4379                                 vm_map_entry_back(old_entry);
4380                                 object = old_entry->object.vm_object;
4381                         }
4382
4383                         /*
4384                          * Add the reference before calling vm_object_shadow
4385                          * to insure that a shadow object is created.
4386                          */
4387                         vm_object_reference(object);
4388                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4389                                 vm_object_shadow(&old_entry->object.vm_object,
4390                                     &old_entry->offset,
4391                                     old_entry->end - old_entry->start,
4392                                     old_entry->cred,
4393                                     /* Transfer the second reference too. */
4394                                     true);
4395                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4396                                 old_entry->cred = NULL;
4397
4398                                 /*
4399                                  * As in vm_map_merged_neighbor_dispose(),
4400                                  * the vnode lock will not be acquired in
4401                                  * this call to vm_object_deallocate().
4402                                  */
4403                                 vm_object_deallocate(object);
4404                                 object = old_entry->object.vm_object;
4405                         } else {
4406                                 VM_OBJECT_WLOCK(object);
4407                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4408                                 if (old_entry->cred != NULL) {
4409                                         KASSERT(object->cred == NULL,
4410                                             ("vmspace_fork both cred"));
4411                                         object->cred = old_entry->cred;
4412                                         object->charge = old_entry->end -
4413                                             old_entry->start;
4414                                         old_entry->cred = NULL;
4415                                 }
4416
4417                                 /*
4418                                  * Assert the correct state of the vnode
4419                                  * v_writecount while the object is locked, to
4420                                  * not relock it later for the assertion
4421                                  * correctness.
4422                                  */
4423                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4424                                     object->type == OBJT_VNODE) {
4425                                         KASSERT(((struct vnode *)object->
4426                                             handle)->v_writecount > 0,
4427                                             ("vmspace_fork: v_writecount %p",
4428                                             object));
4429                                         KASSERT(object->un_pager.vnp.
4430                                             writemappings > 0,
4431                                             ("vmspace_fork: vnp.writecount %p",
4432                                             object));
4433                                 }
4434                                 VM_OBJECT_WUNLOCK(object);
4435                         }
4436
4437                         /*
4438                          * Clone the entry, referencing the shared object.
4439                          */
4440                         new_entry = vm_map_entry_create(new_map);
4441                         *new_entry = *old_entry;
4442                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4443                             MAP_ENTRY_IN_TRANSITION);
4444                         new_entry->wiring_thread = NULL;
4445                         new_entry->wired_count = 0;
4446                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4447                                 vm_pager_update_writecount(object,
4448                                     new_entry->start, new_entry->end);
4449                         }
4450                         vm_map_entry_set_vnode_text(new_entry, true);
4451
4452                         /*
4453                          * Insert the entry into the new map -- we know we're
4454                          * inserting at the end of the new map.
4455                          */
4456                         vm_map_entry_link(new_map, new_entry);
4457                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4458
4459                         /*
4460                          * Update the physical map
4461                          */
4462                         pmap_copy(new_map->pmap, old_map->pmap,
4463                             new_entry->start,
4464                             (old_entry->end - old_entry->start),
4465                             old_entry->start);
4466                         break;
4467
4468                 case VM_INHERIT_COPY:
4469                         /*
4470                          * Clone the entry and link into the map.
4471                          */
4472                         new_entry = vm_map_entry_create(new_map);
4473                         *new_entry = *old_entry;
4474                         /*
4475                          * Copied entry is COW over the old object.
4476                          */
4477                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4478                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4479                         new_entry->wiring_thread = NULL;
4480                         new_entry->wired_count = 0;
4481                         new_entry->object.vm_object = NULL;
4482                         new_entry->cred = NULL;
4483                         vm_map_entry_link(new_map, new_entry);
4484                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4485                         vm_map_copy_entry(old_map, new_map, old_entry,
4486                             new_entry, fork_charge);
4487                         vm_map_entry_set_vnode_text(new_entry, true);
4488                         break;
4489
4490                 case VM_INHERIT_ZERO:
4491                         /*
4492                          * Create a new anonymous mapping entry modelled from
4493                          * the old one.
4494                          */
4495                         new_entry = vm_map_entry_create(new_map);
4496                         memset(new_entry, 0, sizeof(*new_entry));
4497
4498                         new_entry->start = old_entry->start;
4499                         new_entry->end = old_entry->end;
4500                         new_entry->eflags = old_entry->eflags &
4501                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4502                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4503                             MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4504                         new_entry->protection = old_entry->protection;
4505                         new_entry->max_protection = old_entry->max_protection;
4506                         new_entry->inheritance = VM_INHERIT_ZERO;
4507
4508                         vm_map_entry_link(new_map, new_entry);
4509                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4510
4511                         new_entry->cred = curthread->td_ucred;
4512                         crhold(new_entry->cred);
4513                         *fork_charge += (new_entry->end - new_entry->start);
4514
4515                         break;
4516                 }
4517         }
4518         /*
4519          * Use inlined vm_map_unlock() to postpone handling the deferred
4520          * map entries, which cannot be done until both old_map and
4521          * new_map locks are released.
4522          */
4523         sx_xunlock(&old_map->lock);
4524         sx_xunlock(&new_map->lock);
4525         vm_map_process_deferred();
4526
4527         return (vm2);
4528 }
4529
4530 /*
4531  * Create a process's stack for exec_new_vmspace().  This function is never
4532  * asked to wire the newly created stack.
4533  */
4534 int
4535 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4536     vm_prot_t prot, vm_prot_t max, int cow)
4537 {
4538         vm_size_t growsize, init_ssize;
4539         rlim_t vmemlim;
4540         int rv;
4541
4542         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4543         growsize = sgrowsiz;
4544         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4545         vm_map_lock(map);
4546         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4547         /* If we would blow our VMEM resource limit, no go */
4548         if (map->size + init_ssize > vmemlim) {
4549                 rv = KERN_NO_SPACE;
4550                 goto out;
4551         }
4552         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4553             max, cow);
4554 out:
4555         vm_map_unlock(map);
4556         return (rv);
4557 }
4558
4559 static int stack_guard_page = 1;
4560 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4561     &stack_guard_page, 0,
4562     "Specifies the number of guard pages for a stack that grows");
4563
4564 static int
4565 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4566     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4567 {
4568         vm_map_entry_t gap_entry, new_entry, prev_entry;
4569         vm_offset_t bot, gap_bot, gap_top, top;
4570         vm_size_t init_ssize, sgp;
4571         int orient, rv;
4572
4573         /*
4574          * The stack orientation is piggybacked with the cow argument.
4575          * Extract it into orient and mask the cow argument so that we
4576          * don't pass it around further.
4577          */
4578         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4579         KASSERT(orient != 0, ("No stack grow direction"));
4580         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4581             ("bi-dir stack"));
4582
4583         if (max_ssize == 0 ||
4584             !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4585                 return (KERN_INVALID_ADDRESS);
4586         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4587             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4588             (vm_size_t)stack_guard_page * PAGE_SIZE;
4589         if (sgp >= max_ssize)
4590                 return (KERN_INVALID_ARGUMENT);
4591
4592         init_ssize = growsize;
4593         if (max_ssize < init_ssize + sgp)
4594                 init_ssize = max_ssize - sgp;
4595
4596         /* If addr is already mapped, no go */
4597         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4598                 return (KERN_NO_SPACE);
4599
4600         /*
4601          * If we can't accommodate max_ssize in the current mapping, no go.
4602          */
4603         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4604                 return (KERN_NO_SPACE);
4605
4606         /*
4607          * We initially map a stack of only init_ssize.  We will grow as
4608          * needed later.  Depending on the orientation of the stack (i.e.
4609          * the grow direction) we either map at the top of the range, the
4610          * bottom of the range or in the middle.
4611          *
4612          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4613          * and cow to be 0.  Possibly we should eliminate these as input
4614          * parameters, and just pass these values here in the insert call.
4615          */
4616         if (orient == MAP_STACK_GROWS_DOWN) {
4617                 bot = addrbos + max_ssize - init_ssize;
4618                 top = bot + init_ssize;
4619                 gap_bot = addrbos;
4620                 gap_top = bot;
4621         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4622                 bot = addrbos;
4623                 top = bot + init_ssize;
4624                 gap_bot = top;
4625                 gap_top = addrbos + max_ssize;
4626         }
4627         rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4628             &new_entry);
4629         if (rv != KERN_SUCCESS)
4630                 return (rv);
4631         KASSERT(new_entry->end == top || new_entry->start == bot,
4632             ("Bad entry start/end for new stack entry"));
4633         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4634             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4635             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4636         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4637             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4638             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4639         if (gap_bot == gap_top)
4640                 return (KERN_SUCCESS);
4641         rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4642             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4643             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4644         if (rv == KERN_SUCCESS) {
4645                 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4646                     ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4647                 KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4648                     MAP_ENTRY_STACK_GAP_UP)) != 0,
4649                     ("entry %p not stack gap %#x", gap_entry,
4650                     gap_entry->eflags));
4651
4652                 /*
4653                  * Gap can never successfully handle a fault, so
4654                  * read-ahead logic is never used for it.  Re-use
4655                  * next_read of the gap entry to store
4656                  * stack_guard_page for vm_map_growstack().
4657                  * Similarly, since a gap cannot have a backing object,
4658                  * store the original stack protections in the
4659                  * object offset.
4660                  */
4661                 gap_entry->next_read = sgp;
4662                 gap_entry->offset = prot | PROT_MAX(max);
4663         } else {
4664                 (void)vm_map_delete(map, bot, top);
4665         }
4666         return (rv);
4667 }
4668
4669 /*
4670  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4671  * successfully grow the stack.
4672  */
4673 static int
4674 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4675 {
4676         vm_map_entry_t stack_entry;
4677         struct proc *p;
4678         struct vmspace *vm;
4679         struct ucred *cred;
4680         vm_offset_t gap_end, gap_start, grow_start;
4681         vm_size_t grow_amount, guard, max_grow, sgp;
4682         vm_prot_t prot, max;
4683         rlim_t lmemlim, stacklim, vmemlim;
4684         int rv, rv1 __diagused;
4685         bool gap_deleted, grow_down, is_procstack;
4686 #ifdef notyet
4687         uint64_t limit;
4688 #endif
4689 #ifdef RACCT
4690         int error __diagused;
4691 #endif
4692
4693         p = curproc;
4694         vm = p->p_vmspace;
4695
4696         /*
4697          * Disallow stack growth when the access is performed by a
4698          * debugger or AIO daemon.  The reason is that the wrong
4699          * resource limits are applied.
4700          */
4701         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4702             p->p_textvp == NULL))
4703                 return (KERN_FAILURE);
4704
4705         MPASS(!map->system_map);
4706
4707         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4708         stacklim = lim_cur(curthread, RLIMIT_STACK);
4709         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4710 retry:
4711         /* If addr is not in a hole for a stack grow area, no need to grow. */
4712         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4713                 return (KERN_FAILURE);
4714         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4715                 return (KERN_SUCCESS);
4716         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4717                 stack_entry = vm_map_entry_succ(gap_entry);
4718                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4719                     stack_entry->start != gap_entry->end)
4720                         return (KERN_FAILURE);
4721                 grow_amount = round_page(stack_entry->start - addr);
4722                 grow_down = true;
4723         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4724                 stack_entry = vm_map_entry_pred(gap_entry);
4725                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4726                     stack_entry->end != gap_entry->start)
4727                         return (KERN_FAILURE);
4728                 grow_amount = round_page(addr + 1 - stack_entry->end);
4729                 grow_down = false;
4730         } else {
4731                 return (KERN_FAILURE);
4732         }
4733         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4734             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4735             gap_entry->next_read;
4736         max_grow = gap_entry->end - gap_entry->start;
4737         if (guard > max_grow)
4738                 return (KERN_NO_SPACE);
4739         max_grow -= guard;
4740         if (grow_amount > max_grow)
4741                 return (KERN_NO_SPACE);
4742
4743         /*
4744          * If this is the main process stack, see if we're over the stack
4745          * limit.
4746          */
4747         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4748             addr < (vm_offset_t)vm->vm_stacktop;
4749         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4750                 return (KERN_NO_SPACE);
4751
4752 #ifdef RACCT
4753         if (racct_enable) {
4754                 PROC_LOCK(p);
4755                 if (is_procstack && racct_set(p, RACCT_STACK,
4756                     ctob(vm->vm_ssize) + grow_amount)) {
4757                         PROC_UNLOCK(p);
4758                         return (KERN_NO_SPACE);
4759                 }
4760                 PROC_UNLOCK(p);
4761         }
4762 #endif
4763
4764         grow_amount = roundup(grow_amount, sgrowsiz);
4765         if (grow_amount > max_grow)
4766                 grow_amount = max_grow;
4767         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4768                 grow_amount = trunc_page((vm_size_t)stacklim) -
4769                     ctob(vm->vm_ssize);
4770         }
4771
4772 #ifdef notyet
4773         PROC_LOCK(p);
4774         limit = racct_get_available(p, RACCT_STACK);
4775         PROC_UNLOCK(p);
4776         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4777                 grow_amount = limit - ctob(vm->vm_ssize);
4778 #endif
4779
4780         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4781                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4782                         rv = KERN_NO_SPACE;
4783                         goto out;
4784                 }
4785 #ifdef RACCT
4786                 if (racct_enable) {
4787                         PROC_LOCK(p);
4788                         if (racct_set(p, RACCT_MEMLOCK,
4789                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4790                                 PROC_UNLOCK(p);
4791                                 rv = KERN_NO_SPACE;
4792                                 goto out;
4793                         }
4794                         PROC_UNLOCK(p);
4795                 }
4796 #endif
4797         }
4798
4799         /* If we would blow our VMEM resource limit, no go */
4800         if (map->size + grow_amount > vmemlim) {
4801                 rv = KERN_NO_SPACE;
4802                 goto out;
4803         }
4804 #ifdef RACCT
4805         if (racct_enable) {
4806                 PROC_LOCK(p);
4807                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4808                         PROC_UNLOCK(p);
4809                         rv = KERN_NO_SPACE;
4810                         goto out;
4811                 }
4812                 PROC_UNLOCK(p);
4813         }
4814 #endif
4815
4816         if (vm_map_lock_upgrade(map)) {
4817                 gap_entry = NULL;
4818                 vm_map_lock_read(map);
4819                 goto retry;
4820         }
4821
4822         if (grow_down) {
4823                 /*
4824                  * The gap_entry "offset" field is overloaded.  See
4825                  * vm_map_stack_locked().
4826                  */
4827                 prot = PROT_EXTRACT(gap_entry->offset);
4828                 max = PROT_MAX_EXTRACT(gap_entry->offset);
4829                 sgp = gap_entry->next_read;
4830
4831                 grow_start = gap_entry->end - grow_amount;
4832                 if (gap_entry->start + grow_amount == gap_entry->end) {
4833                         gap_start = gap_entry->start;
4834                         gap_end = gap_entry->end;
4835                         vm_map_entry_delete(map, gap_entry);
4836                         gap_deleted = true;
4837                 } else {
4838                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4839                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4840                         gap_deleted = false;
4841                 }
4842                 rv = vm_map_insert(map, NULL, 0, grow_start,
4843                     grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4844                 if (rv != KERN_SUCCESS) {
4845                         if (gap_deleted) {
4846                                 rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4847                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4848                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4849                                     &gap_entry);
4850                                 MPASS(rv1 == KERN_SUCCESS);
4851                                 gap_entry->next_read = sgp;
4852                                 gap_entry->offset = prot | PROT_MAX(max);
4853                         } else
4854                                 vm_map_entry_resize(map, gap_entry,
4855                                     grow_amount);
4856                 }
4857         } else {
4858                 grow_start = stack_entry->end;
4859                 cred = stack_entry->cred;
4860                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4861                         cred = stack_entry->object.vm_object->cred;
4862                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4863                         rv = KERN_NO_SPACE;
4864                 /* Grow the underlying object if applicable. */
4865                 else if (stack_entry->object.vm_object == NULL ||
4866                     vm_object_coalesce(stack_entry->object.vm_object,
4867                     stack_entry->offset,
4868                     (vm_size_t)(stack_entry->end - stack_entry->start),
4869                     grow_amount, cred != NULL)) {
4870                         if (gap_entry->start + grow_amount == gap_entry->end) {
4871                                 vm_map_entry_delete(map, gap_entry);
4872                                 vm_map_entry_resize(map, stack_entry,
4873                                     grow_amount);
4874                         } else {
4875                                 gap_entry->start += grow_amount;
4876                                 stack_entry->end += grow_amount;
4877                         }
4878                         map->size += grow_amount;
4879                         rv = KERN_SUCCESS;
4880                 } else
4881                         rv = KERN_FAILURE;
4882         }
4883         if (rv == KERN_SUCCESS && is_procstack)
4884                 vm->vm_ssize += btoc(grow_amount);
4885
4886         /*
4887          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4888          */
4889         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4890                 rv = vm_map_wire_locked(map, grow_start,
4891                     grow_start + grow_amount,
4892                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4893         }
4894         vm_map_lock_downgrade(map);
4895
4896 out:
4897 #ifdef RACCT
4898         if (racct_enable && rv != KERN_SUCCESS) {
4899                 PROC_LOCK(p);
4900                 error = racct_set(p, RACCT_VMEM, map->size);
4901                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4902                 if (!old_mlock) {
4903                         error = racct_set(p, RACCT_MEMLOCK,
4904                             ptoa(pmap_wired_count(map->pmap)));
4905                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4906                 }
4907                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4908                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4909                 PROC_UNLOCK(p);
4910         }
4911 #endif
4912
4913         return (rv);
4914 }
4915
4916 /*
4917  * Unshare the specified VM space for exec.  If other processes are
4918  * mapped to it, then create a new one.  The new vmspace is null.
4919  */
4920 int
4921 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4922 {
4923         struct vmspace *oldvmspace = p->p_vmspace;
4924         struct vmspace *newvmspace;
4925
4926         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4927             ("vmspace_exec recursed"));
4928         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4929         if (newvmspace == NULL)
4930                 return (ENOMEM);
4931         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4932         /*
4933          * This code is written like this for prototype purposes.  The
4934          * goal is to avoid running down the vmspace here, but let the
4935          * other process's that are still using the vmspace to finally
4936          * run it down.  Even though there is little or no chance of blocking
4937          * here, it is a good idea to keep this form for future mods.
4938          */
4939         PROC_VMSPACE_LOCK(p);
4940         p->p_vmspace = newvmspace;
4941         PROC_VMSPACE_UNLOCK(p);
4942         if (p == curthread->td_proc)
4943                 pmap_activate(curthread);
4944         curthread->td_pflags |= TDP_EXECVMSPC;
4945         return (0);
4946 }
4947
4948 /*
4949  * Unshare the specified VM space for forcing COW.  This
4950  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4951  */
4952 int
4953 vmspace_unshare(struct proc *p)
4954 {
4955         struct vmspace *oldvmspace = p->p_vmspace;
4956         struct vmspace *newvmspace;
4957         vm_ooffset_t fork_charge;
4958
4959         /*
4960          * The caller is responsible for ensuring that the reference count
4961          * cannot concurrently transition 1 -> 2.
4962          */
4963         if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4964                 return (0);
4965         fork_charge = 0;
4966         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4967         if (newvmspace == NULL)
4968                 return (ENOMEM);
4969         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4970                 vmspace_free(newvmspace);
4971                 return (ENOMEM);
4972         }
4973         PROC_VMSPACE_LOCK(p);
4974         p->p_vmspace = newvmspace;
4975         PROC_VMSPACE_UNLOCK(p);
4976         if (p == curthread->td_proc)
4977                 pmap_activate(curthread);
4978         vmspace_free(oldvmspace);
4979         return (0);
4980 }
4981
4982 /*
4983  *      vm_map_lookup:
4984  *
4985  *      Finds the VM object, offset, and
4986  *      protection for a given virtual address in the
4987  *      specified map, assuming a page fault of the
4988  *      type specified.
4989  *
4990  *      Leaves the map in question locked for read; return
4991  *      values are guaranteed until a vm_map_lookup_done
4992  *      call is performed.  Note that the map argument
4993  *      is in/out; the returned map must be used in
4994  *      the call to vm_map_lookup_done.
4995  *
4996  *      A handle (out_entry) is returned for use in
4997  *      vm_map_lookup_done, to make that fast.
4998  *
4999  *      If a lookup is requested with "write protection"
5000  *      specified, the map may be changed to perform virtual
5001  *      copying operations, although the data referenced will
5002  *      remain the same.
5003  */
5004 int
5005 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
5006               vm_offset_t vaddr,
5007               vm_prot_t fault_typea,
5008               vm_map_entry_t *out_entry,        /* OUT */
5009               vm_object_t *object,              /* OUT */
5010               vm_pindex_t *pindex,              /* OUT */
5011               vm_prot_t *out_prot,              /* OUT */
5012               boolean_t *wired)                 /* OUT */
5013 {
5014         vm_map_entry_t entry;
5015         vm_map_t map = *var_map;
5016         vm_prot_t prot;
5017         vm_prot_t fault_type;
5018         vm_object_t eobject;
5019         vm_size_t size;
5020         struct ucred *cred;
5021
5022 RetryLookup:
5023
5024         vm_map_lock_read(map);
5025
5026 RetryLookupLocked:
5027         /*
5028          * Lookup the faulting address.
5029          */
5030         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5031                 vm_map_unlock_read(map);
5032                 return (KERN_INVALID_ADDRESS);
5033         }
5034
5035         entry = *out_entry;
5036
5037         /*
5038          * Handle submaps.
5039          */
5040         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5041                 vm_map_t old_map = map;
5042
5043                 *var_map = map = entry->object.sub_map;
5044                 vm_map_unlock_read(old_map);
5045                 goto RetryLookup;
5046         }
5047
5048         /*
5049          * Check whether this task is allowed to have this page.
5050          */
5051         prot = entry->protection;
5052         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5053                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5054                 if (prot == VM_PROT_NONE && map != kernel_map &&
5055                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5056                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5057                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5058                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5059                         goto RetryLookupLocked;
5060         }
5061         fault_type = fault_typea & VM_PROT_ALL;
5062         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5063                 vm_map_unlock_read(map);
5064                 return (KERN_PROTECTION_FAILURE);
5065         }
5066         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5067             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5068             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5069             ("entry %p flags %x", entry, entry->eflags));
5070         if ((fault_typea & VM_PROT_COPY) != 0 &&
5071             (entry->max_protection & VM_PROT_WRITE) == 0 &&
5072             (entry->eflags & MAP_ENTRY_COW) == 0) {
5073                 vm_map_unlock_read(map);
5074                 return (KERN_PROTECTION_FAILURE);
5075         }
5076
5077         /*
5078          * If this page is not pageable, we have to get it for all possible
5079          * accesses.
5080          */
5081         *wired = (entry->wired_count != 0);
5082         if (*wired)
5083                 fault_type = entry->protection;
5084         size = entry->end - entry->start;
5085
5086         /*
5087          * If the entry was copy-on-write, we either ...
5088          */
5089         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5090                 /*
5091                  * If we want to write the page, we may as well handle that
5092                  * now since we've got the map locked.
5093                  *
5094                  * If we don't need to write the page, we just demote the
5095                  * permissions allowed.
5096                  */
5097                 if ((fault_type & VM_PROT_WRITE) != 0 ||
5098                     (fault_typea & VM_PROT_COPY) != 0) {
5099                         /*
5100                          * Make a new object, and place it in the object
5101                          * chain.  Note that no new references have appeared
5102                          * -- one just moved from the map to the new
5103                          * object.
5104                          */
5105                         if (vm_map_lock_upgrade(map))
5106                                 goto RetryLookup;
5107
5108                         if (entry->cred == NULL) {
5109                                 /*
5110                                  * The debugger owner is charged for
5111                                  * the memory.
5112                                  */
5113                                 cred = curthread->td_ucred;
5114                                 crhold(cred);
5115                                 if (!swap_reserve_by_cred(size, cred)) {
5116                                         crfree(cred);
5117                                         vm_map_unlock(map);
5118                                         return (KERN_RESOURCE_SHORTAGE);
5119                                 }
5120                                 entry->cred = cred;
5121                         }
5122                         eobject = entry->object.vm_object;
5123                         vm_object_shadow(&entry->object.vm_object,
5124                             &entry->offset, size, entry->cred, false);
5125                         if (eobject == entry->object.vm_object) {
5126                                 /*
5127                                  * The object was not shadowed.
5128                                  */
5129                                 swap_release_by_cred(size, entry->cred);
5130                                 crfree(entry->cred);
5131                         }
5132                         entry->cred = NULL;
5133                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5134
5135                         vm_map_lock_downgrade(map);
5136                 } else {
5137                         /*
5138                          * We're attempting to read a copy-on-write page --
5139                          * don't allow writes.
5140                          */
5141                         prot &= ~VM_PROT_WRITE;
5142                 }
5143         }
5144
5145         /*
5146          * Create an object if necessary.
5147          */
5148         if (entry->object.vm_object == NULL && !map->system_map) {
5149                 if (vm_map_lock_upgrade(map))
5150                         goto RetryLookup;
5151                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5152                     NULL, entry->cred, size);
5153                 entry->offset = 0;
5154                 entry->cred = NULL;
5155                 vm_map_lock_downgrade(map);
5156         }
5157
5158         /*
5159          * Return the object/offset from this entry.  If the entry was
5160          * copy-on-write or empty, it has been fixed up.
5161          */
5162         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5163         *object = entry->object.vm_object;
5164
5165         *out_prot = prot;
5166         return (KERN_SUCCESS);
5167 }
5168
5169 /*
5170  *      vm_map_lookup_locked:
5171  *
5172  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
5173  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5174  */
5175 int
5176 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
5177                      vm_offset_t vaddr,
5178                      vm_prot_t fault_typea,
5179                      vm_map_entry_t *out_entry, /* OUT */
5180                      vm_object_t *object,       /* OUT */
5181                      vm_pindex_t *pindex,       /* OUT */
5182                      vm_prot_t *out_prot,       /* OUT */
5183                      boolean_t *wired)          /* OUT */
5184 {
5185         vm_map_entry_t entry;
5186         vm_map_t map = *var_map;
5187         vm_prot_t prot;
5188         vm_prot_t fault_type = fault_typea;
5189
5190         /*
5191          * Lookup the faulting address.
5192          */
5193         if (!vm_map_lookup_entry(map, vaddr, out_entry))
5194                 return (KERN_INVALID_ADDRESS);
5195
5196         entry = *out_entry;
5197
5198         /*
5199          * Fail if the entry refers to a submap.
5200          */
5201         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5202                 return (KERN_FAILURE);
5203
5204         /*
5205          * Check whether this task is allowed to have this page.
5206          */
5207         prot = entry->protection;
5208         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5209         if ((fault_type & prot) != fault_type)
5210                 return (KERN_PROTECTION_FAILURE);
5211
5212         /*
5213          * If this page is not pageable, we have to get it for all possible
5214          * accesses.
5215          */
5216         *wired = (entry->wired_count != 0);
5217         if (*wired)
5218                 fault_type = entry->protection;
5219
5220         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5221                 /*
5222                  * Fail if the entry was copy-on-write for a write fault.
5223                  */
5224                 if (fault_type & VM_PROT_WRITE)
5225                         return (KERN_FAILURE);
5226                 /*
5227                  * We're attempting to read a copy-on-write page --
5228                  * don't allow writes.
5229                  */
5230                 prot &= ~VM_PROT_WRITE;
5231         }
5232
5233         /*
5234          * Fail if an object should be created.
5235          */
5236         if (entry->object.vm_object == NULL && !map->system_map)
5237                 return (KERN_FAILURE);
5238
5239         /*
5240          * Return the object/offset from this entry.  If the entry was
5241          * copy-on-write or empty, it has been fixed up.
5242          */
5243         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5244         *object = entry->object.vm_object;
5245
5246         *out_prot = prot;
5247         return (KERN_SUCCESS);
5248 }
5249
5250 /*
5251  *      vm_map_lookup_done:
5252  *
5253  *      Releases locks acquired by a vm_map_lookup
5254  *      (according to the handle returned by that lookup).
5255  */
5256 void
5257 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5258 {
5259         /*
5260          * Unlock the main-level map
5261          */
5262         vm_map_unlock_read(map);
5263 }
5264
5265 vm_offset_t
5266 vm_map_max_KBI(const struct vm_map *map)
5267 {
5268
5269         return (vm_map_max(map));
5270 }
5271
5272 vm_offset_t
5273 vm_map_min_KBI(const struct vm_map *map)
5274 {
5275
5276         return (vm_map_min(map));
5277 }
5278
5279 pmap_t
5280 vm_map_pmap_KBI(vm_map_t map)
5281 {
5282
5283         return (map->pmap);
5284 }
5285
5286 bool
5287 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5288 {
5289
5290         return (vm_map_range_valid(map, start, end));
5291 }
5292
5293 #ifdef INVARIANTS
5294 static void
5295 _vm_map_assert_consistent(vm_map_t map, int check)
5296 {
5297         vm_map_entry_t entry, prev;
5298         vm_map_entry_t cur, header, lbound, ubound;
5299         vm_size_t max_left, max_right;
5300
5301 #ifdef DIAGNOSTIC
5302         ++map->nupdates;
5303 #endif
5304         if (enable_vmmap_check != check)
5305                 return;
5306
5307         header = prev = &map->header;
5308         VM_MAP_ENTRY_FOREACH(entry, map) {
5309                 KASSERT(prev->end <= entry->start,
5310                     ("map %p prev->end = %jx, start = %jx", map,
5311                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5312                 KASSERT(entry->start < entry->end,
5313                     ("map %p start = %jx, end = %jx", map,
5314                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5315                 KASSERT(entry->left == header ||
5316                     entry->left->start < entry->start,
5317                     ("map %p left->start = %jx, start = %jx", map,
5318                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5319                 KASSERT(entry->right == header ||
5320                     entry->start < entry->right->start,
5321                     ("map %p start = %jx, right->start = %jx", map,
5322                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5323                 cur = map->root;
5324                 lbound = ubound = header;
5325                 for (;;) {
5326                         if (entry->start < cur->start) {
5327                                 ubound = cur;
5328                                 cur = cur->left;
5329                                 KASSERT(cur != lbound,
5330                                     ("map %p cannot find %jx",
5331                                     map, (uintmax_t)entry->start));
5332                         } else if (cur->end <= entry->start) {
5333                                 lbound = cur;
5334                                 cur = cur->right;
5335                                 KASSERT(cur != ubound,
5336                                     ("map %p cannot find %jx",
5337                                     map, (uintmax_t)entry->start));
5338                         } else {
5339                                 KASSERT(cur == entry,
5340                                     ("map %p cannot find %jx",
5341                                     map, (uintmax_t)entry->start));
5342                                 break;
5343                         }
5344                 }
5345                 max_left = vm_map_entry_max_free_left(entry, lbound);
5346                 max_right = vm_map_entry_max_free_right(entry, ubound);
5347                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5348                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5349                     (uintmax_t)entry->max_free,
5350                     (uintmax_t)max_left, (uintmax_t)max_right));
5351                 prev = entry;
5352         }
5353         KASSERT(prev->end <= entry->start,
5354             ("map %p prev->end = %jx, start = %jx", map,
5355             (uintmax_t)prev->end, (uintmax_t)entry->start));
5356 }
5357 #endif
5358
5359 #include "opt_ddb.h"
5360 #ifdef DDB
5361 #include <sys/kernel.h>
5362
5363 #include <ddb/ddb.h>
5364
5365 static void
5366 vm_map_print(vm_map_t map)
5367 {
5368         vm_map_entry_t entry, prev;
5369
5370         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5371             (void *)map,
5372             (void *)map->pmap, map->nentries, map->timestamp);
5373
5374         db_indent += 2;
5375         prev = &map->header;
5376         VM_MAP_ENTRY_FOREACH(entry, map) {
5377                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5378                     (void *)entry, (void *)entry->start, (void *)entry->end,
5379                     entry->eflags);
5380                 {
5381                         static const char * const inheritance_name[4] =
5382                         {"share", "copy", "none", "donate_copy"};
5383
5384                         db_iprintf(" prot=%x/%x/%s",
5385                             entry->protection,
5386                             entry->max_protection,
5387                             inheritance_name[(int)(unsigned char)
5388                             entry->inheritance]);
5389                         if (entry->wired_count != 0)
5390                                 db_printf(", wired");
5391                 }
5392                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5393                         db_printf(", share=%p, offset=0x%jx\n",
5394                             (void *)entry->object.sub_map,
5395                             (uintmax_t)entry->offset);
5396                         if (prev == &map->header ||
5397                             prev->object.sub_map !=
5398                                 entry->object.sub_map) {
5399                                 db_indent += 2;
5400                                 vm_map_print((vm_map_t)entry->object.sub_map);
5401                                 db_indent -= 2;
5402                         }
5403                 } else {
5404                         if (entry->cred != NULL)
5405                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5406                         db_printf(", object=%p, offset=0x%jx",
5407                             (void *)entry->object.vm_object,
5408                             (uintmax_t)entry->offset);
5409                         if (entry->object.vm_object && entry->object.vm_object->cred)
5410                                 db_printf(", obj ruid %d charge %jx",
5411                                     entry->object.vm_object->cred->cr_ruid,
5412                                     (uintmax_t)entry->object.vm_object->charge);
5413                         if (entry->eflags & MAP_ENTRY_COW)
5414                                 db_printf(", copy (%s)",
5415                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5416                         db_printf("\n");
5417
5418                         if (prev == &map->header ||
5419                             prev->object.vm_object !=
5420                                 entry->object.vm_object) {
5421                                 db_indent += 2;
5422                                 vm_object_print((db_expr_t)(intptr_t)
5423                                                 entry->object.vm_object,
5424                                                 0, 0, (char *)0);
5425                                 db_indent -= 2;
5426                         }
5427                 }
5428                 prev = entry;
5429         }
5430         db_indent -= 2;
5431 }
5432
5433 DB_SHOW_COMMAND(map, map)
5434 {
5435
5436         if (!have_addr) {
5437                 db_printf("usage: show map <addr>\n");
5438                 return;
5439         }
5440         vm_map_print((vm_map_t)addr);
5441 }
5442
5443 DB_SHOW_COMMAND(procvm, procvm)
5444 {
5445         struct proc *p;
5446
5447         if (have_addr) {
5448                 p = db_lookup_proc(addr);
5449         } else {
5450                 p = curproc;
5451         }
5452
5453         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5454             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5455             (void *)vmspace_pmap(p->p_vmspace));
5456
5457         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5458 }
5459
5460 #endif /* DDB */