]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge compiler-rt trunk r321017 to contrib/compiler-rt.
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vm_map_zdtor(void *mem, int size, void *arg);
144 static void vmspace_zdtor(void *mem, int size, void *arg);
145 #endif
146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
147     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
148     int cow);
149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
150     vm_offset_t failed_addr);
151
152 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
153     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
154      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
155
156 /* 
157  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
158  * stable.
159  */
160 #define PROC_VMSPACE_LOCK(p) do { } while (0)
161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
162
163 /*
164  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
165  *
166  *      Asserts that the starting and ending region
167  *      addresses fall within the valid range of the map.
168  */
169 #define VM_MAP_RANGE_CHECK(map, start, end)             \
170                 {                                       \
171                 if (start < vm_map_min(map))            \
172                         start = vm_map_min(map);        \
173                 if (end > vm_map_max(map))              \
174                         end = vm_map_max(map);          \
175                 if (start > end)                        \
176                         start = end;                    \
177                 }
178
179 /*
180  *      vm_map_startup:
181  *
182  *      Initialize the vm_map module.  Must be called before
183  *      any other vm_map routines.
184  *
185  *      Map and entry structures are allocated from the general
186  *      purpose memory pool with some exceptions:
187  *
188  *      - The kernel map and kmem submap are allocated statically.
189  *      - Kernel map entries are allocated out of a static pool.
190  *
191  *      These restrictions are necessary since malloc() uses the
192  *      maps and requires map entries.
193  */
194
195 void
196 vm_map_startup(void)
197 {
198         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
199         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
200 #ifdef INVARIANTS
201             vm_map_zdtor,
202 #else
203             NULL,
204 #endif
205             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206         uma_prealloc(mapzone, MAX_KMAP);
207         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
208             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
209             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
210         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
213 #ifdef INVARIANTS
214             vmspace_zdtor,
215 #else
216             NULL,
217 #endif
218             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
219 }
220
221 static int
222 vmspace_zinit(void *mem, int size, int flags)
223 {
224         struct vmspace *vm;
225
226         vm = (struct vmspace *)mem;
227
228         vm->vm_map.pmap = NULL;
229         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
230         PMAP_LOCK_INIT(vmspace_pmap(vm));
231         return (0);
232 }
233
234 static int
235 vm_map_zinit(void *mem, int size, int flags)
236 {
237         vm_map_t map;
238
239         map = (vm_map_t)mem;
240         memset(map, 0, sizeof(*map));
241         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
242         sx_init(&map->lock, "vm map (user)");
243         return (0);
244 }
245
246 #ifdef INVARIANTS
247 static void
248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250         struct vmspace *vm;
251
252         vm = (struct vmspace *)mem;
253
254         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259         vm_map_t map;
260
261         map = (vm_map_t)mem;
262         KASSERT(map->nentries == 0,
263             ("map %p nentries == %d on free.",
264             map, map->nentries));
265         KASSERT(map->size == 0,
266             ("map %p size == %lu on free.",
267             map, (unsigned long)map->size));
268 }
269 #endif  /* INVARIANTS */
270
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  *
275  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
276  */
277 struct vmspace *
278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
279 {
280         struct vmspace *vm;
281
282         vm = uma_zalloc(vmspace_zone, M_WAITOK);
283
284         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285
286         if (pinit == NULL)
287                 pinit = &pmap_pinit;
288
289         if (!pinit(vmspace_pmap(vm))) {
290                 uma_zfree(vmspace_zone, vm);
291                 return (NULL);
292         }
293         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
294         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
295         vm->vm_refcnt = 1;
296         vm->vm_shm = NULL;
297         vm->vm_swrss = 0;
298         vm->vm_tsize = 0;
299         vm->vm_dsize = 0;
300         vm->vm_ssize = 0;
301         vm->vm_taddr = 0;
302         vm->vm_daddr = 0;
303         vm->vm_maxsaddr = 0;
304         return (vm);
305 }
306
307 #ifdef RACCT
308 static void
309 vmspace_container_reset(struct proc *p)
310 {
311
312         PROC_LOCK(p);
313         racct_set(p, RACCT_DATA, 0);
314         racct_set(p, RACCT_STACK, 0);
315         racct_set(p, RACCT_RSS, 0);
316         racct_set(p, RACCT_MEMLOCK, 0);
317         racct_set(p, RACCT_VMEM, 0);
318         PROC_UNLOCK(p);
319 }
320 #endif
321
322 static inline void
323 vmspace_dofree(struct vmspace *vm)
324 {
325
326         CTR1(KTR_VM, "vmspace_free: %p", vm);
327
328         /*
329          * Make sure any SysV shm is freed, it might not have been in
330          * exit1().
331          */
332         shmexit(vm);
333
334         /*
335          * Lock the map, to wait out all other references to it.
336          * Delete all of the mappings and pages they hold, then call
337          * the pmap module to reclaim anything left.
338          */
339         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
340             vm->vm_map.max_offset);
341
342         pmap_release(vmspace_pmap(vm));
343         vm->vm_map.pmap = NULL;
344         uma_zfree(vmspace_zone, vm);
345 }
346
347 void
348 vmspace_free(struct vmspace *vm)
349 {
350
351         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
352             "vmspace_free() called");
353
354         if (vm->vm_refcnt == 0)
355                 panic("vmspace_free: attempt to free already freed vmspace");
356
357         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
358                 vmspace_dofree(vm);
359 }
360
361 void
362 vmspace_exitfree(struct proc *p)
363 {
364         struct vmspace *vm;
365
366         PROC_VMSPACE_LOCK(p);
367         vm = p->p_vmspace;
368         p->p_vmspace = NULL;
369         PROC_VMSPACE_UNLOCK(p);
370         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
371         vmspace_free(vm);
372 }
373
374 void
375 vmspace_exit(struct thread *td)
376 {
377         int refcnt;
378         struct vmspace *vm;
379         struct proc *p;
380
381         /*
382          * Release user portion of address space.
383          * This releases references to vnodes,
384          * which could cause I/O if the file has been unlinked.
385          * Need to do this early enough that we can still sleep.
386          *
387          * The last exiting process to reach this point releases as
388          * much of the environment as it can. vmspace_dofree() is the
389          * slower fallback in case another process had a temporary
390          * reference to the vmspace.
391          */
392
393         p = td->td_proc;
394         vm = p->p_vmspace;
395         atomic_add_int(&vmspace0.vm_refcnt, 1);
396         do {
397                 refcnt = vm->vm_refcnt;
398                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
399                         /* Switch now since other proc might free vmspace */
400                         PROC_VMSPACE_LOCK(p);
401                         p->p_vmspace = &vmspace0;
402                         PROC_VMSPACE_UNLOCK(p);
403                         pmap_activate(td);
404                 }
405         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
406         if (refcnt == 1) {
407                 if (p->p_vmspace != vm) {
408                         /* vmspace not yet freed, switch back */
409                         PROC_VMSPACE_LOCK(p);
410                         p->p_vmspace = vm;
411                         PROC_VMSPACE_UNLOCK(p);
412                         pmap_activate(td);
413                 }
414                 pmap_remove_pages(vmspace_pmap(vm));
415                 /* Switch now since this proc will free vmspace */
416                 PROC_VMSPACE_LOCK(p);
417                 p->p_vmspace = &vmspace0;
418                 PROC_VMSPACE_UNLOCK(p);
419                 pmap_activate(td);
420                 vmspace_dofree(vm);
421         }
422 #ifdef RACCT
423         if (racct_enable)
424                 vmspace_container_reset(p);
425 #endif
426 }
427
428 /* Acquire reference to vmspace owned by another process. */
429
430 struct vmspace *
431 vmspace_acquire_ref(struct proc *p)
432 {
433         struct vmspace *vm;
434         int refcnt;
435
436         PROC_VMSPACE_LOCK(p);
437         vm = p->p_vmspace;
438         if (vm == NULL) {
439                 PROC_VMSPACE_UNLOCK(p);
440                 return (NULL);
441         }
442         do {
443                 refcnt = vm->vm_refcnt;
444                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
445                         PROC_VMSPACE_UNLOCK(p);
446                         return (NULL);
447                 }
448         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
449         if (vm != p->p_vmspace) {
450                 PROC_VMSPACE_UNLOCK(p);
451                 vmspace_free(vm);
452                 return (NULL);
453         }
454         PROC_VMSPACE_UNLOCK(p);
455         return (vm);
456 }
457
458 /*
459  * Switch between vmspaces in an AIO kernel process.
460  *
461  * The AIO kernel processes switch to and from a user process's
462  * vmspace while performing an I/O operation on behalf of a user
463  * process.  The new vmspace is either the vmspace of a user process
464  * obtained from an active AIO request or the initial vmspace of the
465  * AIO kernel process (when it is idling).  Because user processes
466  * will block to drain any active AIO requests before proceeding in
467  * exit() or execve(), the vmspace reference count for these vmspaces
468  * can never be 0.  This allows for a much simpler implementation than
469  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
470  * processes hold an extra reference on their initial vmspace for the
471  * life of the process so that this guarantee is true for any vmspace
472  * passed as 'newvm'.
473  */
474 void
475 vmspace_switch_aio(struct vmspace *newvm)
476 {
477         struct vmspace *oldvm;
478
479         /* XXX: Need some way to assert that this is an aio daemon. */
480
481         KASSERT(newvm->vm_refcnt > 0,
482             ("vmspace_switch_aio: newvm unreferenced"));
483
484         oldvm = curproc->p_vmspace;
485         if (oldvm == newvm)
486                 return;
487
488         /*
489          * Point to the new address space and refer to it.
490          */
491         curproc->p_vmspace = newvm;
492         atomic_add_int(&newvm->vm_refcnt, 1);
493
494         /* Activate the new mapping. */
495         pmap_activate(curthread);
496
497         /* Remove the daemon's reference to the old address space. */
498         KASSERT(oldvm->vm_refcnt > 1,
499             ("vmspace_switch_aio: oldvm dropping last reference"));
500         vmspace_free(oldvm);
501 }
502
503 void
504 _vm_map_lock(vm_map_t map, const char *file, int line)
505 {
506
507         if (map->system_map)
508                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
509         else
510                 sx_xlock_(&map->lock, file, line);
511         map->timestamp++;
512 }
513
514 static void
515 vm_map_process_deferred(void)
516 {
517         struct thread *td;
518         vm_map_entry_t entry, next;
519         vm_object_t object;
520
521         td = curthread;
522         entry = td->td_map_def_user;
523         td->td_map_def_user = NULL;
524         while (entry != NULL) {
525                 next = entry->next;
526                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
527                         /*
528                          * Decrement the object's writemappings and
529                          * possibly the vnode's v_writecount.
530                          */
531                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
532                             ("Submap with writecount"));
533                         object = entry->object.vm_object;
534                         KASSERT(object != NULL, ("No object for writecount"));
535                         vnode_pager_release_writecount(object, entry->start,
536                             entry->end);
537                 }
538                 vm_map_entry_deallocate(entry, FALSE);
539                 entry = next;
540         }
541 }
542
543 void
544 _vm_map_unlock(vm_map_t map, const char *file, int line)
545 {
546
547         if (map->system_map)
548                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
549         else {
550                 sx_xunlock_(&map->lock, file, line);
551                 vm_map_process_deferred();
552         }
553 }
554
555 void
556 _vm_map_lock_read(vm_map_t map, const char *file, int line)
557 {
558
559         if (map->system_map)
560                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
561         else
562                 sx_slock_(&map->lock, file, line);
563 }
564
565 void
566 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
567 {
568
569         if (map->system_map)
570                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
571         else {
572                 sx_sunlock_(&map->lock, file, line);
573                 vm_map_process_deferred();
574         }
575 }
576
577 int
578 _vm_map_trylock(vm_map_t map, const char *file, int line)
579 {
580         int error;
581
582         error = map->system_map ?
583             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
584             !sx_try_xlock_(&map->lock, file, line);
585         if (error == 0)
586                 map->timestamp++;
587         return (error == 0);
588 }
589
590 int
591 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
592 {
593         int error;
594
595         error = map->system_map ?
596             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
597             !sx_try_slock_(&map->lock, file, line);
598         return (error == 0);
599 }
600
601 /*
602  *      _vm_map_lock_upgrade:   [ internal use only ]
603  *
604  *      Tries to upgrade a read (shared) lock on the specified map to a write
605  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
606  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
607  *      returned without a read or write lock held.
608  *
609  *      Requires that the map be read locked.
610  */
611 int
612 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
613 {
614         unsigned int last_timestamp;
615
616         if (map->system_map) {
617                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
618         } else {
619                 if (!sx_try_upgrade_(&map->lock, file, line)) {
620                         last_timestamp = map->timestamp;
621                         sx_sunlock_(&map->lock, file, line);
622                         vm_map_process_deferred();
623                         /*
624                          * If the map's timestamp does not change while the
625                          * map is unlocked, then the upgrade succeeds.
626                          */
627                         sx_xlock_(&map->lock, file, line);
628                         if (last_timestamp != map->timestamp) {
629                                 sx_xunlock_(&map->lock, file, line);
630                                 return (1);
631                         }
632                 }
633         }
634         map->timestamp++;
635         return (0);
636 }
637
638 void
639 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
640 {
641
642         if (map->system_map) {
643                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
644         } else
645                 sx_downgrade_(&map->lock, file, line);
646 }
647
648 /*
649  *      vm_map_locked:
650  *
651  *      Returns a non-zero value if the caller holds a write (exclusive) lock
652  *      on the specified map and the value "0" otherwise.
653  */
654 int
655 vm_map_locked(vm_map_t map)
656 {
657
658         if (map->system_map)
659                 return (mtx_owned(&map->system_mtx));
660         else
661                 return (sx_xlocked(&map->lock));
662 }
663
664 #ifdef INVARIANTS
665 static void
666 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
667 {
668
669         if (map->system_map)
670                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
671         else
672                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
673 }
674
675 #define VM_MAP_ASSERT_LOCKED(map) \
676     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
677 #else
678 #define VM_MAP_ASSERT_LOCKED(map)
679 #endif
680
681 /*
682  *      _vm_map_unlock_and_wait:
683  *
684  *      Atomically releases the lock on the specified map and puts the calling
685  *      thread to sleep.  The calling thread will remain asleep until either
686  *      vm_map_wakeup() is performed on the map or the specified timeout is
687  *      exceeded.
688  *
689  *      WARNING!  This function does not perform deferred deallocations of
690  *      objects and map entries.  Therefore, the calling thread is expected to
691  *      reacquire the map lock after reawakening and later perform an ordinary
692  *      unlock operation, such as vm_map_unlock(), before completing its
693  *      operation on the map.
694  */
695 int
696 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
697 {
698
699         mtx_lock(&map_sleep_mtx);
700         if (map->system_map)
701                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
702         else
703                 sx_xunlock_(&map->lock, file, line);
704         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
705             timo));
706 }
707
708 /*
709  *      vm_map_wakeup:
710  *
711  *      Awaken any threads that have slept on the map using
712  *      vm_map_unlock_and_wait().
713  */
714 void
715 vm_map_wakeup(vm_map_t map)
716 {
717
718         /*
719          * Acquire and release map_sleep_mtx to prevent a wakeup()
720          * from being performed (and lost) between the map unlock
721          * and the msleep() in _vm_map_unlock_and_wait().
722          */
723         mtx_lock(&map_sleep_mtx);
724         mtx_unlock(&map_sleep_mtx);
725         wakeup(&map->root);
726 }
727
728 void
729 vm_map_busy(vm_map_t map)
730 {
731
732         VM_MAP_ASSERT_LOCKED(map);
733         map->busy++;
734 }
735
736 void
737 vm_map_unbusy(vm_map_t map)
738 {
739
740         VM_MAP_ASSERT_LOCKED(map);
741         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
742         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
743                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
744                 wakeup(&map->busy);
745         }
746 }
747
748 void 
749 vm_map_wait_busy(vm_map_t map)
750 {
751
752         VM_MAP_ASSERT_LOCKED(map);
753         while (map->busy) {
754                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
755                 if (map->system_map)
756                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
757                 else
758                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
759         }
760         map->timestamp++;
761 }
762
763 long
764 vmspace_resident_count(struct vmspace *vmspace)
765 {
766         return pmap_resident_count(vmspace_pmap(vmspace));
767 }
768
769 /*
770  *      vm_map_create:
771  *
772  *      Creates and returns a new empty VM map with
773  *      the given physical map structure, and having
774  *      the given lower and upper address bounds.
775  */
776 vm_map_t
777 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
778 {
779         vm_map_t result;
780
781         result = uma_zalloc(mapzone, M_WAITOK);
782         CTR1(KTR_VM, "vm_map_create: %p", result);
783         _vm_map_init(result, pmap, min, max);
784         return (result);
785 }
786
787 /*
788  * Initialize an existing vm_map structure
789  * such as that in the vmspace structure.
790  */
791 static void
792 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
793 {
794
795         map->header.next = map->header.prev = &map->header;
796         map->needs_wakeup = FALSE;
797         map->system_map = 0;
798         map->pmap = pmap;
799         map->min_offset = min;
800         map->max_offset = max;
801         map->flags = 0;
802         map->root = NULL;
803         map->timestamp = 0;
804         map->busy = 0;
805 }
806
807 void
808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
809 {
810
811         _vm_map_init(map, pmap, min, max);
812         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
813         sx_init(&map->lock, "user map");
814 }
815
816 /*
817  *      vm_map_entry_dispose:   [ internal use only ]
818  *
819  *      Inverse of vm_map_entry_create.
820  */
821 static void
822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
823 {
824         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
825 }
826
827 /*
828  *      vm_map_entry_create:    [ internal use only ]
829  *
830  *      Allocates a VM map entry for insertion.
831  *      No entry fields are filled in.
832  */
833 static vm_map_entry_t
834 vm_map_entry_create(vm_map_t map)
835 {
836         vm_map_entry_t new_entry;
837
838         if (map->system_map)
839                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
840         else
841                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
842         if (new_entry == NULL)
843                 panic("vm_map_entry_create: kernel resources exhausted");
844         return (new_entry);
845 }
846
847 /*
848  *      vm_map_entry_set_behavior:
849  *
850  *      Set the expected access behavior, either normal, random, or
851  *      sequential.
852  */
853 static inline void
854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
855 {
856         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
857             (behavior & MAP_ENTRY_BEHAV_MASK);
858 }
859
860 /*
861  *      vm_map_entry_set_max_free:
862  *
863  *      Set the max_free field in a vm_map_entry.
864  */
865 static inline void
866 vm_map_entry_set_max_free(vm_map_entry_t entry)
867 {
868
869         entry->max_free = entry->adj_free;
870         if (entry->left != NULL && entry->left->max_free > entry->max_free)
871                 entry->max_free = entry->left->max_free;
872         if (entry->right != NULL && entry->right->max_free > entry->max_free)
873                 entry->max_free = entry->right->max_free;
874 }
875
876 /*
877  *      vm_map_entry_splay:
878  *
879  *      The Sleator and Tarjan top-down splay algorithm with the
880  *      following variation.  Max_free must be computed bottom-up, so
881  *      on the downward pass, maintain the left and right spines in
882  *      reverse order.  Then, make a second pass up each side to fix
883  *      the pointers and compute max_free.  The time bound is O(log n)
884  *      amortized.
885  *
886  *      The new root is the vm_map_entry containing "addr", or else an
887  *      adjacent entry (lower or higher) if addr is not in the tree.
888  *
889  *      The map must be locked, and leaves it so.
890  *
891  *      Returns: the new root.
892  */
893 static vm_map_entry_t
894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
895 {
896         vm_map_entry_t llist, rlist;
897         vm_map_entry_t ltree, rtree;
898         vm_map_entry_t y;
899
900         /* Special case of empty tree. */
901         if (root == NULL)
902                 return (root);
903
904         /*
905          * Pass One: Splay down the tree until we find addr or a NULL
906          * pointer where addr would go.  llist and rlist are the two
907          * sides in reverse order (bottom-up), with llist linked by
908          * the right pointer and rlist linked by the left pointer in
909          * the vm_map_entry.  Wait until Pass Two to set max_free on
910          * the two spines.
911          */
912         llist = NULL;
913         rlist = NULL;
914         for (;;) {
915                 /* root is never NULL in here. */
916                 if (addr < root->start) {
917                         y = root->left;
918                         if (y == NULL)
919                                 break;
920                         if (addr < y->start && y->left != NULL) {
921                                 /* Rotate right and put y on rlist. */
922                                 root->left = y->right;
923                                 y->right = root;
924                                 vm_map_entry_set_max_free(root);
925                                 root = y->left;
926                                 y->left = rlist;
927                                 rlist = y;
928                         } else {
929                                 /* Put root on rlist. */
930                                 root->left = rlist;
931                                 rlist = root;
932                                 root = y;
933                         }
934                 } else if (addr >= root->end) {
935                         y = root->right;
936                         if (y == NULL)
937                                 break;
938                         if (addr >= y->end && y->right != NULL) {
939                                 /* Rotate left and put y on llist. */
940                                 root->right = y->left;
941                                 y->left = root;
942                                 vm_map_entry_set_max_free(root);
943                                 root = y->right;
944                                 y->right = llist;
945                                 llist = y;
946                         } else {
947                                 /* Put root on llist. */
948                                 root->right = llist;
949                                 llist = root;
950                                 root = y;
951                         }
952                 } else
953                         break;
954         }
955
956         /*
957          * Pass Two: Walk back up the two spines, flip the pointers
958          * and set max_free.  The subtrees of the root go at the
959          * bottom of llist and rlist.
960          */
961         ltree = root->left;
962         while (llist != NULL) {
963                 y = llist->right;
964                 llist->right = ltree;
965                 vm_map_entry_set_max_free(llist);
966                 ltree = llist;
967                 llist = y;
968         }
969         rtree = root->right;
970         while (rlist != NULL) {
971                 y = rlist->left;
972                 rlist->left = rtree;
973                 vm_map_entry_set_max_free(rlist);
974                 rtree = rlist;
975                 rlist = y;
976         }
977
978         /*
979          * Final assembly: add ltree and rtree as subtrees of root.
980          */
981         root->left = ltree;
982         root->right = rtree;
983         vm_map_entry_set_max_free(root);
984
985         return (root);
986 }
987
988 /*
989  *      vm_map_entry_{un,}link:
990  *
991  *      Insert/remove entries from maps.
992  */
993 static void
994 vm_map_entry_link(vm_map_t map,
995                   vm_map_entry_t after_where,
996                   vm_map_entry_t entry)
997 {
998
999         CTR4(KTR_VM,
1000             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1001             map->nentries, entry, after_where);
1002         VM_MAP_ASSERT_LOCKED(map);
1003         KASSERT(after_where == &map->header ||
1004             after_where->end <= entry->start,
1005             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1006             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1007         KASSERT(after_where->next == &map->header ||
1008             entry->end <= after_where->next->start,
1009             ("vm_map_entry_link: new end %jx next start %jx overlap",
1010             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1011
1012         map->nentries++;
1013         entry->prev = after_where;
1014         entry->next = after_where->next;
1015         entry->next->prev = entry;
1016         after_where->next = entry;
1017
1018         if (after_where != &map->header) {
1019                 if (after_where != map->root)
1020                         vm_map_entry_splay(after_where->start, map->root);
1021                 entry->right = after_where->right;
1022                 entry->left = after_where;
1023                 after_where->right = NULL;
1024                 after_where->adj_free = entry->start - after_where->end;
1025                 vm_map_entry_set_max_free(after_where);
1026         } else {
1027                 entry->right = map->root;
1028                 entry->left = NULL;
1029         }
1030         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1031             entry->next->start) - entry->end;
1032         vm_map_entry_set_max_free(entry);
1033         map->root = entry;
1034 }
1035
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038                     vm_map_entry_t entry)
1039 {
1040         vm_map_entry_t next, prev, root;
1041
1042         VM_MAP_ASSERT_LOCKED(map);
1043         if (entry != map->root)
1044                 vm_map_entry_splay(entry->start, map->root);
1045         if (entry->left == NULL)
1046                 root = entry->right;
1047         else {
1048                 root = vm_map_entry_splay(entry->start, entry->left);
1049                 root->right = entry->right;
1050                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1051                     entry->next->start) - root->end;
1052                 vm_map_entry_set_max_free(root);
1053         }
1054         map->root = root;
1055
1056         prev = entry->prev;
1057         next = entry->next;
1058         next->prev = prev;
1059         prev->next = next;
1060         map->nentries--;
1061         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1062             map->nentries, entry);
1063 }
1064
1065 /*
1066  *      vm_map_entry_resize_free:
1067  *
1068  *      Recompute the amount of free space following a vm_map_entry
1069  *      and propagate that value up the tree.  Call this function after
1070  *      resizing a map entry in-place, that is, without a call to
1071  *      vm_map_entry_link() or _unlink().
1072  *
1073  *      The map must be locked, and leaves it so.
1074  */
1075 static void
1076 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1077 {
1078
1079         /*
1080          * Using splay trees without parent pointers, propagating
1081          * max_free up the tree is done by moving the entry to the
1082          * root and making the change there.
1083          */
1084         if (entry != map->root)
1085                 map->root = vm_map_entry_splay(entry->start, map->root);
1086
1087         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1088             entry->next->start) - entry->end;
1089         vm_map_entry_set_max_free(entry);
1090 }
1091
1092 /*
1093  *      vm_map_lookup_entry:    [ internal use only ]
1094  *
1095  *      Finds the map entry containing (or
1096  *      immediately preceding) the specified address
1097  *      in the given map; the entry is returned
1098  *      in the "entry" parameter.  The boolean
1099  *      result indicates whether the address is
1100  *      actually contained in the map.
1101  */
1102 boolean_t
1103 vm_map_lookup_entry(
1104         vm_map_t map,
1105         vm_offset_t address,
1106         vm_map_entry_t *entry)  /* OUT */
1107 {
1108         vm_map_entry_t cur;
1109         boolean_t locked;
1110
1111         /*
1112          * If the map is empty, then the map entry immediately preceding
1113          * "address" is the map's header.
1114          */
1115         cur = map->root;
1116         if (cur == NULL)
1117                 *entry = &map->header;
1118         else if (address >= cur->start && cur->end > address) {
1119                 *entry = cur;
1120                 return (TRUE);
1121         } else if ((locked = vm_map_locked(map)) ||
1122             sx_try_upgrade(&map->lock)) {
1123                 /*
1124                  * Splay requires a write lock on the map.  However, it only
1125                  * restructures the binary search tree; it does not otherwise
1126                  * change the map.  Thus, the map's timestamp need not change
1127                  * on a temporary upgrade.
1128                  */
1129                 map->root = cur = vm_map_entry_splay(address, cur);
1130                 if (!locked)
1131                         sx_downgrade(&map->lock);
1132
1133                 /*
1134                  * If "address" is contained within a map entry, the new root
1135                  * is that map entry.  Otherwise, the new root is a map entry
1136                  * immediately before or after "address".
1137                  */
1138                 if (address >= cur->start) {
1139                         *entry = cur;
1140                         if (cur->end > address)
1141                                 return (TRUE);
1142                 } else
1143                         *entry = cur->prev;
1144         } else
1145                 /*
1146                  * Since the map is only locked for read access, perform a
1147                  * standard binary search tree lookup for "address".
1148                  */
1149                 for (;;) {
1150                         if (address < cur->start) {
1151                                 if (cur->left == NULL) {
1152                                         *entry = cur->prev;
1153                                         break;
1154                                 }
1155                                 cur = cur->left;
1156                         } else if (cur->end > address) {
1157                                 *entry = cur;
1158                                 return (TRUE);
1159                         } else {
1160                                 if (cur->right == NULL) {
1161                                         *entry = cur;
1162                                         break;
1163                                 }
1164                                 cur = cur->right;
1165                         }
1166                 }
1167         return (FALSE);
1168 }
1169
1170 /*
1171  *      vm_map_insert:
1172  *
1173  *      Inserts the given whole VM object into the target
1174  *      map at the specified address range.  The object's
1175  *      size should match that of the address range.
1176  *
1177  *      Requires that the map be locked, and leaves it so.
1178  *
1179  *      If object is non-NULL, ref count must be bumped by caller
1180  *      prior to making call to account for the new entry.
1181  */
1182 int
1183 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1184     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1185 {
1186         vm_map_entry_t new_entry, prev_entry, temp_entry;
1187         struct ucred *cred;
1188         vm_eflags_t protoeflags;
1189         vm_inherit_t inheritance;
1190
1191         VM_MAP_ASSERT_LOCKED(map);
1192         KASSERT(object != kernel_object ||
1193             (cow & MAP_COPY_ON_WRITE) == 0,
1194             ("vm_map_insert: kernel object and COW"));
1195         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1196             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1197         KASSERT((prot & ~max) == 0,
1198             ("prot %#x is not subset of max_prot %#x", prot, max));
1199
1200         /*
1201          * Check that the start and end points are not bogus.
1202          */
1203         if (start < map->min_offset || end > map->max_offset || start >= end)
1204                 return (KERN_INVALID_ADDRESS);
1205
1206         /*
1207          * Find the entry prior to the proposed starting address; if it's part
1208          * of an existing entry, this range is bogus.
1209          */
1210         if (vm_map_lookup_entry(map, start, &temp_entry))
1211                 return (KERN_NO_SPACE);
1212
1213         prev_entry = temp_entry;
1214
1215         /*
1216          * Assert that the next entry doesn't overlap the end point.
1217          */
1218         if (prev_entry->next != &map->header && prev_entry->next->start < end)
1219                 return (KERN_NO_SPACE);
1220
1221         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1222             max != VM_PROT_NONE))
1223                 return (KERN_INVALID_ARGUMENT);
1224
1225         protoeflags = 0;
1226         if (cow & MAP_COPY_ON_WRITE)
1227                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1228         if (cow & MAP_NOFAULT)
1229                 protoeflags |= MAP_ENTRY_NOFAULT;
1230         if (cow & MAP_DISABLE_SYNCER)
1231                 protoeflags |= MAP_ENTRY_NOSYNC;
1232         if (cow & MAP_DISABLE_COREDUMP)
1233                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1234         if (cow & MAP_STACK_GROWS_DOWN)
1235                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1236         if (cow & MAP_STACK_GROWS_UP)
1237                 protoeflags |= MAP_ENTRY_GROWS_UP;
1238         if (cow & MAP_VN_WRITECOUNT)
1239                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1240         if ((cow & MAP_CREATE_GUARD) != 0)
1241                 protoeflags |= MAP_ENTRY_GUARD;
1242         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1243                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1244         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1245                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1246         if (cow & MAP_INHERIT_SHARE)
1247                 inheritance = VM_INHERIT_SHARE;
1248         else
1249                 inheritance = VM_INHERIT_DEFAULT;
1250
1251         cred = NULL;
1252         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1253                 goto charged;
1254         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1255             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1256                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1257                         return (KERN_RESOURCE_SHORTAGE);
1258                 KASSERT(object == NULL ||
1259                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1260                     object->cred == NULL,
1261                     ("overcommit: vm_map_insert o %p", object));
1262                 cred = curthread->td_ucred;
1263         }
1264
1265 charged:
1266         /* Expand the kernel pmap, if necessary. */
1267         if (map == kernel_map && end > kernel_vm_end)
1268                 pmap_growkernel(end);
1269         if (object != NULL) {
1270                 /*
1271                  * OBJ_ONEMAPPING must be cleared unless this mapping
1272                  * is trivially proven to be the only mapping for any
1273                  * of the object's pages.  (Object granularity
1274                  * reference counting is insufficient to recognize
1275                  * aliases with precision.)
1276                  */
1277                 VM_OBJECT_WLOCK(object);
1278                 if (object->ref_count > 1 || object->shadow_count != 0)
1279                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1280                 VM_OBJECT_WUNLOCK(object);
1281         } else if (prev_entry != &map->header &&
1282             prev_entry->eflags == protoeflags &&
1283             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1284             prev_entry->end == start && prev_entry->wired_count == 0 &&
1285             (prev_entry->cred == cred ||
1286             (prev_entry->object.vm_object != NULL &&
1287             prev_entry->object.vm_object->cred == cred)) &&
1288             vm_object_coalesce(prev_entry->object.vm_object,
1289             prev_entry->offset,
1290             (vm_size_t)(prev_entry->end - prev_entry->start),
1291             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1292             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1293                 /*
1294                  * We were able to extend the object.  Determine if we
1295                  * can extend the previous map entry to include the
1296                  * new range as well.
1297                  */
1298                 if (prev_entry->inheritance == inheritance &&
1299                     prev_entry->protection == prot &&
1300                     prev_entry->max_protection == max) {
1301                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1302                                 map->size += end - prev_entry->end;
1303                         prev_entry->end = end;
1304                         vm_map_entry_resize_free(map, prev_entry);
1305                         vm_map_simplify_entry(map, prev_entry);
1306                         return (KERN_SUCCESS);
1307                 }
1308
1309                 /*
1310                  * If we can extend the object but cannot extend the
1311                  * map entry, we have to create a new map entry.  We
1312                  * must bump the ref count on the extended object to
1313                  * account for it.  object may be NULL.
1314                  */
1315                 object = prev_entry->object.vm_object;
1316                 offset = prev_entry->offset +
1317                     (prev_entry->end - prev_entry->start);
1318                 vm_object_reference(object);
1319                 if (cred != NULL && object != NULL && object->cred != NULL &&
1320                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1321                         /* Object already accounts for this uid. */
1322                         cred = NULL;
1323                 }
1324         }
1325         if (cred != NULL)
1326                 crhold(cred);
1327
1328         /*
1329          * Create a new entry
1330          */
1331         new_entry = vm_map_entry_create(map);
1332         new_entry->start = start;
1333         new_entry->end = end;
1334         new_entry->cred = NULL;
1335
1336         new_entry->eflags = protoeflags;
1337         new_entry->object.vm_object = object;
1338         new_entry->offset = offset;
1339
1340         new_entry->inheritance = inheritance;
1341         new_entry->protection = prot;
1342         new_entry->max_protection = max;
1343         new_entry->wired_count = 0;
1344         new_entry->wiring_thread = NULL;
1345         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1346         new_entry->next_read = start;
1347
1348         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1349             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1350         new_entry->cred = cred;
1351
1352         /*
1353          * Insert the new entry into the list
1354          */
1355         vm_map_entry_link(map, prev_entry, new_entry);
1356         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1357                 map->size += new_entry->end - new_entry->start;
1358
1359         /*
1360          * Try to coalesce the new entry with both the previous and next
1361          * entries in the list.  Previously, we only attempted to coalesce
1362          * with the previous entry when object is NULL.  Here, we handle the
1363          * other cases, which are less common.
1364          */
1365         vm_map_simplify_entry(map, new_entry);
1366
1367         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1368                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1369                     end - start, cow & MAP_PREFAULT_PARTIAL);
1370         }
1371
1372         return (KERN_SUCCESS);
1373 }
1374
1375 /*
1376  *      vm_map_findspace:
1377  *
1378  *      Find the first fit (lowest VM address) for "length" free bytes
1379  *      beginning at address >= start in the given map.
1380  *
1381  *      In a vm_map_entry, "adj_free" is the amount of free space
1382  *      adjacent (higher address) to this entry, and "max_free" is the
1383  *      maximum amount of contiguous free space in its subtree.  This
1384  *      allows finding a free region in one path down the tree, so
1385  *      O(log n) amortized with splay trees.
1386  *
1387  *      The map must be locked, and leaves it so.
1388  *
1389  *      Returns: 0 on success, and starting address in *addr,
1390  *               1 if insufficient space.
1391  */
1392 int
1393 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1394     vm_offset_t *addr)  /* OUT */
1395 {
1396         vm_map_entry_t entry;
1397         vm_offset_t st;
1398
1399         /*
1400          * Request must fit within min/max VM address and must avoid
1401          * address wrap.
1402          */
1403         if (start < map->min_offset)
1404                 start = map->min_offset;
1405         if (start + length > map->max_offset || start + length < start)
1406                 return (1);
1407
1408         /* Empty tree means wide open address space. */
1409         if (map->root == NULL) {
1410                 *addr = start;
1411                 return (0);
1412         }
1413
1414         /*
1415          * After splay, if start comes before root node, then there
1416          * must be a gap from start to the root.
1417          */
1418         map->root = vm_map_entry_splay(start, map->root);
1419         if (start + length <= map->root->start) {
1420                 *addr = start;
1421                 return (0);
1422         }
1423
1424         /*
1425          * Root is the last node that might begin its gap before
1426          * start, and this is the last comparison where address
1427          * wrap might be a problem.
1428          */
1429         st = (start > map->root->end) ? start : map->root->end;
1430         if (length <= map->root->end + map->root->adj_free - st) {
1431                 *addr = st;
1432                 return (0);
1433         }
1434
1435         /* With max_free, can immediately tell if no solution. */
1436         entry = map->root->right;
1437         if (entry == NULL || length > entry->max_free)
1438                 return (1);
1439
1440         /*
1441          * Search the right subtree in the order: left subtree, root,
1442          * right subtree (first fit).  The previous splay implies that
1443          * all regions in the right subtree have addresses > start.
1444          */
1445         while (entry != NULL) {
1446                 if (entry->left != NULL && entry->left->max_free >= length)
1447                         entry = entry->left;
1448                 else if (entry->adj_free >= length) {
1449                         *addr = entry->end;
1450                         return (0);
1451                 } else
1452                         entry = entry->right;
1453         }
1454
1455         /* Can't get here, so panic if we do. */
1456         panic("vm_map_findspace: max_free corrupt");
1457 }
1458
1459 int
1460 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1461     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1462     vm_prot_t max, int cow)
1463 {
1464         vm_offset_t end;
1465         int result;
1466
1467         end = start + length;
1468         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1469             object == NULL,
1470             ("vm_map_fixed: non-NULL backing object for stack"));
1471         vm_map_lock(map);
1472         VM_MAP_RANGE_CHECK(map, start, end);
1473         if ((cow & MAP_CHECK_EXCL) == 0)
1474                 vm_map_delete(map, start, end);
1475         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1476                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1477                     prot, max, cow);
1478         } else {
1479                 result = vm_map_insert(map, object, offset, start, end,
1480                     prot, max, cow);
1481         }
1482         vm_map_unlock(map);
1483         return (result);
1484 }
1485
1486 /*
1487  *      vm_map_find finds an unallocated region in the target address
1488  *      map with the given length.  The search is defined to be
1489  *      first-fit from the specified address; the region found is
1490  *      returned in the same parameter.
1491  *
1492  *      If object is non-NULL, ref count must be bumped by caller
1493  *      prior to making call to account for the new entry.
1494  */
1495 int
1496 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1497             vm_offset_t *addr,  /* IN/OUT */
1498             vm_size_t length, vm_offset_t max_addr, int find_space,
1499             vm_prot_t prot, vm_prot_t max, int cow)
1500 {
1501         vm_offset_t alignment, initial_addr, start;
1502         int result;
1503
1504         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1505             object == NULL,
1506             ("vm_map_find: non-NULL backing object for stack"));
1507         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1508             (object->flags & OBJ_COLORED) == 0))
1509                 find_space = VMFS_ANY_SPACE;
1510         if (find_space >> 8 != 0) {
1511                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1512                 alignment = (vm_offset_t)1 << (find_space >> 8);
1513         } else
1514                 alignment = 0;
1515         initial_addr = *addr;
1516         vm_map_lock(map);
1517 again:
1518         start = initial_addr;
1519         do {
1520                 if (find_space != VMFS_NO_SPACE) {
1521                         if (vm_map_findspace(map, start, length, addr) ||
1522                             (max_addr != 0 && *addr + length > max_addr)) {
1523                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1524                                         find_space = VMFS_ANY_SPACE;
1525                                         goto again;
1526                                 }
1527                                 vm_map_unlock(map);
1528                                 return (KERN_NO_SPACE);
1529                         }
1530                         switch (find_space) {
1531                         case VMFS_SUPER_SPACE:
1532                         case VMFS_OPTIMAL_SPACE:
1533                                 pmap_align_superpage(object, offset, addr,
1534                                     length);
1535                                 break;
1536                         case VMFS_ANY_SPACE:
1537                                 break;
1538                         default:
1539                                 if ((*addr & (alignment - 1)) != 0) {
1540                                         *addr &= ~(alignment - 1);
1541                                         *addr += alignment;
1542                                 }
1543                                 break;
1544                         }
1545
1546                         start = *addr;
1547                 }
1548                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1549                         result = vm_map_stack_locked(map, start, length,
1550                             sgrowsiz, prot, max, cow);
1551                 } else {
1552                         result = vm_map_insert(map, object, offset, start,
1553                             start + length, prot, max, cow);
1554                 }
1555         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1556             find_space != VMFS_ANY_SPACE);
1557         vm_map_unlock(map);
1558         return (result);
1559 }
1560
1561 /*
1562  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1563  *      additional parameter (min_addr) and treats the given address
1564  *      (*addr) differently.  Specifically, it treats *addr as a hint
1565  *      and not as the minimum address where the mapping is created.
1566  *
1567  *      This function works in two phases.  First, it tries to
1568  *      allocate above the hint.  If that fails and the hint is
1569  *      greater than min_addr, it performs a second pass, replacing
1570  *      the hint with min_addr as the minimum address for the
1571  *      allocation.
1572  */
1573 int
1574 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1575     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1576     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1577     int cow)
1578 {
1579         vm_offset_t hint;
1580         int rv;
1581
1582         hint = *addr;
1583         for (;;) {
1584                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1585                     find_space, prot, max, cow);
1586                 if (rv == KERN_SUCCESS || min_addr >= hint)
1587                         return (rv);
1588                 *addr = hint = min_addr;
1589         }
1590 }
1591
1592 /*
1593  *      vm_map_simplify_entry:
1594  *
1595  *      Simplify the given map entry by merging with either neighbor.  This
1596  *      routine also has the ability to merge with both neighbors.
1597  *
1598  *      The map must be locked.
1599  *
1600  *      This routine guarantees that the passed entry remains valid (though
1601  *      possibly extended).  When merging, this routine may delete one or
1602  *      both neighbors.
1603  */
1604 void
1605 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1606 {
1607         vm_map_entry_t next, prev;
1608         vm_size_t prevsize, esize;
1609
1610         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1611             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1612                 return;
1613
1614         prev = entry->prev;
1615         if (prev != &map->header) {
1616                 prevsize = prev->end - prev->start;
1617                 if ( (prev->end == entry->start) &&
1618                      (prev->object.vm_object == entry->object.vm_object) &&
1619                      (!prev->object.vm_object ||
1620                         (prev->offset + prevsize == entry->offset)) &&
1621                      (prev->eflags == entry->eflags) &&
1622                      (prev->protection == entry->protection) &&
1623                      (prev->max_protection == entry->max_protection) &&
1624                      (prev->inheritance == entry->inheritance) &&
1625                      (prev->wired_count == entry->wired_count) &&
1626                      (prev->cred == entry->cred)) {
1627                         vm_map_entry_unlink(map, prev);
1628                         entry->start = prev->start;
1629                         entry->offset = prev->offset;
1630                         if (entry->prev != &map->header)
1631                                 vm_map_entry_resize_free(map, entry->prev);
1632
1633                         /*
1634                          * If the backing object is a vnode object,
1635                          * vm_object_deallocate() calls vrele().
1636                          * However, vrele() does not lock the vnode
1637                          * because the vnode has additional
1638                          * references.  Thus, the map lock can be kept
1639                          * without causing a lock-order reversal with
1640                          * the vnode lock.
1641                          *
1642                          * Since we count the number of virtual page
1643                          * mappings in object->un_pager.vnp.writemappings,
1644                          * the writemappings value should not be adjusted
1645                          * when the entry is disposed of.
1646                          */
1647                         if (prev->object.vm_object)
1648                                 vm_object_deallocate(prev->object.vm_object);
1649                         if (prev->cred != NULL)
1650                                 crfree(prev->cred);
1651                         vm_map_entry_dispose(map, prev);
1652                 }
1653         }
1654
1655         next = entry->next;
1656         if (next != &map->header) {
1657                 esize = entry->end - entry->start;
1658                 if ((entry->end == next->start) &&
1659                     (next->object.vm_object == entry->object.vm_object) &&
1660                      (!entry->object.vm_object ||
1661                         (entry->offset + esize == next->offset)) &&
1662                     (next->eflags == entry->eflags) &&
1663                     (next->protection == entry->protection) &&
1664                     (next->max_protection == entry->max_protection) &&
1665                     (next->inheritance == entry->inheritance) &&
1666                     (next->wired_count == entry->wired_count) &&
1667                     (next->cred == entry->cred)) {
1668                         vm_map_entry_unlink(map, next);
1669                         entry->end = next->end;
1670                         vm_map_entry_resize_free(map, entry);
1671
1672                         /*
1673                          * See comment above.
1674                          */
1675                         if (next->object.vm_object)
1676                                 vm_object_deallocate(next->object.vm_object);
1677                         if (next->cred != NULL)
1678                                 crfree(next->cred);
1679                         vm_map_entry_dispose(map, next);
1680                 }
1681         }
1682 }
1683 /*
1684  *      vm_map_clip_start:      [ internal use only ]
1685  *
1686  *      Asserts that the given entry begins at or after
1687  *      the specified address; if necessary,
1688  *      it splits the entry into two.
1689  */
1690 #define vm_map_clip_start(map, entry, startaddr) \
1691 { \
1692         if (startaddr > entry->start) \
1693                 _vm_map_clip_start(map, entry, startaddr); \
1694 }
1695
1696 /*
1697  *      This routine is called only when it is known that
1698  *      the entry must be split.
1699  */
1700 static void
1701 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1702 {
1703         vm_map_entry_t new_entry;
1704
1705         VM_MAP_ASSERT_LOCKED(map);
1706         KASSERT(entry->end > start && entry->start < start,
1707             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1708
1709         /*
1710          * Split off the front portion -- note that we must insert the new
1711          * entry BEFORE this one, so that this entry has the specified
1712          * starting address.
1713          */
1714         vm_map_simplify_entry(map, entry);
1715
1716         /*
1717          * If there is no object backing this entry, we might as well create
1718          * one now.  If we defer it, an object can get created after the map
1719          * is clipped, and individual objects will be created for the split-up
1720          * map.  This is a bit of a hack, but is also about the best place to
1721          * put this improvement.
1722          */
1723         if (entry->object.vm_object == NULL && !map->system_map &&
1724             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1725                 vm_object_t object;
1726                 object = vm_object_allocate(OBJT_DEFAULT,
1727                                 atop(entry->end - entry->start));
1728                 entry->object.vm_object = object;
1729                 entry->offset = 0;
1730                 if (entry->cred != NULL) {
1731                         object->cred = entry->cred;
1732                         object->charge = entry->end - entry->start;
1733                         entry->cred = NULL;
1734                 }
1735         } else if (entry->object.vm_object != NULL &&
1736                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1737                    entry->cred != NULL) {
1738                 VM_OBJECT_WLOCK(entry->object.vm_object);
1739                 KASSERT(entry->object.vm_object->cred == NULL,
1740                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1741                 entry->object.vm_object->cred = entry->cred;
1742                 entry->object.vm_object->charge = entry->end - entry->start;
1743                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1744                 entry->cred = NULL;
1745         }
1746
1747         new_entry = vm_map_entry_create(map);
1748         *new_entry = *entry;
1749
1750         new_entry->end = start;
1751         entry->offset += (start - entry->start);
1752         entry->start = start;
1753         if (new_entry->cred != NULL)
1754                 crhold(entry->cred);
1755
1756         vm_map_entry_link(map, entry->prev, new_entry);
1757
1758         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1759                 vm_object_reference(new_entry->object.vm_object);
1760                 /*
1761                  * The object->un_pager.vnp.writemappings for the
1762                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1763                  * kept as is here.  The virtual pages are
1764                  * re-distributed among the clipped entries, so the sum is
1765                  * left the same.
1766                  */
1767         }
1768 }
1769
1770 /*
1771  *      vm_map_clip_end:        [ internal use only ]
1772  *
1773  *      Asserts that the given entry ends at or before
1774  *      the specified address; if necessary,
1775  *      it splits the entry into two.
1776  */
1777 #define vm_map_clip_end(map, entry, endaddr) \
1778 { \
1779         if ((endaddr) < (entry->end)) \
1780                 _vm_map_clip_end((map), (entry), (endaddr)); \
1781 }
1782
1783 /*
1784  *      This routine is called only when it is known that
1785  *      the entry must be split.
1786  */
1787 static void
1788 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1789 {
1790         vm_map_entry_t new_entry;
1791
1792         VM_MAP_ASSERT_LOCKED(map);
1793         KASSERT(entry->start < end && entry->end > end,
1794             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1795
1796         /*
1797          * If there is no object backing this entry, we might as well create
1798          * one now.  If we defer it, an object can get created after the map
1799          * is clipped, and individual objects will be created for the split-up
1800          * map.  This is a bit of a hack, but is also about the best place to
1801          * put this improvement.
1802          */
1803         if (entry->object.vm_object == NULL && !map->system_map &&
1804             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1805                 vm_object_t object;
1806                 object = vm_object_allocate(OBJT_DEFAULT,
1807                                 atop(entry->end - entry->start));
1808                 entry->object.vm_object = object;
1809                 entry->offset = 0;
1810                 if (entry->cred != NULL) {
1811                         object->cred = entry->cred;
1812                         object->charge = entry->end - entry->start;
1813                         entry->cred = NULL;
1814                 }
1815         } else if (entry->object.vm_object != NULL &&
1816                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1817                    entry->cred != NULL) {
1818                 VM_OBJECT_WLOCK(entry->object.vm_object);
1819                 KASSERT(entry->object.vm_object->cred == NULL,
1820                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1821                 entry->object.vm_object->cred = entry->cred;
1822                 entry->object.vm_object->charge = entry->end - entry->start;
1823                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1824                 entry->cred = NULL;
1825         }
1826
1827         /*
1828          * Create a new entry and insert it AFTER the specified entry
1829          */
1830         new_entry = vm_map_entry_create(map);
1831         *new_entry = *entry;
1832
1833         new_entry->start = entry->end = end;
1834         new_entry->offset += (end - entry->start);
1835         if (new_entry->cred != NULL)
1836                 crhold(entry->cred);
1837
1838         vm_map_entry_link(map, entry, new_entry);
1839
1840         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1841                 vm_object_reference(new_entry->object.vm_object);
1842         }
1843 }
1844
1845 /*
1846  *      vm_map_submap:          [ kernel use only ]
1847  *
1848  *      Mark the given range as handled by a subordinate map.
1849  *
1850  *      This range must have been created with vm_map_find,
1851  *      and no other operations may have been performed on this
1852  *      range prior to calling vm_map_submap.
1853  *
1854  *      Only a limited number of operations can be performed
1855  *      within this rage after calling vm_map_submap:
1856  *              vm_fault
1857  *      [Don't try vm_map_copy!]
1858  *
1859  *      To remove a submapping, one must first remove the
1860  *      range from the superior map, and then destroy the
1861  *      submap (if desired).  [Better yet, don't try it.]
1862  */
1863 int
1864 vm_map_submap(
1865         vm_map_t map,
1866         vm_offset_t start,
1867         vm_offset_t end,
1868         vm_map_t submap)
1869 {
1870         vm_map_entry_t entry;
1871         int result = KERN_INVALID_ARGUMENT;
1872
1873         vm_map_lock(map);
1874
1875         VM_MAP_RANGE_CHECK(map, start, end);
1876
1877         if (vm_map_lookup_entry(map, start, &entry)) {
1878                 vm_map_clip_start(map, entry, start);
1879         } else
1880                 entry = entry->next;
1881
1882         vm_map_clip_end(map, entry, end);
1883
1884         if ((entry->start == start) && (entry->end == end) &&
1885             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1886             (entry->object.vm_object == NULL)) {
1887                 entry->object.sub_map = submap;
1888                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1889                 result = KERN_SUCCESS;
1890         }
1891         vm_map_unlock(map);
1892
1893         return (result);
1894 }
1895
1896 /*
1897  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1898  */
1899 #define MAX_INIT_PT     96
1900
1901 /*
1902  *      vm_map_pmap_enter:
1903  *
1904  *      Preload the specified map's pmap with mappings to the specified
1905  *      object's memory-resident pages.  No further physical pages are
1906  *      allocated, and no further virtual pages are retrieved from secondary
1907  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1908  *      limited number of page mappings are created at the low-end of the
1909  *      specified address range.  (For this purpose, a superpage mapping
1910  *      counts as one page mapping.)  Otherwise, all resident pages within
1911  *      the specified address range are mapped.
1912  */
1913 static void
1914 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1915     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1916 {
1917         vm_offset_t start;
1918         vm_page_t p, p_start;
1919         vm_pindex_t mask, psize, threshold, tmpidx;
1920
1921         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1922                 return;
1923         VM_OBJECT_RLOCK(object);
1924         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1925                 VM_OBJECT_RUNLOCK(object);
1926                 VM_OBJECT_WLOCK(object);
1927                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1928                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1929                             size);
1930                         VM_OBJECT_WUNLOCK(object);
1931                         return;
1932                 }
1933                 VM_OBJECT_LOCK_DOWNGRADE(object);
1934         }
1935
1936         psize = atop(size);
1937         if (psize + pindex > object->size) {
1938                 if (object->size < pindex) {
1939                         VM_OBJECT_RUNLOCK(object);
1940                         return;
1941                 }
1942                 psize = object->size - pindex;
1943         }
1944
1945         start = 0;
1946         p_start = NULL;
1947         threshold = MAX_INIT_PT;
1948
1949         p = vm_page_find_least(object, pindex);
1950         /*
1951          * Assert: the variable p is either (1) the page with the
1952          * least pindex greater than or equal to the parameter pindex
1953          * or (2) NULL.
1954          */
1955         for (;
1956              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1957              p = TAILQ_NEXT(p, listq)) {
1958                 /*
1959                  * don't allow an madvise to blow away our really
1960                  * free pages allocating pv entries.
1961                  */
1962                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1963                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1964                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1965                     tmpidx >= threshold)) {
1966                         psize = tmpidx;
1967                         break;
1968                 }
1969                 if (p->valid == VM_PAGE_BITS_ALL) {
1970                         if (p_start == NULL) {
1971                                 start = addr + ptoa(tmpidx);
1972                                 p_start = p;
1973                         }
1974                         /* Jump ahead if a superpage mapping is possible. */
1975                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1976                             (pagesizes[p->psind] - 1)) == 0) {
1977                                 mask = atop(pagesizes[p->psind]) - 1;
1978                                 if (tmpidx + mask < psize &&
1979                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
1980                                         p += mask;
1981                                         threshold += mask;
1982                                 }
1983                         }
1984                 } else if (p_start != NULL) {
1985                         pmap_enter_object(map->pmap, start, addr +
1986                             ptoa(tmpidx), p_start, prot);
1987                         p_start = NULL;
1988                 }
1989         }
1990         if (p_start != NULL)
1991                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1992                     p_start, prot);
1993         VM_OBJECT_RUNLOCK(object);
1994 }
1995
1996 /*
1997  *      vm_map_protect:
1998  *
1999  *      Sets the protection of the specified address
2000  *      region in the target map.  If "set_max" is
2001  *      specified, the maximum protection is to be set;
2002  *      otherwise, only the current protection is affected.
2003  */
2004 int
2005 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2006                vm_prot_t new_prot, boolean_t set_max)
2007 {
2008         vm_map_entry_t current, entry;
2009         vm_object_t obj;
2010         struct ucred *cred;
2011         vm_prot_t old_prot;
2012
2013         if (start == end)
2014                 return (KERN_SUCCESS);
2015
2016         vm_map_lock(map);
2017
2018         /*
2019          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2020          * need to fault pages into the map and will drop the map lock while
2021          * doing so, and the VM object may end up in an inconsistent state if we
2022          * update the protection on the map entry in between faults.
2023          */
2024         vm_map_wait_busy(map);
2025
2026         VM_MAP_RANGE_CHECK(map, start, end);
2027
2028         if (vm_map_lookup_entry(map, start, &entry)) {
2029                 vm_map_clip_start(map, entry, start);
2030         } else {
2031                 entry = entry->next;
2032         }
2033
2034         /*
2035          * Make a first pass to check for protection violations.
2036          */
2037         for (current = entry; current != &map->header && current->start < end;
2038             current = current->next) {
2039                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2040                         continue;
2041                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2042                         vm_map_unlock(map);
2043                         return (KERN_INVALID_ARGUMENT);
2044                 }
2045                 if ((new_prot & current->max_protection) != new_prot) {
2046                         vm_map_unlock(map);
2047                         return (KERN_PROTECTION_FAILURE);
2048                 }
2049         }
2050
2051         /*
2052          * Do an accounting pass for private read-only mappings that
2053          * now will do cow due to allowed write (e.g. debugger sets
2054          * breakpoint on text segment)
2055          */
2056         for (current = entry; current != &map->header && current->start < end;
2057             current = current->next) {
2058
2059                 vm_map_clip_end(map, current, end);
2060
2061                 if (set_max ||
2062                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2063                     ENTRY_CHARGED(current) ||
2064                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2065                         continue;
2066                 }
2067
2068                 cred = curthread->td_ucred;
2069                 obj = current->object.vm_object;
2070
2071                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2072                         if (!swap_reserve(current->end - current->start)) {
2073                                 vm_map_unlock(map);
2074                                 return (KERN_RESOURCE_SHORTAGE);
2075                         }
2076                         crhold(cred);
2077                         current->cred = cred;
2078                         continue;
2079                 }
2080
2081                 VM_OBJECT_WLOCK(obj);
2082                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2083                         VM_OBJECT_WUNLOCK(obj);
2084                         continue;
2085                 }
2086
2087                 /*
2088                  * Charge for the whole object allocation now, since
2089                  * we cannot distinguish between non-charged and
2090                  * charged clipped mapping of the same object later.
2091                  */
2092                 KASSERT(obj->charge == 0,
2093                     ("vm_map_protect: object %p overcharged (entry %p)",
2094                     obj, current));
2095                 if (!swap_reserve(ptoa(obj->size))) {
2096                         VM_OBJECT_WUNLOCK(obj);
2097                         vm_map_unlock(map);
2098                         return (KERN_RESOURCE_SHORTAGE);
2099                 }
2100
2101                 crhold(cred);
2102                 obj->cred = cred;
2103                 obj->charge = ptoa(obj->size);
2104                 VM_OBJECT_WUNLOCK(obj);
2105         }
2106
2107         /*
2108          * Go back and fix up protections. [Note that clipping is not
2109          * necessary the second time.]
2110          */
2111         for (current = entry; current != &map->header && current->start < end;
2112             current = current->next) {
2113                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2114                         continue;
2115
2116                 old_prot = current->protection;
2117
2118                 if (set_max)
2119                         current->protection =
2120                             (current->max_protection = new_prot) &
2121                             old_prot;
2122                 else
2123                         current->protection = new_prot;
2124
2125                 /*
2126                  * For user wired map entries, the normal lazy evaluation of
2127                  * write access upgrades through soft page faults is
2128                  * undesirable.  Instead, immediately copy any pages that are
2129                  * copy-on-write and enable write access in the physical map.
2130                  */
2131                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2132                     (current->protection & VM_PROT_WRITE) != 0 &&
2133                     (old_prot & VM_PROT_WRITE) == 0)
2134                         vm_fault_copy_entry(map, map, current, current, NULL);
2135
2136                 /*
2137                  * When restricting access, update the physical map.  Worry
2138                  * about copy-on-write here.
2139                  */
2140                 if ((old_prot & ~current->protection) != 0) {
2141 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2142                                                         VM_PROT_ALL)
2143                         pmap_protect(map->pmap, current->start,
2144                             current->end,
2145                             current->protection & MASK(current));
2146 #undef  MASK
2147                 }
2148                 vm_map_simplify_entry(map, current);
2149         }
2150         vm_map_unlock(map);
2151         return (KERN_SUCCESS);
2152 }
2153
2154 /*
2155  *      vm_map_madvise:
2156  *
2157  *      This routine traverses a processes map handling the madvise
2158  *      system call.  Advisories are classified as either those effecting
2159  *      the vm_map_entry structure, or those effecting the underlying
2160  *      objects.
2161  */
2162 int
2163 vm_map_madvise(
2164         vm_map_t map,
2165         vm_offset_t start,
2166         vm_offset_t end,
2167         int behav)
2168 {
2169         vm_map_entry_t current, entry;
2170         int modify_map = 0;
2171
2172         /*
2173          * Some madvise calls directly modify the vm_map_entry, in which case
2174          * we need to use an exclusive lock on the map and we need to perform
2175          * various clipping operations.  Otherwise we only need a read-lock
2176          * on the map.
2177          */
2178         switch(behav) {
2179         case MADV_NORMAL:
2180         case MADV_SEQUENTIAL:
2181         case MADV_RANDOM:
2182         case MADV_NOSYNC:
2183         case MADV_AUTOSYNC:
2184         case MADV_NOCORE:
2185         case MADV_CORE:
2186                 if (start == end)
2187                         return (KERN_SUCCESS);
2188                 modify_map = 1;
2189                 vm_map_lock(map);
2190                 break;
2191         case MADV_WILLNEED:
2192         case MADV_DONTNEED:
2193         case MADV_FREE:
2194                 if (start == end)
2195                         return (KERN_SUCCESS);
2196                 vm_map_lock_read(map);
2197                 break;
2198         default:
2199                 return (KERN_INVALID_ARGUMENT);
2200         }
2201
2202         /*
2203          * Locate starting entry and clip if necessary.
2204          */
2205         VM_MAP_RANGE_CHECK(map, start, end);
2206
2207         if (vm_map_lookup_entry(map, start, &entry)) {
2208                 if (modify_map)
2209                         vm_map_clip_start(map, entry, start);
2210         } else {
2211                 entry = entry->next;
2212         }
2213
2214         if (modify_map) {
2215                 /*
2216                  * madvise behaviors that are implemented in the vm_map_entry.
2217                  *
2218                  * We clip the vm_map_entry so that behavioral changes are
2219                  * limited to the specified address range.
2220                  */
2221                 for (current = entry;
2222                      (current != &map->header) && (current->start < end);
2223                      current = current->next
2224                 ) {
2225                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2226                                 continue;
2227
2228                         vm_map_clip_end(map, current, end);
2229
2230                         switch (behav) {
2231                         case MADV_NORMAL:
2232                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2233                                 break;
2234                         case MADV_SEQUENTIAL:
2235                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2236                                 break;
2237                         case MADV_RANDOM:
2238                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2239                                 break;
2240                         case MADV_NOSYNC:
2241                                 current->eflags |= MAP_ENTRY_NOSYNC;
2242                                 break;
2243                         case MADV_AUTOSYNC:
2244                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2245                                 break;
2246                         case MADV_NOCORE:
2247                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2248                                 break;
2249                         case MADV_CORE:
2250                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2251                                 break;
2252                         default:
2253                                 break;
2254                         }
2255                         vm_map_simplify_entry(map, current);
2256                 }
2257                 vm_map_unlock(map);
2258         } else {
2259                 vm_pindex_t pstart, pend;
2260
2261                 /*
2262                  * madvise behaviors that are implemented in the underlying
2263                  * vm_object.
2264                  *
2265                  * Since we don't clip the vm_map_entry, we have to clip
2266                  * the vm_object pindex and count.
2267                  */
2268                 for (current = entry;
2269                      (current != &map->header) && (current->start < end);
2270                      current = current->next
2271                 ) {
2272                         vm_offset_t useEnd, useStart;
2273
2274                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2275                                 continue;
2276
2277                         pstart = OFF_TO_IDX(current->offset);
2278                         pend = pstart + atop(current->end - current->start);
2279                         useStart = current->start;
2280                         useEnd = current->end;
2281
2282                         if (current->start < start) {
2283                                 pstart += atop(start - current->start);
2284                                 useStart = start;
2285                         }
2286                         if (current->end > end) {
2287                                 pend -= atop(current->end - end);
2288                                 useEnd = end;
2289                         }
2290
2291                         if (pstart >= pend)
2292                                 continue;
2293
2294                         /*
2295                          * Perform the pmap_advise() before clearing
2296                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2297                          * concurrent pmap operation, such as pmap_remove(),
2298                          * could clear a reference in the pmap and set
2299                          * PGA_REFERENCED on the page before the pmap_advise()
2300                          * had completed.  Consequently, the page would appear
2301                          * referenced based upon an old reference that
2302                          * occurred before this pmap_advise() ran.
2303                          */
2304                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2305                                 pmap_advise(map->pmap, useStart, useEnd,
2306                                     behav);
2307
2308                         vm_object_madvise(current->object.vm_object, pstart,
2309                             pend, behav);
2310
2311                         /*
2312                          * Pre-populate paging structures in the
2313                          * WILLNEED case.  For wired entries, the
2314                          * paging structures are already populated.
2315                          */
2316                         if (behav == MADV_WILLNEED &&
2317                             current->wired_count == 0) {
2318                                 vm_map_pmap_enter(map,
2319                                     useStart,
2320                                     current->protection,
2321                                     current->object.vm_object,
2322                                     pstart,
2323                                     ptoa(pend - pstart),
2324                                     MAP_PREFAULT_MADVISE
2325                                 );
2326                         }
2327                 }
2328                 vm_map_unlock_read(map);
2329         }
2330         return (0);
2331 }
2332
2333
2334 /*
2335  *      vm_map_inherit:
2336  *
2337  *      Sets the inheritance of the specified address
2338  *      range in the target map.  Inheritance
2339  *      affects how the map will be shared with
2340  *      child maps at the time of vmspace_fork.
2341  */
2342 int
2343 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2344                vm_inherit_t new_inheritance)
2345 {
2346         vm_map_entry_t entry;
2347         vm_map_entry_t temp_entry;
2348
2349         switch (new_inheritance) {
2350         case VM_INHERIT_NONE:
2351         case VM_INHERIT_COPY:
2352         case VM_INHERIT_SHARE:
2353         case VM_INHERIT_ZERO:
2354                 break;
2355         default:
2356                 return (KERN_INVALID_ARGUMENT);
2357         }
2358         if (start == end)
2359                 return (KERN_SUCCESS);
2360         vm_map_lock(map);
2361         VM_MAP_RANGE_CHECK(map, start, end);
2362         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2363                 entry = temp_entry;
2364                 vm_map_clip_start(map, entry, start);
2365         } else
2366                 entry = temp_entry->next;
2367         while ((entry != &map->header) && (entry->start < end)) {
2368                 vm_map_clip_end(map, entry, end);
2369                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2370                     new_inheritance != VM_INHERIT_ZERO)
2371                         entry->inheritance = new_inheritance;
2372                 vm_map_simplify_entry(map, entry);
2373                 entry = entry->next;
2374         }
2375         vm_map_unlock(map);
2376         return (KERN_SUCCESS);
2377 }
2378
2379 /*
2380  *      vm_map_unwire:
2381  *
2382  *      Implements both kernel and user unwiring.
2383  */
2384 int
2385 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2386     int flags)
2387 {
2388         vm_map_entry_t entry, first_entry, tmp_entry;
2389         vm_offset_t saved_start;
2390         unsigned int last_timestamp;
2391         int rv;
2392         boolean_t need_wakeup, result, user_unwire;
2393
2394         if (start == end)
2395                 return (KERN_SUCCESS);
2396         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2397         vm_map_lock(map);
2398         VM_MAP_RANGE_CHECK(map, start, end);
2399         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2400                 if (flags & VM_MAP_WIRE_HOLESOK)
2401                         first_entry = first_entry->next;
2402                 else {
2403                         vm_map_unlock(map);
2404                         return (KERN_INVALID_ADDRESS);
2405                 }
2406         }
2407         last_timestamp = map->timestamp;
2408         entry = first_entry;
2409         while (entry != &map->header && entry->start < end) {
2410                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2411                         /*
2412                          * We have not yet clipped the entry.
2413                          */
2414                         saved_start = (start >= entry->start) ? start :
2415                             entry->start;
2416                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2417                         if (vm_map_unlock_and_wait(map, 0)) {
2418                                 /*
2419                                  * Allow interruption of user unwiring?
2420                                  */
2421                         }
2422                         vm_map_lock(map);
2423                         if (last_timestamp+1 != map->timestamp) {
2424                                 /*
2425                                  * Look again for the entry because the map was
2426                                  * modified while it was unlocked.
2427                                  * Specifically, the entry may have been
2428                                  * clipped, merged, or deleted.
2429                                  */
2430                                 if (!vm_map_lookup_entry(map, saved_start,
2431                                     &tmp_entry)) {
2432                                         if (flags & VM_MAP_WIRE_HOLESOK)
2433                                                 tmp_entry = tmp_entry->next;
2434                                         else {
2435                                                 if (saved_start == start) {
2436                                                         /*
2437                                                          * First_entry has been deleted.
2438                                                          */
2439                                                         vm_map_unlock(map);
2440                                                         return (KERN_INVALID_ADDRESS);
2441                                                 }
2442                                                 end = saved_start;
2443                                                 rv = KERN_INVALID_ADDRESS;
2444                                                 goto done;
2445                                         }
2446                                 }
2447                                 if (entry == first_entry)
2448                                         first_entry = tmp_entry;
2449                                 else
2450                                         first_entry = NULL;
2451                                 entry = tmp_entry;
2452                         }
2453                         last_timestamp = map->timestamp;
2454                         continue;
2455                 }
2456                 vm_map_clip_start(map, entry, start);
2457                 vm_map_clip_end(map, entry, end);
2458                 /*
2459                  * Mark the entry in case the map lock is released.  (See
2460                  * above.)
2461                  */
2462                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2463                     entry->wiring_thread == NULL,
2464                     ("owned map entry %p", entry));
2465                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2466                 entry->wiring_thread = curthread;
2467                 /*
2468                  * Check the map for holes in the specified region.
2469                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2470                  */
2471                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2472                     (entry->end < end && (entry->next == &map->header ||
2473                     entry->next->start > entry->end))) {
2474                         end = entry->end;
2475                         rv = KERN_INVALID_ADDRESS;
2476                         goto done;
2477                 }
2478                 /*
2479                  * If system unwiring, require that the entry is system wired.
2480                  */
2481                 if (!user_unwire &&
2482                     vm_map_entry_system_wired_count(entry) == 0) {
2483                         end = entry->end;
2484                         rv = KERN_INVALID_ARGUMENT;
2485                         goto done;
2486                 }
2487                 entry = entry->next;
2488         }
2489         rv = KERN_SUCCESS;
2490 done:
2491         need_wakeup = FALSE;
2492         if (first_entry == NULL) {
2493                 result = vm_map_lookup_entry(map, start, &first_entry);
2494                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2495                         first_entry = first_entry->next;
2496                 else
2497                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2498         }
2499         for (entry = first_entry; entry != &map->header && entry->start < end;
2500             entry = entry->next) {
2501                 /*
2502                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2503                  * space in the unwired region could have been mapped
2504                  * while the map lock was dropped for draining
2505                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2506                  * could be simultaneously wiring this new mapping
2507                  * entry.  Detect these cases and skip any entries
2508                  * marked as in transition by us.
2509                  */
2510                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2511                     entry->wiring_thread != curthread) {
2512                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2513                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2514                         continue;
2515                 }
2516
2517                 if (rv == KERN_SUCCESS && (!user_unwire ||
2518                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2519                         if (user_unwire)
2520                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2521                         if (entry->wired_count == 1)
2522                                 vm_map_entry_unwire(map, entry);
2523                         else
2524                                 entry->wired_count--;
2525                 }
2526                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2527                     ("vm_map_unwire: in-transition flag missing %p", entry));
2528                 KASSERT(entry->wiring_thread == curthread,
2529                     ("vm_map_unwire: alien wire %p", entry));
2530                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2531                 entry->wiring_thread = NULL;
2532                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2533                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2534                         need_wakeup = TRUE;
2535                 }
2536                 vm_map_simplify_entry(map, entry);
2537         }
2538         vm_map_unlock(map);
2539         if (need_wakeup)
2540                 vm_map_wakeup(map);
2541         return (rv);
2542 }
2543
2544 /*
2545  *      vm_map_wire_entry_failure:
2546  *
2547  *      Handle a wiring failure on the given entry.
2548  *
2549  *      The map should be locked.
2550  */
2551 static void
2552 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2553     vm_offset_t failed_addr)
2554 {
2555
2556         VM_MAP_ASSERT_LOCKED(map);
2557         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2558             entry->wired_count == 1,
2559             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2560         KASSERT(failed_addr < entry->end,
2561             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2562
2563         /*
2564          * If any pages at the start of this entry were successfully wired,
2565          * then unwire them.
2566          */
2567         if (failed_addr > entry->start) {
2568                 pmap_unwire(map->pmap, entry->start, failed_addr);
2569                 vm_object_unwire(entry->object.vm_object, entry->offset,
2570                     failed_addr - entry->start, PQ_ACTIVE);
2571         }
2572
2573         /*
2574          * Assign an out-of-range value to represent the failure to wire this
2575          * entry.
2576          */
2577         entry->wired_count = -1;
2578 }
2579
2580 /*
2581  *      vm_map_wire:
2582  *
2583  *      Implements both kernel and user wiring.
2584  */
2585 int
2586 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2587     int flags)
2588 {
2589         vm_map_entry_t entry, first_entry, tmp_entry;
2590         vm_offset_t faddr, saved_end, saved_start;
2591         unsigned int last_timestamp;
2592         int rv;
2593         boolean_t need_wakeup, result, user_wire;
2594         vm_prot_t prot;
2595
2596         if (start == end)
2597                 return (KERN_SUCCESS);
2598         prot = 0;
2599         if (flags & VM_MAP_WIRE_WRITE)
2600                 prot |= VM_PROT_WRITE;
2601         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2602         vm_map_lock(map);
2603         VM_MAP_RANGE_CHECK(map, start, end);
2604         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2605                 if (flags & VM_MAP_WIRE_HOLESOK)
2606                         first_entry = first_entry->next;
2607                 else {
2608                         vm_map_unlock(map);
2609                         return (KERN_INVALID_ADDRESS);
2610                 }
2611         }
2612         last_timestamp = map->timestamp;
2613         entry = first_entry;
2614         while (entry != &map->header && entry->start < end) {
2615                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2616                         /*
2617                          * We have not yet clipped the entry.
2618                          */
2619                         saved_start = (start >= entry->start) ? start :
2620                             entry->start;
2621                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2622                         if (vm_map_unlock_and_wait(map, 0)) {
2623                                 /*
2624                                  * Allow interruption of user wiring?
2625                                  */
2626                         }
2627                         vm_map_lock(map);
2628                         if (last_timestamp + 1 != map->timestamp) {
2629                                 /*
2630                                  * Look again for the entry because the map was
2631                                  * modified while it was unlocked.
2632                                  * Specifically, the entry may have been
2633                                  * clipped, merged, or deleted.
2634                                  */
2635                                 if (!vm_map_lookup_entry(map, saved_start,
2636                                     &tmp_entry)) {
2637                                         if (flags & VM_MAP_WIRE_HOLESOK)
2638                                                 tmp_entry = tmp_entry->next;
2639                                         else {
2640                                                 if (saved_start == start) {
2641                                                         /*
2642                                                          * first_entry has been deleted.
2643                                                          */
2644                                                         vm_map_unlock(map);
2645                                                         return (KERN_INVALID_ADDRESS);
2646                                                 }
2647                                                 end = saved_start;
2648                                                 rv = KERN_INVALID_ADDRESS;
2649                                                 goto done;
2650                                         }
2651                                 }
2652                                 if (entry == first_entry)
2653                                         first_entry = tmp_entry;
2654                                 else
2655                                         first_entry = NULL;
2656                                 entry = tmp_entry;
2657                         }
2658                         last_timestamp = map->timestamp;
2659                         continue;
2660                 }
2661                 vm_map_clip_start(map, entry, start);
2662                 vm_map_clip_end(map, entry, end);
2663                 /*
2664                  * Mark the entry in case the map lock is released.  (See
2665                  * above.)
2666                  */
2667                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2668                     entry->wiring_thread == NULL,
2669                     ("owned map entry %p", entry));
2670                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2671                 entry->wiring_thread = curthread;
2672                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2673                     || (entry->protection & prot) != prot) {
2674                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2675                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2676                                 end = entry->end;
2677                                 rv = KERN_INVALID_ADDRESS;
2678                                 goto done;
2679                         }
2680                         goto next_entry;
2681                 }
2682                 if (entry->wired_count == 0) {
2683                         entry->wired_count++;
2684                         saved_start = entry->start;
2685                         saved_end = entry->end;
2686
2687                         /*
2688                          * Release the map lock, relying on the in-transition
2689                          * mark.  Mark the map busy for fork.
2690                          */
2691                         vm_map_busy(map);
2692                         vm_map_unlock(map);
2693
2694                         faddr = saved_start;
2695                         do {
2696                                 /*
2697                                  * Simulate a fault to get the page and enter
2698                                  * it into the physical map.
2699                                  */
2700                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2701                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2702                                         break;
2703                         } while ((faddr += PAGE_SIZE) < saved_end);
2704                         vm_map_lock(map);
2705                         vm_map_unbusy(map);
2706                         if (last_timestamp + 1 != map->timestamp) {
2707                                 /*
2708                                  * Look again for the entry because the map was
2709                                  * modified while it was unlocked.  The entry
2710                                  * may have been clipped, but NOT merged or
2711                                  * deleted.
2712                                  */
2713                                 result = vm_map_lookup_entry(map, saved_start,
2714                                     &tmp_entry);
2715                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2716                                 if (entry == first_entry)
2717                                         first_entry = tmp_entry;
2718                                 else
2719                                         first_entry = NULL;
2720                                 entry = tmp_entry;
2721                                 while (entry->end < saved_end) {
2722                                         /*
2723                                          * In case of failure, handle entries
2724                                          * that were not fully wired here;
2725                                          * fully wired entries are handled
2726                                          * later.
2727                                          */
2728                                         if (rv != KERN_SUCCESS &&
2729                                             faddr < entry->end)
2730                                                 vm_map_wire_entry_failure(map,
2731                                                     entry, faddr);
2732                                         entry = entry->next;
2733                                 }
2734                         }
2735                         last_timestamp = map->timestamp;
2736                         if (rv != KERN_SUCCESS) {
2737                                 vm_map_wire_entry_failure(map, entry, faddr);
2738                                 end = entry->end;
2739                                 goto done;
2740                         }
2741                 } else if (!user_wire ||
2742                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2743                         entry->wired_count++;
2744                 }
2745                 /*
2746                  * Check the map for holes in the specified region.
2747                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2748                  */
2749         next_entry:
2750                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2751                     entry->end < end && (entry->next == &map->header ||
2752                     entry->next->start > entry->end)) {
2753                         end = entry->end;
2754                         rv = KERN_INVALID_ADDRESS;
2755                         goto done;
2756                 }
2757                 entry = entry->next;
2758         }
2759         rv = KERN_SUCCESS;
2760 done:
2761         need_wakeup = FALSE;
2762         if (first_entry == NULL) {
2763                 result = vm_map_lookup_entry(map, start, &first_entry);
2764                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2765                         first_entry = first_entry->next;
2766                 else
2767                         KASSERT(result, ("vm_map_wire: lookup failed"));
2768         }
2769         for (entry = first_entry; entry != &map->header && entry->start < end;
2770             entry = entry->next) {
2771                 /*
2772                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2773                  * space in the unwired region could have been mapped
2774                  * while the map lock was dropped for faulting in the
2775                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2776                  * Moreover, another thread could be simultaneously
2777                  * wiring this new mapping entry.  Detect these cases
2778                  * and skip any entries marked as in transition not by us.
2779                  */
2780                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2781                     entry->wiring_thread != curthread) {
2782                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2783                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2784                         continue;
2785                 }
2786
2787                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2788                         goto next_entry_done;
2789
2790                 if (rv == KERN_SUCCESS) {
2791                         if (user_wire)
2792                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2793                 } else if (entry->wired_count == -1) {
2794                         /*
2795                          * Wiring failed on this entry.  Thus, unwiring is
2796                          * unnecessary.
2797                          */
2798                         entry->wired_count = 0;
2799                 } else if (!user_wire ||
2800                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2801                         /*
2802                          * Undo the wiring.  Wiring succeeded on this entry
2803                          * but failed on a later entry.  
2804                          */
2805                         if (entry->wired_count == 1)
2806                                 vm_map_entry_unwire(map, entry);
2807                         else
2808                                 entry->wired_count--;
2809                 }
2810         next_entry_done:
2811                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2812                     ("vm_map_wire: in-transition flag missing %p", entry));
2813                 KASSERT(entry->wiring_thread == curthread,
2814                     ("vm_map_wire: alien wire %p", entry));
2815                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2816                     MAP_ENTRY_WIRE_SKIPPED);
2817                 entry->wiring_thread = NULL;
2818                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2819                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2820                         need_wakeup = TRUE;
2821                 }
2822                 vm_map_simplify_entry(map, entry);
2823         }
2824         vm_map_unlock(map);
2825         if (need_wakeup)
2826                 vm_map_wakeup(map);
2827         return (rv);
2828 }
2829
2830 /*
2831  * vm_map_sync
2832  *
2833  * Push any dirty cached pages in the address range to their pager.
2834  * If syncio is TRUE, dirty pages are written synchronously.
2835  * If invalidate is TRUE, any cached pages are freed as well.
2836  *
2837  * If the size of the region from start to end is zero, we are
2838  * supposed to flush all modified pages within the region containing
2839  * start.  Unfortunately, a region can be split or coalesced with
2840  * neighboring regions, making it difficult to determine what the
2841  * original region was.  Therefore, we approximate this requirement by
2842  * flushing the current region containing start.
2843  *
2844  * Returns an error if any part of the specified range is not mapped.
2845  */
2846 int
2847 vm_map_sync(
2848         vm_map_t map,
2849         vm_offset_t start,
2850         vm_offset_t end,
2851         boolean_t syncio,
2852         boolean_t invalidate)
2853 {
2854         vm_map_entry_t current;
2855         vm_map_entry_t entry;
2856         vm_size_t size;
2857         vm_object_t object;
2858         vm_ooffset_t offset;
2859         unsigned int last_timestamp;
2860         boolean_t failed;
2861
2862         vm_map_lock_read(map);
2863         VM_MAP_RANGE_CHECK(map, start, end);
2864         if (!vm_map_lookup_entry(map, start, &entry)) {
2865                 vm_map_unlock_read(map);
2866                 return (KERN_INVALID_ADDRESS);
2867         } else if (start == end) {
2868                 start = entry->start;
2869                 end = entry->end;
2870         }
2871         /*
2872          * Make a first pass to check for user-wired memory and holes.
2873          */
2874         for (current = entry; current != &map->header && current->start < end;
2875             current = current->next) {
2876                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2877                         vm_map_unlock_read(map);
2878                         return (KERN_INVALID_ARGUMENT);
2879                 }
2880                 if (end > current->end &&
2881                     (current->next == &map->header ||
2882                         current->end != current->next->start)) {
2883                         vm_map_unlock_read(map);
2884                         return (KERN_INVALID_ADDRESS);
2885                 }
2886         }
2887
2888         if (invalidate)
2889                 pmap_remove(map->pmap, start, end);
2890         failed = FALSE;
2891
2892         /*
2893          * Make a second pass, cleaning/uncaching pages from the indicated
2894          * objects as we go.
2895          */
2896         for (current = entry; current != &map->header && current->start < end;) {
2897                 offset = current->offset + (start - current->start);
2898                 size = (end <= current->end ? end : current->end) - start;
2899                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2900                         vm_map_t smap;
2901                         vm_map_entry_t tentry;
2902                         vm_size_t tsize;
2903
2904                         smap = current->object.sub_map;
2905                         vm_map_lock_read(smap);
2906                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2907                         tsize = tentry->end - offset;
2908                         if (tsize < size)
2909                                 size = tsize;
2910                         object = tentry->object.vm_object;
2911                         offset = tentry->offset + (offset - tentry->start);
2912                         vm_map_unlock_read(smap);
2913                 } else {
2914                         object = current->object.vm_object;
2915                 }
2916                 vm_object_reference(object);
2917                 last_timestamp = map->timestamp;
2918                 vm_map_unlock_read(map);
2919                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2920                         failed = TRUE;
2921                 start += size;
2922                 vm_object_deallocate(object);
2923                 vm_map_lock_read(map);
2924                 if (last_timestamp == map->timestamp ||
2925                     !vm_map_lookup_entry(map, start, &current))
2926                         current = current->next;
2927         }
2928
2929         vm_map_unlock_read(map);
2930         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2931 }
2932
2933 /*
2934  *      vm_map_entry_unwire:    [ internal use only ]
2935  *
2936  *      Make the region specified by this entry pageable.
2937  *
2938  *      The map in question should be locked.
2939  *      [This is the reason for this routine's existence.]
2940  */
2941 static void
2942 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2943 {
2944
2945         VM_MAP_ASSERT_LOCKED(map);
2946         KASSERT(entry->wired_count > 0,
2947             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2948         pmap_unwire(map->pmap, entry->start, entry->end);
2949         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2950             entry->start, PQ_ACTIVE);
2951         entry->wired_count = 0;
2952 }
2953
2954 static void
2955 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2956 {
2957
2958         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2959                 vm_object_deallocate(entry->object.vm_object);
2960         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2961 }
2962
2963 /*
2964  *      vm_map_entry_delete:    [ internal use only ]
2965  *
2966  *      Deallocate the given entry from the target map.
2967  */
2968 static void
2969 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2970 {
2971         vm_object_t object;
2972         vm_pindex_t offidxstart, offidxend, count, size1;
2973         vm_size_t size;
2974
2975         vm_map_entry_unlink(map, entry);
2976         object = entry->object.vm_object;
2977
2978         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2979                 MPASS(entry->cred == NULL);
2980                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2981                 MPASS(object == NULL);
2982                 vm_map_entry_deallocate(entry, map->system_map);
2983                 return;
2984         }
2985
2986         size = entry->end - entry->start;
2987         map->size -= size;
2988
2989         if (entry->cred != NULL) {
2990                 swap_release_by_cred(size, entry->cred);
2991                 crfree(entry->cred);
2992         }
2993
2994         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2995             (object != NULL)) {
2996                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2997                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2998                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2999                 count = atop(size);
3000                 offidxstart = OFF_TO_IDX(entry->offset);
3001                 offidxend = offidxstart + count;
3002                 VM_OBJECT_WLOCK(object);
3003                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3004                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3005                     object == kernel_object)) {
3006                         vm_object_collapse(object);
3007
3008                         /*
3009                          * The option OBJPR_NOTMAPPED can be passed here
3010                          * because vm_map_delete() already performed
3011                          * pmap_remove() on the only mapping to this range
3012                          * of pages. 
3013                          */
3014                         vm_object_page_remove(object, offidxstart, offidxend,
3015                             OBJPR_NOTMAPPED);
3016                         if (object->type == OBJT_SWAP)
3017                                 swap_pager_freespace(object, offidxstart,
3018                                     count);
3019                         if (offidxend >= object->size &&
3020                             offidxstart < object->size) {
3021                                 size1 = object->size;
3022                                 object->size = offidxstart;
3023                                 if (object->cred != NULL) {
3024                                         size1 -= object->size;
3025                                         KASSERT(object->charge >= ptoa(size1),
3026                                             ("object %p charge < 0", object));
3027                                         swap_release_by_cred(ptoa(size1),
3028                                             object->cred);
3029                                         object->charge -= ptoa(size1);
3030                                 }
3031                         }
3032                 }
3033                 VM_OBJECT_WUNLOCK(object);
3034         } else
3035                 entry->object.vm_object = NULL;
3036         if (map->system_map)
3037                 vm_map_entry_deallocate(entry, TRUE);
3038         else {
3039                 entry->next = curthread->td_map_def_user;
3040                 curthread->td_map_def_user = entry;
3041         }
3042 }
3043
3044 /*
3045  *      vm_map_delete:  [ internal use only ]
3046  *
3047  *      Deallocates the given address range from the target
3048  *      map.
3049  */
3050 int
3051 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3052 {
3053         vm_map_entry_t entry;
3054         vm_map_entry_t first_entry;
3055
3056         VM_MAP_ASSERT_LOCKED(map);
3057         if (start == end)
3058                 return (KERN_SUCCESS);
3059
3060         /*
3061          * Find the start of the region, and clip it
3062          */
3063         if (!vm_map_lookup_entry(map, start, &first_entry))
3064                 entry = first_entry->next;
3065         else {
3066                 entry = first_entry;
3067                 vm_map_clip_start(map, entry, start);
3068         }
3069
3070         /*
3071          * Step through all entries in this region
3072          */
3073         while ((entry != &map->header) && (entry->start < end)) {
3074                 vm_map_entry_t next;
3075
3076                 /*
3077                  * Wait for wiring or unwiring of an entry to complete.
3078                  * Also wait for any system wirings to disappear on
3079                  * user maps.
3080                  */
3081                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3082                     (vm_map_pmap(map) != kernel_pmap &&
3083                     vm_map_entry_system_wired_count(entry) != 0)) {
3084                         unsigned int last_timestamp;
3085                         vm_offset_t saved_start;
3086                         vm_map_entry_t tmp_entry;
3087
3088                         saved_start = entry->start;
3089                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3090                         last_timestamp = map->timestamp;
3091                         (void) vm_map_unlock_and_wait(map, 0);
3092                         vm_map_lock(map);
3093                         if (last_timestamp + 1 != map->timestamp) {
3094                                 /*
3095                                  * Look again for the entry because the map was
3096                                  * modified while it was unlocked.
3097                                  * Specifically, the entry may have been
3098                                  * clipped, merged, or deleted.
3099                                  */
3100                                 if (!vm_map_lookup_entry(map, saved_start,
3101                                                          &tmp_entry))
3102                                         entry = tmp_entry->next;
3103                                 else {
3104                                         entry = tmp_entry;
3105                                         vm_map_clip_start(map, entry,
3106                                                           saved_start);
3107                                 }
3108                         }
3109                         continue;
3110                 }
3111                 vm_map_clip_end(map, entry, end);
3112
3113                 next = entry->next;
3114
3115                 /*
3116                  * Unwire before removing addresses from the pmap; otherwise,
3117                  * unwiring will put the entries back in the pmap.
3118                  */
3119                 if (entry->wired_count != 0) {
3120                         vm_map_entry_unwire(map, entry);
3121                 }
3122
3123                 pmap_remove(map->pmap, entry->start, entry->end);
3124
3125                 /*
3126                  * Delete the entry only after removing all pmap
3127                  * entries pointing to its pages.  (Otherwise, its
3128                  * page frames may be reallocated, and any modify bits
3129                  * will be set in the wrong object!)
3130                  */
3131                 vm_map_entry_delete(map, entry);
3132                 entry = next;
3133         }
3134         return (KERN_SUCCESS);
3135 }
3136
3137 /*
3138  *      vm_map_remove:
3139  *
3140  *      Remove the given address range from the target map.
3141  *      This is the exported form of vm_map_delete.
3142  */
3143 int
3144 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3145 {
3146         int result;
3147
3148         vm_map_lock(map);
3149         VM_MAP_RANGE_CHECK(map, start, end);
3150         result = vm_map_delete(map, start, end);
3151         vm_map_unlock(map);
3152         return (result);
3153 }
3154
3155 /*
3156  *      vm_map_check_protection:
3157  *
3158  *      Assert that the target map allows the specified privilege on the
3159  *      entire address region given.  The entire region must be allocated.
3160  *
3161  *      WARNING!  This code does not and should not check whether the
3162  *      contents of the region is accessible.  For example a smaller file
3163  *      might be mapped into a larger address space.
3164  *
3165  *      NOTE!  This code is also called by munmap().
3166  *
3167  *      The map must be locked.  A read lock is sufficient.
3168  */
3169 boolean_t
3170 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3171                         vm_prot_t protection)
3172 {
3173         vm_map_entry_t entry;
3174         vm_map_entry_t tmp_entry;
3175
3176         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3177                 return (FALSE);
3178         entry = tmp_entry;
3179
3180         while (start < end) {
3181                 if (entry == &map->header)
3182                         return (FALSE);
3183                 /*
3184                  * No holes allowed!
3185                  */
3186                 if (start < entry->start)
3187                         return (FALSE);
3188                 /*
3189                  * Check protection associated with entry.
3190                  */
3191                 if ((entry->protection & protection) != protection)
3192                         return (FALSE);
3193                 /* go to next entry */
3194                 start = entry->end;
3195                 entry = entry->next;
3196         }
3197         return (TRUE);
3198 }
3199
3200 /*
3201  *      vm_map_copy_entry:
3202  *
3203  *      Copies the contents of the source entry to the destination
3204  *      entry.  The entries *must* be aligned properly.
3205  */
3206 static void
3207 vm_map_copy_entry(
3208         vm_map_t src_map,
3209         vm_map_t dst_map,
3210         vm_map_entry_t src_entry,
3211         vm_map_entry_t dst_entry,
3212         vm_ooffset_t *fork_charge)
3213 {
3214         vm_object_t src_object;
3215         vm_map_entry_t fake_entry;
3216         vm_offset_t size;
3217         struct ucred *cred;
3218         int charged;
3219
3220         VM_MAP_ASSERT_LOCKED(dst_map);
3221
3222         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3223                 return;
3224
3225         if (src_entry->wired_count == 0 ||
3226             (src_entry->protection & VM_PROT_WRITE) == 0) {
3227                 /*
3228                  * If the source entry is marked needs_copy, it is already
3229                  * write-protected.
3230                  */
3231                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3232                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3233                         pmap_protect(src_map->pmap,
3234                             src_entry->start,
3235                             src_entry->end,
3236                             src_entry->protection & ~VM_PROT_WRITE);
3237                 }
3238
3239                 /*
3240                  * Make a copy of the object.
3241                  */
3242                 size = src_entry->end - src_entry->start;
3243                 if ((src_object = src_entry->object.vm_object) != NULL) {
3244                         VM_OBJECT_WLOCK(src_object);
3245                         charged = ENTRY_CHARGED(src_entry);
3246                         if (src_object->handle == NULL &&
3247                             (src_object->type == OBJT_DEFAULT ||
3248                             src_object->type == OBJT_SWAP)) {
3249                                 vm_object_collapse(src_object);
3250                                 if ((src_object->flags & (OBJ_NOSPLIT |
3251                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3252                                         vm_object_split(src_entry);
3253                                         src_object =
3254                                             src_entry->object.vm_object;
3255                                 }
3256                         }
3257                         vm_object_reference_locked(src_object);
3258                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3259                         if (src_entry->cred != NULL &&
3260                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3261                                 KASSERT(src_object->cred == NULL,
3262                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3263                                      src_object));
3264                                 src_object->cred = src_entry->cred;
3265                                 src_object->charge = size;
3266                         }
3267                         VM_OBJECT_WUNLOCK(src_object);
3268                         dst_entry->object.vm_object = src_object;
3269                         if (charged) {
3270                                 cred = curthread->td_ucred;
3271                                 crhold(cred);
3272                                 dst_entry->cred = cred;
3273                                 *fork_charge += size;
3274                                 if (!(src_entry->eflags &
3275                                       MAP_ENTRY_NEEDS_COPY)) {
3276                                         crhold(cred);
3277                                         src_entry->cred = cred;
3278                                         *fork_charge += size;
3279                                 }
3280                         }
3281                         src_entry->eflags |= MAP_ENTRY_COW |
3282                             MAP_ENTRY_NEEDS_COPY;
3283                         dst_entry->eflags |= MAP_ENTRY_COW |
3284                             MAP_ENTRY_NEEDS_COPY;
3285                         dst_entry->offset = src_entry->offset;
3286                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3287                                 /*
3288                                  * MAP_ENTRY_VN_WRITECNT cannot
3289                                  * indicate write reference from
3290                                  * src_entry, since the entry is
3291                                  * marked as needs copy.  Allocate a
3292                                  * fake entry that is used to
3293                                  * decrement object->un_pager.vnp.writecount
3294                                  * at the appropriate time.  Attach
3295                                  * fake_entry to the deferred list.
3296                                  */
3297                                 fake_entry = vm_map_entry_create(dst_map);
3298                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3299                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3300                                 vm_object_reference(src_object);
3301                                 fake_entry->object.vm_object = src_object;
3302                                 fake_entry->start = src_entry->start;
3303                                 fake_entry->end = src_entry->end;
3304                                 fake_entry->next = curthread->td_map_def_user;
3305                                 curthread->td_map_def_user = fake_entry;
3306                         }
3307
3308                         pmap_copy(dst_map->pmap, src_map->pmap,
3309                             dst_entry->start, dst_entry->end - dst_entry->start,
3310                             src_entry->start);
3311                 } else {
3312                         dst_entry->object.vm_object = NULL;
3313                         dst_entry->offset = 0;
3314                         if (src_entry->cred != NULL) {
3315                                 dst_entry->cred = curthread->td_ucred;
3316                                 crhold(dst_entry->cred);
3317                                 *fork_charge += size;
3318                         }
3319                 }
3320         } else {
3321                 /*
3322                  * We don't want to make writeable wired pages copy-on-write.
3323                  * Immediately copy these pages into the new map by simulating
3324                  * page faults.  The new pages are pageable.
3325                  */
3326                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3327                     fork_charge);
3328         }
3329 }
3330
3331 /*
3332  * vmspace_map_entry_forked:
3333  * Update the newly-forked vmspace each time a map entry is inherited
3334  * or copied.  The values for vm_dsize and vm_tsize are approximate
3335  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3336  */
3337 static void
3338 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3339     vm_map_entry_t entry)
3340 {
3341         vm_size_t entrysize;
3342         vm_offset_t newend;
3343
3344         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3345                 return;
3346         entrysize = entry->end - entry->start;
3347         vm2->vm_map.size += entrysize;
3348         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3349                 vm2->vm_ssize += btoc(entrysize);
3350         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3351             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3352                 newend = MIN(entry->end,
3353                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3354                 vm2->vm_dsize += btoc(newend - entry->start);
3355         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3356             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3357                 newend = MIN(entry->end,
3358                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3359                 vm2->vm_tsize += btoc(newend - entry->start);
3360         }
3361 }
3362
3363 /*
3364  * vmspace_fork:
3365  * Create a new process vmspace structure and vm_map
3366  * based on those of an existing process.  The new map
3367  * is based on the old map, according to the inheritance
3368  * values on the regions in that map.
3369  *
3370  * XXX It might be worth coalescing the entries added to the new vmspace.
3371  *
3372  * The source map must not be locked.
3373  */
3374 struct vmspace *
3375 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3376 {
3377         struct vmspace *vm2;
3378         vm_map_t new_map, old_map;
3379         vm_map_entry_t new_entry, old_entry;
3380         vm_object_t object;
3381         int locked;
3382         vm_inherit_t inh;
3383
3384         old_map = &vm1->vm_map;
3385         /* Copy immutable fields of vm1 to vm2. */
3386         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3387         if (vm2 == NULL)
3388                 return (NULL);
3389         vm2->vm_taddr = vm1->vm_taddr;
3390         vm2->vm_daddr = vm1->vm_daddr;
3391         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3392         vm_map_lock(old_map);
3393         if (old_map->busy)
3394                 vm_map_wait_busy(old_map);
3395         new_map = &vm2->vm_map;
3396         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3397         KASSERT(locked, ("vmspace_fork: lock failed"));
3398
3399         old_entry = old_map->header.next;
3400
3401         while (old_entry != &old_map->header) {
3402                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3403                         panic("vm_map_fork: encountered a submap");
3404
3405                 inh = old_entry->inheritance;
3406                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3407                     inh != VM_INHERIT_NONE)
3408                         inh = VM_INHERIT_COPY;
3409
3410                 switch (inh) {
3411                 case VM_INHERIT_NONE:
3412                         break;
3413
3414                 case VM_INHERIT_SHARE:
3415                         /*
3416                          * Clone the entry, creating the shared object if necessary.
3417                          */
3418                         object = old_entry->object.vm_object;
3419                         if (object == NULL) {
3420                                 object = vm_object_allocate(OBJT_DEFAULT,
3421                                         atop(old_entry->end - old_entry->start));
3422                                 old_entry->object.vm_object = object;
3423                                 old_entry->offset = 0;
3424                                 if (old_entry->cred != NULL) {
3425                                         object->cred = old_entry->cred;
3426                                         object->charge = old_entry->end -
3427                                             old_entry->start;
3428                                         old_entry->cred = NULL;
3429                                 }
3430                         }
3431
3432                         /*
3433                          * Add the reference before calling vm_object_shadow
3434                          * to insure that a shadow object is created.
3435                          */
3436                         vm_object_reference(object);
3437                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3438                                 vm_object_shadow(&old_entry->object.vm_object,
3439                                     &old_entry->offset,
3440                                     old_entry->end - old_entry->start);
3441                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3442                                 /* Transfer the second reference too. */
3443                                 vm_object_reference(
3444                                     old_entry->object.vm_object);
3445
3446                                 /*
3447                                  * As in vm_map_simplify_entry(), the
3448                                  * vnode lock will not be acquired in
3449                                  * this call to vm_object_deallocate().
3450                                  */
3451                                 vm_object_deallocate(object);
3452                                 object = old_entry->object.vm_object;
3453                         }
3454                         VM_OBJECT_WLOCK(object);
3455                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3456                         if (old_entry->cred != NULL) {
3457                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3458                                 object->cred = old_entry->cred;
3459                                 object->charge = old_entry->end - old_entry->start;
3460                                 old_entry->cred = NULL;
3461                         }
3462
3463                         /*
3464                          * Assert the correct state of the vnode
3465                          * v_writecount while the object is locked, to
3466                          * not relock it later for the assertion
3467                          * correctness.
3468                          */
3469                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3470                             object->type == OBJT_VNODE) {
3471                                 KASSERT(((struct vnode *)object->handle)->
3472                                     v_writecount > 0,
3473                                     ("vmspace_fork: v_writecount %p", object));
3474                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3475                                     ("vmspace_fork: vnp.writecount %p",
3476                                     object));
3477                         }
3478                         VM_OBJECT_WUNLOCK(object);
3479
3480                         /*
3481                          * Clone the entry, referencing the shared object.
3482                          */
3483                         new_entry = vm_map_entry_create(new_map);
3484                         *new_entry = *old_entry;
3485                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3486                             MAP_ENTRY_IN_TRANSITION);
3487                         new_entry->wiring_thread = NULL;
3488                         new_entry->wired_count = 0;
3489                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3490                                 vnode_pager_update_writecount(object,
3491                                     new_entry->start, new_entry->end);
3492                         }
3493
3494                         /*
3495                          * Insert the entry into the new map -- we know we're
3496                          * inserting at the end of the new map.
3497                          */
3498                         vm_map_entry_link(new_map, new_map->header.prev,
3499                             new_entry);
3500                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3501
3502                         /*
3503                          * Update the physical map
3504                          */
3505                         pmap_copy(new_map->pmap, old_map->pmap,
3506                             new_entry->start,
3507                             (old_entry->end - old_entry->start),
3508                             old_entry->start);
3509                         break;
3510
3511                 case VM_INHERIT_COPY:
3512                         /*
3513                          * Clone the entry and link into the map.
3514                          */
3515                         new_entry = vm_map_entry_create(new_map);
3516                         *new_entry = *old_entry;
3517                         /*
3518                          * Copied entry is COW over the old object.
3519                          */
3520                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3521                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3522                         new_entry->wiring_thread = NULL;
3523                         new_entry->wired_count = 0;
3524                         new_entry->object.vm_object = NULL;
3525                         new_entry->cred = NULL;
3526                         vm_map_entry_link(new_map, new_map->header.prev,
3527                             new_entry);
3528                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3529                         vm_map_copy_entry(old_map, new_map, old_entry,
3530                             new_entry, fork_charge);
3531                         break;
3532
3533                 case VM_INHERIT_ZERO:
3534                         /*
3535                          * Create a new anonymous mapping entry modelled from
3536                          * the old one.
3537                          */
3538                         new_entry = vm_map_entry_create(new_map);
3539                         memset(new_entry, 0, sizeof(*new_entry));
3540
3541                         new_entry->start = old_entry->start;
3542                         new_entry->end = old_entry->end;
3543                         new_entry->eflags = old_entry->eflags &
3544                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3545                             MAP_ENTRY_VN_WRITECNT);
3546                         new_entry->protection = old_entry->protection;
3547                         new_entry->max_protection = old_entry->max_protection;
3548                         new_entry->inheritance = VM_INHERIT_ZERO;
3549
3550                         vm_map_entry_link(new_map, new_map->header.prev,
3551                             new_entry);
3552                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3553
3554                         new_entry->cred = curthread->td_ucred;
3555                         crhold(new_entry->cred);
3556                         *fork_charge += (new_entry->end - new_entry->start);
3557
3558                         break;
3559                 }
3560                 old_entry = old_entry->next;
3561         }
3562         /*
3563          * Use inlined vm_map_unlock() to postpone handling the deferred
3564          * map entries, which cannot be done until both old_map and
3565          * new_map locks are released.
3566          */
3567         sx_xunlock(&old_map->lock);
3568         sx_xunlock(&new_map->lock);
3569         vm_map_process_deferred();
3570
3571         return (vm2);
3572 }
3573
3574 /*
3575  * Create a process's stack for exec_new_vmspace().  This function is never
3576  * asked to wire the newly created stack.
3577  */
3578 int
3579 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3580     vm_prot_t prot, vm_prot_t max, int cow)
3581 {
3582         vm_size_t growsize, init_ssize;
3583         rlim_t vmemlim;
3584         int rv;
3585
3586         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3587         growsize = sgrowsiz;
3588         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3589         vm_map_lock(map);
3590         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3591         /* If we would blow our VMEM resource limit, no go */
3592         if (map->size + init_ssize > vmemlim) {
3593                 rv = KERN_NO_SPACE;
3594                 goto out;
3595         }
3596         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3597             max, cow);
3598 out:
3599         vm_map_unlock(map);
3600         return (rv);
3601 }
3602
3603 static int stack_guard_page = 1;
3604 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3605     &stack_guard_page, 0,
3606     "Specifies the number of guard pages for a stack that grows");
3607
3608 static int
3609 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3610     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3611 {
3612         vm_map_entry_t new_entry, prev_entry;
3613         vm_offset_t bot, gap_bot, gap_top, top;
3614         vm_size_t init_ssize, sgp;
3615         int orient, rv;
3616
3617         /*
3618          * The stack orientation is piggybacked with the cow argument.
3619          * Extract it into orient and mask the cow argument so that we
3620          * don't pass it around further.
3621          */
3622         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3623         KASSERT(orient != 0, ("No stack grow direction"));
3624         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3625             ("bi-dir stack"));
3626
3627         if (addrbos < vm_map_min(map) ||
3628             addrbos + max_ssize > vm_map_max(map) ||
3629             addrbos + max_ssize <= addrbos)
3630                 return (KERN_INVALID_ADDRESS);
3631         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3632         if (sgp >= max_ssize)
3633                 return (KERN_INVALID_ARGUMENT);
3634
3635         init_ssize = growsize;
3636         if (max_ssize < init_ssize + sgp)
3637                 init_ssize = max_ssize - sgp;
3638
3639         /* If addr is already mapped, no go */
3640         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3641                 return (KERN_NO_SPACE);
3642
3643         /*
3644          * If we can't accommodate max_ssize in the current mapping, no go.
3645          */
3646         if ((prev_entry->next != &map->header) &&
3647             (prev_entry->next->start < addrbos + max_ssize))
3648                 return (KERN_NO_SPACE);
3649
3650         /*
3651          * We initially map a stack of only init_ssize.  We will grow as
3652          * needed later.  Depending on the orientation of the stack (i.e.
3653          * the grow direction) we either map at the top of the range, the
3654          * bottom of the range or in the middle.
3655          *
3656          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3657          * and cow to be 0.  Possibly we should eliminate these as input
3658          * parameters, and just pass these values here in the insert call.
3659          */
3660         if (orient == MAP_STACK_GROWS_DOWN) {
3661                 bot = addrbos + max_ssize - init_ssize;
3662                 top = bot + init_ssize;
3663                 gap_bot = addrbos;
3664                 gap_top = bot;
3665         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3666                 bot = addrbos;
3667                 top = bot + init_ssize;
3668                 gap_bot = top;
3669                 gap_top = addrbos + max_ssize;
3670         }
3671         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3672         if (rv != KERN_SUCCESS)
3673                 return (rv);
3674         new_entry = prev_entry->next;
3675         KASSERT(new_entry->end == top || new_entry->start == bot,
3676             ("Bad entry start/end for new stack entry"));
3677         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3678             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3679             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3680         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3681             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3682             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3683         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3684             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3685             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3686         if (rv != KERN_SUCCESS)
3687                 (void)vm_map_delete(map, bot, top);
3688         return (rv);
3689 }
3690
3691 /*
3692  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3693  * successfully grow the stack.
3694  */
3695 static int
3696 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3697 {
3698         vm_map_entry_t stack_entry;
3699         struct proc *p;
3700         struct vmspace *vm;
3701         struct ucred *cred;
3702         vm_offset_t gap_end, gap_start, grow_start;
3703         size_t grow_amount, guard, max_grow;
3704         rlim_t lmemlim, stacklim, vmemlim;
3705         int rv, rv1;
3706         bool gap_deleted, grow_down, is_procstack;
3707 #ifdef notyet
3708         uint64_t limit;
3709 #endif
3710 #ifdef RACCT
3711         int error;
3712 #endif
3713
3714         p = curproc;
3715         vm = p->p_vmspace;
3716
3717         /*
3718          * Disallow stack growth when the access is performed by a
3719          * debugger or AIO daemon.  The reason is that the wrong
3720          * resource limits are applied.
3721          */
3722         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3723                 return (KERN_FAILURE);
3724
3725         MPASS(!map->system_map);
3726
3727         guard = stack_guard_page * PAGE_SIZE;
3728         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3729         stacklim = lim_cur(curthread, RLIMIT_STACK);
3730         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3731 retry:
3732         /* If addr is not in a hole for a stack grow area, no need to grow. */
3733         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3734                 return (KERN_FAILURE);
3735         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3736                 return (KERN_SUCCESS);
3737         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3738                 stack_entry = gap_entry->next;
3739                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3740                     stack_entry->start != gap_entry->end)
3741                         return (KERN_FAILURE);
3742                 grow_amount = round_page(stack_entry->start - addr);
3743                 grow_down = true;
3744         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3745                 stack_entry = gap_entry->prev;
3746                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3747                     stack_entry->end != gap_entry->start)
3748                         return (KERN_FAILURE);
3749                 grow_amount = round_page(addr + 1 - stack_entry->end);
3750                 grow_down = false;
3751         } else {
3752                 return (KERN_FAILURE);
3753         }
3754         max_grow = gap_entry->end - gap_entry->start;
3755         if (guard > max_grow)
3756                 return (KERN_NO_SPACE);
3757         max_grow -= guard;
3758         if (grow_amount > max_grow)
3759                 return (KERN_NO_SPACE);
3760
3761         /*
3762          * If this is the main process stack, see if we're over the stack
3763          * limit.
3764          */
3765         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3766             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3767         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3768                 return (KERN_NO_SPACE);
3769
3770 #ifdef RACCT
3771         if (racct_enable) {
3772                 PROC_LOCK(p);
3773                 if (is_procstack && racct_set(p, RACCT_STACK,
3774                     ctob(vm->vm_ssize) + grow_amount)) {
3775                         PROC_UNLOCK(p);
3776                         return (KERN_NO_SPACE);
3777                 }
3778                 PROC_UNLOCK(p);
3779         }
3780 #endif
3781
3782         grow_amount = roundup(grow_amount, sgrowsiz);
3783         if (grow_amount > max_grow)
3784                 grow_amount = max_grow;
3785         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3786                 grow_amount = trunc_page((vm_size_t)stacklim) -
3787                     ctob(vm->vm_ssize);
3788         }
3789
3790 #ifdef notyet
3791         PROC_LOCK(p);
3792         limit = racct_get_available(p, RACCT_STACK);
3793         PROC_UNLOCK(p);
3794         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3795                 grow_amount = limit - ctob(vm->vm_ssize);
3796 #endif
3797
3798         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3799                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3800                         rv = KERN_NO_SPACE;
3801                         goto out;
3802                 }
3803 #ifdef RACCT
3804                 if (racct_enable) {
3805                         PROC_LOCK(p);
3806                         if (racct_set(p, RACCT_MEMLOCK,
3807                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3808                                 PROC_UNLOCK(p);
3809                                 rv = KERN_NO_SPACE;
3810                                 goto out;
3811                         }
3812                         PROC_UNLOCK(p);
3813                 }
3814 #endif
3815         }
3816
3817         /* If we would blow our VMEM resource limit, no go */
3818         if (map->size + grow_amount > vmemlim) {
3819                 rv = KERN_NO_SPACE;
3820                 goto out;
3821         }
3822 #ifdef RACCT
3823         if (racct_enable) {
3824                 PROC_LOCK(p);
3825                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3826                         PROC_UNLOCK(p);
3827                         rv = KERN_NO_SPACE;
3828                         goto out;
3829                 }
3830                 PROC_UNLOCK(p);
3831         }
3832 #endif
3833
3834         if (vm_map_lock_upgrade(map)) {
3835                 gap_entry = NULL;
3836                 vm_map_lock_read(map);
3837                 goto retry;
3838         }
3839
3840         if (grow_down) {
3841                 grow_start = gap_entry->end - grow_amount;
3842                 if (gap_entry->start + grow_amount == gap_entry->end) {
3843                         gap_start = gap_entry->start;
3844                         gap_end = gap_entry->end;
3845                         vm_map_entry_delete(map, gap_entry);
3846                         gap_deleted = true;
3847                 } else {
3848                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3849                         gap_entry->end -= grow_amount;
3850                         vm_map_entry_resize_free(map, gap_entry);
3851                         gap_deleted = false;
3852                 }
3853                 rv = vm_map_insert(map, NULL, 0, grow_start,
3854                     grow_start + grow_amount,
3855                     stack_entry->protection, stack_entry->max_protection,
3856                     MAP_STACK_GROWS_DOWN);
3857                 if (rv != KERN_SUCCESS) {
3858                         if (gap_deleted) {
3859                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3860                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3861                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3862                                 MPASS(rv1 == KERN_SUCCESS);
3863                         } else {
3864                                 gap_entry->end += grow_amount;
3865                                 vm_map_entry_resize_free(map, gap_entry);
3866                         }
3867                 }
3868         } else {
3869                 grow_start = stack_entry->end;
3870                 cred = stack_entry->cred;
3871                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3872                         cred = stack_entry->object.vm_object->cred;
3873                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3874                         rv = KERN_NO_SPACE;
3875                 /* Grow the underlying object if applicable. */
3876                 else if (stack_entry->object.vm_object == NULL ||
3877                     vm_object_coalesce(stack_entry->object.vm_object,
3878                     stack_entry->offset,
3879                     (vm_size_t)(stack_entry->end - stack_entry->start),
3880                     (vm_size_t)grow_amount, cred != NULL)) {
3881                         if (gap_entry->start + grow_amount == gap_entry->end)
3882                                 vm_map_entry_delete(map, gap_entry);
3883                         else
3884                                 gap_entry->start += grow_amount;
3885                         stack_entry->end += grow_amount;
3886                         map->size += grow_amount;
3887                         vm_map_entry_resize_free(map, stack_entry);
3888                         rv = KERN_SUCCESS;
3889                 } else
3890                         rv = KERN_FAILURE;
3891         }
3892         if (rv == KERN_SUCCESS && is_procstack)
3893                 vm->vm_ssize += btoc(grow_amount);
3894
3895         /*
3896          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3897          */
3898         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3899                 vm_map_unlock(map);
3900                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3901                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3902                 vm_map_lock_read(map);
3903         } else
3904                 vm_map_lock_downgrade(map);
3905
3906 out:
3907 #ifdef RACCT
3908         if (racct_enable && rv != KERN_SUCCESS) {
3909                 PROC_LOCK(p);
3910                 error = racct_set(p, RACCT_VMEM, map->size);
3911                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3912                 if (!old_mlock) {
3913                         error = racct_set(p, RACCT_MEMLOCK,
3914                             ptoa(pmap_wired_count(map->pmap)));
3915                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3916                 }
3917                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3918                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3919                 PROC_UNLOCK(p);
3920         }
3921 #endif
3922
3923         return (rv);
3924 }
3925
3926 /*
3927  * Unshare the specified VM space for exec.  If other processes are
3928  * mapped to it, then create a new one.  The new vmspace is null.
3929  */
3930 int
3931 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3932 {
3933         struct vmspace *oldvmspace = p->p_vmspace;
3934         struct vmspace *newvmspace;
3935
3936         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3937             ("vmspace_exec recursed"));
3938         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3939         if (newvmspace == NULL)
3940                 return (ENOMEM);
3941         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3942         /*
3943          * This code is written like this for prototype purposes.  The
3944          * goal is to avoid running down the vmspace here, but let the
3945          * other process's that are still using the vmspace to finally
3946          * run it down.  Even though there is little or no chance of blocking
3947          * here, it is a good idea to keep this form for future mods.
3948          */
3949         PROC_VMSPACE_LOCK(p);
3950         p->p_vmspace = newvmspace;
3951         PROC_VMSPACE_UNLOCK(p);
3952         if (p == curthread->td_proc)
3953                 pmap_activate(curthread);
3954         curthread->td_pflags |= TDP_EXECVMSPC;
3955         return (0);
3956 }
3957
3958 /*
3959  * Unshare the specified VM space for forcing COW.  This
3960  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3961  */
3962 int
3963 vmspace_unshare(struct proc *p)
3964 {
3965         struct vmspace *oldvmspace = p->p_vmspace;
3966         struct vmspace *newvmspace;
3967         vm_ooffset_t fork_charge;
3968
3969         if (oldvmspace->vm_refcnt == 1)
3970                 return (0);
3971         fork_charge = 0;
3972         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3973         if (newvmspace == NULL)
3974                 return (ENOMEM);
3975         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3976                 vmspace_free(newvmspace);
3977                 return (ENOMEM);
3978         }
3979         PROC_VMSPACE_LOCK(p);
3980         p->p_vmspace = newvmspace;
3981         PROC_VMSPACE_UNLOCK(p);
3982         if (p == curthread->td_proc)
3983                 pmap_activate(curthread);
3984         vmspace_free(oldvmspace);
3985         return (0);
3986 }
3987
3988 /*
3989  *      vm_map_lookup:
3990  *
3991  *      Finds the VM object, offset, and
3992  *      protection for a given virtual address in the
3993  *      specified map, assuming a page fault of the
3994  *      type specified.
3995  *
3996  *      Leaves the map in question locked for read; return
3997  *      values are guaranteed until a vm_map_lookup_done
3998  *      call is performed.  Note that the map argument
3999  *      is in/out; the returned map must be used in
4000  *      the call to vm_map_lookup_done.
4001  *
4002  *      A handle (out_entry) is returned for use in
4003  *      vm_map_lookup_done, to make that fast.
4004  *
4005  *      If a lookup is requested with "write protection"
4006  *      specified, the map may be changed to perform virtual
4007  *      copying operations, although the data referenced will
4008  *      remain the same.
4009  */
4010 int
4011 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4012               vm_offset_t vaddr,
4013               vm_prot_t fault_typea,
4014               vm_map_entry_t *out_entry,        /* OUT */
4015               vm_object_t *object,              /* OUT */
4016               vm_pindex_t *pindex,              /* OUT */
4017               vm_prot_t *out_prot,              /* OUT */
4018               boolean_t *wired)                 /* OUT */
4019 {
4020         vm_map_entry_t entry;
4021         vm_map_t map = *var_map;
4022         vm_prot_t prot;
4023         vm_prot_t fault_type = fault_typea;
4024         vm_object_t eobject;
4025         vm_size_t size;
4026         struct ucred *cred;
4027
4028 RetryLookup:
4029
4030         vm_map_lock_read(map);
4031
4032 RetryLookupLocked:
4033         /*
4034          * Lookup the faulting address.
4035          */
4036         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4037                 vm_map_unlock_read(map);
4038                 return (KERN_INVALID_ADDRESS);
4039         }
4040
4041         entry = *out_entry;
4042
4043         /*
4044          * Handle submaps.
4045          */
4046         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4047                 vm_map_t old_map = map;
4048
4049                 *var_map = map = entry->object.sub_map;
4050                 vm_map_unlock_read(old_map);
4051                 goto RetryLookup;
4052         }
4053
4054         /*
4055          * Check whether this task is allowed to have this page.
4056          */
4057         prot = entry->protection;
4058         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4059                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4060                 if (prot == VM_PROT_NONE && map != kernel_map &&
4061                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4062                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4063                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4064                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4065                         goto RetryLookupLocked;
4066         }
4067         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4068         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4069                 vm_map_unlock_read(map);
4070                 return (KERN_PROTECTION_FAILURE);
4071         }
4072         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4073             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4074             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4075             ("entry %p flags %x", entry, entry->eflags));
4076         if ((fault_typea & VM_PROT_COPY) != 0 &&
4077             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4078             (entry->eflags & MAP_ENTRY_COW) == 0) {
4079                 vm_map_unlock_read(map);
4080                 return (KERN_PROTECTION_FAILURE);
4081         }
4082
4083         /*
4084          * If this page is not pageable, we have to get it for all possible
4085          * accesses.
4086          */
4087         *wired = (entry->wired_count != 0);
4088         if (*wired)
4089                 fault_type = entry->protection;
4090         size = entry->end - entry->start;
4091         /*
4092          * If the entry was copy-on-write, we either ...
4093          */
4094         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4095                 /*
4096                  * If we want to write the page, we may as well handle that
4097                  * now since we've got the map locked.
4098                  *
4099                  * If we don't need to write the page, we just demote the
4100                  * permissions allowed.
4101                  */
4102                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4103                     (fault_typea & VM_PROT_COPY) != 0) {
4104                         /*
4105                          * Make a new object, and place it in the object
4106                          * chain.  Note that no new references have appeared
4107                          * -- one just moved from the map to the new
4108                          * object.
4109                          */
4110                         if (vm_map_lock_upgrade(map))
4111                                 goto RetryLookup;
4112
4113                         if (entry->cred == NULL) {
4114                                 /*
4115                                  * The debugger owner is charged for
4116                                  * the memory.
4117                                  */
4118                                 cred = curthread->td_ucred;
4119                                 crhold(cred);
4120                                 if (!swap_reserve_by_cred(size, cred)) {
4121                                         crfree(cred);
4122                                         vm_map_unlock(map);
4123                                         return (KERN_RESOURCE_SHORTAGE);
4124                                 }
4125                                 entry->cred = cred;
4126                         }
4127                         vm_object_shadow(&entry->object.vm_object,
4128                             &entry->offset, size);
4129                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4130                         eobject = entry->object.vm_object;
4131                         if (eobject->cred != NULL) {
4132                                 /*
4133                                  * The object was not shadowed.
4134                                  */
4135                                 swap_release_by_cred(size, entry->cred);
4136                                 crfree(entry->cred);
4137                                 entry->cred = NULL;
4138                         } else if (entry->cred != NULL) {
4139                                 VM_OBJECT_WLOCK(eobject);
4140                                 eobject->cred = entry->cred;
4141                                 eobject->charge = size;
4142                                 VM_OBJECT_WUNLOCK(eobject);
4143                                 entry->cred = NULL;
4144                         }
4145
4146                         vm_map_lock_downgrade(map);
4147                 } else {
4148                         /*
4149                          * We're attempting to read a copy-on-write page --
4150                          * don't allow writes.
4151                          */
4152                         prot &= ~VM_PROT_WRITE;
4153                 }
4154         }
4155
4156         /*
4157          * Create an object if necessary.
4158          */
4159         if (entry->object.vm_object == NULL &&
4160             !map->system_map) {
4161                 if (vm_map_lock_upgrade(map))
4162                         goto RetryLookup;
4163                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4164                     atop(size));
4165                 entry->offset = 0;
4166                 if (entry->cred != NULL) {
4167                         VM_OBJECT_WLOCK(entry->object.vm_object);
4168                         entry->object.vm_object->cred = entry->cred;
4169                         entry->object.vm_object->charge = size;
4170                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4171                         entry->cred = NULL;
4172                 }
4173                 vm_map_lock_downgrade(map);
4174         }
4175
4176         /*
4177          * Return the object/offset from this entry.  If the entry was
4178          * copy-on-write or empty, it has been fixed up.
4179          */
4180         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4181         *object = entry->object.vm_object;
4182
4183         *out_prot = prot;
4184         return (KERN_SUCCESS);
4185 }
4186
4187 /*
4188  *      vm_map_lookup_locked:
4189  *
4190  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4191  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4192  */
4193 int
4194 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4195                      vm_offset_t vaddr,
4196                      vm_prot_t fault_typea,
4197                      vm_map_entry_t *out_entry, /* OUT */
4198                      vm_object_t *object,       /* OUT */
4199                      vm_pindex_t *pindex,       /* OUT */
4200                      vm_prot_t *out_prot,       /* OUT */
4201                      boolean_t *wired)          /* OUT */
4202 {
4203         vm_map_entry_t entry;
4204         vm_map_t map = *var_map;
4205         vm_prot_t prot;
4206         vm_prot_t fault_type = fault_typea;
4207
4208         /*
4209          * Lookup the faulting address.
4210          */
4211         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4212                 return (KERN_INVALID_ADDRESS);
4213
4214         entry = *out_entry;
4215
4216         /*
4217          * Fail if the entry refers to a submap.
4218          */
4219         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4220                 return (KERN_FAILURE);
4221
4222         /*
4223          * Check whether this task is allowed to have this page.
4224          */
4225         prot = entry->protection;
4226         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4227         if ((fault_type & prot) != fault_type)
4228                 return (KERN_PROTECTION_FAILURE);
4229
4230         /*
4231          * If this page is not pageable, we have to get it for all possible
4232          * accesses.
4233          */
4234         *wired = (entry->wired_count != 0);
4235         if (*wired)
4236                 fault_type = entry->protection;
4237
4238         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4239                 /*
4240                  * Fail if the entry was copy-on-write for a write fault.
4241                  */
4242                 if (fault_type & VM_PROT_WRITE)
4243                         return (KERN_FAILURE);
4244                 /*
4245                  * We're attempting to read a copy-on-write page --
4246                  * don't allow writes.
4247                  */
4248                 prot &= ~VM_PROT_WRITE;
4249         }
4250
4251         /*
4252          * Fail if an object should be created.
4253          */
4254         if (entry->object.vm_object == NULL && !map->system_map)
4255                 return (KERN_FAILURE);
4256
4257         /*
4258          * Return the object/offset from this entry.  If the entry was
4259          * copy-on-write or empty, it has been fixed up.
4260          */
4261         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4262         *object = entry->object.vm_object;
4263
4264         *out_prot = prot;
4265         return (KERN_SUCCESS);
4266 }
4267
4268 /*
4269  *      vm_map_lookup_done:
4270  *
4271  *      Releases locks acquired by a vm_map_lookup
4272  *      (according to the handle returned by that lookup).
4273  */
4274 void
4275 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4276 {
4277         /*
4278          * Unlock the main-level map
4279          */
4280         vm_map_unlock_read(map);
4281 }
4282
4283 #include "opt_ddb.h"
4284 #ifdef DDB
4285 #include <sys/kernel.h>
4286
4287 #include <ddb/ddb.h>
4288
4289 static void
4290 vm_map_print(vm_map_t map)
4291 {
4292         vm_map_entry_t entry;
4293
4294         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4295             (void *)map,
4296             (void *)map->pmap, map->nentries, map->timestamp);
4297
4298         db_indent += 2;
4299         for (entry = map->header.next; entry != &map->header;
4300             entry = entry->next) {
4301                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4302                     (void *)entry, (void *)entry->start, (void *)entry->end,
4303                     entry->eflags);
4304                 {
4305                         static char *inheritance_name[4] =
4306                         {"share", "copy", "none", "donate_copy"};
4307
4308                         db_iprintf(" prot=%x/%x/%s",
4309                             entry->protection,
4310                             entry->max_protection,
4311                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4312                         if (entry->wired_count != 0)
4313                                 db_printf(", wired");
4314                 }
4315                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4316                         db_printf(", share=%p, offset=0x%jx\n",
4317                             (void *)entry->object.sub_map,
4318                             (uintmax_t)entry->offset);
4319                         if ((entry->prev == &map->header) ||
4320                             (entry->prev->object.sub_map !=
4321                                 entry->object.sub_map)) {
4322                                 db_indent += 2;
4323                                 vm_map_print((vm_map_t)entry->object.sub_map);
4324                                 db_indent -= 2;
4325                         }
4326                 } else {
4327                         if (entry->cred != NULL)
4328                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4329                         db_printf(", object=%p, offset=0x%jx",
4330                             (void *)entry->object.vm_object,
4331                             (uintmax_t)entry->offset);
4332                         if (entry->object.vm_object && entry->object.vm_object->cred)
4333                                 db_printf(", obj ruid %d charge %jx",
4334                                     entry->object.vm_object->cred->cr_ruid,
4335                                     (uintmax_t)entry->object.vm_object->charge);
4336                         if (entry->eflags & MAP_ENTRY_COW)
4337                                 db_printf(", copy (%s)",
4338                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4339                         db_printf("\n");
4340
4341                         if ((entry->prev == &map->header) ||
4342                             (entry->prev->object.vm_object !=
4343                                 entry->object.vm_object)) {
4344                                 db_indent += 2;
4345                                 vm_object_print((db_expr_t)(intptr_t)
4346                                                 entry->object.vm_object,
4347                                                 0, 0, (char *)0);
4348                                 db_indent -= 2;
4349                         }
4350                 }
4351         }
4352         db_indent -= 2;
4353 }
4354
4355 DB_SHOW_COMMAND(map, map)
4356 {
4357
4358         if (!have_addr) {
4359                 db_printf("usage: show map <addr>\n");
4360                 return;
4361         }
4362         vm_map_print((vm_map_t)addr);
4363 }
4364
4365 DB_SHOW_COMMAND(procvm, procvm)
4366 {
4367         struct proc *p;
4368
4369         if (have_addr) {
4370                 p = db_lookup_proc(addr);
4371         } else {
4372                 p = curproc;
4373         }
4374
4375         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4376             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4377             (void *)vmspace_pmap(p->p_vmspace));
4378
4379         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4380 }
4381
4382 #endif /* DDB */