]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge ^/head r339015 through r339669.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286
287         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288
289         if (pinit == NULL)
290                 pinit = &pmap_pinit;
291
292         if (!pinit(vmspace_pmap(vm))) {
293                 uma_zfree(vmspace_zone, vm);
294                 return (NULL);
295         }
296         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298         vm->vm_refcnt = 1;
299         vm->vm_shm = NULL;
300         vm->vm_swrss = 0;
301         vm->vm_tsize = 0;
302         vm->vm_dsize = 0;
303         vm->vm_ssize = 0;
304         vm->vm_taddr = 0;
305         vm->vm_daddr = 0;
306         vm->vm_maxsaddr = 0;
307         return (vm);
308 }
309
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314
315         PROC_LOCK(p);
316         racct_set(p, RACCT_DATA, 0);
317         racct_set(p, RACCT_STACK, 0);
318         racct_set(p, RACCT_RSS, 0);
319         racct_set(p, RACCT_MEMLOCK, 0);
320         racct_set(p, RACCT_VMEM, 0);
321         PROC_UNLOCK(p);
322 }
323 #endif
324
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328
329         CTR1(KTR_VM, "vmspace_free: %p", vm);
330
331         /*
332          * Make sure any SysV shm is freed, it might not have been in
333          * exit1().
334          */
335         shmexit(vm);
336
337         /*
338          * Lock the map, to wait out all other references to it.
339          * Delete all of the mappings and pages they hold, then call
340          * the pmap module to reclaim anything left.
341          */
342         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
343             vm_map_max(&vm->vm_map));
344
345         pmap_release(vmspace_pmap(vm));
346         vm->vm_map.pmap = NULL;
347         uma_zfree(vmspace_zone, vm);
348 }
349
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353
354         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355             "vmspace_free() called");
356
357         if (vm->vm_refcnt == 0)
358                 panic("vmspace_free: attempt to free already freed vmspace");
359
360         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361                 vmspace_dofree(vm);
362 }
363
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367         struct vmspace *vm;
368
369         PROC_VMSPACE_LOCK(p);
370         vm = p->p_vmspace;
371         p->p_vmspace = NULL;
372         PROC_VMSPACE_UNLOCK(p);
373         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374         vmspace_free(vm);
375 }
376
377 void
378 vmspace_exit(struct thread *td)
379 {
380         int refcnt;
381         struct vmspace *vm;
382         struct proc *p;
383
384         /*
385          * Release user portion of address space.
386          * This releases references to vnodes,
387          * which could cause I/O if the file has been unlinked.
388          * Need to do this early enough that we can still sleep.
389          *
390          * The last exiting process to reach this point releases as
391          * much of the environment as it can. vmspace_dofree() is the
392          * slower fallback in case another process had a temporary
393          * reference to the vmspace.
394          */
395
396         p = td->td_proc;
397         vm = p->p_vmspace;
398         atomic_add_int(&vmspace0.vm_refcnt, 1);
399         do {
400                 refcnt = vm->vm_refcnt;
401                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402                         /* Switch now since other proc might free vmspace */
403                         PROC_VMSPACE_LOCK(p);
404                         p->p_vmspace = &vmspace0;
405                         PROC_VMSPACE_UNLOCK(p);
406                         pmap_activate(td);
407                 }
408         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409         if (refcnt == 1) {
410                 if (p->p_vmspace != vm) {
411                         /* vmspace not yet freed, switch back */
412                         PROC_VMSPACE_LOCK(p);
413                         p->p_vmspace = vm;
414                         PROC_VMSPACE_UNLOCK(p);
415                         pmap_activate(td);
416                 }
417                 pmap_remove_pages(vmspace_pmap(vm));
418                 /* Switch now since this proc will free vmspace */
419                 PROC_VMSPACE_LOCK(p);
420                 p->p_vmspace = &vmspace0;
421                 PROC_VMSPACE_UNLOCK(p);
422                 pmap_activate(td);
423                 vmspace_dofree(vm);
424         }
425 #ifdef RACCT
426         if (racct_enable)
427                 vmspace_container_reset(p);
428 #endif
429 }
430
431 /* Acquire reference to vmspace owned by another process. */
432
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436         struct vmspace *vm;
437         int refcnt;
438
439         PROC_VMSPACE_LOCK(p);
440         vm = p->p_vmspace;
441         if (vm == NULL) {
442                 PROC_VMSPACE_UNLOCK(p);
443                 return (NULL);
444         }
445         do {
446                 refcnt = vm->vm_refcnt;
447                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
448                         PROC_VMSPACE_UNLOCK(p);
449                         return (NULL);
450                 }
451         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452         if (vm != p->p_vmspace) {
453                 PROC_VMSPACE_UNLOCK(p);
454                 vmspace_free(vm);
455                 return (NULL);
456         }
457         PROC_VMSPACE_UNLOCK(p);
458         return (vm);
459 }
460
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480         struct vmspace *oldvm;
481
482         /* XXX: Need some way to assert that this is an aio daemon. */
483
484         KASSERT(newvm->vm_refcnt > 0,
485             ("vmspace_switch_aio: newvm unreferenced"));
486
487         oldvm = curproc->p_vmspace;
488         if (oldvm == newvm)
489                 return;
490
491         /*
492          * Point to the new address space and refer to it.
493          */
494         curproc->p_vmspace = newvm;
495         atomic_add_int(&newvm->vm_refcnt, 1);
496
497         /* Activate the new mapping. */
498         pmap_activate(curthread);
499
500         /* Remove the daemon's reference to the old address space. */
501         KASSERT(oldvm->vm_refcnt > 1,
502             ("vmspace_switch_aio: oldvm dropping last reference"));
503         vmspace_free(oldvm);
504 }
505
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509
510         if (map->system_map)
511                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
512         else
513                 sx_xlock_(&map->lock, file, line);
514         map->timestamp++;
515 }
516
517 static void
518 vm_map_process_deferred(void)
519 {
520         struct thread *td;
521         vm_map_entry_t entry, next;
522         vm_object_t object;
523
524         td = curthread;
525         entry = td->td_map_def_user;
526         td->td_map_def_user = NULL;
527         while (entry != NULL) {
528                 next = entry->next;
529                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530                         /*
531                          * Decrement the object's writemappings and
532                          * possibly the vnode's v_writecount.
533                          */
534                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535                             ("Submap with writecount"));
536                         object = entry->object.vm_object;
537                         KASSERT(object != NULL, ("No object for writecount"));
538                         vnode_pager_release_writecount(object, entry->start,
539                             entry->end);
540                 }
541                 vm_map_entry_deallocate(entry, FALSE);
542                 entry = next;
543         }
544 }
545
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549
550         if (map->system_map)
551                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552         else {
553                 sx_xunlock_(&map->lock, file, line);
554                 vm_map_process_deferred();
555         }
556 }
557
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561
562         if (map->system_map)
563                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
564         else
565                 sx_slock_(&map->lock, file, line);
566 }
567
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571
572         if (map->system_map)
573                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574         else {
575                 sx_sunlock_(&map->lock, file, line);
576                 vm_map_process_deferred();
577         }
578 }
579
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583         int error;
584
585         error = map->system_map ?
586             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587             !sx_try_xlock_(&map->lock, file, line);
588         if (error == 0)
589                 map->timestamp++;
590         return (error == 0);
591 }
592
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596         int error;
597
598         error = map->system_map ?
599             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600             !sx_try_slock_(&map->lock, file, line);
601         return (error == 0);
602 }
603
604 /*
605  *      _vm_map_lock_upgrade:   [ internal use only ]
606  *
607  *      Tries to upgrade a read (shared) lock on the specified map to a write
608  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *      returned without a read or write lock held.
611  *
612  *      Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617         unsigned int last_timestamp;
618
619         if (map->system_map) {
620                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621         } else {
622                 if (!sx_try_upgrade_(&map->lock, file, line)) {
623                         last_timestamp = map->timestamp;
624                         sx_sunlock_(&map->lock, file, line);
625                         vm_map_process_deferred();
626                         /*
627                          * If the map's timestamp does not change while the
628                          * map is unlocked, then the upgrade succeeds.
629                          */
630                         sx_xlock_(&map->lock, file, line);
631                         if (last_timestamp != map->timestamp) {
632                                 sx_xunlock_(&map->lock, file, line);
633                                 return (1);
634                         }
635                 }
636         }
637         map->timestamp++;
638         return (0);
639 }
640
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644
645         if (map->system_map) {
646                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647         } else
648                 sx_downgrade_(&map->lock, file, line);
649 }
650
651 /*
652  *      vm_map_locked:
653  *
654  *      Returns a non-zero value if the caller holds a write (exclusive) lock
655  *      on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660
661         if (map->system_map)
662                 return (mtx_owned(&map->system_mtx));
663         else
664                 return (sx_xlocked(&map->lock));
665 }
666
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671
672         if (map->system_map)
673                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674         else
675                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677
678 #define VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define VM_MAP_ASSERT_LOCKED(map)
682 #endif
683
684 /*
685  *      _vm_map_unlock_and_wait:
686  *
687  *      Atomically releases the lock on the specified map and puts the calling
688  *      thread to sleep.  The calling thread will remain asleep until either
689  *      vm_map_wakeup() is performed on the map or the specified timeout is
690  *      exceeded.
691  *
692  *      WARNING!  This function does not perform deferred deallocations of
693  *      objects and map entries.  Therefore, the calling thread is expected to
694  *      reacquire the map lock after reawakening and later perform an ordinary
695  *      unlock operation, such as vm_map_unlock(), before completing its
696  *      operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701
702         mtx_lock(&map_sleep_mtx);
703         if (map->system_map)
704                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705         else
706                 sx_xunlock_(&map->lock, file, line);
707         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708             timo));
709 }
710
711 /*
712  *      vm_map_wakeup:
713  *
714  *      Awaken any threads that have slept on the map using
715  *      vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720
721         /*
722          * Acquire and release map_sleep_mtx to prevent a wakeup()
723          * from being performed (and lost) between the map unlock
724          * and the msleep() in _vm_map_unlock_and_wait().
725          */
726         mtx_lock(&map_sleep_mtx);
727         mtx_unlock(&map_sleep_mtx);
728         wakeup(&map->root);
729 }
730
731 void
732 vm_map_busy(vm_map_t map)
733 {
734
735         VM_MAP_ASSERT_LOCKED(map);
736         map->busy++;
737 }
738
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742
743         VM_MAP_ASSERT_LOCKED(map);
744         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747                 wakeup(&map->busy);
748         }
749 }
750
751 void 
752 vm_map_wait_busy(vm_map_t map)
753 {
754
755         VM_MAP_ASSERT_LOCKED(map);
756         while (map->busy) {
757                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758                 if (map->system_map)
759                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760                 else
761                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762         }
763         map->timestamp++;
764 }
765
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769         return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771
772 /*
773  *      vm_map_create:
774  *
775  *      Creates and returns a new empty VM map with
776  *      the given physical map structure, and having
777  *      the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782         vm_map_t result;
783
784         result = uma_zalloc(mapzone, M_WAITOK);
785         CTR1(KTR_VM, "vm_map_create: %p", result);
786         _vm_map_init(result, pmap, min, max);
787         return (result);
788 }
789
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797
798         map->header.next = map->header.prev = &map->header;
799         map->needs_wakeup = FALSE;
800         map->system_map = 0;
801         map->pmap = pmap;
802         map->header.end = min;
803         map->header.start = max;
804         map->flags = 0;
805         map->root = NULL;
806         map->timestamp = 0;
807         map->busy = 0;
808 }
809
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813
814         _vm_map_init(map, pmap, min, max);
815         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816         sx_init(&map->lock, "user map");
817 }
818
819 /*
820  *      vm_map_entry_dispose:   [ internal use only ]
821  *
822  *      Inverse of vm_map_entry_create.
823  */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829
830 /*
831  *      vm_map_entry_create:    [ internal use only ]
832  *
833  *      Allocates a VM map entry for insertion.
834  *      No entry fields are filled in.
835  */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839         vm_map_entry_t new_entry;
840
841         if (map->system_map)
842                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843         else
844                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
845         if (new_entry == NULL)
846                 panic("vm_map_entry_create: kernel resources exhausted");
847         return (new_entry);
848 }
849
850 /*
851  *      vm_map_entry_set_behavior:
852  *
853  *      Set the expected access behavior, either normal, random, or
854  *      sequential.
855  */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860             (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862
863 /*
864  *      vm_map_entry_set_max_free:
865  *
866  *      Set the max_free field in a vm_map_entry.
867  */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871
872         entry->max_free = entry->adj_free;
873         if (entry->left != NULL && entry->left->max_free > entry->max_free)
874                 entry->max_free = entry->left->max_free;
875         if (entry->right != NULL && entry->right->max_free > entry->max_free)
876                 entry->max_free = entry->right->max_free;
877 }
878
879 /*
880  *      vm_map_entry_splay:
881  *
882  *      The Sleator and Tarjan top-down splay algorithm with the
883  *      following variation.  Max_free must be computed bottom-up, so
884  *      on the downward pass, maintain the left and right spines in
885  *      reverse order.  Then, make a second pass up each side to fix
886  *      the pointers and compute max_free.  The time bound is O(log n)
887  *      amortized.
888  *
889  *      The new root is the vm_map_entry containing "addr", or else an
890  *      adjacent entry (lower or higher) if addr is not in the tree.
891  *
892  *      The map must be locked, and leaves it so.
893  *
894  *      Returns: the new root.
895  */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899         vm_map_entry_t llist, rlist;
900         vm_map_entry_t ltree, rtree;
901         vm_map_entry_t y;
902
903         /* Special case of empty tree. */
904         if (root == NULL)
905                 return (root);
906
907         /*
908          * Pass One: Splay down the tree until we find addr or a NULL
909          * pointer where addr would go.  llist and rlist are the two
910          * sides in reverse order (bottom-up), with llist linked by
911          * the right pointer and rlist linked by the left pointer in
912          * the vm_map_entry.  Wait until Pass Two to set max_free on
913          * the two spines.
914          */
915         llist = NULL;
916         rlist = NULL;
917         for (;;) {
918                 /* root is never NULL in here. */
919                 if (addr < root->start) {
920                         y = root->left;
921                         if (y == NULL)
922                                 break;
923                         if (addr < y->start && y->left != NULL) {
924                                 /* Rotate right and put y on rlist. */
925                                 root->left = y->right;
926                                 y->right = root;
927                                 vm_map_entry_set_max_free(root);
928                                 root = y->left;
929                                 y->left = rlist;
930                                 rlist = y;
931                         } else {
932                                 /* Put root on rlist. */
933                                 root->left = rlist;
934                                 rlist = root;
935                                 root = y;
936                         }
937                 } else if (addr >= root->end) {
938                         y = root->right;
939                         if (y == NULL)
940                                 break;
941                         if (addr >= y->end && y->right != NULL) {
942                                 /* Rotate left and put y on llist. */
943                                 root->right = y->left;
944                                 y->left = root;
945                                 vm_map_entry_set_max_free(root);
946                                 root = y->right;
947                                 y->right = llist;
948                                 llist = y;
949                         } else {
950                                 /* Put root on llist. */
951                                 root->right = llist;
952                                 llist = root;
953                                 root = y;
954                         }
955                 } else
956                         break;
957         }
958
959         /*
960          * Pass Two: Walk back up the two spines, flip the pointers
961          * and set max_free.  The subtrees of the root go at the
962          * bottom of llist and rlist.
963          */
964         ltree = root->left;
965         while (llist != NULL) {
966                 y = llist->right;
967                 llist->right = ltree;
968                 vm_map_entry_set_max_free(llist);
969                 ltree = llist;
970                 llist = y;
971         }
972         rtree = root->right;
973         while (rlist != NULL) {
974                 y = rlist->left;
975                 rlist->left = rtree;
976                 vm_map_entry_set_max_free(rlist);
977                 rtree = rlist;
978                 rlist = y;
979         }
980
981         /*
982          * Final assembly: add ltree and rtree as subtrees of root.
983          */
984         root->left = ltree;
985         root->right = rtree;
986         vm_map_entry_set_max_free(root);
987
988         return (root);
989 }
990
991 /*
992  *      vm_map_entry_{un,}link:
993  *
994  *      Insert/remove entries from maps.
995  */
996 static void
997 vm_map_entry_link(vm_map_t map,
998                   vm_map_entry_t after_where,
999                   vm_map_entry_t entry)
1000 {
1001
1002         CTR4(KTR_VM,
1003             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004             map->nentries, entry, after_where);
1005         VM_MAP_ASSERT_LOCKED(map);
1006         KASSERT(after_where->end <= entry->start,
1007             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1008             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1009         KASSERT(entry->end <= after_where->next->start,
1010             ("vm_map_entry_link: new end %jx next start %jx overlap",
1011             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1012
1013         map->nentries++;
1014         entry->prev = after_where;
1015         entry->next = after_where->next;
1016         entry->next->prev = entry;
1017         after_where->next = entry;
1018
1019         if (after_where != &map->header) {
1020                 if (after_where != map->root)
1021                         vm_map_entry_splay(after_where->start, map->root);
1022                 entry->right = after_where->right;
1023                 entry->left = after_where;
1024                 after_where->right = NULL;
1025                 after_where->adj_free = entry->start - after_where->end;
1026                 vm_map_entry_set_max_free(after_where);
1027         } else {
1028                 entry->right = map->root;
1029                 entry->left = NULL;
1030         }
1031         entry->adj_free = entry->next->start - entry->end;
1032         vm_map_entry_set_max_free(entry);
1033         map->root = entry;
1034 }
1035
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038                     vm_map_entry_t entry)
1039 {
1040         vm_map_entry_t next, prev, root;
1041
1042         VM_MAP_ASSERT_LOCKED(map);
1043         if (entry != map->root)
1044                 vm_map_entry_splay(entry->start, map->root);
1045         if (entry->left == NULL)
1046                 root = entry->right;
1047         else {
1048                 root = vm_map_entry_splay(entry->start, entry->left);
1049                 root->right = entry->right;
1050                 root->adj_free = entry->next->start - root->end;
1051                 vm_map_entry_set_max_free(root);
1052         }
1053         map->root = root;
1054
1055         prev = entry->prev;
1056         next = entry->next;
1057         next->prev = prev;
1058         prev->next = next;
1059         map->nentries--;
1060         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1061             map->nentries, entry);
1062 }
1063
1064 /*
1065  *      vm_map_entry_resize_free:
1066  *
1067  *      Recompute the amount of free space following a vm_map_entry
1068  *      and propagate that value up the tree.  Call this function after
1069  *      resizing a map entry in-place, that is, without a call to
1070  *      vm_map_entry_link() or _unlink().
1071  *
1072  *      The map must be locked, and leaves it so.
1073  */
1074 static void
1075 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1076 {
1077
1078         /*
1079          * Using splay trees without parent pointers, propagating
1080          * max_free up the tree is done by moving the entry to the
1081          * root and making the change there.
1082          */
1083         if (entry != map->root)
1084                 map->root = vm_map_entry_splay(entry->start, map->root);
1085
1086         entry->adj_free = entry->next->start - entry->end;
1087         vm_map_entry_set_max_free(entry);
1088 }
1089
1090 /*
1091  *      vm_map_lookup_entry:    [ internal use only ]
1092  *
1093  *      Finds the map entry containing (or
1094  *      immediately preceding) the specified address
1095  *      in the given map; the entry is returned
1096  *      in the "entry" parameter.  The boolean
1097  *      result indicates whether the address is
1098  *      actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102         vm_map_t map,
1103         vm_offset_t address,
1104         vm_map_entry_t *entry)  /* OUT */
1105 {
1106         vm_map_entry_t cur;
1107         boolean_t locked;
1108
1109         /*
1110          * If the map is empty, then the map entry immediately preceding
1111          * "address" is the map's header.
1112          */
1113         cur = map->root;
1114         if (cur == NULL)
1115                 *entry = &map->header;
1116         else if (address >= cur->start && cur->end > address) {
1117                 *entry = cur;
1118                 return (TRUE);
1119         } else if ((locked = vm_map_locked(map)) ||
1120             sx_try_upgrade(&map->lock)) {
1121                 /*
1122                  * Splay requires a write lock on the map.  However, it only
1123                  * restructures the binary search tree; it does not otherwise
1124                  * change the map.  Thus, the map's timestamp need not change
1125                  * on a temporary upgrade.
1126                  */
1127                 map->root = cur = vm_map_entry_splay(address, cur);
1128                 if (!locked)
1129                         sx_downgrade(&map->lock);
1130
1131                 /*
1132                  * If "address" is contained within a map entry, the new root
1133                  * is that map entry.  Otherwise, the new root is a map entry
1134                  * immediately before or after "address".
1135                  */
1136                 if (address >= cur->start) {
1137                         *entry = cur;
1138                         if (cur->end > address)
1139                                 return (TRUE);
1140                 } else
1141                         *entry = cur->prev;
1142         } else
1143                 /*
1144                  * Since the map is only locked for read access, perform a
1145                  * standard binary search tree lookup for "address".
1146                  */
1147                 for (;;) {
1148                         if (address < cur->start) {
1149                                 if (cur->left == NULL) {
1150                                         *entry = cur->prev;
1151                                         break;
1152                                 }
1153                                 cur = cur->left;
1154                         } else if (cur->end > address) {
1155                                 *entry = cur;
1156                                 return (TRUE);
1157                         } else {
1158                                 if (cur->right == NULL) {
1159                                         *entry = cur;
1160                                         break;
1161                                 }
1162                                 cur = cur->right;
1163                         }
1164                 }
1165         return (FALSE);
1166 }
1167
1168 /*
1169  *      vm_map_insert:
1170  *
1171  *      Inserts the given whole VM object into the target
1172  *      map at the specified address range.  The object's
1173  *      size should match that of the address range.
1174  *
1175  *      Requires that the map be locked, and leaves it so.
1176  *
1177  *      If object is non-NULL, ref count must be bumped by caller
1178  *      prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184         vm_map_entry_t new_entry, prev_entry, temp_entry;
1185         struct ucred *cred;
1186         vm_eflags_t protoeflags;
1187         vm_inherit_t inheritance;
1188
1189         VM_MAP_ASSERT_LOCKED(map);
1190         KASSERT(object != kernel_object ||
1191             (cow & MAP_COPY_ON_WRITE) == 0,
1192             ("vm_map_insert: kernel object and COW"));
1193         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195         KASSERT((prot & ~max) == 0,
1196             ("prot %#x is not subset of max_prot %#x", prot, max));
1197
1198         /*
1199          * Check that the start and end points are not bogus.
1200          */
1201         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1202             start >= end)
1203                 return (KERN_INVALID_ADDRESS);
1204
1205         /*
1206          * Find the entry prior to the proposed starting address; if it's part
1207          * of an existing entry, this range is bogus.
1208          */
1209         if (vm_map_lookup_entry(map, start, &temp_entry))
1210                 return (KERN_NO_SPACE);
1211
1212         prev_entry = temp_entry;
1213
1214         /*
1215          * Assert that the next entry doesn't overlap the end point.
1216          */
1217         if (prev_entry->next->start < end)
1218                 return (KERN_NO_SPACE);
1219
1220         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1221             max != VM_PROT_NONE))
1222                 return (KERN_INVALID_ARGUMENT);
1223
1224         protoeflags = 0;
1225         if (cow & MAP_COPY_ON_WRITE)
1226                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1227         if (cow & MAP_NOFAULT)
1228                 protoeflags |= MAP_ENTRY_NOFAULT;
1229         if (cow & MAP_DISABLE_SYNCER)
1230                 protoeflags |= MAP_ENTRY_NOSYNC;
1231         if (cow & MAP_DISABLE_COREDUMP)
1232                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1233         if (cow & MAP_STACK_GROWS_DOWN)
1234                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1235         if (cow & MAP_STACK_GROWS_UP)
1236                 protoeflags |= MAP_ENTRY_GROWS_UP;
1237         if (cow & MAP_VN_WRITECOUNT)
1238                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1239         if ((cow & MAP_CREATE_GUARD) != 0)
1240                 protoeflags |= MAP_ENTRY_GUARD;
1241         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1242                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1243         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1244                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1245         if (cow & MAP_INHERIT_SHARE)
1246                 inheritance = VM_INHERIT_SHARE;
1247         else
1248                 inheritance = VM_INHERIT_DEFAULT;
1249
1250         cred = NULL;
1251         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1252                 goto charged;
1253         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1254             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1255                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1256                         return (KERN_RESOURCE_SHORTAGE);
1257                 KASSERT(object == NULL ||
1258                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1259                     object->cred == NULL,
1260                     ("overcommit: vm_map_insert o %p", object));
1261                 cred = curthread->td_ucred;
1262         }
1263
1264 charged:
1265         /* Expand the kernel pmap, if necessary. */
1266         if (map == kernel_map && end > kernel_vm_end)
1267                 pmap_growkernel(end);
1268         if (object != NULL) {
1269                 /*
1270                  * OBJ_ONEMAPPING must be cleared unless this mapping
1271                  * is trivially proven to be the only mapping for any
1272                  * of the object's pages.  (Object granularity
1273                  * reference counting is insufficient to recognize
1274                  * aliases with precision.)
1275                  */
1276                 VM_OBJECT_WLOCK(object);
1277                 if (object->ref_count > 1 || object->shadow_count != 0)
1278                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1279                 VM_OBJECT_WUNLOCK(object);
1280         } else if (prev_entry != &map->header &&
1281             (prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == protoeflags &&
1282             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1283             prev_entry->end == start && (prev_entry->cred == cred ||
1284             (prev_entry->object.vm_object != NULL &&
1285             prev_entry->object.vm_object->cred == cred)) &&
1286             vm_object_coalesce(prev_entry->object.vm_object,
1287             prev_entry->offset,
1288             (vm_size_t)(prev_entry->end - prev_entry->start),
1289             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1290             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1291                 /*
1292                  * We were able to extend the object.  Determine if we
1293                  * can extend the previous map entry to include the
1294                  * new range as well.
1295                  */
1296                 if (prev_entry->inheritance == inheritance &&
1297                     prev_entry->protection == prot &&
1298                     prev_entry->max_protection == max &&
1299                     prev_entry->wired_count == 0) {
1300                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1301                             0, ("prev_entry %p has incoherent wiring",
1302                             prev_entry));
1303                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1304                                 map->size += end - prev_entry->end;
1305                         prev_entry->end = end;
1306                         vm_map_entry_resize_free(map, prev_entry);
1307                         vm_map_simplify_entry(map, prev_entry);
1308                         return (KERN_SUCCESS);
1309                 }
1310
1311                 /*
1312                  * If we can extend the object but cannot extend the
1313                  * map entry, we have to create a new map entry.  We
1314                  * must bump the ref count on the extended object to
1315                  * account for it.  object may be NULL.
1316                  */
1317                 object = prev_entry->object.vm_object;
1318                 offset = prev_entry->offset +
1319                     (prev_entry->end - prev_entry->start);
1320                 vm_object_reference(object);
1321                 if (cred != NULL && object != NULL && object->cred != NULL &&
1322                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1323                         /* Object already accounts for this uid. */
1324                         cred = NULL;
1325                 }
1326         }
1327         if (cred != NULL)
1328                 crhold(cred);
1329
1330         /*
1331          * Create a new entry
1332          */
1333         new_entry = vm_map_entry_create(map);
1334         new_entry->start = start;
1335         new_entry->end = end;
1336         new_entry->cred = NULL;
1337
1338         new_entry->eflags = protoeflags;
1339         new_entry->object.vm_object = object;
1340         new_entry->offset = offset;
1341
1342         new_entry->inheritance = inheritance;
1343         new_entry->protection = prot;
1344         new_entry->max_protection = max;
1345         new_entry->wired_count = 0;
1346         new_entry->wiring_thread = NULL;
1347         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1348         new_entry->next_read = start;
1349
1350         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1351             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1352         new_entry->cred = cred;
1353
1354         /*
1355          * Insert the new entry into the list
1356          */
1357         vm_map_entry_link(map, prev_entry, new_entry);
1358         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1359                 map->size += new_entry->end - new_entry->start;
1360
1361         /*
1362          * Try to coalesce the new entry with both the previous and next
1363          * entries in the list.  Previously, we only attempted to coalesce
1364          * with the previous entry when object is NULL.  Here, we handle the
1365          * other cases, which are less common.
1366          */
1367         vm_map_simplify_entry(map, new_entry);
1368
1369         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1370                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1371                     end - start, cow & MAP_PREFAULT_PARTIAL);
1372         }
1373
1374         return (KERN_SUCCESS);
1375 }
1376
1377 /*
1378  *      vm_map_findspace:
1379  *
1380  *      Find the first fit (lowest VM address) for "length" free bytes
1381  *      beginning at address >= start in the given map.
1382  *
1383  *      In a vm_map_entry, "adj_free" is the amount of free space
1384  *      adjacent (higher address) to this entry, and "max_free" is the
1385  *      maximum amount of contiguous free space in its subtree.  This
1386  *      allows finding a free region in one path down the tree, so
1387  *      O(log n) amortized with splay trees.
1388  *
1389  *      The map must be locked, and leaves it so.
1390  *
1391  *      Returns: 0 on success, and starting address in *addr,
1392  *               1 if insufficient space.
1393  */
1394 int
1395 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1396     vm_offset_t *addr)  /* OUT */
1397 {
1398         vm_map_entry_t entry;
1399         vm_offset_t st;
1400
1401         /*
1402          * Request must fit within min/max VM address and must avoid
1403          * address wrap.
1404          */
1405         start = MAX(start, vm_map_min(map));
1406         if (start + length > vm_map_max(map) || start + length < start)
1407                 return (1);
1408
1409         /* Empty tree means wide open address space. */
1410         if (map->root == NULL) {
1411                 *addr = start;
1412                 return (0);
1413         }
1414
1415         /*
1416          * After splay, if start comes before root node, then there
1417          * must be a gap from start to the root.
1418          */
1419         map->root = vm_map_entry_splay(start, map->root);
1420         if (start + length <= map->root->start) {
1421                 *addr = start;
1422                 return (0);
1423         }
1424
1425         /*
1426          * Root is the last node that might begin its gap before
1427          * start, and this is the last comparison where address
1428          * wrap might be a problem.
1429          */
1430         st = (start > map->root->end) ? start : map->root->end;
1431         if (length <= map->root->end + map->root->adj_free - st) {
1432                 *addr = st;
1433                 return (0);
1434         }
1435
1436         /* With max_free, can immediately tell if no solution. */
1437         entry = map->root->right;
1438         if (entry == NULL || length > entry->max_free)
1439                 return (1);
1440
1441         /*
1442          * Search the right subtree in the order: left subtree, root,
1443          * right subtree (first fit).  The previous splay implies that
1444          * all regions in the right subtree have addresses > start.
1445          */
1446         while (entry != NULL) {
1447                 if (entry->left != NULL && entry->left->max_free >= length)
1448                         entry = entry->left;
1449                 else if (entry->adj_free >= length) {
1450                         *addr = entry->end;
1451                         return (0);
1452                 } else
1453                         entry = entry->right;
1454         }
1455
1456         /* Can't get here, so panic if we do. */
1457         panic("vm_map_findspace: max_free corrupt");
1458 }
1459
1460 int
1461 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1462     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1463     vm_prot_t max, int cow)
1464 {
1465         vm_offset_t end;
1466         int result;
1467
1468         end = start + length;
1469         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1470             object == NULL,
1471             ("vm_map_fixed: non-NULL backing object for stack"));
1472         vm_map_lock(map);
1473         VM_MAP_RANGE_CHECK(map, start, end);
1474         if ((cow & MAP_CHECK_EXCL) == 0)
1475                 vm_map_delete(map, start, end);
1476         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1477                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1478                     prot, max, cow);
1479         } else {
1480                 result = vm_map_insert(map, object, offset, start, end,
1481                     prot, max, cow);
1482         }
1483         vm_map_unlock(map);
1484         return (result);
1485 }
1486
1487 /*
1488  * Searches for the specified amount of free space in the given map with the
1489  * specified alignment.  Performs an address-ordered, first-fit search from
1490  * the given address "*addr", with an optional upper bound "max_addr".  If the
1491  * parameter "alignment" is zero, then the alignment is computed from the
1492  * given (object, offset) pair so as to enable the greatest possible use of
1493  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1494  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1495  *
1496  * The map must be locked.  Initially, there must be at least "length" bytes
1497  * of free space at the given address.
1498  */
1499 static int
1500 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1501     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1502     vm_offset_t alignment)
1503 {
1504         vm_offset_t aligned_addr, free_addr;
1505
1506         VM_MAP_ASSERT_LOCKED(map);
1507         free_addr = *addr;
1508         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1509             free_addr == *addr, ("caller provided insufficient free space"));
1510         for (;;) {
1511                 /*
1512                  * At the start of every iteration, the free space at address
1513                  * "*addr" is at least "length" bytes.
1514                  */
1515                 if (alignment == 0)
1516                         pmap_align_superpage(object, offset, addr, length);
1517                 else if ((*addr & (alignment - 1)) != 0) {
1518                         *addr &= ~(alignment - 1);
1519                         *addr += alignment;
1520                 }
1521                 aligned_addr = *addr;
1522                 if (aligned_addr == free_addr) {
1523                         /*
1524                          * Alignment did not change "*addr", so "*addr" must
1525                          * still provide sufficient free space.
1526                          */
1527                         return (KERN_SUCCESS);
1528                 }
1529
1530                 /*
1531                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1532                  * be a valid address, in which case vm_map_findspace() cannot
1533                  * be relied upon to fail.
1534                  */
1535                 if (aligned_addr < free_addr ||
1536                     vm_map_findspace(map, aligned_addr, length, addr) ||
1537                     (max_addr != 0 && *addr + length > max_addr))
1538                         return (KERN_NO_SPACE);
1539                 free_addr = *addr;
1540                 if (free_addr == aligned_addr) {
1541                         /*
1542                          * If a successful call to vm_map_findspace() did not
1543                          * change "*addr", then "*addr" must still be aligned
1544                          * and provide sufficient free space.
1545                          */
1546                         return (KERN_SUCCESS);
1547                 }
1548         }
1549 }
1550
1551 /*
1552  *      vm_map_find finds an unallocated region in the target address
1553  *      map with the given length.  The search is defined to be
1554  *      first-fit from the specified address; the region found is
1555  *      returned in the same parameter.
1556  *
1557  *      If object is non-NULL, ref count must be bumped by caller
1558  *      prior to making call to account for the new entry.
1559  */
1560 int
1561 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1562             vm_offset_t *addr,  /* IN/OUT */
1563             vm_size_t length, vm_offset_t max_addr, int find_space,
1564             vm_prot_t prot, vm_prot_t max, int cow)
1565 {
1566         vm_offset_t alignment, min_addr;
1567         int rv;
1568
1569         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1570             object == NULL,
1571             ("vm_map_find: non-NULL backing object for stack"));
1572         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1573             (object->flags & OBJ_COLORED) == 0))
1574                 find_space = VMFS_ANY_SPACE;
1575         if (find_space >> 8 != 0) {
1576                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1577                 alignment = (vm_offset_t)1 << (find_space >> 8);
1578         } else
1579                 alignment = 0;
1580         vm_map_lock(map);
1581         if (find_space != VMFS_NO_SPACE) {
1582                 KASSERT(find_space == VMFS_ANY_SPACE ||
1583                     find_space == VMFS_OPTIMAL_SPACE ||
1584                     find_space == VMFS_SUPER_SPACE ||
1585                     alignment != 0, ("unexpected VMFS flag"));
1586                 min_addr = *addr;
1587 again:
1588                 if (vm_map_findspace(map, min_addr, length, addr) ||
1589                     (max_addr != 0 && *addr + length > max_addr)) {
1590                         rv = KERN_NO_SPACE;
1591                         goto done;
1592                 }
1593                 if (find_space != VMFS_ANY_SPACE &&
1594                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1595                     max_addr, alignment)) != KERN_SUCCESS) {
1596                         if (find_space == VMFS_OPTIMAL_SPACE) {
1597                                 find_space = VMFS_ANY_SPACE;
1598                                 goto again;
1599                         }
1600                         goto done;
1601                 }
1602         }
1603         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1604                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1605                     max, cow);
1606         } else {
1607                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1608                     prot, max, cow);
1609         }
1610 done:
1611         vm_map_unlock(map);
1612         return (rv);
1613 }
1614
1615 /*
1616  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1617  *      additional parameter (min_addr) and treats the given address
1618  *      (*addr) differently.  Specifically, it treats *addr as a hint
1619  *      and not as the minimum address where the mapping is created.
1620  *
1621  *      This function works in two phases.  First, it tries to
1622  *      allocate above the hint.  If that fails and the hint is
1623  *      greater than min_addr, it performs a second pass, replacing
1624  *      the hint with min_addr as the minimum address for the
1625  *      allocation.
1626  */
1627 int
1628 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1629     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1630     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1631     int cow)
1632 {
1633         vm_offset_t hint;
1634         int rv;
1635
1636         hint = *addr;
1637         for (;;) {
1638                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1639                     find_space, prot, max, cow);
1640                 if (rv == KERN_SUCCESS || min_addr >= hint)
1641                         return (rv);
1642                 *addr = hint = min_addr;
1643         }
1644 }
1645
1646 static bool
1647 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1648 {
1649         vm_size_t prevsize;
1650
1651         prevsize = prev->end - prev->start;
1652         return (prev->end == entry->start &&
1653             prev->object.vm_object == entry->object.vm_object &&
1654             (prev->object.vm_object == NULL ||
1655             prev->offset + prevsize == entry->offset) &&
1656             prev->eflags == entry->eflags &&
1657             prev->protection == entry->protection &&
1658             prev->max_protection == entry->max_protection &&
1659             prev->inheritance == entry->inheritance &&
1660             prev->wired_count == entry->wired_count &&
1661             prev->cred == entry->cred);
1662 }
1663
1664 static void
1665 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1666 {
1667
1668         /*
1669          * If the backing object is a vnode object,
1670          * vm_object_deallocate() calls vrele().
1671          * However, vrele() does not lock the vnode
1672          * because the vnode has additional
1673          * references.  Thus, the map lock can be kept
1674          * without causing a lock-order reversal with
1675          * the vnode lock.
1676          *
1677          * Since we count the number of virtual page
1678          * mappings in object->un_pager.vnp.writemappings,
1679          * the writemappings value should not be adjusted
1680          * when the entry is disposed of.
1681          */
1682         if (entry->object.vm_object != NULL)
1683                 vm_object_deallocate(entry->object.vm_object);
1684         if (entry->cred != NULL)
1685                 crfree(entry->cred);
1686         vm_map_entry_dispose(map, entry);
1687 }
1688
1689 /*
1690  *      vm_map_simplify_entry:
1691  *
1692  *      Simplify the given map entry by merging with either neighbor.  This
1693  *      routine also has the ability to merge with both neighbors.
1694  *
1695  *      The map must be locked.
1696  *
1697  *      This routine guarantees that the passed entry remains valid (though
1698  *      possibly extended).  When merging, this routine may delete one or
1699  *      both neighbors.
1700  */
1701 void
1702 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1703 {
1704         vm_map_entry_t next, prev;
1705
1706         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1707             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1708                 return;
1709
1710         prev = entry->prev;
1711         if (prev != &map->header &&
1712             vm_map_mergeable_neighbors(prev, entry)) {
1713                 vm_map_entry_unlink(map, prev);
1714                 entry->start = prev->start;
1715                 entry->offset = prev->offset;
1716                 if (entry->prev != &map->header)
1717                         vm_map_entry_resize_free(map, entry->prev);
1718                 vm_map_merged_neighbor_dispose(map, prev);
1719         }
1720
1721         next = entry->next;
1722         if (next != &map->header &&
1723             vm_map_mergeable_neighbors(entry, next)) {
1724                 vm_map_entry_unlink(map, next);
1725                 entry->end = next->end;
1726                 vm_map_entry_resize_free(map, entry);
1727                 vm_map_merged_neighbor_dispose(map, next);
1728         }
1729 }
1730 /*
1731  *      vm_map_clip_start:      [ internal use only ]
1732  *
1733  *      Asserts that the given entry begins at or after
1734  *      the specified address; if necessary,
1735  *      it splits the entry into two.
1736  */
1737 #define vm_map_clip_start(map, entry, startaddr) \
1738 { \
1739         if (startaddr > entry->start) \
1740                 _vm_map_clip_start(map, entry, startaddr); \
1741 }
1742
1743 /*
1744  *      This routine is called only when it is known that
1745  *      the entry must be split.
1746  */
1747 static void
1748 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1749 {
1750         vm_map_entry_t new_entry;
1751
1752         VM_MAP_ASSERT_LOCKED(map);
1753         KASSERT(entry->end > start && entry->start < start,
1754             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1755
1756         /*
1757          * Split off the front portion -- note that we must insert the new
1758          * entry BEFORE this one, so that this entry has the specified
1759          * starting address.
1760          */
1761         vm_map_simplify_entry(map, entry);
1762
1763         /*
1764          * If there is no object backing this entry, we might as well create
1765          * one now.  If we defer it, an object can get created after the map
1766          * is clipped, and individual objects will be created for the split-up
1767          * map.  This is a bit of a hack, but is also about the best place to
1768          * put this improvement.
1769          */
1770         if (entry->object.vm_object == NULL && !map->system_map &&
1771             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1772                 vm_object_t object;
1773                 object = vm_object_allocate(OBJT_DEFAULT,
1774                                 atop(entry->end - entry->start));
1775                 entry->object.vm_object = object;
1776                 entry->offset = 0;
1777                 if (entry->cred != NULL) {
1778                         object->cred = entry->cred;
1779                         object->charge = entry->end - entry->start;
1780                         entry->cred = NULL;
1781                 }
1782         } else if (entry->object.vm_object != NULL &&
1783                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1784                    entry->cred != NULL) {
1785                 VM_OBJECT_WLOCK(entry->object.vm_object);
1786                 KASSERT(entry->object.vm_object->cred == NULL,
1787                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1788                 entry->object.vm_object->cred = entry->cred;
1789                 entry->object.vm_object->charge = entry->end - entry->start;
1790                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1791                 entry->cred = NULL;
1792         }
1793
1794         new_entry = vm_map_entry_create(map);
1795         *new_entry = *entry;
1796
1797         new_entry->end = start;
1798         entry->offset += (start - entry->start);
1799         entry->start = start;
1800         if (new_entry->cred != NULL)
1801                 crhold(entry->cred);
1802
1803         vm_map_entry_link(map, entry->prev, new_entry);
1804
1805         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1806                 vm_object_reference(new_entry->object.vm_object);
1807                 /*
1808                  * The object->un_pager.vnp.writemappings for the
1809                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1810                  * kept as is here.  The virtual pages are
1811                  * re-distributed among the clipped entries, so the sum is
1812                  * left the same.
1813                  */
1814         }
1815 }
1816
1817 /*
1818  *      vm_map_clip_end:        [ internal use only ]
1819  *
1820  *      Asserts that the given entry ends at or before
1821  *      the specified address; if necessary,
1822  *      it splits the entry into two.
1823  */
1824 #define vm_map_clip_end(map, entry, endaddr) \
1825 { \
1826         if ((endaddr) < (entry->end)) \
1827                 _vm_map_clip_end((map), (entry), (endaddr)); \
1828 }
1829
1830 /*
1831  *      This routine is called only when it is known that
1832  *      the entry must be split.
1833  */
1834 static void
1835 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1836 {
1837         vm_map_entry_t new_entry;
1838
1839         VM_MAP_ASSERT_LOCKED(map);
1840         KASSERT(entry->start < end && entry->end > end,
1841             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1842
1843         /*
1844          * If there is no object backing this entry, we might as well create
1845          * one now.  If we defer it, an object can get created after the map
1846          * is clipped, and individual objects will be created for the split-up
1847          * map.  This is a bit of a hack, but is also about the best place to
1848          * put this improvement.
1849          */
1850         if (entry->object.vm_object == NULL && !map->system_map &&
1851             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1852                 vm_object_t object;
1853                 object = vm_object_allocate(OBJT_DEFAULT,
1854                                 atop(entry->end - entry->start));
1855                 entry->object.vm_object = object;
1856                 entry->offset = 0;
1857                 if (entry->cred != NULL) {
1858                         object->cred = entry->cred;
1859                         object->charge = entry->end - entry->start;
1860                         entry->cred = NULL;
1861                 }
1862         } else if (entry->object.vm_object != NULL &&
1863                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1864                    entry->cred != NULL) {
1865                 VM_OBJECT_WLOCK(entry->object.vm_object);
1866                 KASSERT(entry->object.vm_object->cred == NULL,
1867                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1868                 entry->object.vm_object->cred = entry->cred;
1869                 entry->object.vm_object->charge = entry->end - entry->start;
1870                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1871                 entry->cred = NULL;
1872         }
1873
1874         /*
1875          * Create a new entry and insert it AFTER the specified entry
1876          */
1877         new_entry = vm_map_entry_create(map);
1878         *new_entry = *entry;
1879
1880         new_entry->start = entry->end = end;
1881         new_entry->offset += (end - entry->start);
1882         if (new_entry->cred != NULL)
1883                 crhold(entry->cred);
1884
1885         vm_map_entry_link(map, entry, new_entry);
1886
1887         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1888                 vm_object_reference(new_entry->object.vm_object);
1889         }
1890 }
1891
1892 /*
1893  *      vm_map_submap:          [ kernel use only ]
1894  *
1895  *      Mark the given range as handled by a subordinate map.
1896  *
1897  *      This range must have been created with vm_map_find,
1898  *      and no other operations may have been performed on this
1899  *      range prior to calling vm_map_submap.
1900  *
1901  *      Only a limited number of operations can be performed
1902  *      within this rage after calling vm_map_submap:
1903  *              vm_fault
1904  *      [Don't try vm_map_copy!]
1905  *
1906  *      To remove a submapping, one must first remove the
1907  *      range from the superior map, and then destroy the
1908  *      submap (if desired).  [Better yet, don't try it.]
1909  */
1910 int
1911 vm_map_submap(
1912         vm_map_t map,
1913         vm_offset_t start,
1914         vm_offset_t end,
1915         vm_map_t submap)
1916 {
1917         vm_map_entry_t entry;
1918         int result = KERN_INVALID_ARGUMENT;
1919
1920         vm_map_lock(map);
1921
1922         VM_MAP_RANGE_CHECK(map, start, end);
1923
1924         if (vm_map_lookup_entry(map, start, &entry)) {
1925                 vm_map_clip_start(map, entry, start);
1926         } else
1927                 entry = entry->next;
1928
1929         vm_map_clip_end(map, entry, end);
1930
1931         if ((entry->start == start) && (entry->end == end) &&
1932             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1933             (entry->object.vm_object == NULL)) {
1934                 entry->object.sub_map = submap;
1935                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1936                 result = KERN_SUCCESS;
1937         }
1938         vm_map_unlock(map);
1939
1940         return (result);
1941 }
1942
1943 /*
1944  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1945  */
1946 #define MAX_INIT_PT     96
1947
1948 /*
1949  *      vm_map_pmap_enter:
1950  *
1951  *      Preload the specified map's pmap with mappings to the specified
1952  *      object's memory-resident pages.  No further physical pages are
1953  *      allocated, and no further virtual pages are retrieved from secondary
1954  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1955  *      limited number of page mappings are created at the low-end of the
1956  *      specified address range.  (For this purpose, a superpage mapping
1957  *      counts as one page mapping.)  Otherwise, all resident pages within
1958  *      the specified address range are mapped.
1959  */
1960 static void
1961 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1962     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1963 {
1964         vm_offset_t start;
1965         vm_page_t p, p_start;
1966         vm_pindex_t mask, psize, threshold, tmpidx;
1967
1968         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1969                 return;
1970         VM_OBJECT_RLOCK(object);
1971         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1972                 VM_OBJECT_RUNLOCK(object);
1973                 VM_OBJECT_WLOCK(object);
1974                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1975                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1976                             size);
1977                         VM_OBJECT_WUNLOCK(object);
1978                         return;
1979                 }
1980                 VM_OBJECT_LOCK_DOWNGRADE(object);
1981         }
1982
1983         psize = atop(size);
1984         if (psize + pindex > object->size) {
1985                 if (object->size < pindex) {
1986                         VM_OBJECT_RUNLOCK(object);
1987                         return;
1988                 }
1989                 psize = object->size - pindex;
1990         }
1991
1992         start = 0;
1993         p_start = NULL;
1994         threshold = MAX_INIT_PT;
1995
1996         p = vm_page_find_least(object, pindex);
1997         /*
1998          * Assert: the variable p is either (1) the page with the
1999          * least pindex greater than or equal to the parameter pindex
2000          * or (2) NULL.
2001          */
2002         for (;
2003              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2004              p = TAILQ_NEXT(p, listq)) {
2005                 /*
2006                  * don't allow an madvise to blow away our really
2007                  * free pages allocating pv entries.
2008                  */
2009                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2010                     vm_page_count_severe()) ||
2011                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2012                     tmpidx >= threshold)) {
2013                         psize = tmpidx;
2014                         break;
2015                 }
2016                 if (p->valid == VM_PAGE_BITS_ALL) {
2017                         if (p_start == NULL) {
2018                                 start = addr + ptoa(tmpidx);
2019                                 p_start = p;
2020                         }
2021                         /* Jump ahead if a superpage mapping is possible. */
2022                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2023                             (pagesizes[p->psind] - 1)) == 0) {
2024                                 mask = atop(pagesizes[p->psind]) - 1;
2025                                 if (tmpidx + mask < psize &&
2026                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2027                                         p += mask;
2028                                         threshold += mask;
2029                                 }
2030                         }
2031                 } else if (p_start != NULL) {
2032                         pmap_enter_object(map->pmap, start, addr +
2033                             ptoa(tmpidx), p_start, prot);
2034                         p_start = NULL;
2035                 }
2036         }
2037         if (p_start != NULL)
2038                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2039                     p_start, prot);
2040         VM_OBJECT_RUNLOCK(object);
2041 }
2042
2043 /*
2044  *      vm_map_protect:
2045  *
2046  *      Sets the protection of the specified address
2047  *      region in the target map.  If "set_max" is
2048  *      specified, the maximum protection is to be set;
2049  *      otherwise, only the current protection is affected.
2050  */
2051 int
2052 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2053                vm_prot_t new_prot, boolean_t set_max)
2054 {
2055         vm_map_entry_t current, entry;
2056         vm_object_t obj;
2057         struct ucred *cred;
2058         vm_prot_t old_prot;
2059
2060         if (start == end)
2061                 return (KERN_SUCCESS);
2062
2063         vm_map_lock(map);
2064
2065         /*
2066          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2067          * need to fault pages into the map and will drop the map lock while
2068          * doing so, and the VM object may end up in an inconsistent state if we
2069          * update the protection on the map entry in between faults.
2070          */
2071         vm_map_wait_busy(map);
2072
2073         VM_MAP_RANGE_CHECK(map, start, end);
2074
2075         if (vm_map_lookup_entry(map, start, &entry)) {
2076                 vm_map_clip_start(map, entry, start);
2077         } else {
2078                 entry = entry->next;
2079         }
2080
2081         /*
2082          * Make a first pass to check for protection violations.
2083          */
2084         for (current = entry; current->start < end; current = current->next) {
2085                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2086                         continue;
2087                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2088                         vm_map_unlock(map);
2089                         return (KERN_INVALID_ARGUMENT);
2090                 }
2091                 if ((new_prot & current->max_protection) != new_prot) {
2092                         vm_map_unlock(map);
2093                         return (KERN_PROTECTION_FAILURE);
2094                 }
2095         }
2096
2097         /*
2098          * Do an accounting pass for private read-only mappings that
2099          * now will do cow due to allowed write (e.g. debugger sets
2100          * breakpoint on text segment)
2101          */
2102         for (current = entry; current->start < end; current = current->next) {
2103
2104                 vm_map_clip_end(map, current, end);
2105
2106                 if (set_max ||
2107                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2108                     ENTRY_CHARGED(current) ||
2109                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2110                         continue;
2111                 }
2112
2113                 cred = curthread->td_ucred;
2114                 obj = current->object.vm_object;
2115
2116                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2117                         if (!swap_reserve(current->end - current->start)) {
2118                                 vm_map_unlock(map);
2119                                 return (KERN_RESOURCE_SHORTAGE);
2120                         }
2121                         crhold(cred);
2122                         current->cred = cred;
2123                         continue;
2124                 }
2125
2126                 VM_OBJECT_WLOCK(obj);
2127                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2128                         VM_OBJECT_WUNLOCK(obj);
2129                         continue;
2130                 }
2131
2132                 /*
2133                  * Charge for the whole object allocation now, since
2134                  * we cannot distinguish between non-charged and
2135                  * charged clipped mapping of the same object later.
2136                  */
2137                 KASSERT(obj->charge == 0,
2138                     ("vm_map_protect: object %p overcharged (entry %p)",
2139                     obj, current));
2140                 if (!swap_reserve(ptoa(obj->size))) {
2141                         VM_OBJECT_WUNLOCK(obj);
2142                         vm_map_unlock(map);
2143                         return (KERN_RESOURCE_SHORTAGE);
2144                 }
2145
2146                 crhold(cred);
2147                 obj->cred = cred;
2148                 obj->charge = ptoa(obj->size);
2149                 VM_OBJECT_WUNLOCK(obj);
2150         }
2151
2152         /*
2153          * Go back and fix up protections. [Note that clipping is not
2154          * necessary the second time.]
2155          */
2156         for (current = entry; current->start < end; current = current->next) {
2157                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2158                         continue;
2159
2160                 old_prot = current->protection;
2161
2162                 if (set_max)
2163                         current->protection =
2164                             (current->max_protection = new_prot) &
2165                             old_prot;
2166                 else
2167                         current->protection = new_prot;
2168
2169                 /*
2170                  * For user wired map entries, the normal lazy evaluation of
2171                  * write access upgrades through soft page faults is
2172                  * undesirable.  Instead, immediately copy any pages that are
2173                  * copy-on-write and enable write access in the physical map.
2174                  */
2175                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2176                     (current->protection & VM_PROT_WRITE) != 0 &&
2177                     (old_prot & VM_PROT_WRITE) == 0)
2178                         vm_fault_copy_entry(map, map, current, current, NULL);
2179
2180                 /*
2181                  * When restricting access, update the physical map.  Worry
2182                  * about copy-on-write here.
2183                  */
2184                 if ((old_prot & ~current->protection) != 0) {
2185 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2186                                                         VM_PROT_ALL)
2187                         pmap_protect(map->pmap, current->start,
2188                             current->end,
2189                             current->protection & MASK(current));
2190 #undef  MASK
2191                 }
2192                 vm_map_simplify_entry(map, current);
2193         }
2194         vm_map_unlock(map);
2195         return (KERN_SUCCESS);
2196 }
2197
2198 /*
2199  *      vm_map_madvise:
2200  *
2201  *      This routine traverses a processes map handling the madvise
2202  *      system call.  Advisories are classified as either those effecting
2203  *      the vm_map_entry structure, or those effecting the underlying
2204  *      objects.
2205  */
2206 int
2207 vm_map_madvise(
2208         vm_map_t map,
2209         vm_offset_t start,
2210         vm_offset_t end,
2211         int behav)
2212 {
2213         vm_map_entry_t current, entry;
2214         bool modify_map;
2215
2216         /*
2217          * Some madvise calls directly modify the vm_map_entry, in which case
2218          * we need to use an exclusive lock on the map and we need to perform
2219          * various clipping operations.  Otherwise we only need a read-lock
2220          * on the map.
2221          */
2222         switch(behav) {
2223         case MADV_NORMAL:
2224         case MADV_SEQUENTIAL:
2225         case MADV_RANDOM:
2226         case MADV_NOSYNC:
2227         case MADV_AUTOSYNC:
2228         case MADV_NOCORE:
2229         case MADV_CORE:
2230                 if (start == end)
2231                         return (0);
2232                 modify_map = true;
2233                 vm_map_lock(map);
2234                 break;
2235         case MADV_WILLNEED:
2236         case MADV_DONTNEED:
2237         case MADV_FREE:
2238                 if (start == end)
2239                         return (0);
2240                 modify_map = false;
2241                 vm_map_lock_read(map);
2242                 break;
2243         default:
2244                 return (EINVAL);
2245         }
2246
2247         /*
2248          * Locate starting entry and clip if necessary.
2249          */
2250         VM_MAP_RANGE_CHECK(map, start, end);
2251
2252         if (vm_map_lookup_entry(map, start, &entry)) {
2253                 if (modify_map)
2254                         vm_map_clip_start(map, entry, start);
2255         } else {
2256                 entry = entry->next;
2257         }
2258
2259         if (modify_map) {
2260                 /*
2261                  * madvise behaviors that are implemented in the vm_map_entry.
2262                  *
2263                  * We clip the vm_map_entry so that behavioral changes are
2264                  * limited to the specified address range.
2265                  */
2266                 for (current = entry; current->start < end;
2267                     current = current->next) {
2268                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2269                                 continue;
2270
2271                         vm_map_clip_end(map, current, end);
2272
2273                         switch (behav) {
2274                         case MADV_NORMAL:
2275                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2276                                 break;
2277                         case MADV_SEQUENTIAL:
2278                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2279                                 break;
2280                         case MADV_RANDOM:
2281                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2282                                 break;
2283                         case MADV_NOSYNC:
2284                                 current->eflags |= MAP_ENTRY_NOSYNC;
2285                                 break;
2286                         case MADV_AUTOSYNC:
2287                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2288                                 break;
2289                         case MADV_NOCORE:
2290                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2291                                 break;
2292                         case MADV_CORE:
2293                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2294                                 break;
2295                         default:
2296                                 break;
2297                         }
2298                         vm_map_simplify_entry(map, current);
2299                 }
2300                 vm_map_unlock(map);
2301         } else {
2302                 vm_pindex_t pstart, pend;
2303
2304                 /*
2305                  * madvise behaviors that are implemented in the underlying
2306                  * vm_object.
2307                  *
2308                  * Since we don't clip the vm_map_entry, we have to clip
2309                  * the vm_object pindex and count.
2310                  */
2311                 for (current = entry; current->start < end;
2312                     current = current->next) {
2313                         vm_offset_t useEnd, useStart;
2314
2315                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2316                                 continue;
2317
2318                         pstart = OFF_TO_IDX(current->offset);
2319                         pend = pstart + atop(current->end - current->start);
2320                         useStart = current->start;
2321                         useEnd = current->end;
2322
2323                         if (current->start < start) {
2324                                 pstart += atop(start - current->start);
2325                                 useStart = start;
2326                         }
2327                         if (current->end > end) {
2328                                 pend -= atop(current->end - end);
2329                                 useEnd = end;
2330                         }
2331
2332                         if (pstart >= pend)
2333                                 continue;
2334
2335                         /*
2336                          * Perform the pmap_advise() before clearing
2337                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2338                          * concurrent pmap operation, such as pmap_remove(),
2339                          * could clear a reference in the pmap and set
2340                          * PGA_REFERENCED on the page before the pmap_advise()
2341                          * had completed.  Consequently, the page would appear
2342                          * referenced based upon an old reference that
2343                          * occurred before this pmap_advise() ran.
2344                          */
2345                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2346                                 pmap_advise(map->pmap, useStart, useEnd,
2347                                     behav);
2348
2349                         vm_object_madvise(current->object.vm_object, pstart,
2350                             pend, behav);
2351
2352                         /*
2353                          * Pre-populate paging structures in the
2354                          * WILLNEED case.  For wired entries, the
2355                          * paging structures are already populated.
2356                          */
2357                         if (behav == MADV_WILLNEED &&
2358                             current->wired_count == 0) {
2359                                 vm_map_pmap_enter(map,
2360                                     useStart,
2361                                     current->protection,
2362                                     current->object.vm_object,
2363                                     pstart,
2364                                     ptoa(pend - pstart),
2365                                     MAP_PREFAULT_MADVISE
2366                                 );
2367                         }
2368                 }
2369                 vm_map_unlock_read(map);
2370         }
2371         return (0);
2372 }
2373
2374
2375 /*
2376  *      vm_map_inherit:
2377  *
2378  *      Sets the inheritance of the specified address
2379  *      range in the target map.  Inheritance
2380  *      affects how the map will be shared with
2381  *      child maps at the time of vmspace_fork.
2382  */
2383 int
2384 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2385                vm_inherit_t new_inheritance)
2386 {
2387         vm_map_entry_t entry;
2388         vm_map_entry_t temp_entry;
2389
2390         switch (new_inheritance) {
2391         case VM_INHERIT_NONE:
2392         case VM_INHERIT_COPY:
2393         case VM_INHERIT_SHARE:
2394         case VM_INHERIT_ZERO:
2395                 break;
2396         default:
2397                 return (KERN_INVALID_ARGUMENT);
2398         }
2399         if (start == end)
2400                 return (KERN_SUCCESS);
2401         vm_map_lock(map);
2402         VM_MAP_RANGE_CHECK(map, start, end);
2403         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2404                 entry = temp_entry;
2405                 vm_map_clip_start(map, entry, start);
2406         } else
2407                 entry = temp_entry->next;
2408         while (entry->start < end) {
2409                 vm_map_clip_end(map, entry, end);
2410                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2411                     new_inheritance != VM_INHERIT_ZERO)
2412                         entry->inheritance = new_inheritance;
2413                 vm_map_simplify_entry(map, entry);
2414                 entry = entry->next;
2415         }
2416         vm_map_unlock(map);
2417         return (KERN_SUCCESS);
2418 }
2419
2420 /*
2421  *      vm_map_unwire:
2422  *
2423  *      Implements both kernel and user unwiring.
2424  */
2425 int
2426 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2427     int flags)
2428 {
2429         vm_map_entry_t entry, first_entry, tmp_entry;
2430         vm_offset_t saved_start;
2431         unsigned int last_timestamp;
2432         int rv;
2433         boolean_t need_wakeup, result, user_unwire;
2434
2435         if (start == end)
2436                 return (KERN_SUCCESS);
2437         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2438         vm_map_lock(map);
2439         VM_MAP_RANGE_CHECK(map, start, end);
2440         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2441                 if (flags & VM_MAP_WIRE_HOLESOK)
2442                         first_entry = first_entry->next;
2443                 else {
2444                         vm_map_unlock(map);
2445                         return (KERN_INVALID_ADDRESS);
2446                 }
2447         }
2448         last_timestamp = map->timestamp;
2449         entry = first_entry;
2450         while (entry->start < end) {
2451                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2452                         /*
2453                          * We have not yet clipped the entry.
2454                          */
2455                         saved_start = (start >= entry->start) ? start :
2456                             entry->start;
2457                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2458                         if (vm_map_unlock_and_wait(map, 0)) {
2459                                 /*
2460                                  * Allow interruption of user unwiring?
2461                                  */
2462                         }
2463                         vm_map_lock(map);
2464                         if (last_timestamp+1 != map->timestamp) {
2465                                 /*
2466                                  * Look again for the entry because the map was
2467                                  * modified while it was unlocked.
2468                                  * Specifically, the entry may have been
2469                                  * clipped, merged, or deleted.
2470                                  */
2471                                 if (!vm_map_lookup_entry(map, saved_start,
2472                                     &tmp_entry)) {
2473                                         if (flags & VM_MAP_WIRE_HOLESOK)
2474                                                 tmp_entry = tmp_entry->next;
2475                                         else {
2476                                                 if (saved_start == start) {
2477                                                         /*
2478                                                          * First_entry has been deleted.
2479                                                          */
2480                                                         vm_map_unlock(map);
2481                                                         return (KERN_INVALID_ADDRESS);
2482                                                 }
2483                                                 end = saved_start;
2484                                                 rv = KERN_INVALID_ADDRESS;
2485                                                 goto done;
2486                                         }
2487                                 }
2488                                 if (entry == first_entry)
2489                                         first_entry = tmp_entry;
2490                                 else
2491                                         first_entry = NULL;
2492                                 entry = tmp_entry;
2493                         }
2494                         last_timestamp = map->timestamp;
2495                         continue;
2496                 }
2497                 vm_map_clip_start(map, entry, start);
2498                 vm_map_clip_end(map, entry, end);
2499                 /*
2500                  * Mark the entry in case the map lock is released.  (See
2501                  * above.)
2502                  */
2503                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2504                     entry->wiring_thread == NULL,
2505                     ("owned map entry %p", entry));
2506                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2507                 entry->wiring_thread = curthread;
2508                 /*
2509                  * Check the map for holes in the specified region.
2510                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2511                  */
2512                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2513                     (entry->end < end && entry->next->start > entry->end)) {
2514                         end = entry->end;
2515                         rv = KERN_INVALID_ADDRESS;
2516                         goto done;
2517                 }
2518                 /*
2519                  * If system unwiring, require that the entry is system wired.
2520                  */
2521                 if (!user_unwire &&
2522                     vm_map_entry_system_wired_count(entry) == 0) {
2523                         end = entry->end;
2524                         rv = KERN_INVALID_ARGUMENT;
2525                         goto done;
2526                 }
2527                 entry = entry->next;
2528         }
2529         rv = KERN_SUCCESS;
2530 done:
2531         need_wakeup = FALSE;
2532         if (first_entry == NULL) {
2533                 result = vm_map_lookup_entry(map, start, &first_entry);
2534                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2535                         first_entry = first_entry->next;
2536                 else
2537                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2538         }
2539         for (entry = first_entry; entry->start < end; entry = entry->next) {
2540                 /*
2541                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2542                  * space in the unwired region could have been mapped
2543                  * while the map lock was dropped for draining
2544                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2545                  * could be simultaneously wiring this new mapping
2546                  * entry.  Detect these cases and skip any entries
2547                  * marked as in transition by us.
2548                  */
2549                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2550                     entry->wiring_thread != curthread) {
2551                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2552                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2553                         continue;
2554                 }
2555
2556                 if (rv == KERN_SUCCESS && (!user_unwire ||
2557                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2558                         if (user_unwire)
2559                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2560                         if (entry->wired_count == 1)
2561                                 vm_map_entry_unwire(map, entry);
2562                         else
2563                                 entry->wired_count--;
2564                 }
2565                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2566                     ("vm_map_unwire: in-transition flag missing %p", entry));
2567                 KASSERT(entry->wiring_thread == curthread,
2568                     ("vm_map_unwire: alien wire %p", entry));
2569                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2570                 entry->wiring_thread = NULL;
2571                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2572                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2573                         need_wakeup = TRUE;
2574                 }
2575                 vm_map_simplify_entry(map, entry);
2576         }
2577         vm_map_unlock(map);
2578         if (need_wakeup)
2579                 vm_map_wakeup(map);
2580         return (rv);
2581 }
2582
2583 /*
2584  *      vm_map_wire_entry_failure:
2585  *
2586  *      Handle a wiring failure on the given entry.
2587  *
2588  *      The map should be locked.
2589  */
2590 static void
2591 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2592     vm_offset_t failed_addr)
2593 {
2594
2595         VM_MAP_ASSERT_LOCKED(map);
2596         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2597             entry->wired_count == 1,
2598             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2599         KASSERT(failed_addr < entry->end,
2600             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2601
2602         /*
2603          * If any pages at the start of this entry were successfully wired,
2604          * then unwire them.
2605          */
2606         if (failed_addr > entry->start) {
2607                 pmap_unwire(map->pmap, entry->start, failed_addr);
2608                 vm_object_unwire(entry->object.vm_object, entry->offset,
2609                     failed_addr - entry->start, PQ_ACTIVE);
2610         }
2611
2612         /*
2613          * Assign an out-of-range value to represent the failure to wire this
2614          * entry.
2615          */
2616         entry->wired_count = -1;
2617 }
2618
2619 /*
2620  *      vm_map_wire:
2621  *
2622  *      Implements both kernel and user wiring.
2623  */
2624 int
2625 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2626     int flags)
2627 {
2628         vm_map_entry_t entry, first_entry, tmp_entry;
2629         vm_offset_t faddr, saved_end, saved_start;
2630         unsigned int last_timestamp;
2631         int rv;
2632         boolean_t need_wakeup, result, user_wire;
2633         vm_prot_t prot;
2634
2635         if (start == end)
2636                 return (KERN_SUCCESS);
2637         prot = 0;
2638         if (flags & VM_MAP_WIRE_WRITE)
2639                 prot |= VM_PROT_WRITE;
2640         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2641         vm_map_lock(map);
2642         VM_MAP_RANGE_CHECK(map, start, end);
2643         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2644                 if (flags & VM_MAP_WIRE_HOLESOK)
2645                         first_entry = first_entry->next;
2646                 else {
2647                         vm_map_unlock(map);
2648                         return (KERN_INVALID_ADDRESS);
2649                 }
2650         }
2651         last_timestamp = map->timestamp;
2652         entry = first_entry;
2653         while (entry->start < end) {
2654                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2655                         /*
2656                          * We have not yet clipped the entry.
2657                          */
2658                         saved_start = (start >= entry->start) ? start :
2659                             entry->start;
2660                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2661                         if (vm_map_unlock_and_wait(map, 0)) {
2662                                 /*
2663                                  * Allow interruption of user wiring?
2664                                  */
2665                         }
2666                         vm_map_lock(map);
2667                         if (last_timestamp + 1 != map->timestamp) {
2668                                 /*
2669                                  * Look again for the entry because the map was
2670                                  * modified while it was unlocked.
2671                                  * Specifically, the entry may have been
2672                                  * clipped, merged, or deleted.
2673                                  */
2674                                 if (!vm_map_lookup_entry(map, saved_start,
2675                                     &tmp_entry)) {
2676                                         if (flags & VM_MAP_WIRE_HOLESOK)
2677                                                 tmp_entry = tmp_entry->next;
2678                                         else {
2679                                                 if (saved_start == start) {
2680                                                         /*
2681                                                          * first_entry has been deleted.
2682                                                          */
2683                                                         vm_map_unlock(map);
2684                                                         return (KERN_INVALID_ADDRESS);
2685                                                 }
2686                                                 end = saved_start;
2687                                                 rv = KERN_INVALID_ADDRESS;
2688                                                 goto done;
2689                                         }
2690                                 }
2691                                 if (entry == first_entry)
2692                                         first_entry = tmp_entry;
2693                                 else
2694                                         first_entry = NULL;
2695                                 entry = tmp_entry;
2696                         }
2697                         last_timestamp = map->timestamp;
2698                         continue;
2699                 }
2700                 vm_map_clip_start(map, entry, start);
2701                 vm_map_clip_end(map, entry, end);
2702                 /*
2703                  * Mark the entry in case the map lock is released.  (See
2704                  * above.)
2705                  */
2706                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2707                     entry->wiring_thread == NULL,
2708                     ("owned map entry %p", entry));
2709                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2710                 entry->wiring_thread = curthread;
2711                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2712                     || (entry->protection & prot) != prot) {
2713                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2714                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2715                                 end = entry->end;
2716                                 rv = KERN_INVALID_ADDRESS;
2717                                 goto done;
2718                         }
2719                         goto next_entry;
2720                 }
2721                 if (entry->wired_count == 0) {
2722                         entry->wired_count++;
2723                         saved_start = entry->start;
2724                         saved_end = entry->end;
2725
2726                         /*
2727                          * Release the map lock, relying on the in-transition
2728                          * mark.  Mark the map busy for fork.
2729                          */
2730                         vm_map_busy(map);
2731                         vm_map_unlock(map);
2732
2733                         faddr = saved_start;
2734                         do {
2735                                 /*
2736                                  * Simulate a fault to get the page and enter
2737                                  * it into the physical map.
2738                                  */
2739                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2740                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2741                                         break;
2742                         } while ((faddr += PAGE_SIZE) < saved_end);
2743                         vm_map_lock(map);
2744                         vm_map_unbusy(map);
2745                         if (last_timestamp + 1 != map->timestamp) {
2746                                 /*
2747                                  * Look again for the entry because the map was
2748                                  * modified while it was unlocked.  The entry
2749                                  * may have been clipped, but NOT merged or
2750                                  * deleted.
2751                                  */
2752                                 result = vm_map_lookup_entry(map, saved_start,
2753                                     &tmp_entry);
2754                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2755                                 if (entry == first_entry)
2756                                         first_entry = tmp_entry;
2757                                 else
2758                                         first_entry = NULL;
2759                                 entry = tmp_entry;
2760                                 while (entry->end < saved_end) {
2761                                         /*
2762                                          * In case of failure, handle entries
2763                                          * that were not fully wired here;
2764                                          * fully wired entries are handled
2765                                          * later.
2766                                          */
2767                                         if (rv != KERN_SUCCESS &&
2768                                             faddr < entry->end)
2769                                                 vm_map_wire_entry_failure(map,
2770                                                     entry, faddr);
2771                                         entry = entry->next;
2772                                 }
2773                         }
2774                         last_timestamp = map->timestamp;
2775                         if (rv != KERN_SUCCESS) {
2776                                 vm_map_wire_entry_failure(map, entry, faddr);
2777                                 end = entry->end;
2778                                 goto done;
2779                         }
2780                 } else if (!user_wire ||
2781                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2782                         entry->wired_count++;
2783                 }
2784                 /*
2785                  * Check the map for holes in the specified region.
2786                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2787                  */
2788         next_entry:
2789                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2790                     entry->end < end && entry->next->start > entry->end) {
2791                         end = entry->end;
2792                         rv = KERN_INVALID_ADDRESS;
2793                         goto done;
2794                 }
2795                 entry = entry->next;
2796         }
2797         rv = KERN_SUCCESS;
2798 done:
2799         need_wakeup = FALSE;
2800         if (first_entry == NULL) {
2801                 result = vm_map_lookup_entry(map, start, &first_entry);
2802                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2803                         first_entry = first_entry->next;
2804                 else
2805                         KASSERT(result, ("vm_map_wire: lookup failed"));
2806         }
2807         for (entry = first_entry; entry->start < end; entry = entry->next) {
2808                 /*
2809                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2810                  * space in the unwired region could have been mapped
2811                  * while the map lock was dropped for faulting in the
2812                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2813                  * Moreover, another thread could be simultaneously
2814                  * wiring this new mapping entry.  Detect these cases
2815                  * and skip any entries marked as in transition not by us.
2816                  */
2817                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2818                     entry->wiring_thread != curthread) {
2819                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2820                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2821                         continue;
2822                 }
2823
2824                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2825                         goto next_entry_done;
2826
2827                 if (rv == KERN_SUCCESS) {
2828                         if (user_wire)
2829                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2830                 } else if (entry->wired_count == -1) {
2831                         /*
2832                          * Wiring failed on this entry.  Thus, unwiring is
2833                          * unnecessary.
2834                          */
2835                         entry->wired_count = 0;
2836                 } else if (!user_wire ||
2837                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2838                         /*
2839                          * Undo the wiring.  Wiring succeeded on this entry
2840                          * but failed on a later entry.  
2841                          */
2842                         if (entry->wired_count == 1)
2843                                 vm_map_entry_unwire(map, entry);
2844                         else
2845                                 entry->wired_count--;
2846                 }
2847         next_entry_done:
2848                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2849                     ("vm_map_wire: in-transition flag missing %p", entry));
2850                 KASSERT(entry->wiring_thread == curthread,
2851                     ("vm_map_wire: alien wire %p", entry));
2852                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2853                     MAP_ENTRY_WIRE_SKIPPED);
2854                 entry->wiring_thread = NULL;
2855                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2856                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2857                         need_wakeup = TRUE;
2858                 }
2859                 vm_map_simplify_entry(map, entry);
2860         }
2861         vm_map_unlock(map);
2862         if (need_wakeup)
2863                 vm_map_wakeup(map);
2864         return (rv);
2865 }
2866
2867 /*
2868  * vm_map_sync
2869  *
2870  * Push any dirty cached pages in the address range to their pager.
2871  * If syncio is TRUE, dirty pages are written synchronously.
2872  * If invalidate is TRUE, any cached pages are freed as well.
2873  *
2874  * If the size of the region from start to end is zero, we are
2875  * supposed to flush all modified pages within the region containing
2876  * start.  Unfortunately, a region can be split or coalesced with
2877  * neighboring regions, making it difficult to determine what the
2878  * original region was.  Therefore, we approximate this requirement by
2879  * flushing the current region containing start.
2880  *
2881  * Returns an error if any part of the specified range is not mapped.
2882  */
2883 int
2884 vm_map_sync(
2885         vm_map_t map,
2886         vm_offset_t start,
2887         vm_offset_t end,
2888         boolean_t syncio,
2889         boolean_t invalidate)
2890 {
2891         vm_map_entry_t current;
2892         vm_map_entry_t entry;
2893         vm_size_t size;
2894         vm_object_t object;
2895         vm_ooffset_t offset;
2896         unsigned int last_timestamp;
2897         boolean_t failed;
2898
2899         vm_map_lock_read(map);
2900         VM_MAP_RANGE_CHECK(map, start, end);
2901         if (!vm_map_lookup_entry(map, start, &entry)) {
2902                 vm_map_unlock_read(map);
2903                 return (KERN_INVALID_ADDRESS);
2904         } else if (start == end) {
2905                 start = entry->start;
2906                 end = entry->end;
2907         }
2908         /*
2909          * Make a first pass to check for user-wired memory and holes.
2910          */
2911         for (current = entry; current->start < end; current = current->next) {
2912                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2913                         vm_map_unlock_read(map);
2914                         return (KERN_INVALID_ARGUMENT);
2915                 }
2916                 if (end > current->end &&
2917                     current->end != current->next->start) {
2918                         vm_map_unlock_read(map);
2919                         return (KERN_INVALID_ADDRESS);
2920                 }
2921         }
2922
2923         if (invalidate)
2924                 pmap_remove(map->pmap, start, end);
2925         failed = FALSE;
2926
2927         /*
2928          * Make a second pass, cleaning/uncaching pages from the indicated
2929          * objects as we go.
2930          */
2931         for (current = entry; current->start < end;) {
2932                 offset = current->offset + (start - current->start);
2933                 size = (end <= current->end ? end : current->end) - start;
2934                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2935                         vm_map_t smap;
2936                         vm_map_entry_t tentry;
2937                         vm_size_t tsize;
2938
2939                         smap = current->object.sub_map;
2940                         vm_map_lock_read(smap);
2941                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2942                         tsize = tentry->end - offset;
2943                         if (tsize < size)
2944                                 size = tsize;
2945                         object = tentry->object.vm_object;
2946                         offset = tentry->offset + (offset - tentry->start);
2947                         vm_map_unlock_read(smap);
2948                 } else {
2949                         object = current->object.vm_object;
2950                 }
2951                 vm_object_reference(object);
2952                 last_timestamp = map->timestamp;
2953                 vm_map_unlock_read(map);
2954                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2955                         failed = TRUE;
2956                 start += size;
2957                 vm_object_deallocate(object);
2958                 vm_map_lock_read(map);
2959                 if (last_timestamp == map->timestamp ||
2960                     !vm_map_lookup_entry(map, start, &current))
2961                         current = current->next;
2962         }
2963
2964         vm_map_unlock_read(map);
2965         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2966 }
2967
2968 /*
2969  *      vm_map_entry_unwire:    [ internal use only ]
2970  *
2971  *      Make the region specified by this entry pageable.
2972  *
2973  *      The map in question should be locked.
2974  *      [This is the reason for this routine's existence.]
2975  */
2976 static void
2977 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2978 {
2979
2980         VM_MAP_ASSERT_LOCKED(map);
2981         KASSERT(entry->wired_count > 0,
2982             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2983         pmap_unwire(map->pmap, entry->start, entry->end);
2984         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2985             entry->start, PQ_ACTIVE);
2986         entry->wired_count = 0;
2987 }
2988
2989 static void
2990 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2991 {
2992
2993         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2994                 vm_object_deallocate(entry->object.vm_object);
2995         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2996 }
2997
2998 /*
2999  *      vm_map_entry_delete:    [ internal use only ]
3000  *
3001  *      Deallocate the given entry from the target map.
3002  */
3003 static void
3004 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3005 {
3006         vm_object_t object;
3007         vm_pindex_t offidxstart, offidxend, count, size1;
3008         vm_size_t size;
3009
3010         vm_map_entry_unlink(map, entry);
3011         object = entry->object.vm_object;
3012
3013         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3014                 MPASS(entry->cred == NULL);
3015                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3016                 MPASS(object == NULL);
3017                 vm_map_entry_deallocate(entry, map->system_map);
3018                 return;
3019         }
3020
3021         size = entry->end - entry->start;
3022         map->size -= size;
3023
3024         if (entry->cred != NULL) {
3025                 swap_release_by_cred(size, entry->cred);
3026                 crfree(entry->cred);
3027         }
3028
3029         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3030             (object != NULL)) {
3031                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3032                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3033                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3034                 count = atop(size);
3035                 offidxstart = OFF_TO_IDX(entry->offset);
3036                 offidxend = offidxstart + count;
3037                 VM_OBJECT_WLOCK(object);
3038                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3039                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3040                     object == kernel_object)) {
3041                         vm_object_collapse(object);
3042
3043                         /*
3044                          * The option OBJPR_NOTMAPPED can be passed here
3045                          * because vm_map_delete() already performed
3046                          * pmap_remove() on the only mapping to this range
3047                          * of pages. 
3048                          */
3049                         vm_object_page_remove(object, offidxstart, offidxend,
3050                             OBJPR_NOTMAPPED);
3051                         if (object->type == OBJT_SWAP)
3052                                 swap_pager_freespace(object, offidxstart,
3053                                     count);
3054                         if (offidxend >= object->size &&
3055                             offidxstart < object->size) {
3056                                 size1 = object->size;
3057                                 object->size = offidxstart;
3058                                 if (object->cred != NULL) {
3059                                         size1 -= object->size;
3060                                         KASSERT(object->charge >= ptoa(size1),
3061                                             ("object %p charge < 0", object));
3062                                         swap_release_by_cred(ptoa(size1),
3063                                             object->cred);
3064                                         object->charge -= ptoa(size1);
3065                                 }
3066                         }
3067                 }
3068                 VM_OBJECT_WUNLOCK(object);
3069         } else
3070                 entry->object.vm_object = NULL;
3071         if (map->system_map)
3072                 vm_map_entry_deallocate(entry, TRUE);
3073         else {
3074                 entry->next = curthread->td_map_def_user;
3075                 curthread->td_map_def_user = entry;
3076         }
3077 }
3078
3079 /*
3080  *      vm_map_delete:  [ internal use only ]
3081  *
3082  *      Deallocates the given address range from the target
3083  *      map.
3084  */
3085 int
3086 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3087 {
3088         vm_map_entry_t entry;
3089         vm_map_entry_t first_entry;
3090
3091         VM_MAP_ASSERT_LOCKED(map);
3092         if (start == end)
3093                 return (KERN_SUCCESS);
3094
3095         /*
3096          * Find the start of the region, and clip it
3097          */
3098         if (!vm_map_lookup_entry(map, start, &first_entry))
3099                 entry = first_entry->next;
3100         else {
3101                 entry = first_entry;
3102                 vm_map_clip_start(map, entry, start);
3103         }
3104
3105         /*
3106          * Step through all entries in this region
3107          */
3108         while (entry->start < end) {
3109                 vm_map_entry_t next;
3110
3111                 /*
3112                  * Wait for wiring or unwiring of an entry to complete.
3113                  * Also wait for any system wirings to disappear on
3114                  * user maps.
3115                  */
3116                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3117                     (vm_map_pmap(map) != kernel_pmap &&
3118                     vm_map_entry_system_wired_count(entry) != 0)) {
3119                         unsigned int last_timestamp;
3120                         vm_offset_t saved_start;
3121                         vm_map_entry_t tmp_entry;
3122
3123                         saved_start = entry->start;
3124                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3125                         last_timestamp = map->timestamp;
3126                         (void) vm_map_unlock_and_wait(map, 0);
3127                         vm_map_lock(map);
3128                         if (last_timestamp + 1 != map->timestamp) {
3129                                 /*
3130                                  * Look again for the entry because the map was
3131                                  * modified while it was unlocked.
3132                                  * Specifically, the entry may have been
3133                                  * clipped, merged, or deleted.
3134                                  */
3135                                 if (!vm_map_lookup_entry(map, saved_start,
3136                                                          &tmp_entry))
3137                                         entry = tmp_entry->next;
3138                                 else {
3139                                         entry = tmp_entry;
3140                                         vm_map_clip_start(map, entry,
3141                                                           saved_start);
3142                                 }
3143                         }
3144                         continue;
3145                 }
3146                 vm_map_clip_end(map, entry, end);
3147
3148                 next = entry->next;
3149
3150                 /*
3151                  * Unwire before removing addresses from the pmap; otherwise,
3152                  * unwiring will put the entries back in the pmap.
3153                  */
3154                 if (entry->wired_count != 0)
3155                         vm_map_entry_unwire(map, entry);
3156
3157                 /*
3158                  * Remove mappings for the pages, but only if the
3159                  * mappings could exist.  For instance, it does not
3160                  * make sense to call pmap_remove() for guard entries.
3161                  */
3162                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3163                     entry->object.vm_object != NULL)
3164                         pmap_remove(map->pmap, entry->start, entry->end);
3165
3166                 /*
3167                  * Delete the entry only after removing all pmap
3168                  * entries pointing to its pages.  (Otherwise, its
3169                  * page frames may be reallocated, and any modify bits
3170                  * will be set in the wrong object!)
3171                  */
3172                 vm_map_entry_delete(map, entry);
3173                 entry = next;
3174         }
3175         return (KERN_SUCCESS);
3176 }
3177
3178 /*
3179  *      vm_map_remove:
3180  *
3181  *      Remove the given address range from the target map.
3182  *      This is the exported form of vm_map_delete.
3183  */
3184 int
3185 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3186 {
3187         int result;
3188
3189         vm_map_lock(map);
3190         VM_MAP_RANGE_CHECK(map, start, end);
3191         result = vm_map_delete(map, start, end);
3192         vm_map_unlock(map);
3193         return (result);
3194 }
3195
3196 /*
3197  *      vm_map_check_protection:
3198  *
3199  *      Assert that the target map allows the specified privilege on the
3200  *      entire address region given.  The entire region must be allocated.
3201  *
3202  *      WARNING!  This code does not and should not check whether the
3203  *      contents of the region is accessible.  For example a smaller file
3204  *      might be mapped into a larger address space.
3205  *
3206  *      NOTE!  This code is also called by munmap().
3207  *
3208  *      The map must be locked.  A read lock is sufficient.
3209  */
3210 boolean_t
3211 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3212                         vm_prot_t protection)
3213 {
3214         vm_map_entry_t entry;
3215         vm_map_entry_t tmp_entry;
3216
3217         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3218                 return (FALSE);
3219         entry = tmp_entry;
3220
3221         while (start < end) {
3222                 /*
3223                  * No holes allowed!
3224                  */
3225                 if (start < entry->start)
3226                         return (FALSE);
3227                 /*
3228                  * Check protection associated with entry.
3229                  */
3230                 if ((entry->protection & protection) != protection)
3231                         return (FALSE);
3232                 /* go to next entry */
3233                 start = entry->end;
3234                 entry = entry->next;
3235         }
3236         return (TRUE);
3237 }
3238
3239 /*
3240  *      vm_map_copy_entry:
3241  *
3242  *      Copies the contents of the source entry to the destination
3243  *      entry.  The entries *must* be aligned properly.
3244  */
3245 static void
3246 vm_map_copy_entry(
3247         vm_map_t src_map,
3248         vm_map_t dst_map,
3249         vm_map_entry_t src_entry,
3250         vm_map_entry_t dst_entry,
3251         vm_ooffset_t *fork_charge)
3252 {
3253         vm_object_t src_object;
3254         vm_map_entry_t fake_entry;
3255         vm_offset_t size;
3256         struct ucred *cred;
3257         int charged;
3258
3259         VM_MAP_ASSERT_LOCKED(dst_map);
3260
3261         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3262                 return;
3263
3264         if (src_entry->wired_count == 0 ||
3265             (src_entry->protection & VM_PROT_WRITE) == 0) {
3266                 /*
3267                  * If the source entry is marked needs_copy, it is already
3268                  * write-protected.
3269                  */
3270                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3271                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3272                         pmap_protect(src_map->pmap,
3273                             src_entry->start,
3274                             src_entry->end,
3275                             src_entry->protection & ~VM_PROT_WRITE);
3276                 }
3277
3278                 /*
3279                  * Make a copy of the object.
3280                  */
3281                 size = src_entry->end - src_entry->start;
3282                 if ((src_object = src_entry->object.vm_object) != NULL) {
3283                         VM_OBJECT_WLOCK(src_object);
3284                         charged = ENTRY_CHARGED(src_entry);
3285                         if (src_object->handle == NULL &&
3286                             (src_object->type == OBJT_DEFAULT ||
3287                             src_object->type == OBJT_SWAP)) {
3288                                 vm_object_collapse(src_object);
3289                                 if ((src_object->flags & (OBJ_NOSPLIT |
3290                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3291                                         vm_object_split(src_entry);
3292                                         src_object =
3293                                             src_entry->object.vm_object;
3294                                 }
3295                         }
3296                         vm_object_reference_locked(src_object);
3297                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3298                         if (src_entry->cred != NULL &&
3299                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3300                                 KASSERT(src_object->cred == NULL,
3301                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3302                                      src_object));
3303                                 src_object->cred = src_entry->cred;
3304                                 src_object->charge = size;
3305                         }
3306                         VM_OBJECT_WUNLOCK(src_object);
3307                         dst_entry->object.vm_object = src_object;
3308                         if (charged) {
3309                                 cred = curthread->td_ucred;
3310                                 crhold(cred);
3311                                 dst_entry->cred = cred;
3312                                 *fork_charge += size;
3313                                 if (!(src_entry->eflags &
3314                                       MAP_ENTRY_NEEDS_COPY)) {
3315                                         crhold(cred);
3316                                         src_entry->cred = cred;
3317                                         *fork_charge += size;
3318                                 }
3319                         }
3320                         src_entry->eflags |= MAP_ENTRY_COW |
3321                             MAP_ENTRY_NEEDS_COPY;
3322                         dst_entry->eflags |= MAP_ENTRY_COW |
3323                             MAP_ENTRY_NEEDS_COPY;
3324                         dst_entry->offset = src_entry->offset;
3325                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3326                                 /*
3327                                  * MAP_ENTRY_VN_WRITECNT cannot
3328                                  * indicate write reference from
3329                                  * src_entry, since the entry is
3330                                  * marked as needs copy.  Allocate a
3331                                  * fake entry that is used to
3332                                  * decrement object->un_pager.vnp.writecount
3333                                  * at the appropriate time.  Attach
3334                                  * fake_entry to the deferred list.
3335                                  */
3336                                 fake_entry = vm_map_entry_create(dst_map);
3337                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3338                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3339                                 vm_object_reference(src_object);
3340                                 fake_entry->object.vm_object = src_object;
3341                                 fake_entry->start = src_entry->start;
3342                                 fake_entry->end = src_entry->end;
3343                                 fake_entry->next = curthread->td_map_def_user;
3344                                 curthread->td_map_def_user = fake_entry;
3345                         }
3346
3347                         pmap_copy(dst_map->pmap, src_map->pmap,
3348                             dst_entry->start, dst_entry->end - dst_entry->start,
3349                             src_entry->start);
3350                 } else {
3351                         dst_entry->object.vm_object = NULL;
3352                         dst_entry->offset = 0;
3353                         if (src_entry->cred != NULL) {
3354                                 dst_entry->cred = curthread->td_ucred;
3355                                 crhold(dst_entry->cred);
3356                                 *fork_charge += size;
3357                         }
3358                 }
3359         } else {
3360                 /*
3361                  * We don't want to make writeable wired pages copy-on-write.
3362                  * Immediately copy these pages into the new map by simulating
3363                  * page faults.  The new pages are pageable.
3364                  */
3365                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3366                     fork_charge);
3367         }
3368 }
3369
3370 /*
3371  * vmspace_map_entry_forked:
3372  * Update the newly-forked vmspace each time a map entry is inherited
3373  * or copied.  The values for vm_dsize and vm_tsize are approximate
3374  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3375  */
3376 static void
3377 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3378     vm_map_entry_t entry)
3379 {
3380         vm_size_t entrysize;
3381         vm_offset_t newend;
3382
3383         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3384                 return;
3385         entrysize = entry->end - entry->start;
3386         vm2->vm_map.size += entrysize;
3387         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3388                 vm2->vm_ssize += btoc(entrysize);
3389         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3390             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3391                 newend = MIN(entry->end,
3392                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3393                 vm2->vm_dsize += btoc(newend - entry->start);
3394         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3395             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3396                 newend = MIN(entry->end,
3397                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3398                 vm2->vm_tsize += btoc(newend - entry->start);
3399         }
3400 }
3401
3402 /*
3403  * vmspace_fork:
3404  * Create a new process vmspace structure and vm_map
3405  * based on those of an existing process.  The new map
3406  * is based on the old map, according to the inheritance
3407  * values on the regions in that map.
3408  *
3409  * XXX It might be worth coalescing the entries added to the new vmspace.
3410  *
3411  * The source map must not be locked.
3412  */
3413 struct vmspace *
3414 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3415 {
3416         struct vmspace *vm2;
3417         vm_map_t new_map, old_map;
3418         vm_map_entry_t new_entry, old_entry;
3419         vm_object_t object;
3420         int locked;
3421         vm_inherit_t inh;
3422
3423         old_map = &vm1->vm_map;
3424         /* Copy immutable fields of vm1 to vm2. */
3425         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), NULL);
3426         if (vm2 == NULL)
3427                 return (NULL);
3428         vm2->vm_taddr = vm1->vm_taddr;
3429         vm2->vm_daddr = vm1->vm_daddr;
3430         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3431         vm_map_lock(old_map);
3432         if (old_map->busy)
3433                 vm_map_wait_busy(old_map);
3434         new_map = &vm2->vm_map;
3435         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3436         KASSERT(locked, ("vmspace_fork: lock failed"));
3437
3438         old_entry = old_map->header.next;
3439
3440         while (old_entry != &old_map->header) {
3441                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3442                         panic("vm_map_fork: encountered a submap");
3443
3444                 inh = old_entry->inheritance;
3445                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3446                     inh != VM_INHERIT_NONE)
3447                         inh = VM_INHERIT_COPY;
3448
3449                 switch (inh) {
3450                 case VM_INHERIT_NONE:
3451                         break;
3452
3453                 case VM_INHERIT_SHARE:
3454                         /*
3455                          * Clone the entry, creating the shared object if necessary.
3456                          */
3457                         object = old_entry->object.vm_object;
3458                         if (object == NULL) {
3459                                 object = vm_object_allocate(OBJT_DEFAULT,
3460                                         atop(old_entry->end - old_entry->start));
3461                                 old_entry->object.vm_object = object;
3462                                 old_entry->offset = 0;
3463                                 if (old_entry->cred != NULL) {
3464                                         object->cred = old_entry->cred;
3465                                         object->charge = old_entry->end -
3466                                             old_entry->start;
3467                                         old_entry->cred = NULL;
3468                                 }
3469                         }
3470
3471                         /*
3472                          * Add the reference before calling vm_object_shadow
3473                          * to insure that a shadow object is created.
3474                          */
3475                         vm_object_reference(object);
3476                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3477                                 vm_object_shadow(&old_entry->object.vm_object,
3478                                     &old_entry->offset,
3479                                     old_entry->end - old_entry->start);
3480                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3481                                 /* Transfer the second reference too. */
3482                                 vm_object_reference(
3483                                     old_entry->object.vm_object);
3484
3485                                 /*
3486                                  * As in vm_map_simplify_entry(), the
3487                                  * vnode lock will not be acquired in
3488                                  * this call to vm_object_deallocate().
3489                                  */
3490                                 vm_object_deallocate(object);
3491                                 object = old_entry->object.vm_object;
3492                         }
3493                         VM_OBJECT_WLOCK(object);
3494                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3495                         if (old_entry->cred != NULL) {
3496                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3497                                 object->cred = old_entry->cred;
3498                                 object->charge = old_entry->end - old_entry->start;
3499                                 old_entry->cred = NULL;
3500                         }
3501
3502                         /*
3503                          * Assert the correct state of the vnode
3504                          * v_writecount while the object is locked, to
3505                          * not relock it later for the assertion
3506                          * correctness.
3507                          */
3508                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3509                             object->type == OBJT_VNODE) {
3510                                 KASSERT(((struct vnode *)object->handle)->
3511                                     v_writecount > 0,
3512                                     ("vmspace_fork: v_writecount %p", object));
3513                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3514                                     ("vmspace_fork: vnp.writecount %p",
3515                                     object));
3516                         }
3517                         VM_OBJECT_WUNLOCK(object);
3518
3519                         /*
3520                          * Clone the entry, referencing the shared object.
3521                          */
3522                         new_entry = vm_map_entry_create(new_map);
3523                         *new_entry = *old_entry;
3524                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3525                             MAP_ENTRY_IN_TRANSITION);
3526                         new_entry->wiring_thread = NULL;
3527                         new_entry->wired_count = 0;
3528                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3529                                 vnode_pager_update_writecount(object,
3530                                     new_entry->start, new_entry->end);
3531                         }
3532
3533                         /*
3534                          * Insert the entry into the new map -- we know we're
3535                          * inserting at the end of the new map.
3536                          */
3537                         vm_map_entry_link(new_map, new_map->header.prev,
3538                             new_entry);
3539                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3540
3541                         /*
3542                          * Update the physical map
3543                          */
3544                         pmap_copy(new_map->pmap, old_map->pmap,
3545                             new_entry->start,
3546                             (old_entry->end - old_entry->start),
3547                             old_entry->start);
3548                         break;
3549
3550                 case VM_INHERIT_COPY:
3551                         /*
3552                          * Clone the entry and link into the map.
3553                          */
3554                         new_entry = vm_map_entry_create(new_map);
3555                         *new_entry = *old_entry;
3556                         /*
3557                          * Copied entry is COW over the old object.
3558                          */
3559                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3560                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3561                         new_entry->wiring_thread = NULL;
3562                         new_entry->wired_count = 0;
3563                         new_entry->object.vm_object = NULL;
3564                         new_entry->cred = NULL;
3565                         vm_map_entry_link(new_map, new_map->header.prev,
3566                             new_entry);
3567                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3568                         vm_map_copy_entry(old_map, new_map, old_entry,
3569                             new_entry, fork_charge);
3570                         break;
3571
3572                 case VM_INHERIT_ZERO:
3573                         /*
3574                          * Create a new anonymous mapping entry modelled from
3575                          * the old one.
3576                          */
3577                         new_entry = vm_map_entry_create(new_map);
3578                         memset(new_entry, 0, sizeof(*new_entry));
3579
3580                         new_entry->start = old_entry->start;
3581                         new_entry->end = old_entry->end;
3582                         new_entry->eflags = old_entry->eflags &
3583                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3584                             MAP_ENTRY_VN_WRITECNT);
3585                         new_entry->protection = old_entry->protection;
3586                         new_entry->max_protection = old_entry->max_protection;
3587                         new_entry->inheritance = VM_INHERIT_ZERO;
3588
3589                         vm_map_entry_link(new_map, new_map->header.prev,
3590                             new_entry);
3591                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3592
3593                         new_entry->cred = curthread->td_ucred;
3594                         crhold(new_entry->cred);
3595                         *fork_charge += (new_entry->end - new_entry->start);
3596
3597                         break;
3598                 }
3599                 old_entry = old_entry->next;
3600         }
3601         /*
3602          * Use inlined vm_map_unlock() to postpone handling the deferred
3603          * map entries, which cannot be done until both old_map and
3604          * new_map locks are released.
3605          */
3606         sx_xunlock(&old_map->lock);
3607         sx_xunlock(&new_map->lock);
3608         vm_map_process_deferred();
3609
3610         return (vm2);
3611 }
3612
3613 /*
3614  * Create a process's stack for exec_new_vmspace().  This function is never
3615  * asked to wire the newly created stack.
3616  */
3617 int
3618 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3619     vm_prot_t prot, vm_prot_t max, int cow)
3620 {
3621         vm_size_t growsize, init_ssize;
3622         rlim_t vmemlim;
3623         int rv;
3624
3625         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3626         growsize = sgrowsiz;
3627         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3628         vm_map_lock(map);
3629         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3630         /* If we would blow our VMEM resource limit, no go */
3631         if (map->size + init_ssize > vmemlim) {
3632                 rv = KERN_NO_SPACE;
3633                 goto out;
3634         }
3635         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3636             max, cow);
3637 out:
3638         vm_map_unlock(map);
3639         return (rv);
3640 }
3641
3642 static int stack_guard_page = 1;
3643 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3644     &stack_guard_page, 0,
3645     "Specifies the number of guard pages for a stack that grows");
3646
3647 static int
3648 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3649     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3650 {
3651         vm_map_entry_t new_entry, prev_entry;
3652         vm_offset_t bot, gap_bot, gap_top, top;
3653         vm_size_t init_ssize, sgp;
3654         int orient, rv;
3655
3656         /*
3657          * The stack orientation is piggybacked with the cow argument.
3658          * Extract it into orient and mask the cow argument so that we
3659          * don't pass it around further.
3660          */
3661         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3662         KASSERT(orient != 0, ("No stack grow direction"));
3663         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3664             ("bi-dir stack"));
3665
3666         if (addrbos < vm_map_min(map) ||
3667             addrbos + max_ssize > vm_map_max(map) ||
3668             addrbos + max_ssize <= addrbos)
3669                 return (KERN_INVALID_ADDRESS);
3670         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3671         if (sgp >= max_ssize)
3672                 return (KERN_INVALID_ARGUMENT);
3673
3674         init_ssize = growsize;
3675         if (max_ssize < init_ssize + sgp)
3676                 init_ssize = max_ssize - sgp;
3677
3678         /* If addr is already mapped, no go */
3679         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3680                 return (KERN_NO_SPACE);
3681
3682         /*
3683          * If we can't accommodate max_ssize in the current mapping, no go.
3684          */
3685         if (prev_entry->next->start < addrbos + max_ssize)
3686                 return (KERN_NO_SPACE);
3687
3688         /*
3689          * We initially map a stack of only init_ssize.  We will grow as
3690          * needed later.  Depending on the orientation of the stack (i.e.
3691          * the grow direction) we either map at the top of the range, the
3692          * bottom of the range or in the middle.
3693          *
3694          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3695          * and cow to be 0.  Possibly we should eliminate these as input
3696          * parameters, and just pass these values here in the insert call.
3697          */
3698         if (orient == MAP_STACK_GROWS_DOWN) {
3699                 bot = addrbos + max_ssize - init_ssize;
3700                 top = bot + init_ssize;
3701                 gap_bot = addrbos;
3702                 gap_top = bot;
3703         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3704                 bot = addrbos;
3705                 top = bot + init_ssize;
3706                 gap_bot = top;
3707                 gap_top = addrbos + max_ssize;
3708         }
3709         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3710         if (rv != KERN_SUCCESS)
3711                 return (rv);
3712         new_entry = prev_entry->next;
3713         KASSERT(new_entry->end == top || new_entry->start == bot,
3714             ("Bad entry start/end for new stack entry"));
3715         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3716             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3717             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3718         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3719             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3720             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3721         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3722             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3723             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3724         if (rv != KERN_SUCCESS)
3725                 (void)vm_map_delete(map, bot, top);
3726         return (rv);
3727 }
3728
3729 /*
3730  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3731  * successfully grow the stack.
3732  */
3733 static int
3734 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3735 {
3736         vm_map_entry_t stack_entry;
3737         struct proc *p;
3738         struct vmspace *vm;
3739         struct ucred *cred;
3740         vm_offset_t gap_end, gap_start, grow_start;
3741         size_t grow_amount, guard, max_grow;
3742         rlim_t lmemlim, stacklim, vmemlim;
3743         int rv, rv1;
3744         bool gap_deleted, grow_down, is_procstack;
3745 #ifdef notyet
3746         uint64_t limit;
3747 #endif
3748 #ifdef RACCT
3749         int error;
3750 #endif
3751
3752         p = curproc;
3753         vm = p->p_vmspace;
3754
3755         /*
3756          * Disallow stack growth when the access is performed by a
3757          * debugger or AIO daemon.  The reason is that the wrong
3758          * resource limits are applied.
3759          */
3760         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3761                 return (KERN_FAILURE);
3762
3763         MPASS(!map->system_map);
3764
3765         guard = stack_guard_page * PAGE_SIZE;
3766         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3767         stacklim = lim_cur(curthread, RLIMIT_STACK);
3768         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3769 retry:
3770         /* If addr is not in a hole for a stack grow area, no need to grow. */
3771         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3772                 return (KERN_FAILURE);
3773         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3774                 return (KERN_SUCCESS);
3775         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3776                 stack_entry = gap_entry->next;
3777                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3778                     stack_entry->start != gap_entry->end)
3779                         return (KERN_FAILURE);
3780                 grow_amount = round_page(stack_entry->start - addr);
3781                 grow_down = true;
3782         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3783                 stack_entry = gap_entry->prev;
3784                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3785                     stack_entry->end != gap_entry->start)
3786                         return (KERN_FAILURE);
3787                 grow_amount = round_page(addr + 1 - stack_entry->end);
3788                 grow_down = false;
3789         } else {
3790                 return (KERN_FAILURE);
3791         }
3792         max_grow = gap_entry->end - gap_entry->start;
3793         if (guard > max_grow)
3794                 return (KERN_NO_SPACE);
3795         max_grow -= guard;
3796         if (grow_amount > max_grow)
3797                 return (KERN_NO_SPACE);
3798
3799         /*
3800          * If this is the main process stack, see if we're over the stack
3801          * limit.
3802          */
3803         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3804             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3805         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3806                 return (KERN_NO_SPACE);
3807
3808 #ifdef RACCT
3809         if (racct_enable) {
3810                 PROC_LOCK(p);
3811                 if (is_procstack && racct_set(p, RACCT_STACK,
3812                     ctob(vm->vm_ssize) + grow_amount)) {
3813                         PROC_UNLOCK(p);
3814                         return (KERN_NO_SPACE);
3815                 }
3816                 PROC_UNLOCK(p);
3817         }
3818 #endif
3819
3820         grow_amount = roundup(grow_amount, sgrowsiz);
3821         if (grow_amount > max_grow)
3822                 grow_amount = max_grow;
3823         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3824                 grow_amount = trunc_page((vm_size_t)stacklim) -
3825                     ctob(vm->vm_ssize);
3826         }
3827
3828 #ifdef notyet
3829         PROC_LOCK(p);
3830         limit = racct_get_available(p, RACCT_STACK);
3831         PROC_UNLOCK(p);
3832         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3833                 grow_amount = limit - ctob(vm->vm_ssize);
3834 #endif
3835
3836         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3837                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3838                         rv = KERN_NO_SPACE;
3839                         goto out;
3840                 }
3841 #ifdef RACCT
3842                 if (racct_enable) {
3843                         PROC_LOCK(p);
3844                         if (racct_set(p, RACCT_MEMLOCK,
3845                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3846                                 PROC_UNLOCK(p);
3847                                 rv = KERN_NO_SPACE;
3848                                 goto out;
3849                         }
3850                         PROC_UNLOCK(p);
3851                 }
3852 #endif
3853         }
3854
3855         /* If we would blow our VMEM resource limit, no go */
3856         if (map->size + grow_amount > vmemlim) {
3857                 rv = KERN_NO_SPACE;
3858                 goto out;
3859         }
3860 #ifdef RACCT
3861         if (racct_enable) {
3862                 PROC_LOCK(p);
3863                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3864                         PROC_UNLOCK(p);
3865                         rv = KERN_NO_SPACE;
3866                         goto out;
3867                 }
3868                 PROC_UNLOCK(p);
3869         }
3870 #endif
3871
3872         if (vm_map_lock_upgrade(map)) {
3873                 gap_entry = NULL;
3874                 vm_map_lock_read(map);
3875                 goto retry;
3876         }
3877
3878         if (grow_down) {
3879                 grow_start = gap_entry->end - grow_amount;
3880                 if (gap_entry->start + grow_amount == gap_entry->end) {
3881                         gap_start = gap_entry->start;
3882                         gap_end = gap_entry->end;
3883                         vm_map_entry_delete(map, gap_entry);
3884                         gap_deleted = true;
3885                 } else {
3886                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3887                         gap_entry->end -= grow_amount;
3888                         vm_map_entry_resize_free(map, gap_entry);
3889                         gap_deleted = false;
3890                 }
3891                 rv = vm_map_insert(map, NULL, 0, grow_start,
3892                     grow_start + grow_amount,
3893                     stack_entry->protection, stack_entry->max_protection,
3894                     MAP_STACK_GROWS_DOWN);
3895                 if (rv != KERN_SUCCESS) {
3896                         if (gap_deleted) {
3897                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3898                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3899                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3900                                 MPASS(rv1 == KERN_SUCCESS);
3901                         } else {
3902                                 gap_entry->end += grow_amount;
3903                                 vm_map_entry_resize_free(map, gap_entry);
3904                         }
3905                 }
3906         } else {
3907                 grow_start = stack_entry->end;
3908                 cred = stack_entry->cred;
3909                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3910                         cred = stack_entry->object.vm_object->cred;
3911                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3912                         rv = KERN_NO_SPACE;
3913                 /* Grow the underlying object if applicable. */
3914                 else if (stack_entry->object.vm_object == NULL ||
3915                     vm_object_coalesce(stack_entry->object.vm_object,
3916                     stack_entry->offset,
3917                     (vm_size_t)(stack_entry->end - stack_entry->start),
3918                     (vm_size_t)grow_amount, cred != NULL)) {
3919                         if (gap_entry->start + grow_amount == gap_entry->end)
3920                                 vm_map_entry_delete(map, gap_entry);
3921                         else
3922                                 gap_entry->start += grow_amount;
3923                         stack_entry->end += grow_amount;
3924                         map->size += grow_amount;
3925                         vm_map_entry_resize_free(map, stack_entry);
3926                         rv = KERN_SUCCESS;
3927                 } else
3928                         rv = KERN_FAILURE;
3929         }
3930         if (rv == KERN_SUCCESS && is_procstack)
3931                 vm->vm_ssize += btoc(grow_amount);
3932
3933         /*
3934          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3935          */
3936         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3937                 vm_map_unlock(map);
3938                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3939                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3940                 vm_map_lock_read(map);
3941         } else
3942                 vm_map_lock_downgrade(map);
3943
3944 out:
3945 #ifdef RACCT
3946         if (racct_enable && rv != KERN_SUCCESS) {
3947                 PROC_LOCK(p);
3948                 error = racct_set(p, RACCT_VMEM, map->size);
3949                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3950                 if (!old_mlock) {
3951                         error = racct_set(p, RACCT_MEMLOCK,
3952                             ptoa(pmap_wired_count(map->pmap)));
3953                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3954                 }
3955                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3956                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3957                 PROC_UNLOCK(p);
3958         }
3959 #endif
3960
3961         return (rv);
3962 }
3963
3964 /*
3965  * Unshare the specified VM space for exec.  If other processes are
3966  * mapped to it, then create a new one.  The new vmspace is null.
3967  */
3968 int
3969 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3970 {
3971         struct vmspace *oldvmspace = p->p_vmspace;
3972         struct vmspace *newvmspace;
3973
3974         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3975             ("vmspace_exec recursed"));
3976         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3977         if (newvmspace == NULL)
3978                 return (ENOMEM);
3979         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3980         /*
3981          * This code is written like this for prototype purposes.  The
3982          * goal is to avoid running down the vmspace here, but let the
3983          * other process's that are still using the vmspace to finally
3984          * run it down.  Even though there is little or no chance of blocking
3985          * here, it is a good idea to keep this form for future mods.
3986          */
3987         PROC_VMSPACE_LOCK(p);
3988         p->p_vmspace = newvmspace;
3989         PROC_VMSPACE_UNLOCK(p);
3990         if (p == curthread->td_proc)
3991                 pmap_activate(curthread);
3992         curthread->td_pflags |= TDP_EXECVMSPC;
3993         return (0);
3994 }
3995
3996 /*
3997  * Unshare the specified VM space for forcing COW.  This
3998  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3999  */
4000 int
4001 vmspace_unshare(struct proc *p)
4002 {
4003         struct vmspace *oldvmspace = p->p_vmspace;
4004         struct vmspace *newvmspace;
4005         vm_ooffset_t fork_charge;
4006
4007         if (oldvmspace->vm_refcnt == 1)
4008                 return (0);
4009         fork_charge = 0;
4010         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4011         if (newvmspace == NULL)
4012                 return (ENOMEM);
4013         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4014                 vmspace_free(newvmspace);
4015                 return (ENOMEM);
4016         }
4017         PROC_VMSPACE_LOCK(p);
4018         p->p_vmspace = newvmspace;
4019         PROC_VMSPACE_UNLOCK(p);
4020         if (p == curthread->td_proc)
4021                 pmap_activate(curthread);
4022         vmspace_free(oldvmspace);
4023         return (0);
4024 }
4025
4026 /*
4027  *      vm_map_lookup:
4028  *
4029  *      Finds the VM object, offset, and
4030  *      protection for a given virtual address in the
4031  *      specified map, assuming a page fault of the
4032  *      type specified.
4033  *
4034  *      Leaves the map in question locked for read; return
4035  *      values are guaranteed until a vm_map_lookup_done
4036  *      call is performed.  Note that the map argument
4037  *      is in/out; the returned map must be used in
4038  *      the call to vm_map_lookup_done.
4039  *
4040  *      A handle (out_entry) is returned for use in
4041  *      vm_map_lookup_done, to make that fast.
4042  *
4043  *      If a lookup is requested with "write protection"
4044  *      specified, the map may be changed to perform virtual
4045  *      copying operations, although the data referenced will
4046  *      remain the same.
4047  */
4048 int
4049 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4050               vm_offset_t vaddr,
4051               vm_prot_t fault_typea,
4052               vm_map_entry_t *out_entry,        /* OUT */
4053               vm_object_t *object,              /* OUT */
4054               vm_pindex_t *pindex,              /* OUT */
4055               vm_prot_t *out_prot,              /* OUT */
4056               boolean_t *wired)                 /* OUT */
4057 {
4058         vm_map_entry_t entry;
4059         vm_map_t map = *var_map;
4060         vm_prot_t prot;
4061         vm_prot_t fault_type = fault_typea;
4062         vm_object_t eobject;
4063         vm_size_t size;
4064         struct ucred *cred;
4065
4066 RetryLookup:
4067
4068         vm_map_lock_read(map);
4069
4070 RetryLookupLocked:
4071         /*
4072          * Lookup the faulting address.
4073          */
4074         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4075                 vm_map_unlock_read(map);
4076                 return (KERN_INVALID_ADDRESS);
4077         }
4078
4079         entry = *out_entry;
4080
4081         /*
4082          * Handle submaps.
4083          */
4084         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4085                 vm_map_t old_map = map;
4086
4087                 *var_map = map = entry->object.sub_map;
4088                 vm_map_unlock_read(old_map);
4089                 goto RetryLookup;
4090         }
4091
4092         /*
4093          * Check whether this task is allowed to have this page.
4094          */
4095         prot = entry->protection;
4096         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4097                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4098                 if (prot == VM_PROT_NONE && map != kernel_map &&
4099                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4100                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4101                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4102                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4103                         goto RetryLookupLocked;
4104         }
4105         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4106         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4107                 vm_map_unlock_read(map);
4108                 return (KERN_PROTECTION_FAILURE);
4109         }
4110         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4111             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4112             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4113             ("entry %p flags %x", entry, entry->eflags));
4114         if ((fault_typea & VM_PROT_COPY) != 0 &&
4115             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4116             (entry->eflags & MAP_ENTRY_COW) == 0) {
4117                 vm_map_unlock_read(map);
4118                 return (KERN_PROTECTION_FAILURE);
4119         }
4120
4121         /*
4122          * If this page is not pageable, we have to get it for all possible
4123          * accesses.
4124          */
4125         *wired = (entry->wired_count != 0);
4126         if (*wired)
4127                 fault_type = entry->protection;
4128         size = entry->end - entry->start;
4129         /*
4130          * If the entry was copy-on-write, we either ...
4131          */
4132         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4133                 /*
4134                  * If we want to write the page, we may as well handle that
4135                  * now since we've got the map locked.
4136                  *
4137                  * If we don't need to write the page, we just demote the
4138                  * permissions allowed.
4139                  */
4140                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4141                     (fault_typea & VM_PROT_COPY) != 0) {
4142                         /*
4143                          * Make a new object, and place it in the object
4144                          * chain.  Note that no new references have appeared
4145                          * -- one just moved from the map to the new
4146                          * object.
4147                          */
4148                         if (vm_map_lock_upgrade(map))
4149                                 goto RetryLookup;
4150
4151                         if (entry->cred == NULL) {
4152                                 /*
4153                                  * The debugger owner is charged for
4154                                  * the memory.
4155                                  */
4156                                 cred = curthread->td_ucred;
4157                                 crhold(cred);
4158                                 if (!swap_reserve_by_cred(size, cred)) {
4159                                         crfree(cred);
4160                                         vm_map_unlock(map);
4161                                         return (KERN_RESOURCE_SHORTAGE);
4162                                 }
4163                                 entry->cred = cred;
4164                         }
4165                         vm_object_shadow(&entry->object.vm_object,
4166                             &entry->offset, size);
4167                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4168                         eobject = entry->object.vm_object;
4169                         if (eobject->cred != NULL) {
4170                                 /*
4171                                  * The object was not shadowed.
4172                                  */
4173                                 swap_release_by_cred(size, entry->cred);
4174                                 crfree(entry->cred);
4175                                 entry->cred = NULL;
4176                         } else if (entry->cred != NULL) {
4177                                 VM_OBJECT_WLOCK(eobject);
4178                                 eobject->cred = entry->cred;
4179                                 eobject->charge = size;
4180                                 VM_OBJECT_WUNLOCK(eobject);
4181                                 entry->cred = NULL;
4182                         }
4183
4184                         vm_map_lock_downgrade(map);
4185                 } else {
4186                         /*
4187                          * We're attempting to read a copy-on-write page --
4188                          * don't allow writes.
4189                          */
4190                         prot &= ~VM_PROT_WRITE;
4191                 }
4192         }
4193
4194         /*
4195          * Create an object if necessary.
4196          */
4197         if (entry->object.vm_object == NULL &&
4198             !map->system_map) {
4199                 if (vm_map_lock_upgrade(map))
4200                         goto RetryLookup;
4201                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4202                     atop(size));
4203                 entry->offset = 0;
4204                 if (entry->cred != NULL) {
4205                         VM_OBJECT_WLOCK(entry->object.vm_object);
4206                         entry->object.vm_object->cred = entry->cred;
4207                         entry->object.vm_object->charge = size;
4208                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4209                         entry->cred = NULL;
4210                 }
4211                 vm_map_lock_downgrade(map);
4212         }
4213
4214         /*
4215          * Return the object/offset from this entry.  If the entry was
4216          * copy-on-write or empty, it has been fixed up.
4217          */
4218         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4219         *object = entry->object.vm_object;
4220
4221         *out_prot = prot;
4222         return (KERN_SUCCESS);
4223 }
4224
4225 /*
4226  *      vm_map_lookup_locked:
4227  *
4228  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4229  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4230  */
4231 int
4232 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4233                      vm_offset_t vaddr,
4234                      vm_prot_t fault_typea,
4235                      vm_map_entry_t *out_entry, /* OUT */
4236                      vm_object_t *object,       /* OUT */
4237                      vm_pindex_t *pindex,       /* OUT */
4238                      vm_prot_t *out_prot,       /* OUT */
4239                      boolean_t *wired)          /* OUT */
4240 {
4241         vm_map_entry_t entry;
4242         vm_map_t map = *var_map;
4243         vm_prot_t prot;
4244         vm_prot_t fault_type = fault_typea;
4245
4246         /*
4247          * Lookup the faulting address.
4248          */
4249         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4250                 return (KERN_INVALID_ADDRESS);
4251
4252         entry = *out_entry;
4253
4254         /*
4255          * Fail if the entry refers to a submap.
4256          */
4257         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4258                 return (KERN_FAILURE);
4259
4260         /*
4261          * Check whether this task is allowed to have this page.
4262          */
4263         prot = entry->protection;
4264         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4265         if ((fault_type & prot) != fault_type)
4266                 return (KERN_PROTECTION_FAILURE);
4267
4268         /*
4269          * If this page is not pageable, we have to get it for all possible
4270          * accesses.
4271          */
4272         *wired = (entry->wired_count != 0);
4273         if (*wired)
4274                 fault_type = entry->protection;
4275
4276         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4277                 /*
4278                  * Fail if the entry was copy-on-write for a write fault.
4279                  */
4280                 if (fault_type & VM_PROT_WRITE)
4281                         return (KERN_FAILURE);
4282                 /*
4283                  * We're attempting to read a copy-on-write page --
4284                  * don't allow writes.
4285                  */
4286                 prot &= ~VM_PROT_WRITE;
4287         }
4288
4289         /*
4290          * Fail if an object should be created.
4291          */
4292         if (entry->object.vm_object == NULL && !map->system_map)
4293                 return (KERN_FAILURE);
4294
4295         /*
4296          * Return the object/offset from this entry.  If the entry was
4297          * copy-on-write or empty, it has been fixed up.
4298          */
4299         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4300         *object = entry->object.vm_object;
4301
4302         *out_prot = prot;
4303         return (KERN_SUCCESS);
4304 }
4305
4306 /*
4307  *      vm_map_lookup_done:
4308  *
4309  *      Releases locks acquired by a vm_map_lookup
4310  *      (according to the handle returned by that lookup).
4311  */
4312 void
4313 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4314 {
4315         /*
4316          * Unlock the main-level map
4317          */
4318         vm_map_unlock_read(map);
4319 }
4320
4321 vm_offset_t
4322 vm_map_max_KBI(const struct vm_map *map)
4323 {
4324
4325         return (vm_map_max(map));
4326 }
4327
4328 vm_offset_t
4329 vm_map_min_KBI(const struct vm_map *map)
4330 {
4331
4332         return (vm_map_min(map));
4333 }
4334
4335 pmap_t
4336 vm_map_pmap_KBI(vm_map_t map)
4337 {
4338
4339         return (map->pmap);
4340 }
4341
4342 #include "opt_ddb.h"
4343 #ifdef DDB
4344 #include <sys/kernel.h>
4345
4346 #include <ddb/ddb.h>
4347
4348 static void
4349 vm_map_print(vm_map_t map)
4350 {
4351         vm_map_entry_t entry;
4352
4353         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4354             (void *)map,
4355             (void *)map->pmap, map->nentries, map->timestamp);
4356
4357         db_indent += 2;
4358         for (entry = map->header.next; entry != &map->header;
4359             entry = entry->next) {
4360                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4361                     (void *)entry, (void *)entry->start, (void *)entry->end,
4362                     entry->eflags);
4363                 {
4364                         static char *inheritance_name[4] =
4365                         {"share", "copy", "none", "donate_copy"};
4366
4367                         db_iprintf(" prot=%x/%x/%s",
4368                             entry->protection,
4369                             entry->max_protection,
4370                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4371                         if (entry->wired_count != 0)
4372                                 db_printf(", wired");
4373                 }
4374                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4375                         db_printf(", share=%p, offset=0x%jx\n",
4376                             (void *)entry->object.sub_map,
4377                             (uintmax_t)entry->offset);
4378                         if ((entry->prev == &map->header) ||
4379                             (entry->prev->object.sub_map !=
4380                                 entry->object.sub_map)) {
4381                                 db_indent += 2;
4382                                 vm_map_print((vm_map_t)entry->object.sub_map);
4383                                 db_indent -= 2;
4384                         }
4385                 } else {
4386                         if (entry->cred != NULL)
4387                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4388                         db_printf(", object=%p, offset=0x%jx",
4389                             (void *)entry->object.vm_object,
4390                             (uintmax_t)entry->offset);
4391                         if (entry->object.vm_object && entry->object.vm_object->cred)
4392                                 db_printf(", obj ruid %d charge %jx",
4393                                     entry->object.vm_object->cred->cr_ruid,
4394                                     (uintmax_t)entry->object.vm_object->charge);
4395                         if (entry->eflags & MAP_ENTRY_COW)
4396                                 db_printf(", copy (%s)",
4397                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4398                         db_printf("\n");
4399
4400                         if ((entry->prev == &map->header) ||
4401                             (entry->prev->object.vm_object !=
4402                                 entry->object.vm_object)) {
4403                                 db_indent += 2;
4404                                 vm_object_print((db_expr_t)(intptr_t)
4405                                                 entry->object.vm_object,
4406                                                 0, 0, (char *)0);
4407                                 db_indent -= 2;
4408                         }
4409                 }
4410         }
4411         db_indent -= 2;
4412 }
4413
4414 DB_SHOW_COMMAND(map, map)
4415 {
4416
4417         if (!have_addr) {
4418                 db_printf("usage: show map <addr>\n");
4419                 return;
4420         }
4421         vm_map_print((vm_map_t)addr);
4422 }
4423
4424 DB_SHOW_COMMAND(procvm, procvm)
4425 {
4426         struct proc *p;
4427
4428         if (have_addr) {
4429                 p = db_lookup_proc(addr);
4430         } else {
4431                 p = curproc;
4432         }
4433
4434         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4435             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4436             (void *)vmspace_pmap(p->p_vmspace));
4437
4438         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4439 }
4440
4441 #endif /* DDB */