]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge ^/vendor/llvm-openmp/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153
154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157
158 /* 
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164
165 /*
166  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
167  *
168  *      Asserts that the starting and ending region
169  *      addresses fall within the valid range of the map.
170  */
171 #define VM_MAP_RANGE_CHECK(map, start, end)             \
172                 {                                       \
173                 if (start < vm_map_min(map))            \
174                         start = vm_map_min(map);        \
175                 if (end > vm_map_max(map))              \
176                         end = vm_map_max(map);          \
177                 if (start > end)                        \
178                         start = end;                    \
179                 }
180
181 /*
182  *      vm_map_startup:
183  *
184  *      Initialize the vm_map module.  Must be called before
185  *      any other vm_map routines.
186  *
187  *      Map and entry structures are allocated from the general
188  *      purpose memory pool with some exceptions:
189  *
190  *      - The kernel map and kmem submap are allocated statically.
191  *      - Kernel map entries are allocated out of a static pool.
192  *
193  *      These restrictions are necessary since malloc() uses the
194  *      maps and requires map entries.
195  */
196
197 void
198 vm_map_startup(void)
199 {
200         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203             vm_map_zdtor,
204 #else
205             NULL,
206 #endif
207             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208         uma_prealloc(mapzone, MAX_KMAP);
209         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216             vmspace_zdtor,
217 #else
218             NULL,
219 #endif
220             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226         struct vmspace *vm;
227
228         vm = (struct vmspace *)mem;
229
230         vm->vm_map.pmap = NULL;
231         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232         PMAP_LOCK_INIT(vmspace_pmap(vm));
233         return (0);
234 }
235
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239         vm_map_t map;
240
241         map = (vm_map_t)mem;
242         memset(map, 0, sizeof(*map));
243         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244         sx_init(&map->lock, "vm map (user)");
245         return (0);
246 }
247
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252         struct vmspace *vm;
253
254         vm = (struct vmspace *)mem;
255
256         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261         vm_map_t map;
262
263         map = (vm_map_t)mem;
264         KASSERT(map->nentries == 0,
265             ("map %p nentries == %d on free.",
266             map, map->nentries));
267         KASSERT(map->size == 0,
268             ("map %p size == %lu on free.",
269             map, (unsigned long)map->size));
270 }
271 #endif  /* INVARIANTS */
272
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282         struct vmspace *vm;
283
284         vm = uma_zalloc(vmspace_zone, M_WAITOK);
285         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286         if (!pinit(vmspace_pmap(vm))) {
287                 uma_zfree(vmspace_zone, vm);
288                 return (NULL);
289         }
290         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292         vm->vm_refcnt = 1;
293         vm->vm_shm = NULL;
294         vm->vm_swrss = 0;
295         vm->vm_tsize = 0;
296         vm->vm_dsize = 0;
297         vm->vm_ssize = 0;
298         vm->vm_taddr = 0;
299         vm->vm_daddr = 0;
300         vm->vm_maxsaddr = 0;
301         return (vm);
302 }
303
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308
309         PROC_LOCK(p);
310         racct_set(p, RACCT_DATA, 0);
311         racct_set(p, RACCT_STACK, 0);
312         racct_set(p, RACCT_RSS, 0);
313         racct_set(p, RACCT_MEMLOCK, 0);
314         racct_set(p, RACCT_VMEM, 0);
315         PROC_UNLOCK(p);
316 }
317 #endif
318
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322
323         CTR1(KTR_VM, "vmspace_free: %p", vm);
324
325         /*
326          * Make sure any SysV shm is freed, it might not have been in
327          * exit1().
328          */
329         shmexit(vm);
330
331         /*
332          * Lock the map, to wait out all other references to it.
333          * Delete all of the mappings and pages they hold, then call
334          * the pmap module to reclaim anything left.
335          */
336         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337             vm_map_max(&vm->vm_map));
338
339         pmap_release(vmspace_pmap(vm));
340         vm->vm_map.pmap = NULL;
341         uma_zfree(vmspace_zone, vm);
342 }
343
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347
348         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349             "vmspace_free() called");
350
351         if (vm->vm_refcnt == 0)
352                 panic("vmspace_free: attempt to free already freed vmspace");
353
354         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355                 vmspace_dofree(vm);
356 }
357
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361         struct vmspace *vm;
362
363         PROC_VMSPACE_LOCK(p);
364         vm = p->p_vmspace;
365         p->p_vmspace = NULL;
366         PROC_VMSPACE_UNLOCK(p);
367         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368         vmspace_free(vm);
369 }
370
371 void
372 vmspace_exit(struct thread *td)
373 {
374         int refcnt;
375         struct vmspace *vm;
376         struct proc *p;
377
378         /*
379          * Release user portion of address space.
380          * This releases references to vnodes,
381          * which could cause I/O if the file has been unlinked.
382          * Need to do this early enough that we can still sleep.
383          *
384          * The last exiting process to reach this point releases as
385          * much of the environment as it can. vmspace_dofree() is the
386          * slower fallback in case another process had a temporary
387          * reference to the vmspace.
388          */
389
390         p = td->td_proc;
391         vm = p->p_vmspace;
392         atomic_add_int(&vmspace0.vm_refcnt, 1);
393         refcnt = vm->vm_refcnt;
394         do {
395                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396                         /* Switch now since other proc might free vmspace */
397                         PROC_VMSPACE_LOCK(p);
398                         p->p_vmspace = &vmspace0;
399                         PROC_VMSPACE_UNLOCK(p);
400                         pmap_activate(td);
401                 }
402         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403         if (refcnt == 1) {
404                 if (p->p_vmspace != vm) {
405                         /* vmspace not yet freed, switch back */
406                         PROC_VMSPACE_LOCK(p);
407                         p->p_vmspace = vm;
408                         PROC_VMSPACE_UNLOCK(p);
409                         pmap_activate(td);
410                 }
411                 pmap_remove_pages(vmspace_pmap(vm));
412                 /* Switch now since this proc will free vmspace */
413                 PROC_VMSPACE_LOCK(p);
414                 p->p_vmspace = &vmspace0;
415                 PROC_VMSPACE_UNLOCK(p);
416                 pmap_activate(td);
417                 vmspace_dofree(vm);
418         }
419 #ifdef RACCT
420         if (racct_enable)
421                 vmspace_container_reset(p);
422 #endif
423 }
424
425 /* Acquire reference to vmspace owned by another process. */
426
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430         struct vmspace *vm;
431         int refcnt;
432
433         PROC_VMSPACE_LOCK(p);
434         vm = p->p_vmspace;
435         if (vm == NULL) {
436                 PROC_VMSPACE_UNLOCK(p);
437                 return (NULL);
438         }
439         refcnt = vm->vm_refcnt;
440         do {
441                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
442                         PROC_VMSPACE_UNLOCK(p);
443                         return (NULL);
444                 }
445         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446         if (vm != p->p_vmspace) {
447                 PROC_VMSPACE_UNLOCK(p);
448                 vmspace_free(vm);
449                 return (NULL);
450         }
451         PROC_VMSPACE_UNLOCK(p);
452         return (vm);
453 }
454
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         vmspace_free(oldvm);
494 }
495
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499
500         if (map->system_map)
501                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
502         else
503                 sx_xlock_(&map->lock, file, line);
504         map->timestamp++;
505 }
506
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510         vm_object_t object;
511         struct vnode *vp;
512         bool vp_held;
513
514         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515                 return;
516         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517             ("Submap with execs"));
518         object = entry->object.vm_object;
519         KASSERT(object != NULL, ("No object for text, entry %p", entry));
520         if ((object->flags & OBJ_ANON) != 0)
521                 object = object->handle;
522         else
523                 KASSERT(object->backing_object == NULL,
524                     ("non-anon object %p shadows", object));
525         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526             entry, entry->object.vm_object));
527
528         /*
529          * Mostly, we do not lock the backing object.  It is
530          * referenced by the entry we are processing, so it cannot go
531          * away.
532          */
533         vp = NULL;
534         vp_held = false;
535         if (object->type == OBJT_DEAD) {
536                 /*
537                  * For OBJT_DEAD objects, v_writecount was handled in
538                  * vnode_pager_dealloc().
539                  */
540         } else if (object->type == OBJT_VNODE) {
541                 vp = object->handle;
542         } else if (object->type == OBJT_SWAP) {
543                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545                     "entry %p, object %p, add %d", entry, object, add));
546                 /*
547                  * Tmpfs VREG node, which was reclaimed, has
548                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549                  * this case there is no v_writecount to adjust.
550                  */
551                 VM_OBJECT_RLOCK(object);
552                 if ((object->flags & OBJ_TMPFS) != 0) {
553                         vp = object->un_pager.swp.swp_tmpfs;
554                         if (vp != NULL) {
555                                 vhold(vp);
556                                 vp_held = true;
557                         }
558                 }
559                 VM_OBJECT_RUNLOCK(object);
560         } else {
561                 KASSERT(0,
562                     ("vm_map_entry_set_vnode_text: wrong object type, "
563                     "entry %p, object %p, add %d", entry, object, add));
564         }
565         if (vp != NULL) {
566                 if (add) {
567                         VOP_SET_TEXT_CHECKED(vp);
568                 } else {
569                         vn_lock(vp, LK_SHARED | LK_RETRY);
570                         VOP_UNSET_TEXT_CHECKED(vp);
571                         VOP_UNLOCK(vp);
572                 }
573                 if (vp_held)
574                         vdrop(vp);
575         }
576 }
577
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587         struct thread *td;
588         vm_map_entry_t entry, next;
589         vm_object_t object;
590
591         td = curthread;
592         entry = td->td_map_def_user;
593         td->td_map_def_user = NULL;
594         while (entry != NULL) {
595                 next = entry->defer_next;
596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC));
599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600                         /*
601                          * Decrement the object's writemappings and
602                          * possibly the vnode's v_writecount.
603                          */
604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605                             ("Submap with writecount"));
606                         object = entry->object.vm_object;
607                         KASSERT(object != NULL, ("No object for writecount"));
608                         vm_pager_release_writecount(object, entry->start,
609                             entry->end);
610                 }
611                 vm_map_entry_set_vnode_text(entry, false);
612                 vm_map_entry_deallocate(entry, FALSE);
613                 entry = next;
614         }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622         if (map->system_map)
623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624         else
625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
646         if (map->nupdates > map->nentries) {                            \
647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
648                 map->nupdates = 0;                                      \
649         }                                                               \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664         VM_MAP_UNLOCK_CONSISTENT(map);
665         if (map->system_map)
666                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667         else {
668                 sx_xunlock_(&map->lock, file, line);
669                 vm_map_process_deferred();
670         }
671 }
672
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676
677         if (map->system_map)
678                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
679         else
680                 sx_slock_(&map->lock, file, line);
681 }
682
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686
687         if (map->system_map)
688                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689         else {
690                 sx_sunlock_(&map->lock, file, line);
691                 vm_map_process_deferred();
692         }
693 }
694
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698         int error;
699
700         error = map->system_map ?
701             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702             !sx_try_xlock_(&map->lock, file, line);
703         if (error == 0)
704                 map->timestamp++;
705         return (error == 0);
706 }
707
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711         int error;
712
713         error = map->system_map ?
714             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715             !sx_try_slock_(&map->lock, file, line);
716         return (error == 0);
717 }
718
719 /*
720  *      _vm_map_lock_upgrade:   [ internal use only ]
721  *
722  *      Tries to upgrade a read (shared) lock on the specified map to a write
723  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *      returned without a read or write lock held.
726  *
727  *      Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732         unsigned int last_timestamp;
733
734         if (map->system_map) {
735                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736         } else {
737                 if (!sx_try_upgrade_(&map->lock, file, line)) {
738                         last_timestamp = map->timestamp;
739                         sx_sunlock_(&map->lock, file, line);
740                         vm_map_process_deferred();
741                         /*
742                          * If the map's timestamp does not change while the
743                          * map is unlocked, then the upgrade succeeds.
744                          */
745                         sx_xlock_(&map->lock, file, line);
746                         if (last_timestamp != map->timestamp) {
747                                 sx_xunlock_(&map->lock, file, line);
748                                 return (1);
749                         }
750                 }
751         }
752         map->timestamp++;
753         return (0);
754 }
755
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759
760         if (map->system_map) {
761                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762         } else {
763                 VM_MAP_UNLOCK_CONSISTENT(map);
764                 sx_downgrade_(&map->lock, file, line);
765         }
766 }
767
768 /*
769  *      vm_map_locked:
770  *
771  *      Returns a non-zero value if the caller holds a write (exclusive) lock
772  *      on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777
778         if (map->system_map)
779                 return (mtx_owned(&map->system_mtx));
780         else
781                 return (sx_xlocked(&map->lock));
782 }
783
784 /*
785  *      _vm_map_unlock_and_wait:
786  *
787  *      Atomically releases the lock on the specified map and puts the calling
788  *      thread to sleep.  The calling thread will remain asleep until either
789  *      vm_map_wakeup() is performed on the map or the specified timeout is
790  *      exceeded.
791  *
792  *      WARNING!  This function does not perform deferred deallocations of
793  *      objects and map entries.  Therefore, the calling thread is expected to
794  *      reacquire the map lock after reawakening and later perform an ordinary
795  *      unlock operation, such as vm_map_unlock(), before completing its
796  *      operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801
802         VM_MAP_UNLOCK_CONSISTENT(map);
803         mtx_lock(&map_sleep_mtx);
804         if (map->system_map)
805                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806         else
807                 sx_xunlock_(&map->lock, file, line);
808         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809             timo));
810 }
811
812 /*
813  *      vm_map_wakeup:
814  *
815  *      Awaken any threads that have slept on the map using
816  *      vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821
822         /*
823          * Acquire and release map_sleep_mtx to prevent a wakeup()
824          * from being performed (and lost) between the map unlock
825          * and the msleep() in _vm_map_unlock_and_wait().
826          */
827         mtx_lock(&map_sleep_mtx);
828         mtx_unlock(&map_sleep_mtx);
829         wakeup(&map->root);
830 }
831
832 void
833 vm_map_busy(vm_map_t map)
834 {
835
836         VM_MAP_ASSERT_LOCKED(map);
837         map->busy++;
838 }
839
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843
844         VM_MAP_ASSERT_LOCKED(map);
845         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848                 wakeup(&map->busy);
849         }
850 }
851
852 void 
853 vm_map_wait_busy(vm_map_t map)
854 {
855
856         VM_MAP_ASSERT_LOCKED(map);
857         while (map->busy) {
858                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859                 if (map->system_map)
860                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861                 else
862                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863         }
864         map->timestamp++;
865 }
866
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870         return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872
873 /*
874  *      vm_map_create:
875  *
876  *      Creates and returns a new empty VM map with
877  *      the given physical map structure, and having
878  *      the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883         vm_map_t result;
884
885         result = uma_zalloc(mapzone, M_WAITOK);
886         CTR1(KTR_VM, "vm_map_create: %p", result);
887         _vm_map_init(result, pmap, min, max);
888         return (result);
889 }
890
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898
899         map->header.eflags = MAP_ENTRY_HEADER;
900         map->needs_wakeup = FALSE;
901         map->system_map = 0;
902         map->pmap = pmap;
903         map->header.end = min;
904         map->header.start = max;
905         map->flags = 0;
906         map->header.left = map->header.right = &map->header;
907         map->root = NULL;
908         map->timestamp = 0;
909         map->busy = 0;
910         map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912         map->nupdates = 0;
913 #endif
914 }
915
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919
920         _vm_map_init(map, pmap, min, max);
921         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922         sx_init(&map->lock, "user map");
923 }
924
925 /*
926  *      vm_map_entry_dispose:   [ internal use only ]
927  *
928  *      Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935
936 /*
937  *      vm_map_entry_create:    [ internal use only ]
938  *
939  *      Allocates a VM map entry for insertion.
940  *      No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945         vm_map_entry_t new_entry;
946
947         if (map->system_map)
948                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949         else
950                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
951         if (new_entry == NULL)
952                 panic("vm_map_entry_create: kernel resources exhausted");
953         return (new_entry);
954 }
955
956 /*
957  *      vm_map_entry_set_behavior:
958  *
959  *      Set the expected access behavior, either normal, random, or
960  *      sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966             (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968
969 /*
970  *      vm_map_entry_max_free_{left,right}:
971  *
972  *      Compute the size of the largest free gap between two entries,
973  *      one the root of a tree and the other the ancestor of that root
974  *      that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979
980         return (root->left != left_ancestor ?
981             root->left->max_free : root->start - left_ancestor->end);
982 }
983
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987
988         return (root->right != right_ancestor ?
989             root->right->max_free : right_ancestor->start - root->end);
990 }
991
992 /*
993  *      vm_map_entry_{pred,succ}:
994  *
995  *      Find the {predecessor, successor} of the entry by taking one step
996  *      in the appropriate direction and backtracking as much as necessary.
997  *      vm_map_entry_succ is defined in vm_map.h.
998  */
999 static inline vm_map_entry_t
1000 vm_map_entry_pred(vm_map_entry_t entry)
1001 {
1002         vm_map_entry_t prior;
1003
1004         prior = entry->left;
1005         if (prior->right->start < entry->start) {
1006                 do
1007                         prior = prior->right;
1008                 while (prior->right != entry);
1009         }
1010         return (prior);
1011 }
1012
1013 static inline vm_size_t
1014 vm_size_max(vm_size_t a, vm_size_t b)
1015 {
1016
1017         return (a > b ? a : b);
1018 }
1019
1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1021         vm_map_entry_t z;                                               \
1022         vm_size_t max_free;                                             \
1023                                                                         \
1024         /*                                                              \
1025          * Infer root->right->max_free == root->max_free when           \
1026          * y->max_free < root->max_free || root->max_free == 0.         \
1027          * Otherwise, look right to find it.                            \
1028          */                                                             \
1029         y = root->left;                                                 \
1030         max_free = root->max_free;                                      \
1031         KASSERT(max_free == vm_size_max(                                \
1032             vm_map_entry_max_free_left(root, llist),                    \
1033             vm_map_entry_max_free_right(root, rlist)),                  \
1034             ("%s: max_free invariant fails", __func__));                \
1035         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1036                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1037         if (y != llist && (test)) {                                     \
1038                 /* Rotate right and make y root. */                     \
1039                 z = y->right;                                           \
1040                 if (z != root) {                                        \
1041                         root->left = z;                                 \
1042                         y->right = root;                                \
1043                         if (max_free < y->max_free)                     \
1044                             root->max_free = max_free =                 \
1045                             vm_size_max(max_free, z->max_free);         \
1046                 } else if (max_free < y->max_free)                      \
1047                         root->max_free = max_free =                     \
1048                             vm_size_max(max_free, root->start - y->end);\
1049                 root = y;                                               \
1050                 y = root->left;                                         \
1051         }                                                               \
1052         /* Copy right->max_free.  Put root on rlist. */                 \
1053         root->max_free = max_free;                                      \
1054         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1055             ("%s: max_free not copied from right", __func__));          \
1056         root->left = rlist;                                             \
1057         rlist = root;                                                   \
1058         root = y != llist ? y : NULL;                                   \
1059 } while (0)
1060
1061 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1062         vm_map_entry_t z;                                               \
1063         vm_size_t max_free;                                             \
1064                                                                         \
1065         /*                                                              \
1066          * Infer root->left->max_free == root->max_free when            \
1067          * y->max_free < root->max_free || root->max_free == 0.         \
1068          * Otherwise, look left to find it.                             \
1069          */                                                             \
1070         y = root->right;                                                \
1071         max_free = root->max_free;                                      \
1072         KASSERT(max_free == vm_size_max(                                \
1073             vm_map_entry_max_free_left(root, llist),                    \
1074             vm_map_entry_max_free_right(root, rlist)),                  \
1075             ("%s: max_free invariant fails", __func__));                \
1076         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1077                 max_free = vm_map_entry_max_free_left(root, llist);     \
1078         if (y != rlist && (test)) {                                     \
1079                 /* Rotate left and make y root. */                      \
1080                 z = y->left;                                            \
1081                 if (z != root) {                                        \
1082                         root->right = z;                                \
1083                         y->left = root;                                 \
1084                         if (max_free < y->max_free)                     \
1085                             root->max_free = max_free =                 \
1086                             vm_size_max(max_free, z->max_free);         \
1087                 } else if (max_free < y->max_free)                      \
1088                         root->max_free = max_free =                     \
1089                             vm_size_max(max_free, y->start - root->end);\
1090                 root = y;                                               \
1091                 y = root->right;                                        \
1092         }                                                               \
1093         /* Copy left->max_free.  Put root on llist. */                  \
1094         root->max_free = max_free;                                      \
1095         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1096             ("%s: max_free not copied from left", __func__));           \
1097         root->right = llist;                                            \
1098         llist = root;                                                   \
1099         root = y != rlist ? y : NULL;                                   \
1100 } while (0)
1101
1102 /*
1103  * Walk down the tree until we find addr or a gap where addr would go, breaking
1104  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1105  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1106  * the two sides in reverse order (bottom-up), with llist linked by the right
1107  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1108  * lists terminated by &map->header.  This function, and the subsequent call to
1109  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1110  * values in &map->header.
1111  */
1112 static __always_inline vm_map_entry_t
1113 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1114     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1115 {
1116         vm_map_entry_t left, right, root, y;
1117
1118         left = right = &map->header;
1119         root = map->root;
1120         while (root != NULL && root->max_free >= length) {
1121                 KASSERT(left->end <= root->start &&
1122                     root->end <= right->start,
1123                     ("%s: root not within tree bounds", __func__));
1124                 if (addr < root->start) {
1125                         SPLAY_LEFT_STEP(root, y, left, right,
1126                             y->max_free >= length && addr < y->start);
1127                 } else if (addr >= root->end) {
1128                         SPLAY_RIGHT_STEP(root, y, left, right,
1129                             y->max_free >= length && addr >= y->end);
1130                 } else
1131                         break;
1132         }
1133         *llist = left;
1134         *rlist = right;
1135         return (root);
1136 }
1137
1138 static __always_inline void
1139 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1140 {
1141         vm_map_entry_t hi, right, y;
1142
1143         right = *rlist;
1144         hi = root->right == right ? NULL : root->right;
1145         if (hi == NULL)
1146                 return;
1147         do
1148                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1149         while (hi != NULL);
1150         *rlist = right;
1151 }
1152
1153 static __always_inline void
1154 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1155 {
1156         vm_map_entry_t left, lo, y;
1157
1158         left = *llist;
1159         lo = root->left == left ? NULL : root->left;
1160         if (lo == NULL)
1161                 return;
1162         do
1163                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1164         while (lo != NULL);
1165         *llist = left;
1166 }
1167
1168 static inline void
1169 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1170 {
1171         vm_map_entry_t tmp;
1172
1173         tmp = *b;
1174         *b = *a;
1175         *a = tmp;
1176 }
1177
1178 /*
1179  * Walk back up the two spines, flip the pointers and set max_free.  The
1180  * subtrees of the root go at the bottom of llist and rlist.
1181  */
1182 static vm_size_t
1183 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1184     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1185 {
1186         do {
1187                 /*
1188                  * The max_free values of the children of llist are in
1189                  * llist->max_free and max_free.  Update with the
1190                  * max value.
1191                  */
1192                 llist->max_free = max_free =
1193                     vm_size_max(llist->max_free, max_free);
1194                 vm_map_entry_swap(&llist->right, &tail);
1195                 vm_map_entry_swap(&tail, &llist);
1196         } while (llist != header);
1197         root->left = tail;
1198         return (max_free);
1199 }
1200
1201 /*
1202  * When llist is known to be the predecessor of root.
1203  */
1204 static inline vm_size_t
1205 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1206     vm_map_entry_t llist)
1207 {
1208         vm_size_t max_free;
1209
1210         max_free = root->start - llist->end;
1211         if (llist != header) {
1212                 max_free = vm_map_splay_merge_left_walk(header, root,
1213                     root, max_free, llist);
1214         } else {
1215                 root->left = header;
1216                 header->right = root;
1217         }
1218         return (max_free);
1219 }
1220
1221 /*
1222  * When llist may or may not be the predecessor of root.
1223  */
1224 static inline vm_size_t
1225 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1226     vm_map_entry_t llist)
1227 {
1228         vm_size_t max_free;
1229
1230         max_free = vm_map_entry_max_free_left(root, llist);
1231         if (llist != header) {
1232                 max_free = vm_map_splay_merge_left_walk(header, root,
1233                     root->left == llist ? root : root->left,
1234                     max_free, llist);
1235         }
1236         return (max_free);
1237 }
1238
1239 static vm_size_t
1240 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1241     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1242 {
1243         do {
1244                 /*
1245                  * The max_free values of the children of rlist are in
1246                  * rlist->max_free and max_free.  Update with the
1247                  * max value.
1248                  */
1249                 rlist->max_free = max_free =
1250                     vm_size_max(rlist->max_free, max_free);
1251                 vm_map_entry_swap(&rlist->left, &tail);
1252                 vm_map_entry_swap(&tail, &rlist);
1253         } while (rlist != header);
1254         root->right = tail;
1255         return (max_free);
1256 }
1257
1258 /*
1259  * When rlist is known to be the succecessor of root.
1260  */
1261 static inline vm_size_t
1262 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1263     vm_map_entry_t rlist)
1264 {
1265         vm_size_t max_free;
1266
1267         max_free = rlist->start - root->end;
1268         if (rlist != header) {
1269                 max_free = vm_map_splay_merge_right_walk(header, root,
1270                     root, max_free, rlist);
1271         } else {
1272                 root->right = header;
1273                 header->left = root;
1274         }
1275         return (max_free);
1276 }
1277
1278 /*
1279  * When rlist may or may not be the succecessor of root.
1280  */
1281 static inline vm_size_t
1282 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1283     vm_map_entry_t rlist)
1284 {
1285         vm_size_t max_free;
1286
1287         max_free = vm_map_entry_max_free_right(root, rlist);
1288         if (rlist != header) {
1289                 max_free = vm_map_splay_merge_right_walk(header, root,
1290                     root->right == rlist ? root : root->right,
1291                     max_free, rlist);
1292         }
1293         return (max_free);
1294 }
1295
1296 /*
1297  *      vm_map_splay:
1298  *
1299  *      The Sleator and Tarjan top-down splay algorithm with the
1300  *      following variation.  Max_free must be computed bottom-up, so
1301  *      on the downward pass, maintain the left and right spines in
1302  *      reverse order.  Then, make a second pass up each side to fix
1303  *      the pointers and compute max_free.  The time bound is O(log n)
1304  *      amortized.
1305  *
1306  *      The tree is threaded, which means that there are no null pointers.
1307  *      When a node has no left child, its left pointer points to its
1308  *      predecessor, which the last ancestor on the search path from the root
1309  *      where the search branched right.  Likewise, when a node has no right
1310  *      child, its right pointer points to its successor.  The map header node
1311  *      is the predecessor of the first map entry, and the successor of the
1312  *      last.
1313  *
1314  *      The new root is the vm_map_entry containing "addr", or else an
1315  *      adjacent entry (lower if possible) if addr is not in the tree.
1316  *
1317  *      The map must be locked, and leaves it so.
1318  *
1319  *      Returns: the new root.
1320  */
1321 static vm_map_entry_t
1322 vm_map_splay(vm_map_t map, vm_offset_t addr)
1323 {
1324         vm_map_entry_t header, llist, rlist, root;
1325         vm_size_t max_free_left, max_free_right;
1326
1327         header = &map->header;
1328         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1329         if (root != NULL) {
1330                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1331                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1332         } else if (llist != header) {
1333                 /*
1334                  * Recover the greatest node in the left
1335                  * subtree and make it the root.
1336                  */
1337                 root = llist;
1338                 llist = root->right;
1339                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1340                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1341         } else if (rlist != header) {
1342                 /*
1343                  * Recover the least node in the right
1344                  * subtree and make it the root.
1345                  */
1346                 root = rlist;
1347                 rlist = root->left;
1348                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1349                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1350         } else {
1351                 /* There is no root. */
1352                 return (NULL);
1353         }
1354         root->max_free = vm_size_max(max_free_left, max_free_right);
1355         map->root = root;
1356         VM_MAP_ASSERT_CONSISTENT(map);
1357         return (root);
1358 }
1359
1360 /*
1361  *      vm_map_entry_{un,}link:
1362  *
1363  *      Insert/remove entries from maps.  On linking, if new entry clips
1364  *      existing entry, trim existing entry to avoid overlap, and manage
1365  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1366  *      called for, and manage offsets.  Callers should not modify fields in
1367  *      entries already mapped.
1368  */
1369 static void
1370 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1371 {
1372         vm_map_entry_t header, llist, rlist, root;
1373         vm_size_t max_free_left, max_free_right;
1374
1375         CTR3(KTR_VM,
1376             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1377             map->nentries, entry);
1378         VM_MAP_ASSERT_LOCKED(map);
1379         map->nentries++;
1380         header = &map->header;
1381         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1382         if (root == NULL) {
1383                 /*
1384                  * The new entry does not overlap any existing entry in the
1385                  * map, so it becomes the new root of the map tree.
1386                  */
1387                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1388                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1389         } else if (entry->start == root->start) {
1390                 /*
1391                  * The new entry is a clone of root, with only the end field
1392                  * changed.  The root entry will be shrunk to abut the new
1393                  * entry, and will be the right child of the new root entry in
1394                  * the modified map.
1395                  */
1396                 KASSERT(entry->end < root->end,
1397                     ("%s: clip_start not within entry", __func__));
1398                 vm_map_splay_findprev(root, &llist);
1399                 root->offset += entry->end - root->start;
1400                 root->start = entry->end;
1401                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402                 max_free_right = root->max_free = vm_size_max(
1403                     vm_map_splay_merge_pred(entry, root, entry),
1404                     vm_map_splay_merge_right(header, root, rlist));
1405         } else {
1406                 /*
1407                  * The new entry is a clone of root, with only the start field
1408                  * changed.  The root entry will be shrunk to abut the new
1409                  * entry, and will be the left child of the new root entry in
1410                  * the modified map.
1411                  */
1412                 KASSERT(entry->end == root->end,
1413                     ("%s: clip_start not within entry", __func__));
1414                 vm_map_splay_findnext(root, &rlist);
1415                 entry->offset += entry->start - root->start;
1416                 root->end = entry->start;
1417                 max_free_left = root->max_free = vm_size_max(
1418                     vm_map_splay_merge_left(header, root, llist),
1419                     vm_map_splay_merge_succ(entry, root, entry));
1420                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1421         }
1422         entry->max_free = vm_size_max(max_free_left, max_free_right);
1423         map->root = entry;
1424         VM_MAP_ASSERT_CONSISTENT(map);
1425 }
1426
1427 enum unlink_merge_type {
1428         UNLINK_MERGE_NONE,
1429         UNLINK_MERGE_NEXT
1430 };
1431
1432 static void
1433 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1434     enum unlink_merge_type op)
1435 {
1436         vm_map_entry_t header, llist, rlist, root;
1437         vm_size_t max_free_left, max_free_right;
1438
1439         VM_MAP_ASSERT_LOCKED(map);
1440         header = &map->header;
1441         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1442         KASSERT(root != NULL,
1443             ("vm_map_entry_unlink: unlink object not mapped"));
1444
1445         vm_map_splay_findprev(root, &llist);
1446         vm_map_splay_findnext(root, &rlist);
1447         if (op == UNLINK_MERGE_NEXT) {
1448                 rlist->start = root->start;
1449                 rlist->offset = root->offset;
1450         }
1451         if (llist != header) {
1452                 root = llist;
1453                 llist = root->right;
1454                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1455                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1456         } else if (rlist != header) {
1457                 root = rlist;
1458                 rlist = root->left;
1459                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1460                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1461         } else {
1462                 header->left = header->right = header;
1463                 root = NULL;
1464         }
1465         if (root != NULL)
1466                 root->max_free = vm_size_max(max_free_left, max_free_right);
1467         map->root = root;
1468         VM_MAP_ASSERT_CONSISTENT(map);
1469         map->nentries--;
1470         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1471             map->nentries, entry);
1472 }
1473
1474 /*
1475  *      vm_map_entry_resize:
1476  *
1477  *      Resize a vm_map_entry, recompute the amount of free space that
1478  *      follows it and propagate that value up the tree.
1479  *
1480  *      The map must be locked, and leaves it so.
1481  */
1482 static void
1483 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1484 {
1485         vm_map_entry_t header, llist, rlist, root;
1486
1487         VM_MAP_ASSERT_LOCKED(map);
1488         header = &map->header;
1489         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1490         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1491         vm_map_splay_findnext(root, &rlist);
1492         entry->end += grow_amount;
1493         root->max_free = vm_size_max(
1494             vm_map_splay_merge_left(header, root, llist),
1495             vm_map_splay_merge_succ(header, root, rlist));
1496         map->root = root;
1497         VM_MAP_ASSERT_CONSISTENT(map);
1498         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1499             __func__, map, map->nentries, entry);
1500 }
1501
1502 /*
1503  *      vm_map_lookup_entry:    [ internal use only ]
1504  *
1505  *      Finds the map entry containing (or
1506  *      immediately preceding) the specified address
1507  *      in the given map; the entry is returned
1508  *      in the "entry" parameter.  The boolean
1509  *      result indicates whether the address is
1510  *      actually contained in the map.
1511  */
1512 boolean_t
1513 vm_map_lookup_entry(
1514         vm_map_t map,
1515         vm_offset_t address,
1516         vm_map_entry_t *entry)  /* OUT */
1517 {
1518         vm_map_entry_t cur, header, lbound, ubound;
1519         boolean_t locked;
1520
1521         /*
1522          * If the map is empty, then the map entry immediately preceding
1523          * "address" is the map's header.
1524          */
1525         header = &map->header;
1526         cur = map->root;
1527         if (cur == NULL) {
1528                 *entry = header;
1529                 return (FALSE);
1530         }
1531         if (address >= cur->start && cur->end > address) {
1532                 *entry = cur;
1533                 return (TRUE);
1534         }
1535         if ((locked = vm_map_locked(map)) ||
1536             sx_try_upgrade(&map->lock)) {
1537                 /*
1538                  * Splay requires a write lock on the map.  However, it only
1539                  * restructures the binary search tree; it does not otherwise
1540                  * change the map.  Thus, the map's timestamp need not change
1541                  * on a temporary upgrade.
1542                  */
1543                 cur = vm_map_splay(map, address);
1544                 if (!locked) {
1545                         VM_MAP_UNLOCK_CONSISTENT(map);
1546                         sx_downgrade(&map->lock);
1547                 }
1548
1549                 /*
1550                  * If "address" is contained within a map entry, the new root
1551                  * is that map entry.  Otherwise, the new root is a map entry
1552                  * immediately before or after "address".
1553                  */
1554                 if (address < cur->start) {
1555                         *entry = header;
1556                         return (FALSE);
1557                 }
1558                 *entry = cur;
1559                 return (address < cur->end);
1560         }
1561         /*
1562          * Since the map is only locked for read access, perform a
1563          * standard binary search tree lookup for "address".
1564          */
1565         lbound = ubound = header;
1566         for (;;) {
1567                 if (address < cur->start) {
1568                         ubound = cur;
1569                         cur = cur->left;
1570                         if (cur == lbound)
1571                                 break;
1572                 } else if (cur->end <= address) {
1573                         lbound = cur;
1574                         cur = cur->right;
1575                         if (cur == ubound)
1576                                 break;
1577                 } else {
1578                         *entry = cur;
1579                         return (TRUE);
1580                 }
1581         }
1582         *entry = lbound;
1583         return (FALSE);
1584 }
1585
1586 /*
1587  *      vm_map_insert:
1588  *
1589  *      Inserts the given whole VM object into the target
1590  *      map at the specified address range.  The object's
1591  *      size should match that of the address range.
1592  *
1593  *      Requires that the map be locked, and leaves it so.
1594  *
1595  *      If object is non-NULL, ref count must be bumped by caller
1596  *      prior to making call to account for the new entry.
1597  */
1598 int
1599 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1600     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1601 {
1602         vm_map_entry_t new_entry, next_entry, prev_entry;
1603         struct ucred *cred;
1604         vm_eflags_t protoeflags;
1605         vm_inherit_t inheritance;
1606
1607         VM_MAP_ASSERT_LOCKED(map);
1608         KASSERT(object != kernel_object ||
1609             (cow & MAP_COPY_ON_WRITE) == 0,
1610             ("vm_map_insert: kernel object and COW"));
1611         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1612             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1613         KASSERT((prot & ~max) == 0,
1614             ("prot %#x is not subset of max_prot %#x", prot, max));
1615
1616         /*
1617          * Check that the start and end points are not bogus.
1618          */
1619         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1620             start >= end)
1621                 return (KERN_INVALID_ADDRESS);
1622
1623         /*
1624          * Find the entry prior to the proposed starting address; if it's part
1625          * of an existing entry, this range is bogus.
1626          */
1627         if (vm_map_lookup_entry(map, start, &prev_entry))
1628                 return (KERN_NO_SPACE);
1629
1630         /*
1631          * Assert that the next entry doesn't overlap the end point.
1632          */
1633         next_entry = vm_map_entry_succ(prev_entry);
1634         if (next_entry->start < end)
1635                 return (KERN_NO_SPACE);
1636
1637         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1638             max != VM_PROT_NONE))
1639                 return (KERN_INVALID_ARGUMENT);
1640
1641         protoeflags = 0;
1642         if (cow & MAP_COPY_ON_WRITE)
1643                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1644         if (cow & MAP_NOFAULT)
1645                 protoeflags |= MAP_ENTRY_NOFAULT;
1646         if (cow & MAP_DISABLE_SYNCER)
1647                 protoeflags |= MAP_ENTRY_NOSYNC;
1648         if (cow & MAP_DISABLE_COREDUMP)
1649                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1650         if (cow & MAP_STACK_GROWS_DOWN)
1651                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1652         if (cow & MAP_STACK_GROWS_UP)
1653                 protoeflags |= MAP_ENTRY_GROWS_UP;
1654         if (cow & MAP_WRITECOUNT)
1655                 protoeflags |= MAP_ENTRY_WRITECNT;
1656         if (cow & MAP_VN_EXEC)
1657                 protoeflags |= MAP_ENTRY_VN_EXEC;
1658         if ((cow & MAP_CREATE_GUARD) != 0)
1659                 protoeflags |= MAP_ENTRY_GUARD;
1660         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1661                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1662         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1663                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1664         if (cow & MAP_INHERIT_SHARE)
1665                 inheritance = VM_INHERIT_SHARE;
1666         else
1667                 inheritance = VM_INHERIT_DEFAULT;
1668
1669         cred = NULL;
1670         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1671                 goto charged;
1672         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1673             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1674                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1675                         return (KERN_RESOURCE_SHORTAGE);
1676                 KASSERT(object == NULL ||
1677                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1678                     object->cred == NULL,
1679                     ("overcommit: vm_map_insert o %p", object));
1680                 cred = curthread->td_ucred;
1681         }
1682
1683 charged:
1684         /* Expand the kernel pmap, if necessary. */
1685         if (map == kernel_map && end > kernel_vm_end)
1686                 pmap_growkernel(end);
1687         if (object != NULL) {
1688                 /*
1689                  * OBJ_ONEMAPPING must be cleared unless this mapping
1690                  * is trivially proven to be the only mapping for any
1691                  * of the object's pages.  (Object granularity
1692                  * reference counting is insufficient to recognize
1693                  * aliases with precision.)
1694                  */
1695                 if ((object->flags & OBJ_ANON) != 0) {
1696                         VM_OBJECT_WLOCK(object);
1697                         if (object->ref_count > 1 || object->shadow_count != 0)
1698                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1699                         VM_OBJECT_WUNLOCK(object);
1700                 }
1701         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1702             protoeflags &&
1703             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1704             MAP_VN_EXEC)) == 0 &&
1705             prev_entry->end == start && (prev_entry->cred == cred ||
1706             (prev_entry->object.vm_object != NULL &&
1707             prev_entry->object.vm_object->cred == cred)) &&
1708             vm_object_coalesce(prev_entry->object.vm_object,
1709             prev_entry->offset,
1710             (vm_size_t)(prev_entry->end - prev_entry->start),
1711             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1712             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1713                 /*
1714                  * We were able to extend the object.  Determine if we
1715                  * can extend the previous map entry to include the
1716                  * new range as well.
1717                  */
1718                 if (prev_entry->inheritance == inheritance &&
1719                     prev_entry->protection == prot &&
1720                     prev_entry->max_protection == max &&
1721                     prev_entry->wired_count == 0) {
1722                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1723                             0, ("prev_entry %p has incoherent wiring",
1724                             prev_entry));
1725                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1726                                 map->size += end - prev_entry->end;
1727                         vm_map_entry_resize(map, prev_entry,
1728                             end - prev_entry->end);
1729                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1730                         return (KERN_SUCCESS);
1731                 }
1732
1733                 /*
1734                  * If we can extend the object but cannot extend the
1735                  * map entry, we have to create a new map entry.  We
1736                  * must bump the ref count on the extended object to
1737                  * account for it.  object may be NULL.
1738                  */
1739                 object = prev_entry->object.vm_object;
1740                 offset = prev_entry->offset +
1741                     (prev_entry->end - prev_entry->start);
1742                 vm_object_reference(object);
1743                 if (cred != NULL && object != NULL && object->cred != NULL &&
1744                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1745                         /* Object already accounts for this uid. */
1746                         cred = NULL;
1747                 }
1748         }
1749         if (cred != NULL)
1750                 crhold(cred);
1751
1752         /*
1753          * Create a new entry
1754          */
1755         new_entry = vm_map_entry_create(map);
1756         new_entry->start = start;
1757         new_entry->end = end;
1758         new_entry->cred = NULL;
1759
1760         new_entry->eflags = protoeflags;
1761         new_entry->object.vm_object = object;
1762         new_entry->offset = offset;
1763
1764         new_entry->inheritance = inheritance;
1765         new_entry->protection = prot;
1766         new_entry->max_protection = max;
1767         new_entry->wired_count = 0;
1768         new_entry->wiring_thread = NULL;
1769         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1770         new_entry->next_read = start;
1771
1772         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1773             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1774         new_entry->cred = cred;
1775
1776         /*
1777          * Insert the new entry into the list
1778          */
1779         vm_map_entry_link(map, new_entry);
1780         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1781                 map->size += new_entry->end - new_entry->start;
1782
1783         /*
1784          * Try to coalesce the new entry with both the previous and next
1785          * entries in the list.  Previously, we only attempted to coalesce
1786          * with the previous entry when object is NULL.  Here, we handle the
1787          * other cases, which are less common.
1788          */
1789         vm_map_try_merge_entries(map, prev_entry, new_entry);
1790         vm_map_try_merge_entries(map, new_entry, next_entry);
1791
1792         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1793                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1794                     end - start, cow & MAP_PREFAULT_PARTIAL);
1795         }
1796
1797         return (KERN_SUCCESS);
1798 }
1799
1800 /*
1801  *      vm_map_findspace:
1802  *
1803  *      Find the first fit (lowest VM address) for "length" free bytes
1804  *      beginning at address >= start in the given map.
1805  *
1806  *      In a vm_map_entry, "max_free" is the maximum amount of
1807  *      contiguous free space between an entry in its subtree and a
1808  *      neighbor of that entry.  This allows finding a free region in
1809  *      one path down the tree, so O(log n) amortized with splay
1810  *      trees.
1811  *
1812  *      The map must be locked, and leaves it so.
1813  *
1814  *      Returns: starting address if sufficient space,
1815  *               vm_map_max(map)-length+1 if insufficient space.
1816  */
1817 vm_offset_t
1818 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1819 {
1820         vm_map_entry_t header, llist, rlist, root, y;
1821         vm_size_t left_length, max_free_left, max_free_right;
1822         vm_offset_t gap_end;
1823
1824         /*
1825          * Request must fit within min/max VM address and must avoid
1826          * address wrap.
1827          */
1828         start = MAX(start, vm_map_min(map));
1829         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1830                 return (vm_map_max(map) - length + 1);
1831
1832         /* Empty tree means wide open address space. */
1833         if (map->root == NULL)
1834                 return (start);
1835
1836         /*
1837          * After splay_split, if start is within an entry, push it to the start
1838          * of the following gap.  If rlist is at the end of the gap containing
1839          * start, save the end of that gap in gap_end to see if the gap is big
1840          * enough; otherwise set gap_end to start skip gap-checking and move
1841          * directly to a search of the right subtree.
1842          */
1843         header = &map->header;
1844         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1845         gap_end = rlist->start;
1846         if (root != NULL) {
1847                 start = root->end;
1848                 if (root->right != rlist)
1849                         gap_end = start;
1850                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1851                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1852         } else if (rlist != header) {
1853                 root = rlist;
1854                 rlist = root->left;
1855                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1856                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1857         } else {
1858                 root = llist;
1859                 llist = root->right;
1860                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1861                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1862         }
1863         root->max_free = vm_size_max(max_free_left, max_free_right);
1864         map->root = root;
1865         VM_MAP_ASSERT_CONSISTENT(map);
1866         if (length <= gap_end - start)
1867                 return (start);
1868
1869         /* With max_free, can immediately tell if no solution. */
1870         if (root->right == header || length > root->right->max_free)
1871                 return (vm_map_max(map) - length + 1);
1872
1873         /*
1874          * Splay for the least large-enough gap in the right subtree.
1875          */
1876         llist = rlist = header;
1877         for (left_length = 0;;
1878             left_length = vm_map_entry_max_free_left(root, llist)) {
1879                 if (length <= left_length)
1880                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1881                             length <= vm_map_entry_max_free_left(y, llist));
1882                 else
1883                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1884                             length > vm_map_entry_max_free_left(y, root));
1885                 if (root == NULL)
1886                         break;
1887         }
1888         root = llist;
1889         llist = root->right;
1890         max_free_left = vm_map_splay_merge_left(header, root, llist);
1891         if (rlist == header) {
1892                 root->max_free = vm_size_max(max_free_left,
1893                     vm_map_splay_merge_succ(header, root, rlist));
1894         } else {
1895                 y = rlist;
1896                 rlist = y->left;
1897                 y->max_free = vm_size_max(
1898                     vm_map_splay_merge_pred(root, y, root),
1899                     vm_map_splay_merge_right(header, y, rlist));
1900                 root->max_free = vm_size_max(max_free_left, y->max_free);
1901         }
1902         map->root = root;
1903         VM_MAP_ASSERT_CONSISTENT(map);
1904         return (root->end);
1905 }
1906
1907 int
1908 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1909     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1910     vm_prot_t max, int cow)
1911 {
1912         vm_offset_t end;
1913         int result;
1914
1915         end = start + length;
1916         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1917             object == NULL,
1918             ("vm_map_fixed: non-NULL backing object for stack"));
1919         vm_map_lock(map);
1920         VM_MAP_RANGE_CHECK(map, start, end);
1921         if ((cow & MAP_CHECK_EXCL) == 0)
1922                 vm_map_delete(map, start, end);
1923         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1924                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1925                     prot, max, cow);
1926         } else {
1927                 result = vm_map_insert(map, object, offset, start, end,
1928                     prot, max, cow);
1929         }
1930         vm_map_unlock(map);
1931         return (result);
1932 }
1933
1934 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1935 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1936
1937 static int cluster_anon = 1;
1938 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1939     &cluster_anon, 0,
1940     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1941
1942 static bool
1943 clustering_anon_allowed(vm_offset_t addr)
1944 {
1945
1946         switch (cluster_anon) {
1947         case 0:
1948                 return (false);
1949         case 1:
1950                 return (addr == 0);
1951         case 2:
1952         default:
1953                 return (true);
1954         }
1955 }
1956
1957 static long aslr_restarts;
1958 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1959     &aslr_restarts, 0,
1960     "Number of aslr failures");
1961
1962 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1963
1964 /*
1965  * Searches for the specified amount of free space in the given map with the
1966  * specified alignment.  Performs an address-ordered, first-fit search from
1967  * the given address "*addr", with an optional upper bound "max_addr".  If the
1968  * parameter "alignment" is zero, then the alignment is computed from the
1969  * given (object, offset) pair so as to enable the greatest possible use of
1970  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1971  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1972  *
1973  * The map must be locked.  Initially, there must be at least "length" bytes
1974  * of free space at the given address.
1975  */
1976 static int
1977 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1978     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1979     vm_offset_t alignment)
1980 {
1981         vm_offset_t aligned_addr, free_addr;
1982
1983         VM_MAP_ASSERT_LOCKED(map);
1984         free_addr = *addr;
1985         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1986             ("caller failed to provide space %#jx at address %p",
1987              (uintmax_t)length, (void *)free_addr));
1988         for (;;) {
1989                 /*
1990                  * At the start of every iteration, the free space at address
1991                  * "*addr" is at least "length" bytes.
1992                  */
1993                 if (alignment == 0)
1994                         pmap_align_superpage(object, offset, addr, length);
1995                 else if ((*addr & (alignment - 1)) != 0) {
1996                         *addr &= ~(alignment - 1);
1997                         *addr += alignment;
1998                 }
1999                 aligned_addr = *addr;
2000                 if (aligned_addr == free_addr) {
2001                         /*
2002                          * Alignment did not change "*addr", so "*addr" must
2003                          * still provide sufficient free space.
2004                          */
2005                         return (KERN_SUCCESS);
2006                 }
2007
2008                 /*
2009                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2010                  * be a valid address, in which case vm_map_findspace() cannot
2011                  * be relied upon to fail.
2012                  */
2013                 if (aligned_addr < free_addr)
2014                         return (KERN_NO_SPACE);
2015                 *addr = vm_map_findspace(map, aligned_addr, length);
2016                 if (*addr + length > vm_map_max(map) ||
2017                     (max_addr != 0 && *addr + length > max_addr))
2018                         return (KERN_NO_SPACE);
2019                 free_addr = *addr;
2020                 if (free_addr == aligned_addr) {
2021                         /*
2022                          * If a successful call to vm_map_findspace() did not
2023                          * change "*addr", then "*addr" must still be aligned
2024                          * and provide sufficient free space.
2025                          */
2026                         return (KERN_SUCCESS);
2027                 }
2028         }
2029 }
2030
2031 /*
2032  *      vm_map_find finds an unallocated region in the target address
2033  *      map with the given length.  The search is defined to be
2034  *      first-fit from the specified address; the region found is
2035  *      returned in the same parameter.
2036  *
2037  *      If object is non-NULL, ref count must be bumped by caller
2038  *      prior to making call to account for the new entry.
2039  */
2040 int
2041 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2042             vm_offset_t *addr,  /* IN/OUT */
2043             vm_size_t length, vm_offset_t max_addr, int find_space,
2044             vm_prot_t prot, vm_prot_t max, int cow)
2045 {
2046         vm_offset_t alignment, curr_min_addr, min_addr;
2047         int gap, pidx, rv, try;
2048         bool cluster, en_aslr, update_anon;
2049
2050         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2051             object == NULL,
2052             ("vm_map_find: non-NULL backing object for stack"));
2053         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2054             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2055         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2056             (object->flags & OBJ_COLORED) == 0))
2057                 find_space = VMFS_ANY_SPACE;
2058         if (find_space >> 8 != 0) {
2059                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2060                 alignment = (vm_offset_t)1 << (find_space >> 8);
2061         } else
2062                 alignment = 0;
2063         en_aslr = (map->flags & MAP_ASLR) != 0;
2064         update_anon = cluster = clustering_anon_allowed(*addr) &&
2065             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2066             find_space != VMFS_NO_SPACE && object == NULL &&
2067             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2068             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2069         curr_min_addr = min_addr = *addr;
2070         if (en_aslr && min_addr == 0 && !cluster &&
2071             find_space != VMFS_NO_SPACE &&
2072             (map->flags & MAP_ASLR_IGNSTART) != 0)
2073                 curr_min_addr = min_addr = vm_map_min(map);
2074         try = 0;
2075         vm_map_lock(map);
2076         if (cluster) {
2077                 curr_min_addr = map->anon_loc;
2078                 if (curr_min_addr == 0)
2079                         cluster = false;
2080         }
2081         if (find_space != VMFS_NO_SPACE) {
2082                 KASSERT(find_space == VMFS_ANY_SPACE ||
2083                     find_space == VMFS_OPTIMAL_SPACE ||
2084                     find_space == VMFS_SUPER_SPACE ||
2085                     alignment != 0, ("unexpected VMFS flag"));
2086 again:
2087                 /*
2088                  * When creating an anonymous mapping, try clustering
2089                  * with an existing anonymous mapping first.
2090                  *
2091                  * We make up to two attempts to find address space
2092                  * for a given find_space value. The first attempt may
2093                  * apply randomization or may cluster with an existing
2094                  * anonymous mapping. If this first attempt fails,
2095                  * perform a first-fit search of the available address
2096                  * space.
2097                  *
2098                  * If all tries failed, and find_space is
2099                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2100                  * Again enable clustering and randomization.
2101                  */
2102                 try++;
2103                 MPASS(try <= 2);
2104
2105                 if (try == 2) {
2106                         /*
2107                          * Second try: we failed either to find a
2108                          * suitable region for randomizing the
2109                          * allocation, or to cluster with an existing
2110                          * mapping.  Retry with free run.
2111                          */
2112                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2113                             vm_map_min(map) : min_addr;
2114                         atomic_add_long(&aslr_restarts, 1);
2115                 }
2116
2117                 if (try == 1 && en_aslr && !cluster) {
2118                         /*
2119                          * Find space for allocation, including
2120                          * gap needed for later randomization.
2121                          */
2122                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2123                             (find_space == VMFS_SUPER_SPACE || find_space ==
2124                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2125                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2126                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2127                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2128                         *addr = vm_map_findspace(map, curr_min_addr,
2129                             length + gap * pagesizes[pidx]);
2130                         if (*addr + length + gap * pagesizes[pidx] >
2131                             vm_map_max(map))
2132                                 goto again;
2133                         /* And randomize the start address. */
2134                         *addr += (arc4random() % gap) * pagesizes[pidx];
2135                         if (max_addr != 0 && *addr + length > max_addr)
2136                                 goto again;
2137                 } else {
2138                         *addr = vm_map_findspace(map, curr_min_addr, length);
2139                         if (*addr + length > vm_map_max(map) ||
2140                             (max_addr != 0 && *addr + length > max_addr)) {
2141                                 if (cluster) {
2142                                         cluster = false;
2143                                         MPASS(try == 1);
2144                                         goto again;
2145                                 }
2146                                 rv = KERN_NO_SPACE;
2147                                 goto done;
2148                         }
2149                 }
2150
2151                 if (find_space != VMFS_ANY_SPACE &&
2152                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2153                     max_addr, alignment)) != KERN_SUCCESS) {
2154                         if (find_space == VMFS_OPTIMAL_SPACE) {
2155                                 find_space = VMFS_ANY_SPACE;
2156                                 curr_min_addr = min_addr;
2157                                 cluster = update_anon;
2158                                 try = 0;
2159                                 goto again;
2160                         }
2161                         goto done;
2162                 }
2163         } else if ((cow & MAP_REMAP) != 0) {
2164                 if (*addr < vm_map_min(map) ||
2165                     *addr + length > vm_map_max(map) ||
2166                     *addr + length <= length) {
2167                         rv = KERN_INVALID_ADDRESS;
2168                         goto done;
2169                 }
2170                 vm_map_delete(map, *addr, *addr + length);
2171         }
2172         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2173                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2174                     max, cow);
2175         } else {
2176                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2177                     prot, max, cow);
2178         }
2179         if (rv == KERN_SUCCESS && update_anon)
2180                 map->anon_loc = *addr + length;
2181 done:
2182         vm_map_unlock(map);
2183         return (rv);
2184 }
2185
2186 /*
2187  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2188  *      additional parameter (min_addr) and treats the given address
2189  *      (*addr) differently.  Specifically, it treats *addr as a hint
2190  *      and not as the minimum address where the mapping is created.
2191  *
2192  *      This function works in two phases.  First, it tries to
2193  *      allocate above the hint.  If that fails and the hint is
2194  *      greater than min_addr, it performs a second pass, replacing
2195  *      the hint with min_addr as the minimum address for the
2196  *      allocation.
2197  */
2198 int
2199 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2200     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2201     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2202     int cow)
2203 {
2204         vm_offset_t hint;
2205         int rv;
2206
2207         hint = *addr;
2208         for (;;) {
2209                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2210                     find_space, prot, max, cow);
2211                 if (rv == KERN_SUCCESS || min_addr >= hint)
2212                         return (rv);
2213                 *addr = hint = min_addr;
2214         }
2215 }
2216
2217 /*
2218  * A map entry with any of the following flags set must not be merged with
2219  * another entry.
2220  */
2221 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2222             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2223
2224 static bool
2225 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2226 {
2227
2228         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2229             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2230             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2231             prev, entry));
2232         return (prev->end == entry->start &&
2233             prev->object.vm_object == entry->object.vm_object &&
2234             (prev->object.vm_object == NULL ||
2235             prev->offset + (prev->end - prev->start) == entry->offset) &&
2236             prev->eflags == entry->eflags &&
2237             prev->protection == entry->protection &&
2238             prev->max_protection == entry->max_protection &&
2239             prev->inheritance == entry->inheritance &&
2240             prev->wired_count == entry->wired_count &&
2241             prev->cred == entry->cred);
2242 }
2243
2244 static void
2245 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2246 {
2247
2248         /*
2249          * If the backing object is a vnode object, vm_object_deallocate()
2250          * calls vrele().  However, vrele() does not lock the vnode because
2251          * the vnode has additional references.  Thus, the map lock can be
2252          * kept without causing a lock-order reversal with the vnode lock.
2253          *
2254          * Since we count the number of virtual page mappings in
2255          * object->un_pager.vnp.writemappings, the writemappings value
2256          * should not be adjusted when the entry is disposed of.
2257          */
2258         if (entry->object.vm_object != NULL)
2259                 vm_object_deallocate(entry->object.vm_object);
2260         if (entry->cred != NULL)
2261                 crfree(entry->cred);
2262         vm_map_entry_dispose(map, entry);
2263 }
2264
2265 /*
2266  *      vm_map_try_merge_entries:
2267  *
2268  *      Compare the given map entry to its predecessor, and merge its precessor
2269  *      into it if possible.  The entry remains valid, and may be extended.
2270  *      The predecessor may be deleted.
2271  *
2272  *      The map must be locked.
2273  */
2274 void
2275 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2276     vm_map_entry_t entry)
2277 {
2278
2279         VM_MAP_ASSERT_LOCKED(map);
2280         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2281             vm_map_mergeable_neighbors(prev_entry, entry)) {
2282                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2283                 vm_map_merged_neighbor_dispose(map, prev_entry);
2284         }
2285 }
2286
2287 /*
2288  *      vm_map_entry_back:
2289  *
2290  *      Allocate an object to back a map entry.
2291  */
2292 static inline void
2293 vm_map_entry_back(vm_map_entry_t entry)
2294 {
2295         vm_object_t object;
2296
2297         KASSERT(entry->object.vm_object == NULL,
2298             ("map entry %p has backing object", entry));
2299         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2300             ("map entry %p is a submap", entry));
2301         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2302             entry->cred, entry->end - entry->start);
2303         entry->object.vm_object = object;
2304         entry->offset = 0;
2305         entry->cred = NULL;
2306 }
2307
2308 /*
2309  *      vm_map_entry_charge_object
2310  *
2311  *      If there is no object backing this entry, create one.  Otherwise, if
2312  *      the entry has cred, give it to the backing object.
2313  */
2314 static inline void
2315 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2316 {
2317
2318         VM_MAP_ASSERT_LOCKED(map);
2319         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2320             ("map entry %p is a submap", entry));
2321         if (entry->object.vm_object == NULL && !map->system_map &&
2322             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2323                 vm_map_entry_back(entry);
2324         else if (entry->object.vm_object != NULL &&
2325             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2326             entry->cred != NULL) {
2327                 VM_OBJECT_WLOCK(entry->object.vm_object);
2328                 KASSERT(entry->object.vm_object->cred == NULL,
2329                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2330                 entry->object.vm_object->cred = entry->cred;
2331                 entry->object.vm_object->charge = entry->end - entry->start;
2332                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2333                 entry->cred = NULL;
2334         }
2335 }
2336
2337 /*
2338  *      vm_map_entry_clone
2339  *
2340  *      Create a duplicate map entry for clipping.
2341  */
2342 static vm_map_entry_t
2343 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2344 {
2345         vm_map_entry_t new_entry;
2346
2347         VM_MAP_ASSERT_LOCKED(map);
2348
2349         /*
2350          * Create a backing object now, if none exists, so that more individual
2351          * objects won't be created after the map entry is split.
2352          */
2353         vm_map_entry_charge_object(map, entry);
2354
2355         /* Clone the entry. */
2356         new_entry = vm_map_entry_create(map);
2357         *new_entry = *entry;
2358         if (new_entry->cred != NULL)
2359                 crhold(entry->cred);
2360         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2361                 vm_object_reference(new_entry->object.vm_object);
2362                 vm_map_entry_set_vnode_text(new_entry, true);
2363                 /*
2364                  * The object->un_pager.vnp.writemappings for the object of
2365                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2366                  * virtual pages are re-distributed among the clipped entries,
2367                  * so the sum is left the same.
2368                  */
2369         }
2370         return (new_entry);
2371 }
2372
2373 /*
2374  *      vm_map_clip_start:      [ internal use only ]
2375  *
2376  *      Asserts that the given entry begins at or after
2377  *      the specified address; if necessary,
2378  *      it splits the entry into two.
2379  */
2380 #define vm_map_clip_start(map, entry, startaddr) \
2381 { \
2382         if (startaddr > entry->start) \
2383                 _vm_map_clip_start(map, entry, startaddr); \
2384 }
2385
2386 /*
2387  *      This routine is called only when it is known that
2388  *      the entry must be split.
2389  */
2390 static void
2391 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2392 {
2393         vm_map_entry_t new_entry;
2394
2395         VM_MAP_ASSERT_LOCKED(map);
2396         KASSERT(entry->end > start && entry->start < start,
2397             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2398
2399         new_entry = vm_map_entry_clone(map, entry);
2400
2401         /*
2402          * Split off the front portion.  Insert the new entry BEFORE this one,
2403          * so that this entry has the specified starting address.
2404          */
2405         new_entry->end = start;
2406         vm_map_entry_link(map, new_entry);
2407 }
2408
2409 /*
2410  *      vm_map_clip_end:        [ internal use only ]
2411  *
2412  *      Asserts that the given entry ends at or before
2413  *      the specified address; if necessary,
2414  *      it splits the entry into two.
2415  */
2416 #define vm_map_clip_end(map, entry, endaddr) \
2417 { \
2418         if ((endaddr) < (entry->end)) \
2419                 _vm_map_clip_end((map), (entry), (endaddr)); \
2420 }
2421
2422 /*
2423  *      This routine is called only when it is known that
2424  *      the entry must be split.
2425  */
2426 static void
2427 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2428 {
2429         vm_map_entry_t new_entry;
2430
2431         VM_MAP_ASSERT_LOCKED(map);
2432         KASSERT(entry->start < end && entry->end > end,
2433             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2434
2435         new_entry = vm_map_entry_clone(map, entry);
2436
2437         /*
2438          * Split off the back portion.  Insert the new entry AFTER this one,
2439          * so that this entry has the specified ending address.
2440          */
2441         new_entry->start = end;
2442         vm_map_entry_link(map, new_entry);
2443 }
2444
2445 /*
2446  *      vm_map_submap:          [ kernel use only ]
2447  *
2448  *      Mark the given range as handled by a subordinate map.
2449  *
2450  *      This range must have been created with vm_map_find,
2451  *      and no other operations may have been performed on this
2452  *      range prior to calling vm_map_submap.
2453  *
2454  *      Only a limited number of operations can be performed
2455  *      within this rage after calling vm_map_submap:
2456  *              vm_fault
2457  *      [Don't try vm_map_copy!]
2458  *
2459  *      To remove a submapping, one must first remove the
2460  *      range from the superior map, and then destroy the
2461  *      submap (if desired).  [Better yet, don't try it.]
2462  */
2463 int
2464 vm_map_submap(
2465         vm_map_t map,
2466         vm_offset_t start,
2467         vm_offset_t end,
2468         vm_map_t submap)
2469 {
2470         vm_map_entry_t entry;
2471         int result;
2472
2473         result = KERN_INVALID_ARGUMENT;
2474
2475         vm_map_lock(submap);
2476         submap->flags |= MAP_IS_SUB_MAP;
2477         vm_map_unlock(submap);
2478
2479         vm_map_lock(map);
2480
2481         VM_MAP_RANGE_CHECK(map, start, end);
2482
2483         if (vm_map_lookup_entry(map, start, &entry)) {
2484                 vm_map_clip_start(map, entry, start);
2485         } else
2486                 entry = vm_map_entry_succ(entry);
2487
2488         vm_map_clip_end(map, entry, end);
2489
2490         if ((entry->start == start) && (entry->end == end) &&
2491             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2492             (entry->object.vm_object == NULL)) {
2493                 entry->object.sub_map = submap;
2494                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2495                 result = KERN_SUCCESS;
2496         }
2497         vm_map_unlock(map);
2498
2499         if (result != KERN_SUCCESS) {
2500                 vm_map_lock(submap);
2501                 submap->flags &= ~MAP_IS_SUB_MAP;
2502                 vm_map_unlock(submap);
2503         }
2504         return (result);
2505 }
2506
2507 /*
2508  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2509  */
2510 #define MAX_INIT_PT     96
2511
2512 /*
2513  *      vm_map_pmap_enter:
2514  *
2515  *      Preload the specified map's pmap with mappings to the specified
2516  *      object's memory-resident pages.  No further physical pages are
2517  *      allocated, and no further virtual pages are retrieved from secondary
2518  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2519  *      limited number of page mappings are created at the low-end of the
2520  *      specified address range.  (For this purpose, a superpage mapping
2521  *      counts as one page mapping.)  Otherwise, all resident pages within
2522  *      the specified address range are mapped.
2523  */
2524 static void
2525 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2526     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2527 {
2528         vm_offset_t start;
2529         vm_page_t p, p_start;
2530         vm_pindex_t mask, psize, threshold, tmpidx;
2531
2532         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2533                 return;
2534         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2535                 VM_OBJECT_WLOCK(object);
2536                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2537                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2538                             size);
2539                         VM_OBJECT_WUNLOCK(object);
2540                         return;
2541                 }
2542                 VM_OBJECT_LOCK_DOWNGRADE(object);
2543         } else
2544                 VM_OBJECT_RLOCK(object);
2545
2546         psize = atop(size);
2547         if (psize + pindex > object->size) {
2548                 if (pindex >= object->size) {
2549                         VM_OBJECT_RUNLOCK(object);
2550                         return;
2551                 }
2552                 psize = object->size - pindex;
2553         }
2554
2555         start = 0;
2556         p_start = NULL;
2557         threshold = MAX_INIT_PT;
2558
2559         p = vm_page_find_least(object, pindex);
2560         /*
2561          * Assert: the variable p is either (1) the page with the
2562          * least pindex greater than or equal to the parameter pindex
2563          * or (2) NULL.
2564          */
2565         for (;
2566              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2567              p = TAILQ_NEXT(p, listq)) {
2568                 /*
2569                  * don't allow an madvise to blow away our really
2570                  * free pages allocating pv entries.
2571                  */
2572                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2573                     vm_page_count_severe()) ||
2574                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2575                     tmpidx >= threshold)) {
2576                         psize = tmpidx;
2577                         break;
2578                 }
2579                 if (vm_page_all_valid(p)) {
2580                         if (p_start == NULL) {
2581                                 start = addr + ptoa(tmpidx);
2582                                 p_start = p;
2583                         }
2584                         /* Jump ahead if a superpage mapping is possible. */
2585                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2586                             (pagesizes[p->psind] - 1)) == 0) {
2587                                 mask = atop(pagesizes[p->psind]) - 1;
2588                                 if (tmpidx + mask < psize &&
2589                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2590                                         p += mask;
2591                                         threshold += mask;
2592                                 }
2593                         }
2594                 } else if (p_start != NULL) {
2595                         pmap_enter_object(map->pmap, start, addr +
2596                             ptoa(tmpidx), p_start, prot);
2597                         p_start = NULL;
2598                 }
2599         }
2600         if (p_start != NULL)
2601                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2602                     p_start, prot);
2603         VM_OBJECT_RUNLOCK(object);
2604 }
2605
2606 /*
2607  *      vm_map_protect:
2608  *
2609  *      Sets the protection of the specified address
2610  *      region in the target map.  If "set_max" is
2611  *      specified, the maximum protection is to be set;
2612  *      otherwise, only the current protection is affected.
2613  */
2614 int
2615 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2616                vm_prot_t new_prot, boolean_t set_max)
2617 {
2618         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2619         vm_object_t obj;
2620         struct ucred *cred;
2621         vm_prot_t old_prot;
2622         int rv;
2623
2624         if (start == end)
2625                 return (KERN_SUCCESS);
2626
2627 again:
2628         in_tran = NULL;
2629         vm_map_lock(map);
2630
2631         /*
2632          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2633          * need to fault pages into the map and will drop the map lock while
2634          * doing so, and the VM object may end up in an inconsistent state if we
2635          * update the protection on the map entry in between faults.
2636          */
2637         vm_map_wait_busy(map);
2638
2639         VM_MAP_RANGE_CHECK(map, start, end);
2640
2641         if (!vm_map_lookup_entry(map, start, &first_entry))
2642                 first_entry = vm_map_entry_succ(first_entry);
2643
2644         /*
2645          * Make a first pass to check for protection violations.
2646          */
2647         for (entry = first_entry; entry->start < end;
2648             entry = vm_map_entry_succ(entry)) {
2649                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2650                         continue;
2651                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2652                         vm_map_unlock(map);
2653                         return (KERN_INVALID_ARGUMENT);
2654                 }
2655                 if ((new_prot & entry->max_protection) != new_prot) {
2656                         vm_map_unlock(map);
2657                         return (KERN_PROTECTION_FAILURE);
2658                 }
2659                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2660                         in_tran = entry;
2661         }
2662
2663         /*
2664          * Postpone the operation until all in-transition map entries have
2665          * stabilized.  An in-transition entry might already have its pages
2666          * wired and wired_count incremented, but not yet have its
2667          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2668          * vm_fault_copy_entry() in the final loop below.
2669          */
2670         if (in_tran != NULL) {
2671                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2672                 vm_map_unlock_and_wait(map, 0);
2673                 goto again;
2674         }
2675
2676         /*
2677          * Before changing the protections, try to reserve swap space for any
2678          * private (i.e., copy-on-write) mappings that are transitioning from
2679          * read-only to read/write access.  If a reservation fails, break out
2680          * of this loop early and let the next loop simplify the entries, since
2681          * some may now be mergeable.
2682          */
2683         rv = KERN_SUCCESS;
2684         vm_map_clip_start(map, first_entry, start);
2685         for (entry = first_entry; entry->start < end;
2686             entry = vm_map_entry_succ(entry)) {
2687                 vm_map_clip_end(map, entry, end);
2688
2689                 if (set_max ||
2690                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2691                     ENTRY_CHARGED(entry) ||
2692                     (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2693                         continue;
2694                 }
2695
2696                 cred = curthread->td_ucred;
2697                 obj = entry->object.vm_object;
2698
2699                 if (obj == NULL ||
2700                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2701                         if (!swap_reserve(entry->end - entry->start)) {
2702                                 rv = KERN_RESOURCE_SHORTAGE;
2703                                 end = entry->end;
2704                                 break;
2705                         }
2706                         crhold(cred);
2707                         entry->cred = cred;
2708                         continue;
2709                 }
2710
2711                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2712                         continue;
2713                 VM_OBJECT_WLOCK(obj);
2714                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2715                         VM_OBJECT_WUNLOCK(obj);
2716                         continue;
2717                 }
2718
2719                 /*
2720                  * Charge for the whole object allocation now, since
2721                  * we cannot distinguish between non-charged and
2722                  * charged clipped mapping of the same object later.
2723                  */
2724                 KASSERT(obj->charge == 0,
2725                     ("vm_map_protect: object %p overcharged (entry %p)",
2726                     obj, entry));
2727                 if (!swap_reserve(ptoa(obj->size))) {
2728                         VM_OBJECT_WUNLOCK(obj);
2729                         rv = KERN_RESOURCE_SHORTAGE;
2730                         end = entry->end;
2731                         break;
2732                 }
2733
2734                 crhold(cred);
2735                 obj->cred = cred;
2736                 obj->charge = ptoa(obj->size);
2737                 VM_OBJECT_WUNLOCK(obj);
2738         }
2739
2740         /*
2741          * If enough swap space was available, go back and fix up protections.
2742          * Otherwise, just simplify entries, since some may have been modified.
2743          * [Note that clipping is not necessary the second time.]
2744          */
2745         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2746             entry->start < end;
2747             vm_map_try_merge_entries(map, prev_entry, entry),
2748             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2749                 if (rv != KERN_SUCCESS ||
2750                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2751                         continue;
2752
2753                 old_prot = entry->protection;
2754
2755                 if (set_max)
2756                         entry->protection =
2757                             (entry->max_protection = new_prot) &
2758                             old_prot;
2759                 else
2760                         entry->protection = new_prot;
2761
2762                 /*
2763                  * For user wired map entries, the normal lazy evaluation of
2764                  * write access upgrades through soft page faults is
2765                  * undesirable.  Instead, immediately copy any pages that are
2766                  * copy-on-write and enable write access in the physical map.
2767                  */
2768                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2769                     (entry->protection & VM_PROT_WRITE) != 0 &&
2770                     (old_prot & VM_PROT_WRITE) == 0)
2771                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2772
2773                 /*
2774                  * When restricting access, update the physical map.  Worry
2775                  * about copy-on-write here.
2776                  */
2777                 if ((old_prot & ~entry->protection) != 0) {
2778 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2779                                                         VM_PROT_ALL)
2780                         pmap_protect(map->pmap, entry->start,
2781                             entry->end,
2782                             entry->protection & MASK(entry));
2783 #undef  MASK
2784                 }
2785         }
2786         vm_map_try_merge_entries(map, prev_entry, entry);
2787         vm_map_unlock(map);
2788         return (rv);
2789 }
2790
2791 /*
2792  *      vm_map_madvise:
2793  *
2794  *      This routine traverses a processes map handling the madvise
2795  *      system call.  Advisories are classified as either those effecting
2796  *      the vm_map_entry structure, or those effecting the underlying
2797  *      objects.
2798  */
2799 int
2800 vm_map_madvise(
2801         vm_map_t map,
2802         vm_offset_t start,
2803         vm_offset_t end,
2804         int behav)
2805 {
2806         vm_map_entry_t entry, prev_entry;
2807         bool modify_map;
2808
2809         /*
2810          * Some madvise calls directly modify the vm_map_entry, in which case
2811          * we need to use an exclusive lock on the map and we need to perform
2812          * various clipping operations.  Otherwise we only need a read-lock
2813          * on the map.
2814          */
2815         switch(behav) {
2816         case MADV_NORMAL:
2817         case MADV_SEQUENTIAL:
2818         case MADV_RANDOM:
2819         case MADV_NOSYNC:
2820         case MADV_AUTOSYNC:
2821         case MADV_NOCORE:
2822         case MADV_CORE:
2823                 if (start == end)
2824                         return (0);
2825                 modify_map = true;
2826                 vm_map_lock(map);
2827                 break;
2828         case MADV_WILLNEED:
2829         case MADV_DONTNEED:
2830         case MADV_FREE:
2831                 if (start == end)
2832                         return (0);
2833                 modify_map = false;
2834                 vm_map_lock_read(map);
2835                 break;
2836         default:
2837                 return (EINVAL);
2838         }
2839
2840         /*
2841          * Locate starting entry and clip if necessary.
2842          */
2843         VM_MAP_RANGE_CHECK(map, start, end);
2844
2845         if (vm_map_lookup_entry(map, start, &entry)) {
2846                 if (modify_map)
2847                         vm_map_clip_start(map, entry, start);
2848                 prev_entry = vm_map_entry_pred(entry);
2849         } else {
2850                 prev_entry = entry;
2851                 entry = vm_map_entry_succ(entry);
2852         }
2853
2854         if (modify_map) {
2855                 /*
2856                  * madvise behaviors that are implemented in the vm_map_entry.
2857                  *
2858                  * We clip the vm_map_entry so that behavioral changes are
2859                  * limited to the specified address range.
2860                  */
2861                 for (; entry->start < end;
2862                      prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2863                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2864                                 continue;
2865
2866                         vm_map_clip_end(map, entry, end);
2867
2868                         switch (behav) {
2869                         case MADV_NORMAL:
2870                                 vm_map_entry_set_behavior(entry,
2871                                     MAP_ENTRY_BEHAV_NORMAL);
2872                                 break;
2873                         case MADV_SEQUENTIAL:
2874                                 vm_map_entry_set_behavior(entry,
2875                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2876                                 break;
2877                         case MADV_RANDOM:
2878                                 vm_map_entry_set_behavior(entry,
2879                                     MAP_ENTRY_BEHAV_RANDOM);
2880                                 break;
2881                         case MADV_NOSYNC:
2882                                 entry->eflags |= MAP_ENTRY_NOSYNC;
2883                                 break;
2884                         case MADV_AUTOSYNC:
2885                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
2886                                 break;
2887                         case MADV_NOCORE:
2888                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2889                                 break;
2890                         case MADV_CORE:
2891                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2892                                 break;
2893                         default:
2894                                 break;
2895                         }
2896                         vm_map_try_merge_entries(map, prev_entry, entry);
2897                 }
2898                 vm_map_try_merge_entries(map, prev_entry, entry);
2899                 vm_map_unlock(map);
2900         } else {
2901                 vm_pindex_t pstart, pend;
2902
2903                 /*
2904                  * madvise behaviors that are implemented in the underlying
2905                  * vm_object.
2906                  *
2907                  * Since we don't clip the vm_map_entry, we have to clip
2908                  * the vm_object pindex and count.
2909                  */
2910                 for (; entry->start < end;
2911                     entry = vm_map_entry_succ(entry)) {
2912                         vm_offset_t useEnd, useStart;
2913
2914                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2915                                 continue;
2916
2917                         /*
2918                          * MADV_FREE would otherwise rewind time to
2919                          * the creation of the shadow object.  Because
2920                          * we hold the VM map read-locked, neither the
2921                          * entry's object nor the presence of a
2922                          * backing object can change.
2923                          */
2924                         if (behav == MADV_FREE &&
2925                             entry->object.vm_object != NULL &&
2926                             entry->object.vm_object->backing_object != NULL)
2927                                 continue;
2928
2929                         pstart = OFF_TO_IDX(entry->offset);
2930                         pend = pstart + atop(entry->end - entry->start);
2931                         useStart = entry->start;
2932                         useEnd = entry->end;
2933
2934                         if (entry->start < start) {
2935                                 pstart += atop(start - entry->start);
2936                                 useStart = start;
2937                         }
2938                         if (entry->end > end) {
2939                                 pend -= atop(entry->end - end);
2940                                 useEnd = end;
2941                         }
2942
2943                         if (pstart >= pend)
2944                                 continue;
2945
2946                         /*
2947                          * Perform the pmap_advise() before clearing
2948                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2949                          * concurrent pmap operation, such as pmap_remove(),
2950                          * could clear a reference in the pmap and set
2951                          * PGA_REFERENCED on the page before the pmap_advise()
2952                          * had completed.  Consequently, the page would appear
2953                          * referenced based upon an old reference that
2954                          * occurred before this pmap_advise() ran.
2955                          */
2956                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2957                                 pmap_advise(map->pmap, useStart, useEnd,
2958                                     behav);
2959
2960                         vm_object_madvise(entry->object.vm_object, pstart,
2961                             pend, behav);
2962
2963                         /*
2964                          * Pre-populate paging structures in the
2965                          * WILLNEED case.  For wired entries, the
2966                          * paging structures are already populated.
2967                          */
2968                         if (behav == MADV_WILLNEED &&
2969                             entry->wired_count == 0) {
2970                                 vm_map_pmap_enter(map,
2971                                     useStart,
2972                                     entry->protection,
2973                                     entry->object.vm_object,
2974                                     pstart,
2975                                     ptoa(pend - pstart),
2976                                     MAP_PREFAULT_MADVISE
2977                                 );
2978                         }
2979                 }
2980                 vm_map_unlock_read(map);
2981         }
2982         return (0);
2983 }
2984
2985
2986 /*
2987  *      vm_map_inherit:
2988  *
2989  *      Sets the inheritance of the specified address
2990  *      range in the target map.  Inheritance
2991  *      affects how the map will be shared with
2992  *      child maps at the time of vmspace_fork.
2993  */
2994 int
2995 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2996                vm_inherit_t new_inheritance)
2997 {
2998         vm_map_entry_t entry, prev_entry;
2999
3000         switch (new_inheritance) {
3001         case VM_INHERIT_NONE:
3002         case VM_INHERIT_COPY:
3003         case VM_INHERIT_SHARE:
3004         case VM_INHERIT_ZERO:
3005                 break;
3006         default:
3007                 return (KERN_INVALID_ARGUMENT);
3008         }
3009         if (start == end)
3010                 return (KERN_SUCCESS);
3011         vm_map_lock(map);
3012         VM_MAP_RANGE_CHECK(map, start, end);
3013         if (vm_map_lookup_entry(map, start, &prev_entry)) {
3014                 entry = prev_entry;
3015                 vm_map_clip_start(map, entry, start);
3016                 prev_entry = vm_map_entry_pred(entry);
3017         } else
3018                 entry = vm_map_entry_succ(prev_entry);
3019         for (; entry->start < end;
3020             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3021                 vm_map_clip_end(map, entry, end);
3022                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3023                     new_inheritance != VM_INHERIT_ZERO)
3024                         entry->inheritance = new_inheritance;
3025                 vm_map_try_merge_entries(map, prev_entry, entry);
3026         }
3027         vm_map_try_merge_entries(map, prev_entry, entry);
3028         vm_map_unlock(map);
3029         return (KERN_SUCCESS);
3030 }
3031
3032 /*
3033  *      vm_map_entry_in_transition:
3034  *
3035  *      Release the map lock, and sleep until the entry is no longer in
3036  *      transition.  Awake and acquire the map lock.  If the map changed while
3037  *      another held the lock, lookup a possibly-changed entry at or after the
3038  *      'start' position of the old entry.
3039  */
3040 static vm_map_entry_t
3041 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3042     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3043 {
3044         vm_map_entry_t entry;
3045         vm_offset_t start;
3046         u_int last_timestamp;
3047
3048         VM_MAP_ASSERT_LOCKED(map);
3049         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3050             ("not in-tranition map entry %p", in_entry));
3051         /*
3052          * We have not yet clipped the entry.
3053          */
3054         start = MAX(in_start, in_entry->start);
3055         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3056         last_timestamp = map->timestamp;
3057         if (vm_map_unlock_and_wait(map, 0)) {
3058                 /*
3059                  * Allow interruption of user wiring/unwiring?
3060                  */
3061         }
3062         vm_map_lock(map);
3063         if (last_timestamp + 1 == map->timestamp)
3064                 return (in_entry);
3065
3066         /*
3067          * Look again for the entry because the map was modified while it was
3068          * unlocked.  Specifically, the entry may have been clipped, merged, or
3069          * deleted.
3070          */
3071         if (!vm_map_lookup_entry(map, start, &entry)) {
3072                 if (!holes_ok) {
3073                         *io_end = start;
3074                         return (NULL);
3075                 }
3076                 entry = vm_map_entry_succ(entry);
3077         }
3078         return (entry);
3079 }
3080
3081 /*
3082  *      vm_map_unwire:
3083  *
3084  *      Implements both kernel and user unwiring.
3085  */
3086 int
3087 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3088     int flags)
3089 {
3090         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3091         int rv;
3092         bool holes_ok, need_wakeup, user_unwire;
3093
3094         if (start == end)
3095                 return (KERN_SUCCESS);
3096         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3097         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3098         vm_map_lock(map);
3099         VM_MAP_RANGE_CHECK(map, start, end);
3100         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3101                 if (holes_ok)
3102                         first_entry = vm_map_entry_succ(first_entry);
3103                 else {
3104                         vm_map_unlock(map);
3105                         return (KERN_INVALID_ADDRESS);
3106                 }
3107         }
3108         rv = KERN_SUCCESS;
3109         for (entry = first_entry; entry->start < end; entry = next_entry) {
3110                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3111                         /*
3112                          * We have not yet clipped the entry.
3113                          */
3114                         next_entry = vm_map_entry_in_transition(map, start,
3115                             &end, holes_ok, entry);
3116                         if (next_entry == NULL) {
3117                                 if (entry == first_entry) {
3118                                         vm_map_unlock(map);
3119                                         return (KERN_INVALID_ADDRESS);
3120                                 }
3121                                 rv = KERN_INVALID_ADDRESS;
3122                                 break;
3123                         }
3124                         first_entry = (entry == first_entry) ?
3125                             next_entry : NULL;
3126                         continue;
3127                 }
3128                 vm_map_clip_start(map, entry, start);
3129                 vm_map_clip_end(map, entry, end);
3130                 /*
3131                  * Mark the entry in case the map lock is released.  (See
3132                  * above.)
3133                  */
3134                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3135                     entry->wiring_thread == NULL,
3136                     ("owned map entry %p", entry));
3137                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3138                 entry->wiring_thread = curthread;
3139                 next_entry = vm_map_entry_succ(entry);
3140                 /*
3141                  * Check the map for holes in the specified region.
3142                  * If holes_ok, skip this check.
3143                  */
3144                 if (!holes_ok &&
3145                     entry->end < end && next_entry->start > entry->end) {
3146                         end = entry->end;
3147                         rv = KERN_INVALID_ADDRESS;
3148                         break;
3149                 }
3150                 /*
3151                  * If system unwiring, require that the entry is system wired.
3152                  */
3153                 if (!user_unwire &&
3154                     vm_map_entry_system_wired_count(entry) == 0) {
3155                         end = entry->end;
3156                         rv = KERN_INVALID_ARGUMENT;
3157                         break;
3158                 }
3159         }
3160         need_wakeup = false;
3161         if (first_entry == NULL &&
3162             !vm_map_lookup_entry(map, start, &first_entry)) {
3163                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3164                 prev_entry = first_entry;
3165                 entry = vm_map_entry_succ(first_entry);
3166         } else {
3167                 prev_entry = vm_map_entry_pred(first_entry);
3168                 entry = first_entry;
3169         }
3170         for (; entry->start < end;
3171             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3172                 /*
3173                  * If holes_ok was specified, an empty
3174                  * space in the unwired region could have been mapped
3175                  * while the map lock was dropped for draining
3176                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3177                  * could be simultaneously wiring this new mapping
3178                  * entry.  Detect these cases and skip any entries
3179                  * marked as in transition by us.
3180                  */
3181                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3182                     entry->wiring_thread != curthread) {
3183                         KASSERT(holes_ok,
3184                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3185                         continue;
3186                 }
3187
3188                 if (rv == KERN_SUCCESS && (!user_unwire ||
3189                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3190                         if (entry->wired_count == 1)
3191                                 vm_map_entry_unwire(map, entry);
3192                         else
3193                                 entry->wired_count--;
3194                         if (user_unwire)
3195                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3196                 }
3197                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3198                     ("vm_map_unwire: in-transition flag missing %p", entry));
3199                 KASSERT(entry->wiring_thread == curthread,
3200                     ("vm_map_unwire: alien wire %p", entry));
3201                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3202                 entry->wiring_thread = NULL;
3203                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3204                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3205                         need_wakeup = true;
3206                 }
3207                 vm_map_try_merge_entries(map, prev_entry, entry);
3208         }
3209         vm_map_try_merge_entries(map, prev_entry, entry);
3210         vm_map_unlock(map);
3211         if (need_wakeup)
3212                 vm_map_wakeup(map);
3213         return (rv);
3214 }
3215
3216 static void
3217 vm_map_wire_user_count_sub(u_long npages)
3218 {
3219
3220         atomic_subtract_long(&vm_user_wire_count, npages);
3221 }
3222
3223 static bool
3224 vm_map_wire_user_count_add(u_long npages)
3225 {
3226         u_long wired;
3227
3228         wired = vm_user_wire_count;
3229         do {
3230                 if (npages + wired > vm_page_max_user_wired)
3231                         return (false);
3232         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3233             npages + wired));
3234
3235         return (true);
3236 }
3237
3238 /*
3239  *      vm_map_wire_entry_failure:
3240  *
3241  *      Handle a wiring failure on the given entry.
3242  *
3243  *      The map should be locked.
3244  */
3245 static void
3246 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3247     vm_offset_t failed_addr)
3248 {
3249
3250         VM_MAP_ASSERT_LOCKED(map);
3251         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3252             entry->wired_count == 1,
3253             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3254         KASSERT(failed_addr < entry->end,
3255             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3256
3257         /*
3258          * If any pages at the start of this entry were successfully wired,
3259          * then unwire them.
3260          */
3261         if (failed_addr > entry->start) {
3262                 pmap_unwire(map->pmap, entry->start, failed_addr);
3263                 vm_object_unwire(entry->object.vm_object, entry->offset,
3264                     failed_addr - entry->start, PQ_ACTIVE);
3265         }
3266
3267         /*
3268          * Assign an out-of-range value to represent the failure to wire this
3269          * entry.
3270          */
3271         entry->wired_count = -1;
3272 }
3273
3274 int
3275 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3276 {
3277         int rv;
3278
3279         vm_map_lock(map);
3280         rv = vm_map_wire_locked(map, start, end, flags);
3281         vm_map_unlock(map);
3282         return (rv);
3283 }
3284
3285
3286 /*
3287  *      vm_map_wire_locked:
3288  *
3289  *      Implements both kernel and user wiring.  Returns with the map locked,
3290  *      the map lock may be dropped.
3291  */
3292 int
3293 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3294 {
3295         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3296         vm_offset_t faddr, saved_end, saved_start;
3297         u_long npages;
3298         u_int last_timestamp;
3299         int rv;
3300         bool holes_ok, need_wakeup, user_wire;
3301         vm_prot_t prot;
3302
3303         VM_MAP_ASSERT_LOCKED(map);
3304
3305         if (start == end)
3306                 return (KERN_SUCCESS);
3307         prot = 0;
3308         if (flags & VM_MAP_WIRE_WRITE)
3309                 prot |= VM_PROT_WRITE;
3310         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3311         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3312         VM_MAP_RANGE_CHECK(map, start, end);
3313         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3314                 if (holes_ok)
3315                         first_entry = vm_map_entry_succ(first_entry);
3316                 else
3317                         return (KERN_INVALID_ADDRESS);
3318         }
3319         for (entry = first_entry; entry->start < end; entry = next_entry) {
3320                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3321                         /*
3322                          * We have not yet clipped the entry.
3323                          */
3324                         next_entry = vm_map_entry_in_transition(map, start,
3325                             &end, holes_ok, entry);
3326                         if (next_entry == NULL) {
3327                                 if (entry == first_entry)
3328                                         return (KERN_INVALID_ADDRESS);
3329                                 rv = KERN_INVALID_ADDRESS;
3330                                 goto done;
3331                         }
3332                         first_entry = (entry == first_entry) ?
3333                             next_entry : NULL;
3334                         continue;
3335                 }
3336                 vm_map_clip_start(map, entry, start);
3337                 vm_map_clip_end(map, entry, end);
3338                 /*
3339                  * Mark the entry in case the map lock is released.  (See
3340                  * above.)
3341                  */
3342                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3343                     entry->wiring_thread == NULL,
3344                     ("owned map entry %p", entry));
3345                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3346                 entry->wiring_thread = curthread;
3347                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3348                     || (entry->protection & prot) != prot) {
3349                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3350                         if (!holes_ok) {
3351                                 end = entry->end;
3352                                 rv = KERN_INVALID_ADDRESS;
3353                                 goto done;
3354                         }
3355                 } else if (entry->wired_count == 0) {
3356                         entry->wired_count++;
3357
3358                         npages = atop(entry->end - entry->start);
3359                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3360                                 vm_map_wire_entry_failure(map, entry,
3361                                     entry->start);
3362                                 end = entry->end;
3363                                 rv = KERN_RESOURCE_SHORTAGE;
3364                                 goto done;
3365                         }
3366
3367                         /*
3368                          * Release the map lock, relying on the in-transition
3369                          * mark.  Mark the map busy for fork.
3370                          */
3371                         saved_start = entry->start;
3372                         saved_end = entry->end;
3373                         last_timestamp = map->timestamp;
3374                         vm_map_busy(map);
3375                         vm_map_unlock(map);
3376
3377                         faddr = saved_start;
3378                         do {
3379                                 /*
3380                                  * Simulate a fault to get the page and enter
3381                                  * it into the physical map.
3382                                  */
3383                                 if ((rv = vm_fault(map, faddr,
3384                                     VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3385                                     KERN_SUCCESS)
3386                                         break;
3387                         } while ((faddr += PAGE_SIZE) < saved_end);
3388                         vm_map_lock(map);
3389                         vm_map_unbusy(map);
3390                         if (last_timestamp + 1 != map->timestamp) {
3391                                 /*
3392                                  * Look again for the entry because the map was
3393                                  * modified while it was unlocked.  The entry
3394                                  * may have been clipped, but NOT merged or
3395                                  * deleted.
3396                                  */
3397                                 if (!vm_map_lookup_entry(map, saved_start,
3398                                     &next_entry))
3399                                         KASSERT(false,
3400                                             ("vm_map_wire: lookup failed"));
3401                                 first_entry = (entry == first_entry) ?
3402                                     next_entry : NULL;
3403                                 for (entry = next_entry; entry->end < saved_end;
3404                                     entry = vm_map_entry_succ(entry)) {
3405                                         /*
3406                                          * In case of failure, handle entries
3407                                          * that were not fully wired here;
3408                                          * fully wired entries are handled
3409                                          * later.
3410                                          */
3411                                         if (rv != KERN_SUCCESS &&
3412                                             faddr < entry->end)
3413                                                 vm_map_wire_entry_failure(map,
3414                                                     entry, faddr);
3415                                 }
3416                         }
3417                         if (rv != KERN_SUCCESS) {
3418                                 vm_map_wire_entry_failure(map, entry, faddr);
3419                                 if (user_wire)
3420                                         vm_map_wire_user_count_sub(npages);
3421                                 end = entry->end;
3422                                 goto done;
3423                         }
3424                 } else if (!user_wire ||
3425                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3426                         entry->wired_count++;
3427                 }
3428                 /*
3429                  * Check the map for holes in the specified region.
3430                  * If holes_ok was specified, skip this check.
3431                  */
3432                 next_entry = vm_map_entry_succ(entry);
3433                 if (!holes_ok &&
3434                     entry->end < end && next_entry->start > entry->end) {
3435                         end = entry->end;
3436                         rv = KERN_INVALID_ADDRESS;
3437                         goto done;
3438                 }
3439         }
3440         rv = KERN_SUCCESS;
3441 done:
3442         need_wakeup = false;
3443         if (first_entry == NULL &&
3444             !vm_map_lookup_entry(map, start, &first_entry)) {
3445                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3446                 prev_entry = first_entry;
3447                 entry = vm_map_entry_succ(first_entry);
3448         } else {
3449                 prev_entry = vm_map_entry_pred(first_entry);
3450                 entry = first_entry;
3451         }
3452         for (; entry->start < end;
3453             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3454                 /*
3455                  * If holes_ok was specified, an empty
3456                  * space in the unwired region could have been mapped
3457                  * while the map lock was dropped for faulting in the
3458                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3459                  * Moreover, another thread could be simultaneously
3460                  * wiring this new mapping entry.  Detect these cases
3461                  * and skip any entries marked as in transition not by us.
3462                  */
3463                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3464                     entry->wiring_thread != curthread) {
3465                         KASSERT(holes_ok,
3466                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3467                         continue;
3468                 }
3469
3470                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3471                         /* do nothing */
3472                 } else if (rv == KERN_SUCCESS) {
3473                         if (user_wire)
3474                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3475                 } else if (entry->wired_count == -1) {
3476                         /*
3477                          * Wiring failed on this entry.  Thus, unwiring is
3478                          * unnecessary.
3479                          */
3480                         entry->wired_count = 0;
3481                 } else if (!user_wire ||
3482                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3483                         /*
3484                          * Undo the wiring.  Wiring succeeded on this entry
3485                          * but failed on a later entry.  
3486                          */
3487                         if (entry->wired_count == 1) {
3488                                 vm_map_entry_unwire(map, entry);
3489                                 if (user_wire)
3490                                         vm_map_wire_user_count_sub(
3491                                             atop(entry->end - entry->start));
3492                         } else
3493                                 entry->wired_count--;
3494                 }
3495                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3496                     ("vm_map_wire: in-transition flag missing %p", entry));
3497                 KASSERT(entry->wiring_thread == curthread,
3498                     ("vm_map_wire: alien wire %p", entry));
3499                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3500                     MAP_ENTRY_WIRE_SKIPPED);
3501                 entry->wiring_thread = NULL;
3502                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3503                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3504                         need_wakeup = true;
3505                 }
3506                 vm_map_try_merge_entries(map, prev_entry, entry);
3507         }
3508         vm_map_try_merge_entries(map, prev_entry, entry);
3509         if (need_wakeup)
3510                 vm_map_wakeup(map);
3511         return (rv);
3512 }
3513
3514 /*
3515  * vm_map_sync
3516  *
3517  * Push any dirty cached pages in the address range to their pager.
3518  * If syncio is TRUE, dirty pages are written synchronously.
3519  * If invalidate is TRUE, any cached pages are freed as well.
3520  *
3521  * If the size of the region from start to end is zero, we are
3522  * supposed to flush all modified pages within the region containing
3523  * start.  Unfortunately, a region can be split or coalesced with
3524  * neighboring regions, making it difficult to determine what the
3525  * original region was.  Therefore, we approximate this requirement by
3526  * flushing the current region containing start.
3527  *
3528  * Returns an error if any part of the specified range is not mapped.
3529  */
3530 int
3531 vm_map_sync(
3532         vm_map_t map,
3533         vm_offset_t start,
3534         vm_offset_t end,
3535         boolean_t syncio,
3536         boolean_t invalidate)
3537 {
3538         vm_map_entry_t entry, first_entry, next_entry;
3539         vm_size_t size;
3540         vm_object_t object;
3541         vm_ooffset_t offset;
3542         unsigned int last_timestamp;
3543         boolean_t failed;
3544
3545         vm_map_lock_read(map);
3546         VM_MAP_RANGE_CHECK(map, start, end);
3547         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3548                 vm_map_unlock_read(map);
3549                 return (KERN_INVALID_ADDRESS);
3550         } else if (start == end) {
3551                 start = first_entry->start;
3552                 end = first_entry->end;
3553         }
3554         /*
3555          * Make a first pass to check for user-wired memory and holes.
3556          */
3557         for (entry = first_entry; entry->start < end; entry = next_entry) {
3558                 if (invalidate &&
3559                     (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3560                         vm_map_unlock_read(map);
3561                         return (KERN_INVALID_ARGUMENT);
3562                 }
3563                 next_entry = vm_map_entry_succ(entry);
3564                 if (end > entry->end &&
3565                     entry->end != next_entry->start) {
3566                         vm_map_unlock_read(map);
3567                         return (KERN_INVALID_ADDRESS);
3568                 }
3569         }
3570
3571         if (invalidate)
3572                 pmap_remove(map->pmap, start, end);
3573         failed = FALSE;
3574
3575         /*
3576          * Make a second pass, cleaning/uncaching pages from the indicated
3577          * objects as we go.
3578          */
3579         for (entry = first_entry; entry->start < end;) {
3580                 offset = entry->offset + (start - entry->start);
3581                 size = (end <= entry->end ? end : entry->end) - start;
3582                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3583                         vm_map_t smap;
3584                         vm_map_entry_t tentry;
3585                         vm_size_t tsize;
3586
3587                         smap = entry->object.sub_map;
3588                         vm_map_lock_read(smap);
3589                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3590                         tsize = tentry->end - offset;
3591                         if (tsize < size)
3592                                 size = tsize;
3593                         object = tentry->object.vm_object;
3594                         offset = tentry->offset + (offset - tentry->start);
3595                         vm_map_unlock_read(smap);
3596                 } else {
3597                         object = entry->object.vm_object;
3598                 }
3599                 vm_object_reference(object);
3600                 last_timestamp = map->timestamp;
3601                 vm_map_unlock_read(map);
3602                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3603                         failed = TRUE;
3604                 start += size;
3605                 vm_object_deallocate(object);
3606                 vm_map_lock_read(map);
3607                 if (last_timestamp == map->timestamp ||
3608                     !vm_map_lookup_entry(map, start, &entry))
3609                         entry = vm_map_entry_succ(entry);
3610         }
3611
3612         vm_map_unlock_read(map);
3613         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3614 }
3615
3616 /*
3617  *      vm_map_entry_unwire:    [ internal use only ]
3618  *
3619  *      Make the region specified by this entry pageable.
3620  *
3621  *      The map in question should be locked.
3622  *      [This is the reason for this routine's existence.]
3623  */
3624 static void
3625 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3626 {
3627         vm_size_t size;
3628
3629         VM_MAP_ASSERT_LOCKED(map);
3630         KASSERT(entry->wired_count > 0,
3631             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3632
3633         size = entry->end - entry->start;
3634         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3635                 vm_map_wire_user_count_sub(atop(size));
3636         pmap_unwire(map->pmap, entry->start, entry->end);
3637         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3638             PQ_ACTIVE);
3639         entry->wired_count = 0;
3640 }
3641
3642 static void
3643 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3644 {
3645
3646         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3647                 vm_object_deallocate(entry->object.vm_object);
3648         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3649 }
3650
3651 /*
3652  *      vm_map_entry_delete:    [ internal use only ]
3653  *
3654  *      Deallocate the given entry from the target map.
3655  */
3656 static void
3657 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3658 {
3659         vm_object_t object;
3660         vm_pindex_t offidxstart, offidxend, count, size1;
3661         vm_size_t size;
3662
3663         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3664         object = entry->object.vm_object;
3665
3666         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3667                 MPASS(entry->cred == NULL);
3668                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3669                 MPASS(object == NULL);
3670                 vm_map_entry_deallocate(entry, map->system_map);
3671                 return;
3672         }
3673
3674         size = entry->end - entry->start;
3675         map->size -= size;
3676
3677         if (entry->cred != NULL) {
3678                 swap_release_by_cred(size, entry->cred);
3679                 crfree(entry->cred);
3680         }
3681
3682         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3683                 entry->object.vm_object = NULL;
3684         } else if ((object->flags & OBJ_ANON) != 0 ||
3685             object == kernel_object) {
3686                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3687                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3688                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3689                 count = atop(size);
3690                 offidxstart = OFF_TO_IDX(entry->offset);
3691                 offidxend = offidxstart + count;
3692                 VM_OBJECT_WLOCK(object);
3693                 if (object->ref_count != 1 &&
3694                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3695                     object == kernel_object)) {
3696                         vm_object_collapse(object);
3697
3698                         /*
3699                          * The option OBJPR_NOTMAPPED can be passed here
3700                          * because vm_map_delete() already performed
3701                          * pmap_remove() on the only mapping to this range
3702                          * of pages. 
3703                          */
3704                         vm_object_page_remove(object, offidxstart, offidxend,
3705                             OBJPR_NOTMAPPED);
3706                         if (object->type == OBJT_SWAP)
3707                                 swap_pager_freespace(object, offidxstart,
3708                                     count);
3709                         if (offidxend >= object->size &&
3710                             offidxstart < object->size) {
3711                                 size1 = object->size;
3712                                 object->size = offidxstart;
3713                                 if (object->cred != NULL) {
3714                                         size1 -= object->size;
3715                                         KASSERT(object->charge >= ptoa(size1),
3716                                             ("object %p charge < 0", object));
3717                                         swap_release_by_cred(ptoa(size1),
3718                                             object->cred);
3719                                         object->charge -= ptoa(size1);
3720                                 }
3721                         }
3722                 }
3723                 VM_OBJECT_WUNLOCK(object);
3724         }
3725         if (map->system_map)
3726                 vm_map_entry_deallocate(entry, TRUE);
3727         else {
3728                 entry->defer_next = curthread->td_map_def_user;
3729                 curthread->td_map_def_user = entry;
3730         }
3731 }
3732
3733 /*
3734  *      vm_map_delete:  [ internal use only ]
3735  *
3736  *      Deallocates the given address range from the target
3737  *      map.
3738  */
3739 int
3740 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3741 {
3742         vm_map_entry_t entry;
3743         vm_map_entry_t first_entry;
3744
3745         VM_MAP_ASSERT_LOCKED(map);
3746         if (start == end)
3747                 return (KERN_SUCCESS);
3748
3749         /*
3750          * Find the start of the region, and clip it
3751          */
3752         if (!vm_map_lookup_entry(map, start, &first_entry))
3753                 entry = vm_map_entry_succ(first_entry);
3754         else {
3755                 entry = first_entry;
3756                 vm_map_clip_start(map, entry, start);
3757         }
3758
3759         /*
3760          * Step through all entries in this region
3761          */
3762         while (entry->start < end) {
3763                 vm_map_entry_t next;
3764
3765                 /*
3766                  * Wait for wiring or unwiring of an entry to complete.
3767                  * Also wait for any system wirings to disappear on
3768                  * user maps.
3769                  */
3770                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3771                     (vm_map_pmap(map) != kernel_pmap &&
3772                     vm_map_entry_system_wired_count(entry) != 0)) {
3773                         unsigned int last_timestamp;
3774                         vm_offset_t saved_start;
3775                         vm_map_entry_t tmp_entry;
3776
3777                         saved_start = entry->start;
3778                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3779                         last_timestamp = map->timestamp;
3780                         (void) vm_map_unlock_and_wait(map, 0);
3781                         vm_map_lock(map);
3782                         if (last_timestamp + 1 != map->timestamp) {
3783                                 /*
3784                                  * Look again for the entry because the map was
3785                                  * modified while it was unlocked.
3786                                  * Specifically, the entry may have been
3787                                  * clipped, merged, or deleted.
3788                                  */
3789                                 if (!vm_map_lookup_entry(map, saved_start,
3790                                                          &tmp_entry))
3791                                         entry = vm_map_entry_succ(tmp_entry);
3792                                 else {
3793                                         entry = tmp_entry;
3794                                         vm_map_clip_start(map, entry,
3795                                                           saved_start);
3796                                 }
3797                         }
3798                         continue;
3799                 }
3800                 vm_map_clip_end(map, entry, end);
3801
3802                 next = vm_map_entry_succ(entry);
3803
3804                 /*
3805                  * Unwire before removing addresses from the pmap; otherwise,
3806                  * unwiring will put the entries back in the pmap.
3807                  */
3808                 if (entry->wired_count != 0)
3809                         vm_map_entry_unwire(map, entry);
3810
3811                 /*
3812                  * Remove mappings for the pages, but only if the
3813                  * mappings could exist.  For instance, it does not
3814                  * make sense to call pmap_remove() for guard entries.
3815                  */
3816                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3817                     entry->object.vm_object != NULL)
3818                         pmap_remove(map->pmap, entry->start, entry->end);
3819
3820                 if (entry->end == map->anon_loc)
3821                         map->anon_loc = entry->start;
3822
3823                 /*
3824                  * Delete the entry only after removing all pmap
3825                  * entries pointing to its pages.  (Otherwise, its
3826                  * page frames may be reallocated, and any modify bits
3827                  * will be set in the wrong object!)
3828                  */
3829                 vm_map_entry_delete(map, entry);
3830                 entry = next;
3831         }
3832         return (KERN_SUCCESS);
3833 }
3834
3835 /*
3836  *      vm_map_remove:
3837  *
3838  *      Remove the given address range from the target map.
3839  *      This is the exported form of vm_map_delete.
3840  */
3841 int
3842 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3843 {
3844         int result;
3845
3846         vm_map_lock(map);
3847         VM_MAP_RANGE_CHECK(map, start, end);
3848         result = vm_map_delete(map, start, end);
3849         vm_map_unlock(map);
3850         return (result);
3851 }
3852
3853 /*
3854  *      vm_map_check_protection:
3855  *
3856  *      Assert that the target map allows the specified privilege on the
3857  *      entire address region given.  The entire region must be allocated.
3858  *
3859  *      WARNING!  This code does not and should not check whether the
3860  *      contents of the region is accessible.  For example a smaller file
3861  *      might be mapped into a larger address space.
3862  *
3863  *      NOTE!  This code is also called by munmap().
3864  *
3865  *      The map must be locked.  A read lock is sufficient.
3866  */
3867 boolean_t
3868 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3869                         vm_prot_t protection)
3870 {
3871         vm_map_entry_t entry;
3872         vm_map_entry_t tmp_entry;
3873
3874         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3875                 return (FALSE);
3876         entry = tmp_entry;
3877
3878         while (start < end) {
3879                 /*
3880                  * No holes allowed!
3881                  */
3882                 if (start < entry->start)
3883                         return (FALSE);
3884                 /*
3885                  * Check protection associated with entry.
3886                  */
3887                 if ((entry->protection & protection) != protection)
3888                         return (FALSE);
3889                 /* go to next entry */
3890                 start = entry->end;
3891                 entry = vm_map_entry_succ(entry);
3892         }
3893         return (TRUE);
3894 }
3895
3896
3897 /*
3898  *
3899  *      vm_map_copy_swap_object:
3900  *
3901  *      Copies a swap-backed object from an existing map entry to a
3902  *      new one.  Carries forward the swap charge.  May change the
3903  *      src object on return.
3904  */
3905 static void
3906 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3907     vm_offset_t size, vm_ooffset_t *fork_charge)
3908 {
3909         vm_object_t src_object;
3910         struct ucred *cred;
3911         int charged;
3912
3913         src_object = src_entry->object.vm_object;
3914         charged = ENTRY_CHARGED(src_entry);
3915         if ((src_object->flags & OBJ_ANON) != 0) {
3916                 VM_OBJECT_WLOCK(src_object);
3917                 vm_object_collapse(src_object);
3918                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3919                         vm_object_split(src_entry);
3920                         src_object = src_entry->object.vm_object;
3921                 }
3922                 vm_object_reference_locked(src_object);
3923                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3924                 VM_OBJECT_WUNLOCK(src_object);
3925         } else
3926                 vm_object_reference(src_object);
3927         if (src_entry->cred != NULL &&
3928             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3929                 KASSERT(src_object->cred == NULL,
3930                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3931                      src_object));
3932                 src_object->cred = src_entry->cred;
3933                 src_object->charge = size;
3934         }
3935         dst_entry->object.vm_object = src_object;
3936         if (charged) {
3937                 cred = curthread->td_ucred;
3938                 crhold(cred);
3939                 dst_entry->cred = cred;
3940                 *fork_charge += size;
3941                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3942                         crhold(cred);
3943                         src_entry->cred = cred;
3944                         *fork_charge += size;
3945                 }
3946         }
3947 }
3948
3949 /*
3950  *      vm_map_copy_entry:
3951  *
3952  *      Copies the contents of the source entry to the destination
3953  *      entry.  The entries *must* be aligned properly.
3954  */
3955 static void
3956 vm_map_copy_entry(
3957         vm_map_t src_map,
3958         vm_map_t dst_map,
3959         vm_map_entry_t src_entry,
3960         vm_map_entry_t dst_entry,
3961         vm_ooffset_t *fork_charge)
3962 {
3963         vm_object_t src_object;
3964         vm_map_entry_t fake_entry;
3965         vm_offset_t size;
3966
3967         VM_MAP_ASSERT_LOCKED(dst_map);
3968
3969         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3970                 return;
3971
3972         if (src_entry->wired_count == 0 ||
3973             (src_entry->protection & VM_PROT_WRITE) == 0) {
3974                 /*
3975                  * If the source entry is marked needs_copy, it is already
3976                  * write-protected.
3977                  */
3978                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3979                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3980                         pmap_protect(src_map->pmap,
3981                             src_entry->start,
3982                             src_entry->end,
3983                             src_entry->protection & ~VM_PROT_WRITE);
3984                 }
3985
3986                 /*
3987                  * Make a copy of the object.
3988                  */
3989                 size = src_entry->end - src_entry->start;
3990                 if ((src_object = src_entry->object.vm_object) != NULL) {
3991                         if (src_object->type == OBJT_DEFAULT ||
3992                             src_object->type == OBJT_SWAP) {
3993                                 vm_map_copy_swap_object(src_entry, dst_entry,
3994                                     size, fork_charge);
3995                                 /* May have split/collapsed, reload obj. */
3996                                 src_object = src_entry->object.vm_object;
3997                         } else {
3998                                 vm_object_reference(src_object);
3999                                 dst_entry->object.vm_object = src_object;
4000                         }
4001                         src_entry->eflags |= MAP_ENTRY_COW |
4002                             MAP_ENTRY_NEEDS_COPY;
4003                         dst_entry->eflags |= MAP_ENTRY_COW |
4004                             MAP_ENTRY_NEEDS_COPY;
4005                         dst_entry->offset = src_entry->offset;
4006                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4007                                 /*
4008                                  * MAP_ENTRY_WRITECNT cannot
4009                                  * indicate write reference from
4010                                  * src_entry, since the entry is
4011                                  * marked as needs copy.  Allocate a
4012                                  * fake entry that is used to
4013                                  * decrement object->un_pager writecount
4014                                  * at the appropriate time.  Attach
4015                                  * fake_entry to the deferred list.
4016                                  */
4017                                 fake_entry = vm_map_entry_create(dst_map);
4018                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4019                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4020                                 vm_object_reference(src_object);
4021                                 fake_entry->object.vm_object = src_object;
4022                                 fake_entry->start = src_entry->start;
4023                                 fake_entry->end = src_entry->end;
4024                                 fake_entry->defer_next =
4025                                     curthread->td_map_def_user;
4026                                 curthread->td_map_def_user = fake_entry;
4027                         }
4028
4029                         pmap_copy(dst_map->pmap, src_map->pmap,
4030                             dst_entry->start, dst_entry->end - dst_entry->start,
4031                             src_entry->start);
4032                 } else {
4033                         dst_entry->object.vm_object = NULL;
4034                         dst_entry->offset = 0;
4035                         if (src_entry->cred != NULL) {
4036                                 dst_entry->cred = curthread->td_ucred;
4037                                 crhold(dst_entry->cred);
4038                                 *fork_charge += size;
4039                         }
4040                 }
4041         } else {
4042                 /*
4043                  * We don't want to make writeable wired pages copy-on-write.
4044                  * Immediately copy these pages into the new map by simulating
4045                  * page faults.  The new pages are pageable.
4046                  */
4047                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4048                     fork_charge);
4049         }
4050 }
4051
4052 /*
4053  * vmspace_map_entry_forked:
4054  * Update the newly-forked vmspace each time a map entry is inherited
4055  * or copied.  The values for vm_dsize and vm_tsize are approximate
4056  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4057  */
4058 static void
4059 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4060     vm_map_entry_t entry)
4061 {
4062         vm_size_t entrysize;
4063         vm_offset_t newend;
4064
4065         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4066                 return;
4067         entrysize = entry->end - entry->start;
4068         vm2->vm_map.size += entrysize;
4069         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4070                 vm2->vm_ssize += btoc(entrysize);
4071         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4072             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4073                 newend = MIN(entry->end,
4074                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4075                 vm2->vm_dsize += btoc(newend - entry->start);
4076         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4077             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4078                 newend = MIN(entry->end,
4079                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4080                 vm2->vm_tsize += btoc(newend - entry->start);
4081         }
4082 }
4083
4084 /*
4085  * vmspace_fork:
4086  * Create a new process vmspace structure and vm_map
4087  * based on those of an existing process.  The new map
4088  * is based on the old map, according to the inheritance
4089  * values on the regions in that map.
4090  *
4091  * XXX It might be worth coalescing the entries added to the new vmspace.
4092  *
4093  * The source map must not be locked.
4094  */
4095 struct vmspace *
4096 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4097 {
4098         struct vmspace *vm2;
4099         vm_map_t new_map, old_map;
4100         vm_map_entry_t new_entry, old_entry;
4101         vm_object_t object;
4102         int error, locked;
4103         vm_inherit_t inh;
4104
4105         old_map = &vm1->vm_map;
4106         /* Copy immutable fields of vm1 to vm2. */
4107         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4108             pmap_pinit);
4109         if (vm2 == NULL)
4110                 return (NULL);
4111
4112         vm2->vm_taddr = vm1->vm_taddr;
4113         vm2->vm_daddr = vm1->vm_daddr;
4114         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4115         vm_map_lock(old_map);
4116         if (old_map->busy)
4117                 vm_map_wait_busy(old_map);
4118         new_map = &vm2->vm_map;
4119         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4120         KASSERT(locked, ("vmspace_fork: lock failed"));
4121
4122         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4123         if (error != 0) {
4124                 sx_xunlock(&old_map->lock);
4125                 sx_xunlock(&new_map->lock);
4126                 vm_map_process_deferred();
4127                 vmspace_free(vm2);
4128                 return (NULL);
4129         }
4130
4131         new_map->anon_loc = old_map->anon_loc;
4132
4133         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4134                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4135                         panic("vm_map_fork: encountered a submap");
4136
4137                 inh = old_entry->inheritance;
4138                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4139                     inh != VM_INHERIT_NONE)
4140                         inh = VM_INHERIT_COPY;
4141
4142                 switch (inh) {
4143                 case VM_INHERIT_NONE:
4144                         break;
4145
4146                 case VM_INHERIT_SHARE:
4147                         /*
4148                          * Clone the entry, creating the shared object if
4149                          * necessary.
4150                          */
4151                         object = old_entry->object.vm_object;
4152                         if (object == NULL) {
4153                                 vm_map_entry_back(old_entry);
4154                                 object = old_entry->object.vm_object;
4155                         }
4156
4157                         /*
4158                          * Add the reference before calling vm_object_shadow
4159                          * to insure that a shadow object is created.
4160                          */
4161                         vm_object_reference(object);
4162                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4163                                 vm_object_shadow(&old_entry->object.vm_object,
4164                                     &old_entry->offset,
4165                                     old_entry->end - old_entry->start,
4166                                     old_entry->cred,
4167                                     /* Transfer the second reference too. */
4168                                     true);
4169                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4170                                 old_entry->cred = NULL;
4171
4172                                 /*
4173                                  * As in vm_map_merged_neighbor_dispose(),
4174                                  * the vnode lock will not be acquired in
4175                                  * this call to vm_object_deallocate().
4176                                  */
4177                                 vm_object_deallocate(object);
4178                                 object = old_entry->object.vm_object;
4179                         } else {
4180                                 VM_OBJECT_WLOCK(object);
4181                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4182                                 if (old_entry->cred != NULL) {
4183                                         KASSERT(object->cred == NULL,
4184                                             ("vmspace_fork both cred"));
4185                                         object->cred = old_entry->cred;
4186                                         object->charge = old_entry->end -
4187                                             old_entry->start;
4188                                         old_entry->cred = NULL;
4189                                 }
4190
4191                                 /*
4192                                  * Assert the correct state of the vnode
4193                                  * v_writecount while the object is locked, to
4194                                  * not relock it later for the assertion
4195                                  * correctness.
4196                                  */
4197                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4198                                     object->type == OBJT_VNODE) {
4199                                         KASSERT(((struct vnode *)object->
4200                                             handle)->v_writecount > 0,
4201                                             ("vmspace_fork: v_writecount %p",
4202                                             object));
4203                                         KASSERT(object->un_pager.vnp.
4204                                             writemappings > 0,
4205                                             ("vmspace_fork: vnp.writecount %p",
4206                                             object));
4207                                 }
4208                                 VM_OBJECT_WUNLOCK(object);
4209                         }
4210
4211                         /*
4212                          * Clone the entry, referencing the shared object.
4213                          */
4214                         new_entry = vm_map_entry_create(new_map);
4215                         *new_entry = *old_entry;
4216                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4217                             MAP_ENTRY_IN_TRANSITION);
4218                         new_entry->wiring_thread = NULL;
4219                         new_entry->wired_count = 0;
4220                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4221                                 vm_pager_update_writecount(object,
4222                                     new_entry->start, new_entry->end);
4223                         }
4224                         vm_map_entry_set_vnode_text(new_entry, true);
4225
4226                         /*
4227                          * Insert the entry into the new map -- we know we're
4228                          * inserting at the end of the new map.
4229                          */
4230                         vm_map_entry_link(new_map, new_entry);
4231                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4232
4233                         /*
4234                          * Update the physical map
4235                          */
4236                         pmap_copy(new_map->pmap, old_map->pmap,
4237                             new_entry->start,
4238                             (old_entry->end - old_entry->start),
4239                             old_entry->start);
4240                         break;
4241
4242                 case VM_INHERIT_COPY:
4243                         /*
4244                          * Clone the entry and link into the map.
4245                          */
4246                         new_entry = vm_map_entry_create(new_map);
4247                         *new_entry = *old_entry;
4248                         /*
4249                          * Copied entry is COW over the old object.
4250                          */
4251                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4252                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4253                         new_entry->wiring_thread = NULL;
4254                         new_entry->wired_count = 0;
4255                         new_entry->object.vm_object = NULL;
4256                         new_entry->cred = NULL;
4257                         vm_map_entry_link(new_map, new_entry);
4258                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4259                         vm_map_copy_entry(old_map, new_map, old_entry,
4260                             new_entry, fork_charge);
4261                         vm_map_entry_set_vnode_text(new_entry, true);
4262                         break;
4263
4264                 case VM_INHERIT_ZERO:
4265                         /*
4266                          * Create a new anonymous mapping entry modelled from
4267                          * the old one.
4268                          */
4269                         new_entry = vm_map_entry_create(new_map);
4270                         memset(new_entry, 0, sizeof(*new_entry));
4271
4272                         new_entry->start = old_entry->start;
4273                         new_entry->end = old_entry->end;
4274                         new_entry->eflags = old_entry->eflags &
4275                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4276                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4277                         new_entry->protection = old_entry->protection;
4278                         new_entry->max_protection = old_entry->max_protection;
4279                         new_entry->inheritance = VM_INHERIT_ZERO;
4280
4281                         vm_map_entry_link(new_map, new_entry);
4282                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4283
4284                         new_entry->cred = curthread->td_ucred;
4285                         crhold(new_entry->cred);
4286                         *fork_charge += (new_entry->end - new_entry->start);
4287
4288                         break;
4289                 }
4290         }
4291         /*
4292          * Use inlined vm_map_unlock() to postpone handling the deferred
4293          * map entries, which cannot be done until both old_map and
4294          * new_map locks are released.
4295          */
4296         sx_xunlock(&old_map->lock);
4297         sx_xunlock(&new_map->lock);
4298         vm_map_process_deferred();
4299
4300         return (vm2);
4301 }
4302
4303 /*
4304  * Create a process's stack for exec_new_vmspace().  This function is never
4305  * asked to wire the newly created stack.
4306  */
4307 int
4308 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4309     vm_prot_t prot, vm_prot_t max, int cow)
4310 {
4311         vm_size_t growsize, init_ssize;
4312         rlim_t vmemlim;
4313         int rv;
4314
4315         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4316         growsize = sgrowsiz;
4317         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4318         vm_map_lock(map);
4319         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4320         /* If we would blow our VMEM resource limit, no go */
4321         if (map->size + init_ssize > vmemlim) {
4322                 rv = KERN_NO_SPACE;
4323                 goto out;
4324         }
4325         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4326             max, cow);
4327 out:
4328         vm_map_unlock(map);
4329         return (rv);
4330 }
4331
4332 static int stack_guard_page = 1;
4333 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4334     &stack_guard_page, 0,
4335     "Specifies the number of guard pages for a stack that grows");
4336
4337 static int
4338 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4339     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4340 {
4341         vm_map_entry_t new_entry, prev_entry;
4342         vm_offset_t bot, gap_bot, gap_top, top;
4343         vm_size_t init_ssize, sgp;
4344         int orient, rv;
4345
4346         /*
4347          * The stack orientation is piggybacked with the cow argument.
4348          * Extract it into orient and mask the cow argument so that we
4349          * don't pass it around further.
4350          */
4351         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4352         KASSERT(orient != 0, ("No stack grow direction"));
4353         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4354             ("bi-dir stack"));
4355
4356         if (addrbos < vm_map_min(map) ||
4357             addrbos + max_ssize > vm_map_max(map) ||
4358             addrbos + max_ssize <= addrbos)
4359                 return (KERN_INVALID_ADDRESS);
4360         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4361             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4362             (vm_size_t)stack_guard_page * PAGE_SIZE;
4363         if (sgp >= max_ssize)
4364                 return (KERN_INVALID_ARGUMENT);
4365
4366         init_ssize = growsize;
4367         if (max_ssize < init_ssize + sgp)
4368                 init_ssize = max_ssize - sgp;
4369
4370         /* If addr is already mapped, no go */
4371         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4372                 return (KERN_NO_SPACE);
4373
4374         /*
4375          * If we can't accommodate max_ssize in the current mapping, no go.
4376          */
4377         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4378                 return (KERN_NO_SPACE);
4379
4380         /*
4381          * We initially map a stack of only init_ssize.  We will grow as
4382          * needed later.  Depending on the orientation of the stack (i.e.
4383          * the grow direction) we either map at the top of the range, the
4384          * bottom of the range or in the middle.
4385          *
4386          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4387          * and cow to be 0.  Possibly we should eliminate these as input
4388          * parameters, and just pass these values here in the insert call.
4389          */
4390         if (orient == MAP_STACK_GROWS_DOWN) {
4391                 bot = addrbos + max_ssize - init_ssize;
4392                 top = bot + init_ssize;
4393                 gap_bot = addrbos;
4394                 gap_top = bot;
4395         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4396                 bot = addrbos;
4397                 top = bot + init_ssize;
4398                 gap_bot = top;
4399                 gap_top = addrbos + max_ssize;
4400         }
4401         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4402         if (rv != KERN_SUCCESS)
4403                 return (rv);
4404         new_entry = vm_map_entry_succ(prev_entry);
4405         KASSERT(new_entry->end == top || new_entry->start == bot,
4406             ("Bad entry start/end for new stack entry"));
4407         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4408             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4409             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4410         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4411             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4412             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4413         if (gap_bot == gap_top)
4414                 return (KERN_SUCCESS);
4415         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4416             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4417             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4418         if (rv == KERN_SUCCESS) {
4419                 /*
4420                  * Gap can never successfully handle a fault, so
4421                  * read-ahead logic is never used for it.  Re-use
4422                  * next_read of the gap entry to store
4423                  * stack_guard_page for vm_map_growstack().
4424                  */
4425                 if (orient == MAP_STACK_GROWS_DOWN)
4426                         vm_map_entry_pred(new_entry)->next_read = sgp;
4427                 else
4428                         vm_map_entry_succ(new_entry)->next_read = sgp;
4429         } else {
4430                 (void)vm_map_delete(map, bot, top);
4431         }
4432         return (rv);
4433 }
4434
4435 /*
4436  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4437  * successfully grow the stack.
4438  */
4439 static int
4440 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4441 {
4442         vm_map_entry_t stack_entry;
4443         struct proc *p;
4444         struct vmspace *vm;
4445         struct ucred *cred;
4446         vm_offset_t gap_end, gap_start, grow_start;
4447         vm_size_t grow_amount, guard, max_grow;
4448         rlim_t lmemlim, stacklim, vmemlim;
4449         int rv, rv1;
4450         bool gap_deleted, grow_down, is_procstack;
4451 #ifdef notyet
4452         uint64_t limit;
4453 #endif
4454 #ifdef RACCT
4455         int error;
4456 #endif
4457
4458         p = curproc;
4459         vm = p->p_vmspace;
4460
4461         /*
4462          * Disallow stack growth when the access is performed by a
4463          * debugger or AIO daemon.  The reason is that the wrong
4464          * resource limits are applied.
4465          */
4466         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4467             p->p_textvp == NULL))
4468                 return (KERN_FAILURE);
4469
4470         MPASS(!map->system_map);
4471
4472         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4473         stacklim = lim_cur(curthread, RLIMIT_STACK);
4474         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4475 retry:
4476         /* If addr is not in a hole for a stack grow area, no need to grow. */
4477         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4478                 return (KERN_FAILURE);
4479         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4480                 return (KERN_SUCCESS);
4481         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4482                 stack_entry = vm_map_entry_succ(gap_entry);
4483                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4484                     stack_entry->start != gap_entry->end)
4485                         return (KERN_FAILURE);
4486                 grow_amount = round_page(stack_entry->start - addr);
4487                 grow_down = true;
4488         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4489                 stack_entry = vm_map_entry_pred(gap_entry);
4490                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4491                     stack_entry->end != gap_entry->start)
4492                         return (KERN_FAILURE);
4493                 grow_amount = round_page(addr + 1 - stack_entry->end);
4494                 grow_down = false;
4495         } else {
4496                 return (KERN_FAILURE);
4497         }
4498         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4499             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4500             gap_entry->next_read;
4501         max_grow = gap_entry->end - gap_entry->start;
4502         if (guard > max_grow)
4503                 return (KERN_NO_SPACE);
4504         max_grow -= guard;
4505         if (grow_amount > max_grow)
4506                 return (KERN_NO_SPACE);
4507
4508         /*
4509          * If this is the main process stack, see if we're over the stack
4510          * limit.
4511          */
4512         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4513             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4514         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4515                 return (KERN_NO_SPACE);
4516
4517 #ifdef RACCT
4518         if (racct_enable) {
4519                 PROC_LOCK(p);
4520                 if (is_procstack && racct_set(p, RACCT_STACK,
4521                     ctob(vm->vm_ssize) + grow_amount)) {
4522                         PROC_UNLOCK(p);
4523                         return (KERN_NO_SPACE);
4524                 }
4525                 PROC_UNLOCK(p);
4526         }
4527 #endif
4528
4529         grow_amount = roundup(grow_amount, sgrowsiz);
4530         if (grow_amount > max_grow)
4531                 grow_amount = max_grow;
4532         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4533                 grow_amount = trunc_page((vm_size_t)stacklim) -
4534                     ctob(vm->vm_ssize);
4535         }
4536
4537 #ifdef notyet
4538         PROC_LOCK(p);
4539         limit = racct_get_available(p, RACCT_STACK);
4540         PROC_UNLOCK(p);
4541         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4542                 grow_amount = limit - ctob(vm->vm_ssize);
4543 #endif
4544
4545         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4546                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4547                         rv = KERN_NO_SPACE;
4548                         goto out;
4549                 }
4550 #ifdef RACCT
4551                 if (racct_enable) {
4552                         PROC_LOCK(p);
4553                         if (racct_set(p, RACCT_MEMLOCK,
4554                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4555                                 PROC_UNLOCK(p);
4556                                 rv = KERN_NO_SPACE;
4557                                 goto out;
4558                         }
4559                         PROC_UNLOCK(p);
4560                 }
4561 #endif
4562         }
4563
4564         /* If we would blow our VMEM resource limit, no go */
4565         if (map->size + grow_amount > vmemlim) {
4566                 rv = KERN_NO_SPACE;
4567                 goto out;
4568         }
4569 #ifdef RACCT
4570         if (racct_enable) {
4571                 PROC_LOCK(p);
4572                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4573                         PROC_UNLOCK(p);
4574                         rv = KERN_NO_SPACE;
4575                         goto out;
4576                 }
4577                 PROC_UNLOCK(p);
4578         }
4579 #endif
4580
4581         if (vm_map_lock_upgrade(map)) {
4582                 gap_entry = NULL;
4583                 vm_map_lock_read(map);
4584                 goto retry;
4585         }
4586
4587         if (grow_down) {
4588                 grow_start = gap_entry->end - grow_amount;
4589                 if (gap_entry->start + grow_amount == gap_entry->end) {
4590                         gap_start = gap_entry->start;
4591                         gap_end = gap_entry->end;
4592                         vm_map_entry_delete(map, gap_entry);
4593                         gap_deleted = true;
4594                 } else {
4595                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4596                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4597                         gap_deleted = false;
4598                 }
4599                 rv = vm_map_insert(map, NULL, 0, grow_start,
4600                     grow_start + grow_amount,
4601                     stack_entry->protection, stack_entry->max_protection,
4602                     MAP_STACK_GROWS_DOWN);
4603                 if (rv != KERN_SUCCESS) {
4604                         if (gap_deleted) {
4605                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4606                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4607                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4608                                 MPASS(rv1 == KERN_SUCCESS);
4609                         } else
4610                                 vm_map_entry_resize(map, gap_entry,
4611                                     grow_amount);
4612                 }
4613         } else {
4614                 grow_start = stack_entry->end;
4615                 cred = stack_entry->cred;
4616                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4617                         cred = stack_entry->object.vm_object->cred;
4618                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4619                         rv = KERN_NO_SPACE;
4620                 /* Grow the underlying object if applicable. */
4621                 else if (stack_entry->object.vm_object == NULL ||
4622                     vm_object_coalesce(stack_entry->object.vm_object,
4623                     stack_entry->offset,
4624                     (vm_size_t)(stack_entry->end - stack_entry->start),
4625                     grow_amount, cred != NULL)) {
4626                         if (gap_entry->start + grow_amount == gap_entry->end) {
4627                                 vm_map_entry_delete(map, gap_entry);
4628                                 vm_map_entry_resize(map, stack_entry,
4629                                     grow_amount);
4630                         } else {
4631                                 gap_entry->start += grow_amount;
4632                                 stack_entry->end += grow_amount;
4633                         }
4634                         map->size += grow_amount;
4635                         rv = KERN_SUCCESS;
4636                 } else
4637                         rv = KERN_FAILURE;
4638         }
4639         if (rv == KERN_SUCCESS && is_procstack)
4640                 vm->vm_ssize += btoc(grow_amount);
4641
4642         /*
4643          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4644          */
4645         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4646                 rv = vm_map_wire_locked(map, grow_start,
4647                     grow_start + grow_amount,
4648                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4649         }
4650         vm_map_lock_downgrade(map);
4651
4652 out:
4653 #ifdef RACCT
4654         if (racct_enable && rv != KERN_SUCCESS) {
4655                 PROC_LOCK(p);
4656                 error = racct_set(p, RACCT_VMEM, map->size);
4657                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4658                 if (!old_mlock) {
4659                         error = racct_set(p, RACCT_MEMLOCK,
4660                             ptoa(pmap_wired_count(map->pmap)));
4661                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4662                 }
4663                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4664                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4665                 PROC_UNLOCK(p);
4666         }
4667 #endif
4668
4669         return (rv);
4670 }
4671
4672 /*
4673  * Unshare the specified VM space for exec.  If other processes are
4674  * mapped to it, then create a new one.  The new vmspace is null.
4675  */
4676 int
4677 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4678 {
4679         struct vmspace *oldvmspace = p->p_vmspace;
4680         struct vmspace *newvmspace;
4681
4682         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4683             ("vmspace_exec recursed"));
4684         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4685         if (newvmspace == NULL)
4686                 return (ENOMEM);
4687         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4688         /*
4689          * This code is written like this for prototype purposes.  The
4690          * goal is to avoid running down the vmspace here, but let the
4691          * other process's that are still using the vmspace to finally
4692          * run it down.  Even though there is little or no chance of blocking
4693          * here, it is a good idea to keep this form for future mods.
4694          */
4695         PROC_VMSPACE_LOCK(p);
4696         p->p_vmspace = newvmspace;
4697         PROC_VMSPACE_UNLOCK(p);
4698         if (p == curthread->td_proc)
4699                 pmap_activate(curthread);
4700         curthread->td_pflags |= TDP_EXECVMSPC;
4701         return (0);
4702 }
4703
4704 /*
4705  * Unshare the specified VM space for forcing COW.  This
4706  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4707  */
4708 int
4709 vmspace_unshare(struct proc *p)
4710 {
4711         struct vmspace *oldvmspace = p->p_vmspace;
4712         struct vmspace *newvmspace;
4713         vm_ooffset_t fork_charge;
4714
4715         if (oldvmspace->vm_refcnt == 1)
4716                 return (0);
4717         fork_charge = 0;
4718         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4719         if (newvmspace == NULL)
4720                 return (ENOMEM);
4721         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4722                 vmspace_free(newvmspace);
4723                 return (ENOMEM);
4724         }
4725         PROC_VMSPACE_LOCK(p);
4726         p->p_vmspace = newvmspace;
4727         PROC_VMSPACE_UNLOCK(p);
4728         if (p == curthread->td_proc)
4729                 pmap_activate(curthread);
4730         vmspace_free(oldvmspace);
4731         return (0);
4732 }
4733
4734 /*
4735  *      vm_map_lookup:
4736  *
4737  *      Finds the VM object, offset, and
4738  *      protection for a given virtual address in the
4739  *      specified map, assuming a page fault of the
4740  *      type specified.
4741  *
4742  *      Leaves the map in question locked for read; return
4743  *      values are guaranteed until a vm_map_lookup_done
4744  *      call is performed.  Note that the map argument
4745  *      is in/out; the returned map must be used in
4746  *      the call to vm_map_lookup_done.
4747  *
4748  *      A handle (out_entry) is returned for use in
4749  *      vm_map_lookup_done, to make that fast.
4750  *
4751  *      If a lookup is requested with "write protection"
4752  *      specified, the map may be changed to perform virtual
4753  *      copying operations, although the data referenced will
4754  *      remain the same.
4755  */
4756 int
4757 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4758               vm_offset_t vaddr,
4759               vm_prot_t fault_typea,
4760               vm_map_entry_t *out_entry,        /* OUT */
4761               vm_object_t *object,              /* OUT */
4762               vm_pindex_t *pindex,              /* OUT */
4763               vm_prot_t *out_prot,              /* OUT */
4764               boolean_t *wired)                 /* OUT */
4765 {
4766         vm_map_entry_t entry;
4767         vm_map_t map = *var_map;
4768         vm_prot_t prot;
4769         vm_prot_t fault_type;
4770         vm_object_t eobject;
4771         vm_size_t size;
4772         struct ucred *cred;
4773
4774 RetryLookup:
4775
4776         vm_map_lock_read(map);
4777
4778 RetryLookupLocked:
4779         /*
4780          * Lookup the faulting address.
4781          */
4782         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4783                 vm_map_unlock_read(map);
4784                 return (KERN_INVALID_ADDRESS);
4785         }
4786
4787         entry = *out_entry;
4788
4789         /*
4790          * Handle submaps.
4791          */
4792         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4793                 vm_map_t old_map = map;
4794
4795                 *var_map = map = entry->object.sub_map;
4796                 vm_map_unlock_read(old_map);
4797                 goto RetryLookup;
4798         }
4799
4800         /*
4801          * Check whether this task is allowed to have this page.
4802          */
4803         prot = entry->protection;
4804         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4805                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4806                 if (prot == VM_PROT_NONE && map != kernel_map &&
4807                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4808                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4809                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4810                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4811                         goto RetryLookupLocked;
4812         }
4813         fault_type = fault_typea & VM_PROT_ALL;
4814         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4815                 vm_map_unlock_read(map);
4816                 return (KERN_PROTECTION_FAILURE);
4817         }
4818         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4819             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4820             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4821             ("entry %p flags %x", entry, entry->eflags));
4822         if ((fault_typea & VM_PROT_COPY) != 0 &&
4823             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4824             (entry->eflags & MAP_ENTRY_COW) == 0) {
4825                 vm_map_unlock_read(map);
4826                 return (KERN_PROTECTION_FAILURE);
4827         }
4828
4829         /*
4830          * If this page is not pageable, we have to get it for all possible
4831          * accesses.
4832          */
4833         *wired = (entry->wired_count != 0);
4834         if (*wired)
4835                 fault_type = entry->protection;
4836         size = entry->end - entry->start;
4837
4838         /*
4839          * If the entry was copy-on-write, we either ...
4840          */
4841         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4842                 /*
4843                  * If we want to write the page, we may as well handle that
4844                  * now since we've got the map locked.
4845                  *
4846                  * If we don't need to write the page, we just demote the
4847                  * permissions allowed.
4848                  */
4849                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4850                     (fault_typea & VM_PROT_COPY) != 0) {
4851                         /*
4852                          * Make a new object, and place it in the object
4853                          * chain.  Note that no new references have appeared
4854                          * -- one just moved from the map to the new
4855                          * object.
4856                          */
4857                         if (vm_map_lock_upgrade(map))
4858                                 goto RetryLookup;
4859
4860                         if (entry->cred == NULL) {
4861                                 /*
4862                                  * The debugger owner is charged for
4863                                  * the memory.
4864                                  */
4865                                 cred = curthread->td_ucred;
4866                                 crhold(cred);
4867                                 if (!swap_reserve_by_cred(size, cred)) {
4868                                         crfree(cred);
4869                                         vm_map_unlock(map);
4870                                         return (KERN_RESOURCE_SHORTAGE);
4871                                 }
4872                                 entry->cred = cred;
4873                         }
4874                         eobject = entry->object.vm_object;
4875                         vm_object_shadow(&entry->object.vm_object,
4876                             &entry->offset, size, entry->cred, false);
4877                         if (eobject == entry->object.vm_object) {
4878                                 /*
4879                                  * The object was not shadowed.
4880                                  */
4881                                 swap_release_by_cred(size, entry->cred);
4882                                 crfree(entry->cred);
4883                         }
4884                         entry->cred = NULL;
4885                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4886
4887                         vm_map_lock_downgrade(map);
4888                 } else {
4889                         /*
4890                          * We're attempting to read a copy-on-write page --
4891                          * don't allow writes.
4892                          */
4893                         prot &= ~VM_PROT_WRITE;
4894                 }
4895         }
4896
4897         /*
4898          * Create an object if necessary.
4899          */
4900         if (entry->object.vm_object == NULL && !map->system_map) {
4901                 if (vm_map_lock_upgrade(map))
4902                         goto RetryLookup;
4903                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
4904                     NULL, entry->cred, entry->cred != NULL ? size : 0);
4905                 entry->offset = 0;
4906                 entry->cred = NULL;
4907                 vm_map_lock_downgrade(map);
4908         }
4909
4910         /*
4911          * Return the object/offset from this entry.  If the entry was
4912          * copy-on-write or empty, it has been fixed up.
4913          */
4914         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4915         *object = entry->object.vm_object;
4916
4917         *out_prot = prot;
4918         return (KERN_SUCCESS);
4919 }
4920
4921 /*
4922  *      vm_map_lookup_locked:
4923  *
4924  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4925  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4926  */
4927 int
4928 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4929                      vm_offset_t vaddr,
4930                      vm_prot_t fault_typea,
4931                      vm_map_entry_t *out_entry, /* OUT */
4932                      vm_object_t *object,       /* OUT */
4933                      vm_pindex_t *pindex,       /* OUT */
4934                      vm_prot_t *out_prot,       /* OUT */
4935                      boolean_t *wired)          /* OUT */
4936 {
4937         vm_map_entry_t entry;
4938         vm_map_t map = *var_map;
4939         vm_prot_t prot;
4940         vm_prot_t fault_type = fault_typea;
4941
4942         /*
4943          * Lookup the faulting address.
4944          */
4945         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4946                 return (KERN_INVALID_ADDRESS);
4947
4948         entry = *out_entry;
4949
4950         /*
4951          * Fail if the entry refers to a submap.
4952          */
4953         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4954                 return (KERN_FAILURE);
4955
4956         /*
4957          * Check whether this task is allowed to have this page.
4958          */
4959         prot = entry->protection;
4960         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4961         if ((fault_type & prot) != fault_type)
4962                 return (KERN_PROTECTION_FAILURE);
4963
4964         /*
4965          * If this page is not pageable, we have to get it for all possible
4966          * accesses.
4967          */
4968         *wired = (entry->wired_count != 0);
4969         if (*wired)
4970                 fault_type = entry->protection;
4971
4972         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4973                 /*
4974                  * Fail if the entry was copy-on-write for a write fault.
4975                  */
4976                 if (fault_type & VM_PROT_WRITE)
4977                         return (KERN_FAILURE);
4978                 /*
4979                  * We're attempting to read a copy-on-write page --
4980                  * don't allow writes.
4981                  */
4982                 prot &= ~VM_PROT_WRITE;
4983         }
4984
4985         /*
4986          * Fail if an object should be created.
4987          */
4988         if (entry->object.vm_object == NULL && !map->system_map)
4989                 return (KERN_FAILURE);
4990
4991         /*
4992          * Return the object/offset from this entry.  If the entry was
4993          * copy-on-write or empty, it has been fixed up.
4994          */
4995         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4996         *object = entry->object.vm_object;
4997
4998         *out_prot = prot;
4999         return (KERN_SUCCESS);
5000 }
5001
5002 /*
5003  *      vm_map_lookup_done:
5004  *
5005  *      Releases locks acquired by a vm_map_lookup
5006  *      (according to the handle returned by that lookup).
5007  */
5008 void
5009 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5010 {
5011         /*
5012          * Unlock the main-level map
5013          */
5014         vm_map_unlock_read(map);
5015 }
5016
5017 vm_offset_t
5018 vm_map_max_KBI(const struct vm_map *map)
5019 {
5020
5021         return (vm_map_max(map));
5022 }
5023
5024 vm_offset_t
5025 vm_map_min_KBI(const struct vm_map *map)
5026 {
5027
5028         return (vm_map_min(map));
5029 }
5030
5031 pmap_t
5032 vm_map_pmap_KBI(vm_map_t map)
5033 {
5034
5035         return (map->pmap);
5036 }
5037
5038 #ifdef INVARIANTS
5039 static void
5040 _vm_map_assert_consistent(vm_map_t map, int check)
5041 {
5042         vm_map_entry_t entry, prev;
5043         vm_map_entry_t cur, header, lbound, ubound;
5044         vm_size_t max_left, max_right;
5045
5046 #ifdef DIAGNOSTIC
5047         ++map->nupdates;
5048 #endif
5049         if (enable_vmmap_check != check)
5050                 return;
5051
5052         header = prev = &map->header;
5053         VM_MAP_ENTRY_FOREACH(entry, map) {
5054                 KASSERT(prev->end <= entry->start,
5055                     ("map %p prev->end = %jx, start = %jx", map,
5056                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5057                 KASSERT(entry->start < entry->end,
5058                     ("map %p start = %jx, end = %jx", map,
5059                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5060                 KASSERT(entry->left == header ||
5061                     entry->left->start < entry->start,
5062                     ("map %p left->start = %jx, start = %jx", map,
5063                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5064                 KASSERT(entry->right == header ||
5065                     entry->start < entry->right->start,
5066                     ("map %p start = %jx, right->start = %jx", map,
5067                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5068                 cur = map->root;
5069                 lbound = ubound = header;
5070                 for (;;) {
5071                         if (entry->start < cur->start) {
5072                                 ubound = cur;
5073                                 cur = cur->left;
5074                                 KASSERT(cur != lbound,
5075                                     ("map %p cannot find %jx",
5076                                     map, (uintmax_t)entry->start));
5077                         } else if (cur->end <= entry->start) {
5078                                 lbound = cur;
5079                                 cur = cur->right;
5080                                 KASSERT(cur != ubound,
5081                                     ("map %p cannot find %jx",
5082                                     map, (uintmax_t)entry->start));
5083                         } else {
5084                                 KASSERT(cur == entry,
5085                                     ("map %p cannot find %jx",
5086                                     map, (uintmax_t)entry->start));
5087                                 break;
5088                         }
5089                 }
5090                 max_left = vm_map_entry_max_free_left(entry, lbound);
5091                 max_right = vm_map_entry_max_free_right(entry, ubound);
5092                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5093                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5094                     (uintmax_t)entry->max_free,
5095                     (uintmax_t)max_left, (uintmax_t)max_right));
5096                 prev = entry;
5097         }
5098         KASSERT(prev->end <= entry->start,
5099             ("map %p prev->end = %jx, start = %jx", map,
5100             (uintmax_t)prev->end, (uintmax_t)entry->start));
5101 }
5102 #endif
5103
5104 #include "opt_ddb.h"
5105 #ifdef DDB
5106 #include <sys/kernel.h>
5107
5108 #include <ddb/ddb.h>
5109
5110 static void
5111 vm_map_print(vm_map_t map)
5112 {
5113         vm_map_entry_t entry, prev;
5114
5115         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5116             (void *)map,
5117             (void *)map->pmap, map->nentries, map->timestamp);
5118
5119         db_indent += 2;
5120         prev = &map->header;
5121         VM_MAP_ENTRY_FOREACH(entry, map) {
5122                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5123                     (void *)entry, (void *)entry->start, (void *)entry->end,
5124                     entry->eflags);
5125                 {
5126                         static char *inheritance_name[4] =
5127                         {"share", "copy", "none", "donate_copy"};
5128
5129                         db_iprintf(" prot=%x/%x/%s",
5130                             entry->protection,
5131                             entry->max_protection,
5132                             inheritance_name[(int)(unsigned char)
5133                             entry->inheritance]);
5134                         if (entry->wired_count != 0)
5135                                 db_printf(", wired");
5136                 }
5137                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5138                         db_printf(", share=%p, offset=0x%jx\n",
5139                             (void *)entry->object.sub_map,
5140                             (uintmax_t)entry->offset);
5141                         if (prev == &map->header ||
5142                             prev->object.sub_map !=
5143                                 entry->object.sub_map) {
5144                                 db_indent += 2;
5145                                 vm_map_print((vm_map_t)entry->object.sub_map);
5146                                 db_indent -= 2;
5147                         }
5148                 } else {
5149                         if (entry->cred != NULL)
5150                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5151                         db_printf(", object=%p, offset=0x%jx",
5152                             (void *)entry->object.vm_object,
5153                             (uintmax_t)entry->offset);
5154                         if (entry->object.vm_object && entry->object.vm_object->cred)
5155                                 db_printf(", obj ruid %d charge %jx",
5156                                     entry->object.vm_object->cred->cr_ruid,
5157                                     (uintmax_t)entry->object.vm_object->charge);
5158                         if (entry->eflags & MAP_ENTRY_COW)
5159                                 db_printf(", copy (%s)",
5160                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5161                         db_printf("\n");
5162
5163                         if (prev == &map->header ||
5164                             prev->object.vm_object !=
5165                                 entry->object.vm_object) {
5166                                 db_indent += 2;
5167                                 vm_object_print((db_expr_t)(intptr_t)
5168                                                 entry->object.vm_object,
5169                                                 0, 0, (char *)0);
5170                                 db_indent -= 2;
5171                         }
5172                 }
5173                 prev = entry;
5174         }
5175         db_indent -= 2;
5176 }
5177
5178 DB_SHOW_COMMAND(map, map)
5179 {
5180
5181         if (!have_addr) {
5182                 db_printf("usage: show map <addr>\n");
5183                 return;
5184         }
5185         vm_map_print((vm_map_t)addr);
5186 }
5187
5188 DB_SHOW_COMMAND(procvm, procvm)
5189 {
5190         struct proc *p;
5191
5192         if (have_addr) {
5193                 p = db_lookup_proc(addr);
5194         } else {
5195                 p = curproc;
5196         }
5197
5198         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5199             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5200             (void *)vmspace_pmap(p->p_vmspace));
5201
5202         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5203 }
5204
5205 #endif /* DDB */