]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Tidy up vm_map_simplify_entry() and its recently introduced helper
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286
287         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288
289         if (pinit == NULL)
290                 pinit = &pmap_pinit;
291
292         if (!pinit(vmspace_pmap(vm))) {
293                 uma_zfree(vmspace_zone, vm);
294                 return (NULL);
295         }
296         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298         vm->vm_refcnt = 1;
299         vm->vm_shm = NULL;
300         vm->vm_swrss = 0;
301         vm->vm_tsize = 0;
302         vm->vm_dsize = 0;
303         vm->vm_ssize = 0;
304         vm->vm_taddr = 0;
305         vm->vm_daddr = 0;
306         vm->vm_maxsaddr = 0;
307         return (vm);
308 }
309
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314
315         PROC_LOCK(p);
316         racct_set(p, RACCT_DATA, 0);
317         racct_set(p, RACCT_STACK, 0);
318         racct_set(p, RACCT_RSS, 0);
319         racct_set(p, RACCT_MEMLOCK, 0);
320         racct_set(p, RACCT_VMEM, 0);
321         PROC_UNLOCK(p);
322 }
323 #endif
324
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328
329         CTR1(KTR_VM, "vmspace_free: %p", vm);
330
331         /*
332          * Make sure any SysV shm is freed, it might not have been in
333          * exit1().
334          */
335         shmexit(vm);
336
337         /*
338          * Lock the map, to wait out all other references to it.
339          * Delete all of the mappings and pages they hold, then call
340          * the pmap module to reclaim anything left.
341          */
342         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
343             vm_map_max(&vm->vm_map));
344
345         pmap_release(vmspace_pmap(vm));
346         vm->vm_map.pmap = NULL;
347         uma_zfree(vmspace_zone, vm);
348 }
349
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353
354         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355             "vmspace_free() called");
356
357         if (vm->vm_refcnt == 0)
358                 panic("vmspace_free: attempt to free already freed vmspace");
359
360         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361                 vmspace_dofree(vm);
362 }
363
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367         struct vmspace *vm;
368
369         PROC_VMSPACE_LOCK(p);
370         vm = p->p_vmspace;
371         p->p_vmspace = NULL;
372         PROC_VMSPACE_UNLOCK(p);
373         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374         vmspace_free(vm);
375 }
376
377 void
378 vmspace_exit(struct thread *td)
379 {
380         int refcnt;
381         struct vmspace *vm;
382         struct proc *p;
383
384         /*
385          * Release user portion of address space.
386          * This releases references to vnodes,
387          * which could cause I/O if the file has been unlinked.
388          * Need to do this early enough that we can still sleep.
389          *
390          * The last exiting process to reach this point releases as
391          * much of the environment as it can. vmspace_dofree() is the
392          * slower fallback in case another process had a temporary
393          * reference to the vmspace.
394          */
395
396         p = td->td_proc;
397         vm = p->p_vmspace;
398         atomic_add_int(&vmspace0.vm_refcnt, 1);
399         do {
400                 refcnt = vm->vm_refcnt;
401                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402                         /* Switch now since other proc might free vmspace */
403                         PROC_VMSPACE_LOCK(p);
404                         p->p_vmspace = &vmspace0;
405                         PROC_VMSPACE_UNLOCK(p);
406                         pmap_activate(td);
407                 }
408         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409         if (refcnt == 1) {
410                 if (p->p_vmspace != vm) {
411                         /* vmspace not yet freed, switch back */
412                         PROC_VMSPACE_LOCK(p);
413                         p->p_vmspace = vm;
414                         PROC_VMSPACE_UNLOCK(p);
415                         pmap_activate(td);
416                 }
417                 pmap_remove_pages(vmspace_pmap(vm));
418                 /* Switch now since this proc will free vmspace */
419                 PROC_VMSPACE_LOCK(p);
420                 p->p_vmspace = &vmspace0;
421                 PROC_VMSPACE_UNLOCK(p);
422                 pmap_activate(td);
423                 vmspace_dofree(vm);
424         }
425 #ifdef RACCT
426         if (racct_enable)
427                 vmspace_container_reset(p);
428 #endif
429 }
430
431 /* Acquire reference to vmspace owned by another process. */
432
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436         struct vmspace *vm;
437         int refcnt;
438
439         PROC_VMSPACE_LOCK(p);
440         vm = p->p_vmspace;
441         if (vm == NULL) {
442                 PROC_VMSPACE_UNLOCK(p);
443                 return (NULL);
444         }
445         do {
446                 refcnt = vm->vm_refcnt;
447                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
448                         PROC_VMSPACE_UNLOCK(p);
449                         return (NULL);
450                 }
451         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452         if (vm != p->p_vmspace) {
453                 PROC_VMSPACE_UNLOCK(p);
454                 vmspace_free(vm);
455                 return (NULL);
456         }
457         PROC_VMSPACE_UNLOCK(p);
458         return (vm);
459 }
460
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480         struct vmspace *oldvm;
481
482         /* XXX: Need some way to assert that this is an aio daemon. */
483
484         KASSERT(newvm->vm_refcnt > 0,
485             ("vmspace_switch_aio: newvm unreferenced"));
486
487         oldvm = curproc->p_vmspace;
488         if (oldvm == newvm)
489                 return;
490
491         /*
492          * Point to the new address space and refer to it.
493          */
494         curproc->p_vmspace = newvm;
495         atomic_add_int(&newvm->vm_refcnt, 1);
496
497         /* Activate the new mapping. */
498         pmap_activate(curthread);
499
500         /* Remove the daemon's reference to the old address space. */
501         KASSERT(oldvm->vm_refcnt > 1,
502             ("vmspace_switch_aio: oldvm dropping last reference"));
503         vmspace_free(oldvm);
504 }
505
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509
510         if (map->system_map)
511                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
512         else
513                 sx_xlock_(&map->lock, file, line);
514         map->timestamp++;
515 }
516
517 static void
518 vm_map_process_deferred(void)
519 {
520         struct thread *td;
521         vm_map_entry_t entry, next;
522         vm_object_t object;
523
524         td = curthread;
525         entry = td->td_map_def_user;
526         td->td_map_def_user = NULL;
527         while (entry != NULL) {
528                 next = entry->next;
529                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530                         /*
531                          * Decrement the object's writemappings and
532                          * possibly the vnode's v_writecount.
533                          */
534                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535                             ("Submap with writecount"));
536                         object = entry->object.vm_object;
537                         KASSERT(object != NULL, ("No object for writecount"));
538                         vnode_pager_release_writecount(object, entry->start,
539                             entry->end);
540                 }
541                 vm_map_entry_deallocate(entry, FALSE);
542                 entry = next;
543         }
544 }
545
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549
550         if (map->system_map)
551                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552         else {
553                 sx_xunlock_(&map->lock, file, line);
554                 vm_map_process_deferred();
555         }
556 }
557
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561
562         if (map->system_map)
563                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
564         else
565                 sx_slock_(&map->lock, file, line);
566 }
567
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571
572         if (map->system_map)
573                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574         else {
575                 sx_sunlock_(&map->lock, file, line);
576                 vm_map_process_deferred();
577         }
578 }
579
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583         int error;
584
585         error = map->system_map ?
586             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587             !sx_try_xlock_(&map->lock, file, line);
588         if (error == 0)
589                 map->timestamp++;
590         return (error == 0);
591 }
592
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596         int error;
597
598         error = map->system_map ?
599             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600             !sx_try_slock_(&map->lock, file, line);
601         return (error == 0);
602 }
603
604 /*
605  *      _vm_map_lock_upgrade:   [ internal use only ]
606  *
607  *      Tries to upgrade a read (shared) lock on the specified map to a write
608  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *      returned without a read or write lock held.
611  *
612  *      Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617         unsigned int last_timestamp;
618
619         if (map->system_map) {
620                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621         } else {
622                 if (!sx_try_upgrade_(&map->lock, file, line)) {
623                         last_timestamp = map->timestamp;
624                         sx_sunlock_(&map->lock, file, line);
625                         vm_map_process_deferred();
626                         /*
627                          * If the map's timestamp does not change while the
628                          * map is unlocked, then the upgrade succeeds.
629                          */
630                         sx_xlock_(&map->lock, file, line);
631                         if (last_timestamp != map->timestamp) {
632                                 sx_xunlock_(&map->lock, file, line);
633                                 return (1);
634                         }
635                 }
636         }
637         map->timestamp++;
638         return (0);
639 }
640
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644
645         if (map->system_map) {
646                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647         } else
648                 sx_downgrade_(&map->lock, file, line);
649 }
650
651 /*
652  *      vm_map_locked:
653  *
654  *      Returns a non-zero value if the caller holds a write (exclusive) lock
655  *      on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660
661         if (map->system_map)
662                 return (mtx_owned(&map->system_mtx));
663         else
664                 return (sx_xlocked(&map->lock));
665 }
666
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671
672         if (map->system_map)
673                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674         else
675                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677
678 #define VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define VM_MAP_ASSERT_LOCKED(map)
682 #endif
683
684 /*
685  *      _vm_map_unlock_and_wait:
686  *
687  *      Atomically releases the lock on the specified map and puts the calling
688  *      thread to sleep.  The calling thread will remain asleep until either
689  *      vm_map_wakeup() is performed on the map or the specified timeout is
690  *      exceeded.
691  *
692  *      WARNING!  This function does not perform deferred deallocations of
693  *      objects and map entries.  Therefore, the calling thread is expected to
694  *      reacquire the map lock after reawakening and later perform an ordinary
695  *      unlock operation, such as vm_map_unlock(), before completing its
696  *      operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701
702         mtx_lock(&map_sleep_mtx);
703         if (map->system_map)
704                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705         else
706                 sx_xunlock_(&map->lock, file, line);
707         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708             timo));
709 }
710
711 /*
712  *      vm_map_wakeup:
713  *
714  *      Awaken any threads that have slept on the map using
715  *      vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720
721         /*
722          * Acquire and release map_sleep_mtx to prevent a wakeup()
723          * from being performed (and lost) between the map unlock
724          * and the msleep() in _vm_map_unlock_and_wait().
725          */
726         mtx_lock(&map_sleep_mtx);
727         mtx_unlock(&map_sleep_mtx);
728         wakeup(&map->root);
729 }
730
731 void
732 vm_map_busy(vm_map_t map)
733 {
734
735         VM_MAP_ASSERT_LOCKED(map);
736         map->busy++;
737 }
738
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742
743         VM_MAP_ASSERT_LOCKED(map);
744         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747                 wakeup(&map->busy);
748         }
749 }
750
751 void 
752 vm_map_wait_busy(vm_map_t map)
753 {
754
755         VM_MAP_ASSERT_LOCKED(map);
756         while (map->busy) {
757                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758                 if (map->system_map)
759                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760                 else
761                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762         }
763         map->timestamp++;
764 }
765
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769         return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771
772 /*
773  *      vm_map_create:
774  *
775  *      Creates and returns a new empty VM map with
776  *      the given physical map structure, and having
777  *      the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782         vm_map_t result;
783
784         result = uma_zalloc(mapzone, M_WAITOK);
785         CTR1(KTR_VM, "vm_map_create: %p", result);
786         _vm_map_init(result, pmap, min, max);
787         return (result);
788 }
789
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797
798         map->header.next = map->header.prev = &map->header;
799         map->header.eflags = MAP_ENTRY_HEADER;
800         map->needs_wakeup = FALSE;
801         map->system_map = 0;
802         map->pmap = pmap;
803         map->header.end = min;
804         map->header.start = max;
805         map->flags = 0;
806         map->root = NULL;
807         map->timestamp = 0;
808         map->busy = 0;
809 }
810
811 void
812 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
813 {
814
815         _vm_map_init(map, pmap, min, max);
816         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
817         sx_init(&map->lock, "user map");
818 }
819
820 /*
821  *      vm_map_entry_dispose:   [ internal use only ]
822  *
823  *      Inverse of vm_map_entry_create.
824  */
825 static void
826 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
827 {
828         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
829 }
830
831 /*
832  *      vm_map_entry_create:    [ internal use only ]
833  *
834  *      Allocates a VM map entry for insertion.
835  *      No entry fields are filled in.
836  */
837 static vm_map_entry_t
838 vm_map_entry_create(vm_map_t map)
839 {
840         vm_map_entry_t new_entry;
841
842         if (map->system_map)
843                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
844         else
845                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
846         if (new_entry == NULL)
847                 panic("vm_map_entry_create: kernel resources exhausted");
848         return (new_entry);
849 }
850
851 /*
852  *      vm_map_entry_set_behavior:
853  *
854  *      Set the expected access behavior, either normal, random, or
855  *      sequential.
856  */
857 static inline void
858 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
859 {
860         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
861             (behavior & MAP_ENTRY_BEHAV_MASK);
862 }
863
864 /*
865  *      vm_map_entry_set_max_free:
866  *
867  *      Set the max_free field in a vm_map_entry.
868  */
869 static inline void
870 vm_map_entry_set_max_free(vm_map_entry_t entry)
871 {
872
873         entry->max_free = entry->adj_free;
874         if (entry->left != NULL && entry->left->max_free > entry->max_free)
875                 entry->max_free = entry->left->max_free;
876         if (entry->right != NULL && entry->right->max_free > entry->max_free)
877                 entry->max_free = entry->right->max_free;
878 }
879
880 /*
881  *      vm_map_entry_splay:
882  *
883  *      The Sleator and Tarjan top-down splay algorithm with the
884  *      following variation.  Max_free must be computed bottom-up, so
885  *      on the downward pass, maintain the left and right spines in
886  *      reverse order.  Then, make a second pass up each side to fix
887  *      the pointers and compute max_free.  The time bound is O(log n)
888  *      amortized.
889  *
890  *      The new root is the vm_map_entry containing "addr", or else an
891  *      adjacent entry (lower or higher) if addr is not in the tree.
892  *
893  *      The map must be locked, and leaves it so.
894  *
895  *      Returns: the new root.
896  */
897 static vm_map_entry_t
898 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
899 {
900         vm_map_entry_t llist, rlist;
901         vm_map_entry_t ltree, rtree;
902         vm_map_entry_t y;
903
904         /* Special case of empty tree. */
905         if (root == NULL)
906                 return (root);
907
908         /*
909          * Pass One: Splay down the tree until we find addr or a NULL
910          * pointer where addr would go.  llist and rlist are the two
911          * sides in reverse order (bottom-up), with llist linked by
912          * the right pointer and rlist linked by the left pointer in
913          * the vm_map_entry.  Wait until Pass Two to set max_free on
914          * the two spines.
915          */
916         llist = NULL;
917         rlist = NULL;
918         for (;;) {
919                 /* root is never NULL in here. */
920                 if (addr < root->start) {
921                         y = root->left;
922                         if (y == NULL)
923                                 break;
924                         if (addr < y->start && y->left != NULL) {
925                                 /* Rotate right and put y on rlist. */
926                                 root->left = y->right;
927                                 y->right = root;
928                                 vm_map_entry_set_max_free(root);
929                                 root = y->left;
930                                 y->left = rlist;
931                                 rlist = y;
932                         } else {
933                                 /* Put root on rlist. */
934                                 root->left = rlist;
935                                 rlist = root;
936                                 root = y;
937                         }
938                 } else if (addr >= root->end) {
939                         y = root->right;
940                         if (y == NULL)
941                                 break;
942                         if (addr >= y->end && y->right != NULL) {
943                                 /* Rotate left and put y on llist. */
944                                 root->right = y->left;
945                                 y->left = root;
946                                 vm_map_entry_set_max_free(root);
947                                 root = y->right;
948                                 y->right = llist;
949                                 llist = y;
950                         } else {
951                                 /* Put root on llist. */
952                                 root->right = llist;
953                                 llist = root;
954                                 root = y;
955                         }
956                 } else
957                         break;
958         }
959
960         /*
961          * Pass Two: Walk back up the two spines, flip the pointers
962          * and set max_free.  The subtrees of the root go at the
963          * bottom of llist and rlist.
964          */
965         ltree = root->left;
966         while (llist != NULL) {
967                 y = llist->right;
968                 llist->right = ltree;
969                 vm_map_entry_set_max_free(llist);
970                 ltree = llist;
971                 llist = y;
972         }
973         rtree = root->right;
974         while (rlist != NULL) {
975                 y = rlist->left;
976                 rlist->left = rtree;
977                 vm_map_entry_set_max_free(rlist);
978                 rtree = rlist;
979                 rlist = y;
980         }
981
982         /*
983          * Final assembly: add ltree and rtree as subtrees of root.
984          */
985         root->left = ltree;
986         root->right = rtree;
987         vm_map_entry_set_max_free(root);
988
989         return (root);
990 }
991
992 /*
993  *      vm_map_entry_{un,}link:
994  *
995  *      Insert/remove entries from maps.
996  */
997 static void
998 vm_map_entry_link(vm_map_t map,
999                   vm_map_entry_t after_where,
1000                   vm_map_entry_t entry)
1001 {
1002
1003         CTR4(KTR_VM,
1004             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1005             map->nentries, entry, after_where);
1006         VM_MAP_ASSERT_LOCKED(map);
1007         KASSERT(after_where->end <= entry->start,
1008             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1009             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1010         KASSERT(entry->end <= after_where->next->start,
1011             ("vm_map_entry_link: new end %jx next start %jx overlap",
1012             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1013
1014         map->nentries++;
1015         entry->prev = after_where;
1016         entry->next = after_where->next;
1017         entry->next->prev = entry;
1018         after_where->next = entry;
1019
1020         if (after_where != &map->header) {
1021                 if (after_where != map->root)
1022                         vm_map_entry_splay(after_where->start, map->root);
1023                 entry->right = after_where->right;
1024                 entry->left = after_where;
1025                 after_where->right = NULL;
1026                 after_where->adj_free = entry->start - after_where->end;
1027                 vm_map_entry_set_max_free(after_where);
1028         } else {
1029                 entry->right = map->root;
1030                 entry->left = NULL;
1031         }
1032         entry->adj_free = entry->next->start - entry->end;
1033         vm_map_entry_set_max_free(entry);
1034         map->root = entry;
1035 }
1036
1037 static void
1038 vm_map_entry_unlink(vm_map_t map,
1039                     vm_map_entry_t entry)
1040 {
1041         vm_map_entry_t next, prev, root;
1042
1043         VM_MAP_ASSERT_LOCKED(map);
1044         if (entry != map->root)
1045                 vm_map_entry_splay(entry->start, map->root);
1046         if (entry->left == NULL)
1047                 root = entry->right;
1048         else {
1049                 root = vm_map_entry_splay(entry->start, entry->left);
1050                 root->right = entry->right;
1051                 root->adj_free = entry->next->start - root->end;
1052                 vm_map_entry_set_max_free(root);
1053         }
1054         map->root = root;
1055
1056         prev = entry->prev;
1057         next = entry->next;
1058         next->prev = prev;
1059         prev->next = next;
1060         map->nentries--;
1061         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1062             map->nentries, entry);
1063 }
1064
1065 /*
1066  *      vm_map_entry_resize_free:
1067  *
1068  *      Recompute the amount of free space following a vm_map_entry
1069  *      and propagate that value up the tree.  Call this function after
1070  *      resizing a map entry in-place, that is, without a call to
1071  *      vm_map_entry_link() or _unlink().
1072  *
1073  *      The map must be locked, and leaves it so.
1074  */
1075 static void
1076 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1077 {
1078
1079         /*
1080          * Using splay trees without parent pointers, propagating
1081          * max_free up the tree is done by moving the entry to the
1082          * root and making the change there.
1083          */
1084         if (entry != map->root)
1085                 map->root = vm_map_entry_splay(entry->start, map->root);
1086
1087         entry->adj_free = entry->next->start - entry->end;
1088         vm_map_entry_set_max_free(entry);
1089 }
1090
1091 /*
1092  *      vm_map_lookup_entry:    [ internal use only ]
1093  *
1094  *      Finds the map entry containing (or
1095  *      immediately preceding) the specified address
1096  *      in the given map; the entry is returned
1097  *      in the "entry" parameter.  The boolean
1098  *      result indicates whether the address is
1099  *      actually contained in the map.
1100  */
1101 boolean_t
1102 vm_map_lookup_entry(
1103         vm_map_t map,
1104         vm_offset_t address,
1105         vm_map_entry_t *entry)  /* OUT */
1106 {
1107         vm_map_entry_t cur;
1108         boolean_t locked;
1109
1110         /*
1111          * If the map is empty, then the map entry immediately preceding
1112          * "address" is the map's header.
1113          */
1114         cur = map->root;
1115         if (cur == NULL)
1116                 *entry = &map->header;
1117         else if (address >= cur->start && cur->end > address) {
1118                 *entry = cur;
1119                 return (TRUE);
1120         } else if ((locked = vm_map_locked(map)) ||
1121             sx_try_upgrade(&map->lock)) {
1122                 /*
1123                  * Splay requires a write lock on the map.  However, it only
1124                  * restructures the binary search tree; it does not otherwise
1125                  * change the map.  Thus, the map's timestamp need not change
1126                  * on a temporary upgrade.
1127                  */
1128                 map->root = cur = vm_map_entry_splay(address, cur);
1129                 if (!locked)
1130                         sx_downgrade(&map->lock);
1131
1132                 /*
1133                  * If "address" is contained within a map entry, the new root
1134                  * is that map entry.  Otherwise, the new root is a map entry
1135                  * immediately before or after "address".
1136                  */
1137                 if (address >= cur->start) {
1138                         *entry = cur;
1139                         if (cur->end > address)
1140                                 return (TRUE);
1141                 } else
1142                         *entry = cur->prev;
1143         } else
1144                 /*
1145                  * Since the map is only locked for read access, perform a
1146                  * standard binary search tree lookup for "address".
1147                  */
1148                 for (;;) {
1149                         if (address < cur->start) {
1150                                 if (cur->left == NULL) {
1151                                         *entry = cur->prev;
1152                                         break;
1153                                 }
1154                                 cur = cur->left;
1155                         } else if (cur->end > address) {
1156                                 *entry = cur;
1157                                 return (TRUE);
1158                         } else {
1159                                 if (cur->right == NULL) {
1160                                         *entry = cur;
1161                                         break;
1162                                 }
1163                                 cur = cur->right;
1164                         }
1165                 }
1166         return (FALSE);
1167 }
1168
1169 /*
1170  *      vm_map_insert:
1171  *
1172  *      Inserts the given whole VM object into the target
1173  *      map at the specified address range.  The object's
1174  *      size should match that of the address range.
1175  *
1176  *      Requires that the map be locked, and leaves it so.
1177  *
1178  *      If object is non-NULL, ref count must be bumped by caller
1179  *      prior to making call to account for the new entry.
1180  */
1181 int
1182 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1183     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1184 {
1185         vm_map_entry_t new_entry, prev_entry, temp_entry;
1186         struct ucred *cred;
1187         vm_eflags_t protoeflags;
1188         vm_inherit_t inheritance;
1189
1190         VM_MAP_ASSERT_LOCKED(map);
1191         KASSERT(object != kernel_object ||
1192             (cow & MAP_COPY_ON_WRITE) == 0,
1193             ("vm_map_insert: kernel object and COW"));
1194         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1195             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1196         KASSERT((prot & ~max) == 0,
1197             ("prot %#x is not subset of max_prot %#x", prot, max));
1198
1199         /*
1200          * Check that the start and end points are not bogus.
1201          */
1202         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1203             start >= end)
1204                 return (KERN_INVALID_ADDRESS);
1205
1206         /*
1207          * Find the entry prior to the proposed starting address; if it's part
1208          * of an existing entry, this range is bogus.
1209          */
1210         if (vm_map_lookup_entry(map, start, &temp_entry))
1211                 return (KERN_NO_SPACE);
1212
1213         prev_entry = temp_entry;
1214
1215         /*
1216          * Assert that the next entry doesn't overlap the end point.
1217          */
1218         if (prev_entry->next->start < end)
1219                 return (KERN_NO_SPACE);
1220
1221         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1222             max != VM_PROT_NONE))
1223                 return (KERN_INVALID_ARGUMENT);
1224
1225         protoeflags = 0;
1226         if (cow & MAP_COPY_ON_WRITE)
1227                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1228         if (cow & MAP_NOFAULT)
1229                 protoeflags |= MAP_ENTRY_NOFAULT;
1230         if (cow & MAP_DISABLE_SYNCER)
1231                 protoeflags |= MAP_ENTRY_NOSYNC;
1232         if (cow & MAP_DISABLE_COREDUMP)
1233                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1234         if (cow & MAP_STACK_GROWS_DOWN)
1235                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1236         if (cow & MAP_STACK_GROWS_UP)
1237                 protoeflags |= MAP_ENTRY_GROWS_UP;
1238         if (cow & MAP_VN_WRITECOUNT)
1239                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1240         if ((cow & MAP_CREATE_GUARD) != 0)
1241                 protoeflags |= MAP_ENTRY_GUARD;
1242         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1243                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1244         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1245                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1246         if (cow & MAP_INHERIT_SHARE)
1247                 inheritance = VM_INHERIT_SHARE;
1248         else
1249                 inheritance = VM_INHERIT_DEFAULT;
1250
1251         cred = NULL;
1252         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1253                 goto charged;
1254         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1255             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1256                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1257                         return (KERN_RESOURCE_SHORTAGE);
1258                 KASSERT(object == NULL ||
1259                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1260                     object->cred == NULL,
1261                     ("overcommit: vm_map_insert o %p", object));
1262                 cred = curthread->td_ucred;
1263         }
1264
1265 charged:
1266         /* Expand the kernel pmap, if necessary. */
1267         if (map == kernel_map && end > kernel_vm_end)
1268                 pmap_growkernel(end);
1269         if (object != NULL) {
1270                 /*
1271                  * OBJ_ONEMAPPING must be cleared unless this mapping
1272                  * is trivially proven to be the only mapping for any
1273                  * of the object's pages.  (Object granularity
1274                  * reference counting is insufficient to recognize
1275                  * aliases with precision.)
1276                  */
1277                 VM_OBJECT_WLOCK(object);
1278                 if (object->ref_count > 1 || object->shadow_count != 0)
1279                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1280                 VM_OBJECT_WUNLOCK(object);
1281         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1282             protoeflags &&
1283             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1284             prev_entry->end == start && (prev_entry->cred == cred ||
1285             (prev_entry->object.vm_object != NULL &&
1286             prev_entry->object.vm_object->cred == cred)) &&
1287             vm_object_coalesce(prev_entry->object.vm_object,
1288             prev_entry->offset,
1289             (vm_size_t)(prev_entry->end - prev_entry->start),
1290             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1291             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1292                 /*
1293                  * We were able to extend the object.  Determine if we
1294                  * can extend the previous map entry to include the
1295                  * new range as well.
1296                  */
1297                 if (prev_entry->inheritance == inheritance &&
1298                     prev_entry->protection == prot &&
1299                     prev_entry->max_protection == max &&
1300                     prev_entry->wired_count == 0) {
1301                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1302                             0, ("prev_entry %p has incoherent wiring",
1303                             prev_entry));
1304                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1305                                 map->size += end - prev_entry->end;
1306                         prev_entry->end = end;
1307                         vm_map_entry_resize_free(map, prev_entry);
1308                         vm_map_simplify_entry(map, prev_entry);
1309                         return (KERN_SUCCESS);
1310                 }
1311
1312                 /*
1313                  * If we can extend the object but cannot extend the
1314                  * map entry, we have to create a new map entry.  We
1315                  * must bump the ref count on the extended object to
1316                  * account for it.  object may be NULL.
1317                  */
1318                 object = prev_entry->object.vm_object;
1319                 offset = prev_entry->offset +
1320                     (prev_entry->end - prev_entry->start);
1321                 vm_object_reference(object);
1322                 if (cred != NULL && object != NULL && object->cred != NULL &&
1323                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1324                         /* Object already accounts for this uid. */
1325                         cred = NULL;
1326                 }
1327         }
1328         if (cred != NULL)
1329                 crhold(cred);
1330
1331         /*
1332          * Create a new entry
1333          */
1334         new_entry = vm_map_entry_create(map);
1335         new_entry->start = start;
1336         new_entry->end = end;
1337         new_entry->cred = NULL;
1338
1339         new_entry->eflags = protoeflags;
1340         new_entry->object.vm_object = object;
1341         new_entry->offset = offset;
1342
1343         new_entry->inheritance = inheritance;
1344         new_entry->protection = prot;
1345         new_entry->max_protection = max;
1346         new_entry->wired_count = 0;
1347         new_entry->wiring_thread = NULL;
1348         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1349         new_entry->next_read = start;
1350
1351         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1352             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1353         new_entry->cred = cred;
1354
1355         /*
1356          * Insert the new entry into the list
1357          */
1358         vm_map_entry_link(map, prev_entry, new_entry);
1359         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1360                 map->size += new_entry->end - new_entry->start;
1361
1362         /*
1363          * Try to coalesce the new entry with both the previous and next
1364          * entries in the list.  Previously, we only attempted to coalesce
1365          * with the previous entry when object is NULL.  Here, we handle the
1366          * other cases, which are less common.
1367          */
1368         vm_map_simplify_entry(map, new_entry);
1369
1370         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1371                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1372                     end - start, cow & MAP_PREFAULT_PARTIAL);
1373         }
1374
1375         return (KERN_SUCCESS);
1376 }
1377
1378 /*
1379  *      vm_map_findspace:
1380  *
1381  *      Find the first fit (lowest VM address) for "length" free bytes
1382  *      beginning at address >= start in the given map.
1383  *
1384  *      In a vm_map_entry, "adj_free" is the amount of free space
1385  *      adjacent (higher address) to this entry, and "max_free" is the
1386  *      maximum amount of contiguous free space in its subtree.  This
1387  *      allows finding a free region in one path down the tree, so
1388  *      O(log n) amortized with splay trees.
1389  *
1390  *      The map must be locked, and leaves it so.
1391  *
1392  *      Returns: 0 on success, and starting address in *addr,
1393  *               1 if insufficient space.
1394  */
1395 int
1396 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1397     vm_offset_t *addr)  /* OUT */
1398 {
1399         vm_map_entry_t entry;
1400         vm_offset_t st;
1401
1402         /*
1403          * Request must fit within min/max VM address and must avoid
1404          * address wrap.
1405          */
1406         start = MAX(start, vm_map_min(map));
1407         if (start + length > vm_map_max(map) || start + length < start)
1408                 return (1);
1409
1410         /* Empty tree means wide open address space. */
1411         if (map->root == NULL) {
1412                 *addr = start;
1413                 return (0);
1414         }
1415
1416         /*
1417          * After splay, if start comes before root node, then there
1418          * must be a gap from start to the root.
1419          */
1420         map->root = vm_map_entry_splay(start, map->root);
1421         if (start + length <= map->root->start) {
1422                 *addr = start;
1423                 return (0);
1424         }
1425
1426         /*
1427          * Root is the last node that might begin its gap before
1428          * start, and this is the last comparison where address
1429          * wrap might be a problem.
1430          */
1431         st = (start > map->root->end) ? start : map->root->end;
1432         if (length <= map->root->end + map->root->adj_free - st) {
1433                 *addr = st;
1434                 return (0);
1435         }
1436
1437         /* With max_free, can immediately tell if no solution. */
1438         entry = map->root->right;
1439         if (entry == NULL || length > entry->max_free)
1440                 return (1);
1441
1442         /*
1443          * Search the right subtree in the order: left subtree, root,
1444          * right subtree (first fit).  The previous splay implies that
1445          * all regions in the right subtree have addresses > start.
1446          */
1447         while (entry != NULL) {
1448                 if (entry->left != NULL && entry->left->max_free >= length)
1449                         entry = entry->left;
1450                 else if (entry->adj_free >= length) {
1451                         *addr = entry->end;
1452                         return (0);
1453                 } else
1454                         entry = entry->right;
1455         }
1456
1457         /* Can't get here, so panic if we do. */
1458         panic("vm_map_findspace: max_free corrupt");
1459 }
1460
1461 int
1462 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1463     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1464     vm_prot_t max, int cow)
1465 {
1466         vm_offset_t end;
1467         int result;
1468
1469         end = start + length;
1470         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1471             object == NULL,
1472             ("vm_map_fixed: non-NULL backing object for stack"));
1473         vm_map_lock(map);
1474         VM_MAP_RANGE_CHECK(map, start, end);
1475         if ((cow & MAP_CHECK_EXCL) == 0)
1476                 vm_map_delete(map, start, end);
1477         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1478                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1479                     prot, max, cow);
1480         } else {
1481                 result = vm_map_insert(map, object, offset, start, end,
1482                     prot, max, cow);
1483         }
1484         vm_map_unlock(map);
1485         return (result);
1486 }
1487
1488 /*
1489  * Searches for the specified amount of free space in the given map with the
1490  * specified alignment.  Performs an address-ordered, first-fit search from
1491  * the given address "*addr", with an optional upper bound "max_addr".  If the
1492  * parameter "alignment" is zero, then the alignment is computed from the
1493  * given (object, offset) pair so as to enable the greatest possible use of
1494  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1495  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1496  *
1497  * The map must be locked.  Initially, there must be at least "length" bytes
1498  * of free space at the given address.
1499  */
1500 static int
1501 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1502     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1503     vm_offset_t alignment)
1504 {
1505         vm_offset_t aligned_addr, free_addr;
1506
1507         VM_MAP_ASSERT_LOCKED(map);
1508         free_addr = *addr;
1509         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1510             free_addr == *addr, ("caller provided insufficient free space"));
1511         for (;;) {
1512                 /*
1513                  * At the start of every iteration, the free space at address
1514                  * "*addr" is at least "length" bytes.
1515                  */
1516                 if (alignment == 0)
1517                         pmap_align_superpage(object, offset, addr, length);
1518                 else if ((*addr & (alignment - 1)) != 0) {
1519                         *addr &= ~(alignment - 1);
1520                         *addr += alignment;
1521                 }
1522                 aligned_addr = *addr;
1523                 if (aligned_addr == free_addr) {
1524                         /*
1525                          * Alignment did not change "*addr", so "*addr" must
1526                          * still provide sufficient free space.
1527                          */
1528                         return (KERN_SUCCESS);
1529                 }
1530
1531                 /*
1532                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1533                  * be a valid address, in which case vm_map_findspace() cannot
1534                  * be relied upon to fail.
1535                  */
1536                 if (aligned_addr < free_addr ||
1537                     vm_map_findspace(map, aligned_addr, length, addr) ||
1538                     (max_addr != 0 && *addr + length > max_addr))
1539                         return (KERN_NO_SPACE);
1540                 free_addr = *addr;
1541                 if (free_addr == aligned_addr) {
1542                         /*
1543                          * If a successful call to vm_map_findspace() did not
1544                          * change "*addr", then "*addr" must still be aligned
1545                          * and provide sufficient free space.
1546                          */
1547                         return (KERN_SUCCESS);
1548                 }
1549         }
1550 }
1551
1552 /*
1553  *      vm_map_find finds an unallocated region in the target address
1554  *      map with the given length.  The search is defined to be
1555  *      first-fit from the specified address; the region found is
1556  *      returned in the same parameter.
1557  *
1558  *      If object is non-NULL, ref count must be bumped by caller
1559  *      prior to making call to account for the new entry.
1560  */
1561 int
1562 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1563             vm_offset_t *addr,  /* IN/OUT */
1564             vm_size_t length, vm_offset_t max_addr, int find_space,
1565             vm_prot_t prot, vm_prot_t max, int cow)
1566 {
1567         vm_offset_t alignment, min_addr;
1568         int rv;
1569
1570         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1571             object == NULL,
1572             ("vm_map_find: non-NULL backing object for stack"));
1573         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1574             (object->flags & OBJ_COLORED) == 0))
1575                 find_space = VMFS_ANY_SPACE;
1576         if (find_space >> 8 != 0) {
1577                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1578                 alignment = (vm_offset_t)1 << (find_space >> 8);
1579         } else
1580                 alignment = 0;
1581         vm_map_lock(map);
1582         if (find_space != VMFS_NO_SPACE) {
1583                 KASSERT(find_space == VMFS_ANY_SPACE ||
1584                     find_space == VMFS_OPTIMAL_SPACE ||
1585                     find_space == VMFS_SUPER_SPACE ||
1586                     alignment != 0, ("unexpected VMFS flag"));
1587                 min_addr = *addr;
1588 again:
1589                 if (vm_map_findspace(map, min_addr, length, addr) ||
1590                     (max_addr != 0 && *addr + length > max_addr)) {
1591                         rv = KERN_NO_SPACE;
1592                         goto done;
1593                 }
1594                 if (find_space != VMFS_ANY_SPACE &&
1595                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1596                     max_addr, alignment)) != KERN_SUCCESS) {
1597                         if (find_space == VMFS_OPTIMAL_SPACE) {
1598                                 find_space = VMFS_ANY_SPACE;
1599                                 goto again;
1600                         }
1601                         goto done;
1602                 }
1603         }
1604         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1605                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1606                     max, cow);
1607         } else {
1608                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1609                     prot, max, cow);
1610         }
1611 done:
1612         vm_map_unlock(map);
1613         return (rv);
1614 }
1615
1616 /*
1617  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1618  *      additional parameter (min_addr) and treats the given address
1619  *      (*addr) differently.  Specifically, it treats *addr as a hint
1620  *      and not as the minimum address where the mapping is created.
1621  *
1622  *      This function works in two phases.  First, it tries to
1623  *      allocate above the hint.  If that fails and the hint is
1624  *      greater than min_addr, it performs a second pass, replacing
1625  *      the hint with min_addr as the minimum address for the
1626  *      allocation.
1627  */
1628 int
1629 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1630     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1631     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1632     int cow)
1633 {
1634         vm_offset_t hint;
1635         int rv;
1636
1637         hint = *addr;
1638         for (;;) {
1639                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1640                     find_space, prot, max, cow);
1641                 if (rv == KERN_SUCCESS || min_addr >= hint)
1642                         return (rv);
1643                 *addr = hint = min_addr;
1644         }
1645 }
1646
1647 /*
1648  * A map entry with any of the following flags set must not be merged with
1649  * another entry.
1650  */
1651 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1652             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1653
1654 static bool
1655 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1656 {
1657
1658         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1659             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1660             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1661             prev, entry));
1662         return (prev->end == entry->start &&
1663             prev->object.vm_object == entry->object.vm_object &&
1664             (prev->object.vm_object == NULL ||
1665             prev->offset + (prev->end - prev->start) == entry->offset) &&
1666             prev->eflags == entry->eflags &&
1667             prev->protection == entry->protection &&
1668             prev->max_protection == entry->max_protection &&
1669             prev->inheritance == entry->inheritance &&
1670             prev->wired_count == entry->wired_count &&
1671             prev->cred == entry->cred);
1672 }
1673
1674 static void
1675 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1676 {
1677
1678         /*
1679          * If the backing object is a vnode object, vm_object_deallocate()
1680          * calls vrele().  However, vrele() does not lock the vnode because
1681          * the vnode has additional references.  Thus, the map lock can be
1682          * kept without causing a lock-order reversal with the vnode lock.
1683          *
1684          * Since we count the number of virtual page mappings in
1685          * object->un_pager.vnp.writemappings, the writemappings value
1686          * should not be adjusted when the entry is disposed of.
1687          */
1688         if (entry->object.vm_object != NULL)
1689                 vm_object_deallocate(entry->object.vm_object);
1690         if (entry->cred != NULL)
1691                 crfree(entry->cred);
1692         vm_map_entry_dispose(map, entry);
1693 }
1694
1695 /*
1696  *      vm_map_simplify_entry:
1697  *
1698  *      Simplify the given map entry by merging with either neighbor.  This
1699  *      routine also has the ability to merge with both neighbors.
1700  *
1701  *      The map must be locked.
1702  *
1703  *      This routine guarantees that the passed entry remains valid (though
1704  *      possibly extended).  When merging, this routine may delete one or
1705  *      both neighbors.
1706  */
1707 void
1708 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1709 {
1710         vm_map_entry_t next, prev;
1711
1712         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1713                 return;
1714         prev = entry->prev;
1715         if (vm_map_mergeable_neighbors(prev, entry)) {
1716                 vm_map_entry_unlink(map, prev);
1717                 entry->start = prev->start;
1718                 entry->offset = prev->offset;
1719                 if (entry->prev != &map->header)
1720                         vm_map_entry_resize_free(map, entry->prev);
1721                 vm_map_merged_neighbor_dispose(map, prev);
1722         }
1723         next = entry->next;
1724         if (vm_map_mergeable_neighbors(entry, next)) {
1725                 vm_map_entry_unlink(map, next);
1726                 entry->end = next->end;
1727                 vm_map_entry_resize_free(map, entry);
1728                 vm_map_merged_neighbor_dispose(map, next);
1729         }
1730 }
1731
1732 /*
1733  *      vm_map_clip_start:      [ internal use only ]
1734  *
1735  *      Asserts that the given entry begins at or after
1736  *      the specified address; if necessary,
1737  *      it splits the entry into two.
1738  */
1739 #define vm_map_clip_start(map, entry, startaddr) \
1740 { \
1741         if (startaddr > entry->start) \
1742                 _vm_map_clip_start(map, entry, startaddr); \
1743 }
1744
1745 /*
1746  *      This routine is called only when it is known that
1747  *      the entry must be split.
1748  */
1749 static void
1750 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1751 {
1752         vm_map_entry_t new_entry;
1753
1754         VM_MAP_ASSERT_LOCKED(map);
1755         KASSERT(entry->end > start && entry->start < start,
1756             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1757
1758         /*
1759          * Split off the front portion -- note that we must insert the new
1760          * entry BEFORE this one, so that this entry has the specified
1761          * starting address.
1762          */
1763         vm_map_simplify_entry(map, entry);
1764
1765         /*
1766          * If there is no object backing this entry, we might as well create
1767          * one now.  If we defer it, an object can get created after the map
1768          * is clipped, and individual objects will be created for the split-up
1769          * map.  This is a bit of a hack, but is also about the best place to
1770          * put this improvement.
1771          */
1772         if (entry->object.vm_object == NULL && !map->system_map &&
1773             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1774                 vm_object_t object;
1775                 object = vm_object_allocate(OBJT_DEFAULT,
1776                                 atop(entry->end - entry->start));
1777                 entry->object.vm_object = object;
1778                 entry->offset = 0;
1779                 if (entry->cred != NULL) {
1780                         object->cred = entry->cred;
1781                         object->charge = entry->end - entry->start;
1782                         entry->cred = NULL;
1783                 }
1784         } else if (entry->object.vm_object != NULL &&
1785                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1786                    entry->cred != NULL) {
1787                 VM_OBJECT_WLOCK(entry->object.vm_object);
1788                 KASSERT(entry->object.vm_object->cred == NULL,
1789                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1790                 entry->object.vm_object->cred = entry->cred;
1791                 entry->object.vm_object->charge = entry->end - entry->start;
1792                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1793                 entry->cred = NULL;
1794         }
1795
1796         new_entry = vm_map_entry_create(map);
1797         *new_entry = *entry;
1798
1799         new_entry->end = start;
1800         entry->offset += (start - entry->start);
1801         entry->start = start;
1802         if (new_entry->cred != NULL)
1803                 crhold(entry->cred);
1804
1805         vm_map_entry_link(map, entry->prev, new_entry);
1806
1807         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1808                 vm_object_reference(new_entry->object.vm_object);
1809                 /*
1810                  * The object->un_pager.vnp.writemappings for the
1811                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1812                  * kept as is here.  The virtual pages are
1813                  * re-distributed among the clipped entries, so the sum is
1814                  * left the same.
1815                  */
1816         }
1817 }
1818
1819 /*
1820  *      vm_map_clip_end:        [ internal use only ]
1821  *
1822  *      Asserts that the given entry ends at or before
1823  *      the specified address; if necessary,
1824  *      it splits the entry into two.
1825  */
1826 #define vm_map_clip_end(map, entry, endaddr) \
1827 { \
1828         if ((endaddr) < (entry->end)) \
1829                 _vm_map_clip_end((map), (entry), (endaddr)); \
1830 }
1831
1832 /*
1833  *      This routine is called only when it is known that
1834  *      the entry must be split.
1835  */
1836 static void
1837 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1838 {
1839         vm_map_entry_t new_entry;
1840
1841         VM_MAP_ASSERT_LOCKED(map);
1842         KASSERT(entry->start < end && entry->end > end,
1843             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1844
1845         /*
1846          * If there is no object backing this entry, we might as well create
1847          * one now.  If we defer it, an object can get created after the map
1848          * is clipped, and individual objects will be created for the split-up
1849          * map.  This is a bit of a hack, but is also about the best place to
1850          * put this improvement.
1851          */
1852         if (entry->object.vm_object == NULL && !map->system_map &&
1853             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1854                 vm_object_t object;
1855                 object = vm_object_allocate(OBJT_DEFAULT,
1856                                 atop(entry->end - entry->start));
1857                 entry->object.vm_object = object;
1858                 entry->offset = 0;
1859                 if (entry->cred != NULL) {
1860                         object->cred = entry->cred;
1861                         object->charge = entry->end - entry->start;
1862                         entry->cred = NULL;
1863                 }
1864         } else if (entry->object.vm_object != NULL &&
1865                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1866                    entry->cred != NULL) {
1867                 VM_OBJECT_WLOCK(entry->object.vm_object);
1868                 KASSERT(entry->object.vm_object->cred == NULL,
1869                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1870                 entry->object.vm_object->cred = entry->cred;
1871                 entry->object.vm_object->charge = entry->end - entry->start;
1872                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1873                 entry->cred = NULL;
1874         }
1875
1876         /*
1877          * Create a new entry and insert it AFTER the specified entry
1878          */
1879         new_entry = vm_map_entry_create(map);
1880         *new_entry = *entry;
1881
1882         new_entry->start = entry->end = end;
1883         new_entry->offset += (end - entry->start);
1884         if (new_entry->cred != NULL)
1885                 crhold(entry->cred);
1886
1887         vm_map_entry_link(map, entry, new_entry);
1888
1889         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1890                 vm_object_reference(new_entry->object.vm_object);
1891         }
1892 }
1893
1894 /*
1895  *      vm_map_submap:          [ kernel use only ]
1896  *
1897  *      Mark the given range as handled by a subordinate map.
1898  *
1899  *      This range must have been created with vm_map_find,
1900  *      and no other operations may have been performed on this
1901  *      range prior to calling vm_map_submap.
1902  *
1903  *      Only a limited number of operations can be performed
1904  *      within this rage after calling vm_map_submap:
1905  *              vm_fault
1906  *      [Don't try vm_map_copy!]
1907  *
1908  *      To remove a submapping, one must first remove the
1909  *      range from the superior map, and then destroy the
1910  *      submap (if desired).  [Better yet, don't try it.]
1911  */
1912 int
1913 vm_map_submap(
1914         vm_map_t map,
1915         vm_offset_t start,
1916         vm_offset_t end,
1917         vm_map_t submap)
1918 {
1919         vm_map_entry_t entry;
1920         int result = KERN_INVALID_ARGUMENT;
1921
1922         vm_map_lock(map);
1923
1924         VM_MAP_RANGE_CHECK(map, start, end);
1925
1926         if (vm_map_lookup_entry(map, start, &entry)) {
1927                 vm_map_clip_start(map, entry, start);
1928         } else
1929                 entry = entry->next;
1930
1931         vm_map_clip_end(map, entry, end);
1932
1933         if ((entry->start == start) && (entry->end == end) &&
1934             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1935             (entry->object.vm_object == NULL)) {
1936                 entry->object.sub_map = submap;
1937                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1938                 result = KERN_SUCCESS;
1939         }
1940         vm_map_unlock(map);
1941
1942         return (result);
1943 }
1944
1945 /*
1946  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1947  */
1948 #define MAX_INIT_PT     96
1949
1950 /*
1951  *      vm_map_pmap_enter:
1952  *
1953  *      Preload the specified map's pmap with mappings to the specified
1954  *      object's memory-resident pages.  No further physical pages are
1955  *      allocated, and no further virtual pages are retrieved from secondary
1956  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1957  *      limited number of page mappings are created at the low-end of the
1958  *      specified address range.  (For this purpose, a superpage mapping
1959  *      counts as one page mapping.)  Otherwise, all resident pages within
1960  *      the specified address range are mapped.
1961  */
1962 static void
1963 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1964     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1965 {
1966         vm_offset_t start;
1967         vm_page_t p, p_start;
1968         vm_pindex_t mask, psize, threshold, tmpidx;
1969
1970         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1971                 return;
1972         VM_OBJECT_RLOCK(object);
1973         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1974                 VM_OBJECT_RUNLOCK(object);
1975                 VM_OBJECT_WLOCK(object);
1976                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1977                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1978                             size);
1979                         VM_OBJECT_WUNLOCK(object);
1980                         return;
1981                 }
1982                 VM_OBJECT_LOCK_DOWNGRADE(object);
1983         }
1984
1985         psize = atop(size);
1986         if (psize + pindex > object->size) {
1987                 if (object->size < pindex) {
1988                         VM_OBJECT_RUNLOCK(object);
1989                         return;
1990                 }
1991                 psize = object->size - pindex;
1992         }
1993
1994         start = 0;
1995         p_start = NULL;
1996         threshold = MAX_INIT_PT;
1997
1998         p = vm_page_find_least(object, pindex);
1999         /*
2000          * Assert: the variable p is either (1) the page with the
2001          * least pindex greater than or equal to the parameter pindex
2002          * or (2) NULL.
2003          */
2004         for (;
2005              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2006              p = TAILQ_NEXT(p, listq)) {
2007                 /*
2008                  * don't allow an madvise to blow away our really
2009                  * free pages allocating pv entries.
2010                  */
2011                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2012                     vm_page_count_severe()) ||
2013                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2014                     tmpidx >= threshold)) {
2015                         psize = tmpidx;
2016                         break;
2017                 }
2018                 if (p->valid == VM_PAGE_BITS_ALL) {
2019                         if (p_start == NULL) {
2020                                 start = addr + ptoa(tmpidx);
2021                                 p_start = p;
2022                         }
2023                         /* Jump ahead if a superpage mapping is possible. */
2024                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2025                             (pagesizes[p->psind] - 1)) == 0) {
2026                                 mask = atop(pagesizes[p->psind]) - 1;
2027                                 if (tmpidx + mask < psize &&
2028                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2029                                         p += mask;
2030                                         threshold += mask;
2031                                 }
2032                         }
2033                 } else if (p_start != NULL) {
2034                         pmap_enter_object(map->pmap, start, addr +
2035                             ptoa(tmpidx), p_start, prot);
2036                         p_start = NULL;
2037                 }
2038         }
2039         if (p_start != NULL)
2040                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2041                     p_start, prot);
2042         VM_OBJECT_RUNLOCK(object);
2043 }
2044
2045 /*
2046  *      vm_map_protect:
2047  *
2048  *      Sets the protection of the specified address
2049  *      region in the target map.  If "set_max" is
2050  *      specified, the maximum protection is to be set;
2051  *      otherwise, only the current protection is affected.
2052  */
2053 int
2054 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2055                vm_prot_t new_prot, boolean_t set_max)
2056 {
2057         vm_map_entry_t current, entry;
2058         vm_object_t obj;
2059         struct ucred *cred;
2060         vm_prot_t old_prot;
2061
2062         if (start == end)
2063                 return (KERN_SUCCESS);
2064
2065         vm_map_lock(map);
2066
2067         /*
2068          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2069          * need to fault pages into the map and will drop the map lock while
2070          * doing so, and the VM object may end up in an inconsistent state if we
2071          * update the protection on the map entry in between faults.
2072          */
2073         vm_map_wait_busy(map);
2074
2075         VM_MAP_RANGE_CHECK(map, start, end);
2076
2077         if (vm_map_lookup_entry(map, start, &entry)) {
2078                 vm_map_clip_start(map, entry, start);
2079         } else {
2080                 entry = entry->next;
2081         }
2082
2083         /*
2084          * Make a first pass to check for protection violations.
2085          */
2086         for (current = entry; current->start < end; current = current->next) {
2087                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2088                         continue;
2089                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2090                         vm_map_unlock(map);
2091                         return (KERN_INVALID_ARGUMENT);
2092                 }
2093                 if ((new_prot & current->max_protection) != new_prot) {
2094                         vm_map_unlock(map);
2095                         return (KERN_PROTECTION_FAILURE);
2096                 }
2097         }
2098
2099         /*
2100          * Do an accounting pass for private read-only mappings that
2101          * now will do cow due to allowed write (e.g. debugger sets
2102          * breakpoint on text segment)
2103          */
2104         for (current = entry; current->start < end; current = current->next) {
2105
2106                 vm_map_clip_end(map, current, end);
2107
2108                 if (set_max ||
2109                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2110                     ENTRY_CHARGED(current) ||
2111                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2112                         continue;
2113                 }
2114
2115                 cred = curthread->td_ucred;
2116                 obj = current->object.vm_object;
2117
2118                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2119                         if (!swap_reserve(current->end - current->start)) {
2120                                 vm_map_unlock(map);
2121                                 return (KERN_RESOURCE_SHORTAGE);
2122                         }
2123                         crhold(cred);
2124                         current->cred = cred;
2125                         continue;
2126                 }
2127
2128                 VM_OBJECT_WLOCK(obj);
2129                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2130                         VM_OBJECT_WUNLOCK(obj);
2131                         continue;
2132                 }
2133
2134                 /*
2135                  * Charge for the whole object allocation now, since
2136                  * we cannot distinguish between non-charged and
2137                  * charged clipped mapping of the same object later.
2138                  */
2139                 KASSERT(obj->charge == 0,
2140                     ("vm_map_protect: object %p overcharged (entry %p)",
2141                     obj, current));
2142                 if (!swap_reserve(ptoa(obj->size))) {
2143                         VM_OBJECT_WUNLOCK(obj);
2144                         vm_map_unlock(map);
2145                         return (KERN_RESOURCE_SHORTAGE);
2146                 }
2147
2148                 crhold(cred);
2149                 obj->cred = cred;
2150                 obj->charge = ptoa(obj->size);
2151                 VM_OBJECT_WUNLOCK(obj);
2152         }
2153
2154         /*
2155          * Go back and fix up protections. [Note that clipping is not
2156          * necessary the second time.]
2157          */
2158         for (current = entry; current->start < end; current = current->next) {
2159                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2160                         continue;
2161
2162                 old_prot = current->protection;
2163
2164                 if (set_max)
2165                         current->protection =
2166                             (current->max_protection = new_prot) &
2167                             old_prot;
2168                 else
2169                         current->protection = new_prot;
2170
2171                 /*
2172                  * For user wired map entries, the normal lazy evaluation of
2173                  * write access upgrades through soft page faults is
2174                  * undesirable.  Instead, immediately copy any pages that are
2175                  * copy-on-write and enable write access in the physical map.
2176                  */
2177                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2178                     (current->protection & VM_PROT_WRITE) != 0 &&
2179                     (old_prot & VM_PROT_WRITE) == 0)
2180                         vm_fault_copy_entry(map, map, current, current, NULL);
2181
2182                 /*
2183                  * When restricting access, update the physical map.  Worry
2184                  * about copy-on-write here.
2185                  */
2186                 if ((old_prot & ~current->protection) != 0) {
2187 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2188                                                         VM_PROT_ALL)
2189                         pmap_protect(map->pmap, current->start,
2190                             current->end,
2191                             current->protection & MASK(current));
2192 #undef  MASK
2193                 }
2194                 vm_map_simplify_entry(map, current);
2195         }
2196         vm_map_unlock(map);
2197         return (KERN_SUCCESS);
2198 }
2199
2200 /*
2201  *      vm_map_madvise:
2202  *
2203  *      This routine traverses a processes map handling the madvise
2204  *      system call.  Advisories are classified as either those effecting
2205  *      the vm_map_entry structure, or those effecting the underlying
2206  *      objects.
2207  */
2208 int
2209 vm_map_madvise(
2210         vm_map_t map,
2211         vm_offset_t start,
2212         vm_offset_t end,
2213         int behav)
2214 {
2215         vm_map_entry_t current, entry;
2216         bool modify_map;
2217
2218         /*
2219          * Some madvise calls directly modify the vm_map_entry, in which case
2220          * we need to use an exclusive lock on the map and we need to perform
2221          * various clipping operations.  Otherwise we only need a read-lock
2222          * on the map.
2223          */
2224         switch(behav) {
2225         case MADV_NORMAL:
2226         case MADV_SEQUENTIAL:
2227         case MADV_RANDOM:
2228         case MADV_NOSYNC:
2229         case MADV_AUTOSYNC:
2230         case MADV_NOCORE:
2231         case MADV_CORE:
2232                 if (start == end)
2233                         return (0);
2234                 modify_map = true;
2235                 vm_map_lock(map);
2236                 break;
2237         case MADV_WILLNEED:
2238         case MADV_DONTNEED:
2239         case MADV_FREE:
2240                 if (start == end)
2241                         return (0);
2242                 modify_map = false;
2243                 vm_map_lock_read(map);
2244                 break;
2245         default:
2246                 return (EINVAL);
2247         }
2248
2249         /*
2250          * Locate starting entry and clip if necessary.
2251          */
2252         VM_MAP_RANGE_CHECK(map, start, end);
2253
2254         if (vm_map_lookup_entry(map, start, &entry)) {
2255                 if (modify_map)
2256                         vm_map_clip_start(map, entry, start);
2257         } else {
2258                 entry = entry->next;
2259         }
2260
2261         if (modify_map) {
2262                 /*
2263                  * madvise behaviors that are implemented in the vm_map_entry.
2264                  *
2265                  * We clip the vm_map_entry so that behavioral changes are
2266                  * limited to the specified address range.
2267                  */
2268                 for (current = entry; current->start < end;
2269                     current = current->next) {
2270                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2271                                 continue;
2272
2273                         vm_map_clip_end(map, current, end);
2274
2275                         switch (behav) {
2276                         case MADV_NORMAL:
2277                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2278                                 break;
2279                         case MADV_SEQUENTIAL:
2280                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2281                                 break;
2282                         case MADV_RANDOM:
2283                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2284                                 break;
2285                         case MADV_NOSYNC:
2286                                 current->eflags |= MAP_ENTRY_NOSYNC;
2287                                 break;
2288                         case MADV_AUTOSYNC:
2289                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2290                                 break;
2291                         case MADV_NOCORE:
2292                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2293                                 break;
2294                         case MADV_CORE:
2295                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2296                                 break;
2297                         default:
2298                                 break;
2299                         }
2300                         vm_map_simplify_entry(map, current);
2301                 }
2302                 vm_map_unlock(map);
2303         } else {
2304                 vm_pindex_t pstart, pend;
2305
2306                 /*
2307                  * madvise behaviors that are implemented in the underlying
2308                  * vm_object.
2309                  *
2310                  * Since we don't clip the vm_map_entry, we have to clip
2311                  * the vm_object pindex and count.
2312                  */
2313                 for (current = entry; current->start < end;
2314                     current = current->next) {
2315                         vm_offset_t useEnd, useStart;
2316
2317                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2318                                 continue;
2319
2320                         pstart = OFF_TO_IDX(current->offset);
2321                         pend = pstart + atop(current->end - current->start);
2322                         useStart = current->start;
2323                         useEnd = current->end;
2324
2325                         if (current->start < start) {
2326                                 pstart += atop(start - current->start);
2327                                 useStart = start;
2328                         }
2329                         if (current->end > end) {
2330                                 pend -= atop(current->end - end);
2331                                 useEnd = end;
2332                         }
2333
2334                         if (pstart >= pend)
2335                                 continue;
2336
2337                         /*
2338                          * Perform the pmap_advise() before clearing
2339                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2340                          * concurrent pmap operation, such as pmap_remove(),
2341                          * could clear a reference in the pmap and set
2342                          * PGA_REFERENCED on the page before the pmap_advise()
2343                          * had completed.  Consequently, the page would appear
2344                          * referenced based upon an old reference that
2345                          * occurred before this pmap_advise() ran.
2346                          */
2347                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2348                                 pmap_advise(map->pmap, useStart, useEnd,
2349                                     behav);
2350
2351                         vm_object_madvise(current->object.vm_object, pstart,
2352                             pend, behav);
2353
2354                         /*
2355                          * Pre-populate paging structures in the
2356                          * WILLNEED case.  For wired entries, the
2357                          * paging structures are already populated.
2358                          */
2359                         if (behav == MADV_WILLNEED &&
2360                             current->wired_count == 0) {
2361                                 vm_map_pmap_enter(map,
2362                                     useStart,
2363                                     current->protection,
2364                                     current->object.vm_object,
2365                                     pstart,
2366                                     ptoa(pend - pstart),
2367                                     MAP_PREFAULT_MADVISE
2368                                 );
2369                         }
2370                 }
2371                 vm_map_unlock_read(map);
2372         }
2373         return (0);
2374 }
2375
2376
2377 /*
2378  *      vm_map_inherit:
2379  *
2380  *      Sets the inheritance of the specified address
2381  *      range in the target map.  Inheritance
2382  *      affects how the map will be shared with
2383  *      child maps at the time of vmspace_fork.
2384  */
2385 int
2386 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2387                vm_inherit_t new_inheritance)
2388 {
2389         vm_map_entry_t entry;
2390         vm_map_entry_t temp_entry;
2391
2392         switch (new_inheritance) {
2393         case VM_INHERIT_NONE:
2394         case VM_INHERIT_COPY:
2395         case VM_INHERIT_SHARE:
2396         case VM_INHERIT_ZERO:
2397                 break;
2398         default:
2399                 return (KERN_INVALID_ARGUMENT);
2400         }
2401         if (start == end)
2402                 return (KERN_SUCCESS);
2403         vm_map_lock(map);
2404         VM_MAP_RANGE_CHECK(map, start, end);
2405         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2406                 entry = temp_entry;
2407                 vm_map_clip_start(map, entry, start);
2408         } else
2409                 entry = temp_entry->next;
2410         while (entry->start < end) {
2411                 vm_map_clip_end(map, entry, end);
2412                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2413                     new_inheritance != VM_INHERIT_ZERO)
2414                         entry->inheritance = new_inheritance;
2415                 vm_map_simplify_entry(map, entry);
2416                 entry = entry->next;
2417         }
2418         vm_map_unlock(map);
2419         return (KERN_SUCCESS);
2420 }
2421
2422 /*
2423  *      vm_map_unwire:
2424  *
2425  *      Implements both kernel and user unwiring.
2426  */
2427 int
2428 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2429     int flags)
2430 {
2431         vm_map_entry_t entry, first_entry, tmp_entry;
2432         vm_offset_t saved_start;
2433         unsigned int last_timestamp;
2434         int rv;
2435         boolean_t need_wakeup, result, user_unwire;
2436
2437         if (start == end)
2438                 return (KERN_SUCCESS);
2439         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2440         vm_map_lock(map);
2441         VM_MAP_RANGE_CHECK(map, start, end);
2442         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2443                 if (flags & VM_MAP_WIRE_HOLESOK)
2444                         first_entry = first_entry->next;
2445                 else {
2446                         vm_map_unlock(map);
2447                         return (KERN_INVALID_ADDRESS);
2448                 }
2449         }
2450         last_timestamp = map->timestamp;
2451         entry = first_entry;
2452         while (entry->start < end) {
2453                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2454                         /*
2455                          * We have not yet clipped the entry.
2456                          */
2457                         saved_start = (start >= entry->start) ? start :
2458                             entry->start;
2459                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2460                         if (vm_map_unlock_and_wait(map, 0)) {
2461                                 /*
2462                                  * Allow interruption of user unwiring?
2463                                  */
2464                         }
2465                         vm_map_lock(map);
2466                         if (last_timestamp+1 != map->timestamp) {
2467                                 /*
2468                                  * Look again for the entry because the map was
2469                                  * modified while it was unlocked.
2470                                  * Specifically, the entry may have been
2471                                  * clipped, merged, or deleted.
2472                                  */
2473                                 if (!vm_map_lookup_entry(map, saved_start,
2474                                     &tmp_entry)) {
2475                                         if (flags & VM_MAP_WIRE_HOLESOK)
2476                                                 tmp_entry = tmp_entry->next;
2477                                         else {
2478                                                 if (saved_start == start) {
2479                                                         /*
2480                                                          * First_entry has been deleted.
2481                                                          */
2482                                                         vm_map_unlock(map);
2483                                                         return (KERN_INVALID_ADDRESS);
2484                                                 }
2485                                                 end = saved_start;
2486                                                 rv = KERN_INVALID_ADDRESS;
2487                                                 goto done;
2488                                         }
2489                                 }
2490                                 if (entry == first_entry)
2491                                         first_entry = tmp_entry;
2492                                 else
2493                                         first_entry = NULL;
2494                                 entry = tmp_entry;
2495                         }
2496                         last_timestamp = map->timestamp;
2497                         continue;
2498                 }
2499                 vm_map_clip_start(map, entry, start);
2500                 vm_map_clip_end(map, entry, end);
2501                 /*
2502                  * Mark the entry in case the map lock is released.  (See
2503                  * above.)
2504                  */
2505                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2506                     entry->wiring_thread == NULL,
2507                     ("owned map entry %p", entry));
2508                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2509                 entry->wiring_thread = curthread;
2510                 /*
2511                  * Check the map for holes in the specified region.
2512                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2513                  */
2514                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2515                     (entry->end < end && entry->next->start > entry->end)) {
2516                         end = entry->end;
2517                         rv = KERN_INVALID_ADDRESS;
2518                         goto done;
2519                 }
2520                 /*
2521                  * If system unwiring, require that the entry is system wired.
2522                  */
2523                 if (!user_unwire &&
2524                     vm_map_entry_system_wired_count(entry) == 0) {
2525                         end = entry->end;
2526                         rv = KERN_INVALID_ARGUMENT;
2527                         goto done;
2528                 }
2529                 entry = entry->next;
2530         }
2531         rv = KERN_SUCCESS;
2532 done:
2533         need_wakeup = FALSE;
2534         if (first_entry == NULL) {
2535                 result = vm_map_lookup_entry(map, start, &first_entry);
2536                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2537                         first_entry = first_entry->next;
2538                 else
2539                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2540         }
2541         for (entry = first_entry; entry->start < end; entry = entry->next) {
2542                 /*
2543                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2544                  * space in the unwired region could have been mapped
2545                  * while the map lock was dropped for draining
2546                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2547                  * could be simultaneously wiring this new mapping
2548                  * entry.  Detect these cases and skip any entries
2549                  * marked as in transition by us.
2550                  */
2551                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2552                     entry->wiring_thread != curthread) {
2553                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2554                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2555                         continue;
2556                 }
2557
2558                 if (rv == KERN_SUCCESS && (!user_unwire ||
2559                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2560                         if (user_unwire)
2561                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2562                         if (entry->wired_count == 1)
2563                                 vm_map_entry_unwire(map, entry);
2564                         else
2565                                 entry->wired_count--;
2566                 }
2567                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2568                     ("vm_map_unwire: in-transition flag missing %p", entry));
2569                 KASSERT(entry->wiring_thread == curthread,
2570                     ("vm_map_unwire: alien wire %p", entry));
2571                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2572                 entry->wiring_thread = NULL;
2573                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2574                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2575                         need_wakeup = TRUE;
2576                 }
2577                 vm_map_simplify_entry(map, entry);
2578         }
2579         vm_map_unlock(map);
2580         if (need_wakeup)
2581                 vm_map_wakeup(map);
2582         return (rv);
2583 }
2584
2585 /*
2586  *      vm_map_wire_entry_failure:
2587  *
2588  *      Handle a wiring failure on the given entry.
2589  *
2590  *      The map should be locked.
2591  */
2592 static void
2593 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2594     vm_offset_t failed_addr)
2595 {
2596
2597         VM_MAP_ASSERT_LOCKED(map);
2598         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2599             entry->wired_count == 1,
2600             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2601         KASSERT(failed_addr < entry->end,
2602             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2603
2604         /*
2605          * If any pages at the start of this entry were successfully wired,
2606          * then unwire them.
2607          */
2608         if (failed_addr > entry->start) {
2609                 pmap_unwire(map->pmap, entry->start, failed_addr);
2610                 vm_object_unwire(entry->object.vm_object, entry->offset,
2611                     failed_addr - entry->start, PQ_ACTIVE);
2612         }
2613
2614         /*
2615          * Assign an out-of-range value to represent the failure to wire this
2616          * entry.
2617          */
2618         entry->wired_count = -1;
2619 }
2620
2621 /*
2622  *      vm_map_wire:
2623  *
2624  *      Implements both kernel and user wiring.
2625  */
2626 int
2627 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2628     int flags)
2629 {
2630         vm_map_entry_t entry, first_entry, tmp_entry;
2631         vm_offset_t faddr, saved_end, saved_start;
2632         unsigned int last_timestamp;
2633         int rv;
2634         boolean_t need_wakeup, result, user_wire;
2635         vm_prot_t prot;
2636
2637         if (start == end)
2638                 return (KERN_SUCCESS);
2639         prot = 0;
2640         if (flags & VM_MAP_WIRE_WRITE)
2641                 prot |= VM_PROT_WRITE;
2642         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2643         vm_map_lock(map);
2644         VM_MAP_RANGE_CHECK(map, start, end);
2645         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2646                 if (flags & VM_MAP_WIRE_HOLESOK)
2647                         first_entry = first_entry->next;
2648                 else {
2649                         vm_map_unlock(map);
2650                         return (KERN_INVALID_ADDRESS);
2651                 }
2652         }
2653         last_timestamp = map->timestamp;
2654         entry = first_entry;
2655         while (entry->start < end) {
2656                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2657                         /*
2658                          * We have not yet clipped the entry.
2659                          */
2660                         saved_start = (start >= entry->start) ? start :
2661                             entry->start;
2662                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2663                         if (vm_map_unlock_and_wait(map, 0)) {
2664                                 /*
2665                                  * Allow interruption of user wiring?
2666                                  */
2667                         }
2668                         vm_map_lock(map);
2669                         if (last_timestamp + 1 != map->timestamp) {
2670                                 /*
2671                                  * Look again for the entry because the map was
2672                                  * modified while it was unlocked.
2673                                  * Specifically, the entry may have been
2674                                  * clipped, merged, or deleted.
2675                                  */
2676                                 if (!vm_map_lookup_entry(map, saved_start,
2677                                     &tmp_entry)) {
2678                                         if (flags & VM_MAP_WIRE_HOLESOK)
2679                                                 tmp_entry = tmp_entry->next;
2680                                         else {
2681                                                 if (saved_start == start) {
2682                                                         /*
2683                                                          * first_entry has been deleted.
2684                                                          */
2685                                                         vm_map_unlock(map);
2686                                                         return (KERN_INVALID_ADDRESS);
2687                                                 }
2688                                                 end = saved_start;
2689                                                 rv = KERN_INVALID_ADDRESS;
2690                                                 goto done;
2691                                         }
2692                                 }
2693                                 if (entry == first_entry)
2694                                         first_entry = tmp_entry;
2695                                 else
2696                                         first_entry = NULL;
2697                                 entry = tmp_entry;
2698                         }
2699                         last_timestamp = map->timestamp;
2700                         continue;
2701                 }
2702                 vm_map_clip_start(map, entry, start);
2703                 vm_map_clip_end(map, entry, end);
2704                 /*
2705                  * Mark the entry in case the map lock is released.  (See
2706                  * above.)
2707                  */
2708                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2709                     entry->wiring_thread == NULL,
2710                     ("owned map entry %p", entry));
2711                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2712                 entry->wiring_thread = curthread;
2713                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2714                     || (entry->protection & prot) != prot) {
2715                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2716                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2717                                 end = entry->end;
2718                                 rv = KERN_INVALID_ADDRESS;
2719                                 goto done;
2720                         }
2721                         goto next_entry;
2722                 }
2723                 if (entry->wired_count == 0) {
2724                         entry->wired_count++;
2725                         saved_start = entry->start;
2726                         saved_end = entry->end;
2727
2728                         /*
2729                          * Release the map lock, relying on the in-transition
2730                          * mark.  Mark the map busy for fork.
2731                          */
2732                         vm_map_busy(map);
2733                         vm_map_unlock(map);
2734
2735                         faddr = saved_start;
2736                         do {
2737                                 /*
2738                                  * Simulate a fault to get the page and enter
2739                                  * it into the physical map.
2740                                  */
2741                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2742                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2743                                         break;
2744                         } while ((faddr += PAGE_SIZE) < saved_end);
2745                         vm_map_lock(map);
2746                         vm_map_unbusy(map);
2747                         if (last_timestamp + 1 != map->timestamp) {
2748                                 /*
2749                                  * Look again for the entry because the map was
2750                                  * modified while it was unlocked.  The entry
2751                                  * may have been clipped, but NOT merged or
2752                                  * deleted.
2753                                  */
2754                                 result = vm_map_lookup_entry(map, saved_start,
2755                                     &tmp_entry);
2756                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2757                                 if (entry == first_entry)
2758                                         first_entry = tmp_entry;
2759                                 else
2760                                         first_entry = NULL;
2761                                 entry = tmp_entry;
2762                                 while (entry->end < saved_end) {
2763                                         /*
2764                                          * In case of failure, handle entries
2765                                          * that were not fully wired here;
2766                                          * fully wired entries are handled
2767                                          * later.
2768                                          */
2769                                         if (rv != KERN_SUCCESS &&
2770                                             faddr < entry->end)
2771                                                 vm_map_wire_entry_failure(map,
2772                                                     entry, faddr);
2773                                         entry = entry->next;
2774                                 }
2775                         }
2776                         last_timestamp = map->timestamp;
2777                         if (rv != KERN_SUCCESS) {
2778                                 vm_map_wire_entry_failure(map, entry, faddr);
2779                                 end = entry->end;
2780                                 goto done;
2781                         }
2782                 } else if (!user_wire ||
2783                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2784                         entry->wired_count++;
2785                 }
2786                 /*
2787                  * Check the map for holes in the specified region.
2788                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2789                  */
2790         next_entry:
2791                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2792                     entry->end < end && entry->next->start > entry->end) {
2793                         end = entry->end;
2794                         rv = KERN_INVALID_ADDRESS;
2795                         goto done;
2796                 }
2797                 entry = entry->next;
2798         }
2799         rv = KERN_SUCCESS;
2800 done:
2801         need_wakeup = FALSE;
2802         if (first_entry == NULL) {
2803                 result = vm_map_lookup_entry(map, start, &first_entry);
2804                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2805                         first_entry = first_entry->next;
2806                 else
2807                         KASSERT(result, ("vm_map_wire: lookup failed"));
2808         }
2809         for (entry = first_entry; entry->start < end; entry = entry->next) {
2810                 /*
2811                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2812                  * space in the unwired region could have been mapped
2813                  * while the map lock was dropped for faulting in the
2814                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2815                  * Moreover, another thread could be simultaneously
2816                  * wiring this new mapping entry.  Detect these cases
2817                  * and skip any entries marked as in transition not by us.
2818                  */
2819                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2820                     entry->wiring_thread != curthread) {
2821                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2822                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2823                         continue;
2824                 }
2825
2826                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2827                         goto next_entry_done;
2828
2829                 if (rv == KERN_SUCCESS) {
2830                         if (user_wire)
2831                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2832                 } else if (entry->wired_count == -1) {
2833                         /*
2834                          * Wiring failed on this entry.  Thus, unwiring is
2835                          * unnecessary.
2836                          */
2837                         entry->wired_count = 0;
2838                 } else if (!user_wire ||
2839                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2840                         /*
2841                          * Undo the wiring.  Wiring succeeded on this entry
2842                          * but failed on a later entry.  
2843                          */
2844                         if (entry->wired_count == 1)
2845                                 vm_map_entry_unwire(map, entry);
2846                         else
2847                                 entry->wired_count--;
2848                 }
2849         next_entry_done:
2850                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2851                     ("vm_map_wire: in-transition flag missing %p", entry));
2852                 KASSERT(entry->wiring_thread == curthread,
2853                     ("vm_map_wire: alien wire %p", entry));
2854                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2855                     MAP_ENTRY_WIRE_SKIPPED);
2856                 entry->wiring_thread = NULL;
2857                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2858                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2859                         need_wakeup = TRUE;
2860                 }
2861                 vm_map_simplify_entry(map, entry);
2862         }
2863         vm_map_unlock(map);
2864         if (need_wakeup)
2865                 vm_map_wakeup(map);
2866         return (rv);
2867 }
2868
2869 /*
2870  * vm_map_sync
2871  *
2872  * Push any dirty cached pages in the address range to their pager.
2873  * If syncio is TRUE, dirty pages are written synchronously.
2874  * If invalidate is TRUE, any cached pages are freed as well.
2875  *
2876  * If the size of the region from start to end is zero, we are
2877  * supposed to flush all modified pages within the region containing
2878  * start.  Unfortunately, a region can be split or coalesced with
2879  * neighboring regions, making it difficult to determine what the
2880  * original region was.  Therefore, we approximate this requirement by
2881  * flushing the current region containing start.
2882  *
2883  * Returns an error if any part of the specified range is not mapped.
2884  */
2885 int
2886 vm_map_sync(
2887         vm_map_t map,
2888         vm_offset_t start,
2889         vm_offset_t end,
2890         boolean_t syncio,
2891         boolean_t invalidate)
2892 {
2893         vm_map_entry_t current;
2894         vm_map_entry_t entry;
2895         vm_size_t size;
2896         vm_object_t object;
2897         vm_ooffset_t offset;
2898         unsigned int last_timestamp;
2899         boolean_t failed;
2900
2901         vm_map_lock_read(map);
2902         VM_MAP_RANGE_CHECK(map, start, end);
2903         if (!vm_map_lookup_entry(map, start, &entry)) {
2904                 vm_map_unlock_read(map);
2905                 return (KERN_INVALID_ADDRESS);
2906         } else if (start == end) {
2907                 start = entry->start;
2908                 end = entry->end;
2909         }
2910         /*
2911          * Make a first pass to check for user-wired memory and holes.
2912          */
2913         for (current = entry; current->start < end; current = current->next) {
2914                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2915                         vm_map_unlock_read(map);
2916                         return (KERN_INVALID_ARGUMENT);
2917                 }
2918                 if (end > current->end &&
2919                     current->end != current->next->start) {
2920                         vm_map_unlock_read(map);
2921                         return (KERN_INVALID_ADDRESS);
2922                 }
2923         }
2924
2925         if (invalidate)
2926                 pmap_remove(map->pmap, start, end);
2927         failed = FALSE;
2928
2929         /*
2930          * Make a second pass, cleaning/uncaching pages from the indicated
2931          * objects as we go.
2932          */
2933         for (current = entry; current->start < end;) {
2934                 offset = current->offset + (start - current->start);
2935                 size = (end <= current->end ? end : current->end) - start;
2936                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2937                         vm_map_t smap;
2938                         vm_map_entry_t tentry;
2939                         vm_size_t tsize;
2940
2941                         smap = current->object.sub_map;
2942                         vm_map_lock_read(smap);
2943                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2944                         tsize = tentry->end - offset;
2945                         if (tsize < size)
2946                                 size = tsize;
2947                         object = tentry->object.vm_object;
2948                         offset = tentry->offset + (offset - tentry->start);
2949                         vm_map_unlock_read(smap);
2950                 } else {
2951                         object = current->object.vm_object;
2952                 }
2953                 vm_object_reference(object);
2954                 last_timestamp = map->timestamp;
2955                 vm_map_unlock_read(map);
2956                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2957                         failed = TRUE;
2958                 start += size;
2959                 vm_object_deallocate(object);
2960                 vm_map_lock_read(map);
2961                 if (last_timestamp == map->timestamp ||
2962                     !vm_map_lookup_entry(map, start, &current))
2963                         current = current->next;
2964         }
2965
2966         vm_map_unlock_read(map);
2967         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2968 }
2969
2970 /*
2971  *      vm_map_entry_unwire:    [ internal use only ]
2972  *
2973  *      Make the region specified by this entry pageable.
2974  *
2975  *      The map in question should be locked.
2976  *      [This is the reason for this routine's existence.]
2977  */
2978 static void
2979 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2980 {
2981
2982         VM_MAP_ASSERT_LOCKED(map);
2983         KASSERT(entry->wired_count > 0,
2984             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2985         pmap_unwire(map->pmap, entry->start, entry->end);
2986         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2987             entry->start, PQ_ACTIVE);
2988         entry->wired_count = 0;
2989 }
2990
2991 static void
2992 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2993 {
2994
2995         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2996                 vm_object_deallocate(entry->object.vm_object);
2997         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2998 }
2999
3000 /*
3001  *      vm_map_entry_delete:    [ internal use only ]
3002  *
3003  *      Deallocate the given entry from the target map.
3004  */
3005 static void
3006 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3007 {
3008         vm_object_t object;
3009         vm_pindex_t offidxstart, offidxend, count, size1;
3010         vm_size_t size;
3011
3012         vm_map_entry_unlink(map, entry);
3013         object = entry->object.vm_object;
3014
3015         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3016                 MPASS(entry->cred == NULL);
3017                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3018                 MPASS(object == NULL);
3019                 vm_map_entry_deallocate(entry, map->system_map);
3020                 return;
3021         }
3022
3023         size = entry->end - entry->start;
3024         map->size -= size;
3025
3026         if (entry->cred != NULL) {
3027                 swap_release_by_cred(size, entry->cred);
3028                 crfree(entry->cred);
3029         }
3030
3031         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3032             (object != NULL)) {
3033                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3034                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3035                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3036                 count = atop(size);
3037                 offidxstart = OFF_TO_IDX(entry->offset);
3038                 offidxend = offidxstart + count;
3039                 VM_OBJECT_WLOCK(object);
3040                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3041                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3042                     object == kernel_object)) {
3043                         vm_object_collapse(object);
3044
3045                         /*
3046                          * The option OBJPR_NOTMAPPED can be passed here
3047                          * because vm_map_delete() already performed
3048                          * pmap_remove() on the only mapping to this range
3049                          * of pages. 
3050                          */
3051                         vm_object_page_remove(object, offidxstart, offidxend,
3052                             OBJPR_NOTMAPPED);
3053                         if (object->type == OBJT_SWAP)
3054                                 swap_pager_freespace(object, offidxstart,
3055                                     count);
3056                         if (offidxend >= object->size &&
3057                             offidxstart < object->size) {
3058                                 size1 = object->size;
3059                                 object->size = offidxstart;
3060                                 if (object->cred != NULL) {
3061                                         size1 -= object->size;
3062                                         KASSERT(object->charge >= ptoa(size1),
3063                                             ("object %p charge < 0", object));
3064                                         swap_release_by_cred(ptoa(size1),
3065                                             object->cred);
3066                                         object->charge -= ptoa(size1);
3067                                 }
3068                         }
3069                 }
3070                 VM_OBJECT_WUNLOCK(object);
3071         } else
3072                 entry->object.vm_object = NULL;
3073         if (map->system_map)
3074                 vm_map_entry_deallocate(entry, TRUE);
3075         else {
3076                 entry->next = curthread->td_map_def_user;
3077                 curthread->td_map_def_user = entry;
3078         }
3079 }
3080
3081 /*
3082  *      vm_map_delete:  [ internal use only ]
3083  *
3084  *      Deallocates the given address range from the target
3085  *      map.
3086  */
3087 int
3088 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3089 {
3090         vm_map_entry_t entry;
3091         vm_map_entry_t first_entry;
3092
3093         VM_MAP_ASSERT_LOCKED(map);
3094         if (start == end)
3095                 return (KERN_SUCCESS);
3096
3097         /*
3098          * Find the start of the region, and clip it
3099          */
3100         if (!vm_map_lookup_entry(map, start, &first_entry))
3101                 entry = first_entry->next;
3102         else {
3103                 entry = first_entry;
3104                 vm_map_clip_start(map, entry, start);
3105         }
3106
3107         /*
3108          * Step through all entries in this region
3109          */
3110         while (entry->start < end) {
3111                 vm_map_entry_t next;
3112
3113                 /*
3114                  * Wait for wiring or unwiring of an entry to complete.
3115                  * Also wait for any system wirings to disappear on
3116                  * user maps.
3117                  */
3118                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3119                     (vm_map_pmap(map) != kernel_pmap &&
3120                     vm_map_entry_system_wired_count(entry) != 0)) {
3121                         unsigned int last_timestamp;
3122                         vm_offset_t saved_start;
3123                         vm_map_entry_t tmp_entry;
3124
3125                         saved_start = entry->start;
3126                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3127                         last_timestamp = map->timestamp;
3128                         (void) vm_map_unlock_and_wait(map, 0);
3129                         vm_map_lock(map);
3130                         if (last_timestamp + 1 != map->timestamp) {
3131                                 /*
3132                                  * Look again for the entry because the map was
3133                                  * modified while it was unlocked.
3134                                  * Specifically, the entry may have been
3135                                  * clipped, merged, or deleted.
3136                                  */
3137                                 if (!vm_map_lookup_entry(map, saved_start,
3138                                                          &tmp_entry))
3139                                         entry = tmp_entry->next;
3140                                 else {
3141                                         entry = tmp_entry;
3142                                         vm_map_clip_start(map, entry,
3143                                                           saved_start);
3144                                 }
3145                         }
3146                         continue;
3147                 }
3148                 vm_map_clip_end(map, entry, end);
3149
3150                 next = entry->next;
3151
3152                 /*
3153                  * Unwire before removing addresses from the pmap; otherwise,
3154                  * unwiring will put the entries back in the pmap.
3155                  */
3156                 if (entry->wired_count != 0)
3157                         vm_map_entry_unwire(map, entry);
3158
3159                 /*
3160                  * Remove mappings for the pages, but only if the
3161                  * mappings could exist.  For instance, it does not
3162                  * make sense to call pmap_remove() for guard entries.
3163                  */
3164                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3165                     entry->object.vm_object != NULL)
3166                         pmap_remove(map->pmap, entry->start, entry->end);
3167
3168                 /*
3169                  * Delete the entry only after removing all pmap
3170                  * entries pointing to its pages.  (Otherwise, its
3171                  * page frames may be reallocated, and any modify bits
3172                  * will be set in the wrong object!)
3173                  */
3174                 vm_map_entry_delete(map, entry);
3175                 entry = next;
3176         }
3177         return (KERN_SUCCESS);
3178 }
3179
3180 /*
3181  *      vm_map_remove:
3182  *
3183  *      Remove the given address range from the target map.
3184  *      This is the exported form of vm_map_delete.
3185  */
3186 int
3187 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3188 {
3189         int result;
3190
3191         vm_map_lock(map);
3192         VM_MAP_RANGE_CHECK(map, start, end);
3193         result = vm_map_delete(map, start, end);
3194         vm_map_unlock(map);
3195         return (result);
3196 }
3197
3198 /*
3199  *      vm_map_check_protection:
3200  *
3201  *      Assert that the target map allows the specified privilege on the
3202  *      entire address region given.  The entire region must be allocated.
3203  *
3204  *      WARNING!  This code does not and should not check whether the
3205  *      contents of the region is accessible.  For example a smaller file
3206  *      might be mapped into a larger address space.
3207  *
3208  *      NOTE!  This code is also called by munmap().
3209  *
3210  *      The map must be locked.  A read lock is sufficient.
3211  */
3212 boolean_t
3213 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3214                         vm_prot_t protection)
3215 {
3216         vm_map_entry_t entry;
3217         vm_map_entry_t tmp_entry;
3218
3219         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3220                 return (FALSE);
3221         entry = tmp_entry;
3222
3223         while (start < end) {
3224                 /*
3225                  * No holes allowed!
3226                  */
3227                 if (start < entry->start)
3228                         return (FALSE);
3229                 /*
3230                  * Check protection associated with entry.
3231                  */
3232                 if ((entry->protection & protection) != protection)
3233                         return (FALSE);
3234                 /* go to next entry */
3235                 start = entry->end;
3236                 entry = entry->next;
3237         }
3238         return (TRUE);
3239 }
3240
3241 /*
3242  *      vm_map_copy_entry:
3243  *
3244  *      Copies the contents of the source entry to the destination
3245  *      entry.  The entries *must* be aligned properly.
3246  */
3247 static void
3248 vm_map_copy_entry(
3249         vm_map_t src_map,
3250         vm_map_t dst_map,
3251         vm_map_entry_t src_entry,
3252         vm_map_entry_t dst_entry,
3253         vm_ooffset_t *fork_charge)
3254 {
3255         vm_object_t src_object;
3256         vm_map_entry_t fake_entry;
3257         vm_offset_t size;
3258         struct ucred *cred;
3259         int charged;
3260
3261         VM_MAP_ASSERT_LOCKED(dst_map);
3262
3263         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3264                 return;
3265
3266         if (src_entry->wired_count == 0 ||
3267             (src_entry->protection & VM_PROT_WRITE) == 0) {
3268                 /*
3269                  * If the source entry is marked needs_copy, it is already
3270                  * write-protected.
3271                  */
3272                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3273                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3274                         pmap_protect(src_map->pmap,
3275                             src_entry->start,
3276                             src_entry->end,
3277                             src_entry->protection & ~VM_PROT_WRITE);
3278                 }
3279
3280                 /*
3281                  * Make a copy of the object.
3282                  */
3283                 size = src_entry->end - src_entry->start;
3284                 if ((src_object = src_entry->object.vm_object) != NULL) {
3285                         VM_OBJECT_WLOCK(src_object);
3286                         charged = ENTRY_CHARGED(src_entry);
3287                         if (src_object->handle == NULL &&
3288                             (src_object->type == OBJT_DEFAULT ||
3289                             src_object->type == OBJT_SWAP)) {
3290                                 vm_object_collapse(src_object);
3291                                 if ((src_object->flags & (OBJ_NOSPLIT |
3292                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3293                                         vm_object_split(src_entry);
3294                                         src_object =
3295                                             src_entry->object.vm_object;
3296                                 }
3297                         }
3298                         vm_object_reference_locked(src_object);
3299                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3300                         if (src_entry->cred != NULL &&
3301                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3302                                 KASSERT(src_object->cred == NULL,
3303                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3304                                      src_object));
3305                                 src_object->cred = src_entry->cred;
3306                                 src_object->charge = size;
3307                         }
3308                         VM_OBJECT_WUNLOCK(src_object);
3309                         dst_entry->object.vm_object = src_object;
3310                         if (charged) {
3311                                 cred = curthread->td_ucred;
3312                                 crhold(cred);
3313                                 dst_entry->cred = cred;
3314                                 *fork_charge += size;
3315                                 if (!(src_entry->eflags &
3316                                       MAP_ENTRY_NEEDS_COPY)) {
3317                                         crhold(cred);
3318                                         src_entry->cred = cred;
3319                                         *fork_charge += size;
3320                                 }
3321                         }
3322                         src_entry->eflags |= MAP_ENTRY_COW |
3323                             MAP_ENTRY_NEEDS_COPY;
3324                         dst_entry->eflags |= MAP_ENTRY_COW |
3325                             MAP_ENTRY_NEEDS_COPY;
3326                         dst_entry->offset = src_entry->offset;
3327                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3328                                 /*
3329                                  * MAP_ENTRY_VN_WRITECNT cannot
3330                                  * indicate write reference from
3331                                  * src_entry, since the entry is
3332                                  * marked as needs copy.  Allocate a
3333                                  * fake entry that is used to
3334                                  * decrement object->un_pager.vnp.writecount
3335                                  * at the appropriate time.  Attach
3336                                  * fake_entry to the deferred list.
3337                                  */
3338                                 fake_entry = vm_map_entry_create(dst_map);
3339                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3340                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3341                                 vm_object_reference(src_object);
3342                                 fake_entry->object.vm_object = src_object;
3343                                 fake_entry->start = src_entry->start;
3344                                 fake_entry->end = src_entry->end;
3345                                 fake_entry->next = curthread->td_map_def_user;
3346                                 curthread->td_map_def_user = fake_entry;
3347                         }
3348
3349                         pmap_copy(dst_map->pmap, src_map->pmap,
3350                             dst_entry->start, dst_entry->end - dst_entry->start,
3351                             src_entry->start);
3352                 } else {
3353                         dst_entry->object.vm_object = NULL;
3354                         dst_entry->offset = 0;
3355                         if (src_entry->cred != NULL) {
3356                                 dst_entry->cred = curthread->td_ucred;
3357                                 crhold(dst_entry->cred);
3358                                 *fork_charge += size;
3359                         }
3360                 }
3361         } else {
3362                 /*
3363                  * We don't want to make writeable wired pages copy-on-write.
3364                  * Immediately copy these pages into the new map by simulating
3365                  * page faults.  The new pages are pageable.
3366                  */
3367                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3368                     fork_charge);
3369         }
3370 }
3371
3372 /*
3373  * vmspace_map_entry_forked:
3374  * Update the newly-forked vmspace each time a map entry is inherited
3375  * or copied.  The values for vm_dsize and vm_tsize are approximate
3376  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3377  */
3378 static void
3379 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3380     vm_map_entry_t entry)
3381 {
3382         vm_size_t entrysize;
3383         vm_offset_t newend;
3384
3385         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3386                 return;
3387         entrysize = entry->end - entry->start;
3388         vm2->vm_map.size += entrysize;
3389         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3390                 vm2->vm_ssize += btoc(entrysize);
3391         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3392             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3393                 newend = MIN(entry->end,
3394                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3395                 vm2->vm_dsize += btoc(newend - entry->start);
3396         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3397             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3398                 newend = MIN(entry->end,
3399                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3400                 vm2->vm_tsize += btoc(newend - entry->start);
3401         }
3402 }
3403
3404 /*
3405  * vmspace_fork:
3406  * Create a new process vmspace structure and vm_map
3407  * based on those of an existing process.  The new map
3408  * is based on the old map, according to the inheritance
3409  * values on the regions in that map.
3410  *
3411  * XXX It might be worth coalescing the entries added to the new vmspace.
3412  *
3413  * The source map must not be locked.
3414  */
3415 struct vmspace *
3416 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3417 {
3418         struct vmspace *vm2;
3419         vm_map_t new_map, old_map;
3420         vm_map_entry_t new_entry, old_entry;
3421         vm_object_t object;
3422         int locked;
3423         vm_inherit_t inh;
3424
3425         old_map = &vm1->vm_map;
3426         /* Copy immutable fields of vm1 to vm2. */
3427         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), NULL);
3428         if (vm2 == NULL)
3429                 return (NULL);
3430         vm2->vm_taddr = vm1->vm_taddr;
3431         vm2->vm_daddr = vm1->vm_daddr;
3432         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3433         vm_map_lock(old_map);
3434         if (old_map->busy)
3435                 vm_map_wait_busy(old_map);
3436         new_map = &vm2->vm_map;
3437         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3438         KASSERT(locked, ("vmspace_fork: lock failed"));
3439
3440         old_entry = old_map->header.next;
3441
3442         while (old_entry != &old_map->header) {
3443                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3444                         panic("vm_map_fork: encountered a submap");
3445
3446                 inh = old_entry->inheritance;
3447                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3448                     inh != VM_INHERIT_NONE)
3449                         inh = VM_INHERIT_COPY;
3450
3451                 switch (inh) {
3452                 case VM_INHERIT_NONE:
3453                         break;
3454
3455                 case VM_INHERIT_SHARE:
3456                         /*
3457                          * Clone the entry, creating the shared object if necessary.
3458                          */
3459                         object = old_entry->object.vm_object;
3460                         if (object == NULL) {
3461                                 object = vm_object_allocate(OBJT_DEFAULT,
3462                                         atop(old_entry->end - old_entry->start));
3463                                 old_entry->object.vm_object = object;
3464                                 old_entry->offset = 0;
3465                                 if (old_entry->cred != NULL) {
3466                                         object->cred = old_entry->cred;
3467                                         object->charge = old_entry->end -
3468                                             old_entry->start;
3469                                         old_entry->cred = NULL;
3470                                 }
3471                         }
3472
3473                         /*
3474                          * Add the reference before calling vm_object_shadow
3475                          * to insure that a shadow object is created.
3476                          */
3477                         vm_object_reference(object);
3478                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3479                                 vm_object_shadow(&old_entry->object.vm_object,
3480                                     &old_entry->offset,
3481                                     old_entry->end - old_entry->start);
3482                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3483                                 /* Transfer the second reference too. */
3484                                 vm_object_reference(
3485                                     old_entry->object.vm_object);
3486
3487                                 /*
3488                                  * As in vm_map_simplify_entry(), the
3489                                  * vnode lock will not be acquired in
3490                                  * this call to vm_object_deallocate().
3491                                  */
3492                                 vm_object_deallocate(object);
3493                                 object = old_entry->object.vm_object;
3494                         }
3495                         VM_OBJECT_WLOCK(object);
3496                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3497                         if (old_entry->cred != NULL) {
3498                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3499                                 object->cred = old_entry->cred;
3500                                 object->charge = old_entry->end - old_entry->start;
3501                                 old_entry->cred = NULL;
3502                         }
3503
3504                         /*
3505                          * Assert the correct state of the vnode
3506                          * v_writecount while the object is locked, to
3507                          * not relock it later for the assertion
3508                          * correctness.
3509                          */
3510                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3511                             object->type == OBJT_VNODE) {
3512                                 KASSERT(((struct vnode *)object->handle)->
3513                                     v_writecount > 0,
3514                                     ("vmspace_fork: v_writecount %p", object));
3515                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3516                                     ("vmspace_fork: vnp.writecount %p",
3517                                     object));
3518                         }
3519                         VM_OBJECT_WUNLOCK(object);
3520
3521                         /*
3522                          * Clone the entry, referencing the shared object.
3523                          */
3524                         new_entry = vm_map_entry_create(new_map);
3525                         *new_entry = *old_entry;
3526                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3527                             MAP_ENTRY_IN_TRANSITION);
3528                         new_entry->wiring_thread = NULL;
3529                         new_entry->wired_count = 0;
3530                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3531                                 vnode_pager_update_writecount(object,
3532                                     new_entry->start, new_entry->end);
3533                         }
3534
3535                         /*
3536                          * Insert the entry into the new map -- we know we're
3537                          * inserting at the end of the new map.
3538                          */
3539                         vm_map_entry_link(new_map, new_map->header.prev,
3540                             new_entry);
3541                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3542
3543                         /*
3544                          * Update the physical map
3545                          */
3546                         pmap_copy(new_map->pmap, old_map->pmap,
3547                             new_entry->start,
3548                             (old_entry->end - old_entry->start),
3549                             old_entry->start);
3550                         break;
3551
3552                 case VM_INHERIT_COPY:
3553                         /*
3554                          * Clone the entry and link into the map.
3555                          */
3556                         new_entry = vm_map_entry_create(new_map);
3557                         *new_entry = *old_entry;
3558                         /*
3559                          * Copied entry is COW over the old object.
3560                          */
3561                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3562                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3563                         new_entry->wiring_thread = NULL;
3564                         new_entry->wired_count = 0;
3565                         new_entry->object.vm_object = NULL;
3566                         new_entry->cred = NULL;
3567                         vm_map_entry_link(new_map, new_map->header.prev,
3568                             new_entry);
3569                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3570                         vm_map_copy_entry(old_map, new_map, old_entry,
3571                             new_entry, fork_charge);
3572                         break;
3573
3574                 case VM_INHERIT_ZERO:
3575                         /*
3576                          * Create a new anonymous mapping entry modelled from
3577                          * the old one.
3578                          */
3579                         new_entry = vm_map_entry_create(new_map);
3580                         memset(new_entry, 0, sizeof(*new_entry));
3581
3582                         new_entry->start = old_entry->start;
3583                         new_entry->end = old_entry->end;
3584                         new_entry->eflags = old_entry->eflags &
3585                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3586                             MAP_ENTRY_VN_WRITECNT);
3587                         new_entry->protection = old_entry->protection;
3588                         new_entry->max_protection = old_entry->max_protection;
3589                         new_entry->inheritance = VM_INHERIT_ZERO;
3590
3591                         vm_map_entry_link(new_map, new_map->header.prev,
3592                             new_entry);
3593                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3594
3595                         new_entry->cred = curthread->td_ucred;
3596                         crhold(new_entry->cred);
3597                         *fork_charge += (new_entry->end - new_entry->start);
3598
3599                         break;
3600                 }
3601                 old_entry = old_entry->next;
3602         }
3603         /*
3604          * Use inlined vm_map_unlock() to postpone handling the deferred
3605          * map entries, which cannot be done until both old_map and
3606          * new_map locks are released.
3607          */
3608         sx_xunlock(&old_map->lock);
3609         sx_xunlock(&new_map->lock);
3610         vm_map_process_deferred();
3611
3612         return (vm2);
3613 }
3614
3615 /*
3616  * Create a process's stack for exec_new_vmspace().  This function is never
3617  * asked to wire the newly created stack.
3618  */
3619 int
3620 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3621     vm_prot_t prot, vm_prot_t max, int cow)
3622 {
3623         vm_size_t growsize, init_ssize;
3624         rlim_t vmemlim;
3625         int rv;
3626
3627         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3628         growsize = sgrowsiz;
3629         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3630         vm_map_lock(map);
3631         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3632         /* If we would blow our VMEM resource limit, no go */
3633         if (map->size + init_ssize > vmemlim) {
3634                 rv = KERN_NO_SPACE;
3635                 goto out;
3636         }
3637         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3638             max, cow);
3639 out:
3640         vm_map_unlock(map);
3641         return (rv);
3642 }
3643
3644 static int stack_guard_page = 1;
3645 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3646     &stack_guard_page, 0,
3647     "Specifies the number of guard pages for a stack that grows");
3648
3649 static int
3650 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3651     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3652 {
3653         vm_map_entry_t new_entry, prev_entry;
3654         vm_offset_t bot, gap_bot, gap_top, top;
3655         vm_size_t init_ssize, sgp;
3656         int orient, rv;
3657
3658         /*
3659          * The stack orientation is piggybacked with the cow argument.
3660          * Extract it into orient and mask the cow argument so that we
3661          * don't pass it around further.
3662          */
3663         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3664         KASSERT(orient != 0, ("No stack grow direction"));
3665         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3666             ("bi-dir stack"));
3667
3668         if (addrbos < vm_map_min(map) ||
3669             addrbos + max_ssize > vm_map_max(map) ||
3670             addrbos + max_ssize <= addrbos)
3671                 return (KERN_INVALID_ADDRESS);
3672         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3673         if (sgp >= max_ssize)
3674                 return (KERN_INVALID_ARGUMENT);
3675
3676         init_ssize = growsize;
3677         if (max_ssize < init_ssize + sgp)
3678                 init_ssize = max_ssize - sgp;
3679
3680         /* If addr is already mapped, no go */
3681         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3682                 return (KERN_NO_SPACE);
3683
3684         /*
3685          * If we can't accommodate max_ssize in the current mapping, no go.
3686          */
3687         if (prev_entry->next->start < addrbos + max_ssize)
3688                 return (KERN_NO_SPACE);
3689
3690         /*
3691          * We initially map a stack of only init_ssize.  We will grow as
3692          * needed later.  Depending on the orientation of the stack (i.e.
3693          * the grow direction) we either map at the top of the range, the
3694          * bottom of the range or in the middle.
3695          *
3696          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3697          * and cow to be 0.  Possibly we should eliminate these as input
3698          * parameters, and just pass these values here in the insert call.
3699          */
3700         if (orient == MAP_STACK_GROWS_DOWN) {
3701                 bot = addrbos + max_ssize - init_ssize;
3702                 top = bot + init_ssize;
3703                 gap_bot = addrbos;
3704                 gap_top = bot;
3705         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3706                 bot = addrbos;
3707                 top = bot + init_ssize;
3708                 gap_bot = top;
3709                 gap_top = addrbos + max_ssize;
3710         }
3711         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3712         if (rv != KERN_SUCCESS)
3713                 return (rv);
3714         new_entry = prev_entry->next;
3715         KASSERT(new_entry->end == top || new_entry->start == bot,
3716             ("Bad entry start/end for new stack entry"));
3717         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3718             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3719             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3720         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3721             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3722             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3723         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3724             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3725             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3726         if (rv != KERN_SUCCESS)
3727                 (void)vm_map_delete(map, bot, top);
3728         return (rv);
3729 }
3730
3731 /*
3732  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3733  * successfully grow the stack.
3734  */
3735 static int
3736 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3737 {
3738         vm_map_entry_t stack_entry;
3739         struct proc *p;
3740         struct vmspace *vm;
3741         struct ucred *cred;
3742         vm_offset_t gap_end, gap_start, grow_start;
3743         size_t grow_amount, guard, max_grow;
3744         rlim_t lmemlim, stacklim, vmemlim;
3745         int rv, rv1;
3746         bool gap_deleted, grow_down, is_procstack;
3747 #ifdef notyet
3748         uint64_t limit;
3749 #endif
3750 #ifdef RACCT
3751         int error;
3752 #endif
3753
3754         p = curproc;
3755         vm = p->p_vmspace;
3756
3757         /*
3758          * Disallow stack growth when the access is performed by a
3759          * debugger or AIO daemon.  The reason is that the wrong
3760          * resource limits are applied.
3761          */
3762         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3763                 return (KERN_FAILURE);
3764
3765         MPASS(!map->system_map);
3766
3767         guard = stack_guard_page * PAGE_SIZE;
3768         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3769         stacklim = lim_cur(curthread, RLIMIT_STACK);
3770         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3771 retry:
3772         /* If addr is not in a hole for a stack grow area, no need to grow. */
3773         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3774                 return (KERN_FAILURE);
3775         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3776                 return (KERN_SUCCESS);
3777         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3778                 stack_entry = gap_entry->next;
3779                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3780                     stack_entry->start != gap_entry->end)
3781                         return (KERN_FAILURE);
3782                 grow_amount = round_page(stack_entry->start - addr);
3783                 grow_down = true;
3784         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3785                 stack_entry = gap_entry->prev;
3786                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3787                     stack_entry->end != gap_entry->start)
3788                         return (KERN_FAILURE);
3789                 grow_amount = round_page(addr + 1 - stack_entry->end);
3790                 grow_down = false;
3791         } else {
3792                 return (KERN_FAILURE);
3793         }
3794         max_grow = gap_entry->end - gap_entry->start;
3795         if (guard > max_grow)
3796                 return (KERN_NO_SPACE);
3797         max_grow -= guard;
3798         if (grow_amount > max_grow)
3799                 return (KERN_NO_SPACE);
3800
3801         /*
3802          * If this is the main process stack, see if we're over the stack
3803          * limit.
3804          */
3805         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3806             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3807         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3808                 return (KERN_NO_SPACE);
3809
3810 #ifdef RACCT
3811         if (racct_enable) {
3812                 PROC_LOCK(p);
3813                 if (is_procstack && racct_set(p, RACCT_STACK,
3814                     ctob(vm->vm_ssize) + grow_amount)) {
3815                         PROC_UNLOCK(p);
3816                         return (KERN_NO_SPACE);
3817                 }
3818                 PROC_UNLOCK(p);
3819         }
3820 #endif
3821
3822         grow_amount = roundup(grow_amount, sgrowsiz);
3823         if (grow_amount > max_grow)
3824                 grow_amount = max_grow;
3825         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3826                 grow_amount = trunc_page((vm_size_t)stacklim) -
3827                     ctob(vm->vm_ssize);
3828         }
3829
3830 #ifdef notyet
3831         PROC_LOCK(p);
3832         limit = racct_get_available(p, RACCT_STACK);
3833         PROC_UNLOCK(p);
3834         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3835                 grow_amount = limit - ctob(vm->vm_ssize);
3836 #endif
3837
3838         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3839                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3840                         rv = KERN_NO_SPACE;
3841                         goto out;
3842                 }
3843 #ifdef RACCT
3844                 if (racct_enable) {
3845                         PROC_LOCK(p);
3846                         if (racct_set(p, RACCT_MEMLOCK,
3847                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3848                                 PROC_UNLOCK(p);
3849                                 rv = KERN_NO_SPACE;
3850                                 goto out;
3851                         }
3852                         PROC_UNLOCK(p);
3853                 }
3854 #endif
3855         }
3856
3857         /* If we would blow our VMEM resource limit, no go */
3858         if (map->size + grow_amount > vmemlim) {
3859                 rv = KERN_NO_SPACE;
3860                 goto out;
3861         }
3862 #ifdef RACCT
3863         if (racct_enable) {
3864                 PROC_LOCK(p);
3865                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3866                         PROC_UNLOCK(p);
3867                         rv = KERN_NO_SPACE;
3868                         goto out;
3869                 }
3870                 PROC_UNLOCK(p);
3871         }
3872 #endif
3873
3874         if (vm_map_lock_upgrade(map)) {
3875                 gap_entry = NULL;
3876                 vm_map_lock_read(map);
3877                 goto retry;
3878         }
3879
3880         if (grow_down) {
3881                 grow_start = gap_entry->end - grow_amount;
3882                 if (gap_entry->start + grow_amount == gap_entry->end) {
3883                         gap_start = gap_entry->start;
3884                         gap_end = gap_entry->end;
3885                         vm_map_entry_delete(map, gap_entry);
3886                         gap_deleted = true;
3887                 } else {
3888                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3889                         gap_entry->end -= grow_amount;
3890                         vm_map_entry_resize_free(map, gap_entry);
3891                         gap_deleted = false;
3892                 }
3893                 rv = vm_map_insert(map, NULL, 0, grow_start,
3894                     grow_start + grow_amount,
3895                     stack_entry->protection, stack_entry->max_protection,
3896                     MAP_STACK_GROWS_DOWN);
3897                 if (rv != KERN_SUCCESS) {
3898                         if (gap_deleted) {
3899                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3900                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3901                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3902                                 MPASS(rv1 == KERN_SUCCESS);
3903                         } else {
3904                                 gap_entry->end += grow_amount;
3905                                 vm_map_entry_resize_free(map, gap_entry);
3906                         }
3907                 }
3908         } else {
3909                 grow_start = stack_entry->end;
3910                 cred = stack_entry->cred;
3911                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3912                         cred = stack_entry->object.vm_object->cred;
3913                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3914                         rv = KERN_NO_SPACE;
3915                 /* Grow the underlying object if applicable. */
3916                 else if (stack_entry->object.vm_object == NULL ||
3917                     vm_object_coalesce(stack_entry->object.vm_object,
3918                     stack_entry->offset,
3919                     (vm_size_t)(stack_entry->end - stack_entry->start),
3920                     (vm_size_t)grow_amount, cred != NULL)) {
3921                         if (gap_entry->start + grow_amount == gap_entry->end)
3922                                 vm_map_entry_delete(map, gap_entry);
3923                         else
3924                                 gap_entry->start += grow_amount;
3925                         stack_entry->end += grow_amount;
3926                         map->size += grow_amount;
3927                         vm_map_entry_resize_free(map, stack_entry);
3928                         rv = KERN_SUCCESS;
3929                 } else
3930                         rv = KERN_FAILURE;
3931         }
3932         if (rv == KERN_SUCCESS && is_procstack)
3933                 vm->vm_ssize += btoc(grow_amount);
3934
3935         /*
3936          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3937          */
3938         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3939                 vm_map_unlock(map);
3940                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3941                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3942                 vm_map_lock_read(map);
3943         } else
3944                 vm_map_lock_downgrade(map);
3945
3946 out:
3947 #ifdef RACCT
3948         if (racct_enable && rv != KERN_SUCCESS) {
3949                 PROC_LOCK(p);
3950                 error = racct_set(p, RACCT_VMEM, map->size);
3951                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3952                 if (!old_mlock) {
3953                         error = racct_set(p, RACCT_MEMLOCK,
3954                             ptoa(pmap_wired_count(map->pmap)));
3955                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3956                 }
3957                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3958                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3959                 PROC_UNLOCK(p);
3960         }
3961 #endif
3962
3963         return (rv);
3964 }
3965
3966 /*
3967  * Unshare the specified VM space for exec.  If other processes are
3968  * mapped to it, then create a new one.  The new vmspace is null.
3969  */
3970 int
3971 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3972 {
3973         struct vmspace *oldvmspace = p->p_vmspace;
3974         struct vmspace *newvmspace;
3975
3976         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3977             ("vmspace_exec recursed"));
3978         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3979         if (newvmspace == NULL)
3980                 return (ENOMEM);
3981         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3982         /*
3983          * This code is written like this for prototype purposes.  The
3984          * goal is to avoid running down the vmspace here, but let the
3985          * other process's that are still using the vmspace to finally
3986          * run it down.  Even though there is little or no chance of blocking
3987          * here, it is a good idea to keep this form for future mods.
3988          */
3989         PROC_VMSPACE_LOCK(p);
3990         p->p_vmspace = newvmspace;
3991         PROC_VMSPACE_UNLOCK(p);
3992         if (p == curthread->td_proc)
3993                 pmap_activate(curthread);
3994         curthread->td_pflags |= TDP_EXECVMSPC;
3995         return (0);
3996 }
3997
3998 /*
3999  * Unshare the specified VM space for forcing COW.  This
4000  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4001  */
4002 int
4003 vmspace_unshare(struct proc *p)
4004 {
4005         struct vmspace *oldvmspace = p->p_vmspace;
4006         struct vmspace *newvmspace;
4007         vm_ooffset_t fork_charge;
4008
4009         if (oldvmspace->vm_refcnt == 1)
4010                 return (0);
4011         fork_charge = 0;
4012         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4013         if (newvmspace == NULL)
4014                 return (ENOMEM);
4015         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4016                 vmspace_free(newvmspace);
4017                 return (ENOMEM);
4018         }
4019         PROC_VMSPACE_LOCK(p);
4020         p->p_vmspace = newvmspace;
4021         PROC_VMSPACE_UNLOCK(p);
4022         if (p == curthread->td_proc)
4023                 pmap_activate(curthread);
4024         vmspace_free(oldvmspace);
4025         return (0);
4026 }
4027
4028 /*
4029  *      vm_map_lookup:
4030  *
4031  *      Finds the VM object, offset, and
4032  *      protection for a given virtual address in the
4033  *      specified map, assuming a page fault of the
4034  *      type specified.
4035  *
4036  *      Leaves the map in question locked for read; return
4037  *      values are guaranteed until a vm_map_lookup_done
4038  *      call is performed.  Note that the map argument
4039  *      is in/out; the returned map must be used in
4040  *      the call to vm_map_lookup_done.
4041  *
4042  *      A handle (out_entry) is returned for use in
4043  *      vm_map_lookup_done, to make that fast.
4044  *
4045  *      If a lookup is requested with "write protection"
4046  *      specified, the map may be changed to perform virtual
4047  *      copying operations, although the data referenced will
4048  *      remain the same.
4049  */
4050 int
4051 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4052               vm_offset_t vaddr,
4053               vm_prot_t fault_typea,
4054               vm_map_entry_t *out_entry,        /* OUT */
4055               vm_object_t *object,              /* OUT */
4056               vm_pindex_t *pindex,              /* OUT */
4057               vm_prot_t *out_prot,              /* OUT */
4058               boolean_t *wired)                 /* OUT */
4059 {
4060         vm_map_entry_t entry;
4061         vm_map_t map = *var_map;
4062         vm_prot_t prot;
4063         vm_prot_t fault_type = fault_typea;
4064         vm_object_t eobject;
4065         vm_size_t size;
4066         struct ucred *cred;
4067
4068 RetryLookup:
4069
4070         vm_map_lock_read(map);
4071
4072 RetryLookupLocked:
4073         /*
4074          * Lookup the faulting address.
4075          */
4076         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4077                 vm_map_unlock_read(map);
4078                 return (KERN_INVALID_ADDRESS);
4079         }
4080
4081         entry = *out_entry;
4082
4083         /*
4084          * Handle submaps.
4085          */
4086         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4087                 vm_map_t old_map = map;
4088
4089                 *var_map = map = entry->object.sub_map;
4090                 vm_map_unlock_read(old_map);
4091                 goto RetryLookup;
4092         }
4093
4094         /*
4095          * Check whether this task is allowed to have this page.
4096          */
4097         prot = entry->protection;
4098         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4099                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4100                 if (prot == VM_PROT_NONE && map != kernel_map &&
4101                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4102                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4103                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4104                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4105                         goto RetryLookupLocked;
4106         }
4107         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4108         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4109                 vm_map_unlock_read(map);
4110                 return (KERN_PROTECTION_FAILURE);
4111         }
4112         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4113             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4114             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4115             ("entry %p flags %x", entry, entry->eflags));
4116         if ((fault_typea & VM_PROT_COPY) != 0 &&
4117             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4118             (entry->eflags & MAP_ENTRY_COW) == 0) {
4119                 vm_map_unlock_read(map);
4120                 return (KERN_PROTECTION_FAILURE);
4121         }
4122
4123         /*
4124          * If this page is not pageable, we have to get it for all possible
4125          * accesses.
4126          */
4127         *wired = (entry->wired_count != 0);
4128         if (*wired)
4129                 fault_type = entry->protection;
4130         size = entry->end - entry->start;
4131         /*
4132          * If the entry was copy-on-write, we either ...
4133          */
4134         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4135                 /*
4136                  * If we want to write the page, we may as well handle that
4137                  * now since we've got the map locked.
4138                  *
4139                  * If we don't need to write the page, we just demote the
4140                  * permissions allowed.
4141                  */
4142                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4143                     (fault_typea & VM_PROT_COPY) != 0) {
4144                         /*
4145                          * Make a new object, and place it in the object
4146                          * chain.  Note that no new references have appeared
4147                          * -- one just moved from the map to the new
4148                          * object.
4149                          */
4150                         if (vm_map_lock_upgrade(map))
4151                                 goto RetryLookup;
4152
4153                         if (entry->cred == NULL) {
4154                                 /*
4155                                  * The debugger owner is charged for
4156                                  * the memory.
4157                                  */
4158                                 cred = curthread->td_ucred;
4159                                 crhold(cred);
4160                                 if (!swap_reserve_by_cred(size, cred)) {
4161                                         crfree(cred);
4162                                         vm_map_unlock(map);
4163                                         return (KERN_RESOURCE_SHORTAGE);
4164                                 }
4165                                 entry->cred = cred;
4166                         }
4167                         vm_object_shadow(&entry->object.vm_object,
4168                             &entry->offset, size);
4169                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4170                         eobject = entry->object.vm_object;
4171                         if (eobject->cred != NULL) {
4172                                 /*
4173                                  * The object was not shadowed.
4174                                  */
4175                                 swap_release_by_cred(size, entry->cred);
4176                                 crfree(entry->cred);
4177                                 entry->cred = NULL;
4178                         } else if (entry->cred != NULL) {
4179                                 VM_OBJECT_WLOCK(eobject);
4180                                 eobject->cred = entry->cred;
4181                                 eobject->charge = size;
4182                                 VM_OBJECT_WUNLOCK(eobject);
4183                                 entry->cred = NULL;
4184                         }
4185
4186                         vm_map_lock_downgrade(map);
4187                 } else {
4188                         /*
4189                          * We're attempting to read a copy-on-write page --
4190                          * don't allow writes.
4191                          */
4192                         prot &= ~VM_PROT_WRITE;
4193                 }
4194         }
4195
4196         /*
4197          * Create an object if necessary.
4198          */
4199         if (entry->object.vm_object == NULL &&
4200             !map->system_map) {
4201                 if (vm_map_lock_upgrade(map))
4202                         goto RetryLookup;
4203                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4204                     atop(size));
4205                 entry->offset = 0;
4206                 if (entry->cred != NULL) {
4207                         VM_OBJECT_WLOCK(entry->object.vm_object);
4208                         entry->object.vm_object->cred = entry->cred;
4209                         entry->object.vm_object->charge = size;
4210                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4211                         entry->cred = NULL;
4212                 }
4213                 vm_map_lock_downgrade(map);
4214         }
4215
4216         /*
4217          * Return the object/offset from this entry.  If the entry was
4218          * copy-on-write or empty, it has been fixed up.
4219          */
4220         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4221         *object = entry->object.vm_object;
4222
4223         *out_prot = prot;
4224         return (KERN_SUCCESS);
4225 }
4226
4227 /*
4228  *      vm_map_lookup_locked:
4229  *
4230  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4231  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4232  */
4233 int
4234 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4235                      vm_offset_t vaddr,
4236                      vm_prot_t fault_typea,
4237                      vm_map_entry_t *out_entry, /* OUT */
4238                      vm_object_t *object,       /* OUT */
4239                      vm_pindex_t *pindex,       /* OUT */
4240                      vm_prot_t *out_prot,       /* OUT */
4241                      boolean_t *wired)          /* OUT */
4242 {
4243         vm_map_entry_t entry;
4244         vm_map_t map = *var_map;
4245         vm_prot_t prot;
4246         vm_prot_t fault_type = fault_typea;
4247
4248         /*
4249          * Lookup the faulting address.
4250          */
4251         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4252                 return (KERN_INVALID_ADDRESS);
4253
4254         entry = *out_entry;
4255
4256         /*
4257          * Fail if the entry refers to a submap.
4258          */
4259         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4260                 return (KERN_FAILURE);
4261
4262         /*
4263          * Check whether this task is allowed to have this page.
4264          */
4265         prot = entry->protection;
4266         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4267         if ((fault_type & prot) != fault_type)
4268                 return (KERN_PROTECTION_FAILURE);
4269
4270         /*
4271          * If this page is not pageable, we have to get it for all possible
4272          * accesses.
4273          */
4274         *wired = (entry->wired_count != 0);
4275         if (*wired)
4276                 fault_type = entry->protection;
4277
4278         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4279                 /*
4280                  * Fail if the entry was copy-on-write for a write fault.
4281                  */
4282                 if (fault_type & VM_PROT_WRITE)
4283                         return (KERN_FAILURE);
4284                 /*
4285                  * We're attempting to read a copy-on-write page --
4286                  * don't allow writes.
4287                  */
4288                 prot &= ~VM_PROT_WRITE;
4289         }
4290
4291         /*
4292          * Fail if an object should be created.
4293          */
4294         if (entry->object.vm_object == NULL && !map->system_map)
4295                 return (KERN_FAILURE);
4296
4297         /*
4298          * Return the object/offset from this entry.  If the entry was
4299          * copy-on-write or empty, it has been fixed up.
4300          */
4301         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4302         *object = entry->object.vm_object;
4303
4304         *out_prot = prot;
4305         return (KERN_SUCCESS);
4306 }
4307
4308 /*
4309  *      vm_map_lookup_done:
4310  *
4311  *      Releases locks acquired by a vm_map_lookup
4312  *      (according to the handle returned by that lookup).
4313  */
4314 void
4315 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4316 {
4317         /*
4318          * Unlock the main-level map
4319          */
4320         vm_map_unlock_read(map);
4321 }
4322
4323 vm_offset_t
4324 vm_map_max_KBI(const struct vm_map *map)
4325 {
4326
4327         return (vm_map_max(map));
4328 }
4329
4330 vm_offset_t
4331 vm_map_min_KBI(const struct vm_map *map)
4332 {
4333
4334         return (vm_map_min(map));
4335 }
4336
4337 pmap_t
4338 vm_map_pmap_KBI(vm_map_t map)
4339 {
4340
4341         return (map->pmap);
4342 }
4343
4344 #include "opt_ddb.h"
4345 #ifdef DDB
4346 #include <sys/kernel.h>
4347
4348 #include <ddb/ddb.h>
4349
4350 static void
4351 vm_map_print(vm_map_t map)
4352 {
4353         vm_map_entry_t entry;
4354
4355         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4356             (void *)map,
4357             (void *)map->pmap, map->nentries, map->timestamp);
4358
4359         db_indent += 2;
4360         for (entry = map->header.next; entry != &map->header;
4361             entry = entry->next) {
4362                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4363                     (void *)entry, (void *)entry->start, (void *)entry->end,
4364                     entry->eflags);
4365                 {
4366                         static char *inheritance_name[4] =
4367                         {"share", "copy", "none", "donate_copy"};
4368
4369                         db_iprintf(" prot=%x/%x/%s",
4370                             entry->protection,
4371                             entry->max_protection,
4372                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4373                         if (entry->wired_count != 0)
4374                                 db_printf(", wired");
4375                 }
4376                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4377                         db_printf(", share=%p, offset=0x%jx\n",
4378                             (void *)entry->object.sub_map,
4379                             (uintmax_t)entry->offset);
4380                         if ((entry->prev == &map->header) ||
4381                             (entry->prev->object.sub_map !=
4382                                 entry->object.sub_map)) {
4383                                 db_indent += 2;
4384                                 vm_map_print((vm_map_t)entry->object.sub_map);
4385                                 db_indent -= 2;
4386                         }
4387                 } else {
4388                         if (entry->cred != NULL)
4389                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4390                         db_printf(", object=%p, offset=0x%jx",
4391                             (void *)entry->object.vm_object,
4392                             (uintmax_t)entry->offset);
4393                         if (entry->object.vm_object && entry->object.vm_object->cred)
4394                                 db_printf(", obj ruid %d charge %jx",
4395                                     entry->object.vm_object->cred->cr_ruid,
4396                                     (uintmax_t)entry->object.vm_object->charge);
4397                         if (entry->eflags & MAP_ENTRY_COW)
4398                                 db_printf(", copy (%s)",
4399                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4400                         db_printf("\n");
4401
4402                         if ((entry->prev == &map->header) ||
4403                             (entry->prev->object.vm_object !=
4404                                 entry->object.vm_object)) {
4405                                 db_indent += 2;
4406                                 vm_object_print((db_expr_t)(intptr_t)
4407                                                 entry->object.vm_object,
4408                                                 0, 0, (char *)0);
4409                                 db_indent -= 2;
4410                         }
4411                 }
4412         }
4413         db_indent -= 2;
4414 }
4415
4416 DB_SHOW_COMMAND(map, map)
4417 {
4418
4419         if (!have_addr) {
4420                 db_printf("usage: show map <addr>\n");
4421                 return;
4422         }
4423         vm_map_print((vm_map_t)addr);
4424 }
4425
4426 DB_SHOW_COMMAND(procvm, procvm)
4427 {
4428         struct proc *p;
4429
4430         if (have_addr) {
4431                 p = db_lookup_proc(addr);
4432         } else {
4433                 p = curproc;
4434         }
4435
4436         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4437             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4438             (void *)vmspace_pmap(p->p_vmspace));
4439
4440         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4441 }
4442
4443 #endif /* DDB */