]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge OpenSSL 1.1.1c.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101
102 /*
103  *      Virtual memory maps provide for the mapping, protection,
104  *      and sharing of virtual memory objects.  In addition,
105  *      this module provides for an efficient virtual copy of
106  *      memory from one map to another.
107  *
108  *      Synchronization is required prior to most operations.
109  *
110  *      Maps consist of an ordered doubly-linked list of simple
111  *      entries; a self-adjusting binary search tree of these
112  *      entries is used to speed up lookups.
113  *
114  *      Since portions of maps are specified by start/end addresses,
115  *      which may not align with existing map entries, all
116  *      routines merely "clip" entries to these start/end values.
117  *      [That is, an entry is split into two, bordering at a
118  *      start or end value.]  Note that these clippings may not
119  *      always be necessary (as the two resulting entries are then
120  *      not changed); however, the clipping is done for convenience.
121  *
122  *      As mentioned above, virtual copy operations are performed
123  *      by copying VM object references from one map to
124  *      another, and then marking both regions as copy-on-write.
125  */
126
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152
153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156
157 /* 
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163
164 /*
165  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
166  *
167  *      Asserts that the starting and ending region
168  *      addresses fall within the valid range of the map.
169  */
170 #define VM_MAP_RANGE_CHECK(map, start, end)             \
171                 {                                       \
172                 if (start < vm_map_min(map))            \
173                         start = vm_map_min(map);        \
174                 if (end > vm_map_max(map))              \
175                         end = vm_map_max(map);          \
176                 if (start > end)                        \
177                         start = end;                    \
178                 }
179
180 /*
181  *      vm_map_startup:
182  *
183  *      Initialize the vm_map module.  Must be called before
184  *      any other vm_map routines.
185  *
186  *      Map and entry structures are allocated from the general
187  *      purpose memory pool with some exceptions:
188  *
189  *      - The kernel map and kmem submap are allocated statically.
190  *      - Kernel map entries are allocated out of a static pool.
191  *
192  *      These restrictions are necessary since malloc() uses the
193  *      maps and requires map entries.
194  */
195
196 void
197 vm_map_startup(void)
198 {
199         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202             vm_map_zdtor,
203 #else
204             NULL,
205 #endif
206             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207         uma_prealloc(mapzone, MAX_KMAP);
208         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215             vmspace_zdtor,
216 #else
217             NULL,
218 #endif
219             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225         struct vmspace *vm;
226
227         vm = (struct vmspace *)mem;
228
229         vm->vm_map.pmap = NULL;
230         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231         PMAP_LOCK_INIT(vmspace_pmap(vm));
232         return (0);
233 }
234
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238         vm_map_t map;
239
240         map = (vm_map_t)mem;
241         memset(map, 0, sizeof(*map));
242         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243         sx_init(&map->lock, "vm map (user)");
244         return (0);
245 }
246
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251         struct vmspace *vm;
252
253         vm = (struct vmspace *)mem;
254
255         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260         vm_map_t map;
261
262         map = (vm_map_t)mem;
263         KASSERT(map->nentries == 0,
264             ("map %p nentries == %d on free.",
265             map, map->nentries));
266         KASSERT(map->size == 0,
267             ("map %p size == %lu on free.",
268             map, (unsigned long)map->size));
269 }
270 #endif  /* INVARIANTS */
271
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281         struct vmspace *vm;
282
283         vm = uma_zalloc(vmspace_zone, M_WAITOK);
284         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336             vm_map_max(&vm->vm_map));
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         refcnt = vm->vm_refcnt;
393         do {
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         refcnt = vm->vm_refcnt;
439         do {
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         /* Remove the daemon's reference to the old address space. */
494         KASSERT(oldvm->vm_refcnt > 1,
495             ("vmspace_switch_aio: oldvm dropping last reference"));
496         vmspace_free(oldvm);
497 }
498
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502
503         if (map->system_map)
504                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
505         else
506                 sx_xlock_(&map->lock, file, line);
507         map->timestamp++;
508 }
509
510 void
511 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
512 {
513         vm_object_t object, object1;
514         struct vnode *vp;
515
516         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
517                 return;
518         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
519             ("Submap with execs"));
520         object = entry->object.vm_object;
521         KASSERT(object != NULL, ("No object for text, entry %p", entry));
522         VM_OBJECT_RLOCK(object);
523         while ((object1 = object->backing_object) != NULL) {
524                 VM_OBJECT_RLOCK(object1);
525                 VM_OBJECT_RUNLOCK(object);
526                 object = object1;
527         }
528
529         /*
530          * For OBJT_DEAD objects, v_writecount was handled in
531          * vnode_pager_dealloc().
532          */
533         if (object->type != OBJT_DEAD) {
534                 KASSERT(((object->flags & OBJ_TMPFS) == 0 &&
535                     object->type == OBJT_VNODE) ||
536                     ((object->flags & OBJ_TMPFS) != 0 &&
537                     object->type == OBJT_SWAP),
538                     ("vm_map_entry_set_vnode_text: wrong object type, "
539                     "entry %p, object %p, add %d", entry, object, add));
540                 vp = (object->flags & OBJ_TMPFS) == 0 ? object->handle :
541                     object->un_pager.swp.swp_tmpfs;
542                 if (add)
543                         VOP_SET_TEXT_CHECKED(vp);
544                 else
545                         VOP_UNSET_TEXT_CHECKED(vp);
546         }
547         VM_OBJECT_RUNLOCK(object);
548 }
549
550 static void
551 vm_map_process_deferred(void)
552 {
553         struct thread *td;
554         vm_map_entry_t entry, next;
555         vm_object_t object;
556
557         td = curthread;
558         entry = td->td_map_def_user;
559         td->td_map_def_user = NULL;
560         while (entry != NULL) {
561                 next = entry->next;
562                 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
563                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
564                     MAP_ENTRY_VN_EXEC));
565                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
566                         /*
567                          * Decrement the object's writemappings and
568                          * possibly the vnode's v_writecount.
569                          */
570                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
571                             ("Submap with writecount"));
572                         object = entry->object.vm_object;
573                         KASSERT(object != NULL, ("No object for writecount"));
574                         vnode_pager_release_writecount(object, entry->start,
575                             entry->end);
576                 }
577                 vm_map_entry_set_vnode_text(entry, false);
578                 vm_map_entry_deallocate(entry, FALSE);
579                 entry = next;
580         }
581 }
582
583 void
584 _vm_map_unlock(vm_map_t map, const char *file, int line)
585 {
586
587         if (map->system_map)
588                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
589         else {
590                 sx_xunlock_(&map->lock, file, line);
591                 vm_map_process_deferred();
592         }
593 }
594
595 void
596 _vm_map_lock_read(vm_map_t map, const char *file, int line)
597 {
598
599         if (map->system_map)
600                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
601         else
602                 sx_slock_(&map->lock, file, line);
603 }
604
605 void
606 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
607 {
608
609         if (map->system_map)
610                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
611         else {
612                 sx_sunlock_(&map->lock, file, line);
613                 vm_map_process_deferred();
614         }
615 }
616
617 int
618 _vm_map_trylock(vm_map_t map, const char *file, int line)
619 {
620         int error;
621
622         error = map->system_map ?
623             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
624             !sx_try_xlock_(&map->lock, file, line);
625         if (error == 0)
626                 map->timestamp++;
627         return (error == 0);
628 }
629
630 int
631 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
632 {
633         int error;
634
635         error = map->system_map ?
636             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
637             !sx_try_slock_(&map->lock, file, line);
638         return (error == 0);
639 }
640
641 /*
642  *      _vm_map_lock_upgrade:   [ internal use only ]
643  *
644  *      Tries to upgrade a read (shared) lock on the specified map to a write
645  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
646  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
647  *      returned without a read or write lock held.
648  *
649  *      Requires that the map be read locked.
650  */
651 int
652 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
653 {
654         unsigned int last_timestamp;
655
656         if (map->system_map) {
657                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
658         } else {
659                 if (!sx_try_upgrade_(&map->lock, file, line)) {
660                         last_timestamp = map->timestamp;
661                         sx_sunlock_(&map->lock, file, line);
662                         vm_map_process_deferred();
663                         /*
664                          * If the map's timestamp does not change while the
665                          * map is unlocked, then the upgrade succeeds.
666                          */
667                         sx_xlock_(&map->lock, file, line);
668                         if (last_timestamp != map->timestamp) {
669                                 sx_xunlock_(&map->lock, file, line);
670                                 return (1);
671                         }
672                 }
673         }
674         map->timestamp++;
675         return (0);
676 }
677
678 void
679 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
680 {
681
682         if (map->system_map) {
683                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
684         } else
685                 sx_downgrade_(&map->lock, file, line);
686 }
687
688 /*
689  *      vm_map_locked:
690  *
691  *      Returns a non-zero value if the caller holds a write (exclusive) lock
692  *      on the specified map and the value "0" otherwise.
693  */
694 int
695 vm_map_locked(vm_map_t map)
696 {
697
698         if (map->system_map)
699                 return (mtx_owned(&map->system_mtx));
700         else
701                 return (sx_xlocked(&map->lock));
702 }
703
704 #ifdef INVARIANTS
705 static void
706 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
707 {
708
709         if (map->system_map)
710                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
711         else
712                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
713 }
714
715 #define VM_MAP_ASSERT_LOCKED(map) \
716     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
717
718 #ifdef DIAGNOSTIC
719 static int enable_vmmap_check = 1;
720 #else
721 static int enable_vmmap_check = 0;
722 #endif
723 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
724     &enable_vmmap_check, 0, "Enable vm map consistency checking");
725
726 static void
727 _vm_map_assert_consistent(vm_map_t map)
728 {
729         vm_map_entry_t entry;
730         vm_map_entry_t child;
731         vm_size_t max_left, max_right;
732
733         if (!enable_vmmap_check)
734                 return;
735
736         for (entry = map->header.next; entry != &map->header;
737             entry = entry->next) {
738                 KASSERT(entry->prev->end <= entry->start,
739                     ("map %p prev->end = %jx, start = %jx", map,
740                     (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
741                 KASSERT(entry->start < entry->end,
742                     ("map %p start = %jx, end = %jx", map,
743                     (uintmax_t)entry->start, (uintmax_t)entry->end));
744                 KASSERT(entry->end <= entry->next->start,
745                     ("map %p end = %jx, next->start = %jx", map,
746                     (uintmax_t)entry->end, (uintmax_t)entry->next->start));
747                 KASSERT(entry->left == NULL ||
748                     entry->left->start < entry->start,
749                     ("map %p left->start = %jx, start = %jx", map,
750                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
751                 KASSERT(entry->right == NULL ||
752                     entry->start < entry->right->start,
753                     ("map %p start = %jx, right->start = %jx", map,
754                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
755                 child = entry->left;
756                 max_left = (child != NULL) ? child->max_free :
757                         entry->start - entry->prev->end;
758                 child = entry->right;
759                 max_right = (child != NULL) ? child->max_free :
760                         entry->next->start - entry->end;
761                 KASSERT(entry->max_free == MAX(max_left, max_right),
762                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
763                      (uintmax_t)entry->max_free,
764                      (uintmax_t)max_left, (uintmax_t)max_right));
765         }       
766 }
767
768 #define VM_MAP_ASSERT_CONSISTENT(map) \
769     _vm_map_assert_consistent(map)
770 #else
771 #define VM_MAP_ASSERT_LOCKED(map)
772 #define VM_MAP_ASSERT_CONSISTENT(map)
773 #endif /* INVARIANTS */
774
775 /*
776  *      _vm_map_unlock_and_wait:
777  *
778  *      Atomically releases the lock on the specified map and puts the calling
779  *      thread to sleep.  The calling thread will remain asleep until either
780  *      vm_map_wakeup() is performed on the map or the specified timeout is
781  *      exceeded.
782  *
783  *      WARNING!  This function does not perform deferred deallocations of
784  *      objects and map entries.  Therefore, the calling thread is expected to
785  *      reacquire the map lock after reawakening and later perform an ordinary
786  *      unlock operation, such as vm_map_unlock(), before completing its
787  *      operation on the map.
788  */
789 int
790 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
791 {
792
793         mtx_lock(&map_sleep_mtx);
794         if (map->system_map)
795                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
796         else
797                 sx_xunlock_(&map->lock, file, line);
798         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
799             timo));
800 }
801
802 /*
803  *      vm_map_wakeup:
804  *
805  *      Awaken any threads that have slept on the map using
806  *      vm_map_unlock_and_wait().
807  */
808 void
809 vm_map_wakeup(vm_map_t map)
810 {
811
812         /*
813          * Acquire and release map_sleep_mtx to prevent a wakeup()
814          * from being performed (and lost) between the map unlock
815          * and the msleep() in _vm_map_unlock_and_wait().
816          */
817         mtx_lock(&map_sleep_mtx);
818         mtx_unlock(&map_sleep_mtx);
819         wakeup(&map->root);
820 }
821
822 void
823 vm_map_busy(vm_map_t map)
824 {
825
826         VM_MAP_ASSERT_LOCKED(map);
827         map->busy++;
828 }
829
830 void
831 vm_map_unbusy(vm_map_t map)
832 {
833
834         VM_MAP_ASSERT_LOCKED(map);
835         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
836         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
837                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
838                 wakeup(&map->busy);
839         }
840 }
841
842 void 
843 vm_map_wait_busy(vm_map_t map)
844 {
845
846         VM_MAP_ASSERT_LOCKED(map);
847         while (map->busy) {
848                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
849                 if (map->system_map)
850                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
851                 else
852                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
853         }
854         map->timestamp++;
855 }
856
857 long
858 vmspace_resident_count(struct vmspace *vmspace)
859 {
860         return pmap_resident_count(vmspace_pmap(vmspace));
861 }
862
863 /*
864  *      vm_map_create:
865  *
866  *      Creates and returns a new empty VM map with
867  *      the given physical map structure, and having
868  *      the given lower and upper address bounds.
869  */
870 vm_map_t
871 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
872 {
873         vm_map_t result;
874
875         result = uma_zalloc(mapzone, M_WAITOK);
876         CTR1(KTR_VM, "vm_map_create: %p", result);
877         _vm_map_init(result, pmap, min, max);
878         return (result);
879 }
880
881 /*
882  * Initialize an existing vm_map structure
883  * such as that in the vmspace structure.
884  */
885 static void
886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888
889         map->header.next = map->header.prev = &map->header;
890         map->header.eflags = MAP_ENTRY_HEADER;
891         map->needs_wakeup = FALSE;
892         map->system_map = 0;
893         map->pmap = pmap;
894         map->header.end = min;
895         map->header.start = max;
896         map->flags = 0;
897         map->root = NULL;
898         map->timestamp = 0;
899         map->busy = 0;
900         map->anon_loc = 0;
901 }
902
903 void
904 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
905 {
906
907         _vm_map_init(map, pmap, min, max);
908         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
909         sx_init(&map->lock, "user map");
910 }
911
912 /*
913  *      vm_map_entry_dispose:   [ internal use only ]
914  *
915  *      Inverse of vm_map_entry_create.
916  */
917 static void
918 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
919 {
920         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
921 }
922
923 /*
924  *      vm_map_entry_create:    [ internal use only ]
925  *
926  *      Allocates a VM map entry for insertion.
927  *      No entry fields are filled in.
928  */
929 static vm_map_entry_t
930 vm_map_entry_create(vm_map_t map)
931 {
932         vm_map_entry_t new_entry;
933
934         if (map->system_map)
935                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
936         else
937                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
938         if (new_entry == NULL)
939                 panic("vm_map_entry_create: kernel resources exhausted");
940         return (new_entry);
941 }
942
943 /*
944  *      vm_map_entry_set_behavior:
945  *
946  *      Set the expected access behavior, either normal, random, or
947  *      sequential.
948  */
949 static inline void
950 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
951 {
952         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
953             (behavior & MAP_ENTRY_BEHAV_MASK);
954 }
955
956 /*
957  *      vm_map_entry_set_max_free:
958  *
959  *      Set the max_free field in a vm_map_entry.
960  */
961 static inline void
962 vm_map_entry_set_max_free(vm_map_entry_t entry)
963 {
964         vm_map_entry_t child;
965         vm_size_t max_left, max_right;
966
967         child = entry->left;
968         max_left = (child != NULL) ? child->max_free :
969             entry->start - entry->prev->end;
970         child = entry->right;
971         max_right = (child != NULL) ? child->max_free :
972             entry->next->start - entry->end;
973         entry->max_free = MAX(max_left, max_right);
974 }
975
976 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {      \
977         y = root->left;                                 \
978         if (y != NULL && (test)) {                      \
979                 /* Rotate right and make y root. */     \
980                 root->left = y->right;                  \
981                 y->right = root;                        \
982                 vm_map_entry_set_max_free(root);        \
983                 root = y;                               \
984                 y = root->left;                         \
985         }                                               \
986         /* Put root on rlist. */                        \
987         root->left = rlist;                             \
988         rlist = root;                                   \
989         root = y;                                       \
990 } while (0)
991
992 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {     \
993         y = root->right;                                \
994         if (y != NULL && (test)) {                      \
995                 /* Rotate left and make y root. */      \
996                 root->right = y->left;                  \
997                 y->left = root;                         \
998                 vm_map_entry_set_max_free(root);        \
999                 root = y;                               \
1000                 y = root->right;                        \
1001         }                                               \
1002         /* Put root on llist. */                        \
1003         root->right = llist;                            \
1004         llist = root;                                   \
1005         root = y;                                       \
1006 } while (0)
1007
1008 /*
1009  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1010  * breaking off left and right subtrees of nodes less than, or greater than
1011  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1012  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1013  * linked by the right pointer and rlist linked by the left pointer in the
1014  * vm_map_entry.
1015  */
1016 static vm_map_entry_t
1017 vm_map_splay_split(vm_offset_t addr, vm_size_t length,
1018     vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1019 {
1020         vm_map_entry_t llist, rlist;
1021         vm_map_entry_t y;
1022
1023         llist = NULL;
1024         rlist = NULL;
1025         while (root != NULL && root->max_free >= length) {
1026                 if (addr < root->start) {
1027                         SPLAY_LEFT_STEP(root, y, rlist,
1028                             y->max_free >= length && addr < y->start);
1029                 } else if (addr >= root->end) {
1030                         SPLAY_RIGHT_STEP(root, y, llist,
1031                             y->max_free >= length && addr >= y->end);
1032                 } else
1033                         break;
1034         }
1035         *out_llist = llist;
1036         *out_rlist = rlist;
1037         return (root);
1038 }
1039
1040 static void
1041 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1042 {
1043         vm_map_entry_t rlist, y;
1044
1045         root = root->right;
1046         rlist = *iolist;
1047         while (root != NULL)
1048                 SPLAY_LEFT_STEP(root, y, rlist, true);
1049         *iolist = rlist;
1050 }
1051
1052 static void
1053 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1054 {
1055         vm_map_entry_t llist, y;
1056
1057         root = root->left;
1058         llist = *iolist;
1059         while (root != NULL)
1060                 SPLAY_RIGHT_STEP(root, y, llist, true);
1061         *iolist = llist;
1062 }
1063
1064 /*
1065  * Walk back up the two spines, flip the pointers and set max_free.  The
1066  * subtrees of the root go at the bottom of llist and rlist.
1067  */
1068 static vm_map_entry_t
1069 vm_map_splay_merge(vm_map_entry_t root,
1070     vm_map_entry_t llist, vm_map_entry_t rlist,
1071     vm_map_entry_t ltree, vm_map_entry_t rtree)
1072 {
1073         vm_map_entry_t y;
1074
1075         while (llist != NULL) {
1076                 y = llist->right;
1077                 llist->right = ltree;
1078                 vm_map_entry_set_max_free(llist);
1079                 ltree = llist;
1080                 llist = y;
1081         }
1082         while (rlist != NULL) {
1083                 y = rlist->left;
1084                 rlist->left = rtree;
1085                 vm_map_entry_set_max_free(rlist);
1086                 rtree = rlist;
1087                 rlist = y;
1088         }
1089
1090         /*
1091          * Final assembly: add ltree and rtree as subtrees of root.
1092          */
1093         root->left = ltree;
1094         root->right = rtree;
1095         vm_map_entry_set_max_free(root);
1096
1097         return (root);
1098 }
1099
1100 /*
1101  *      vm_map_entry_splay:
1102  *
1103  *      The Sleator and Tarjan top-down splay algorithm with the
1104  *      following variation.  Max_free must be computed bottom-up, so
1105  *      on the downward pass, maintain the left and right spines in
1106  *      reverse order.  Then, make a second pass up each side to fix
1107  *      the pointers and compute max_free.  The time bound is O(log n)
1108  *      amortized.
1109  *
1110  *      The new root is the vm_map_entry containing "addr", or else an
1111  *      adjacent entry (lower if possible) if addr is not in the tree.
1112  *
1113  *      The map must be locked, and leaves it so.
1114  *
1115  *      Returns: the new root.
1116  */
1117 static vm_map_entry_t
1118 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
1119 {
1120         vm_map_entry_t llist, rlist;
1121
1122         root = vm_map_splay_split(addr, 0, root, &llist, &rlist);
1123         if (root != NULL) {
1124                 /* do nothing */
1125         } else if (llist != NULL) {
1126                 /*
1127                  * Recover the greatest node in the left
1128                  * subtree and make it the root.
1129                  */
1130                 root = llist;
1131                 llist = root->right;
1132                 root->right = NULL;
1133         } else if (rlist != NULL) {
1134                 /*
1135                  * Recover the least node in the right
1136                  * subtree and make it the root.
1137                  */
1138                 root = rlist;
1139                 rlist = root->left;
1140                 root->left = NULL;
1141         } else {
1142                 /* There is no root. */
1143                 return (NULL);
1144         }
1145         return (vm_map_splay_merge(root, llist, rlist,
1146             root->left, root->right));
1147 }
1148
1149 /*
1150  *      vm_map_entry_{un,}link:
1151  *
1152  *      Insert/remove entries from maps.
1153  */
1154 static void
1155 vm_map_entry_link(vm_map_t map,
1156                   vm_map_entry_t entry)
1157 {
1158         vm_map_entry_t llist, rlist, root;
1159
1160         CTR3(KTR_VM,
1161             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1162             map->nentries, entry);
1163         VM_MAP_ASSERT_LOCKED(map);
1164         map->nentries++;
1165         root = map->root;
1166         root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1167         KASSERT(root == NULL,
1168             ("vm_map_entry_link: link object already mapped"));
1169         entry->prev = (llist == NULL) ? &map->header : llist;
1170         entry->next = (rlist == NULL) ? &map->header : rlist;
1171         entry->prev->next = entry->next->prev = entry;
1172         root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL);
1173         map->root = entry;
1174         VM_MAP_ASSERT_CONSISTENT(map);
1175 }
1176
1177 enum unlink_merge_type {
1178         UNLINK_MERGE_PREV,
1179         UNLINK_MERGE_NONE,
1180         UNLINK_MERGE_NEXT
1181 };
1182
1183 static void
1184 vm_map_entry_unlink(vm_map_t map,
1185                     vm_map_entry_t entry,
1186                     enum unlink_merge_type op)
1187 {
1188         vm_map_entry_t llist, rlist, root, y;
1189
1190         VM_MAP_ASSERT_LOCKED(map);
1191         llist = entry->prev;
1192         rlist = entry->next;
1193         llist->next = rlist;
1194         rlist->prev = llist;
1195         root = map->root;
1196         root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1197         KASSERT(root != NULL,
1198             ("vm_map_entry_unlink: unlink object not mapped"));
1199
1200         switch (op) {
1201         case UNLINK_MERGE_PREV:
1202                 vm_map_splay_findprev(root, &llist);
1203                 llist->end = root->end;
1204                 y = root->right;
1205                 root = llist;
1206                 llist = root->right;
1207                 root->right = y;
1208                 break;
1209         case UNLINK_MERGE_NEXT:
1210                 vm_map_splay_findnext(root, &rlist);
1211                 rlist->start = root->start;
1212                 rlist->offset = root->offset;
1213                 y = root->left;
1214                 root = rlist;
1215                 rlist = root->left;
1216                 root->left = y;
1217                 break;
1218         case UNLINK_MERGE_NONE:
1219                 vm_map_splay_findprev(root, &llist);
1220                 vm_map_splay_findnext(root, &rlist);
1221                 if (llist != NULL) {
1222                         root = llist;
1223                         llist = root->right;
1224                         root->right = NULL;
1225                 } else if (rlist != NULL) {
1226                         root = rlist;
1227                         rlist = root->left;
1228                         root->left = NULL;
1229                 } else
1230                         root = NULL;
1231                 break;
1232         }
1233         if (root != NULL)
1234                 root = vm_map_splay_merge(root, llist, rlist,
1235                     root->left, root->right);
1236         map->root = root;
1237         VM_MAP_ASSERT_CONSISTENT(map);
1238         map->nentries--;
1239         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1240             map->nentries, entry);
1241 }
1242
1243 /*
1244  *      vm_map_entry_resize:
1245  *
1246  *      Resize a vm_map_entry, recompute the amount of free space that
1247  *      follows it and propagate that value up the tree.
1248  *
1249  *      The map must be locked, and leaves it so.
1250  */
1251 static void
1252 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1253 {
1254         vm_map_entry_t llist, rlist, root;
1255
1256         VM_MAP_ASSERT_LOCKED(map);
1257         root = map->root;
1258         root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1259         KASSERT(root != NULL,
1260             ("%s: resize object not mapped", __func__));
1261         vm_map_splay_findnext(root, &rlist);
1262         root->right = NULL;
1263         entry->end += grow_amount;
1264         map->root = vm_map_splay_merge(root, llist, rlist,
1265             root->left, root->right);
1266         VM_MAP_ASSERT_CONSISTENT(map);
1267         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1268             __func__, map, map->nentries, entry);
1269 }
1270
1271 /*
1272  *      vm_map_lookup_entry:    [ internal use only ]
1273  *
1274  *      Finds the map entry containing (or
1275  *      immediately preceding) the specified address
1276  *      in the given map; the entry is returned
1277  *      in the "entry" parameter.  The boolean
1278  *      result indicates whether the address is
1279  *      actually contained in the map.
1280  */
1281 boolean_t
1282 vm_map_lookup_entry(
1283         vm_map_t map,
1284         vm_offset_t address,
1285         vm_map_entry_t *entry)  /* OUT */
1286 {
1287         vm_map_entry_t cur, lbound;
1288         boolean_t locked;
1289
1290         /*
1291          * If the map is empty, then the map entry immediately preceding
1292          * "address" is the map's header.
1293          */
1294         cur = map->root;
1295         if (cur == NULL) {
1296                 *entry = &map->header;
1297                 return (FALSE);
1298         }
1299         if (address >= cur->start && cur->end > address) {
1300                 *entry = cur;
1301                 return (TRUE);
1302         }
1303         if ((locked = vm_map_locked(map)) ||
1304             sx_try_upgrade(&map->lock)) {
1305                 /*
1306                  * Splay requires a write lock on the map.  However, it only
1307                  * restructures the binary search tree; it does not otherwise
1308                  * change the map.  Thus, the map's timestamp need not change
1309                  * on a temporary upgrade.
1310                  */
1311                 map->root = cur = vm_map_entry_splay(address, cur);
1312                 VM_MAP_ASSERT_CONSISTENT(map);
1313                 if (!locked)
1314                         sx_downgrade(&map->lock);
1315
1316                 /*
1317                  * If "address" is contained within a map entry, the new root
1318                  * is that map entry.  Otherwise, the new root is a map entry
1319                  * immediately before or after "address".
1320                  */
1321                 if (address < cur->start) {
1322                         *entry = &map->header;
1323                         return (FALSE);
1324                 }
1325                 *entry = cur;
1326                 return (address < cur->end);
1327         }
1328         /*
1329          * Since the map is only locked for read access, perform a
1330          * standard binary search tree lookup for "address".
1331          */
1332         lbound = &map->header;
1333         do {
1334                 if (address < cur->start) {
1335                         cur = cur->left;
1336                 } else if (cur->end <= address) {
1337                         lbound = cur;
1338                         cur = cur->right;
1339                 } else {
1340                         *entry = cur;
1341                         return (TRUE);
1342                 }
1343         } while (cur != NULL);
1344         *entry = lbound;
1345         return (FALSE);
1346 }
1347
1348 /*
1349  *      vm_map_insert:
1350  *
1351  *      Inserts the given whole VM object into the target
1352  *      map at the specified address range.  The object's
1353  *      size should match that of the address range.
1354  *
1355  *      Requires that the map be locked, and leaves it so.
1356  *
1357  *      If object is non-NULL, ref count must be bumped by caller
1358  *      prior to making call to account for the new entry.
1359  */
1360 int
1361 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1362     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1363 {
1364         vm_map_entry_t new_entry, prev_entry, temp_entry;
1365         struct ucred *cred;
1366         vm_eflags_t protoeflags;
1367         vm_inherit_t inheritance;
1368
1369         VM_MAP_ASSERT_LOCKED(map);
1370         KASSERT(object != kernel_object ||
1371             (cow & MAP_COPY_ON_WRITE) == 0,
1372             ("vm_map_insert: kernel object and COW"));
1373         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1374             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1375         KASSERT((prot & ~max) == 0,
1376             ("prot %#x is not subset of max_prot %#x", prot, max));
1377
1378         /*
1379          * Check that the start and end points are not bogus.
1380          */
1381         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1382             start >= end)
1383                 return (KERN_INVALID_ADDRESS);
1384
1385         /*
1386          * Find the entry prior to the proposed starting address; if it's part
1387          * of an existing entry, this range is bogus.
1388          */
1389         if (vm_map_lookup_entry(map, start, &temp_entry))
1390                 return (KERN_NO_SPACE);
1391
1392         prev_entry = temp_entry;
1393
1394         /*
1395          * Assert that the next entry doesn't overlap the end point.
1396          */
1397         if (prev_entry->next->start < end)
1398                 return (KERN_NO_SPACE);
1399
1400         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1401             max != VM_PROT_NONE))
1402                 return (KERN_INVALID_ARGUMENT);
1403
1404         protoeflags = 0;
1405         if (cow & MAP_COPY_ON_WRITE)
1406                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1407         if (cow & MAP_NOFAULT)
1408                 protoeflags |= MAP_ENTRY_NOFAULT;
1409         if (cow & MAP_DISABLE_SYNCER)
1410                 protoeflags |= MAP_ENTRY_NOSYNC;
1411         if (cow & MAP_DISABLE_COREDUMP)
1412                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1413         if (cow & MAP_STACK_GROWS_DOWN)
1414                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1415         if (cow & MAP_STACK_GROWS_UP)
1416                 protoeflags |= MAP_ENTRY_GROWS_UP;
1417         if (cow & MAP_VN_WRITECOUNT)
1418                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1419         if (cow & MAP_VN_EXEC)
1420                 protoeflags |= MAP_ENTRY_VN_EXEC;
1421         if ((cow & MAP_CREATE_GUARD) != 0)
1422                 protoeflags |= MAP_ENTRY_GUARD;
1423         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1424                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1425         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1426                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1427         if (cow & MAP_INHERIT_SHARE)
1428                 inheritance = VM_INHERIT_SHARE;
1429         else
1430                 inheritance = VM_INHERIT_DEFAULT;
1431
1432         cred = NULL;
1433         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1434                 goto charged;
1435         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1436             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1437                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1438                         return (KERN_RESOURCE_SHORTAGE);
1439                 KASSERT(object == NULL ||
1440                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1441                     object->cred == NULL,
1442                     ("overcommit: vm_map_insert o %p", object));
1443                 cred = curthread->td_ucred;
1444         }
1445
1446 charged:
1447         /* Expand the kernel pmap, if necessary. */
1448         if (map == kernel_map && end > kernel_vm_end)
1449                 pmap_growkernel(end);
1450         if (object != NULL) {
1451                 /*
1452                  * OBJ_ONEMAPPING must be cleared unless this mapping
1453                  * is trivially proven to be the only mapping for any
1454                  * of the object's pages.  (Object granularity
1455                  * reference counting is insufficient to recognize
1456                  * aliases with precision.)
1457                  */
1458                 VM_OBJECT_WLOCK(object);
1459                 if (object->ref_count > 1 || object->shadow_count != 0)
1460                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1461                 VM_OBJECT_WUNLOCK(object);
1462         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1463             protoeflags &&
1464             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1465             MAP_VN_EXEC)) == 0 &&
1466             prev_entry->end == start && (prev_entry->cred == cred ||
1467             (prev_entry->object.vm_object != NULL &&
1468             prev_entry->object.vm_object->cred == cred)) &&
1469             vm_object_coalesce(prev_entry->object.vm_object,
1470             prev_entry->offset,
1471             (vm_size_t)(prev_entry->end - prev_entry->start),
1472             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1473             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1474                 /*
1475                  * We were able to extend the object.  Determine if we
1476                  * can extend the previous map entry to include the
1477                  * new range as well.
1478                  */
1479                 if (prev_entry->inheritance == inheritance &&
1480                     prev_entry->protection == prot &&
1481                     prev_entry->max_protection == max &&
1482                     prev_entry->wired_count == 0) {
1483                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1484                             0, ("prev_entry %p has incoherent wiring",
1485                             prev_entry));
1486                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1487                                 map->size += end - prev_entry->end;
1488                         vm_map_entry_resize(map, prev_entry,
1489                             end - prev_entry->end);
1490                         vm_map_simplify_entry(map, prev_entry);
1491                         return (KERN_SUCCESS);
1492                 }
1493
1494                 /*
1495                  * If we can extend the object but cannot extend the
1496                  * map entry, we have to create a new map entry.  We
1497                  * must bump the ref count on the extended object to
1498                  * account for it.  object may be NULL.
1499                  */
1500                 object = prev_entry->object.vm_object;
1501                 offset = prev_entry->offset +
1502                     (prev_entry->end - prev_entry->start);
1503                 vm_object_reference(object);
1504                 if (cred != NULL && object != NULL && object->cred != NULL &&
1505                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1506                         /* Object already accounts for this uid. */
1507                         cred = NULL;
1508                 }
1509         }
1510         if (cred != NULL)
1511                 crhold(cred);
1512
1513         /*
1514          * Create a new entry
1515          */
1516         new_entry = vm_map_entry_create(map);
1517         new_entry->start = start;
1518         new_entry->end = end;
1519         new_entry->cred = NULL;
1520
1521         new_entry->eflags = protoeflags;
1522         new_entry->object.vm_object = object;
1523         new_entry->offset = offset;
1524
1525         new_entry->inheritance = inheritance;
1526         new_entry->protection = prot;
1527         new_entry->max_protection = max;
1528         new_entry->wired_count = 0;
1529         new_entry->wiring_thread = NULL;
1530         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1531         new_entry->next_read = start;
1532
1533         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1534             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1535         new_entry->cred = cred;
1536
1537         /*
1538          * Insert the new entry into the list
1539          */
1540         vm_map_entry_link(map, new_entry);
1541         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1542                 map->size += new_entry->end - new_entry->start;
1543
1544         /*
1545          * Try to coalesce the new entry with both the previous and next
1546          * entries in the list.  Previously, we only attempted to coalesce
1547          * with the previous entry when object is NULL.  Here, we handle the
1548          * other cases, which are less common.
1549          */
1550         vm_map_simplify_entry(map, new_entry);
1551
1552         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1553                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1554                     end - start, cow & MAP_PREFAULT_PARTIAL);
1555         }
1556
1557         return (KERN_SUCCESS);
1558 }
1559
1560 /*
1561  *      vm_map_findspace:
1562  *
1563  *      Find the first fit (lowest VM address) for "length" free bytes
1564  *      beginning at address >= start in the given map.
1565  *
1566  *      In a vm_map_entry, "max_free" is the maximum amount of
1567  *      contiguous free space between an entry in its subtree and a
1568  *      neighbor of that entry.  This allows finding a free region in
1569  *      one path down the tree, so O(log n) amortized with splay
1570  *      trees.
1571  *
1572  *      The map must be locked, and leaves it so.
1573  *
1574  *      Returns: starting address if sufficient space,
1575  *               vm_map_max(map)-length+1 if insufficient space.
1576  */
1577 vm_offset_t
1578 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1579 {
1580         vm_map_entry_t llist, rlist, root, y;
1581         vm_size_t left_length;
1582
1583         /*
1584          * Request must fit within min/max VM address and must avoid
1585          * address wrap.
1586          */
1587         start = MAX(start, vm_map_min(map));
1588         if (start + length > vm_map_max(map) || start + length < start)
1589                 return (vm_map_max(map) - length + 1);
1590
1591         /* Empty tree means wide open address space. */
1592         if (map->root == NULL)
1593                 return (start);
1594
1595         /*
1596          * After splay, if start comes before root node, then there
1597          * must be a gap from start to the root.
1598          */
1599         root = vm_map_splay_split(start, length, map->root,
1600             &llist, &rlist);
1601         if (root != NULL)
1602                 start = root->end;
1603         else if (rlist != NULL) {
1604                 root = rlist;
1605                 rlist = root->left;
1606                 root->left = NULL;
1607         } else {
1608                 root = llist;
1609                 llist = root->right;
1610                 root->right = NULL;
1611         }
1612         map->root = vm_map_splay_merge(root, llist, rlist,
1613             root->left, root->right);
1614         VM_MAP_ASSERT_CONSISTENT(map);
1615         if (start + length <= root->start)
1616                 return (start);
1617
1618         /*
1619          * Root is the last node that might begin its gap before
1620          * start, and this is the last comparison where address
1621          * wrap might be a problem.
1622          */
1623         if (root->right == NULL &&
1624             start + length <= vm_map_max(map))
1625                 return (start);
1626
1627         /* With max_free, can immediately tell if no solution. */
1628         if (root->right == NULL || length > root->right->max_free)
1629                 return (vm_map_max(map) - length + 1);
1630
1631         /*
1632          * Splay for the least large-enough gap in the right subtree.
1633          */
1634         llist = NULL;
1635         rlist = NULL;
1636         for (left_length = 0; ;
1637              left_length = root->left != NULL ?
1638              root->left->max_free : root->start - llist->end) {
1639                 if (length <= left_length)
1640                         SPLAY_LEFT_STEP(root, y, rlist,
1641                             length <= (y->left != NULL ?
1642                             y->left->max_free : y->start - llist->end));
1643                 else
1644                         SPLAY_RIGHT_STEP(root, y, llist,
1645                             length > (y->left != NULL ?
1646                             y->left->max_free : y->start - root->end));
1647                 if (root == NULL)
1648                         break;
1649         }
1650         root = llist;
1651         llist = root->right;
1652         if ((y = rlist) == NULL)
1653                 root->right = NULL;
1654         else {
1655                 rlist = y->left;
1656                 y->left = NULL;
1657                 root->right = y->right;
1658         }
1659         root = vm_map_splay_merge(root, llist, rlist,
1660             root->left, root->right);
1661         if (y != NULL) {
1662                 y->right = root->right;
1663                 vm_map_entry_set_max_free(y);
1664                 root->right = y;
1665                 vm_map_entry_set_max_free(root);
1666         }
1667         map->root = root;
1668         VM_MAP_ASSERT_CONSISTENT(map);
1669         return (root->end);
1670 }
1671
1672 int
1673 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1674     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1675     vm_prot_t max, int cow)
1676 {
1677         vm_offset_t end;
1678         int result;
1679
1680         end = start + length;
1681         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1682             object == NULL,
1683             ("vm_map_fixed: non-NULL backing object for stack"));
1684         vm_map_lock(map);
1685         VM_MAP_RANGE_CHECK(map, start, end);
1686         if ((cow & MAP_CHECK_EXCL) == 0)
1687                 vm_map_delete(map, start, end);
1688         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1689                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1690                     prot, max, cow);
1691         } else {
1692                 result = vm_map_insert(map, object, offset, start, end,
1693                     prot, max, cow);
1694         }
1695         vm_map_unlock(map);
1696         return (result);
1697 }
1698
1699 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1700 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1701
1702 static int cluster_anon = 1;
1703 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1704     &cluster_anon, 0,
1705     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1706
1707 static bool
1708 clustering_anon_allowed(vm_offset_t addr)
1709 {
1710
1711         switch (cluster_anon) {
1712         case 0:
1713                 return (false);
1714         case 1:
1715                 return (addr == 0);
1716         case 2:
1717         default:
1718                 return (true);
1719         }
1720 }
1721
1722 static long aslr_restarts;
1723 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1724     &aslr_restarts, 0,
1725     "Number of aslr failures");
1726
1727 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1728
1729 /*
1730  * Searches for the specified amount of free space in the given map with the
1731  * specified alignment.  Performs an address-ordered, first-fit search from
1732  * the given address "*addr", with an optional upper bound "max_addr".  If the
1733  * parameter "alignment" is zero, then the alignment is computed from the
1734  * given (object, offset) pair so as to enable the greatest possible use of
1735  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1736  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1737  *
1738  * The map must be locked.  Initially, there must be at least "length" bytes
1739  * of free space at the given address.
1740  */
1741 static int
1742 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1743     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1744     vm_offset_t alignment)
1745 {
1746         vm_offset_t aligned_addr, free_addr;
1747
1748         VM_MAP_ASSERT_LOCKED(map);
1749         free_addr = *addr;
1750         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1751             ("caller failed to provide space %d at address %p",
1752              (int)length, (void*)free_addr));
1753         for (;;) {
1754                 /*
1755                  * At the start of every iteration, the free space at address
1756                  * "*addr" is at least "length" bytes.
1757                  */
1758                 if (alignment == 0)
1759                         pmap_align_superpage(object, offset, addr, length);
1760                 else if ((*addr & (alignment - 1)) != 0) {
1761                         *addr &= ~(alignment - 1);
1762                         *addr += alignment;
1763                 }
1764                 aligned_addr = *addr;
1765                 if (aligned_addr == free_addr) {
1766                         /*
1767                          * Alignment did not change "*addr", so "*addr" must
1768                          * still provide sufficient free space.
1769                          */
1770                         return (KERN_SUCCESS);
1771                 }
1772
1773                 /*
1774                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1775                  * be a valid address, in which case vm_map_findspace() cannot
1776                  * be relied upon to fail.
1777                  */
1778                 if (aligned_addr < free_addr)
1779                         return (KERN_NO_SPACE);
1780                 *addr = vm_map_findspace(map, aligned_addr, length);
1781                 if (*addr + length > vm_map_max(map) ||
1782                     (max_addr != 0 && *addr + length > max_addr))
1783                         return (KERN_NO_SPACE);
1784                 free_addr = *addr;
1785                 if (free_addr == aligned_addr) {
1786                         /*
1787                          * If a successful call to vm_map_findspace() did not
1788                          * change "*addr", then "*addr" must still be aligned
1789                          * and provide sufficient free space.
1790                          */
1791                         return (KERN_SUCCESS);
1792                 }
1793         }
1794 }
1795
1796 /*
1797  *      vm_map_find finds an unallocated region in the target address
1798  *      map with the given length.  The search is defined to be
1799  *      first-fit from the specified address; the region found is
1800  *      returned in the same parameter.
1801  *
1802  *      If object is non-NULL, ref count must be bumped by caller
1803  *      prior to making call to account for the new entry.
1804  */
1805 int
1806 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1807             vm_offset_t *addr,  /* IN/OUT */
1808             vm_size_t length, vm_offset_t max_addr, int find_space,
1809             vm_prot_t prot, vm_prot_t max, int cow)
1810 {
1811         vm_offset_t alignment, curr_min_addr, min_addr;
1812         int gap, pidx, rv, try;
1813         bool cluster, en_aslr, update_anon;
1814
1815         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1816             object == NULL,
1817             ("vm_map_find: non-NULL backing object for stack"));
1818         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1819             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1820         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1821             (object->flags & OBJ_COLORED) == 0))
1822                 find_space = VMFS_ANY_SPACE;
1823         if (find_space >> 8 != 0) {
1824                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1825                 alignment = (vm_offset_t)1 << (find_space >> 8);
1826         } else
1827                 alignment = 0;
1828         en_aslr = (map->flags & MAP_ASLR) != 0;
1829         update_anon = cluster = clustering_anon_allowed(*addr) &&
1830             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1831             find_space != VMFS_NO_SPACE && object == NULL &&
1832             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1833             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1834         curr_min_addr = min_addr = *addr;
1835         if (en_aslr && min_addr == 0 && !cluster &&
1836             find_space != VMFS_NO_SPACE &&
1837             (map->flags & MAP_ASLR_IGNSTART) != 0)
1838                 curr_min_addr = min_addr = vm_map_min(map);
1839         try = 0;
1840         vm_map_lock(map);
1841         if (cluster) {
1842                 curr_min_addr = map->anon_loc;
1843                 if (curr_min_addr == 0)
1844                         cluster = false;
1845         }
1846         if (find_space != VMFS_NO_SPACE) {
1847                 KASSERT(find_space == VMFS_ANY_SPACE ||
1848                     find_space == VMFS_OPTIMAL_SPACE ||
1849                     find_space == VMFS_SUPER_SPACE ||
1850                     alignment != 0, ("unexpected VMFS flag"));
1851 again:
1852                 /*
1853                  * When creating an anonymous mapping, try clustering
1854                  * with an existing anonymous mapping first.
1855                  *
1856                  * We make up to two attempts to find address space
1857                  * for a given find_space value. The first attempt may
1858                  * apply randomization or may cluster with an existing
1859                  * anonymous mapping. If this first attempt fails,
1860                  * perform a first-fit search of the available address
1861                  * space.
1862                  *
1863                  * If all tries failed, and find_space is
1864                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1865                  * Again enable clustering and randomization.
1866                  */
1867                 try++;
1868                 MPASS(try <= 2);
1869
1870                 if (try == 2) {
1871                         /*
1872                          * Second try: we failed either to find a
1873                          * suitable region for randomizing the
1874                          * allocation, or to cluster with an existing
1875                          * mapping.  Retry with free run.
1876                          */
1877                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1878                             vm_map_min(map) : min_addr;
1879                         atomic_add_long(&aslr_restarts, 1);
1880                 }
1881
1882                 if (try == 1 && en_aslr && !cluster) {
1883                         /*
1884                          * Find space for allocation, including
1885                          * gap needed for later randomization.
1886                          */
1887                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1888                             (find_space == VMFS_SUPER_SPACE || find_space ==
1889                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
1890                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1891                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1892                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1893                         *addr = vm_map_findspace(map, curr_min_addr,
1894                             length + gap * pagesizes[pidx]);
1895                         if (*addr + length + gap * pagesizes[pidx] >
1896                             vm_map_max(map))
1897                                 goto again;
1898                         /* And randomize the start address. */
1899                         *addr += (arc4random() % gap) * pagesizes[pidx];
1900                         if (max_addr != 0 && *addr + length > max_addr)
1901                                 goto again;
1902                 } else {
1903                         *addr = vm_map_findspace(map, curr_min_addr, length);
1904                         if (*addr + length > vm_map_max(map) ||
1905                             (max_addr != 0 && *addr + length > max_addr)) {
1906                                 if (cluster) {
1907                                         cluster = false;
1908                                         MPASS(try == 1);
1909                                         goto again;
1910                                 }
1911                                 rv = KERN_NO_SPACE;
1912                                 goto done;
1913                         }
1914                 }
1915
1916                 if (find_space != VMFS_ANY_SPACE &&
1917                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1918                     max_addr, alignment)) != KERN_SUCCESS) {
1919                         if (find_space == VMFS_OPTIMAL_SPACE) {
1920                                 find_space = VMFS_ANY_SPACE;
1921                                 curr_min_addr = min_addr;
1922                                 cluster = update_anon;
1923                                 try = 0;
1924                                 goto again;
1925                         }
1926                         goto done;
1927                 }
1928         } else if ((cow & MAP_REMAP) != 0) {
1929                 if (*addr < vm_map_min(map) ||
1930                     *addr + length > vm_map_max(map) ||
1931                     *addr + length <= length) {
1932                         rv = KERN_INVALID_ADDRESS;
1933                         goto done;
1934                 }
1935                 vm_map_delete(map, *addr, *addr + length);
1936         }
1937         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1938                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1939                     max, cow);
1940         } else {
1941                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1942                     prot, max, cow);
1943         }
1944         if (rv == KERN_SUCCESS && update_anon)
1945                 map->anon_loc = *addr + length;
1946 done:
1947         vm_map_unlock(map);
1948         return (rv);
1949 }
1950
1951 /*
1952  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1953  *      additional parameter (min_addr) and treats the given address
1954  *      (*addr) differently.  Specifically, it treats *addr as a hint
1955  *      and not as the minimum address where the mapping is created.
1956  *
1957  *      This function works in two phases.  First, it tries to
1958  *      allocate above the hint.  If that fails and the hint is
1959  *      greater than min_addr, it performs a second pass, replacing
1960  *      the hint with min_addr as the minimum address for the
1961  *      allocation.
1962  */
1963 int
1964 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1965     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1966     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1967     int cow)
1968 {
1969         vm_offset_t hint;
1970         int rv;
1971
1972         hint = *addr;
1973         for (;;) {
1974                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1975                     find_space, prot, max, cow);
1976                 if (rv == KERN_SUCCESS || min_addr >= hint)
1977                         return (rv);
1978                 *addr = hint = min_addr;
1979         }
1980 }
1981
1982 /*
1983  * A map entry with any of the following flags set must not be merged with
1984  * another entry.
1985  */
1986 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1987             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
1988
1989 static bool
1990 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1991 {
1992
1993         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1994             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1995             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1996             prev, entry));
1997         return (prev->end == entry->start &&
1998             prev->object.vm_object == entry->object.vm_object &&
1999             (prev->object.vm_object == NULL ||
2000             prev->offset + (prev->end - prev->start) == entry->offset) &&
2001             prev->eflags == entry->eflags &&
2002             prev->protection == entry->protection &&
2003             prev->max_protection == entry->max_protection &&
2004             prev->inheritance == entry->inheritance &&
2005             prev->wired_count == entry->wired_count &&
2006             prev->cred == entry->cred);
2007 }
2008
2009 static void
2010 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2011 {
2012
2013         /*
2014          * If the backing object is a vnode object, vm_object_deallocate()
2015          * calls vrele().  However, vrele() does not lock the vnode because
2016          * the vnode has additional references.  Thus, the map lock can be
2017          * kept without causing a lock-order reversal with the vnode lock.
2018          *
2019          * Since we count the number of virtual page mappings in
2020          * object->un_pager.vnp.writemappings, the writemappings value
2021          * should not be adjusted when the entry is disposed of.
2022          */
2023         if (entry->object.vm_object != NULL)
2024                 vm_object_deallocate(entry->object.vm_object);
2025         if (entry->cred != NULL)
2026                 crfree(entry->cred);
2027         vm_map_entry_dispose(map, entry);
2028 }
2029
2030 /*
2031  *      vm_map_simplify_entry:
2032  *
2033  *      Simplify the given map entry by merging with either neighbor.  This
2034  *      routine also has the ability to merge with both neighbors.
2035  *
2036  *      The map must be locked.
2037  *
2038  *      This routine guarantees that the passed entry remains valid (though
2039  *      possibly extended).  When merging, this routine may delete one or
2040  *      both neighbors.
2041  */
2042 void
2043 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2044 {
2045         vm_map_entry_t next, prev;
2046
2047         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2048                 return;
2049         prev = entry->prev;
2050         if (vm_map_mergeable_neighbors(prev, entry)) {
2051                 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2052                 vm_map_merged_neighbor_dispose(map, prev);
2053         }
2054         next = entry->next;
2055         if (vm_map_mergeable_neighbors(entry, next)) {
2056                 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2057                 vm_map_merged_neighbor_dispose(map, next);
2058         }
2059 }
2060
2061 /*
2062  *      vm_map_clip_start:      [ internal use only ]
2063  *
2064  *      Asserts that the given entry begins at or after
2065  *      the specified address; if necessary,
2066  *      it splits the entry into two.
2067  */
2068 #define vm_map_clip_start(map, entry, startaddr) \
2069 { \
2070         if (startaddr > entry->start) \
2071                 _vm_map_clip_start(map, entry, startaddr); \
2072 }
2073
2074 /*
2075  *      This routine is called only when it is known that
2076  *      the entry must be split.
2077  */
2078 static void
2079 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2080 {
2081         vm_map_entry_t new_entry;
2082
2083         VM_MAP_ASSERT_LOCKED(map);
2084         KASSERT(entry->end > start && entry->start < start,
2085             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2086
2087         /*
2088          * Split off the front portion -- note that we must insert the new
2089          * entry BEFORE this one, so that this entry has the specified
2090          * starting address.
2091          */
2092         vm_map_simplify_entry(map, entry);
2093
2094         /*
2095          * If there is no object backing this entry, we might as well create
2096          * one now.  If we defer it, an object can get created after the map
2097          * is clipped, and individual objects will be created for the split-up
2098          * map.  This is a bit of a hack, but is also about the best place to
2099          * put this improvement.
2100          */
2101         if (entry->object.vm_object == NULL && !map->system_map &&
2102             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2103                 vm_object_t object;
2104                 object = vm_object_allocate(OBJT_DEFAULT,
2105                                 atop(entry->end - entry->start));
2106                 entry->object.vm_object = object;
2107                 entry->offset = 0;
2108                 if (entry->cred != NULL) {
2109                         object->cred = entry->cred;
2110                         object->charge = entry->end - entry->start;
2111                         entry->cred = NULL;
2112                 }
2113         } else if (entry->object.vm_object != NULL &&
2114                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2115                    entry->cred != NULL) {
2116                 VM_OBJECT_WLOCK(entry->object.vm_object);
2117                 KASSERT(entry->object.vm_object->cred == NULL,
2118                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2119                 entry->object.vm_object->cred = entry->cred;
2120                 entry->object.vm_object->charge = entry->end - entry->start;
2121                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2122                 entry->cred = NULL;
2123         }
2124
2125         new_entry = vm_map_entry_create(map);
2126         *new_entry = *entry;
2127
2128         new_entry->end = start;
2129         entry->offset += (start - entry->start);
2130         entry->start = start;
2131         if (new_entry->cred != NULL)
2132                 crhold(entry->cred);
2133
2134         vm_map_entry_link(map, new_entry);
2135
2136         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2137                 vm_object_reference(new_entry->object.vm_object);
2138                 vm_map_entry_set_vnode_text(new_entry, true);
2139                 /*
2140                  * The object->un_pager.vnp.writemappings for the
2141                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2142                  * kept as is here.  The virtual pages are
2143                  * re-distributed among the clipped entries, so the sum is
2144                  * left the same.
2145                  */
2146         }
2147 }
2148
2149 /*
2150  *      vm_map_clip_end:        [ internal use only ]
2151  *
2152  *      Asserts that the given entry ends at or before
2153  *      the specified address; if necessary,
2154  *      it splits the entry into two.
2155  */
2156 #define vm_map_clip_end(map, entry, endaddr) \
2157 { \
2158         if ((endaddr) < (entry->end)) \
2159                 _vm_map_clip_end((map), (entry), (endaddr)); \
2160 }
2161
2162 /*
2163  *      This routine is called only when it is known that
2164  *      the entry must be split.
2165  */
2166 static void
2167 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2168 {
2169         vm_map_entry_t new_entry;
2170
2171         VM_MAP_ASSERT_LOCKED(map);
2172         KASSERT(entry->start < end && entry->end > end,
2173             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2174
2175         /*
2176          * If there is no object backing this entry, we might as well create
2177          * one now.  If we defer it, an object can get created after the map
2178          * is clipped, and individual objects will be created for the split-up
2179          * map.  This is a bit of a hack, but is also about the best place to
2180          * put this improvement.
2181          */
2182         if (entry->object.vm_object == NULL && !map->system_map &&
2183             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2184                 vm_object_t object;
2185                 object = vm_object_allocate(OBJT_DEFAULT,
2186                                 atop(entry->end - entry->start));
2187                 entry->object.vm_object = object;
2188                 entry->offset = 0;
2189                 if (entry->cred != NULL) {
2190                         object->cred = entry->cred;
2191                         object->charge = entry->end - entry->start;
2192                         entry->cred = NULL;
2193                 }
2194         } else if (entry->object.vm_object != NULL &&
2195                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2196                    entry->cred != NULL) {
2197                 VM_OBJECT_WLOCK(entry->object.vm_object);
2198                 KASSERT(entry->object.vm_object->cred == NULL,
2199                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2200                 entry->object.vm_object->cred = entry->cred;
2201                 entry->object.vm_object->charge = entry->end - entry->start;
2202                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2203                 entry->cred = NULL;
2204         }
2205
2206         /*
2207          * Create a new entry and insert it AFTER the specified entry
2208          */
2209         new_entry = vm_map_entry_create(map);
2210         *new_entry = *entry;
2211
2212         new_entry->start = entry->end = end;
2213         new_entry->offset += (end - entry->start);
2214         if (new_entry->cred != NULL)
2215                 crhold(entry->cred);
2216
2217         vm_map_entry_link(map, new_entry);
2218
2219         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2220                 vm_object_reference(new_entry->object.vm_object);
2221                 vm_map_entry_set_vnode_text(new_entry, true);
2222         }
2223 }
2224
2225 /*
2226  *      vm_map_submap:          [ kernel use only ]
2227  *
2228  *      Mark the given range as handled by a subordinate map.
2229  *
2230  *      This range must have been created with vm_map_find,
2231  *      and no other operations may have been performed on this
2232  *      range prior to calling vm_map_submap.
2233  *
2234  *      Only a limited number of operations can be performed
2235  *      within this rage after calling vm_map_submap:
2236  *              vm_fault
2237  *      [Don't try vm_map_copy!]
2238  *
2239  *      To remove a submapping, one must first remove the
2240  *      range from the superior map, and then destroy the
2241  *      submap (if desired).  [Better yet, don't try it.]
2242  */
2243 int
2244 vm_map_submap(
2245         vm_map_t map,
2246         vm_offset_t start,
2247         vm_offset_t end,
2248         vm_map_t submap)
2249 {
2250         vm_map_entry_t entry;
2251         int result;
2252
2253         result = KERN_INVALID_ARGUMENT;
2254
2255         vm_map_lock(submap);
2256         submap->flags |= MAP_IS_SUB_MAP;
2257         vm_map_unlock(submap);
2258
2259         vm_map_lock(map);
2260
2261         VM_MAP_RANGE_CHECK(map, start, end);
2262
2263         if (vm_map_lookup_entry(map, start, &entry)) {
2264                 vm_map_clip_start(map, entry, start);
2265         } else
2266                 entry = entry->next;
2267
2268         vm_map_clip_end(map, entry, end);
2269
2270         if ((entry->start == start) && (entry->end == end) &&
2271             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2272             (entry->object.vm_object == NULL)) {
2273                 entry->object.sub_map = submap;
2274                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2275                 result = KERN_SUCCESS;
2276         }
2277         vm_map_unlock(map);
2278
2279         if (result != KERN_SUCCESS) {
2280                 vm_map_lock(submap);
2281                 submap->flags &= ~MAP_IS_SUB_MAP;
2282                 vm_map_unlock(submap);
2283         }
2284         return (result);
2285 }
2286
2287 /*
2288  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2289  */
2290 #define MAX_INIT_PT     96
2291
2292 /*
2293  *      vm_map_pmap_enter:
2294  *
2295  *      Preload the specified map's pmap with mappings to the specified
2296  *      object's memory-resident pages.  No further physical pages are
2297  *      allocated, and no further virtual pages are retrieved from secondary
2298  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2299  *      limited number of page mappings are created at the low-end of the
2300  *      specified address range.  (For this purpose, a superpage mapping
2301  *      counts as one page mapping.)  Otherwise, all resident pages within
2302  *      the specified address range are mapped.
2303  */
2304 static void
2305 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2306     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2307 {
2308         vm_offset_t start;
2309         vm_page_t p, p_start;
2310         vm_pindex_t mask, psize, threshold, tmpidx;
2311
2312         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2313                 return;
2314         VM_OBJECT_RLOCK(object);
2315         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2316                 VM_OBJECT_RUNLOCK(object);
2317                 VM_OBJECT_WLOCK(object);
2318                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2319                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2320                             size);
2321                         VM_OBJECT_WUNLOCK(object);
2322                         return;
2323                 }
2324                 VM_OBJECT_LOCK_DOWNGRADE(object);
2325         }
2326
2327         psize = atop(size);
2328         if (psize + pindex > object->size) {
2329                 if (object->size < pindex) {
2330                         VM_OBJECT_RUNLOCK(object);
2331                         return;
2332                 }
2333                 psize = object->size - pindex;
2334         }
2335
2336         start = 0;
2337         p_start = NULL;
2338         threshold = MAX_INIT_PT;
2339
2340         p = vm_page_find_least(object, pindex);
2341         /*
2342          * Assert: the variable p is either (1) the page with the
2343          * least pindex greater than or equal to the parameter pindex
2344          * or (2) NULL.
2345          */
2346         for (;
2347              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2348              p = TAILQ_NEXT(p, listq)) {
2349                 /*
2350                  * don't allow an madvise to blow away our really
2351                  * free pages allocating pv entries.
2352                  */
2353                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2354                     vm_page_count_severe()) ||
2355                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2356                     tmpidx >= threshold)) {
2357                         psize = tmpidx;
2358                         break;
2359                 }
2360                 if (p->valid == VM_PAGE_BITS_ALL) {
2361                         if (p_start == NULL) {
2362                                 start = addr + ptoa(tmpidx);
2363                                 p_start = p;
2364                         }
2365                         /* Jump ahead if a superpage mapping is possible. */
2366                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2367                             (pagesizes[p->psind] - 1)) == 0) {
2368                                 mask = atop(pagesizes[p->psind]) - 1;
2369                                 if (tmpidx + mask < psize &&
2370                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2371                                         p += mask;
2372                                         threshold += mask;
2373                                 }
2374                         }
2375                 } else if (p_start != NULL) {
2376                         pmap_enter_object(map->pmap, start, addr +
2377                             ptoa(tmpidx), p_start, prot);
2378                         p_start = NULL;
2379                 }
2380         }
2381         if (p_start != NULL)
2382                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2383                     p_start, prot);
2384         VM_OBJECT_RUNLOCK(object);
2385 }
2386
2387 /*
2388  *      vm_map_protect:
2389  *
2390  *      Sets the protection of the specified address
2391  *      region in the target map.  If "set_max" is
2392  *      specified, the maximum protection is to be set;
2393  *      otherwise, only the current protection is affected.
2394  */
2395 int
2396 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2397                vm_prot_t new_prot, boolean_t set_max)
2398 {
2399         vm_map_entry_t current, entry, in_tran;
2400         vm_object_t obj;
2401         struct ucred *cred;
2402         vm_prot_t old_prot;
2403
2404         if (start == end)
2405                 return (KERN_SUCCESS);
2406
2407 again:
2408         in_tran = NULL;
2409         vm_map_lock(map);
2410
2411         /*
2412          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2413          * need to fault pages into the map and will drop the map lock while
2414          * doing so, and the VM object may end up in an inconsistent state if we
2415          * update the protection on the map entry in between faults.
2416          */
2417         vm_map_wait_busy(map);
2418
2419         VM_MAP_RANGE_CHECK(map, start, end);
2420
2421         if (vm_map_lookup_entry(map, start, &entry)) {
2422                 vm_map_clip_start(map, entry, start);
2423         } else {
2424                 entry = entry->next;
2425         }
2426
2427         /*
2428          * Make a first pass to check for protection violations.
2429          */
2430         for (current = entry; current->start < end; current = current->next) {
2431                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2432                         continue;
2433                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2434                         vm_map_unlock(map);
2435                         return (KERN_INVALID_ARGUMENT);
2436                 }
2437                 if ((new_prot & current->max_protection) != new_prot) {
2438                         vm_map_unlock(map);
2439                         return (KERN_PROTECTION_FAILURE);
2440                 }
2441                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2442                         in_tran = entry;
2443         }
2444
2445         /*
2446          * Postpone the operation until all in transition map entries
2447          * are stabilized.  In-transition entry might already have its
2448          * pages wired and wired_count incremented, but
2449          * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2450          * threads because the map lock is dropped.  In this case we
2451          * would miss our call to vm_fault_copy_entry().
2452          */
2453         if (in_tran != NULL) {
2454                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2455                 vm_map_unlock_and_wait(map, 0);
2456                 goto again;
2457         }
2458
2459         /*
2460          * Do an accounting pass for private read-only mappings that
2461          * now will do cow due to allowed write (e.g. debugger sets
2462          * breakpoint on text segment)
2463          */
2464         for (current = entry; current->start < end; current = current->next) {
2465
2466                 vm_map_clip_end(map, current, end);
2467
2468                 if (set_max ||
2469                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2470                     ENTRY_CHARGED(current) ||
2471                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2472                         continue;
2473                 }
2474
2475                 cred = curthread->td_ucred;
2476                 obj = current->object.vm_object;
2477
2478                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2479                         if (!swap_reserve(current->end - current->start)) {
2480                                 vm_map_unlock(map);
2481                                 return (KERN_RESOURCE_SHORTAGE);
2482                         }
2483                         crhold(cred);
2484                         current->cred = cred;
2485                         continue;
2486                 }
2487
2488                 VM_OBJECT_WLOCK(obj);
2489                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2490                         VM_OBJECT_WUNLOCK(obj);
2491                         continue;
2492                 }
2493
2494                 /*
2495                  * Charge for the whole object allocation now, since
2496                  * we cannot distinguish between non-charged and
2497                  * charged clipped mapping of the same object later.
2498                  */
2499                 KASSERT(obj->charge == 0,
2500                     ("vm_map_protect: object %p overcharged (entry %p)",
2501                     obj, current));
2502                 if (!swap_reserve(ptoa(obj->size))) {
2503                         VM_OBJECT_WUNLOCK(obj);
2504                         vm_map_unlock(map);
2505                         return (KERN_RESOURCE_SHORTAGE);
2506                 }
2507
2508                 crhold(cred);
2509                 obj->cred = cred;
2510                 obj->charge = ptoa(obj->size);
2511                 VM_OBJECT_WUNLOCK(obj);
2512         }
2513
2514         /*
2515          * Go back and fix up protections. [Note that clipping is not
2516          * necessary the second time.]
2517          */
2518         for (current = entry; current->start < end; current = current->next) {
2519                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2520                         continue;
2521
2522                 old_prot = current->protection;
2523
2524                 if (set_max)
2525                         current->protection =
2526                             (current->max_protection = new_prot) &
2527                             old_prot;
2528                 else
2529                         current->protection = new_prot;
2530
2531                 /*
2532                  * For user wired map entries, the normal lazy evaluation of
2533                  * write access upgrades through soft page faults is
2534                  * undesirable.  Instead, immediately copy any pages that are
2535                  * copy-on-write and enable write access in the physical map.
2536                  */
2537                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2538                     (current->protection & VM_PROT_WRITE) != 0 &&
2539                     (old_prot & VM_PROT_WRITE) == 0)
2540                         vm_fault_copy_entry(map, map, current, current, NULL);
2541
2542                 /*
2543                  * When restricting access, update the physical map.  Worry
2544                  * about copy-on-write here.
2545                  */
2546                 if ((old_prot & ~current->protection) != 0) {
2547 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2548                                                         VM_PROT_ALL)
2549                         pmap_protect(map->pmap, current->start,
2550                             current->end,
2551                             current->protection & MASK(current));
2552 #undef  MASK
2553                 }
2554                 vm_map_simplify_entry(map, current);
2555         }
2556         vm_map_unlock(map);
2557         return (KERN_SUCCESS);
2558 }
2559
2560 /*
2561  *      vm_map_madvise:
2562  *
2563  *      This routine traverses a processes map handling the madvise
2564  *      system call.  Advisories are classified as either those effecting
2565  *      the vm_map_entry structure, or those effecting the underlying
2566  *      objects.
2567  */
2568 int
2569 vm_map_madvise(
2570         vm_map_t map,
2571         vm_offset_t start,
2572         vm_offset_t end,
2573         int behav)
2574 {
2575         vm_map_entry_t current, entry;
2576         bool modify_map;
2577
2578         /*
2579          * Some madvise calls directly modify the vm_map_entry, in which case
2580          * we need to use an exclusive lock on the map and we need to perform
2581          * various clipping operations.  Otherwise we only need a read-lock
2582          * on the map.
2583          */
2584         switch(behav) {
2585         case MADV_NORMAL:
2586         case MADV_SEQUENTIAL:
2587         case MADV_RANDOM:
2588         case MADV_NOSYNC:
2589         case MADV_AUTOSYNC:
2590         case MADV_NOCORE:
2591         case MADV_CORE:
2592                 if (start == end)
2593                         return (0);
2594                 modify_map = true;
2595                 vm_map_lock(map);
2596                 break;
2597         case MADV_WILLNEED:
2598         case MADV_DONTNEED:
2599         case MADV_FREE:
2600                 if (start == end)
2601                         return (0);
2602                 modify_map = false;
2603                 vm_map_lock_read(map);
2604                 break;
2605         default:
2606                 return (EINVAL);
2607         }
2608
2609         /*
2610          * Locate starting entry and clip if necessary.
2611          */
2612         VM_MAP_RANGE_CHECK(map, start, end);
2613
2614         if (vm_map_lookup_entry(map, start, &entry)) {
2615                 if (modify_map)
2616                         vm_map_clip_start(map, entry, start);
2617         } else {
2618                 entry = entry->next;
2619         }
2620
2621         if (modify_map) {
2622                 /*
2623                  * madvise behaviors that are implemented in the vm_map_entry.
2624                  *
2625                  * We clip the vm_map_entry so that behavioral changes are
2626                  * limited to the specified address range.
2627                  */
2628                 for (current = entry; current->start < end;
2629                     current = current->next) {
2630                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2631                                 continue;
2632
2633                         vm_map_clip_end(map, current, end);
2634
2635                         switch (behav) {
2636                         case MADV_NORMAL:
2637                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2638                                 break;
2639                         case MADV_SEQUENTIAL:
2640                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2641                                 break;
2642                         case MADV_RANDOM:
2643                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2644                                 break;
2645                         case MADV_NOSYNC:
2646                                 current->eflags |= MAP_ENTRY_NOSYNC;
2647                                 break;
2648                         case MADV_AUTOSYNC:
2649                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2650                                 break;
2651                         case MADV_NOCORE:
2652                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2653                                 break;
2654                         case MADV_CORE:
2655                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2656                                 break;
2657                         default:
2658                                 break;
2659                         }
2660                         vm_map_simplify_entry(map, current);
2661                 }
2662                 vm_map_unlock(map);
2663         } else {
2664                 vm_pindex_t pstart, pend;
2665
2666                 /*
2667                  * madvise behaviors that are implemented in the underlying
2668                  * vm_object.
2669                  *
2670                  * Since we don't clip the vm_map_entry, we have to clip
2671                  * the vm_object pindex and count.
2672                  */
2673                 for (current = entry; current->start < end;
2674                     current = current->next) {
2675                         vm_offset_t useEnd, useStart;
2676
2677                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2678                                 continue;
2679
2680                         pstart = OFF_TO_IDX(current->offset);
2681                         pend = pstart + atop(current->end - current->start);
2682                         useStart = current->start;
2683                         useEnd = current->end;
2684
2685                         if (current->start < start) {
2686                                 pstart += atop(start - current->start);
2687                                 useStart = start;
2688                         }
2689                         if (current->end > end) {
2690                                 pend -= atop(current->end - end);
2691                                 useEnd = end;
2692                         }
2693
2694                         if (pstart >= pend)
2695                                 continue;
2696
2697                         /*
2698                          * Perform the pmap_advise() before clearing
2699                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2700                          * concurrent pmap operation, such as pmap_remove(),
2701                          * could clear a reference in the pmap and set
2702                          * PGA_REFERENCED on the page before the pmap_advise()
2703                          * had completed.  Consequently, the page would appear
2704                          * referenced based upon an old reference that
2705                          * occurred before this pmap_advise() ran.
2706                          */
2707                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2708                                 pmap_advise(map->pmap, useStart, useEnd,
2709                                     behav);
2710
2711                         vm_object_madvise(current->object.vm_object, pstart,
2712                             pend, behav);
2713
2714                         /*
2715                          * Pre-populate paging structures in the
2716                          * WILLNEED case.  For wired entries, the
2717                          * paging structures are already populated.
2718                          */
2719                         if (behav == MADV_WILLNEED &&
2720                             current->wired_count == 0) {
2721                                 vm_map_pmap_enter(map,
2722                                     useStart,
2723                                     current->protection,
2724                                     current->object.vm_object,
2725                                     pstart,
2726                                     ptoa(pend - pstart),
2727                                     MAP_PREFAULT_MADVISE
2728                                 );
2729                         }
2730                 }
2731                 vm_map_unlock_read(map);
2732         }
2733         return (0);
2734 }
2735
2736
2737 /*
2738  *      vm_map_inherit:
2739  *
2740  *      Sets the inheritance of the specified address
2741  *      range in the target map.  Inheritance
2742  *      affects how the map will be shared with
2743  *      child maps at the time of vmspace_fork.
2744  */
2745 int
2746 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2747                vm_inherit_t new_inheritance)
2748 {
2749         vm_map_entry_t entry;
2750         vm_map_entry_t temp_entry;
2751
2752         switch (new_inheritance) {
2753         case VM_INHERIT_NONE:
2754         case VM_INHERIT_COPY:
2755         case VM_INHERIT_SHARE:
2756         case VM_INHERIT_ZERO:
2757                 break;
2758         default:
2759                 return (KERN_INVALID_ARGUMENT);
2760         }
2761         if (start == end)
2762                 return (KERN_SUCCESS);
2763         vm_map_lock(map);
2764         VM_MAP_RANGE_CHECK(map, start, end);
2765         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2766                 entry = temp_entry;
2767                 vm_map_clip_start(map, entry, start);
2768         } else
2769                 entry = temp_entry->next;
2770         while (entry->start < end) {
2771                 vm_map_clip_end(map, entry, end);
2772                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2773                     new_inheritance != VM_INHERIT_ZERO)
2774                         entry->inheritance = new_inheritance;
2775                 vm_map_simplify_entry(map, entry);
2776                 entry = entry->next;
2777         }
2778         vm_map_unlock(map);
2779         return (KERN_SUCCESS);
2780 }
2781
2782 /*
2783  *      vm_map_unwire:
2784  *
2785  *      Implements both kernel and user unwiring.
2786  */
2787 int
2788 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2789     int flags)
2790 {
2791         vm_map_entry_t entry, first_entry, tmp_entry;
2792         vm_offset_t saved_start;
2793         unsigned int last_timestamp;
2794         int rv;
2795         boolean_t need_wakeup, result, user_unwire;
2796
2797         if (start == end)
2798                 return (KERN_SUCCESS);
2799         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2800         vm_map_lock(map);
2801         VM_MAP_RANGE_CHECK(map, start, end);
2802         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2803                 if (flags & VM_MAP_WIRE_HOLESOK)
2804                         first_entry = first_entry->next;
2805                 else {
2806                         vm_map_unlock(map);
2807                         return (KERN_INVALID_ADDRESS);
2808                 }
2809         }
2810         last_timestamp = map->timestamp;
2811         entry = first_entry;
2812         while (entry->start < end) {
2813                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2814                         /*
2815                          * We have not yet clipped the entry.
2816                          */
2817                         saved_start = (start >= entry->start) ? start :
2818                             entry->start;
2819                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2820                         if (vm_map_unlock_and_wait(map, 0)) {
2821                                 /*
2822                                  * Allow interruption of user unwiring?
2823                                  */
2824                         }
2825                         vm_map_lock(map);
2826                         if (last_timestamp+1 != map->timestamp) {
2827                                 /*
2828                                  * Look again for the entry because the map was
2829                                  * modified while it was unlocked.
2830                                  * Specifically, the entry may have been
2831                                  * clipped, merged, or deleted.
2832                                  */
2833                                 if (!vm_map_lookup_entry(map, saved_start,
2834                                     &tmp_entry)) {
2835                                         if (flags & VM_MAP_WIRE_HOLESOK)
2836                                                 tmp_entry = tmp_entry->next;
2837                                         else {
2838                                                 if (saved_start == start) {
2839                                                         /*
2840                                                          * First_entry has been deleted.
2841                                                          */
2842                                                         vm_map_unlock(map);
2843                                                         return (KERN_INVALID_ADDRESS);
2844                                                 }
2845                                                 end = saved_start;
2846                                                 rv = KERN_INVALID_ADDRESS;
2847                                                 goto done;
2848                                         }
2849                                 }
2850                                 if (entry == first_entry)
2851                                         first_entry = tmp_entry;
2852                                 else
2853                                         first_entry = NULL;
2854                                 entry = tmp_entry;
2855                         }
2856                         last_timestamp = map->timestamp;
2857                         continue;
2858                 }
2859                 vm_map_clip_start(map, entry, start);
2860                 vm_map_clip_end(map, entry, end);
2861                 /*
2862                  * Mark the entry in case the map lock is released.  (See
2863                  * above.)
2864                  */
2865                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2866                     entry->wiring_thread == NULL,
2867                     ("owned map entry %p", entry));
2868                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2869                 entry->wiring_thread = curthread;
2870                 /*
2871                  * Check the map for holes in the specified region.
2872                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2873                  */
2874                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2875                     (entry->end < end && entry->next->start > entry->end)) {
2876                         end = entry->end;
2877                         rv = KERN_INVALID_ADDRESS;
2878                         goto done;
2879                 }
2880                 /*
2881                  * If system unwiring, require that the entry is system wired.
2882                  */
2883                 if (!user_unwire &&
2884                     vm_map_entry_system_wired_count(entry) == 0) {
2885                         end = entry->end;
2886                         rv = KERN_INVALID_ARGUMENT;
2887                         goto done;
2888                 }
2889                 entry = entry->next;
2890         }
2891         rv = KERN_SUCCESS;
2892 done:
2893         need_wakeup = FALSE;
2894         if (first_entry == NULL) {
2895                 result = vm_map_lookup_entry(map, start, &first_entry);
2896                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2897                         first_entry = first_entry->next;
2898                 else
2899                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2900         }
2901         for (entry = first_entry; entry->start < end; entry = entry->next) {
2902                 /*
2903                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2904                  * space in the unwired region could have been mapped
2905                  * while the map lock was dropped for draining
2906                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2907                  * could be simultaneously wiring this new mapping
2908                  * entry.  Detect these cases and skip any entries
2909                  * marked as in transition by us.
2910                  */
2911                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2912                     entry->wiring_thread != curthread) {
2913                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2914                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2915                         continue;
2916                 }
2917
2918                 if (rv == KERN_SUCCESS && (!user_unwire ||
2919                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2920                         if (entry->wired_count == 1)
2921                                 vm_map_entry_unwire(map, entry);
2922                         else
2923                                 entry->wired_count--;
2924                         if (user_unwire)
2925                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2926                 }
2927                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2928                     ("vm_map_unwire: in-transition flag missing %p", entry));
2929                 KASSERT(entry->wiring_thread == curthread,
2930                     ("vm_map_unwire: alien wire %p", entry));
2931                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2932                 entry->wiring_thread = NULL;
2933                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2934                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2935                         need_wakeup = TRUE;
2936                 }
2937                 vm_map_simplify_entry(map, entry);
2938         }
2939         vm_map_unlock(map);
2940         if (need_wakeup)
2941                 vm_map_wakeup(map);
2942         return (rv);
2943 }
2944
2945 static void
2946 vm_map_wire_user_count_sub(u_long npages)
2947 {
2948
2949         atomic_subtract_long(&vm_user_wire_count, npages);
2950 }
2951
2952 static bool
2953 vm_map_wire_user_count_add(u_long npages)
2954 {
2955         u_long wired;
2956
2957         wired = vm_user_wire_count;
2958         do {
2959                 if (npages + wired > vm_page_max_user_wired)
2960                         return (false);
2961         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
2962             npages + wired));
2963
2964         return (true);
2965 }
2966
2967 /*
2968  *      vm_map_wire_entry_failure:
2969  *
2970  *      Handle a wiring failure on the given entry.
2971  *
2972  *      The map should be locked.
2973  */
2974 static void
2975 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2976     vm_offset_t failed_addr)
2977 {
2978
2979         VM_MAP_ASSERT_LOCKED(map);
2980         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2981             entry->wired_count == 1,
2982             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2983         KASSERT(failed_addr < entry->end,
2984             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2985
2986         /*
2987          * If any pages at the start of this entry were successfully wired,
2988          * then unwire them.
2989          */
2990         if (failed_addr > entry->start) {
2991                 pmap_unwire(map->pmap, entry->start, failed_addr);
2992                 vm_object_unwire(entry->object.vm_object, entry->offset,
2993                     failed_addr - entry->start, PQ_ACTIVE);
2994         }
2995
2996         /*
2997          * Assign an out-of-range value to represent the failure to wire this
2998          * entry.
2999          */
3000         entry->wired_count = -1;
3001 }
3002
3003 int
3004 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3005 {
3006         int rv;
3007
3008         vm_map_lock(map);
3009         rv = vm_map_wire_locked(map, start, end, flags);
3010         vm_map_unlock(map);
3011         return (rv);
3012 }
3013
3014
3015 /*
3016  *      vm_map_wire_locked:
3017  *
3018  *      Implements both kernel and user wiring.  Returns with the map locked,
3019  *      the map lock may be dropped.
3020  */
3021 int
3022 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3023 {
3024         vm_map_entry_t entry, first_entry, tmp_entry;
3025         vm_offset_t faddr, saved_end, saved_start;
3026         u_long npages;
3027         u_int last_timestamp;
3028         int rv;
3029         boolean_t need_wakeup, result, user_wire;
3030         vm_prot_t prot;
3031
3032         VM_MAP_ASSERT_LOCKED(map);
3033
3034         if (start == end)
3035                 return (KERN_SUCCESS);
3036         prot = 0;
3037         if (flags & VM_MAP_WIRE_WRITE)
3038                 prot |= VM_PROT_WRITE;
3039         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3040         VM_MAP_RANGE_CHECK(map, start, end);
3041         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3042                 if (flags & VM_MAP_WIRE_HOLESOK)
3043                         first_entry = first_entry->next;
3044                 else
3045                         return (KERN_INVALID_ADDRESS);
3046         }
3047         last_timestamp = map->timestamp;
3048         entry = first_entry;
3049         while (entry->start < end) {
3050                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3051                         /*
3052                          * We have not yet clipped the entry.
3053                          */
3054                         saved_start = (start >= entry->start) ? start :
3055                             entry->start;
3056                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3057                         if (vm_map_unlock_and_wait(map, 0)) {
3058                                 /*
3059                                  * Allow interruption of user wiring?
3060                                  */
3061                         }
3062                         vm_map_lock(map);
3063                         if (last_timestamp + 1 != map->timestamp) {
3064                                 /*
3065                                  * Look again for the entry because the map was
3066                                  * modified while it was unlocked.
3067                                  * Specifically, the entry may have been
3068                                  * clipped, merged, or deleted.
3069                                  */
3070                                 if (!vm_map_lookup_entry(map, saved_start,
3071                                     &tmp_entry)) {
3072                                         if (flags & VM_MAP_WIRE_HOLESOK)
3073                                                 tmp_entry = tmp_entry->next;
3074                                         else {
3075                                                 if (saved_start == start) {
3076                                                         /*
3077                                                          * first_entry has been deleted.
3078                                                          */
3079                                                         return (KERN_INVALID_ADDRESS);
3080                                                 }
3081                                                 end = saved_start;
3082                                                 rv = KERN_INVALID_ADDRESS;
3083                                                 goto done;
3084                                         }
3085                                 }
3086                                 if (entry == first_entry)
3087                                         first_entry = tmp_entry;
3088                                 else
3089                                         first_entry = NULL;
3090                                 entry = tmp_entry;
3091                         }
3092                         last_timestamp = map->timestamp;
3093                         continue;
3094                 }
3095                 vm_map_clip_start(map, entry, start);
3096                 vm_map_clip_end(map, entry, end);
3097                 /*
3098                  * Mark the entry in case the map lock is released.  (See
3099                  * above.)
3100                  */
3101                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3102                     entry->wiring_thread == NULL,
3103                     ("owned map entry %p", entry));
3104                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3105                 entry->wiring_thread = curthread;
3106                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3107                     || (entry->protection & prot) != prot) {
3108                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3109                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3110                                 end = entry->end;
3111                                 rv = KERN_INVALID_ADDRESS;
3112                                 goto done;
3113                         }
3114                         goto next_entry;
3115                 }
3116                 if (entry->wired_count == 0) {
3117                         entry->wired_count++;
3118
3119                         npages = atop(entry->end - entry->start);
3120                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3121                                 vm_map_wire_entry_failure(map, entry,
3122                                     entry->start);
3123                                 end = entry->end;
3124                                 rv = KERN_RESOURCE_SHORTAGE;
3125                                 goto done;
3126                         }
3127
3128                         /*
3129                          * Release the map lock, relying on the in-transition
3130                          * mark.  Mark the map busy for fork.
3131                          */
3132                         saved_start = entry->start;
3133                         saved_end = entry->end;
3134                         vm_map_busy(map);
3135                         vm_map_unlock(map);
3136
3137                         faddr = saved_start;
3138                         do {
3139                                 /*
3140                                  * Simulate a fault to get the page and enter
3141                                  * it into the physical map.
3142                                  */
3143                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3144                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
3145                                         break;
3146                         } while ((faddr += PAGE_SIZE) < saved_end);
3147                         vm_map_lock(map);
3148                         vm_map_unbusy(map);
3149                         if (last_timestamp + 1 != map->timestamp) {
3150                                 /*
3151                                  * Look again for the entry because the map was
3152                                  * modified while it was unlocked.  The entry
3153                                  * may have been clipped, but NOT merged or
3154                                  * deleted.
3155                                  */
3156                                 result = vm_map_lookup_entry(map, saved_start,
3157                                     &tmp_entry);
3158                                 KASSERT(result, ("vm_map_wire: lookup failed"));
3159                                 if (entry == first_entry)
3160                                         first_entry = tmp_entry;
3161                                 else
3162                                         first_entry = NULL;
3163                                 entry = tmp_entry;
3164                                 while (entry->end < saved_end) {
3165                                         /*
3166                                          * In case of failure, handle entries
3167                                          * that were not fully wired here;
3168                                          * fully wired entries are handled
3169                                          * later.
3170                                          */
3171                                         if (rv != KERN_SUCCESS &&
3172                                             faddr < entry->end)
3173                                                 vm_map_wire_entry_failure(map,
3174                                                     entry, faddr);
3175                                         entry = entry->next;
3176                                 }
3177                         }
3178                         last_timestamp = map->timestamp;
3179                         if (rv != KERN_SUCCESS) {
3180                                 vm_map_wire_entry_failure(map, entry, faddr);
3181                                 if (user_wire)
3182                                         vm_map_wire_user_count_sub(npages);
3183                                 end = entry->end;
3184                                 goto done;
3185                         }
3186                 } else if (!user_wire ||
3187                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3188                         entry->wired_count++;
3189                 }
3190                 /*
3191                  * Check the map for holes in the specified region.
3192                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3193                  */
3194         next_entry:
3195                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3196                     entry->end < end && entry->next->start > entry->end) {
3197                         end = entry->end;
3198                         rv = KERN_INVALID_ADDRESS;
3199                         goto done;
3200                 }
3201                 entry = entry->next;
3202         }
3203         rv = KERN_SUCCESS;
3204 done:
3205         need_wakeup = FALSE;
3206         if (first_entry == NULL) {
3207                 result = vm_map_lookup_entry(map, start, &first_entry);
3208                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3209                         first_entry = first_entry->next;
3210                 else
3211                         KASSERT(result, ("vm_map_wire: lookup failed"));
3212         }
3213         for (entry = first_entry; entry->start < end; entry = entry->next) {
3214                 /*
3215                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
3216                  * space in the unwired region could have been mapped
3217                  * while the map lock was dropped for faulting in the
3218                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3219                  * Moreover, another thread could be simultaneously
3220                  * wiring this new mapping entry.  Detect these cases
3221                  * and skip any entries marked as in transition not by us.
3222                  */
3223                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3224                     entry->wiring_thread != curthread) {
3225                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3226                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3227                         continue;
3228                 }
3229
3230                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3231                         goto next_entry_done;
3232
3233                 if (rv == KERN_SUCCESS) {
3234                         if (user_wire)
3235                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3236                 } else if (entry->wired_count == -1) {
3237                         /*
3238                          * Wiring failed on this entry.  Thus, unwiring is
3239                          * unnecessary.
3240                          */
3241                         entry->wired_count = 0;
3242                 } else if (!user_wire ||
3243                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3244                         /*
3245                          * Undo the wiring.  Wiring succeeded on this entry
3246                          * but failed on a later entry.  
3247                          */
3248                         if (entry->wired_count == 1) {
3249                                 vm_map_entry_unwire(map, entry);
3250                                 if (user_wire)
3251                                         vm_map_wire_user_count_sub(
3252                                             atop(entry->end - entry->start));
3253                         } else
3254                                 entry->wired_count--;
3255                 }
3256         next_entry_done:
3257                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3258                     ("vm_map_wire: in-transition flag missing %p", entry));
3259                 KASSERT(entry->wiring_thread == curthread,
3260                     ("vm_map_wire: alien wire %p", entry));
3261                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3262                     MAP_ENTRY_WIRE_SKIPPED);
3263                 entry->wiring_thread = NULL;
3264                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3265                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3266                         need_wakeup = TRUE;
3267                 }
3268                 vm_map_simplify_entry(map, entry);
3269         }
3270         if (need_wakeup)
3271                 vm_map_wakeup(map);
3272         return (rv);
3273 }
3274
3275 /*
3276  * vm_map_sync
3277  *
3278  * Push any dirty cached pages in the address range to their pager.
3279  * If syncio is TRUE, dirty pages are written synchronously.
3280  * If invalidate is TRUE, any cached pages are freed as well.
3281  *
3282  * If the size of the region from start to end is zero, we are
3283  * supposed to flush all modified pages within the region containing
3284  * start.  Unfortunately, a region can be split or coalesced with
3285  * neighboring regions, making it difficult to determine what the
3286  * original region was.  Therefore, we approximate this requirement by
3287  * flushing the current region containing start.
3288  *
3289  * Returns an error if any part of the specified range is not mapped.
3290  */
3291 int
3292 vm_map_sync(
3293         vm_map_t map,
3294         vm_offset_t start,
3295         vm_offset_t end,
3296         boolean_t syncio,
3297         boolean_t invalidate)
3298 {
3299         vm_map_entry_t current;
3300         vm_map_entry_t entry;
3301         vm_size_t size;
3302         vm_object_t object;
3303         vm_ooffset_t offset;
3304         unsigned int last_timestamp;
3305         boolean_t failed;
3306
3307         vm_map_lock_read(map);
3308         VM_MAP_RANGE_CHECK(map, start, end);
3309         if (!vm_map_lookup_entry(map, start, &entry)) {
3310                 vm_map_unlock_read(map);
3311                 return (KERN_INVALID_ADDRESS);
3312         } else if (start == end) {
3313                 start = entry->start;
3314                 end = entry->end;
3315         }
3316         /*
3317          * Make a first pass to check for user-wired memory and holes.
3318          */
3319         for (current = entry; current->start < end; current = current->next) {
3320                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3321                         vm_map_unlock_read(map);
3322                         return (KERN_INVALID_ARGUMENT);
3323                 }
3324                 if (end > current->end &&
3325                     current->end != current->next->start) {
3326                         vm_map_unlock_read(map);
3327                         return (KERN_INVALID_ADDRESS);
3328                 }
3329         }
3330
3331         if (invalidate)
3332                 pmap_remove(map->pmap, start, end);
3333         failed = FALSE;
3334
3335         /*
3336          * Make a second pass, cleaning/uncaching pages from the indicated
3337          * objects as we go.
3338          */
3339         for (current = entry; current->start < end;) {
3340                 offset = current->offset + (start - current->start);
3341                 size = (end <= current->end ? end : current->end) - start;
3342                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3343                         vm_map_t smap;
3344                         vm_map_entry_t tentry;
3345                         vm_size_t tsize;
3346
3347                         smap = current->object.sub_map;
3348                         vm_map_lock_read(smap);
3349                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3350                         tsize = tentry->end - offset;
3351                         if (tsize < size)
3352                                 size = tsize;
3353                         object = tentry->object.vm_object;
3354                         offset = tentry->offset + (offset - tentry->start);
3355                         vm_map_unlock_read(smap);
3356                 } else {
3357                         object = current->object.vm_object;
3358                 }
3359                 vm_object_reference(object);
3360                 last_timestamp = map->timestamp;
3361                 vm_map_unlock_read(map);
3362                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3363                         failed = TRUE;
3364                 start += size;
3365                 vm_object_deallocate(object);
3366                 vm_map_lock_read(map);
3367                 if (last_timestamp == map->timestamp ||
3368                     !vm_map_lookup_entry(map, start, &current))
3369                         current = current->next;
3370         }
3371
3372         vm_map_unlock_read(map);
3373         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3374 }
3375
3376 /*
3377  *      vm_map_entry_unwire:    [ internal use only ]
3378  *
3379  *      Make the region specified by this entry pageable.
3380  *
3381  *      The map in question should be locked.
3382  *      [This is the reason for this routine's existence.]
3383  */
3384 static void
3385 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3386 {
3387         vm_size_t size;
3388
3389         VM_MAP_ASSERT_LOCKED(map);
3390         KASSERT(entry->wired_count > 0,
3391             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3392
3393         size = entry->end - entry->start;
3394         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3395                 vm_map_wire_user_count_sub(atop(size));
3396         pmap_unwire(map->pmap, entry->start, entry->end);
3397         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3398             PQ_ACTIVE);
3399         entry->wired_count = 0;
3400 }
3401
3402 static void
3403 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3404 {
3405
3406         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3407                 vm_object_deallocate(entry->object.vm_object);
3408         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3409 }
3410
3411 /*
3412  *      vm_map_entry_delete:    [ internal use only ]
3413  *
3414  *      Deallocate the given entry from the target map.
3415  */
3416 static void
3417 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3418 {
3419         vm_object_t object;
3420         vm_pindex_t offidxstart, offidxend, count, size1;
3421         vm_size_t size;
3422
3423         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3424         object = entry->object.vm_object;
3425
3426         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3427                 MPASS(entry->cred == NULL);
3428                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3429                 MPASS(object == NULL);
3430                 vm_map_entry_deallocate(entry, map->system_map);
3431                 return;
3432         }
3433
3434         size = entry->end - entry->start;
3435         map->size -= size;
3436
3437         if (entry->cred != NULL) {
3438                 swap_release_by_cred(size, entry->cred);
3439                 crfree(entry->cred);
3440         }
3441
3442         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3443             (object != NULL)) {
3444                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3445                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3446                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3447                 count = atop(size);
3448                 offidxstart = OFF_TO_IDX(entry->offset);
3449                 offidxend = offidxstart + count;
3450                 VM_OBJECT_WLOCK(object);
3451                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3452                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3453                     object == kernel_object)) {
3454                         vm_object_collapse(object);
3455
3456                         /*
3457                          * The option OBJPR_NOTMAPPED can be passed here
3458                          * because vm_map_delete() already performed
3459                          * pmap_remove() on the only mapping to this range
3460                          * of pages. 
3461                          */
3462                         vm_object_page_remove(object, offidxstart, offidxend,
3463                             OBJPR_NOTMAPPED);
3464                         if (object->type == OBJT_SWAP)
3465                                 swap_pager_freespace(object, offidxstart,
3466                                     count);
3467                         if (offidxend >= object->size &&
3468                             offidxstart < object->size) {
3469                                 size1 = object->size;
3470                                 object->size = offidxstart;
3471                                 if (object->cred != NULL) {
3472                                         size1 -= object->size;
3473                                         KASSERT(object->charge >= ptoa(size1),
3474                                             ("object %p charge < 0", object));
3475                                         swap_release_by_cred(ptoa(size1),
3476                                             object->cred);
3477                                         object->charge -= ptoa(size1);
3478                                 }
3479                         }
3480                 }
3481                 VM_OBJECT_WUNLOCK(object);
3482         } else
3483                 entry->object.vm_object = NULL;
3484         if (map->system_map)
3485                 vm_map_entry_deallocate(entry, TRUE);
3486         else {
3487                 entry->next = curthread->td_map_def_user;
3488                 curthread->td_map_def_user = entry;
3489         }
3490 }
3491
3492 /*
3493  *      vm_map_delete:  [ internal use only ]
3494  *
3495  *      Deallocates the given address range from the target
3496  *      map.
3497  */
3498 int
3499 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3500 {
3501         vm_map_entry_t entry;
3502         vm_map_entry_t first_entry;
3503
3504         VM_MAP_ASSERT_LOCKED(map);
3505         if (start == end)
3506                 return (KERN_SUCCESS);
3507
3508         /*
3509          * Find the start of the region, and clip it
3510          */
3511         if (!vm_map_lookup_entry(map, start, &first_entry))
3512                 entry = first_entry->next;
3513         else {
3514                 entry = first_entry;
3515                 vm_map_clip_start(map, entry, start);
3516         }
3517
3518         /*
3519          * Step through all entries in this region
3520          */
3521         while (entry->start < end) {
3522                 vm_map_entry_t next;
3523
3524                 /*
3525                  * Wait for wiring or unwiring of an entry to complete.
3526                  * Also wait for any system wirings to disappear on
3527                  * user maps.
3528                  */
3529                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3530                     (vm_map_pmap(map) != kernel_pmap &&
3531                     vm_map_entry_system_wired_count(entry) != 0)) {
3532                         unsigned int last_timestamp;
3533                         vm_offset_t saved_start;
3534                         vm_map_entry_t tmp_entry;
3535
3536                         saved_start = entry->start;
3537                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3538                         last_timestamp = map->timestamp;
3539                         (void) vm_map_unlock_and_wait(map, 0);
3540                         vm_map_lock(map);
3541                         if (last_timestamp + 1 != map->timestamp) {
3542                                 /*
3543                                  * Look again for the entry because the map was
3544                                  * modified while it was unlocked.
3545                                  * Specifically, the entry may have been
3546                                  * clipped, merged, or deleted.
3547                                  */
3548                                 if (!vm_map_lookup_entry(map, saved_start,
3549                                                          &tmp_entry))
3550                                         entry = tmp_entry->next;
3551                                 else {
3552                                         entry = tmp_entry;
3553                                         vm_map_clip_start(map, entry,
3554                                                           saved_start);
3555                                 }
3556                         }
3557                         continue;
3558                 }
3559                 vm_map_clip_end(map, entry, end);
3560
3561                 next = entry->next;
3562
3563                 /*
3564                  * Unwire before removing addresses from the pmap; otherwise,
3565                  * unwiring will put the entries back in the pmap.
3566                  */
3567                 if (entry->wired_count != 0)
3568                         vm_map_entry_unwire(map, entry);
3569
3570                 /*
3571                  * Remove mappings for the pages, but only if the
3572                  * mappings could exist.  For instance, it does not
3573                  * make sense to call pmap_remove() for guard entries.
3574                  */
3575                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3576                     entry->object.vm_object != NULL)
3577                         pmap_remove(map->pmap, entry->start, entry->end);
3578
3579                 if (entry->end == map->anon_loc)
3580                         map->anon_loc = entry->start;
3581
3582                 /*
3583                  * Delete the entry only after removing all pmap
3584                  * entries pointing to its pages.  (Otherwise, its
3585                  * page frames may be reallocated, and any modify bits
3586                  * will be set in the wrong object!)
3587                  */
3588                 vm_map_entry_delete(map, entry);
3589                 entry = next;
3590         }
3591         return (KERN_SUCCESS);
3592 }
3593
3594 /*
3595  *      vm_map_remove:
3596  *
3597  *      Remove the given address range from the target map.
3598  *      This is the exported form of vm_map_delete.
3599  */
3600 int
3601 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3602 {
3603         int result;
3604
3605         vm_map_lock(map);
3606         VM_MAP_RANGE_CHECK(map, start, end);
3607         result = vm_map_delete(map, start, end);
3608         vm_map_unlock(map);
3609         return (result);
3610 }
3611
3612 /*
3613  *      vm_map_check_protection:
3614  *
3615  *      Assert that the target map allows the specified privilege on the
3616  *      entire address region given.  The entire region must be allocated.
3617  *
3618  *      WARNING!  This code does not and should not check whether the
3619  *      contents of the region is accessible.  For example a smaller file
3620  *      might be mapped into a larger address space.
3621  *
3622  *      NOTE!  This code is also called by munmap().
3623  *
3624  *      The map must be locked.  A read lock is sufficient.
3625  */
3626 boolean_t
3627 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3628                         vm_prot_t protection)
3629 {
3630         vm_map_entry_t entry;
3631         vm_map_entry_t tmp_entry;
3632
3633         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3634                 return (FALSE);
3635         entry = tmp_entry;
3636
3637         while (start < end) {
3638                 /*
3639                  * No holes allowed!
3640                  */
3641                 if (start < entry->start)
3642                         return (FALSE);
3643                 /*
3644                  * Check protection associated with entry.
3645                  */
3646                 if ((entry->protection & protection) != protection)
3647                         return (FALSE);
3648                 /* go to next entry */
3649                 start = entry->end;
3650                 entry = entry->next;
3651         }
3652         return (TRUE);
3653 }
3654
3655 /*
3656  *      vm_map_copy_entry:
3657  *
3658  *      Copies the contents of the source entry to the destination
3659  *      entry.  The entries *must* be aligned properly.
3660  */
3661 static void
3662 vm_map_copy_entry(
3663         vm_map_t src_map,
3664         vm_map_t dst_map,
3665         vm_map_entry_t src_entry,
3666         vm_map_entry_t dst_entry,
3667         vm_ooffset_t *fork_charge)
3668 {
3669         vm_object_t src_object;
3670         vm_map_entry_t fake_entry;
3671         vm_offset_t size;
3672         struct ucred *cred;
3673         int charged;
3674
3675         VM_MAP_ASSERT_LOCKED(dst_map);
3676
3677         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3678                 return;
3679
3680         if (src_entry->wired_count == 0 ||
3681             (src_entry->protection & VM_PROT_WRITE) == 0) {
3682                 /*
3683                  * If the source entry is marked needs_copy, it is already
3684                  * write-protected.
3685                  */
3686                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3687                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3688                         pmap_protect(src_map->pmap,
3689                             src_entry->start,
3690                             src_entry->end,
3691                             src_entry->protection & ~VM_PROT_WRITE);
3692                 }
3693
3694                 /*
3695                  * Make a copy of the object.
3696                  */
3697                 size = src_entry->end - src_entry->start;
3698                 if ((src_object = src_entry->object.vm_object) != NULL) {
3699                         VM_OBJECT_WLOCK(src_object);
3700                         charged = ENTRY_CHARGED(src_entry);
3701                         if (src_object->handle == NULL &&
3702                             (src_object->type == OBJT_DEFAULT ||
3703                             src_object->type == OBJT_SWAP)) {
3704                                 vm_object_collapse(src_object);
3705                                 if ((src_object->flags & (OBJ_NOSPLIT |
3706                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3707                                         vm_object_split(src_entry);
3708                                         src_object =
3709                                             src_entry->object.vm_object;
3710                                 }
3711                         }
3712                         vm_object_reference_locked(src_object);
3713                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3714                         if (src_entry->cred != NULL &&
3715                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3716                                 KASSERT(src_object->cred == NULL,
3717                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3718                                      src_object));
3719                                 src_object->cred = src_entry->cred;
3720                                 src_object->charge = size;
3721                         }
3722                         VM_OBJECT_WUNLOCK(src_object);
3723                         dst_entry->object.vm_object = src_object;
3724                         if (charged) {
3725                                 cred = curthread->td_ucred;
3726                                 crhold(cred);
3727                                 dst_entry->cred = cred;
3728                                 *fork_charge += size;
3729                                 if (!(src_entry->eflags &
3730                                       MAP_ENTRY_NEEDS_COPY)) {
3731                                         crhold(cred);
3732                                         src_entry->cred = cred;
3733                                         *fork_charge += size;
3734                                 }
3735                         }
3736                         src_entry->eflags |= MAP_ENTRY_COW |
3737                             MAP_ENTRY_NEEDS_COPY;
3738                         dst_entry->eflags |= MAP_ENTRY_COW |
3739                             MAP_ENTRY_NEEDS_COPY;
3740                         dst_entry->offset = src_entry->offset;
3741                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3742                                 /*
3743                                  * MAP_ENTRY_VN_WRITECNT cannot
3744                                  * indicate write reference from
3745                                  * src_entry, since the entry is
3746                                  * marked as needs copy.  Allocate a
3747                                  * fake entry that is used to
3748                                  * decrement object->un_pager.vnp.writecount
3749                                  * at the appropriate time.  Attach
3750                                  * fake_entry to the deferred list.
3751                                  */
3752                                 fake_entry = vm_map_entry_create(dst_map);
3753                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3754                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3755                                 vm_object_reference(src_object);
3756                                 fake_entry->object.vm_object = src_object;
3757                                 fake_entry->start = src_entry->start;
3758                                 fake_entry->end = src_entry->end;
3759                                 fake_entry->next = curthread->td_map_def_user;
3760                                 curthread->td_map_def_user = fake_entry;
3761                         }
3762
3763                         pmap_copy(dst_map->pmap, src_map->pmap,
3764                             dst_entry->start, dst_entry->end - dst_entry->start,
3765                             src_entry->start);
3766                 } else {
3767                         dst_entry->object.vm_object = NULL;
3768                         dst_entry->offset = 0;
3769                         if (src_entry->cred != NULL) {
3770                                 dst_entry->cred = curthread->td_ucred;
3771                                 crhold(dst_entry->cred);
3772                                 *fork_charge += size;
3773                         }
3774                 }
3775         } else {
3776                 /*
3777                  * We don't want to make writeable wired pages copy-on-write.
3778                  * Immediately copy these pages into the new map by simulating
3779                  * page faults.  The new pages are pageable.
3780                  */
3781                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3782                     fork_charge);
3783         }
3784 }
3785
3786 /*
3787  * vmspace_map_entry_forked:
3788  * Update the newly-forked vmspace each time a map entry is inherited
3789  * or copied.  The values for vm_dsize and vm_tsize are approximate
3790  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3791  */
3792 static void
3793 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3794     vm_map_entry_t entry)
3795 {
3796         vm_size_t entrysize;
3797         vm_offset_t newend;
3798
3799         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3800                 return;
3801         entrysize = entry->end - entry->start;
3802         vm2->vm_map.size += entrysize;
3803         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3804                 vm2->vm_ssize += btoc(entrysize);
3805         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3806             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3807                 newend = MIN(entry->end,
3808                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3809                 vm2->vm_dsize += btoc(newend - entry->start);
3810         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3811             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3812                 newend = MIN(entry->end,
3813                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3814                 vm2->vm_tsize += btoc(newend - entry->start);
3815         }
3816 }
3817
3818 /*
3819  * vmspace_fork:
3820  * Create a new process vmspace structure and vm_map
3821  * based on those of an existing process.  The new map
3822  * is based on the old map, according to the inheritance
3823  * values on the regions in that map.
3824  *
3825  * XXX It might be worth coalescing the entries added to the new vmspace.
3826  *
3827  * The source map must not be locked.
3828  */
3829 struct vmspace *
3830 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3831 {
3832         struct vmspace *vm2;
3833         vm_map_t new_map, old_map;
3834         vm_map_entry_t new_entry, old_entry;
3835         vm_object_t object;
3836         int error, locked;
3837         vm_inherit_t inh;
3838
3839         old_map = &vm1->vm_map;
3840         /* Copy immutable fields of vm1 to vm2. */
3841         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3842             pmap_pinit);
3843         if (vm2 == NULL)
3844                 return (NULL);
3845
3846         vm2->vm_taddr = vm1->vm_taddr;
3847         vm2->vm_daddr = vm1->vm_daddr;
3848         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3849         vm_map_lock(old_map);
3850         if (old_map->busy)
3851                 vm_map_wait_busy(old_map);
3852         new_map = &vm2->vm_map;
3853         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3854         KASSERT(locked, ("vmspace_fork: lock failed"));
3855
3856         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3857         if (error != 0) {
3858                 sx_xunlock(&old_map->lock);
3859                 sx_xunlock(&new_map->lock);
3860                 vm_map_process_deferred();
3861                 vmspace_free(vm2);
3862                 return (NULL);
3863         }
3864
3865         new_map->anon_loc = old_map->anon_loc;
3866
3867         old_entry = old_map->header.next;
3868
3869         while (old_entry != &old_map->header) {
3870                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3871                         panic("vm_map_fork: encountered a submap");
3872
3873                 inh = old_entry->inheritance;
3874                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3875                     inh != VM_INHERIT_NONE)
3876                         inh = VM_INHERIT_COPY;
3877
3878                 switch (inh) {
3879                 case VM_INHERIT_NONE:
3880                         break;
3881
3882                 case VM_INHERIT_SHARE:
3883                         /*
3884                          * Clone the entry, creating the shared object if necessary.
3885                          */
3886                         object = old_entry->object.vm_object;
3887                         if (object == NULL) {
3888                                 object = vm_object_allocate(OBJT_DEFAULT,
3889                                         atop(old_entry->end - old_entry->start));
3890                                 old_entry->object.vm_object = object;
3891                                 old_entry->offset = 0;
3892                                 if (old_entry->cred != NULL) {
3893                                         object->cred = old_entry->cred;
3894                                         object->charge = old_entry->end -
3895                                             old_entry->start;
3896                                         old_entry->cred = NULL;
3897                                 }
3898                         }
3899
3900                         /*
3901                          * Add the reference before calling vm_object_shadow
3902                          * to insure that a shadow object is created.
3903                          */
3904                         vm_object_reference(object);
3905                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3906                                 vm_object_shadow(&old_entry->object.vm_object,
3907                                     &old_entry->offset,
3908                                     old_entry->end - old_entry->start);
3909                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3910                                 /* Transfer the second reference too. */
3911                                 vm_object_reference(
3912                                     old_entry->object.vm_object);
3913
3914                                 /*
3915                                  * As in vm_map_simplify_entry(), the
3916                                  * vnode lock will not be acquired in
3917                                  * this call to vm_object_deallocate().
3918                                  */
3919                                 vm_object_deallocate(object);
3920                                 object = old_entry->object.vm_object;
3921                         }
3922                         VM_OBJECT_WLOCK(object);
3923                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3924                         if (old_entry->cred != NULL) {
3925                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3926                                 object->cred = old_entry->cred;
3927                                 object->charge = old_entry->end - old_entry->start;
3928                                 old_entry->cred = NULL;
3929                         }
3930
3931                         /*
3932                          * Assert the correct state of the vnode
3933                          * v_writecount while the object is locked, to
3934                          * not relock it later for the assertion
3935                          * correctness.
3936                          */
3937                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3938                             object->type == OBJT_VNODE) {
3939                                 KASSERT(((struct vnode *)object->handle)->
3940                                     v_writecount > 0,
3941                                     ("vmspace_fork: v_writecount %p", object));
3942                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3943                                     ("vmspace_fork: vnp.writecount %p",
3944                                     object));
3945                         }
3946                         VM_OBJECT_WUNLOCK(object);
3947
3948                         /*
3949                          * Clone the entry, referencing the shared object.
3950                          */
3951                         new_entry = vm_map_entry_create(new_map);
3952                         *new_entry = *old_entry;
3953                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3954                             MAP_ENTRY_IN_TRANSITION);
3955                         new_entry->wiring_thread = NULL;
3956                         new_entry->wired_count = 0;
3957                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3958                                 vnode_pager_update_writecount(object,
3959                                     new_entry->start, new_entry->end);
3960                         }
3961                         vm_map_entry_set_vnode_text(new_entry, true);
3962
3963                         /*
3964                          * Insert the entry into the new map -- we know we're
3965                          * inserting at the end of the new map.
3966                          */
3967                         vm_map_entry_link(new_map, new_entry);
3968                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3969
3970                         /*
3971                          * Update the physical map
3972                          */
3973                         pmap_copy(new_map->pmap, old_map->pmap,
3974                             new_entry->start,
3975                             (old_entry->end - old_entry->start),
3976                             old_entry->start);
3977                         break;
3978
3979                 case VM_INHERIT_COPY:
3980                         /*
3981                          * Clone the entry and link into the map.
3982                          */
3983                         new_entry = vm_map_entry_create(new_map);
3984                         *new_entry = *old_entry;
3985                         /*
3986                          * Copied entry is COW over the old object.
3987                          */
3988                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3989                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3990                         new_entry->wiring_thread = NULL;
3991                         new_entry->wired_count = 0;
3992                         new_entry->object.vm_object = NULL;
3993                         new_entry->cred = NULL;
3994                         vm_map_entry_link(new_map, new_entry);
3995                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3996                         vm_map_copy_entry(old_map, new_map, old_entry,
3997                             new_entry, fork_charge);
3998                         vm_map_entry_set_vnode_text(new_entry, true);
3999                         break;
4000
4001                 case VM_INHERIT_ZERO:
4002                         /*
4003                          * Create a new anonymous mapping entry modelled from
4004                          * the old one.
4005                          */
4006                         new_entry = vm_map_entry_create(new_map);
4007                         memset(new_entry, 0, sizeof(*new_entry));
4008
4009                         new_entry->start = old_entry->start;
4010                         new_entry->end = old_entry->end;
4011                         new_entry->eflags = old_entry->eflags &
4012                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4013                             MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4014                         new_entry->protection = old_entry->protection;
4015                         new_entry->max_protection = old_entry->max_protection;
4016                         new_entry->inheritance = VM_INHERIT_ZERO;
4017
4018                         vm_map_entry_link(new_map, new_entry);
4019                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4020
4021                         new_entry->cred = curthread->td_ucred;
4022                         crhold(new_entry->cred);
4023                         *fork_charge += (new_entry->end - new_entry->start);
4024
4025                         break;
4026                 }
4027                 old_entry = old_entry->next;
4028         }
4029         /*
4030          * Use inlined vm_map_unlock() to postpone handling the deferred
4031          * map entries, which cannot be done until both old_map and
4032          * new_map locks are released.
4033          */
4034         sx_xunlock(&old_map->lock);
4035         sx_xunlock(&new_map->lock);
4036         vm_map_process_deferred();
4037
4038         return (vm2);
4039 }
4040
4041 /*
4042  * Create a process's stack for exec_new_vmspace().  This function is never
4043  * asked to wire the newly created stack.
4044  */
4045 int
4046 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4047     vm_prot_t prot, vm_prot_t max, int cow)
4048 {
4049         vm_size_t growsize, init_ssize;
4050         rlim_t vmemlim;
4051         int rv;
4052
4053         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4054         growsize = sgrowsiz;
4055         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4056         vm_map_lock(map);
4057         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4058         /* If we would blow our VMEM resource limit, no go */
4059         if (map->size + init_ssize > vmemlim) {
4060                 rv = KERN_NO_SPACE;
4061                 goto out;
4062         }
4063         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4064             max, cow);
4065 out:
4066         vm_map_unlock(map);
4067         return (rv);
4068 }
4069
4070 static int stack_guard_page = 1;
4071 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4072     &stack_guard_page, 0,
4073     "Specifies the number of guard pages for a stack that grows");
4074
4075 static int
4076 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4077     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4078 {
4079         vm_map_entry_t new_entry, prev_entry;
4080         vm_offset_t bot, gap_bot, gap_top, top;
4081         vm_size_t init_ssize, sgp;
4082         int orient, rv;
4083
4084         /*
4085          * The stack orientation is piggybacked with the cow argument.
4086          * Extract it into orient and mask the cow argument so that we
4087          * don't pass it around further.
4088          */
4089         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4090         KASSERT(orient != 0, ("No stack grow direction"));
4091         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4092             ("bi-dir stack"));
4093
4094         if (addrbos < vm_map_min(map) ||
4095             addrbos + max_ssize > vm_map_max(map) ||
4096             addrbos + max_ssize <= addrbos)
4097                 return (KERN_INVALID_ADDRESS);
4098         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4099         if (sgp >= max_ssize)
4100                 return (KERN_INVALID_ARGUMENT);
4101
4102         init_ssize = growsize;
4103         if (max_ssize < init_ssize + sgp)
4104                 init_ssize = max_ssize - sgp;
4105
4106         /* If addr is already mapped, no go */
4107         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4108                 return (KERN_NO_SPACE);
4109
4110         /*
4111          * If we can't accommodate max_ssize in the current mapping, no go.
4112          */
4113         if (prev_entry->next->start < addrbos + max_ssize)
4114                 return (KERN_NO_SPACE);
4115
4116         /*
4117          * We initially map a stack of only init_ssize.  We will grow as
4118          * needed later.  Depending on the orientation of the stack (i.e.
4119          * the grow direction) we either map at the top of the range, the
4120          * bottom of the range or in the middle.
4121          *
4122          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4123          * and cow to be 0.  Possibly we should eliminate these as input
4124          * parameters, and just pass these values here in the insert call.
4125          */
4126         if (orient == MAP_STACK_GROWS_DOWN) {
4127                 bot = addrbos + max_ssize - init_ssize;
4128                 top = bot + init_ssize;
4129                 gap_bot = addrbos;
4130                 gap_top = bot;
4131         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4132                 bot = addrbos;
4133                 top = bot + init_ssize;
4134                 gap_bot = top;
4135                 gap_top = addrbos + max_ssize;
4136         }
4137         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4138         if (rv != KERN_SUCCESS)
4139                 return (rv);
4140         new_entry = prev_entry->next;
4141         KASSERT(new_entry->end == top || new_entry->start == bot,
4142             ("Bad entry start/end for new stack entry"));
4143         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4144             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4145             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4146         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4147             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4148             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4149         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4150             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4151             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4152         if (rv != KERN_SUCCESS)
4153                 (void)vm_map_delete(map, bot, top);
4154         return (rv);
4155 }
4156
4157 /*
4158  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4159  * successfully grow the stack.
4160  */
4161 static int
4162 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4163 {
4164         vm_map_entry_t stack_entry;
4165         struct proc *p;
4166         struct vmspace *vm;
4167         struct ucred *cred;
4168         vm_offset_t gap_end, gap_start, grow_start;
4169         vm_size_t grow_amount, guard, max_grow;
4170         rlim_t lmemlim, stacklim, vmemlim;
4171         int rv, rv1;
4172         bool gap_deleted, grow_down, is_procstack;
4173 #ifdef notyet
4174         uint64_t limit;
4175 #endif
4176 #ifdef RACCT
4177         int error;
4178 #endif
4179
4180         p = curproc;
4181         vm = p->p_vmspace;
4182
4183         /*
4184          * Disallow stack growth when the access is performed by a
4185          * debugger or AIO daemon.  The reason is that the wrong
4186          * resource limits are applied.
4187          */
4188         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4189                 return (KERN_FAILURE);
4190
4191         MPASS(!map->system_map);
4192
4193         guard = stack_guard_page * PAGE_SIZE;
4194         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4195         stacklim = lim_cur(curthread, RLIMIT_STACK);
4196         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4197 retry:
4198         /* If addr is not in a hole for a stack grow area, no need to grow. */
4199         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4200                 return (KERN_FAILURE);
4201         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4202                 return (KERN_SUCCESS);
4203         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4204                 stack_entry = gap_entry->next;
4205                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4206                     stack_entry->start != gap_entry->end)
4207                         return (KERN_FAILURE);
4208                 grow_amount = round_page(stack_entry->start - addr);
4209                 grow_down = true;
4210         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4211                 stack_entry = gap_entry->prev;
4212                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4213                     stack_entry->end != gap_entry->start)
4214                         return (KERN_FAILURE);
4215                 grow_amount = round_page(addr + 1 - stack_entry->end);
4216                 grow_down = false;
4217         } else {
4218                 return (KERN_FAILURE);
4219         }
4220         max_grow = gap_entry->end - gap_entry->start;
4221         if (guard > max_grow)
4222                 return (KERN_NO_SPACE);
4223         max_grow -= guard;
4224         if (grow_amount > max_grow)
4225                 return (KERN_NO_SPACE);
4226
4227         /*
4228          * If this is the main process stack, see if we're over the stack
4229          * limit.
4230          */
4231         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4232             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4233         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4234                 return (KERN_NO_SPACE);
4235
4236 #ifdef RACCT
4237         if (racct_enable) {
4238                 PROC_LOCK(p);
4239                 if (is_procstack && racct_set(p, RACCT_STACK,
4240                     ctob(vm->vm_ssize) + grow_amount)) {
4241                         PROC_UNLOCK(p);
4242                         return (KERN_NO_SPACE);
4243                 }
4244                 PROC_UNLOCK(p);
4245         }
4246 #endif
4247
4248         grow_amount = roundup(grow_amount, sgrowsiz);
4249         if (grow_amount > max_grow)
4250                 grow_amount = max_grow;
4251         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4252                 grow_amount = trunc_page((vm_size_t)stacklim) -
4253                     ctob(vm->vm_ssize);
4254         }
4255
4256 #ifdef notyet
4257         PROC_LOCK(p);
4258         limit = racct_get_available(p, RACCT_STACK);
4259         PROC_UNLOCK(p);
4260         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4261                 grow_amount = limit - ctob(vm->vm_ssize);
4262 #endif
4263
4264         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4265                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4266                         rv = KERN_NO_SPACE;
4267                         goto out;
4268                 }
4269 #ifdef RACCT
4270                 if (racct_enable) {
4271                         PROC_LOCK(p);
4272                         if (racct_set(p, RACCT_MEMLOCK,
4273                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4274                                 PROC_UNLOCK(p);
4275                                 rv = KERN_NO_SPACE;
4276                                 goto out;
4277                         }
4278                         PROC_UNLOCK(p);
4279                 }
4280 #endif
4281         }
4282
4283         /* If we would blow our VMEM resource limit, no go */
4284         if (map->size + grow_amount > vmemlim) {
4285                 rv = KERN_NO_SPACE;
4286                 goto out;
4287         }
4288 #ifdef RACCT
4289         if (racct_enable) {
4290                 PROC_LOCK(p);
4291                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4292                         PROC_UNLOCK(p);
4293                         rv = KERN_NO_SPACE;
4294                         goto out;
4295                 }
4296                 PROC_UNLOCK(p);
4297         }
4298 #endif
4299
4300         if (vm_map_lock_upgrade(map)) {
4301                 gap_entry = NULL;
4302                 vm_map_lock_read(map);
4303                 goto retry;
4304         }
4305
4306         if (grow_down) {
4307                 grow_start = gap_entry->end - grow_amount;
4308                 if (gap_entry->start + grow_amount == gap_entry->end) {
4309                         gap_start = gap_entry->start;
4310                         gap_end = gap_entry->end;
4311                         vm_map_entry_delete(map, gap_entry);
4312                         gap_deleted = true;
4313                 } else {
4314                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4315                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4316                         gap_deleted = false;
4317                 }
4318                 rv = vm_map_insert(map, NULL, 0, grow_start,
4319                     grow_start + grow_amount,
4320                     stack_entry->protection, stack_entry->max_protection,
4321                     MAP_STACK_GROWS_DOWN);
4322                 if (rv != KERN_SUCCESS) {
4323                         if (gap_deleted) {
4324                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4325                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4326                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4327                                 MPASS(rv1 == KERN_SUCCESS);
4328                         } else
4329                                 vm_map_entry_resize(map, gap_entry,
4330                                     grow_amount);
4331                 }
4332         } else {
4333                 grow_start = stack_entry->end;
4334                 cred = stack_entry->cred;
4335                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4336                         cred = stack_entry->object.vm_object->cred;
4337                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4338                         rv = KERN_NO_SPACE;
4339                 /* Grow the underlying object if applicable. */
4340                 else if (stack_entry->object.vm_object == NULL ||
4341                     vm_object_coalesce(stack_entry->object.vm_object,
4342                     stack_entry->offset,
4343                     (vm_size_t)(stack_entry->end - stack_entry->start),
4344                     grow_amount, cred != NULL)) {
4345                         if (gap_entry->start + grow_amount == gap_entry->end) {
4346                                 vm_map_entry_delete(map, gap_entry);
4347                                 vm_map_entry_resize(map, stack_entry,
4348                                     grow_amount);
4349                         } else {
4350                                 gap_entry->start += grow_amount;
4351                                 stack_entry->end += grow_amount;
4352                         }
4353                         map->size += grow_amount;
4354                         rv = KERN_SUCCESS;
4355                 } else
4356                         rv = KERN_FAILURE;
4357         }
4358         if (rv == KERN_SUCCESS && is_procstack)
4359                 vm->vm_ssize += btoc(grow_amount);
4360
4361         /*
4362          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4363          */
4364         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4365                 rv = vm_map_wire_locked(map, grow_start,
4366                     grow_start + grow_amount,
4367                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4368         }
4369         vm_map_lock_downgrade(map);
4370
4371 out:
4372 #ifdef RACCT
4373         if (racct_enable && rv != KERN_SUCCESS) {
4374                 PROC_LOCK(p);
4375                 error = racct_set(p, RACCT_VMEM, map->size);
4376                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4377                 if (!old_mlock) {
4378                         error = racct_set(p, RACCT_MEMLOCK,
4379                             ptoa(pmap_wired_count(map->pmap)));
4380                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4381                 }
4382                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4383                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4384                 PROC_UNLOCK(p);
4385         }
4386 #endif
4387
4388         return (rv);
4389 }
4390
4391 /*
4392  * Unshare the specified VM space for exec.  If other processes are
4393  * mapped to it, then create a new one.  The new vmspace is null.
4394  */
4395 int
4396 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4397 {
4398         struct vmspace *oldvmspace = p->p_vmspace;
4399         struct vmspace *newvmspace;
4400
4401         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4402             ("vmspace_exec recursed"));
4403         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4404         if (newvmspace == NULL)
4405                 return (ENOMEM);
4406         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4407         /*
4408          * This code is written like this for prototype purposes.  The
4409          * goal is to avoid running down the vmspace here, but let the
4410          * other process's that are still using the vmspace to finally
4411          * run it down.  Even though there is little or no chance of blocking
4412          * here, it is a good idea to keep this form for future mods.
4413          */
4414         PROC_VMSPACE_LOCK(p);
4415         p->p_vmspace = newvmspace;
4416         PROC_VMSPACE_UNLOCK(p);
4417         if (p == curthread->td_proc)
4418                 pmap_activate(curthread);
4419         curthread->td_pflags |= TDP_EXECVMSPC;
4420         return (0);
4421 }
4422
4423 /*
4424  * Unshare the specified VM space for forcing COW.  This
4425  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4426  */
4427 int
4428 vmspace_unshare(struct proc *p)
4429 {
4430         struct vmspace *oldvmspace = p->p_vmspace;
4431         struct vmspace *newvmspace;
4432         vm_ooffset_t fork_charge;
4433
4434         if (oldvmspace->vm_refcnt == 1)
4435                 return (0);
4436         fork_charge = 0;
4437         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4438         if (newvmspace == NULL)
4439                 return (ENOMEM);
4440         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4441                 vmspace_free(newvmspace);
4442                 return (ENOMEM);
4443         }
4444         PROC_VMSPACE_LOCK(p);
4445         p->p_vmspace = newvmspace;
4446         PROC_VMSPACE_UNLOCK(p);
4447         if (p == curthread->td_proc)
4448                 pmap_activate(curthread);
4449         vmspace_free(oldvmspace);
4450         return (0);
4451 }
4452
4453 /*
4454  *      vm_map_lookup:
4455  *
4456  *      Finds the VM object, offset, and
4457  *      protection for a given virtual address in the
4458  *      specified map, assuming a page fault of the
4459  *      type specified.
4460  *
4461  *      Leaves the map in question locked for read; return
4462  *      values are guaranteed until a vm_map_lookup_done
4463  *      call is performed.  Note that the map argument
4464  *      is in/out; the returned map must be used in
4465  *      the call to vm_map_lookup_done.
4466  *
4467  *      A handle (out_entry) is returned for use in
4468  *      vm_map_lookup_done, to make that fast.
4469  *
4470  *      If a lookup is requested with "write protection"
4471  *      specified, the map may be changed to perform virtual
4472  *      copying operations, although the data referenced will
4473  *      remain the same.
4474  */
4475 int
4476 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4477               vm_offset_t vaddr,
4478               vm_prot_t fault_typea,
4479               vm_map_entry_t *out_entry,        /* OUT */
4480               vm_object_t *object,              /* OUT */
4481               vm_pindex_t *pindex,              /* OUT */
4482               vm_prot_t *out_prot,              /* OUT */
4483               boolean_t *wired)                 /* OUT */
4484 {
4485         vm_map_entry_t entry;
4486         vm_map_t map = *var_map;
4487         vm_prot_t prot;
4488         vm_prot_t fault_type = fault_typea;
4489         vm_object_t eobject;
4490         vm_size_t size;
4491         struct ucred *cred;
4492
4493 RetryLookup:
4494
4495         vm_map_lock_read(map);
4496
4497 RetryLookupLocked:
4498         /*
4499          * Lookup the faulting address.
4500          */
4501         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4502                 vm_map_unlock_read(map);
4503                 return (KERN_INVALID_ADDRESS);
4504         }
4505
4506         entry = *out_entry;
4507
4508         /*
4509          * Handle submaps.
4510          */
4511         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4512                 vm_map_t old_map = map;
4513
4514                 *var_map = map = entry->object.sub_map;
4515                 vm_map_unlock_read(old_map);
4516                 goto RetryLookup;
4517         }
4518
4519         /*
4520          * Check whether this task is allowed to have this page.
4521          */
4522         prot = entry->protection;
4523         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4524                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4525                 if (prot == VM_PROT_NONE && map != kernel_map &&
4526                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4527                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4528                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4529                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4530                         goto RetryLookupLocked;
4531         }
4532         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4533         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4534                 vm_map_unlock_read(map);
4535                 return (KERN_PROTECTION_FAILURE);
4536         }
4537         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4538             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4539             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4540             ("entry %p flags %x", entry, entry->eflags));
4541         if ((fault_typea & VM_PROT_COPY) != 0 &&
4542             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4543             (entry->eflags & MAP_ENTRY_COW) == 0) {
4544                 vm_map_unlock_read(map);
4545                 return (KERN_PROTECTION_FAILURE);
4546         }
4547
4548         /*
4549          * If this page is not pageable, we have to get it for all possible
4550          * accesses.
4551          */
4552         *wired = (entry->wired_count != 0);
4553         if (*wired)
4554                 fault_type = entry->protection;
4555         size = entry->end - entry->start;
4556         /*
4557          * If the entry was copy-on-write, we either ...
4558          */
4559         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4560                 /*
4561                  * If we want to write the page, we may as well handle that
4562                  * now since we've got the map locked.
4563                  *
4564                  * If we don't need to write the page, we just demote the
4565                  * permissions allowed.
4566                  */
4567                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4568                     (fault_typea & VM_PROT_COPY) != 0) {
4569                         /*
4570                          * Make a new object, and place it in the object
4571                          * chain.  Note that no new references have appeared
4572                          * -- one just moved from the map to the new
4573                          * object.
4574                          */
4575                         if (vm_map_lock_upgrade(map))
4576                                 goto RetryLookup;
4577
4578                         if (entry->cred == NULL) {
4579                                 /*
4580                                  * The debugger owner is charged for
4581                                  * the memory.
4582                                  */
4583                                 cred = curthread->td_ucred;
4584                                 crhold(cred);
4585                                 if (!swap_reserve_by_cred(size, cred)) {
4586                                         crfree(cred);
4587                                         vm_map_unlock(map);
4588                                         return (KERN_RESOURCE_SHORTAGE);
4589                                 }
4590                                 entry->cred = cred;
4591                         }
4592                         vm_object_shadow(&entry->object.vm_object,
4593                             &entry->offset, size);
4594                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4595                         eobject = entry->object.vm_object;
4596                         if (eobject->cred != NULL) {
4597                                 /*
4598                                  * The object was not shadowed.
4599                                  */
4600                                 swap_release_by_cred(size, entry->cred);
4601                                 crfree(entry->cred);
4602                                 entry->cred = NULL;
4603                         } else if (entry->cred != NULL) {
4604                                 VM_OBJECT_WLOCK(eobject);
4605                                 eobject->cred = entry->cred;
4606                                 eobject->charge = size;
4607                                 VM_OBJECT_WUNLOCK(eobject);
4608                                 entry->cred = NULL;
4609                         }
4610
4611                         vm_map_lock_downgrade(map);
4612                 } else {
4613                         /*
4614                          * We're attempting to read a copy-on-write page --
4615                          * don't allow writes.
4616                          */
4617                         prot &= ~VM_PROT_WRITE;
4618                 }
4619         }
4620
4621         /*
4622          * Create an object if necessary.
4623          */
4624         if (entry->object.vm_object == NULL &&
4625             !map->system_map) {
4626                 if (vm_map_lock_upgrade(map))
4627                         goto RetryLookup;
4628                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4629                     atop(size));
4630                 entry->offset = 0;
4631                 if (entry->cred != NULL) {
4632                         VM_OBJECT_WLOCK(entry->object.vm_object);
4633                         entry->object.vm_object->cred = entry->cred;
4634                         entry->object.vm_object->charge = size;
4635                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4636                         entry->cred = NULL;
4637                 }
4638                 vm_map_lock_downgrade(map);
4639         }
4640
4641         /*
4642          * Return the object/offset from this entry.  If the entry was
4643          * copy-on-write or empty, it has been fixed up.
4644          */
4645         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4646         *object = entry->object.vm_object;
4647
4648         *out_prot = prot;
4649         return (KERN_SUCCESS);
4650 }
4651
4652 /*
4653  *      vm_map_lookup_locked:
4654  *
4655  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4656  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4657  */
4658 int
4659 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4660                      vm_offset_t vaddr,
4661                      vm_prot_t fault_typea,
4662                      vm_map_entry_t *out_entry, /* OUT */
4663                      vm_object_t *object,       /* OUT */
4664                      vm_pindex_t *pindex,       /* OUT */
4665                      vm_prot_t *out_prot,       /* OUT */
4666                      boolean_t *wired)          /* OUT */
4667 {
4668         vm_map_entry_t entry;
4669         vm_map_t map = *var_map;
4670         vm_prot_t prot;
4671         vm_prot_t fault_type = fault_typea;
4672
4673         /*
4674          * Lookup the faulting address.
4675          */
4676         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4677                 return (KERN_INVALID_ADDRESS);
4678
4679         entry = *out_entry;
4680
4681         /*
4682          * Fail if the entry refers to a submap.
4683          */
4684         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4685                 return (KERN_FAILURE);
4686
4687         /*
4688          * Check whether this task is allowed to have this page.
4689          */
4690         prot = entry->protection;
4691         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4692         if ((fault_type & prot) != fault_type)
4693                 return (KERN_PROTECTION_FAILURE);
4694
4695         /*
4696          * If this page is not pageable, we have to get it for all possible
4697          * accesses.
4698          */
4699         *wired = (entry->wired_count != 0);
4700         if (*wired)
4701                 fault_type = entry->protection;
4702
4703         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4704                 /*
4705                  * Fail if the entry was copy-on-write for a write fault.
4706                  */
4707                 if (fault_type & VM_PROT_WRITE)
4708                         return (KERN_FAILURE);
4709                 /*
4710                  * We're attempting to read a copy-on-write page --
4711                  * don't allow writes.
4712                  */
4713                 prot &= ~VM_PROT_WRITE;
4714         }
4715
4716         /*
4717          * Fail if an object should be created.
4718          */
4719         if (entry->object.vm_object == NULL && !map->system_map)
4720                 return (KERN_FAILURE);
4721
4722         /*
4723          * Return the object/offset from this entry.  If the entry was
4724          * copy-on-write or empty, it has been fixed up.
4725          */
4726         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4727         *object = entry->object.vm_object;
4728
4729         *out_prot = prot;
4730         return (KERN_SUCCESS);
4731 }
4732
4733 /*
4734  *      vm_map_lookup_done:
4735  *
4736  *      Releases locks acquired by a vm_map_lookup
4737  *      (according to the handle returned by that lookup).
4738  */
4739 void
4740 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4741 {
4742         /*
4743          * Unlock the main-level map
4744          */
4745         vm_map_unlock_read(map);
4746 }
4747
4748 vm_offset_t
4749 vm_map_max_KBI(const struct vm_map *map)
4750 {
4751
4752         return (vm_map_max(map));
4753 }
4754
4755 vm_offset_t
4756 vm_map_min_KBI(const struct vm_map *map)
4757 {
4758
4759         return (vm_map_min(map));
4760 }
4761
4762 pmap_t
4763 vm_map_pmap_KBI(vm_map_t map)
4764 {
4765
4766         return (map->pmap);
4767 }
4768
4769 #include "opt_ddb.h"
4770 #ifdef DDB
4771 #include <sys/kernel.h>
4772
4773 #include <ddb/ddb.h>
4774
4775 static void
4776 vm_map_print(vm_map_t map)
4777 {
4778         vm_map_entry_t entry;
4779
4780         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4781             (void *)map,
4782             (void *)map->pmap, map->nentries, map->timestamp);
4783
4784         db_indent += 2;
4785         for (entry = map->header.next; entry != &map->header;
4786             entry = entry->next) {
4787                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4788                     (void *)entry, (void *)entry->start, (void *)entry->end,
4789                     entry->eflags);
4790                 {
4791                         static char *inheritance_name[4] =
4792                         {"share", "copy", "none", "donate_copy"};
4793
4794                         db_iprintf(" prot=%x/%x/%s",
4795                             entry->protection,
4796                             entry->max_protection,
4797                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4798                         if (entry->wired_count != 0)
4799                                 db_printf(", wired");
4800                 }
4801                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4802                         db_printf(", share=%p, offset=0x%jx\n",
4803                             (void *)entry->object.sub_map,
4804                             (uintmax_t)entry->offset);
4805                         if ((entry->prev == &map->header) ||
4806                             (entry->prev->object.sub_map !=
4807                                 entry->object.sub_map)) {
4808                                 db_indent += 2;
4809                                 vm_map_print((vm_map_t)entry->object.sub_map);
4810                                 db_indent -= 2;
4811                         }
4812                 } else {
4813                         if (entry->cred != NULL)
4814                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4815                         db_printf(", object=%p, offset=0x%jx",
4816                             (void *)entry->object.vm_object,
4817                             (uintmax_t)entry->offset);
4818                         if (entry->object.vm_object && entry->object.vm_object->cred)
4819                                 db_printf(", obj ruid %d charge %jx",
4820                                     entry->object.vm_object->cred->cr_ruid,
4821                                     (uintmax_t)entry->object.vm_object->charge);
4822                         if (entry->eflags & MAP_ENTRY_COW)
4823                                 db_printf(", copy (%s)",
4824                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4825                         db_printf("\n");
4826
4827                         if ((entry->prev == &map->header) ||
4828                             (entry->prev->object.vm_object !=
4829                                 entry->object.vm_object)) {
4830                                 db_indent += 2;
4831                                 vm_object_print((db_expr_t)(intptr_t)
4832                                                 entry->object.vm_object,
4833                                                 0, 0, (char *)0);
4834                                 db_indent -= 2;
4835                         }
4836                 }
4837         }
4838         db_indent -= 2;
4839 }
4840
4841 DB_SHOW_COMMAND(map, map)
4842 {
4843
4844         if (!have_addr) {
4845                 db_printf("usage: show map <addr>\n");
4846                 return;
4847         }
4848         vm_map_print((vm_map_t)addr);
4849 }
4850
4851 DB_SHOW_COMMAND(procvm, procvm)
4852 {
4853         struct proc *p;
4854
4855         if (have_addr) {
4856                 p = db_lookup_proc(addr);
4857         } else {
4858                 p = curproc;
4859         }
4860
4861         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4862             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4863             (void *)vmspace_pmap(p->p_vmspace));
4864
4865         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4866 }
4867
4868 #endif /* DDB */