]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
vmspace_fork: preserve wx settings in the child vm map after fork
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150
151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154
155 /* 
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161
162 /*
163  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
164  *
165  *      Asserts that the starting and ending region
166  *      addresses fall within the valid range of the map.
167  */
168 #define VM_MAP_RANGE_CHECK(map, start, end)             \
169                 {                                       \
170                 if (start < vm_map_min(map))            \
171                         start = vm_map_min(map);        \
172                 if (end > vm_map_max(map))              \
173                         end = vm_map_max(map);          \
174                 if (start > end)                        \
175                         start = end;                    \
176                 }
177
178 #ifndef UMA_MD_SMALL_ALLOC
179
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192         vm_offset_t addr;
193         int error, locked;
194
195         *pflag = UMA_SLAB_PRIV;
196
197         if (!(locked = vm_map_locked(kernel_map)))
198                 vm_map_lock(kernel_map);
199         addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200         if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201                 panic("%s: kernel map is exhausted", __func__);
202         error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204         if (error != KERN_SUCCESS)
205                 panic("%s: vm_map_insert() failed: %d", __func__, error);
206         if (!locked)
207                 vm_map_unlock(kernel_map);
208         error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209             M_USE_RESERVE | (wait & M_ZERO));
210         if (error == KERN_SUCCESS) {
211                 return ((void *)addr);
212         } else {
213                 if (!locked)
214                         vm_map_lock(kernel_map);
215                 vm_map_delete(kernel_map, addr, bytes);
216                 if (!locked)
217                         vm_map_unlock(kernel_map);
218                 return (NULL);
219         }
220 }
221
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225         vm_offset_t addr;
226         int error;
227
228         if ((pflag & UMA_SLAB_PRIV) == 0)
229                 /* XXX leaked */
230                 return;
231
232         addr = (vm_offset_t)item;
233         kmem_unback(kernel_object, addr, size);
234         error = vm_map_remove(kernel_map, addr, addr + size);
235         KASSERT(error == KERN_SUCCESS,
236             ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define KMAPENT_RESERVE         1
244
245 #endif /* !UMD_MD_SMALL_ALLOC */
246
247 /*
248  *      vm_map_startup:
249  *
250  *      Initialize the vm_map module.  Must be called before any other vm_map
251  *      routines.
252  *
253  *      User map and entry structures are allocated from the general purpose
254  *      memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *      require special handling to avoid recursion; see the comments above
256  *      kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262
263         /*
264          * Disable the use of per-CPU buckets: map entry allocation is
265          * serialized by the kernel map lock.
266          */
267         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269             UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271         /* Reserve an extra map entry for use when replenishing the reserve. */
272         uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273         uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274         uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275         uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277
278         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282             vmspace_zdtor,
283 #else
284             NULL,
285 #endif
286             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292         struct vmspace *vm;
293         vm_map_t map;
294
295         vm = (struct vmspace *)mem;
296         map = &vm->vm_map;
297
298         memset(map, 0, sizeof(*map));
299         mtx_init(&map->system_mtx, "vm map (system)", NULL,
300             MTX_DEF | MTX_DUPOK);
301         sx_init(&map->lock, "vm map (user)");
302         PMAP_LOCK_INIT(vmspace_pmap(vm));
303         return (0);
304 }
305
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310         struct vmspace *vm;
311
312         vm = (struct vmspace *)mem;
313         KASSERT(vm->vm_map.nentries == 0,
314             ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315         KASSERT(vm->vm_map.size == 0,
316             ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif  /* INVARIANTS */
319
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327         struct vmspace *vm;
328
329         vm = uma_zalloc(vmspace_zone, M_WAITOK);
330         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331         if (!pinit(vmspace_pmap(vm))) {
332                 uma_zfree(vmspace_zone, vm);
333                 return (NULL);
334         }
335         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337         refcount_init(&vm->vm_refcnt, 1);
338         vm->vm_shm = NULL;
339         vm->vm_swrss = 0;
340         vm->vm_tsize = 0;
341         vm->vm_dsize = 0;
342         vm->vm_ssize = 0;
343         vm->vm_taddr = 0;
344         vm->vm_daddr = 0;
345         vm->vm_maxsaddr = 0;
346         return (vm);
347 }
348
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353
354         PROC_LOCK(p);
355         racct_set(p, RACCT_DATA, 0);
356         racct_set(p, RACCT_STACK, 0);
357         racct_set(p, RACCT_RSS, 0);
358         racct_set(p, RACCT_MEMLOCK, 0);
359         racct_set(p, RACCT_VMEM, 0);
360         PROC_UNLOCK(p);
361 }
362 #endif
363
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367
368         CTR1(KTR_VM, "vmspace_free: %p", vm);
369
370         /*
371          * Make sure any SysV shm is freed, it might not have been in
372          * exit1().
373          */
374         shmexit(vm);
375
376         /*
377          * Lock the map, to wait out all other references to it.
378          * Delete all of the mappings and pages they hold, then call
379          * the pmap module to reclaim anything left.
380          */
381         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382             vm_map_max(&vm->vm_map));
383
384         pmap_release(vmspace_pmap(vm));
385         vm->vm_map.pmap = NULL;
386         uma_zfree(vmspace_zone, vm);
387 }
388
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392
393         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394             "vmspace_free() called");
395
396         if (refcount_release(&vm->vm_refcnt))
397                 vmspace_dofree(vm);
398 }
399
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403         struct vmspace *vm;
404
405         PROC_VMSPACE_LOCK(p);
406         vm = p->p_vmspace;
407         p->p_vmspace = NULL;
408         PROC_VMSPACE_UNLOCK(p);
409         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410         vmspace_free(vm);
411 }
412
413 void
414 vmspace_exit(struct thread *td)
415 {
416         struct vmspace *vm;
417         struct proc *p;
418         bool released;
419
420         p = td->td_proc;
421         vm = p->p_vmspace;
422
423         /*
424          * Prepare to release the vmspace reference.  The thread that releases
425          * the last reference is responsible for tearing down the vmspace.
426          * However, threads not releasing the final reference must switch to the
427          * kernel's vmspace0 before the decrement so that the subsequent pmap
428          * deactivation does not modify a freed vmspace.
429          */
430         refcount_acquire(&vmspace0.vm_refcnt);
431         if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432                 if (p->p_vmspace != &vmspace0) {
433                         PROC_VMSPACE_LOCK(p);
434                         p->p_vmspace = &vmspace0;
435                         PROC_VMSPACE_UNLOCK(p);
436                         pmap_activate(td);
437                 }
438                 released = refcount_release(&vm->vm_refcnt);
439         }
440         if (released) {
441                 /*
442                  * pmap_remove_pages() expects the pmap to be active, so switch
443                  * back first if necessary.
444                  */
445                 if (p->p_vmspace != vm) {
446                         PROC_VMSPACE_LOCK(p);
447                         p->p_vmspace = vm;
448                         PROC_VMSPACE_UNLOCK(p);
449                         pmap_activate(td);
450                 }
451                 pmap_remove_pages(vmspace_pmap(vm));
452                 PROC_VMSPACE_LOCK(p);
453                 p->p_vmspace = &vmspace0;
454                 PROC_VMSPACE_UNLOCK(p);
455                 pmap_activate(td);
456                 vmspace_dofree(vm);
457         }
458 #ifdef RACCT
459         if (racct_enable)
460                 vmspace_container_reset(p);
461 #endif
462 }
463
464 /* Acquire reference to vmspace owned by another process. */
465
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469         struct vmspace *vm;
470
471         PROC_VMSPACE_LOCK(p);
472         vm = p->p_vmspace;
473         if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474                 PROC_VMSPACE_UNLOCK(p);
475                 return (NULL);
476         }
477         if (vm != p->p_vmspace) {
478                 PROC_VMSPACE_UNLOCK(p);
479                 vmspace_free(vm);
480                 return (NULL);
481         }
482         PROC_VMSPACE_UNLOCK(p);
483         return (vm);
484 }
485
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504         struct vmspace *oldvm;
505
506         /* XXX: Need some way to assert that this is an aio daemon. */
507
508         KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509             ("vmspace_switch_aio: newvm unreferenced"));
510
511         oldvm = curproc->p_vmspace;
512         if (oldvm == newvm)
513                 return;
514
515         /*
516          * Point to the new address space and refer to it.
517          */
518         curproc->p_vmspace = newvm;
519         refcount_acquire(&newvm->vm_refcnt);
520
521         /* Activate the new mapping. */
522         pmap_activate(curthread);
523
524         vmspace_free(oldvm);
525 }
526
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530
531         if (map->system_map)
532                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
533         else
534                 sx_xlock_(&map->lock, file, line);
535         map->timestamp++;
536 }
537
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541         vm_object_t object;
542         struct vnode *vp;
543         bool vp_held;
544
545         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546                 return;
547         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548             ("Submap with execs"));
549         object = entry->object.vm_object;
550         KASSERT(object != NULL, ("No object for text, entry %p", entry));
551         if ((object->flags & OBJ_ANON) != 0)
552                 object = object->handle;
553         else
554                 KASSERT(object->backing_object == NULL,
555                     ("non-anon object %p shadows", object));
556         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557             entry, entry->object.vm_object));
558
559         /*
560          * Mostly, we do not lock the backing object.  It is
561          * referenced by the entry we are processing, so it cannot go
562          * away.
563          */
564         vp = NULL;
565         vp_held = false;
566         if (object->type == OBJT_DEAD) {
567                 /*
568                  * For OBJT_DEAD objects, v_writecount was handled in
569                  * vnode_pager_dealloc().
570                  */
571         } else if (object->type == OBJT_VNODE) {
572                 vp = object->handle;
573         } else if (object->type == OBJT_SWAP) {
574                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
575                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
576                     "entry %p, object %p, add %d", entry, object, add));
577                 /*
578                  * Tmpfs VREG node, which was reclaimed, has
579                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
580                  * this case there is no v_writecount to adjust.
581                  */
582                 VM_OBJECT_RLOCK(object);
583                 if ((object->flags & OBJ_TMPFS) != 0) {
584                         vp = object->un_pager.swp.swp_tmpfs;
585                         if (vp != NULL) {
586                                 vhold(vp);
587                                 vp_held = true;
588                         }
589                 }
590                 VM_OBJECT_RUNLOCK(object);
591         } else {
592                 KASSERT(0,
593                     ("vm_map_entry_set_vnode_text: wrong object type, "
594                     "entry %p, object %p, add %d", entry, object, add));
595         }
596         if (vp != NULL) {
597                 if (add) {
598                         VOP_SET_TEXT_CHECKED(vp);
599                 } else {
600                         vn_lock(vp, LK_SHARED | LK_RETRY);
601                         VOP_UNSET_TEXT_CHECKED(vp);
602                         VOP_UNLOCK(vp);
603                 }
604                 if (vp_held)
605                         vdrop(vp);
606         }
607 }
608
609 /*
610  * Use a different name for this vm_map_entry field when it's use
611  * is not consistent with its use as part of an ordered search tree.
612  */
613 #define defer_next right
614
615 static void
616 vm_map_process_deferred(void)
617 {
618         struct thread *td;
619         vm_map_entry_t entry, next;
620         vm_object_t object;
621
622         td = curthread;
623         entry = td->td_map_def_user;
624         td->td_map_def_user = NULL;
625         while (entry != NULL) {
626                 next = entry->defer_next;
627                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
628                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
629                     MAP_ENTRY_VN_EXEC));
630                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
631                         /*
632                          * Decrement the object's writemappings and
633                          * possibly the vnode's v_writecount.
634                          */
635                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
636                             ("Submap with writecount"));
637                         object = entry->object.vm_object;
638                         KASSERT(object != NULL, ("No object for writecount"));
639                         vm_pager_release_writecount(object, entry->start,
640                             entry->end);
641                 }
642                 vm_map_entry_set_vnode_text(entry, false);
643                 vm_map_entry_deallocate(entry, FALSE);
644                 entry = next;
645         }
646 }
647
648 #ifdef INVARIANTS
649 static void
650 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
651 {
652
653         if (map->system_map)
654                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
655         else
656                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
657 }
658
659 #define VM_MAP_ASSERT_LOCKED(map) \
660     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
661
662 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
663 #ifdef DIAGNOSTIC
664 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
665 #else
666 static int enable_vmmap_check = VMMAP_CHECK_NONE;
667 #endif
668 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
669     &enable_vmmap_check, 0, "Enable vm map consistency checking");
670
671 static void _vm_map_assert_consistent(vm_map_t map, int check);
672
673 #define VM_MAP_ASSERT_CONSISTENT(map) \
674     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
675 #ifdef DIAGNOSTIC
676 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
677         if (map->nupdates > map->nentries) {                            \
678                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
679                 map->nupdates = 0;                                      \
680         }                                                               \
681 } while (0)
682 #else
683 #define VM_MAP_UNLOCK_CONSISTENT(map)
684 #endif
685 #else
686 #define VM_MAP_ASSERT_LOCKED(map)
687 #define VM_MAP_ASSERT_CONSISTENT(map)
688 #define VM_MAP_UNLOCK_CONSISTENT(map)
689 #endif /* INVARIANTS */
690
691 void
692 _vm_map_unlock(vm_map_t map, const char *file, int line)
693 {
694
695         VM_MAP_UNLOCK_CONSISTENT(map);
696         if (map->system_map) {
697 #ifndef UMA_MD_SMALL_ALLOC
698                 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
699                         uma_prealloc(kmapentzone, 1);
700                         map->flags &= ~MAP_REPLENISH;
701                 }
702 #endif
703                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
704         } else {
705                 sx_xunlock_(&map->lock, file, line);
706                 vm_map_process_deferred();
707         }
708 }
709
710 void
711 _vm_map_lock_read(vm_map_t map, const char *file, int line)
712 {
713
714         if (map->system_map)
715                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
716         else
717                 sx_slock_(&map->lock, file, line);
718 }
719
720 void
721 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
722 {
723
724         if (map->system_map) {
725                 KASSERT((map->flags & MAP_REPLENISH) == 0,
726                     ("%s: MAP_REPLENISH leaked", __func__));
727                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
728         } else {
729                 sx_sunlock_(&map->lock, file, line);
730                 vm_map_process_deferred();
731         }
732 }
733
734 int
735 _vm_map_trylock(vm_map_t map, const char *file, int line)
736 {
737         int error;
738
739         error = map->system_map ?
740             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
741             !sx_try_xlock_(&map->lock, file, line);
742         if (error == 0)
743                 map->timestamp++;
744         return (error == 0);
745 }
746
747 int
748 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
749 {
750         int error;
751
752         error = map->system_map ?
753             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
754             !sx_try_slock_(&map->lock, file, line);
755         return (error == 0);
756 }
757
758 /*
759  *      _vm_map_lock_upgrade:   [ internal use only ]
760  *
761  *      Tries to upgrade a read (shared) lock on the specified map to a write
762  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
763  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
764  *      returned without a read or write lock held.
765  *
766  *      Requires that the map be read locked.
767  */
768 int
769 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
770 {
771         unsigned int last_timestamp;
772
773         if (map->system_map) {
774                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
775         } else {
776                 if (!sx_try_upgrade_(&map->lock, file, line)) {
777                         last_timestamp = map->timestamp;
778                         sx_sunlock_(&map->lock, file, line);
779                         vm_map_process_deferred();
780                         /*
781                          * If the map's timestamp does not change while the
782                          * map is unlocked, then the upgrade succeeds.
783                          */
784                         sx_xlock_(&map->lock, file, line);
785                         if (last_timestamp != map->timestamp) {
786                                 sx_xunlock_(&map->lock, file, line);
787                                 return (1);
788                         }
789                 }
790         }
791         map->timestamp++;
792         return (0);
793 }
794
795 void
796 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
797 {
798
799         if (map->system_map) {
800                 KASSERT((map->flags & MAP_REPLENISH) == 0,
801                     ("%s: MAP_REPLENISH leaked", __func__));
802                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
803         } else {
804                 VM_MAP_UNLOCK_CONSISTENT(map);
805                 sx_downgrade_(&map->lock, file, line);
806         }
807 }
808
809 /*
810  *      vm_map_locked:
811  *
812  *      Returns a non-zero value if the caller holds a write (exclusive) lock
813  *      on the specified map and the value "0" otherwise.
814  */
815 int
816 vm_map_locked(vm_map_t map)
817 {
818
819         if (map->system_map)
820                 return (mtx_owned(&map->system_mtx));
821         else
822                 return (sx_xlocked(&map->lock));
823 }
824
825 /*
826  *      _vm_map_unlock_and_wait:
827  *
828  *      Atomically releases the lock on the specified map and puts the calling
829  *      thread to sleep.  The calling thread will remain asleep until either
830  *      vm_map_wakeup() is performed on the map or the specified timeout is
831  *      exceeded.
832  *
833  *      WARNING!  This function does not perform deferred deallocations of
834  *      objects and map entries.  Therefore, the calling thread is expected to
835  *      reacquire the map lock after reawakening and later perform an ordinary
836  *      unlock operation, such as vm_map_unlock(), before completing its
837  *      operation on the map.
838  */
839 int
840 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
841 {
842
843         VM_MAP_UNLOCK_CONSISTENT(map);
844         mtx_lock(&map_sleep_mtx);
845         if (map->system_map) {
846                 KASSERT((map->flags & MAP_REPLENISH) == 0,
847                     ("%s: MAP_REPLENISH leaked", __func__));
848                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
849         } else {
850                 sx_xunlock_(&map->lock, file, line);
851         }
852         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
853             timo));
854 }
855
856 /*
857  *      vm_map_wakeup:
858  *
859  *      Awaken any threads that have slept on the map using
860  *      vm_map_unlock_and_wait().
861  */
862 void
863 vm_map_wakeup(vm_map_t map)
864 {
865
866         /*
867          * Acquire and release map_sleep_mtx to prevent a wakeup()
868          * from being performed (and lost) between the map unlock
869          * and the msleep() in _vm_map_unlock_and_wait().
870          */
871         mtx_lock(&map_sleep_mtx);
872         mtx_unlock(&map_sleep_mtx);
873         wakeup(&map->root);
874 }
875
876 void
877 vm_map_busy(vm_map_t map)
878 {
879
880         VM_MAP_ASSERT_LOCKED(map);
881         map->busy++;
882 }
883
884 void
885 vm_map_unbusy(vm_map_t map)
886 {
887
888         VM_MAP_ASSERT_LOCKED(map);
889         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
890         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
891                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
892                 wakeup(&map->busy);
893         }
894 }
895
896 void 
897 vm_map_wait_busy(vm_map_t map)
898 {
899
900         VM_MAP_ASSERT_LOCKED(map);
901         while (map->busy) {
902                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
903                 if (map->system_map)
904                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
905                 else
906                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
907         }
908         map->timestamp++;
909 }
910
911 long
912 vmspace_resident_count(struct vmspace *vmspace)
913 {
914         return pmap_resident_count(vmspace_pmap(vmspace));
915 }
916
917 /*
918  * Initialize an existing vm_map structure
919  * such as that in the vmspace structure.
920  */
921 static void
922 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
923 {
924
925         map->header.eflags = MAP_ENTRY_HEADER;
926         map->needs_wakeup = FALSE;
927         map->system_map = 0;
928         map->pmap = pmap;
929         map->header.end = min;
930         map->header.start = max;
931         map->flags = 0;
932         map->header.left = map->header.right = &map->header;
933         map->root = NULL;
934         map->timestamp = 0;
935         map->busy = 0;
936         map->anon_loc = 0;
937 #ifdef DIAGNOSTIC
938         map->nupdates = 0;
939 #endif
940 }
941
942 void
943 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
944 {
945
946         _vm_map_init(map, pmap, min, max);
947         mtx_init(&map->system_mtx, "vm map (system)", NULL,
948             MTX_DEF | MTX_DUPOK);
949         sx_init(&map->lock, "vm map (user)");
950 }
951
952 /*
953  *      vm_map_entry_dispose:   [ internal use only ]
954  *
955  *      Inverse of vm_map_entry_create.
956  */
957 static void
958 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
959 {
960         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
961 }
962
963 /*
964  *      vm_map_entry_create:    [ internal use only ]
965  *
966  *      Allocates a VM map entry for insertion.
967  *      No entry fields are filled in.
968  */
969 static vm_map_entry_t
970 vm_map_entry_create(vm_map_t map)
971 {
972         vm_map_entry_t new_entry;
973
974 #ifndef UMA_MD_SMALL_ALLOC
975         if (map == kernel_map) {
976                 VM_MAP_ASSERT_LOCKED(map);
977
978                 /*
979                  * A new slab of kernel map entries cannot be allocated at this
980                  * point because the kernel map has not yet been updated to
981                  * reflect the caller's request.  Therefore, we allocate a new
982                  * map entry, dipping into the reserve if necessary, and set a
983                  * flag indicating that the reserve must be replenished before
984                  * the map is unlocked.
985                  */
986                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
987                 if (new_entry == NULL) {
988                         new_entry = uma_zalloc(kmapentzone,
989                             M_NOWAIT | M_NOVM | M_USE_RESERVE);
990                         kernel_map->flags |= MAP_REPLENISH;
991                 }
992         } else
993 #endif
994         if (map->system_map) {
995                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
996         } else {
997                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
998         }
999         KASSERT(new_entry != NULL,
1000             ("vm_map_entry_create: kernel resources exhausted"));
1001         return (new_entry);
1002 }
1003
1004 /*
1005  *      vm_map_entry_set_behavior:
1006  *
1007  *      Set the expected access behavior, either normal, random, or
1008  *      sequential.
1009  */
1010 static inline void
1011 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
1012 {
1013         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
1014             (behavior & MAP_ENTRY_BEHAV_MASK);
1015 }
1016
1017 /*
1018  *      vm_map_entry_max_free_{left,right}:
1019  *
1020  *      Compute the size of the largest free gap between two entries,
1021  *      one the root of a tree and the other the ancestor of that root
1022  *      that is the least or greatest ancestor found on the search path.
1023  */
1024 static inline vm_size_t
1025 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
1026 {
1027
1028         return (root->left != left_ancestor ?
1029             root->left->max_free : root->start - left_ancestor->end);
1030 }
1031
1032 static inline vm_size_t
1033 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1034 {
1035
1036         return (root->right != right_ancestor ?
1037             root->right->max_free : right_ancestor->start - root->end);
1038 }
1039
1040 /*
1041  *      vm_map_entry_{pred,succ}:
1042  *
1043  *      Find the {predecessor, successor} of the entry by taking one step
1044  *      in the appropriate direction and backtracking as much as necessary.
1045  *      vm_map_entry_succ is defined in vm_map.h.
1046  */
1047 static inline vm_map_entry_t
1048 vm_map_entry_pred(vm_map_entry_t entry)
1049 {
1050         vm_map_entry_t prior;
1051
1052         prior = entry->left;
1053         if (prior->right->start < entry->start) {
1054                 do
1055                         prior = prior->right;
1056                 while (prior->right != entry);
1057         }
1058         return (prior);
1059 }
1060
1061 static inline vm_size_t
1062 vm_size_max(vm_size_t a, vm_size_t b)
1063 {
1064
1065         return (a > b ? a : b);
1066 }
1067
1068 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1069         vm_map_entry_t z;                                               \
1070         vm_size_t max_free;                                             \
1071                                                                         \
1072         /*                                                              \
1073          * Infer root->right->max_free == root->max_free when           \
1074          * y->max_free < root->max_free || root->max_free == 0.         \
1075          * Otherwise, look right to find it.                            \
1076          */                                                             \
1077         y = root->left;                                                 \
1078         max_free = root->max_free;                                      \
1079         KASSERT(max_free == vm_size_max(                                \
1080             vm_map_entry_max_free_left(root, llist),                    \
1081             vm_map_entry_max_free_right(root, rlist)),                  \
1082             ("%s: max_free invariant fails", __func__));                \
1083         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1084                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1085         if (y != llist && (test)) {                                     \
1086                 /* Rotate right and make y root. */                     \
1087                 z = y->right;                                           \
1088                 if (z != root) {                                        \
1089                         root->left = z;                                 \
1090                         y->right = root;                                \
1091                         if (max_free < y->max_free)                     \
1092                             root->max_free = max_free =                 \
1093                             vm_size_max(max_free, z->max_free);         \
1094                 } else if (max_free < y->max_free)                      \
1095                         root->max_free = max_free =                     \
1096                             vm_size_max(max_free, root->start - y->end);\
1097                 root = y;                                               \
1098                 y = root->left;                                         \
1099         }                                                               \
1100         /* Copy right->max_free.  Put root on rlist. */                 \
1101         root->max_free = max_free;                                      \
1102         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1103             ("%s: max_free not copied from right", __func__));          \
1104         root->left = rlist;                                             \
1105         rlist = root;                                                   \
1106         root = y != llist ? y : NULL;                                   \
1107 } while (0)
1108
1109 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1110         vm_map_entry_t z;                                               \
1111         vm_size_t max_free;                                             \
1112                                                                         \
1113         /*                                                              \
1114          * Infer root->left->max_free == root->max_free when            \
1115          * y->max_free < root->max_free || root->max_free == 0.         \
1116          * Otherwise, look left to find it.                             \
1117          */                                                             \
1118         y = root->right;                                                \
1119         max_free = root->max_free;                                      \
1120         KASSERT(max_free == vm_size_max(                                \
1121             vm_map_entry_max_free_left(root, llist),                    \
1122             vm_map_entry_max_free_right(root, rlist)),                  \
1123             ("%s: max_free invariant fails", __func__));                \
1124         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1125                 max_free = vm_map_entry_max_free_left(root, llist);     \
1126         if (y != rlist && (test)) {                                     \
1127                 /* Rotate left and make y root. */                      \
1128                 z = y->left;                                            \
1129                 if (z != root) {                                        \
1130                         root->right = z;                                \
1131                         y->left = root;                                 \
1132                         if (max_free < y->max_free)                     \
1133                             root->max_free = max_free =                 \
1134                             vm_size_max(max_free, z->max_free);         \
1135                 } else if (max_free < y->max_free)                      \
1136                         root->max_free = max_free =                     \
1137                             vm_size_max(max_free, y->start - root->end);\
1138                 root = y;                                               \
1139                 y = root->right;                                        \
1140         }                                                               \
1141         /* Copy left->max_free.  Put root on llist. */                  \
1142         root->max_free = max_free;                                      \
1143         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1144             ("%s: max_free not copied from left", __func__));           \
1145         root->right = llist;                                            \
1146         llist = root;                                                   \
1147         root = y != rlist ? y : NULL;                                   \
1148 } while (0)
1149
1150 /*
1151  * Walk down the tree until we find addr or a gap where addr would go, breaking
1152  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1153  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1154  * the two sides in reverse order (bottom-up), with llist linked by the right
1155  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1156  * lists terminated by &map->header.  This function, and the subsequent call to
1157  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1158  * values in &map->header.
1159  */
1160 static __always_inline vm_map_entry_t
1161 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1162     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1163 {
1164         vm_map_entry_t left, right, root, y;
1165
1166         left = right = &map->header;
1167         root = map->root;
1168         while (root != NULL && root->max_free >= length) {
1169                 KASSERT(left->end <= root->start &&
1170                     root->end <= right->start,
1171                     ("%s: root not within tree bounds", __func__));
1172                 if (addr < root->start) {
1173                         SPLAY_LEFT_STEP(root, y, left, right,
1174                             y->max_free >= length && addr < y->start);
1175                 } else if (addr >= root->end) {
1176                         SPLAY_RIGHT_STEP(root, y, left, right,
1177                             y->max_free >= length && addr >= y->end);
1178                 } else
1179                         break;
1180         }
1181         *llist = left;
1182         *rlist = right;
1183         return (root);
1184 }
1185
1186 static __always_inline void
1187 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1188 {
1189         vm_map_entry_t hi, right, y;
1190
1191         right = *rlist;
1192         hi = root->right == right ? NULL : root->right;
1193         if (hi == NULL)
1194                 return;
1195         do
1196                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1197         while (hi != NULL);
1198         *rlist = right;
1199 }
1200
1201 static __always_inline void
1202 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1203 {
1204         vm_map_entry_t left, lo, y;
1205
1206         left = *llist;
1207         lo = root->left == left ? NULL : root->left;
1208         if (lo == NULL)
1209                 return;
1210         do
1211                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1212         while (lo != NULL);
1213         *llist = left;
1214 }
1215
1216 static inline void
1217 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1218 {
1219         vm_map_entry_t tmp;
1220
1221         tmp = *b;
1222         *b = *a;
1223         *a = tmp;
1224 }
1225
1226 /*
1227  * Walk back up the two spines, flip the pointers and set max_free.  The
1228  * subtrees of the root go at the bottom of llist and rlist.
1229  */
1230 static vm_size_t
1231 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1232     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1233 {
1234         do {
1235                 /*
1236                  * The max_free values of the children of llist are in
1237                  * llist->max_free and max_free.  Update with the
1238                  * max value.
1239                  */
1240                 llist->max_free = max_free =
1241                     vm_size_max(llist->max_free, max_free);
1242                 vm_map_entry_swap(&llist->right, &tail);
1243                 vm_map_entry_swap(&tail, &llist);
1244         } while (llist != header);
1245         root->left = tail;
1246         return (max_free);
1247 }
1248
1249 /*
1250  * When llist is known to be the predecessor of root.
1251  */
1252 static inline vm_size_t
1253 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1254     vm_map_entry_t llist)
1255 {
1256         vm_size_t max_free;
1257
1258         max_free = root->start - llist->end;
1259         if (llist != header) {
1260                 max_free = vm_map_splay_merge_left_walk(header, root,
1261                     root, max_free, llist);
1262         } else {
1263                 root->left = header;
1264                 header->right = root;
1265         }
1266         return (max_free);
1267 }
1268
1269 /*
1270  * When llist may or may not be the predecessor of root.
1271  */
1272 static inline vm_size_t
1273 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1274     vm_map_entry_t llist)
1275 {
1276         vm_size_t max_free;
1277
1278         max_free = vm_map_entry_max_free_left(root, llist);
1279         if (llist != header) {
1280                 max_free = vm_map_splay_merge_left_walk(header, root,
1281                     root->left == llist ? root : root->left,
1282                     max_free, llist);
1283         }
1284         return (max_free);
1285 }
1286
1287 static vm_size_t
1288 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1289     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1290 {
1291         do {
1292                 /*
1293                  * The max_free values of the children of rlist are in
1294                  * rlist->max_free and max_free.  Update with the
1295                  * max value.
1296                  */
1297                 rlist->max_free = max_free =
1298                     vm_size_max(rlist->max_free, max_free);
1299                 vm_map_entry_swap(&rlist->left, &tail);
1300                 vm_map_entry_swap(&tail, &rlist);
1301         } while (rlist != header);
1302         root->right = tail;
1303         return (max_free);
1304 }
1305
1306 /*
1307  * When rlist is known to be the succecessor of root.
1308  */
1309 static inline vm_size_t
1310 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1311     vm_map_entry_t rlist)
1312 {
1313         vm_size_t max_free;
1314
1315         max_free = rlist->start - root->end;
1316         if (rlist != header) {
1317                 max_free = vm_map_splay_merge_right_walk(header, root,
1318                     root, max_free, rlist);
1319         } else {
1320                 root->right = header;
1321                 header->left = root;
1322         }
1323         return (max_free);
1324 }
1325
1326 /*
1327  * When rlist may or may not be the succecessor of root.
1328  */
1329 static inline vm_size_t
1330 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1331     vm_map_entry_t rlist)
1332 {
1333         vm_size_t max_free;
1334
1335         max_free = vm_map_entry_max_free_right(root, rlist);
1336         if (rlist != header) {
1337                 max_free = vm_map_splay_merge_right_walk(header, root,
1338                     root->right == rlist ? root : root->right,
1339                     max_free, rlist);
1340         }
1341         return (max_free);
1342 }
1343
1344 /*
1345  *      vm_map_splay:
1346  *
1347  *      The Sleator and Tarjan top-down splay algorithm with the
1348  *      following variation.  Max_free must be computed bottom-up, so
1349  *      on the downward pass, maintain the left and right spines in
1350  *      reverse order.  Then, make a second pass up each side to fix
1351  *      the pointers and compute max_free.  The time bound is O(log n)
1352  *      amortized.
1353  *
1354  *      The tree is threaded, which means that there are no null pointers.
1355  *      When a node has no left child, its left pointer points to its
1356  *      predecessor, which the last ancestor on the search path from the root
1357  *      where the search branched right.  Likewise, when a node has no right
1358  *      child, its right pointer points to its successor.  The map header node
1359  *      is the predecessor of the first map entry, and the successor of the
1360  *      last.
1361  *
1362  *      The new root is the vm_map_entry containing "addr", or else an
1363  *      adjacent entry (lower if possible) if addr is not in the tree.
1364  *
1365  *      The map must be locked, and leaves it so.
1366  *
1367  *      Returns: the new root.
1368  */
1369 static vm_map_entry_t
1370 vm_map_splay(vm_map_t map, vm_offset_t addr)
1371 {
1372         vm_map_entry_t header, llist, rlist, root;
1373         vm_size_t max_free_left, max_free_right;
1374
1375         header = &map->header;
1376         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1377         if (root != NULL) {
1378                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1379                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1380         } else if (llist != header) {
1381                 /*
1382                  * Recover the greatest node in the left
1383                  * subtree and make it the root.
1384                  */
1385                 root = llist;
1386                 llist = root->right;
1387                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1388                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1389         } else if (rlist != header) {
1390                 /*
1391                  * Recover the least node in the right
1392                  * subtree and make it the root.
1393                  */
1394                 root = rlist;
1395                 rlist = root->left;
1396                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1397                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1398         } else {
1399                 /* There is no root. */
1400                 return (NULL);
1401         }
1402         root->max_free = vm_size_max(max_free_left, max_free_right);
1403         map->root = root;
1404         VM_MAP_ASSERT_CONSISTENT(map);
1405         return (root);
1406 }
1407
1408 /*
1409  *      vm_map_entry_{un,}link:
1410  *
1411  *      Insert/remove entries from maps.  On linking, if new entry clips
1412  *      existing entry, trim existing entry to avoid overlap, and manage
1413  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1414  *      called for, and manage offsets.  Callers should not modify fields in
1415  *      entries already mapped.
1416  */
1417 static void
1418 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1419 {
1420         vm_map_entry_t header, llist, rlist, root;
1421         vm_size_t max_free_left, max_free_right;
1422
1423         CTR3(KTR_VM,
1424             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1425             map->nentries, entry);
1426         VM_MAP_ASSERT_LOCKED(map);
1427         map->nentries++;
1428         header = &map->header;
1429         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1430         if (root == NULL) {
1431                 /*
1432                  * The new entry does not overlap any existing entry in the
1433                  * map, so it becomes the new root of the map tree.
1434                  */
1435                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1436                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1437         } else if (entry->start == root->start) {
1438                 /*
1439                  * The new entry is a clone of root, with only the end field
1440                  * changed.  The root entry will be shrunk to abut the new
1441                  * entry, and will be the right child of the new root entry in
1442                  * the modified map.
1443                  */
1444                 KASSERT(entry->end < root->end,
1445                     ("%s: clip_start not within entry", __func__));
1446                 vm_map_splay_findprev(root, &llist);
1447                 root->offset += entry->end - root->start;
1448                 root->start = entry->end;
1449                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1450                 max_free_right = root->max_free = vm_size_max(
1451                     vm_map_splay_merge_pred(entry, root, entry),
1452                     vm_map_splay_merge_right(header, root, rlist));
1453         } else {
1454                 /*
1455                  * The new entry is a clone of root, with only the start field
1456                  * changed.  The root entry will be shrunk to abut the new
1457                  * entry, and will be the left child of the new root entry in
1458                  * the modified map.
1459                  */
1460                 KASSERT(entry->end == root->end,
1461                     ("%s: clip_start not within entry", __func__));
1462                 vm_map_splay_findnext(root, &rlist);
1463                 entry->offset += entry->start - root->start;
1464                 root->end = entry->start;
1465                 max_free_left = root->max_free = vm_size_max(
1466                     vm_map_splay_merge_left(header, root, llist),
1467                     vm_map_splay_merge_succ(entry, root, entry));
1468                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1469         }
1470         entry->max_free = vm_size_max(max_free_left, max_free_right);
1471         map->root = entry;
1472         VM_MAP_ASSERT_CONSISTENT(map);
1473 }
1474
1475 enum unlink_merge_type {
1476         UNLINK_MERGE_NONE,
1477         UNLINK_MERGE_NEXT
1478 };
1479
1480 static void
1481 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1482     enum unlink_merge_type op)
1483 {
1484         vm_map_entry_t header, llist, rlist, root;
1485         vm_size_t max_free_left, max_free_right;
1486
1487         VM_MAP_ASSERT_LOCKED(map);
1488         header = &map->header;
1489         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1490         KASSERT(root != NULL,
1491             ("vm_map_entry_unlink: unlink object not mapped"));
1492
1493         vm_map_splay_findprev(root, &llist);
1494         vm_map_splay_findnext(root, &rlist);
1495         if (op == UNLINK_MERGE_NEXT) {
1496                 rlist->start = root->start;
1497                 rlist->offset = root->offset;
1498         }
1499         if (llist != header) {
1500                 root = llist;
1501                 llist = root->right;
1502                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1503                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1504         } else if (rlist != header) {
1505                 root = rlist;
1506                 rlist = root->left;
1507                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1508                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1509         } else {
1510                 header->left = header->right = header;
1511                 root = NULL;
1512         }
1513         if (root != NULL)
1514                 root->max_free = vm_size_max(max_free_left, max_free_right);
1515         map->root = root;
1516         VM_MAP_ASSERT_CONSISTENT(map);
1517         map->nentries--;
1518         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1519             map->nentries, entry);
1520 }
1521
1522 /*
1523  *      vm_map_entry_resize:
1524  *
1525  *      Resize a vm_map_entry, recompute the amount of free space that
1526  *      follows it and propagate that value up the tree.
1527  *
1528  *      The map must be locked, and leaves it so.
1529  */
1530 static void
1531 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1532 {
1533         vm_map_entry_t header, llist, rlist, root;
1534
1535         VM_MAP_ASSERT_LOCKED(map);
1536         header = &map->header;
1537         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1538         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1539         vm_map_splay_findnext(root, &rlist);
1540         entry->end += grow_amount;
1541         root->max_free = vm_size_max(
1542             vm_map_splay_merge_left(header, root, llist),
1543             vm_map_splay_merge_succ(header, root, rlist));
1544         map->root = root;
1545         VM_MAP_ASSERT_CONSISTENT(map);
1546         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1547             __func__, map, map->nentries, entry);
1548 }
1549
1550 /*
1551  *      vm_map_lookup_entry:    [ internal use only ]
1552  *
1553  *      Finds the map entry containing (or
1554  *      immediately preceding) the specified address
1555  *      in the given map; the entry is returned
1556  *      in the "entry" parameter.  The boolean
1557  *      result indicates whether the address is
1558  *      actually contained in the map.
1559  */
1560 boolean_t
1561 vm_map_lookup_entry(
1562         vm_map_t map,
1563         vm_offset_t address,
1564         vm_map_entry_t *entry)  /* OUT */
1565 {
1566         vm_map_entry_t cur, header, lbound, ubound;
1567         boolean_t locked;
1568
1569         /*
1570          * If the map is empty, then the map entry immediately preceding
1571          * "address" is the map's header.
1572          */
1573         header = &map->header;
1574         cur = map->root;
1575         if (cur == NULL) {
1576                 *entry = header;
1577                 return (FALSE);
1578         }
1579         if (address >= cur->start && cur->end > address) {
1580                 *entry = cur;
1581                 return (TRUE);
1582         }
1583         if ((locked = vm_map_locked(map)) ||
1584             sx_try_upgrade(&map->lock)) {
1585                 /*
1586                  * Splay requires a write lock on the map.  However, it only
1587                  * restructures the binary search tree; it does not otherwise
1588                  * change the map.  Thus, the map's timestamp need not change
1589                  * on a temporary upgrade.
1590                  */
1591                 cur = vm_map_splay(map, address);
1592                 if (!locked) {
1593                         VM_MAP_UNLOCK_CONSISTENT(map);
1594                         sx_downgrade(&map->lock);
1595                 }
1596
1597                 /*
1598                  * If "address" is contained within a map entry, the new root
1599                  * is that map entry.  Otherwise, the new root is a map entry
1600                  * immediately before or after "address".
1601                  */
1602                 if (address < cur->start) {
1603                         *entry = header;
1604                         return (FALSE);
1605                 }
1606                 *entry = cur;
1607                 return (address < cur->end);
1608         }
1609         /*
1610          * Since the map is only locked for read access, perform a
1611          * standard binary search tree lookup for "address".
1612          */
1613         lbound = ubound = header;
1614         for (;;) {
1615                 if (address < cur->start) {
1616                         ubound = cur;
1617                         cur = cur->left;
1618                         if (cur == lbound)
1619                                 break;
1620                 } else if (cur->end <= address) {
1621                         lbound = cur;
1622                         cur = cur->right;
1623                         if (cur == ubound)
1624                                 break;
1625                 } else {
1626                         *entry = cur;
1627                         return (TRUE);
1628                 }
1629         }
1630         *entry = lbound;
1631         return (FALSE);
1632 }
1633
1634 /*
1635  *      vm_map_insert:
1636  *
1637  *      Inserts the given whole VM object into the target
1638  *      map at the specified address range.  The object's
1639  *      size should match that of the address range.
1640  *
1641  *      Requires that the map be locked, and leaves it so.
1642  *
1643  *      If object is non-NULL, ref count must be bumped by caller
1644  *      prior to making call to account for the new entry.
1645  */
1646 int
1647 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1648     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1649 {
1650         vm_map_entry_t new_entry, next_entry, prev_entry;
1651         struct ucred *cred;
1652         vm_eflags_t protoeflags;
1653         vm_inherit_t inheritance;
1654         u_long bdry;
1655         u_int bidx;
1656
1657         VM_MAP_ASSERT_LOCKED(map);
1658         KASSERT(object != kernel_object ||
1659             (cow & MAP_COPY_ON_WRITE) == 0,
1660             ("vm_map_insert: kernel object and COW"));
1661         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1662             (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1663             ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1664             object, cow));
1665         KASSERT((prot & ~max) == 0,
1666             ("prot %#x is not subset of max_prot %#x", prot, max));
1667
1668         /*
1669          * Check that the start and end points are not bogus.
1670          */
1671         if (start == end || !vm_map_range_valid(map, start, end))
1672                 return (KERN_INVALID_ADDRESS);
1673
1674         if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1675             VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1676                 return (KERN_PROTECTION_FAILURE);
1677
1678         /*
1679          * Find the entry prior to the proposed starting address; if it's part
1680          * of an existing entry, this range is bogus.
1681          */
1682         if (vm_map_lookup_entry(map, start, &prev_entry))
1683                 return (KERN_NO_SPACE);
1684
1685         /*
1686          * Assert that the next entry doesn't overlap the end point.
1687          */
1688         next_entry = vm_map_entry_succ(prev_entry);
1689         if (next_entry->start < end)
1690                 return (KERN_NO_SPACE);
1691
1692         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1693             max != VM_PROT_NONE))
1694                 return (KERN_INVALID_ARGUMENT);
1695
1696         protoeflags = 0;
1697         if (cow & MAP_COPY_ON_WRITE)
1698                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1699         if (cow & MAP_NOFAULT)
1700                 protoeflags |= MAP_ENTRY_NOFAULT;
1701         if (cow & MAP_DISABLE_SYNCER)
1702                 protoeflags |= MAP_ENTRY_NOSYNC;
1703         if (cow & MAP_DISABLE_COREDUMP)
1704                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1705         if (cow & MAP_STACK_GROWS_DOWN)
1706                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1707         if (cow & MAP_STACK_GROWS_UP)
1708                 protoeflags |= MAP_ENTRY_GROWS_UP;
1709         if (cow & MAP_WRITECOUNT)
1710                 protoeflags |= MAP_ENTRY_WRITECNT;
1711         if (cow & MAP_VN_EXEC)
1712                 protoeflags |= MAP_ENTRY_VN_EXEC;
1713         if ((cow & MAP_CREATE_GUARD) != 0)
1714                 protoeflags |= MAP_ENTRY_GUARD;
1715         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1716                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1717         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1718                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1719         if (cow & MAP_INHERIT_SHARE)
1720                 inheritance = VM_INHERIT_SHARE;
1721         else
1722                 inheritance = VM_INHERIT_DEFAULT;
1723         if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1724                 /* This magically ignores index 0, for usual page size. */
1725                 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1726                     MAP_SPLIT_BOUNDARY_SHIFT;
1727                 if (bidx >= MAXPAGESIZES)
1728                         return (KERN_INVALID_ARGUMENT);
1729                 bdry = pagesizes[bidx] - 1;
1730                 if ((start & bdry) != 0 || (end & bdry) != 0)
1731                         return (KERN_INVALID_ARGUMENT);
1732                 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1733         }
1734
1735         cred = NULL;
1736         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1737                 goto charged;
1738         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1739             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1740                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1741                         return (KERN_RESOURCE_SHORTAGE);
1742                 KASSERT(object == NULL ||
1743                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1744                     object->cred == NULL,
1745                     ("overcommit: vm_map_insert o %p", object));
1746                 cred = curthread->td_ucred;
1747         }
1748
1749 charged:
1750         /* Expand the kernel pmap, if necessary. */
1751         if (map == kernel_map && end > kernel_vm_end)
1752                 pmap_growkernel(end);
1753         if (object != NULL) {
1754                 /*
1755                  * OBJ_ONEMAPPING must be cleared unless this mapping
1756                  * is trivially proven to be the only mapping for any
1757                  * of the object's pages.  (Object granularity
1758                  * reference counting is insufficient to recognize
1759                  * aliases with precision.)
1760                  */
1761                 if ((object->flags & OBJ_ANON) != 0) {
1762                         VM_OBJECT_WLOCK(object);
1763                         if (object->ref_count > 1 || object->shadow_count != 0)
1764                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1765                         VM_OBJECT_WUNLOCK(object);
1766                 }
1767         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1768             protoeflags &&
1769             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1770             MAP_VN_EXEC)) == 0 &&
1771             prev_entry->end == start && (prev_entry->cred == cred ||
1772             (prev_entry->object.vm_object != NULL &&
1773             prev_entry->object.vm_object->cred == cred)) &&
1774             vm_object_coalesce(prev_entry->object.vm_object,
1775             prev_entry->offset,
1776             (vm_size_t)(prev_entry->end - prev_entry->start),
1777             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1778             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1779                 /*
1780                  * We were able to extend the object.  Determine if we
1781                  * can extend the previous map entry to include the
1782                  * new range as well.
1783                  */
1784                 if (prev_entry->inheritance == inheritance &&
1785                     prev_entry->protection == prot &&
1786                     prev_entry->max_protection == max &&
1787                     prev_entry->wired_count == 0) {
1788                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1789                             0, ("prev_entry %p has incoherent wiring",
1790                             prev_entry));
1791                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1792                                 map->size += end - prev_entry->end;
1793                         vm_map_entry_resize(map, prev_entry,
1794                             end - prev_entry->end);
1795                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1796                         return (KERN_SUCCESS);
1797                 }
1798
1799                 /*
1800                  * If we can extend the object but cannot extend the
1801                  * map entry, we have to create a new map entry.  We
1802                  * must bump the ref count on the extended object to
1803                  * account for it.  object may be NULL.
1804                  */
1805                 object = prev_entry->object.vm_object;
1806                 offset = prev_entry->offset +
1807                     (prev_entry->end - prev_entry->start);
1808                 vm_object_reference(object);
1809                 if (cred != NULL && object != NULL && object->cred != NULL &&
1810                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1811                         /* Object already accounts for this uid. */
1812                         cred = NULL;
1813                 }
1814         }
1815         if (cred != NULL)
1816                 crhold(cred);
1817
1818         /*
1819          * Create a new entry
1820          */
1821         new_entry = vm_map_entry_create(map);
1822         new_entry->start = start;
1823         new_entry->end = end;
1824         new_entry->cred = NULL;
1825
1826         new_entry->eflags = protoeflags;
1827         new_entry->object.vm_object = object;
1828         new_entry->offset = offset;
1829
1830         new_entry->inheritance = inheritance;
1831         new_entry->protection = prot;
1832         new_entry->max_protection = max;
1833         new_entry->wired_count = 0;
1834         new_entry->wiring_thread = NULL;
1835         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1836         new_entry->next_read = start;
1837
1838         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1839             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1840         new_entry->cred = cred;
1841
1842         /*
1843          * Insert the new entry into the list
1844          */
1845         vm_map_entry_link(map, new_entry);
1846         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1847                 map->size += new_entry->end - new_entry->start;
1848
1849         /*
1850          * Try to coalesce the new entry with both the previous and next
1851          * entries in the list.  Previously, we only attempted to coalesce
1852          * with the previous entry when object is NULL.  Here, we handle the
1853          * other cases, which are less common.
1854          */
1855         vm_map_try_merge_entries(map, prev_entry, new_entry);
1856         vm_map_try_merge_entries(map, new_entry, next_entry);
1857
1858         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1859                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1860                     end - start, cow & MAP_PREFAULT_PARTIAL);
1861         }
1862
1863         return (KERN_SUCCESS);
1864 }
1865
1866 /*
1867  *      vm_map_findspace:
1868  *
1869  *      Find the first fit (lowest VM address) for "length" free bytes
1870  *      beginning at address >= start in the given map.
1871  *
1872  *      In a vm_map_entry, "max_free" is the maximum amount of
1873  *      contiguous free space between an entry in its subtree and a
1874  *      neighbor of that entry.  This allows finding a free region in
1875  *      one path down the tree, so O(log n) amortized with splay
1876  *      trees.
1877  *
1878  *      The map must be locked, and leaves it so.
1879  *
1880  *      Returns: starting address if sufficient space,
1881  *               vm_map_max(map)-length+1 if insufficient space.
1882  */
1883 vm_offset_t
1884 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1885 {
1886         vm_map_entry_t header, llist, rlist, root, y;
1887         vm_size_t left_length, max_free_left, max_free_right;
1888         vm_offset_t gap_end;
1889
1890         VM_MAP_ASSERT_LOCKED(map);
1891
1892         /*
1893          * Request must fit within min/max VM address and must avoid
1894          * address wrap.
1895          */
1896         start = MAX(start, vm_map_min(map));
1897         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1898                 return (vm_map_max(map) - length + 1);
1899
1900         /* Empty tree means wide open address space. */
1901         if (map->root == NULL)
1902                 return (start);
1903
1904         /*
1905          * After splay_split, if start is within an entry, push it to the start
1906          * of the following gap.  If rlist is at the end of the gap containing
1907          * start, save the end of that gap in gap_end to see if the gap is big
1908          * enough; otherwise set gap_end to start skip gap-checking and move
1909          * directly to a search of the right subtree.
1910          */
1911         header = &map->header;
1912         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1913         gap_end = rlist->start;
1914         if (root != NULL) {
1915                 start = root->end;
1916                 if (root->right != rlist)
1917                         gap_end = start;
1918                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1919                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1920         } else if (rlist != header) {
1921                 root = rlist;
1922                 rlist = root->left;
1923                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1924                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1925         } else {
1926                 root = llist;
1927                 llist = root->right;
1928                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1929                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1930         }
1931         root->max_free = vm_size_max(max_free_left, max_free_right);
1932         map->root = root;
1933         VM_MAP_ASSERT_CONSISTENT(map);
1934         if (length <= gap_end - start)
1935                 return (start);
1936
1937         /* With max_free, can immediately tell if no solution. */
1938         if (root->right == header || length > root->right->max_free)
1939                 return (vm_map_max(map) - length + 1);
1940
1941         /*
1942          * Splay for the least large-enough gap in the right subtree.
1943          */
1944         llist = rlist = header;
1945         for (left_length = 0;;
1946             left_length = vm_map_entry_max_free_left(root, llist)) {
1947                 if (length <= left_length)
1948                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1949                             length <= vm_map_entry_max_free_left(y, llist));
1950                 else
1951                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1952                             length > vm_map_entry_max_free_left(y, root));
1953                 if (root == NULL)
1954                         break;
1955         }
1956         root = llist;
1957         llist = root->right;
1958         max_free_left = vm_map_splay_merge_left(header, root, llist);
1959         if (rlist == header) {
1960                 root->max_free = vm_size_max(max_free_left,
1961                     vm_map_splay_merge_succ(header, root, rlist));
1962         } else {
1963                 y = rlist;
1964                 rlist = y->left;
1965                 y->max_free = vm_size_max(
1966                     vm_map_splay_merge_pred(root, y, root),
1967                     vm_map_splay_merge_right(header, y, rlist));
1968                 root->max_free = vm_size_max(max_free_left, y->max_free);
1969         }
1970         map->root = root;
1971         VM_MAP_ASSERT_CONSISTENT(map);
1972         return (root->end);
1973 }
1974
1975 int
1976 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1977     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1978     vm_prot_t max, int cow)
1979 {
1980         vm_offset_t end;
1981         int result;
1982
1983         end = start + length;
1984         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1985             object == NULL,
1986             ("vm_map_fixed: non-NULL backing object for stack"));
1987         vm_map_lock(map);
1988         VM_MAP_RANGE_CHECK(map, start, end);
1989         if ((cow & MAP_CHECK_EXCL) == 0) {
1990                 result = vm_map_delete(map, start, end);
1991                 if (result != KERN_SUCCESS)
1992                         goto out;
1993         }
1994         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1995                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1996                     prot, max, cow);
1997         } else {
1998                 result = vm_map_insert(map, object, offset, start, end,
1999                     prot, max, cow);
2000         }
2001 out:
2002         vm_map_unlock(map);
2003         return (result);
2004 }
2005
2006 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
2007 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
2008
2009 static int cluster_anon = 1;
2010 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2011     &cluster_anon, 0,
2012     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2013
2014 static bool
2015 clustering_anon_allowed(vm_offset_t addr)
2016 {
2017
2018         switch (cluster_anon) {
2019         case 0:
2020                 return (false);
2021         case 1:
2022                 return (addr == 0);
2023         case 2:
2024         default:
2025                 return (true);
2026         }
2027 }
2028
2029 static long aslr_restarts;
2030 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2031     &aslr_restarts, 0,
2032     "Number of aslr failures");
2033
2034 /*
2035  * Searches for the specified amount of free space in the given map with the
2036  * specified alignment.  Performs an address-ordered, first-fit search from
2037  * the given address "*addr", with an optional upper bound "max_addr".  If the
2038  * parameter "alignment" is zero, then the alignment is computed from the
2039  * given (object, offset) pair so as to enable the greatest possible use of
2040  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2041  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2042  *
2043  * The map must be locked.  Initially, there must be at least "length" bytes
2044  * of free space at the given address.
2045  */
2046 static int
2047 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2048     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2049     vm_offset_t alignment)
2050 {
2051         vm_offset_t aligned_addr, free_addr;
2052
2053         VM_MAP_ASSERT_LOCKED(map);
2054         free_addr = *addr;
2055         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2056             ("caller failed to provide space %#jx at address %p",
2057              (uintmax_t)length, (void *)free_addr));
2058         for (;;) {
2059                 /*
2060                  * At the start of every iteration, the free space at address
2061                  * "*addr" is at least "length" bytes.
2062                  */
2063                 if (alignment == 0)
2064                         pmap_align_superpage(object, offset, addr, length);
2065                 else if ((*addr & (alignment - 1)) != 0) {
2066                         *addr &= ~(alignment - 1);
2067                         *addr += alignment;
2068                 }
2069                 aligned_addr = *addr;
2070                 if (aligned_addr == free_addr) {
2071                         /*
2072                          * Alignment did not change "*addr", so "*addr" must
2073                          * still provide sufficient free space.
2074                          */
2075                         return (KERN_SUCCESS);
2076                 }
2077
2078                 /*
2079                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2080                  * be a valid address, in which case vm_map_findspace() cannot
2081                  * be relied upon to fail.
2082                  */
2083                 if (aligned_addr < free_addr)
2084                         return (KERN_NO_SPACE);
2085                 *addr = vm_map_findspace(map, aligned_addr, length);
2086                 if (*addr + length > vm_map_max(map) ||
2087                     (max_addr != 0 && *addr + length > max_addr))
2088                         return (KERN_NO_SPACE);
2089                 free_addr = *addr;
2090                 if (free_addr == aligned_addr) {
2091                         /*
2092                          * If a successful call to vm_map_findspace() did not
2093                          * change "*addr", then "*addr" must still be aligned
2094                          * and provide sufficient free space.
2095                          */
2096                         return (KERN_SUCCESS);
2097                 }
2098         }
2099 }
2100
2101 int
2102 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2103     vm_offset_t max_addr, vm_offset_t alignment)
2104 {
2105         /* XXXKIB ASLR eh ? */
2106         *addr = vm_map_findspace(map, *addr, length);
2107         if (*addr + length > vm_map_max(map) ||
2108             (max_addr != 0 && *addr + length > max_addr))
2109                 return (KERN_NO_SPACE);
2110         return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2111             alignment));
2112 }
2113
2114 /*
2115  *      vm_map_find finds an unallocated region in the target address
2116  *      map with the given length.  The search is defined to be
2117  *      first-fit from the specified address; the region found is
2118  *      returned in the same parameter.
2119  *
2120  *      If object is non-NULL, ref count must be bumped by caller
2121  *      prior to making call to account for the new entry.
2122  */
2123 int
2124 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2125             vm_offset_t *addr,  /* IN/OUT */
2126             vm_size_t length, vm_offset_t max_addr, int find_space,
2127             vm_prot_t prot, vm_prot_t max, int cow)
2128 {
2129         vm_offset_t alignment, curr_min_addr, min_addr;
2130         int gap, pidx, rv, try;
2131         bool cluster, en_aslr, update_anon;
2132
2133         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2134             object == NULL,
2135             ("vm_map_find: non-NULL backing object for stack"));
2136         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2137             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2138         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2139             (object->flags & OBJ_COLORED) == 0))
2140                 find_space = VMFS_ANY_SPACE;
2141         if (find_space >> 8 != 0) {
2142                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2143                 alignment = (vm_offset_t)1 << (find_space >> 8);
2144         } else
2145                 alignment = 0;
2146         en_aslr = (map->flags & MAP_ASLR) != 0;
2147         update_anon = cluster = clustering_anon_allowed(*addr) &&
2148             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2149             find_space != VMFS_NO_SPACE && object == NULL &&
2150             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2151             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2152         curr_min_addr = min_addr = *addr;
2153         if (en_aslr && min_addr == 0 && !cluster &&
2154             find_space != VMFS_NO_SPACE &&
2155             (map->flags & MAP_ASLR_IGNSTART) != 0)
2156                 curr_min_addr = min_addr = vm_map_min(map);
2157         try = 0;
2158         vm_map_lock(map);
2159         if (cluster) {
2160                 curr_min_addr = map->anon_loc;
2161                 if (curr_min_addr == 0)
2162                         cluster = false;
2163         }
2164         if (find_space != VMFS_NO_SPACE) {
2165                 KASSERT(find_space == VMFS_ANY_SPACE ||
2166                     find_space == VMFS_OPTIMAL_SPACE ||
2167                     find_space == VMFS_SUPER_SPACE ||
2168                     alignment != 0, ("unexpected VMFS flag"));
2169 again:
2170                 /*
2171                  * When creating an anonymous mapping, try clustering
2172                  * with an existing anonymous mapping first.
2173                  *
2174                  * We make up to two attempts to find address space
2175                  * for a given find_space value. The first attempt may
2176                  * apply randomization or may cluster with an existing
2177                  * anonymous mapping. If this first attempt fails,
2178                  * perform a first-fit search of the available address
2179                  * space.
2180                  *
2181                  * If all tries failed, and find_space is
2182                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2183                  * Again enable clustering and randomization.
2184                  */
2185                 try++;
2186                 MPASS(try <= 2);
2187
2188                 if (try == 2) {
2189                         /*
2190                          * Second try: we failed either to find a
2191                          * suitable region for randomizing the
2192                          * allocation, or to cluster with an existing
2193                          * mapping.  Retry with free run.
2194                          */
2195                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2196                             vm_map_min(map) : min_addr;
2197                         atomic_add_long(&aslr_restarts, 1);
2198                 }
2199
2200                 if (try == 1 && en_aslr && !cluster) {
2201                         /*
2202                          * Find space for allocation, including
2203                          * gap needed for later randomization.
2204                          */
2205                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2206                             (find_space == VMFS_SUPER_SPACE || find_space ==
2207                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2208                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2209                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2210                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2211                         *addr = vm_map_findspace(map, curr_min_addr,
2212                             length + gap * pagesizes[pidx]);
2213                         if (*addr + length + gap * pagesizes[pidx] >
2214                             vm_map_max(map))
2215                                 goto again;
2216                         /* And randomize the start address. */
2217                         *addr += (arc4random() % gap) * pagesizes[pidx];
2218                         if (max_addr != 0 && *addr + length > max_addr)
2219                                 goto again;
2220                 } else {
2221                         *addr = vm_map_findspace(map, curr_min_addr, length);
2222                         if (*addr + length > vm_map_max(map) ||
2223                             (max_addr != 0 && *addr + length > max_addr)) {
2224                                 if (cluster) {
2225                                         cluster = false;
2226                                         MPASS(try == 1);
2227                                         goto again;
2228                                 }
2229                                 rv = KERN_NO_SPACE;
2230                                 goto done;
2231                         }
2232                 }
2233
2234                 if (find_space != VMFS_ANY_SPACE &&
2235                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2236                     max_addr, alignment)) != KERN_SUCCESS) {
2237                         if (find_space == VMFS_OPTIMAL_SPACE) {
2238                                 find_space = VMFS_ANY_SPACE;
2239                                 curr_min_addr = min_addr;
2240                                 cluster = update_anon;
2241                                 try = 0;
2242                                 goto again;
2243                         }
2244                         goto done;
2245                 }
2246         } else if ((cow & MAP_REMAP) != 0) {
2247                 if (!vm_map_range_valid(map, *addr, *addr + length)) {
2248                         rv = KERN_INVALID_ADDRESS;
2249                         goto done;
2250                 }
2251                 rv = vm_map_delete(map, *addr, *addr + length);
2252                 if (rv != KERN_SUCCESS)
2253                         goto done;
2254         }
2255         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2256                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2257                     max, cow);
2258         } else {
2259                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2260                     prot, max, cow);
2261         }
2262         if (rv == KERN_SUCCESS && update_anon)
2263                 map->anon_loc = *addr + length;
2264 done:
2265         vm_map_unlock(map);
2266         return (rv);
2267 }
2268
2269 /*
2270  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2271  *      additional parameter (min_addr) and treats the given address
2272  *      (*addr) differently.  Specifically, it treats *addr as a hint
2273  *      and not as the minimum address where the mapping is created.
2274  *
2275  *      This function works in two phases.  First, it tries to
2276  *      allocate above the hint.  If that fails and the hint is
2277  *      greater than min_addr, it performs a second pass, replacing
2278  *      the hint with min_addr as the minimum address for the
2279  *      allocation.
2280  */
2281 int
2282 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2283     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2284     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2285     int cow)
2286 {
2287         vm_offset_t hint;
2288         int rv;
2289
2290         hint = *addr;
2291         for (;;) {
2292                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2293                     find_space, prot, max, cow);
2294                 if (rv == KERN_SUCCESS || min_addr >= hint)
2295                         return (rv);
2296                 *addr = hint = min_addr;
2297         }
2298 }
2299
2300 /*
2301  * A map entry with any of the following flags set must not be merged with
2302  * another entry.
2303  */
2304 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2305             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2306
2307 static bool
2308 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2309 {
2310
2311         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2312             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2313             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2314             prev, entry));
2315         return (prev->end == entry->start &&
2316             prev->object.vm_object == entry->object.vm_object &&
2317             (prev->object.vm_object == NULL ||
2318             prev->offset + (prev->end - prev->start) == entry->offset) &&
2319             prev->eflags == entry->eflags &&
2320             prev->protection == entry->protection &&
2321             prev->max_protection == entry->max_protection &&
2322             prev->inheritance == entry->inheritance &&
2323             prev->wired_count == entry->wired_count &&
2324             prev->cred == entry->cred);
2325 }
2326
2327 static void
2328 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2329 {
2330
2331         /*
2332          * If the backing object is a vnode object, vm_object_deallocate()
2333          * calls vrele().  However, vrele() does not lock the vnode because
2334          * the vnode has additional references.  Thus, the map lock can be
2335          * kept without causing a lock-order reversal with the vnode lock.
2336          *
2337          * Since we count the number of virtual page mappings in
2338          * object->un_pager.vnp.writemappings, the writemappings value
2339          * should not be adjusted when the entry is disposed of.
2340          */
2341         if (entry->object.vm_object != NULL)
2342                 vm_object_deallocate(entry->object.vm_object);
2343         if (entry->cred != NULL)
2344                 crfree(entry->cred);
2345         vm_map_entry_dispose(map, entry);
2346 }
2347
2348 /*
2349  *      vm_map_try_merge_entries:
2350  *
2351  *      Compare the given map entry to its predecessor, and merge its precessor
2352  *      into it if possible.  The entry remains valid, and may be extended.
2353  *      The predecessor may be deleted.
2354  *
2355  *      The map must be locked.
2356  */
2357 void
2358 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2359     vm_map_entry_t entry)
2360 {
2361
2362         VM_MAP_ASSERT_LOCKED(map);
2363         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2364             vm_map_mergeable_neighbors(prev_entry, entry)) {
2365                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2366                 vm_map_merged_neighbor_dispose(map, prev_entry);
2367         }
2368 }
2369
2370 /*
2371  *      vm_map_entry_back:
2372  *
2373  *      Allocate an object to back a map entry.
2374  */
2375 static inline void
2376 vm_map_entry_back(vm_map_entry_t entry)
2377 {
2378         vm_object_t object;
2379
2380         KASSERT(entry->object.vm_object == NULL,
2381             ("map entry %p has backing object", entry));
2382         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2383             ("map entry %p is a submap", entry));
2384         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2385             entry->cred, entry->end - entry->start);
2386         entry->object.vm_object = object;
2387         entry->offset = 0;
2388         entry->cred = NULL;
2389 }
2390
2391 /*
2392  *      vm_map_entry_charge_object
2393  *
2394  *      If there is no object backing this entry, create one.  Otherwise, if
2395  *      the entry has cred, give it to the backing object.
2396  */
2397 static inline void
2398 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2399 {
2400
2401         VM_MAP_ASSERT_LOCKED(map);
2402         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2403             ("map entry %p is a submap", entry));
2404         if (entry->object.vm_object == NULL && !map->system_map &&
2405             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2406                 vm_map_entry_back(entry);
2407         else if (entry->object.vm_object != NULL &&
2408             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2409             entry->cred != NULL) {
2410                 VM_OBJECT_WLOCK(entry->object.vm_object);
2411                 KASSERT(entry->object.vm_object->cred == NULL,
2412                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2413                 entry->object.vm_object->cred = entry->cred;
2414                 entry->object.vm_object->charge = entry->end - entry->start;
2415                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2416                 entry->cred = NULL;
2417         }
2418 }
2419
2420 /*
2421  *      vm_map_entry_clone
2422  *
2423  *      Create a duplicate map entry for clipping.
2424  */
2425 static vm_map_entry_t
2426 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2427 {
2428         vm_map_entry_t new_entry;
2429
2430         VM_MAP_ASSERT_LOCKED(map);
2431
2432         /*
2433          * Create a backing object now, if none exists, so that more individual
2434          * objects won't be created after the map entry is split.
2435          */
2436         vm_map_entry_charge_object(map, entry);
2437
2438         /* Clone the entry. */
2439         new_entry = vm_map_entry_create(map);
2440         *new_entry = *entry;
2441         if (new_entry->cred != NULL)
2442                 crhold(entry->cred);
2443         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2444                 vm_object_reference(new_entry->object.vm_object);
2445                 vm_map_entry_set_vnode_text(new_entry, true);
2446                 /*
2447                  * The object->un_pager.vnp.writemappings for the object of
2448                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2449                  * virtual pages are re-distributed among the clipped entries,
2450                  * so the sum is left the same.
2451                  */
2452         }
2453         return (new_entry);
2454 }
2455
2456 /*
2457  *      vm_map_clip_start:      [ internal use only ]
2458  *
2459  *      Asserts that the given entry begins at or after
2460  *      the specified address; if necessary,
2461  *      it splits the entry into two.
2462  */
2463 static int
2464 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2465 {
2466         vm_map_entry_t new_entry;
2467         int bdry_idx;
2468
2469         if (!map->system_map)
2470                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2471                     "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2472                     (uintmax_t)startaddr);
2473
2474         if (startaddr <= entry->start)
2475                 return (KERN_SUCCESS);
2476
2477         VM_MAP_ASSERT_LOCKED(map);
2478         KASSERT(entry->end > startaddr && entry->start < startaddr,
2479             ("%s: invalid clip of entry %p", __func__, entry));
2480
2481         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2482             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2483         if (bdry_idx != 0) {
2484                 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2485                         return (KERN_INVALID_ARGUMENT);
2486         }
2487
2488         new_entry = vm_map_entry_clone(map, entry);
2489
2490         /*
2491          * Split off the front portion.  Insert the new entry BEFORE this one,
2492          * so that this entry has the specified starting address.
2493          */
2494         new_entry->end = startaddr;
2495         vm_map_entry_link(map, new_entry);
2496         return (KERN_SUCCESS);
2497 }
2498
2499 /*
2500  *      vm_map_lookup_clip_start:
2501  *
2502  *      Find the entry at or just after 'start', and clip it if 'start' is in
2503  *      the interior of the entry.  Return entry after 'start', and in
2504  *      prev_entry set the entry before 'start'.
2505  */
2506 static int
2507 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2508     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2509 {
2510         vm_map_entry_t entry;
2511         int rv;
2512
2513         if (!map->system_map)
2514                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2515                     "%s: map %p start 0x%jx prev %p", __func__, map,
2516                     (uintmax_t)start, prev_entry);
2517
2518         if (vm_map_lookup_entry(map, start, prev_entry)) {
2519                 entry = *prev_entry;
2520                 rv = vm_map_clip_start(map, entry, start);
2521                 if (rv != KERN_SUCCESS)
2522                         return (rv);
2523                 *prev_entry = vm_map_entry_pred(entry);
2524         } else
2525                 entry = vm_map_entry_succ(*prev_entry);
2526         *res_entry = entry;
2527         return (KERN_SUCCESS);
2528 }
2529
2530 /*
2531  *      vm_map_clip_end:        [ internal use only ]
2532  *
2533  *      Asserts that the given entry ends at or before
2534  *      the specified address; if necessary,
2535  *      it splits the entry into two.
2536  */
2537 static int
2538 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2539 {
2540         vm_map_entry_t new_entry;
2541         int bdry_idx;
2542
2543         if (!map->system_map)
2544                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2545                     "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2546                     (uintmax_t)endaddr);
2547
2548         if (endaddr >= entry->end)
2549                 return (KERN_SUCCESS);
2550
2551         VM_MAP_ASSERT_LOCKED(map);
2552         KASSERT(entry->start < endaddr && entry->end > endaddr,
2553             ("%s: invalid clip of entry %p", __func__, entry));
2554
2555         bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2556             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2557         if (bdry_idx != 0) {
2558                 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2559                         return (KERN_INVALID_ARGUMENT);
2560         }
2561
2562         new_entry = vm_map_entry_clone(map, entry);
2563
2564         /*
2565          * Split off the back portion.  Insert the new entry AFTER this one,
2566          * so that this entry has the specified ending address.
2567          */
2568         new_entry->start = endaddr;
2569         vm_map_entry_link(map, new_entry);
2570
2571         return (KERN_SUCCESS);
2572 }
2573
2574 /*
2575  *      vm_map_submap:          [ kernel use only ]
2576  *
2577  *      Mark the given range as handled by a subordinate map.
2578  *
2579  *      This range must have been created with vm_map_find,
2580  *      and no other operations may have been performed on this
2581  *      range prior to calling vm_map_submap.
2582  *
2583  *      Only a limited number of operations can be performed
2584  *      within this rage after calling vm_map_submap:
2585  *              vm_fault
2586  *      [Don't try vm_map_copy!]
2587  *
2588  *      To remove a submapping, one must first remove the
2589  *      range from the superior map, and then destroy the
2590  *      submap (if desired).  [Better yet, don't try it.]
2591  */
2592 int
2593 vm_map_submap(
2594         vm_map_t map,
2595         vm_offset_t start,
2596         vm_offset_t end,
2597         vm_map_t submap)
2598 {
2599         vm_map_entry_t entry;
2600         int result;
2601
2602         result = KERN_INVALID_ARGUMENT;
2603
2604         vm_map_lock(submap);
2605         submap->flags |= MAP_IS_SUB_MAP;
2606         vm_map_unlock(submap);
2607
2608         vm_map_lock(map);
2609         VM_MAP_RANGE_CHECK(map, start, end);
2610         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2611             (entry->eflags & MAP_ENTRY_COW) == 0 &&
2612             entry->object.vm_object == NULL) {
2613                 result = vm_map_clip_start(map, entry, start);
2614                 if (result != KERN_SUCCESS)
2615                         goto unlock;
2616                 result = vm_map_clip_end(map, entry, end);
2617                 if (result != KERN_SUCCESS)
2618                         goto unlock;
2619                 entry->object.sub_map = submap;
2620                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2621                 result = KERN_SUCCESS;
2622         }
2623 unlock:
2624         vm_map_unlock(map);
2625
2626         if (result != KERN_SUCCESS) {
2627                 vm_map_lock(submap);
2628                 submap->flags &= ~MAP_IS_SUB_MAP;
2629                 vm_map_unlock(submap);
2630         }
2631         return (result);
2632 }
2633
2634 /*
2635  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2636  */
2637 #define MAX_INIT_PT     96
2638
2639 /*
2640  *      vm_map_pmap_enter:
2641  *
2642  *      Preload the specified map's pmap with mappings to the specified
2643  *      object's memory-resident pages.  No further physical pages are
2644  *      allocated, and no further virtual pages are retrieved from secondary
2645  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2646  *      limited number of page mappings are created at the low-end of the
2647  *      specified address range.  (For this purpose, a superpage mapping
2648  *      counts as one page mapping.)  Otherwise, all resident pages within
2649  *      the specified address range are mapped.
2650  */
2651 static void
2652 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2653     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2654 {
2655         vm_offset_t start;
2656         vm_page_t p, p_start;
2657         vm_pindex_t mask, psize, threshold, tmpidx;
2658
2659         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2660                 return;
2661         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2662                 VM_OBJECT_WLOCK(object);
2663                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2664                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2665                             size);
2666                         VM_OBJECT_WUNLOCK(object);
2667                         return;
2668                 }
2669                 VM_OBJECT_LOCK_DOWNGRADE(object);
2670         } else
2671                 VM_OBJECT_RLOCK(object);
2672
2673         psize = atop(size);
2674         if (psize + pindex > object->size) {
2675                 if (pindex >= object->size) {
2676                         VM_OBJECT_RUNLOCK(object);
2677                         return;
2678                 }
2679                 psize = object->size - pindex;
2680         }
2681
2682         start = 0;
2683         p_start = NULL;
2684         threshold = MAX_INIT_PT;
2685
2686         p = vm_page_find_least(object, pindex);
2687         /*
2688          * Assert: the variable p is either (1) the page with the
2689          * least pindex greater than or equal to the parameter pindex
2690          * or (2) NULL.
2691          */
2692         for (;
2693              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2694              p = TAILQ_NEXT(p, listq)) {
2695                 /*
2696                  * don't allow an madvise to blow away our really
2697                  * free pages allocating pv entries.
2698                  */
2699                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2700                     vm_page_count_severe()) ||
2701                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2702                     tmpidx >= threshold)) {
2703                         psize = tmpidx;
2704                         break;
2705                 }
2706                 if (vm_page_all_valid(p)) {
2707                         if (p_start == NULL) {
2708                                 start = addr + ptoa(tmpidx);
2709                                 p_start = p;
2710                         }
2711                         /* Jump ahead if a superpage mapping is possible. */
2712                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2713                             (pagesizes[p->psind] - 1)) == 0) {
2714                                 mask = atop(pagesizes[p->psind]) - 1;
2715                                 if (tmpidx + mask < psize &&
2716                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2717                                         p += mask;
2718                                         threshold += mask;
2719                                 }
2720                         }
2721                 } else if (p_start != NULL) {
2722                         pmap_enter_object(map->pmap, start, addr +
2723                             ptoa(tmpidx), p_start, prot);
2724                         p_start = NULL;
2725                 }
2726         }
2727         if (p_start != NULL)
2728                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2729                     p_start, prot);
2730         VM_OBJECT_RUNLOCK(object);
2731 }
2732
2733 /*
2734  *      vm_map_protect:
2735  *
2736  *      Sets the protection of the specified address
2737  *      region in the target map.  If "set_max" is
2738  *      specified, the maximum protection is to be set;
2739  *      otherwise, only the current protection is affected.
2740  */
2741 int
2742 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2743                vm_prot_t new_prot, boolean_t set_max)
2744 {
2745         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2746         vm_object_t obj;
2747         struct ucred *cred;
2748         vm_prot_t old_prot;
2749         int rv;
2750
2751         if (start == end)
2752                 return (KERN_SUCCESS);
2753
2754 again:
2755         in_tran = NULL;
2756         vm_map_lock(map);
2757
2758         if ((map->flags & MAP_WXORX) != 0 && (new_prot &
2759             (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2760             VM_PROT_EXECUTE)) {
2761                 vm_map_unlock(map);
2762                 return (KERN_PROTECTION_FAILURE);
2763         }
2764
2765         /*
2766          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2767          * need to fault pages into the map and will drop the map lock while
2768          * doing so, and the VM object may end up in an inconsistent state if we
2769          * update the protection on the map entry in between faults.
2770          */
2771         vm_map_wait_busy(map);
2772
2773         VM_MAP_RANGE_CHECK(map, start, end);
2774
2775         if (!vm_map_lookup_entry(map, start, &first_entry))
2776                 first_entry = vm_map_entry_succ(first_entry);
2777
2778         /*
2779          * Make a first pass to check for protection violations.
2780          */
2781         for (entry = first_entry; entry->start < end;
2782             entry = vm_map_entry_succ(entry)) {
2783                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2784                         continue;
2785                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2786                         vm_map_unlock(map);
2787                         return (KERN_INVALID_ARGUMENT);
2788                 }
2789                 if ((new_prot & entry->max_protection) != new_prot) {
2790                         vm_map_unlock(map);
2791                         return (KERN_PROTECTION_FAILURE);
2792                 }
2793                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2794                         in_tran = entry;
2795         }
2796
2797         /*
2798          * Postpone the operation until all in-transition map entries have
2799          * stabilized.  An in-transition entry might already have its pages
2800          * wired and wired_count incremented, but not yet have its
2801          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2802          * vm_fault_copy_entry() in the final loop below.
2803          */
2804         if (in_tran != NULL) {
2805                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2806                 vm_map_unlock_and_wait(map, 0);
2807                 goto again;
2808         }
2809
2810         /*
2811          * Before changing the protections, try to reserve swap space for any
2812          * private (i.e., copy-on-write) mappings that are transitioning from
2813          * read-only to read/write access.  If a reservation fails, break out
2814          * of this loop early and let the next loop simplify the entries, since
2815          * some may now be mergeable.
2816          */
2817         rv = vm_map_clip_start(map, first_entry, start);
2818         if (rv != KERN_SUCCESS) {
2819                 vm_map_unlock(map);
2820                 return (rv);
2821         }
2822         for (entry = first_entry; entry->start < end;
2823             entry = vm_map_entry_succ(entry)) {
2824                 rv = vm_map_clip_end(map, entry, end);
2825                 if (rv != KERN_SUCCESS) {
2826                         vm_map_unlock(map);
2827                         return (rv);
2828                 }
2829
2830                 if (set_max ||
2831                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2832                     ENTRY_CHARGED(entry) ||
2833                     (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2834                         continue;
2835                 }
2836
2837                 cred = curthread->td_ucred;
2838                 obj = entry->object.vm_object;
2839
2840                 if (obj == NULL ||
2841                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2842                         if (!swap_reserve(entry->end - entry->start)) {
2843                                 rv = KERN_RESOURCE_SHORTAGE;
2844                                 end = entry->end;
2845                                 break;
2846                         }
2847                         crhold(cred);
2848                         entry->cred = cred;
2849                         continue;
2850                 }
2851
2852                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2853                         continue;
2854                 VM_OBJECT_WLOCK(obj);
2855                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2856                         VM_OBJECT_WUNLOCK(obj);
2857                         continue;
2858                 }
2859
2860                 /*
2861                  * Charge for the whole object allocation now, since
2862                  * we cannot distinguish between non-charged and
2863                  * charged clipped mapping of the same object later.
2864                  */
2865                 KASSERT(obj->charge == 0,
2866                     ("vm_map_protect: object %p overcharged (entry %p)",
2867                     obj, entry));
2868                 if (!swap_reserve(ptoa(obj->size))) {
2869                         VM_OBJECT_WUNLOCK(obj);
2870                         rv = KERN_RESOURCE_SHORTAGE;
2871                         end = entry->end;
2872                         break;
2873                 }
2874
2875                 crhold(cred);
2876                 obj->cred = cred;
2877                 obj->charge = ptoa(obj->size);
2878                 VM_OBJECT_WUNLOCK(obj);
2879         }
2880
2881         /*
2882          * If enough swap space was available, go back and fix up protections.
2883          * Otherwise, just simplify entries, since some may have been modified.
2884          * [Note that clipping is not necessary the second time.]
2885          */
2886         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2887             entry->start < end;
2888             vm_map_try_merge_entries(map, prev_entry, entry),
2889             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2890                 if (rv != KERN_SUCCESS ||
2891                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2892                         continue;
2893
2894                 old_prot = entry->protection;
2895
2896                 if (set_max)
2897                         entry->protection =
2898                             (entry->max_protection = new_prot) &
2899                             old_prot;
2900                 else
2901                         entry->protection = new_prot;
2902
2903                 /*
2904                  * For user wired map entries, the normal lazy evaluation of
2905                  * write access upgrades through soft page faults is
2906                  * undesirable.  Instead, immediately copy any pages that are
2907                  * copy-on-write and enable write access in the physical map.
2908                  */
2909                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2910                     (entry->protection & VM_PROT_WRITE) != 0 &&
2911                     (old_prot & VM_PROT_WRITE) == 0)
2912                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2913
2914                 /*
2915                  * When restricting access, update the physical map.  Worry
2916                  * about copy-on-write here.
2917                  */
2918                 if ((old_prot & ~entry->protection) != 0) {
2919 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2920                                                         VM_PROT_ALL)
2921                         pmap_protect(map->pmap, entry->start,
2922                             entry->end,
2923                             entry->protection & MASK(entry));
2924 #undef  MASK
2925                 }
2926         }
2927         vm_map_try_merge_entries(map, prev_entry, entry);
2928         vm_map_unlock(map);
2929         return (rv);
2930 }
2931
2932 /*
2933  *      vm_map_madvise:
2934  *
2935  *      This routine traverses a processes map handling the madvise
2936  *      system call.  Advisories are classified as either those effecting
2937  *      the vm_map_entry structure, or those effecting the underlying
2938  *      objects.
2939  */
2940 int
2941 vm_map_madvise(
2942         vm_map_t map,
2943         vm_offset_t start,
2944         vm_offset_t end,
2945         int behav)
2946 {
2947         vm_map_entry_t entry, prev_entry;
2948         int rv;
2949         bool modify_map;
2950
2951         /*
2952          * Some madvise calls directly modify the vm_map_entry, in which case
2953          * we need to use an exclusive lock on the map and we need to perform
2954          * various clipping operations.  Otherwise we only need a read-lock
2955          * on the map.
2956          */
2957         switch(behav) {
2958         case MADV_NORMAL:
2959         case MADV_SEQUENTIAL:
2960         case MADV_RANDOM:
2961         case MADV_NOSYNC:
2962         case MADV_AUTOSYNC:
2963         case MADV_NOCORE:
2964         case MADV_CORE:
2965                 if (start == end)
2966                         return (0);
2967                 modify_map = true;
2968                 vm_map_lock(map);
2969                 break;
2970         case MADV_WILLNEED:
2971         case MADV_DONTNEED:
2972         case MADV_FREE:
2973                 if (start == end)
2974                         return (0);
2975                 modify_map = false;
2976                 vm_map_lock_read(map);
2977                 break;
2978         default:
2979                 return (EINVAL);
2980         }
2981
2982         /*
2983          * Locate starting entry and clip if necessary.
2984          */
2985         VM_MAP_RANGE_CHECK(map, start, end);
2986
2987         if (modify_map) {
2988                 /*
2989                  * madvise behaviors that are implemented in the vm_map_entry.
2990                  *
2991                  * We clip the vm_map_entry so that behavioral changes are
2992                  * limited to the specified address range.
2993                  */
2994                 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2995                 if (rv != KERN_SUCCESS) {
2996                         vm_map_unlock(map);
2997                         return (vm_mmap_to_errno(rv));
2998                 }
2999
3000                 for (; entry->start < end; prev_entry = entry,
3001                     entry = vm_map_entry_succ(entry)) {
3002                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3003                                 continue;
3004
3005                         rv = vm_map_clip_end(map, entry, end);
3006                         if (rv != KERN_SUCCESS) {
3007                                 vm_map_unlock(map);
3008                                 return (vm_mmap_to_errno(rv));
3009                         }
3010
3011                         switch (behav) {
3012                         case MADV_NORMAL:
3013                                 vm_map_entry_set_behavior(entry,
3014                                     MAP_ENTRY_BEHAV_NORMAL);
3015                                 break;
3016                         case MADV_SEQUENTIAL:
3017                                 vm_map_entry_set_behavior(entry,
3018                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
3019                                 break;
3020                         case MADV_RANDOM:
3021                                 vm_map_entry_set_behavior(entry,
3022                                     MAP_ENTRY_BEHAV_RANDOM);
3023                                 break;
3024                         case MADV_NOSYNC:
3025                                 entry->eflags |= MAP_ENTRY_NOSYNC;
3026                                 break;
3027                         case MADV_AUTOSYNC:
3028                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3029                                 break;
3030                         case MADV_NOCORE:
3031                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3032                                 break;
3033                         case MADV_CORE:
3034                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3035                                 break;
3036                         default:
3037                                 break;
3038                         }
3039                         vm_map_try_merge_entries(map, prev_entry, entry);
3040                 }
3041                 vm_map_try_merge_entries(map, prev_entry, entry);
3042                 vm_map_unlock(map);
3043         } else {
3044                 vm_pindex_t pstart, pend;
3045
3046                 /*
3047                  * madvise behaviors that are implemented in the underlying
3048                  * vm_object.
3049                  *
3050                  * Since we don't clip the vm_map_entry, we have to clip
3051                  * the vm_object pindex and count.
3052                  */
3053                 if (!vm_map_lookup_entry(map, start, &entry))
3054                         entry = vm_map_entry_succ(entry);
3055                 for (; entry->start < end;
3056                     entry = vm_map_entry_succ(entry)) {
3057                         vm_offset_t useEnd, useStart;
3058
3059                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3060                                 continue;
3061
3062                         /*
3063                          * MADV_FREE would otherwise rewind time to
3064                          * the creation of the shadow object.  Because
3065                          * we hold the VM map read-locked, neither the
3066                          * entry's object nor the presence of a
3067                          * backing object can change.
3068                          */
3069                         if (behav == MADV_FREE &&
3070                             entry->object.vm_object != NULL &&
3071                             entry->object.vm_object->backing_object != NULL)
3072                                 continue;
3073
3074                         pstart = OFF_TO_IDX(entry->offset);
3075                         pend = pstart + atop(entry->end - entry->start);
3076                         useStart = entry->start;
3077                         useEnd = entry->end;
3078
3079                         if (entry->start < start) {
3080                                 pstart += atop(start - entry->start);
3081                                 useStart = start;
3082                         }
3083                         if (entry->end > end) {
3084                                 pend -= atop(entry->end - end);
3085                                 useEnd = end;
3086                         }
3087
3088                         if (pstart >= pend)
3089                                 continue;
3090
3091                         /*
3092                          * Perform the pmap_advise() before clearing
3093                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3094                          * concurrent pmap operation, such as pmap_remove(),
3095                          * could clear a reference in the pmap and set
3096                          * PGA_REFERENCED on the page before the pmap_advise()
3097                          * had completed.  Consequently, the page would appear
3098                          * referenced based upon an old reference that
3099                          * occurred before this pmap_advise() ran.
3100                          */
3101                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
3102                                 pmap_advise(map->pmap, useStart, useEnd,
3103                                     behav);
3104
3105                         vm_object_madvise(entry->object.vm_object, pstart,
3106                             pend, behav);
3107
3108                         /*
3109                          * Pre-populate paging structures in the
3110                          * WILLNEED case.  For wired entries, the
3111                          * paging structures are already populated.
3112                          */
3113                         if (behav == MADV_WILLNEED &&
3114                             entry->wired_count == 0) {
3115                                 vm_map_pmap_enter(map,
3116                                     useStart,
3117                                     entry->protection,
3118                                     entry->object.vm_object,
3119                                     pstart,
3120                                     ptoa(pend - pstart),
3121                                     MAP_PREFAULT_MADVISE
3122                                 );
3123                         }
3124                 }
3125                 vm_map_unlock_read(map);
3126         }
3127         return (0);
3128 }
3129
3130 /*
3131  *      vm_map_inherit:
3132  *
3133  *      Sets the inheritance of the specified address
3134  *      range in the target map.  Inheritance
3135  *      affects how the map will be shared with
3136  *      child maps at the time of vmspace_fork.
3137  */
3138 int
3139 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3140                vm_inherit_t new_inheritance)
3141 {
3142         vm_map_entry_t entry, lentry, prev_entry, start_entry;
3143         int rv;
3144
3145         switch (new_inheritance) {
3146         case VM_INHERIT_NONE:
3147         case VM_INHERIT_COPY:
3148         case VM_INHERIT_SHARE:
3149         case VM_INHERIT_ZERO:
3150                 break;
3151         default:
3152                 return (KERN_INVALID_ARGUMENT);
3153         }
3154         if (start == end)
3155                 return (KERN_SUCCESS);
3156         vm_map_lock(map);
3157         VM_MAP_RANGE_CHECK(map, start, end);
3158         rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3159         if (rv != KERN_SUCCESS)
3160                 goto unlock;
3161         if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3162                 rv = vm_map_clip_end(map, lentry, end);
3163                 if (rv != KERN_SUCCESS)
3164                         goto unlock;
3165         }
3166         if (new_inheritance == VM_INHERIT_COPY) {
3167                 for (entry = start_entry; entry->start < end;
3168                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3169                         if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3170                             != 0) {
3171                                 rv = KERN_INVALID_ARGUMENT;
3172                                 goto unlock;
3173                         }
3174                 }
3175         }
3176         for (entry = start_entry; entry->start < end; prev_entry = entry,
3177             entry = vm_map_entry_succ(entry)) {
3178                 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3179                     entry, (uintmax_t)entry->end, (uintmax_t)end));
3180                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3181                     new_inheritance != VM_INHERIT_ZERO)
3182                         entry->inheritance = new_inheritance;
3183                 vm_map_try_merge_entries(map, prev_entry, entry);
3184         }
3185         vm_map_try_merge_entries(map, prev_entry, entry);
3186 unlock:
3187         vm_map_unlock(map);
3188         return (rv);
3189 }
3190
3191 /*
3192  *      vm_map_entry_in_transition:
3193  *
3194  *      Release the map lock, and sleep until the entry is no longer in
3195  *      transition.  Awake and acquire the map lock.  If the map changed while
3196  *      another held the lock, lookup a possibly-changed entry at or after the
3197  *      'start' position of the old entry.
3198  */
3199 static vm_map_entry_t
3200 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3201     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3202 {
3203         vm_map_entry_t entry;
3204         vm_offset_t start;
3205         u_int last_timestamp;
3206
3207         VM_MAP_ASSERT_LOCKED(map);
3208         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3209             ("not in-tranition map entry %p", in_entry));
3210         /*
3211          * We have not yet clipped the entry.
3212          */
3213         start = MAX(in_start, in_entry->start);
3214         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3215         last_timestamp = map->timestamp;
3216         if (vm_map_unlock_and_wait(map, 0)) {
3217                 /*
3218                  * Allow interruption of user wiring/unwiring?
3219                  */
3220         }
3221         vm_map_lock(map);
3222         if (last_timestamp + 1 == map->timestamp)
3223                 return (in_entry);
3224
3225         /*
3226          * Look again for the entry because the map was modified while it was
3227          * unlocked.  Specifically, the entry may have been clipped, merged, or
3228          * deleted.
3229          */
3230         if (!vm_map_lookup_entry(map, start, &entry)) {
3231                 if (!holes_ok) {
3232                         *io_end = start;
3233                         return (NULL);
3234                 }
3235                 entry = vm_map_entry_succ(entry);
3236         }
3237         return (entry);
3238 }
3239
3240 /*
3241  *      vm_map_unwire:
3242  *
3243  *      Implements both kernel and user unwiring.
3244  */
3245 int
3246 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3247     int flags)
3248 {
3249         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3250         int rv;
3251         bool holes_ok, need_wakeup, user_unwire;
3252
3253         if (start == end)
3254                 return (KERN_SUCCESS);
3255         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3256         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3257         vm_map_lock(map);
3258         VM_MAP_RANGE_CHECK(map, start, end);
3259         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3260                 if (holes_ok)
3261                         first_entry = vm_map_entry_succ(first_entry);
3262                 else {
3263                         vm_map_unlock(map);
3264                         return (KERN_INVALID_ADDRESS);
3265                 }
3266         }
3267         rv = KERN_SUCCESS;
3268         for (entry = first_entry; entry->start < end; entry = next_entry) {
3269                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3270                         /*
3271                          * We have not yet clipped the entry.
3272                          */
3273                         next_entry = vm_map_entry_in_transition(map, start,
3274                             &end, holes_ok, entry);
3275                         if (next_entry == NULL) {
3276                                 if (entry == first_entry) {
3277                                         vm_map_unlock(map);
3278                                         return (KERN_INVALID_ADDRESS);
3279                                 }
3280                                 rv = KERN_INVALID_ADDRESS;
3281                                 break;
3282                         }
3283                         first_entry = (entry == first_entry) ?
3284                             next_entry : NULL;
3285                         continue;
3286                 }
3287                 rv = vm_map_clip_start(map, entry, start);
3288                 if (rv != KERN_SUCCESS)
3289                         break;
3290                 rv = vm_map_clip_end(map, entry, end);
3291                 if (rv != KERN_SUCCESS)
3292                         break;
3293
3294                 /*
3295                  * Mark the entry in case the map lock is released.  (See
3296                  * above.)
3297                  */
3298                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3299                     entry->wiring_thread == NULL,
3300                     ("owned map entry %p", entry));
3301                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3302                 entry->wiring_thread = curthread;
3303                 next_entry = vm_map_entry_succ(entry);
3304                 /*
3305                  * Check the map for holes in the specified region.
3306                  * If holes_ok, skip this check.
3307                  */
3308                 if (!holes_ok &&
3309                     entry->end < end && next_entry->start > entry->end) {
3310                         end = entry->end;
3311                         rv = KERN_INVALID_ADDRESS;
3312                         break;
3313                 }
3314                 /*
3315                  * If system unwiring, require that the entry is system wired.
3316                  */
3317                 if (!user_unwire &&
3318                     vm_map_entry_system_wired_count(entry) == 0) {
3319                         end = entry->end;
3320                         rv = KERN_INVALID_ARGUMENT;
3321                         break;
3322                 }
3323         }
3324         need_wakeup = false;
3325         if (first_entry == NULL &&
3326             !vm_map_lookup_entry(map, start, &first_entry)) {
3327                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3328                 prev_entry = first_entry;
3329                 entry = vm_map_entry_succ(first_entry);
3330         } else {
3331                 prev_entry = vm_map_entry_pred(first_entry);
3332                 entry = first_entry;
3333         }
3334         for (; entry->start < end;
3335             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3336                 /*
3337                  * If holes_ok was specified, an empty
3338                  * space in the unwired region could have been mapped
3339                  * while the map lock was dropped for draining
3340                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3341                  * could be simultaneously wiring this new mapping
3342                  * entry.  Detect these cases and skip any entries
3343                  * marked as in transition by us.
3344                  */
3345                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3346                     entry->wiring_thread != curthread) {
3347                         KASSERT(holes_ok,
3348                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3349                         continue;
3350                 }
3351
3352                 if (rv == KERN_SUCCESS && (!user_unwire ||
3353                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3354                         if (entry->wired_count == 1)
3355                                 vm_map_entry_unwire(map, entry);
3356                         else
3357                                 entry->wired_count--;
3358                         if (user_unwire)
3359                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3360                 }
3361                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3362                     ("vm_map_unwire: in-transition flag missing %p", entry));
3363                 KASSERT(entry->wiring_thread == curthread,
3364                     ("vm_map_unwire: alien wire %p", entry));
3365                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3366                 entry->wiring_thread = NULL;
3367                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3368                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3369                         need_wakeup = true;
3370                 }
3371                 vm_map_try_merge_entries(map, prev_entry, entry);
3372         }
3373         vm_map_try_merge_entries(map, prev_entry, entry);
3374         vm_map_unlock(map);
3375         if (need_wakeup)
3376                 vm_map_wakeup(map);
3377         return (rv);
3378 }
3379
3380 static void
3381 vm_map_wire_user_count_sub(u_long npages)
3382 {
3383
3384         atomic_subtract_long(&vm_user_wire_count, npages);
3385 }
3386
3387 static bool
3388 vm_map_wire_user_count_add(u_long npages)
3389 {
3390         u_long wired;
3391
3392         wired = vm_user_wire_count;
3393         do {
3394                 if (npages + wired > vm_page_max_user_wired)
3395                         return (false);
3396         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3397             npages + wired));
3398
3399         return (true);
3400 }
3401
3402 /*
3403  *      vm_map_wire_entry_failure:
3404  *
3405  *      Handle a wiring failure on the given entry.
3406  *
3407  *      The map should be locked.
3408  */
3409 static void
3410 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3411     vm_offset_t failed_addr)
3412 {
3413
3414         VM_MAP_ASSERT_LOCKED(map);
3415         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3416             entry->wired_count == 1,
3417             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3418         KASSERT(failed_addr < entry->end,
3419             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3420
3421         /*
3422          * If any pages at the start of this entry were successfully wired,
3423          * then unwire them.
3424          */
3425         if (failed_addr > entry->start) {
3426                 pmap_unwire(map->pmap, entry->start, failed_addr);
3427                 vm_object_unwire(entry->object.vm_object, entry->offset,
3428                     failed_addr - entry->start, PQ_ACTIVE);
3429         }
3430
3431         /*
3432          * Assign an out-of-range value to represent the failure to wire this
3433          * entry.
3434          */
3435         entry->wired_count = -1;
3436 }
3437
3438 int
3439 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3440 {
3441         int rv;
3442
3443         vm_map_lock(map);
3444         rv = vm_map_wire_locked(map, start, end, flags);
3445         vm_map_unlock(map);
3446         return (rv);
3447 }
3448
3449 /*
3450  *      vm_map_wire_locked:
3451  *
3452  *      Implements both kernel and user wiring.  Returns with the map locked,
3453  *      the map lock may be dropped.
3454  */
3455 int
3456 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3457 {
3458         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3459         vm_offset_t faddr, saved_end, saved_start;
3460         u_long incr, npages;
3461         u_int bidx, last_timestamp;
3462         int rv;
3463         bool holes_ok, need_wakeup, user_wire;
3464         vm_prot_t prot;
3465
3466         VM_MAP_ASSERT_LOCKED(map);
3467
3468         if (start == end)
3469                 return (KERN_SUCCESS);
3470         prot = 0;
3471         if (flags & VM_MAP_WIRE_WRITE)
3472                 prot |= VM_PROT_WRITE;
3473         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3474         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3475         VM_MAP_RANGE_CHECK(map, start, end);
3476         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3477                 if (holes_ok)
3478                         first_entry = vm_map_entry_succ(first_entry);
3479                 else
3480                         return (KERN_INVALID_ADDRESS);
3481         }
3482         for (entry = first_entry; entry->start < end; entry = next_entry) {
3483                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3484                         /*
3485                          * We have not yet clipped the entry.
3486                          */
3487                         next_entry = vm_map_entry_in_transition(map, start,
3488                             &end, holes_ok, entry);
3489                         if (next_entry == NULL) {
3490                                 if (entry == first_entry)
3491                                         return (KERN_INVALID_ADDRESS);
3492                                 rv = KERN_INVALID_ADDRESS;
3493                                 goto done;
3494                         }
3495                         first_entry = (entry == first_entry) ?
3496                             next_entry : NULL;
3497                         continue;
3498                 }
3499                 rv = vm_map_clip_start(map, entry, start);
3500                 if (rv != KERN_SUCCESS)
3501                         goto done;
3502                 rv = vm_map_clip_end(map, entry, end);
3503                 if (rv != KERN_SUCCESS)
3504                         goto done;
3505
3506                 /*
3507                  * Mark the entry in case the map lock is released.  (See
3508                  * above.)
3509                  */
3510                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3511                     entry->wiring_thread == NULL,
3512                     ("owned map entry %p", entry));
3513                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3514                 entry->wiring_thread = curthread;
3515                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3516                     || (entry->protection & prot) != prot) {
3517                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3518                         if (!holes_ok) {
3519                                 end = entry->end;
3520                                 rv = KERN_INVALID_ADDRESS;
3521                                 goto done;
3522                         }
3523                 } else if (entry->wired_count == 0) {
3524                         entry->wired_count++;
3525
3526                         npages = atop(entry->end - entry->start);
3527                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3528                                 vm_map_wire_entry_failure(map, entry,
3529                                     entry->start);
3530                                 end = entry->end;
3531                                 rv = KERN_RESOURCE_SHORTAGE;
3532                                 goto done;
3533                         }
3534
3535                         /*
3536                          * Release the map lock, relying on the in-transition
3537                          * mark.  Mark the map busy for fork.
3538                          */
3539                         saved_start = entry->start;
3540                         saved_end = entry->end;
3541                         last_timestamp = map->timestamp;
3542                         bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3543                             >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3544                         incr =  pagesizes[bidx];
3545                         vm_map_busy(map);
3546                         vm_map_unlock(map);
3547
3548                         for (faddr = saved_start; faddr < saved_end;
3549                             faddr += incr) {
3550                                 /*
3551                                  * Simulate a fault to get the page and enter
3552                                  * it into the physical map.
3553                                  */
3554                                 rv = vm_fault(map, faddr, VM_PROT_NONE,
3555                                     VM_FAULT_WIRE, NULL);
3556                                 if (rv != KERN_SUCCESS)
3557                                         break;
3558                         }
3559                         vm_map_lock(map);
3560                         vm_map_unbusy(map);
3561                         if (last_timestamp + 1 != map->timestamp) {
3562                                 /*
3563                                  * Look again for the entry because the map was
3564                                  * modified while it was unlocked.  The entry
3565                                  * may have been clipped, but NOT merged or
3566                                  * deleted.
3567                                  */
3568                                 if (!vm_map_lookup_entry(map, saved_start,
3569                                     &next_entry))
3570                                         KASSERT(false,
3571                                             ("vm_map_wire: lookup failed"));
3572                                 first_entry = (entry == first_entry) ?
3573                                     next_entry : NULL;
3574                                 for (entry = next_entry; entry->end < saved_end;
3575                                     entry = vm_map_entry_succ(entry)) {
3576                                         /*
3577                                          * In case of failure, handle entries
3578                                          * that were not fully wired here;
3579                                          * fully wired entries are handled
3580                                          * later.
3581                                          */
3582                                         if (rv != KERN_SUCCESS &&
3583                                             faddr < entry->end)
3584                                                 vm_map_wire_entry_failure(map,
3585                                                     entry, faddr);
3586                                 }
3587                         }
3588                         if (rv != KERN_SUCCESS) {
3589                                 vm_map_wire_entry_failure(map, entry, faddr);
3590                                 if (user_wire)
3591                                         vm_map_wire_user_count_sub(npages);
3592                                 end = entry->end;
3593                                 goto done;
3594                         }
3595                 } else if (!user_wire ||
3596                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3597                         entry->wired_count++;
3598                 }
3599                 /*
3600                  * Check the map for holes in the specified region.
3601                  * If holes_ok was specified, skip this check.
3602                  */
3603                 next_entry = vm_map_entry_succ(entry);
3604                 if (!holes_ok &&
3605                     entry->end < end && next_entry->start > entry->end) {
3606                         end = entry->end;
3607                         rv = KERN_INVALID_ADDRESS;
3608                         goto done;
3609                 }
3610         }
3611         rv = KERN_SUCCESS;
3612 done:
3613         need_wakeup = false;
3614         if (first_entry == NULL &&
3615             !vm_map_lookup_entry(map, start, &first_entry)) {
3616                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3617                 prev_entry = first_entry;
3618                 entry = vm_map_entry_succ(first_entry);
3619         } else {
3620                 prev_entry = vm_map_entry_pred(first_entry);
3621                 entry = first_entry;
3622         }
3623         for (; entry->start < end;
3624             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3625                 /*
3626                  * If holes_ok was specified, an empty
3627                  * space in the unwired region could have been mapped
3628                  * while the map lock was dropped for faulting in the
3629                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3630                  * Moreover, another thread could be simultaneously
3631                  * wiring this new mapping entry.  Detect these cases
3632                  * and skip any entries marked as in transition not by us.
3633                  *
3634                  * Another way to get an entry not marked with
3635                  * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3636                  * which set rv to KERN_INVALID_ARGUMENT.
3637                  */
3638                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3639                     entry->wiring_thread != curthread) {
3640                         KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3641                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3642                         continue;
3643                 }
3644
3645                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3646                         /* do nothing */
3647                 } else if (rv == KERN_SUCCESS) {
3648                         if (user_wire)
3649                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3650                 } else if (entry->wired_count == -1) {
3651                         /*
3652                          * Wiring failed on this entry.  Thus, unwiring is
3653                          * unnecessary.
3654                          */
3655                         entry->wired_count = 0;
3656                 } else if (!user_wire ||
3657                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3658                         /*
3659                          * Undo the wiring.  Wiring succeeded on this entry
3660                          * but failed on a later entry.  
3661                          */
3662                         if (entry->wired_count == 1) {
3663                                 vm_map_entry_unwire(map, entry);
3664                                 if (user_wire)
3665                                         vm_map_wire_user_count_sub(
3666                                             atop(entry->end - entry->start));
3667                         } else
3668                                 entry->wired_count--;
3669                 }
3670                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3671                     ("vm_map_wire: in-transition flag missing %p", entry));
3672                 KASSERT(entry->wiring_thread == curthread,
3673                     ("vm_map_wire: alien wire %p", entry));
3674                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3675                     MAP_ENTRY_WIRE_SKIPPED);
3676                 entry->wiring_thread = NULL;
3677                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3678                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3679                         need_wakeup = true;
3680                 }
3681                 vm_map_try_merge_entries(map, prev_entry, entry);
3682         }
3683         vm_map_try_merge_entries(map, prev_entry, entry);
3684         if (need_wakeup)
3685                 vm_map_wakeup(map);
3686         return (rv);
3687 }
3688
3689 /*
3690  * vm_map_sync
3691  *
3692  * Push any dirty cached pages in the address range to their pager.
3693  * If syncio is TRUE, dirty pages are written synchronously.
3694  * If invalidate is TRUE, any cached pages are freed as well.
3695  *
3696  * If the size of the region from start to end is zero, we are
3697  * supposed to flush all modified pages within the region containing
3698  * start.  Unfortunately, a region can be split or coalesced with
3699  * neighboring regions, making it difficult to determine what the
3700  * original region was.  Therefore, we approximate this requirement by
3701  * flushing the current region containing start.
3702  *
3703  * Returns an error if any part of the specified range is not mapped.
3704  */
3705 int
3706 vm_map_sync(
3707         vm_map_t map,
3708         vm_offset_t start,
3709         vm_offset_t end,
3710         boolean_t syncio,
3711         boolean_t invalidate)
3712 {
3713         vm_map_entry_t entry, first_entry, next_entry;
3714         vm_size_t size;
3715         vm_object_t object;
3716         vm_ooffset_t offset;
3717         unsigned int last_timestamp;
3718         int bdry_idx;
3719         boolean_t failed;
3720
3721         vm_map_lock_read(map);
3722         VM_MAP_RANGE_CHECK(map, start, end);
3723         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3724                 vm_map_unlock_read(map);
3725                 return (KERN_INVALID_ADDRESS);
3726         } else if (start == end) {
3727                 start = first_entry->start;
3728                 end = first_entry->end;
3729         }
3730
3731         /*
3732          * Make a first pass to check for user-wired memory, holes,
3733          * and partial invalidation of largepage mappings.
3734          */
3735         for (entry = first_entry; entry->start < end; entry = next_entry) {
3736                 if (invalidate) {
3737                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3738                                 vm_map_unlock_read(map);
3739                                 return (KERN_INVALID_ARGUMENT);
3740                         }
3741                         bdry_idx = (entry->eflags &
3742                             MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3743                             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3744                         if (bdry_idx != 0 &&
3745                             ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3746                             (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3747                                 vm_map_unlock_read(map);
3748                                 return (KERN_INVALID_ARGUMENT);
3749                         }
3750                 }
3751                 next_entry = vm_map_entry_succ(entry);
3752                 if (end > entry->end &&
3753                     entry->end != next_entry->start) {
3754                         vm_map_unlock_read(map);
3755                         return (KERN_INVALID_ADDRESS);
3756                 }
3757         }
3758
3759         if (invalidate)
3760                 pmap_remove(map->pmap, start, end);
3761         failed = FALSE;
3762
3763         /*
3764          * Make a second pass, cleaning/uncaching pages from the indicated
3765          * objects as we go.
3766          */
3767         for (entry = first_entry; entry->start < end;) {
3768                 offset = entry->offset + (start - entry->start);
3769                 size = (end <= entry->end ? end : entry->end) - start;
3770                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3771                         vm_map_t smap;
3772                         vm_map_entry_t tentry;
3773                         vm_size_t tsize;
3774
3775                         smap = entry->object.sub_map;
3776                         vm_map_lock_read(smap);
3777                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3778                         tsize = tentry->end - offset;
3779                         if (tsize < size)
3780                                 size = tsize;
3781                         object = tentry->object.vm_object;
3782                         offset = tentry->offset + (offset - tentry->start);
3783                         vm_map_unlock_read(smap);
3784                 } else {
3785                         object = entry->object.vm_object;
3786                 }
3787                 vm_object_reference(object);
3788                 last_timestamp = map->timestamp;
3789                 vm_map_unlock_read(map);
3790                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3791                         failed = TRUE;
3792                 start += size;
3793                 vm_object_deallocate(object);
3794                 vm_map_lock_read(map);
3795                 if (last_timestamp == map->timestamp ||
3796                     !vm_map_lookup_entry(map, start, &entry))
3797                         entry = vm_map_entry_succ(entry);
3798         }
3799
3800         vm_map_unlock_read(map);
3801         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3802 }
3803
3804 /*
3805  *      vm_map_entry_unwire:    [ internal use only ]
3806  *
3807  *      Make the region specified by this entry pageable.
3808  *
3809  *      The map in question should be locked.
3810  *      [This is the reason for this routine's existence.]
3811  */
3812 static void
3813 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3814 {
3815         vm_size_t size;
3816
3817         VM_MAP_ASSERT_LOCKED(map);
3818         KASSERT(entry->wired_count > 0,
3819             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3820
3821         size = entry->end - entry->start;
3822         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3823                 vm_map_wire_user_count_sub(atop(size));
3824         pmap_unwire(map->pmap, entry->start, entry->end);
3825         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3826             PQ_ACTIVE);
3827         entry->wired_count = 0;
3828 }
3829
3830 static void
3831 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3832 {
3833
3834         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3835                 vm_object_deallocate(entry->object.vm_object);
3836         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3837 }
3838
3839 /*
3840  *      vm_map_entry_delete:    [ internal use only ]
3841  *
3842  *      Deallocate the given entry from the target map.
3843  */
3844 static void
3845 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3846 {
3847         vm_object_t object;
3848         vm_pindex_t offidxstart, offidxend, size1;
3849         vm_size_t size;
3850
3851         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3852         object = entry->object.vm_object;
3853
3854         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3855                 MPASS(entry->cred == NULL);
3856                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3857                 MPASS(object == NULL);
3858                 vm_map_entry_deallocate(entry, map->system_map);
3859                 return;
3860         }
3861
3862         size = entry->end - entry->start;
3863         map->size -= size;
3864
3865         if (entry->cred != NULL) {
3866                 swap_release_by_cred(size, entry->cred);
3867                 crfree(entry->cred);
3868         }
3869
3870         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3871                 entry->object.vm_object = NULL;
3872         } else if ((object->flags & OBJ_ANON) != 0 ||
3873             object == kernel_object) {
3874                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3875                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3876                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3877                 offidxstart = OFF_TO_IDX(entry->offset);
3878                 offidxend = offidxstart + atop(size);
3879                 VM_OBJECT_WLOCK(object);
3880                 if (object->ref_count != 1 &&
3881                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3882                     object == kernel_object)) {
3883                         vm_object_collapse(object);
3884
3885                         /*
3886                          * The option OBJPR_NOTMAPPED can be passed here
3887                          * because vm_map_delete() already performed
3888                          * pmap_remove() on the only mapping to this range
3889                          * of pages. 
3890                          */
3891                         vm_object_page_remove(object, offidxstart, offidxend,
3892                             OBJPR_NOTMAPPED);
3893                         if (offidxend >= object->size &&
3894                             offidxstart < object->size) {
3895                                 size1 = object->size;
3896                                 object->size = offidxstart;
3897                                 if (object->cred != NULL) {
3898                                         size1 -= object->size;
3899                                         KASSERT(object->charge >= ptoa(size1),
3900                                             ("object %p charge < 0", object));
3901                                         swap_release_by_cred(ptoa(size1),
3902                                             object->cred);
3903                                         object->charge -= ptoa(size1);
3904                                 }
3905                         }
3906                 }
3907                 VM_OBJECT_WUNLOCK(object);
3908         }
3909         if (map->system_map)
3910                 vm_map_entry_deallocate(entry, TRUE);
3911         else {
3912                 entry->defer_next = curthread->td_map_def_user;
3913                 curthread->td_map_def_user = entry;
3914         }
3915 }
3916
3917 /*
3918  *      vm_map_delete:  [ internal use only ]
3919  *
3920  *      Deallocates the given address range from the target
3921  *      map.
3922  */
3923 int
3924 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3925 {
3926         vm_map_entry_t entry, next_entry, scratch_entry;
3927         int rv;
3928
3929         VM_MAP_ASSERT_LOCKED(map);
3930
3931         if (start == end)
3932                 return (KERN_SUCCESS);
3933
3934         /*
3935          * Find the start of the region, and clip it.
3936          * Step through all entries in this region.
3937          */
3938         rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3939         if (rv != KERN_SUCCESS)
3940                 return (rv);
3941         for (; entry->start < end; entry = next_entry) {
3942                 /*
3943                  * Wait for wiring or unwiring of an entry to complete.
3944                  * Also wait for any system wirings to disappear on
3945                  * user maps.
3946                  */
3947                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3948                     (vm_map_pmap(map) != kernel_pmap &&
3949                     vm_map_entry_system_wired_count(entry) != 0)) {
3950                         unsigned int last_timestamp;
3951                         vm_offset_t saved_start;
3952
3953                         saved_start = entry->start;
3954                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3955                         last_timestamp = map->timestamp;
3956                         (void) vm_map_unlock_and_wait(map, 0);
3957                         vm_map_lock(map);
3958                         if (last_timestamp + 1 != map->timestamp) {
3959                                 /*
3960                                  * Look again for the entry because the map was
3961                                  * modified while it was unlocked.
3962                                  * Specifically, the entry may have been
3963                                  * clipped, merged, or deleted.
3964                                  */
3965                                 rv = vm_map_lookup_clip_start(map, saved_start,
3966                                     &next_entry, &scratch_entry);
3967                                 if (rv != KERN_SUCCESS)
3968                                         break;
3969                         } else
3970                                 next_entry = entry;
3971                         continue;
3972                 }
3973
3974                 /* XXXKIB or delete to the upper superpage boundary ? */
3975                 rv = vm_map_clip_end(map, entry, end);
3976                 if (rv != KERN_SUCCESS)
3977                         break;
3978                 next_entry = vm_map_entry_succ(entry);
3979
3980                 /*
3981                  * Unwire before removing addresses from the pmap; otherwise,
3982                  * unwiring will put the entries back in the pmap.
3983                  */
3984                 if (entry->wired_count != 0)
3985                         vm_map_entry_unwire(map, entry);
3986
3987                 /*
3988                  * Remove mappings for the pages, but only if the
3989                  * mappings could exist.  For instance, it does not
3990                  * make sense to call pmap_remove() for guard entries.
3991                  */
3992                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3993                     entry->object.vm_object != NULL)
3994                         pmap_remove(map->pmap, entry->start, entry->end);
3995
3996                 if (entry->end == map->anon_loc)
3997                         map->anon_loc = entry->start;
3998
3999                 /*
4000                  * Delete the entry only after removing all pmap
4001                  * entries pointing to its pages.  (Otherwise, its
4002                  * page frames may be reallocated, and any modify bits
4003                  * will be set in the wrong object!)
4004                  */
4005                 vm_map_entry_delete(map, entry);
4006         }
4007         return (rv);
4008 }
4009
4010 /*
4011  *      vm_map_remove:
4012  *
4013  *      Remove the given address range from the target map.
4014  *      This is the exported form of vm_map_delete.
4015  */
4016 int
4017 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4018 {
4019         int result;
4020
4021         vm_map_lock(map);
4022         VM_MAP_RANGE_CHECK(map, start, end);
4023         result = vm_map_delete(map, start, end);
4024         vm_map_unlock(map);
4025         return (result);
4026 }
4027
4028 /*
4029  *      vm_map_check_protection:
4030  *
4031  *      Assert that the target map allows the specified privilege on the
4032  *      entire address region given.  The entire region must be allocated.
4033  *
4034  *      WARNING!  This code does not and should not check whether the
4035  *      contents of the region is accessible.  For example a smaller file
4036  *      might be mapped into a larger address space.
4037  *
4038  *      NOTE!  This code is also called by munmap().
4039  *
4040  *      The map must be locked.  A read lock is sufficient.
4041  */
4042 boolean_t
4043 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4044                         vm_prot_t protection)
4045 {
4046         vm_map_entry_t entry;
4047         vm_map_entry_t tmp_entry;
4048
4049         if (!vm_map_lookup_entry(map, start, &tmp_entry))
4050                 return (FALSE);
4051         entry = tmp_entry;
4052
4053         while (start < end) {
4054                 /*
4055                  * No holes allowed!
4056                  */
4057                 if (start < entry->start)
4058                         return (FALSE);
4059                 /*
4060                  * Check protection associated with entry.
4061                  */
4062                 if ((entry->protection & protection) != protection)
4063                         return (FALSE);
4064                 /* go to next entry */
4065                 start = entry->end;
4066                 entry = vm_map_entry_succ(entry);
4067         }
4068         return (TRUE);
4069 }
4070
4071 /*
4072  *
4073  *      vm_map_copy_swap_object:
4074  *
4075  *      Copies a swap-backed object from an existing map entry to a
4076  *      new one.  Carries forward the swap charge.  May change the
4077  *      src object on return.
4078  */
4079 static void
4080 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4081     vm_offset_t size, vm_ooffset_t *fork_charge)
4082 {
4083         vm_object_t src_object;
4084         struct ucred *cred;
4085         int charged;
4086
4087         src_object = src_entry->object.vm_object;
4088         charged = ENTRY_CHARGED(src_entry);
4089         if ((src_object->flags & OBJ_ANON) != 0) {
4090                 VM_OBJECT_WLOCK(src_object);
4091                 vm_object_collapse(src_object);
4092                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4093                         vm_object_split(src_entry);
4094                         src_object = src_entry->object.vm_object;
4095                 }
4096                 vm_object_reference_locked(src_object);
4097                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4098                 VM_OBJECT_WUNLOCK(src_object);
4099         } else
4100                 vm_object_reference(src_object);
4101         if (src_entry->cred != NULL &&
4102             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4103                 KASSERT(src_object->cred == NULL,
4104                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4105                      src_object));
4106                 src_object->cred = src_entry->cred;
4107                 src_object->charge = size;
4108         }
4109         dst_entry->object.vm_object = src_object;
4110         if (charged) {
4111                 cred = curthread->td_ucred;
4112                 crhold(cred);
4113                 dst_entry->cred = cred;
4114                 *fork_charge += size;
4115                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4116                         crhold(cred);
4117                         src_entry->cred = cred;
4118                         *fork_charge += size;
4119                 }
4120         }
4121 }
4122
4123 /*
4124  *      vm_map_copy_entry:
4125  *
4126  *      Copies the contents of the source entry to the destination
4127  *      entry.  The entries *must* be aligned properly.
4128  */
4129 static void
4130 vm_map_copy_entry(
4131         vm_map_t src_map,
4132         vm_map_t dst_map,
4133         vm_map_entry_t src_entry,
4134         vm_map_entry_t dst_entry,
4135         vm_ooffset_t *fork_charge)
4136 {
4137         vm_object_t src_object;
4138         vm_map_entry_t fake_entry;
4139         vm_offset_t size;
4140
4141         VM_MAP_ASSERT_LOCKED(dst_map);
4142
4143         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4144                 return;
4145
4146         if (src_entry->wired_count == 0 ||
4147             (src_entry->protection & VM_PROT_WRITE) == 0) {
4148                 /*
4149                  * If the source entry is marked needs_copy, it is already
4150                  * write-protected.
4151                  */
4152                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4153                     (src_entry->protection & VM_PROT_WRITE) != 0) {
4154                         pmap_protect(src_map->pmap,
4155                             src_entry->start,
4156                             src_entry->end,
4157                             src_entry->protection & ~VM_PROT_WRITE);
4158                 }
4159
4160                 /*
4161                  * Make a copy of the object.
4162                  */
4163                 size = src_entry->end - src_entry->start;
4164                 if ((src_object = src_entry->object.vm_object) != NULL) {
4165                         if (src_object->type == OBJT_DEFAULT ||
4166                             src_object->type == OBJT_SWAP) {
4167                                 vm_map_copy_swap_object(src_entry, dst_entry,
4168                                     size, fork_charge);
4169                                 /* May have split/collapsed, reload obj. */
4170                                 src_object = src_entry->object.vm_object;
4171                         } else {
4172                                 vm_object_reference(src_object);
4173                                 dst_entry->object.vm_object = src_object;
4174                         }
4175                         src_entry->eflags |= MAP_ENTRY_COW |
4176                             MAP_ENTRY_NEEDS_COPY;
4177                         dst_entry->eflags |= MAP_ENTRY_COW |
4178                             MAP_ENTRY_NEEDS_COPY;
4179                         dst_entry->offset = src_entry->offset;
4180                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4181                                 /*
4182                                  * MAP_ENTRY_WRITECNT cannot
4183                                  * indicate write reference from
4184                                  * src_entry, since the entry is
4185                                  * marked as needs copy.  Allocate a
4186                                  * fake entry that is used to
4187                                  * decrement object->un_pager writecount
4188                                  * at the appropriate time.  Attach
4189                                  * fake_entry to the deferred list.
4190                                  */
4191                                 fake_entry = vm_map_entry_create(dst_map);
4192                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4193                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4194                                 vm_object_reference(src_object);
4195                                 fake_entry->object.vm_object = src_object;
4196                                 fake_entry->start = src_entry->start;
4197                                 fake_entry->end = src_entry->end;
4198                                 fake_entry->defer_next =
4199                                     curthread->td_map_def_user;
4200                                 curthread->td_map_def_user = fake_entry;
4201                         }
4202
4203                         pmap_copy(dst_map->pmap, src_map->pmap,
4204                             dst_entry->start, dst_entry->end - dst_entry->start,
4205                             src_entry->start);
4206                 } else {
4207                         dst_entry->object.vm_object = NULL;
4208                         dst_entry->offset = 0;
4209                         if (src_entry->cred != NULL) {
4210                                 dst_entry->cred = curthread->td_ucred;
4211                                 crhold(dst_entry->cred);
4212                                 *fork_charge += size;
4213                         }
4214                 }
4215         } else {
4216                 /*
4217                  * We don't want to make writeable wired pages copy-on-write.
4218                  * Immediately copy these pages into the new map by simulating
4219                  * page faults.  The new pages are pageable.
4220                  */
4221                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4222                     fork_charge);
4223         }
4224 }
4225
4226 /*
4227  * vmspace_map_entry_forked:
4228  * Update the newly-forked vmspace each time a map entry is inherited
4229  * or copied.  The values for vm_dsize and vm_tsize are approximate
4230  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4231  */
4232 static void
4233 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4234     vm_map_entry_t entry)
4235 {
4236         vm_size_t entrysize;
4237         vm_offset_t newend;
4238
4239         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4240                 return;
4241         entrysize = entry->end - entry->start;
4242         vm2->vm_map.size += entrysize;
4243         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4244                 vm2->vm_ssize += btoc(entrysize);
4245         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4246             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4247                 newend = MIN(entry->end,
4248                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4249                 vm2->vm_dsize += btoc(newend - entry->start);
4250         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4251             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4252                 newend = MIN(entry->end,
4253                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4254                 vm2->vm_tsize += btoc(newend - entry->start);
4255         }
4256 }
4257
4258 /*
4259  * vmspace_fork:
4260  * Create a new process vmspace structure and vm_map
4261  * based on those of an existing process.  The new map
4262  * is based on the old map, according to the inheritance
4263  * values on the regions in that map.
4264  *
4265  * XXX It might be worth coalescing the entries added to the new vmspace.
4266  *
4267  * The source map must not be locked.
4268  */
4269 struct vmspace *
4270 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4271 {
4272         struct vmspace *vm2;
4273         vm_map_t new_map, old_map;
4274         vm_map_entry_t new_entry, old_entry;
4275         vm_object_t object;
4276         int error, locked;
4277         vm_inherit_t inh;
4278
4279         old_map = &vm1->vm_map;
4280         /* Copy immutable fields of vm1 to vm2. */
4281         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4282             pmap_pinit);
4283         if (vm2 == NULL)
4284                 return (NULL);
4285
4286         vm2->vm_taddr = vm1->vm_taddr;
4287         vm2->vm_daddr = vm1->vm_daddr;
4288         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4289         vm_map_lock(old_map);
4290         if (old_map->busy)
4291                 vm_map_wait_busy(old_map);
4292         new_map = &vm2->vm_map;
4293         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4294         KASSERT(locked, ("vmspace_fork: lock failed"));
4295
4296         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4297         if (error != 0) {
4298                 sx_xunlock(&old_map->lock);
4299                 sx_xunlock(&new_map->lock);
4300                 vm_map_process_deferred();
4301                 vmspace_free(vm2);
4302                 return (NULL);
4303         }
4304
4305         new_map->anon_loc = old_map->anon_loc;
4306         new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4307             MAP_WXORX);
4308
4309         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4310                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4311                         panic("vm_map_fork: encountered a submap");
4312
4313                 inh = old_entry->inheritance;
4314                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4315                     inh != VM_INHERIT_NONE)
4316                         inh = VM_INHERIT_COPY;
4317
4318                 switch (inh) {
4319                 case VM_INHERIT_NONE:
4320                         break;
4321
4322                 case VM_INHERIT_SHARE:
4323                         /*
4324                          * Clone the entry, creating the shared object if
4325                          * necessary.
4326                          */
4327                         object = old_entry->object.vm_object;
4328                         if (object == NULL) {
4329                                 vm_map_entry_back(old_entry);
4330                                 object = old_entry->object.vm_object;
4331                         }
4332
4333                         /*
4334                          * Add the reference before calling vm_object_shadow
4335                          * to insure that a shadow object is created.
4336                          */
4337                         vm_object_reference(object);
4338                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4339                                 vm_object_shadow(&old_entry->object.vm_object,
4340                                     &old_entry->offset,
4341                                     old_entry->end - old_entry->start,
4342                                     old_entry->cred,
4343                                     /* Transfer the second reference too. */
4344                                     true);
4345                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4346                                 old_entry->cred = NULL;
4347
4348                                 /*
4349                                  * As in vm_map_merged_neighbor_dispose(),
4350                                  * the vnode lock will not be acquired in
4351                                  * this call to vm_object_deallocate().
4352                                  */
4353                                 vm_object_deallocate(object);
4354                                 object = old_entry->object.vm_object;
4355                         } else {
4356                                 VM_OBJECT_WLOCK(object);
4357                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4358                                 if (old_entry->cred != NULL) {
4359                                         KASSERT(object->cred == NULL,
4360                                             ("vmspace_fork both cred"));
4361                                         object->cred = old_entry->cred;
4362                                         object->charge = old_entry->end -
4363                                             old_entry->start;
4364                                         old_entry->cred = NULL;
4365                                 }
4366
4367                                 /*
4368                                  * Assert the correct state of the vnode
4369                                  * v_writecount while the object is locked, to
4370                                  * not relock it later for the assertion
4371                                  * correctness.
4372                                  */
4373                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4374                                     object->type == OBJT_VNODE) {
4375                                         KASSERT(((struct vnode *)object->
4376                                             handle)->v_writecount > 0,
4377                                             ("vmspace_fork: v_writecount %p",
4378                                             object));
4379                                         KASSERT(object->un_pager.vnp.
4380                                             writemappings > 0,
4381                                             ("vmspace_fork: vnp.writecount %p",
4382                                             object));
4383                                 }
4384                                 VM_OBJECT_WUNLOCK(object);
4385                         }
4386
4387                         /*
4388                          * Clone the entry, referencing the shared object.
4389                          */
4390                         new_entry = vm_map_entry_create(new_map);
4391                         *new_entry = *old_entry;
4392                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4393                             MAP_ENTRY_IN_TRANSITION);
4394                         new_entry->wiring_thread = NULL;
4395                         new_entry->wired_count = 0;
4396                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4397                                 vm_pager_update_writecount(object,
4398                                     new_entry->start, new_entry->end);
4399                         }
4400                         vm_map_entry_set_vnode_text(new_entry, true);
4401
4402                         /*
4403                          * Insert the entry into the new map -- we know we're
4404                          * inserting at the end of the new map.
4405                          */
4406                         vm_map_entry_link(new_map, new_entry);
4407                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4408
4409                         /*
4410                          * Update the physical map
4411                          */
4412                         pmap_copy(new_map->pmap, old_map->pmap,
4413                             new_entry->start,
4414                             (old_entry->end - old_entry->start),
4415                             old_entry->start);
4416                         break;
4417
4418                 case VM_INHERIT_COPY:
4419                         /*
4420                          * Clone the entry and link into the map.
4421                          */
4422                         new_entry = vm_map_entry_create(new_map);
4423                         *new_entry = *old_entry;
4424                         /*
4425                          * Copied entry is COW over the old object.
4426                          */
4427                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4428                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4429                         new_entry->wiring_thread = NULL;
4430                         new_entry->wired_count = 0;
4431                         new_entry->object.vm_object = NULL;
4432                         new_entry->cred = NULL;
4433                         vm_map_entry_link(new_map, new_entry);
4434                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4435                         vm_map_copy_entry(old_map, new_map, old_entry,
4436                             new_entry, fork_charge);
4437                         vm_map_entry_set_vnode_text(new_entry, true);
4438                         break;
4439
4440                 case VM_INHERIT_ZERO:
4441                         /*
4442                          * Create a new anonymous mapping entry modelled from
4443                          * the old one.
4444                          */
4445                         new_entry = vm_map_entry_create(new_map);
4446                         memset(new_entry, 0, sizeof(*new_entry));
4447
4448                         new_entry->start = old_entry->start;
4449                         new_entry->end = old_entry->end;
4450                         new_entry->eflags = old_entry->eflags &
4451                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4452                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4453                             MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4454                         new_entry->protection = old_entry->protection;
4455                         new_entry->max_protection = old_entry->max_protection;
4456                         new_entry->inheritance = VM_INHERIT_ZERO;
4457
4458                         vm_map_entry_link(new_map, new_entry);
4459                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4460
4461                         new_entry->cred = curthread->td_ucred;
4462                         crhold(new_entry->cred);
4463                         *fork_charge += (new_entry->end - new_entry->start);
4464
4465                         break;
4466                 }
4467         }
4468         /*
4469          * Use inlined vm_map_unlock() to postpone handling the deferred
4470          * map entries, which cannot be done until both old_map and
4471          * new_map locks are released.
4472          */
4473         sx_xunlock(&old_map->lock);
4474         sx_xunlock(&new_map->lock);
4475         vm_map_process_deferred();
4476
4477         return (vm2);
4478 }
4479
4480 /*
4481  * Create a process's stack for exec_new_vmspace().  This function is never
4482  * asked to wire the newly created stack.
4483  */
4484 int
4485 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4486     vm_prot_t prot, vm_prot_t max, int cow)
4487 {
4488         vm_size_t growsize, init_ssize;
4489         rlim_t vmemlim;
4490         int rv;
4491
4492         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4493         growsize = sgrowsiz;
4494         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4495         vm_map_lock(map);
4496         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4497         /* If we would blow our VMEM resource limit, no go */
4498         if (map->size + init_ssize > vmemlim) {
4499                 rv = KERN_NO_SPACE;
4500                 goto out;
4501         }
4502         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4503             max, cow);
4504 out:
4505         vm_map_unlock(map);
4506         return (rv);
4507 }
4508
4509 static int stack_guard_page = 1;
4510 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4511     &stack_guard_page, 0,
4512     "Specifies the number of guard pages for a stack that grows");
4513
4514 static int
4515 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4516     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4517 {
4518         vm_map_entry_t new_entry, prev_entry;
4519         vm_offset_t bot, gap_bot, gap_top, top;
4520         vm_size_t init_ssize, sgp;
4521         int orient, rv;
4522
4523         /*
4524          * The stack orientation is piggybacked with the cow argument.
4525          * Extract it into orient and mask the cow argument so that we
4526          * don't pass it around further.
4527          */
4528         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4529         KASSERT(orient != 0, ("No stack grow direction"));
4530         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4531             ("bi-dir stack"));
4532
4533         if (max_ssize == 0 ||
4534             !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4535                 return (KERN_INVALID_ADDRESS);
4536         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4537             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4538             (vm_size_t)stack_guard_page * PAGE_SIZE;
4539         if (sgp >= max_ssize)
4540                 return (KERN_INVALID_ARGUMENT);
4541
4542         init_ssize = growsize;
4543         if (max_ssize < init_ssize + sgp)
4544                 init_ssize = max_ssize - sgp;
4545
4546         /* If addr is already mapped, no go */
4547         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4548                 return (KERN_NO_SPACE);
4549
4550         /*
4551          * If we can't accommodate max_ssize in the current mapping, no go.
4552          */
4553         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4554                 return (KERN_NO_SPACE);
4555
4556         /*
4557          * We initially map a stack of only init_ssize.  We will grow as
4558          * needed later.  Depending on the orientation of the stack (i.e.
4559          * the grow direction) we either map at the top of the range, the
4560          * bottom of the range or in the middle.
4561          *
4562          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4563          * and cow to be 0.  Possibly we should eliminate these as input
4564          * parameters, and just pass these values here in the insert call.
4565          */
4566         if (orient == MAP_STACK_GROWS_DOWN) {
4567                 bot = addrbos + max_ssize - init_ssize;
4568                 top = bot + init_ssize;
4569                 gap_bot = addrbos;
4570                 gap_top = bot;
4571         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4572                 bot = addrbos;
4573                 top = bot + init_ssize;
4574                 gap_bot = top;
4575                 gap_top = addrbos + max_ssize;
4576         }
4577         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4578         if (rv != KERN_SUCCESS)
4579                 return (rv);
4580         new_entry = vm_map_entry_succ(prev_entry);
4581         KASSERT(new_entry->end == top || new_entry->start == bot,
4582             ("Bad entry start/end for new stack entry"));
4583         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4584             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4585             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4586         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4587             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4588             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4589         if (gap_bot == gap_top)
4590                 return (KERN_SUCCESS);
4591         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4592             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4593             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4594         if (rv == KERN_SUCCESS) {
4595                 /*
4596                  * Gap can never successfully handle a fault, so
4597                  * read-ahead logic is never used for it.  Re-use
4598                  * next_read of the gap entry to store
4599                  * stack_guard_page for vm_map_growstack().
4600                  */
4601                 if (orient == MAP_STACK_GROWS_DOWN)
4602                         vm_map_entry_pred(new_entry)->next_read = sgp;
4603                 else
4604                         vm_map_entry_succ(new_entry)->next_read = sgp;
4605         } else {
4606                 (void)vm_map_delete(map, bot, top);
4607         }
4608         return (rv);
4609 }
4610
4611 /*
4612  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4613  * successfully grow the stack.
4614  */
4615 static int
4616 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4617 {
4618         vm_map_entry_t stack_entry;
4619         struct proc *p;
4620         struct vmspace *vm;
4621         struct ucred *cred;
4622         vm_offset_t gap_end, gap_start, grow_start;
4623         vm_size_t grow_amount, guard, max_grow;
4624         rlim_t lmemlim, stacklim, vmemlim;
4625         int rv, rv1;
4626         bool gap_deleted, grow_down, is_procstack;
4627 #ifdef notyet
4628         uint64_t limit;
4629 #endif
4630 #ifdef RACCT
4631         int error;
4632 #endif
4633
4634         p = curproc;
4635         vm = p->p_vmspace;
4636
4637         /*
4638          * Disallow stack growth when the access is performed by a
4639          * debugger or AIO daemon.  The reason is that the wrong
4640          * resource limits are applied.
4641          */
4642         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4643             p->p_textvp == NULL))
4644                 return (KERN_FAILURE);
4645
4646         MPASS(!map->system_map);
4647
4648         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4649         stacklim = lim_cur(curthread, RLIMIT_STACK);
4650         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4651 retry:
4652         /* If addr is not in a hole for a stack grow area, no need to grow. */
4653         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4654                 return (KERN_FAILURE);
4655         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4656                 return (KERN_SUCCESS);
4657         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4658                 stack_entry = vm_map_entry_succ(gap_entry);
4659                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4660                     stack_entry->start != gap_entry->end)
4661                         return (KERN_FAILURE);
4662                 grow_amount = round_page(stack_entry->start - addr);
4663                 grow_down = true;
4664         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4665                 stack_entry = vm_map_entry_pred(gap_entry);
4666                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4667                     stack_entry->end != gap_entry->start)
4668                         return (KERN_FAILURE);
4669                 grow_amount = round_page(addr + 1 - stack_entry->end);
4670                 grow_down = false;
4671         } else {
4672                 return (KERN_FAILURE);
4673         }
4674         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4675             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4676             gap_entry->next_read;
4677         max_grow = gap_entry->end - gap_entry->start;
4678         if (guard > max_grow)
4679                 return (KERN_NO_SPACE);
4680         max_grow -= guard;
4681         if (grow_amount > max_grow)
4682                 return (KERN_NO_SPACE);
4683
4684         /*
4685          * If this is the main process stack, see if we're over the stack
4686          * limit.
4687          */
4688         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4689             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4690         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4691                 return (KERN_NO_SPACE);
4692
4693 #ifdef RACCT
4694         if (racct_enable) {
4695                 PROC_LOCK(p);
4696                 if (is_procstack && racct_set(p, RACCT_STACK,
4697                     ctob(vm->vm_ssize) + grow_amount)) {
4698                         PROC_UNLOCK(p);
4699                         return (KERN_NO_SPACE);
4700                 }
4701                 PROC_UNLOCK(p);
4702         }
4703 #endif
4704
4705         grow_amount = roundup(grow_amount, sgrowsiz);
4706         if (grow_amount > max_grow)
4707                 grow_amount = max_grow;
4708         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4709                 grow_amount = trunc_page((vm_size_t)stacklim) -
4710                     ctob(vm->vm_ssize);
4711         }
4712
4713 #ifdef notyet
4714         PROC_LOCK(p);
4715         limit = racct_get_available(p, RACCT_STACK);
4716         PROC_UNLOCK(p);
4717         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4718                 grow_amount = limit - ctob(vm->vm_ssize);
4719 #endif
4720
4721         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4722                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4723                         rv = KERN_NO_SPACE;
4724                         goto out;
4725                 }
4726 #ifdef RACCT
4727                 if (racct_enable) {
4728                         PROC_LOCK(p);
4729                         if (racct_set(p, RACCT_MEMLOCK,
4730                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4731                                 PROC_UNLOCK(p);
4732                                 rv = KERN_NO_SPACE;
4733                                 goto out;
4734                         }
4735                         PROC_UNLOCK(p);
4736                 }
4737 #endif
4738         }
4739
4740         /* If we would blow our VMEM resource limit, no go */
4741         if (map->size + grow_amount > vmemlim) {
4742                 rv = KERN_NO_SPACE;
4743                 goto out;
4744         }
4745 #ifdef RACCT
4746         if (racct_enable) {
4747                 PROC_LOCK(p);
4748                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4749                         PROC_UNLOCK(p);
4750                         rv = KERN_NO_SPACE;
4751                         goto out;
4752                 }
4753                 PROC_UNLOCK(p);
4754         }
4755 #endif
4756
4757         if (vm_map_lock_upgrade(map)) {
4758                 gap_entry = NULL;
4759                 vm_map_lock_read(map);
4760                 goto retry;
4761         }
4762
4763         if (grow_down) {
4764                 grow_start = gap_entry->end - grow_amount;
4765                 if (gap_entry->start + grow_amount == gap_entry->end) {
4766                         gap_start = gap_entry->start;
4767                         gap_end = gap_entry->end;
4768                         vm_map_entry_delete(map, gap_entry);
4769                         gap_deleted = true;
4770                 } else {
4771                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4772                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4773                         gap_deleted = false;
4774                 }
4775                 rv = vm_map_insert(map, NULL, 0, grow_start,
4776                     grow_start + grow_amount,
4777                     stack_entry->protection, stack_entry->max_protection,
4778                     MAP_STACK_GROWS_DOWN);
4779                 if (rv != KERN_SUCCESS) {
4780                         if (gap_deleted) {
4781                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4782                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4783                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4784                                 MPASS(rv1 == KERN_SUCCESS);
4785                         } else
4786                                 vm_map_entry_resize(map, gap_entry,
4787                                     grow_amount);
4788                 }
4789         } else {
4790                 grow_start = stack_entry->end;
4791                 cred = stack_entry->cred;
4792                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4793                         cred = stack_entry->object.vm_object->cred;
4794                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4795                         rv = KERN_NO_SPACE;
4796                 /* Grow the underlying object if applicable. */
4797                 else if (stack_entry->object.vm_object == NULL ||
4798                     vm_object_coalesce(stack_entry->object.vm_object,
4799                     stack_entry->offset,
4800                     (vm_size_t)(stack_entry->end - stack_entry->start),
4801                     grow_amount, cred != NULL)) {
4802                         if (gap_entry->start + grow_amount == gap_entry->end) {
4803                                 vm_map_entry_delete(map, gap_entry);
4804                                 vm_map_entry_resize(map, stack_entry,
4805                                     grow_amount);
4806                         } else {
4807                                 gap_entry->start += grow_amount;
4808                                 stack_entry->end += grow_amount;
4809                         }
4810                         map->size += grow_amount;
4811                         rv = KERN_SUCCESS;
4812                 } else
4813                         rv = KERN_FAILURE;
4814         }
4815         if (rv == KERN_SUCCESS && is_procstack)
4816                 vm->vm_ssize += btoc(grow_amount);
4817
4818         /*
4819          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4820          */
4821         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4822                 rv = vm_map_wire_locked(map, grow_start,
4823                     grow_start + grow_amount,
4824                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4825         }
4826         vm_map_lock_downgrade(map);
4827
4828 out:
4829 #ifdef RACCT
4830         if (racct_enable && rv != KERN_SUCCESS) {
4831                 PROC_LOCK(p);
4832                 error = racct_set(p, RACCT_VMEM, map->size);
4833                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4834                 if (!old_mlock) {
4835                         error = racct_set(p, RACCT_MEMLOCK,
4836                             ptoa(pmap_wired_count(map->pmap)));
4837                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4838                 }
4839                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4840                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4841                 PROC_UNLOCK(p);
4842         }
4843 #endif
4844
4845         return (rv);
4846 }
4847
4848 /*
4849  * Unshare the specified VM space for exec.  If other processes are
4850  * mapped to it, then create a new one.  The new vmspace is null.
4851  */
4852 int
4853 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4854 {
4855         struct vmspace *oldvmspace = p->p_vmspace;
4856         struct vmspace *newvmspace;
4857
4858         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4859             ("vmspace_exec recursed"));
4860         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4861         if (newvmspace == NULL)
4862                 return (ENOMEM);
4863         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4864         /*
4865          * This code is written like this for prototype purposes.  The
4866          * goal is to avoid running down the vmspace here, but let the
4867          * other process's that are still using the vmspace to finally
4868          * run it down.  Even though there is little or no chance of blocking
4869          * here, it is a good idea to keep this form for future mods.
4870          */
4871         PROC_VMSPACE_LOCK(p);
4872         p->p_vmspace = newvmspace;
4873         PROC_VMSPACE_UNLOCK(p);
4874         if (p == curthread->td_proc)
4875                 pmap_activate(curthread);
4876         curthread->td_pflags |= TDP_EXECVMSPC;
4877         return (0);
4878 }
4879
4880 /*
4881  * Unshare the specified VM space for forcing COW.  This
4882  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4883  */
4884 int
4885 vmspace_unshare(struct proc *p)
4886 {
4887         struct vmspace *oldvmspace = p->p_vmspace;
4888         struct vmspace *newvmspace;
4889         vm_ooffset_t fork_charge;
4890
4891         if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4892                 return (0);
4893         fork_charge = 0;
4894         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4895         if (newvmspace == NULL)
4896                 return (ENOMEM);
4897         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4898                 vmspace_free(newvmspace);
4899                 return (ENOMEM);
4900         }
4901         PROC_VMSPACE_LOCK(p);
4902         p->p_vmspace = newvmspace;
4903         PROC_VMSPACE_UNLOCK(p);
4904         if (p == curthread->td_proc)
4905                 pmap_activate(curthread);
4906         vmspace_free(oldvmspace);
4907         return (0);
4908 }
4909
4910 /*
4911  *      vm_map_lookup:
4912  *
4913  *      Finds the VM object, offset, and
4914  *      protection for a given virtual address in the
4915  *      specified map, assuming a page fault of the
4916  *      type specified.
4917  *
4918  *      Leaves the map in question locked for read; return
4919  *      values are guaranteed until a vm_map_lookup_done
4920  *      call is performed.  Note that the map argument
4921  *      is in/out; the returned map must be used in
4922  *      the call to vm_map_lookup_done.
4923  *
4924  *      A handle (out_entry) is returned for use in
4925  *      vm_map_lookup_done, to make that fast.
4926  *
4927  *      If a lookup is requested with "write protection"
4928  *      specified, the map may be changed to perform virtual
4929  *      copying operations, although the data referenced will
4930  *      remain the same.
4931  */
4932 int
4933 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4934               vm_offset_t vaddr,
4935               vm_prot_t fault_typea,
4936               vm_map_entry_t *out_entry,        /* OUT */
4937               vm_object_t *object,              /* OUT */
4938               vm_pindex_t *pindex,              /* OUT */
4939               vm_prot_t *out_prot,              /* OUT */
4940               boolean_t *wired)                 /* OUT */
4941 {
4942         vm_map_entry_t entry;
4943         vm_map_t map = *var_map;
4944         vm_prot_t prot;
4945         vm_prot_t fault_type;
4946         vm_object_t eobject;
4947         vm_size_t size;
4948         struct ucred *cred;
4949
4950 RetryLookup:
4951
4952         vm_map_lock_read(map);
4953
4954 RetryLookupLocked:
4955         /*
4956          * Lookup the faulting address.
4957          */
4958         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4959                 vm_map_unlock_read(map);
4960                 return (KERN_INVALID_ADDRESS);
4961         }
4962
4963         entry = *out_entry;
4964
4965         /*
4966          * Handle submaps.
4967          */
4968         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4969                 vm_map_t old_map = map;
4970
4971                 *var_map = map = entry->object.sub_map;
4972                 vm_map_unlock_read(old_map);
4973                 goto RetryLookup;
4974         }
4975
4976         /*
4977          * Check whether this task is allowed to have this page.
4978          */
4979         prot = entry->protection;
4980         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4981                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4982                 if (prot == VM_PROT_NONE && map != kernel_map &&
4983                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4984                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4985                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4986                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4987                         goto RetryLookupLocked;
4988         }
4989         fault_type = fault_typea & VM_PROT_ALL;
4990         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4991                 vm_map_unlock_read(map);
4992                 return (KERN_PROTECTION_FAILURE);
4993         }
4994         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4995             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4996             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4997             ("entry %p flags %x", entry, entry->eflags));
4998         if ((fault_typea & VM_PROT_COPY) != 0 &&
4999             (entry->max_protection & VM_PROT_WRITE) == 0 &&
5000             (entry->eflags & MAP_ENTRY_COW) == 0) {
5001                 vm_map_unlock_read(map);
5002                 return (KERN_PROTECTION_FAILURE);
5003         }
5004
5005         /*
5006          * If this page is not pageable, we have to get it for all possible
5007          * accesses.
5008          */
5009         *wired = (entry->wired_count != 0);
5010         if (*wired)
5011                 fault_type = entry->protection;
5012         size = entry->end - entry->start;
5013
5014         /*
5015          * If the entry was copy-on-write, we either ...
5016          */
5017         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5018                 /*
5019                  * If we want to write the page, we may as well handle that
5020                  * now since we've got the map locked.
5021                  *
5022                  * If we don't need to write the page, we just demote the
5023                  * permissions allowed.
5024                  */
5025                 if ((fault_type & VM_PROT_WRITE) != 0 ||
5026                     (fault_typea & VM_PROT_COPY) != 0) {
5027                         /*
5028                          * Make a new object, and place it in the object
5029                          * chain.  Note that no new references have appeared
5030                          * -- one just moved from the map to the new
5031                          * object.
5032                          */
5033                         if (vm_map_lock_upgrade(map))
5034                                 goto RetryLookup;
5035
5036                         if (entry->cred == NULL) {
5037                                 /*
5038                                  * The debugger owner is charged for
5039                                  * the memory.
5040                                  */
5041                                 cred = curthread->td_ucred;
5042                                 crhold(cred);
5043                                 if (!swap_reserve_by_cred(size, cred)) {
5044                                         crfree(cred);
5045                                         vm_map_unlock(map);
5046                                         return (KERN_RESOURCE_SHORTAGE);
5047                                 }
5048                                 entry->cred = cred;
5049                         }
5050                         eobject = entry->object.vm_object;
5051                         vm_object_shadow(&entry->object.vm_object,
5052                             &entry->offset, size, entry->cred, false);
5053                         if (eobject == entry->object.vm_object) {
5054                                 /*
5055                                  * The object was not shadowed.
5056                                  */
5057                                 swap_release_by_cred(size, entry->cred);
5058                                 crfree(entry->cred);
5059                         }
5060                         entry->cred = NULL;
5061                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5062
5063                         vm_map_lock_downgrade(map);
5064                 } else {
5065                         /*
5066                          * We're attempting to read a copy-on-write page --
5067                          * don't allow writes.
5068                          */
5069                         prot &= ~VM_PROT_WRITE;
5070                 }
5071         }
5072
5073         /*
5074          * Create an object if necessary.
5075          */
5076         if (entry->object.vm_object == NULL && !map->system_map) {
5077                 if (vm_map_lock_upgrade(map))
5078                         goto RetryLookup;
5079                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5080                     NULL, entry->cred, entry->cred != NULL ? size : 0);
5081                 entry->offset = 0;
5082                 entry->cred = NULL;
5083                 vm_map_lock_downgrade(map);
5084         }
5085
5086         /*
5087          * Return the object/offset from this entry.  If the entry was
5088          * copy-on-write or empty, it has been fixed up.
5089          */
5090         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5091         *object = entry->object.vm_object;
5092
5093         *out_prot = prot;
5094         return (KERN_SUCCESS);
5095 }
5096
5097 /*
5098  *      vm_map_lookup_locked:
5099  *
5100  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
5101  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5102  */
5103 int
5104 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
5105                      vm_offset_t vaddr,
5106                      vm_prot_t fault_typea,
5107                      vm_map_entry_t *out_entry, /* OUT */
5108                      vm_object_t *object,       /* OUT */
5109                      vm_pindex_t *pindex,       /* OUT */
5110                      vm_prot_t *out_prot,       /* OUT */
5111                      boolean_t *wired)          /* OUT */
5112 {
5113         vm_map_entry_t entry;
5114         vm_map_t map = *var_map;
5115         vm_prot_t prot;
5116         vm_prot_t fault_type = fault_typea;
5117
5118         /*
5119          * Lookup the faulting address.
5120          */
5121         if (!vm_map_lookup_entry(map, vaddr, out_entry))
5122                 return (KERN_INVALID_ADDRESS);
5123
5124         entry = *out_entry;
5125
5126         /*
5127          * Fail if the entry refers to a submap.
5128          */
5129         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5130                 return (KERN_FAILURE);
5131
5132         /*
5133          * Check whether this task is allowed to have this page.
5134          */
5135         prot = entry->protection;
5136         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5137         if ((fault_type & prot) != fault_type)
5138                 return (KERN_PROTECTION_FAILURE);
5139
5140         /*
5141          * If this page is not pageable, we have to get it for all possible
5142          * accesses.
5143          */
5144         *wired = (entry->wired_count != 0);
5145         if (*wired)
5146                 fault_type = entry->protection;
5147
5148         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5149                 /*
5150                  * Fail if the entry was copy-on-write for a write fault.
5151                  */
5152                 if (fault_type & VM_PROT_WRITE)
5153                         return (KERN_FAILURE);
5154                 /*
5155                  * We're attempting to read a copy-on-write page --
5156                  * don't allow writes.
5157                  */
5158                 prot &= ~VM_PROT_WRITE;
5159         }
5160
5161         /*
5162          * Fail if an object should be created.
5163          */
5164         if (entry->object.vm_object == NULL && !map->system_map)
5165                 return (KERN_FAILURE);
5166
5167         /*
5168          * Return the object/offset from this entry.  If the entry was
5169          * copy-on-write or empty, it has been fixed up.
5170          */
5171         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5172         *object = entry->object.vm_object;
5173
5174         *out_prot = prot;
5175         return (KERN_SUCCESS);
5176 }
5177
5178 /*
5179  *      vm_map_lookup_done:
5180  *
5181  *      Releases locks acquired by a vm_map_lookup
5182  *      (according to the handle returned by that lookup).
5183  */
5184 void
5185 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5186 {
5187         /*
5188          * Unlock the main-level map
5189          */
5190         vm_map_unlock_read(map);
5191 }
5192
5193 vm_offset_t
5194 vm_map_max_KBI(const struct vm_map *map)
5195 {
5196
5197         return (vm_map_max(map));
5198 }
5199
5200 vm_offset_t
5201 vm_map_min_KBI(const struct vm_map *map)
5202 {
5203
5204         return (vm_map_min(map));
5205 }
5206
5207 pmap_t
5208 vm_map_pmap_KBI(vm_map_t map)
5209 {
5210
5211         return (map->pmap);
5212 }
5213
5214 bool
5215 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5216 {
5217
5218         return (vm_map_range_valid(map, start, end));
5219 }
5220
5221 #ifdef INVARIANTS
5222 static void
5223 _vm_map_assert_consistent(vm_map_t map, int check)
5224 {
5225         vm_map_entry_t entry, prev;
5226         vm_map_entry_t cur, header, lbound, ubound;
5227         vm_size_t max_left, max_right;
5228
5229 #ifdef DIAGNOSTIC
5230         ++map->nupdates;
5231 #endif
5232         if (enable_vmmap_check != check)
5233                 return;
5234
5235         header = prev = &map->header;
5236         VM_MAP_ENTRY_FOREACH(entry, map) {
5237                 KASSERT(prev->end <= entry->start,
5238                     ("map %p prev->end = %jx, start = %jx", map,
5239                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5240                 KASSERT(entry->start < entry->end,
5241                     ("map %p start = %jx, end = %jx", map,
5242                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5243                 KASSERT(entry->left == header ||
5244                     entry->left->start < entry->start,
5245                     ("map %p left->start = %jx, start = %jx", map,
5246                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5247                 KASSERT(entry->right == header ||
5248                     entry->start < entry->right->start,
5249                     ("map %p start = %jx, right->start = %jx", map,
5250                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5251                 cur = map->root;
5252                 lbound = ubound = header;
5253                 for (;;) {
5254                         if (entry->start < cur->start) {
5255                                 ubound = cur;
5256                                 cur = cur->left;
5257                                 KASSERT(cur != lbound,
5258                                     ("map %p cannot find %jx",
5259                                     map, (uintmax_t)entry->start));
5260                         } else if (cur->end <= entry->start) {
5261                                 lbound = cur;
5262                                 cur = cur->right;
5263                                 KASSERT(cur != ubound,
5264                                     ("map %p cannot find %jx",
5265                                     map, (uintmax_t)entry->start));
5266                         } else {
5267                                 KASSERT(cur == entry,
5268                                     ("map %p cannot find %jx",
5269                                     map, (uintmax_t)entry->start));
5270                                 break;
5271                         }
5272                 }
5273                 max_left = vm_map_entry_max_free_left(entry, lbound);
5274                 max_right = vm_map_entry_max_free_right(entry, ubound);
5275                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5276                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5277                     (uintmax_t)entry->max_free,
5278                     (uintmax_t)max_left, (uintmax_t)max_right));
5279                 prev = entry;
5280         }
5281         KASSERT(prev->end <= entry->start,
5282             ("map %p prev->end = %jx, start = %jx", map,
5283             (uintmax_t)prev->end, (uintmax_t)entry->start));
5284 }
5285 #endif
5286
5287 #include "opt_ddb.h"
5288 #ifdef DDB
5289 #include <sys/kernel.h>
5290
5291 #include <ddb/ddb.h>
5292
5293 static void
5294 vm_map_print(vm_map_t map)
5295 {
5296         vm_map_entry_t entry, prev;
5297
5298         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5299             (void *)map,
5300             (void *)map->pmap, map->nentries, map->timestamp);
5301
5302         db_indent += 2;
5303         prev = &map->header;
5304         VM_MAP_ENTRY_FOREACH(entry, map) {
5305                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5306                     (void *)entry, (void *)entry->start, (void *)entry->end,
5307                     entry->eflags);
5308                 {
5309                         static const char * const inheritance_name[4] =
5310                         {"share", "copy", "none", "donate_copy"};
5311
5312                         db_iprintf(" prot=%x/%x/%s",
5313                             entry->protection,
5314                             entry->max_protection,
5315                             inheritance_name[(int)(unsigned char)
5316                             entry->inheritance]);
5317                         if (entry->wired_count != 0)
5318                                 db_printf(", wired");
5319                 }
5320                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5321                         db_printf(", share=%p, offset=0x%jx\n",
5322                             (void *)entry->object.sub_map,
5323                             (uintmax_t)entry->offset);
5324                         if (prev == &map->header ||
5325                             prev->object.sub_map !=
5326                                 entry->object.sub_map) {
5327                                 db_indent += 2;
5328                                 vm_map_print((vm_map_t)entry->object.sub_map);
5329                                 db_indent -= 2;
5330                         }
5331                 } else {
5332                         if (entry->cred != NULL)
5333                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5334                         db_printf(", object=%p, offset=0x%jx",
5335                             (void *)entry->object.vm_object,
5336                             (uintmax_t)entry->offset);
5337                         if (entry->object.vm_object && entry->object.vm_object->cred)
5338                                 db_printf(", obj ruid %d charge %jx",
5339                                     entry->object.vm_object->cred->cr_ruid,
5340                                     (uintmax_t)entry->object.vm_object->charge);
5341                         if (entry->eflags & MAP_ENTRY_COW)
5342                                 db_printf(", copy (%s)",
5343                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5344                         db_printf("\n");
5345
5346                         if (prev == &map->header ||
5347                             prev->object.vm_object !=
5348                                 entry->object.vm_object) {
5349                                 db_indent += 2;
5350                                 vm_object_print((db_expr_t)(intptr_t)
5351                                                 entry->object.vm_object,
5352                                                 0, 0, (char *)0);
5353                                 db_indent -= 2;
5354                         }
5355                 }
5356                 prev = entry;
5357         }
5358         db_indent -= 2;
5359 }
5360
5361 DB_SHOW_COMMAND(map, map)
5362 {
5363
5364         if (!have_addr) {
5365                 db_printf("usage: show map <addr>\n");
5366                 return;
5367         }
5368         vm_map_print((vm_map_t)addr);
5369 }
5370
5371 DB_SHOW_COMMAND(procvm, procvm)
5372 {
5373         struct proc *p;
5374
5375         if (have_addr) {
5376                 p = db_lookup_proc(addr);
5377         } else {
5378                 p = curproc;
5379         }
5380
5381         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5382             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5383             (void *)vmspace_pmap(p->p_vmspace));
5384
5385         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5386 }
5387
5388 #endif /* DDB */