]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
This commit was generated by cvs2svn to compensate for changes in r165743,
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93
94 /*
95  *      Virtual memory maps provide for the mapping, protection,
96  *      and sharing of virtual memory objects.  In addition,
97  *      this module provides for an efficient virtual copy of
98  *      memory from one map to another.
99  *
100  *      Synchronization is required prior to most operations.
101  *
102  *      Maps consist of an ordered doubly-linked list of simple
103  *      entries; a single hint is used to speed up lookups.
104  *
105  *      Since portions of maps are specified by start/end addresses,
106  *      which may not align with existing map entries, all
107  *      routines merely "clip" entries to these start/end values.
108  *      [That is, an entry is split into two, bordering at a
109  *      start or end value.]  Note that these clippings may not
110  *      always be necessary (as the two resulting entries are then
111  *      not changed); however, the clipping is done for convenience.
112  *
113  *      As mentioned above, virtual copy operations are performed
114  *      by copying VM object references from one map to
115  *      another, and then marking both regions as copy-on-write.
116  */
117
118 /*
119  *      vm_map_startup:
120  *
121  *      Initialize the vm_map module.  Must be called before
122  *      any other vm_map routines.
123  *
124  *      Map and entry structures are allocated from the general
125  *      purpose memory pool with some exceptions:
126  *
127  *      - The kernel map and kmem submap are allocated statically.
128  *      - Kernel map entries are allocated out of a static pool.
129  *
130  *      These restrictions are necessary since malloc() uses the
131  *      maps and requires map entries.
132  */
133
134 static struct mtx map_sleep_mtx;
135 static uma_zone_t mapentzone;
136 static uma_zone_t kmapentzone;
137 static uma_zone_t mapzone;
138 static uma_zone_t vmspace_zone;
139 static struct vm_object kmapentobj;
140 static int vmspace_zinit(void *mem, int size, int flags);
141 static void vmspace_zfini(void *mem, int size);
142 static int vm_map_zinit(void *mem, int ize, int flags);
143 static void vm_map_zfini(void *mem, int size);
144 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
145
146 #ifdef INVARIANTS
147 static void vm_map_zdtor(void *mem, int size, void *arg);
148 static void vmspace_zdtor(void *mem, int size, void *arg);
149 #endif
150
151 /* 
152  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
153  * stable.
154  */
155 #define PROC_VMSPACE_LOCK(p) do { } while (0)
156 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
157
158 void
159 vm_map_startup(void)
160 {
161         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
162         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
163 #ifdef INVARIANTS
164             vm_map_zdtor,
165 #else
166             NULL,
167 #endif
168             vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
169         uma_prealloc(mapzone, MAX_KMAP);
170         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
171             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
172             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
173         uma_prealloc(kmapentzone, MAX_KMAPENT);
174         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
175             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
176 }
177
178 static void
179 vmspace_zfini(void *mem, int size)
180 {
181         struct vmspace *vm;
182
183         vm = (struct vmspace *)mem;
184         pmap_release(vmspace_pmap(vm));
185         vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
186 }
187
188 static int
189 vmspace_zinit(void *mem, int size, int flags)
190 {
191         struct vmspace *vm;
192
193         vm = (struct vmspace *)mem;
194
195         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
196         pmap_pinit(vmspace_pmap(vm));
197         return (0);
198 }
199
200 static void
201 vm_map_zfini(void *mem, int size)
202 {
203         vm_map_t map;
204
205         map = (vm_map_t)mem;
206         mtx_destroy(&map->system_mtx);
207         sx_destroy(&map->lock);
208 }
209
210 static int
211 vm_map_zinit(void *mem, int size, int flags)
212 {
213         vm_map_t map;
214
215         map = (vm_map_t)mem;
216         map->nentries = 0;
217         map->size = 0;
218         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
219         sx_init(&map->lock, "user map");
220         return (0);
221 }
222
223 #ifdef INVARIANTS
224 static void
225 vmspace_zdtor(void *mem, int size, void *arg)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
232 }
233 static void
234 vm_map_zdtor(void *mem, int size, void *arg)
235 {
236         vm_map_t map;
237
238         map = (vm_map_t)mem;
239         KASSERT(map->nentries == 0,
240             ("map %p nentries == %d on free.",
241             map, map->nentries));
242         KASSERT(map->size == 0,
243             ("map %p size == %lu on free.",
244             map, (unsigned long)map->size));
245 }
246 #endif  /* INVARIANTS */
247
248 /*
249  * Allocate a vmspace structure, including a vm_map and pmap,
250  * and initialize those structures.  The refcnt is set to 1.
251  */
252 struct vmspace *
253 vmspace_alloc(min, max)
254         vm_offset_t min, max;
255 {
256         struct vmspace *vm;
257
258         vm = uma_zalloc(vmspace_zone, M_WAITOK);
259         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
260         _vm_map_init(&vm->vm_map, min, max);
261         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
262         vm->vm_refcnt = 1;
263         vm->vm_shm = NULL;
264         vm->vm_swrss = 0;
265         vm->vm_tsize = 0;
266         vm->vm_dsize = 0;
267         vm->vm_ssize = 0;
268         vm->vm_taddr = 0;
269         vm->vm_daddr = 0;
270         vm->vm_maxsaddr = 0;
271         return (vm);
272 }
273
274 void
275 vm_init2(void)
276 {
277         uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
278             (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8 +
279              maxproc * 2 + maxfiles);
280         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282             vmspace_zdtor,
283 #else
284             NULL,
285 #endif
286             vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288
289 static inline void
290 vmspace_dofree(struct vmspace *vm)
291 {
292         CTR1(KTR_VM, "vmspace_free: %p", vm);
293
294         /*
295          * Make sure any SysV shm is freed, it might not have been in
296          * exit1().
297          */
298         shmexit(vm);
299
300         /*
301          * Lock the map, to wait out all other references to it.
302          * Delete all of the mappings and pages they hold, then call
303          * the pmap module to reclaim anything left.
304          */
305         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
306             vm->vm_map.max_offset);
307
308         uma_zfree(vmspace_zone, vm);
309 }
310
311 void
312 vmspace_free(struct vmspace *vm)
313 {
314         int refcnt;
315
316         if (vm->vm_refcnt == 0)
317                 panic("vmspace_free: attempt to free already freed vmspace");
318
319         do
320                 refcnt = vm->vm_refcnt;
321         while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
322         if (refcnt == 1)
323                 vmspace_dofree(vm);
324 }
325
326 void
327 vmspace_exitfree(struct proc *p)
328 {
329         struct vmspace *vm;
330
331         PROC_VMSPACE_LOCK(p);
332         vm = p->p_vmspace;
333         p->p_vmspace = NULL;
334         PROC_VMSPACE_UNLOCK(p);
335         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
336         vmspace_free(vm);
337 }
338
339 void
340 vmspace_exit(struct thread *td)
341 {
342         int refcnt;
343         struct vmspace *vm;
344         struct proc *p;
345
346         /*
347          * Release user portion of address space.
348          * This releases references to vnodes,
349          * which could cause I/O if the file has been unlinked.
350          * Need to do this early enough that we can still sleep.
351          *
352          * The last exiting process to reach this point releases as
353          * much of the environment as it can. vmspace_dofree() is the
354          * slower fallback in case another process had a temporary
355          * reference to the vmspace.
356          */
357
358         p = td->td_proc;
359         vm = p->p_vmspace;
360         atomic_add_int(&vmspace0.vm_refcnt, 1);
361         do {
362                 refcnt = vm->vm_refcnt;
363                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
364                         /* Switch now since other proc might free vmspace */
365                         PROC_VMSPACE_LOCK(p);
366                         p->p_vmspace = &vmspace0;
367                         PROC_VMSPACE_UNLOCK(p);
368                         pmap_activate(td);
369                 }
370         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
371         if (refcnt == 1) {
372                 if (p->p_vmspace != vm) {
373                         /* vmspace not yet freed, switch back */
374                         PROC_VMSPACE_LOCK(p);
375                         p->p_vmspace = vm;
376                         PROC_VMSPACE_UNLOCK(p);
377                         pmap_activate(td);
378                 }
379                 pmap_remove_pages(vmspace_pmap(vm));
380                 /* Switch now since this proc will free vmspace */
381                 PROC_VMSPACE_LOCK(p);
382                 p->p_vmspace = &vmspace0;
383                 PROC_VMSPACE_UNLOCK(p);
384                 pmap_activate(td);
385                 vmspace_dofree(vm);
386         }
387 }
388
389 /* Acquire reference to vmspace owned by another process. */
390
391 struct vmspace *
392 vmspace_acquire_ref(struct proc *p)
393 {
394         struct vmspace *vm;
395         int refcnt;
396
397         PROC_VMSPACE_LOCK(p);
398         vm = p->p_vmspace;
399         if (vm == NULL) {
400                 PROC_VMSPACE_UNLOCK(p);
401                 return (NULL);
402         }
403         do {
404                 refcnt = vm->vm_refcnt;
405                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
406                         PROC_VMSPACE_UNLOCK(p);
407                         return (NULL);
408                 }
409         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
410         if (vm != p->p_vmspace) {
411                 PROC_VMSPACE_UNLOCK(p);
412                 vmspace_free(vm);
413                 return (NULL);
414         }
415         PROC_VMSPACE_UNLOCK(p);
416         return (vm);
417 }
418
419 void
420 _vm_map_lock(vm_map_t map, const char *file, int line)
421 {
422
423         if (map->system_map)
424                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
425         else
426                 _sx_xlock(&map->lock, file, line);
427         map->timestamp++;
428 }
429
430 void
431 _vm_map_unlock(vm_map_t map, const char *file, int line)
432 {
433
434         if (map->system_map)
435                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
436         else
437                 _sx_xunlock(&map->lock, file, line);
438 }
439
440 void
441 _vm_map_lock_read(vm_map_t map, const char *file, int line)
442 {
443
444         if (map->system_map)
445                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
446         else
447                 _sx_xlock(&map->lock, file, line);
448 }
449
450 void
451 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
452 {
453
454         if (map->system_map)
455                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
456         else
457                 _sx_xunlock(&map->lock, file, line);
458 }
459
460 int
461 _vm_map_trylock(vm_map_t map, const char *file, int line)
462 {
463         int error;
464
465         error = map->system_map ?
466             !_mtx_trylock(&map->system_mtx, 0, file, line) :
467             !_sx_try_xlock(&map->lock, file, line);
468         if (error == 0)
469                 map->timestamp++;
470         return (error == 0);
471 }
472
473 int
474 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
475 {
476         int error;
477
478         error = map->system_map ?
479             !_mtx_trylock(&map->system_mtx, 0, file, line) :
480             !_sx_try_xlock(&map->lock, file, line);
481         return (error == 0);
482 }
483
484 int
485 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
486 {
487
488 #ifdef INVARIANTS
489         if (map->system_map) {
490                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
491         } else
492                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
493 #endif
494         map->timestamp++;
495         return (0);
496 }
497
498 void
499 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
500 {
501
502 #ifdef INVARIANTS
503         if (map->system_map) {
504                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
505         } else
506                 _sx_assert(&map->lock, SX_XLOCKED, file, line);
507 #endif
508 }
509
510 /*
511  *      vm_map_unlock_and_wait:
512  */
513 int
514 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
515 {
516
517         mtx_lock(&map_sleep_mtx);
518         vm_map_unlock(map);
519         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
520 }
521
522 /*
523  *      vm_map_wakeup:
524  */
525 void
526 vm_map_wakeup(vm_map_t map)
527 {
528
529         /*
530          * Acquire and release map_sleep_mtx to prevent a wakeup()
531          * from being performed (and lost) between the vm_map_unlock()
532          * and the msleep() in vm_map_unlock_and_wait().
533          */
534         mtx_lock(&map_sleep_mtx);
535         mtx_unlock(&map_sleep_mtx);
536         wakeup(&map->root);
537 }
538
539 long
540 vmspace_resident_count(struct vmspace *vmspace)
541 {
542         return pmap_resident_count(vmspace_pmap(vmspace));
543 }
544
545 long
546 vmspace_wired_count(struct vmspace *vmspace)
547 {
548         return pmap_wired_count(vmspace_pmap(vmspace));
549 }
550
551 /*
552  *      vm_map_create:
553  *
554  *      Creates and returns a new empty VM map with
555  *      the given physical map structure, and having
556  *      the given lower and upper address bounds.
557  */
558 vm_map_t
559 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
560 {
561         vm_map_t result;
562
563         result = uma_zalloc(mapzone, M_WAITOK);
564         CTR1(KTR_VM, "vm_map_create: %p", result);
565         _vm_map_init(result, min, max);
566         result->pmap = pmap;
567         return (result);
568 }
569
570 /*
571  * Initialize an existing vm_map structure
572  * such as that in the vmspace structure.
573  * The pmap is set elsewhere.
574  */
575 static void
576 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
577 {
578
579         map->header.next = map->header.prev = &map->header;
580         map->needs_wakeup = FALSE;
581         map->system_map = 0;
582         map->min_offset = min;
583         map->max_offset = max;
584         map->flags = 0;
585         map->root = NULL;
586         map->timestamp = 0;
587 }
588
589 void
590 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
591 {
592         _vm_map_init(map, min, max);
593         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
594         sx_init(&map->lock, "user map");
595 }
596
597 /*
598  *      vm_map_entry_dispose:   [ internal use only ]
599  *
600  *      Inverse of vm_map_entry_create.
601  */
602 static void
603 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
604 {
605         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
606 }
607
608 /*
609  *      vm_map_entry_create:    [ internal use only ]
610  *
611  *      Allocates a VM map entry for insertion.
612  *      No entry fields are filled in.
613  */
614 static vm_map_entry_t
615 vm_map_entry_create(vm_map_t map)
616 {
617         vm_map_entry_t new_entry;
618
619         if (map->system_map)
620                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
621         else
622                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
623         if (new_entry == NULL)
624                 panic("vm_map_entry_create: kernel resources exhausted");
625         return (new_entry);
626 }
627
628 /*
629  *      vm_map_entry_set_behavior:
630  *
631  *      Set the expected access behavior, either normal, random, or
632  *      sequential.
633  */
634 static inline void
635 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
636 {
637         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
638             (behavior & MAP_ENTRY_BEHAV_MASK);
639 }
640
641 /*
642  *      vm_map_entry_set_max_free:
643  *
644  *      Set the max_free field in a vm_map_entry.
645  */
646 static inline void
647 vm_map_entry_set_max_free(vm_map_entry_t entry)
648 {
649
650         entry->max_free = entry->adj_free;
651         if (entry->left != NULL && entry->left->max_free > entry->max_free)
652                 entry->max_free = entry->left->max_free;
653         if (entry->right != NULL && entry->right->max_free > entry->max_free)
654                 entry->max_free = entry->right->max_free;
655 }
656
657 /*
658  *      vm_map_entry_splay:
659  *
660  *      The Sleator and Tarjan top-down splay algorithm with the
661  *      following variation.  Max_free must be computed bottom-up, so
662  *      on the downward pass, maintain the left and right spines in
663  *      reverse order.  Then, make a second pass up each side to fix
664  *      the pointers and compute max_free.  The time bound is O(log n)
665  *      amortized.
666  *
667  *      The new root is the vm_map_entry containing "addr", or else an
668  *      adjacent entry (lower or higher) if addr is not in the tree.
669  *
670  *      The map must be locked, and leaves it so.
671  *
672  *      Returns: the new root.
673  */
674 static vm_map_entry_t
675 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
676 {
677         vm_map_entry_t llist, rlist;
678         vm_map_entry_t ltree, rtree;
679         vm_map_entry_t y;
680
681         /* Special case of empty tree. */
682         if (root == NULL)
683                 return (root);
684
685         /*
686          * Pass One: Splay down the tree until we find addr or a NULL
687          * pointer where addr would go.  llist and rlist are the two
688          * sides in reverse order (bottom-up), with llist linked by
689          * the right pointer and rlist linked by the left pointer in
690          * the vm_map_entry.  Wait until Pass Two to set max_free on
691          * the two spines.
692          */
693         llist = NULL;
694         rlist = NULL;
695         for (;;) {
696                 /* root is never NULL in here. */
697                 if (addr < root->start) {
698                         y = root->left;
699                         if (y == NULL)
700                                 break;
701                         if (addr < y->start && y->left != NULL) {
702                                 /* Rotate right and put y on rlist. */
703                                 root->left = y->right;
704                                 y->right = root;
705                                 vm_map_entry_set_max_free(root);
706                                 root = y->left;
707                                 y->left = rlist;
708                                 rlist = y;
709                         } else {
710                                 /* Put root on rlist. */
711                                 root->left = rlist;
712                                 rlist = root;
713                                 root = y;
714                         }
715                 } else {
716                         y = root->right;
717                         if (addr < root->end || y == NULL)
718                                 break;
719                         if (addr >= y->end && y->right != NULL) {
720                                 /* Rotate left and put y on llist. */
721                                 root->right = y->left;
722                                 y->left = root;
723                                 vm_map_entry_set_max_free(root);
724                                 root = y->right;
725                                 y->right = llist;
726                                 llist = y;
727                         } else {
728                                 /* Put root on llist. */
729                                 root->right = llist;
730                                 llist = root;
731                                 root = y;
732                         }
733                 }
734         }
735
736         /*
737          * Pass Two: Walk back up the two spines, flip the pointers
738          * and set max_free.  The subtrees of the root go at the
739          * bottom of llist and rlist.
740          */
741         ltree = root->left;
742         while (llist != NULL) {
743                 y = llist->right;
744                 llist->right = ltree;
745                 vm_map_entry_set_max_free(llist);
746                 ltree = llist;
747                 llist = y;
748         }
749         rtree = root->right;
750         while (rlist != NULL) {
751                 y = rlist->left;
752                 rlist->left = rtree;
753                 vm_map_entry_set_max_free(rlist);
754                 rtree = rlist;
755                 rlist = y;
756         }
757
758         /*
759          * Final assembly: add ltree and rtree as subtrees of root.
760          */
761         root->left = ltree;
762         root->right = rtree;
763         vm_map_entry_set_max_free(root);
764
765         return (root);
766 }
767
768 /*
769  *      vm_map_entry_{un,}link:
770  *
771  *      Insert/remove entries from maps.
772  */
773 static void
774 vm_map_entry_link(vm_map_t map,
775                   vm_map_entry_t after_where,
776                   vm_map_entry_t entry)
777 {
778
779         CTR4(KTR_VM,
780             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
781             map->nentries, entry, after_where);
782         map->nentries++;
783         entry->prev = after_where;
784         entry->next = after_where->next;
785         entry->next->prev = entry;
786         after_where->next = entry;
787
788         if (after_where != &map->header) {
789                 if (after_where != map->root)
790                         vm_map_entry_splay(after_where->start, map->root);
791                 entry->right = after_where->right;
792                 entry->left = after_where;
793                 after_where->right = NULL;
794                 after_where->adj_free = entry->start - after_where->end;
795                 vm_map_entry_set_max_free(after_where);
796         } else {
797                 entry->right = map->root;
798                 entry->left = NULL;
799         }
800         entry->adj_free = (entry->next == &map->header ? map->max_offset :
801             entry->next->start) - entry->end;
802         vm_map_entry_set_max_free(entry);
803         map->root = entry;
804 }
805
806 static void
807 vm_map_entry_unlink(vm_map_t map,
808                     vm_map_entry_t entry)
809 {
810         vm_map_entry_t next, prev, root;
811
812         if (entry != map->root)
813                 vm_map_entry_splay(entry->start, map->root);
814         if (entry->left == NULL)
815                 root = entry->right;
816         else {
817                 root = vm_map_entry_splay(entry->start, entry->left);
818                 root->right = entry->right;
819                 root->adj_free = (entry->next == &map->header ? map->max_offset :
820                     entry->next->start) - root->end;
821                 vm_map_entry_set_max_free(root);
822         }
823         map->root = root;
824
825         prev = entry->prev;
826         next = entry->next;
827         next->prev = prev;
828         prev->next = next;
829         map->nentries--;
830         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
831             map->nentries, entry);
832 }
833
834 /*
835  *      vm_map_entry_resize_free:
836  *
837  *      Recompute the amount of free space following a vm_map_entry
838  *      and propagate that value up the tree.  Call this function after
839  *      resizing a map entry in-place, that is, without a call to
840  *      vm_map_entry_link() or _unlink().
841  *
842  *      The map must be locked, and leaves it so.
843  */
844 static void
845 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
846 {
847
848         /*
849          * Using splay trees without parent pointers, propagating
850          * max_free up the tree is done by moving the entry to the
851          * root and making the change there.
852          */
853         if (entry != map->root)
854                 map->root = vm_map_entry_splay(entry->start, map->root);
855
856         entry->adj_free = (entry->next == &map->header ? map->max_offset :
857             entry->next->start) - entry->end;
858         vm_map_entry_set_max_free(entry);
859 }
860
861 /*
862  *      vm_map_lookup_entry:    [ internal use only ]
863  *
864  *      Finds the map entry containing (or
865  *      immediately preceding) the specified address
866  *      in the given map; the entry is returned
867  *      in the "entry" parameter.  The boolean
868  *      result indicates whether the address is
869  *      actually contained in the map.
870  */
871 boolean_t
872 vm_map_lookup_entry(
873         vm_map_t map,
874         vm_offset_t address,
875         vm_map_entry_t *entry)  /* OUT */
876 {
877         vm_map_entry_t cur;
878
879         cur = vm_map_entry_splay(address, map->root);
880         if (cur == NULL)
881                 *entry = &map->header;
882         else {
883                 map->root = cur;
884
885                 if (address >= cur->start) {
886                         *entry = cur;
887                         if (cur->end > address)
888                                 return (TRUE);
889                 } else
890                         *entry = cur->prev;
891         }
892         return (FALSE);
893 }
894
895 /*
896  *      vm_map_insert:
897  *
898  *      Inserts the given whole VM object into the target
899  *      map at the specified address range.  The object's
900  *      size should match that of the address range.
901  *
902  *      Requires that the map be locked, and leaves it so.
903  *
904  *      If object is non-NULL, ref count must be bumped by caller
905  *      prior to making call to account for the new entry.
906  */
907 int
908 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
909               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
910               int cow)
911 {
912         vm_map_entry_t new_entry;
913         vm_map_entry_t prev_entry;
914         vm_map_entry_t temp_entry;
915         vm_eflags_t protoeflags;
916
917         /*
918          * Check that the start and end points are not bogus.
919          */
920         if ((start < map->min_offset) || (end > map->max_offset) ||
921             (start >= end))
922                 return (KERN_INVALID_ADDRESS);
923
924         /*
925          * Find the entry prior to the proposed starting address; if it's part
926          * of an existing entry, this range is bogus.
927          */
928         if (vm_map_lookup_entry(map, start, &temp_entry))
929                 return (KERN_NO_SPACE);
930
931         prev_entry = temp_entry;
932
933         /*
934          * Assert that the next entry doesn't overlap the end point.
935          */
936         if ((prev_entry->next != &map->header) &&
937             (prev_entry->next->start < end))
938                 return (KERN_NO_SPACE);
939
940         protoeflags = 0;
941
942         if (cow & MAP_COPY_ON_WRITE)
943                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
944
945         if (cow & MAP_NOFAULT) {
946                 protoeflags |= MAP_ENTRY_NOFAULT;
947
948                 KASSERT(object == NULL,
949                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
950         }
951         if (cow & MAP_DISABLE_SYNCER)
952                 protoeflags |= MAP_ENTRY_NOSYNC;
953         if (cow & MAP_DISABLE_COREDUMP)
954                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
955
956         if (object != NULL) {
957                 /*
958                  * OBJ_ONEMAPPING must be cleared unless this mapping
959                  * is trivially proven to be the only mapping for any
960                  * of the object's pages.  (Object granularity
961                  * reference counting is insufficient to recognize
962                  * aliases with precision.)
963                  */
964                 VM_OBJECT_LOCK(object);
965                 if (object->ref_count > 1 || object->shadow_count != 0)
966                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
967                 VM_OBJECT_UNLOCK(object);
968         }
969         else if ((prev_entry != &map->header) &&
970                  (prev_entry->eflags == protoeflags) &&
971                  (prev_entry->end == start) &&
972                  (prev_entry->wired_count == 0) &&
973                  ((prev_entry->object.vm_object == NULL) ||
974                   vm_object_coalesce(prev_entry->object.vm_object,
975                                      prev_entry->offset,
976                                      (vm_size_t)(prev_entry->end - prev_entry->start),
977                                      (vm_size_t)(end - prev_entry->end)))) {
978                 /*
979                  * We were able to extend the object.  Determine if we
980                  * can extend the previous map entry to include the
981                  * new range as well.
982                  */
983                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
984                     (prev_entry->protection == prot) &&
985                     (prev_entry->max_protection == max)) {
986                         map->size += (end - prev_entry->end);
987                         prev_entry->end = end;
988                         vm_map_entry_resize_free(map, prev_entry);
989                         vm_map_simplify_entry(map, prev_entry);
990                         return (KERN_SUCCESS);
991                 }
992
993                 /*
994                  * If we can extend the object but cannot extend the
995                  * map entry, we have to create a new map entry.  We
996                  * must bump the ref count on the extended object to
997                  * account for it.  object may be NULL.
998                  */
999                 object = prev_entry->object.vm_object;
1000                 offset = prev_entry->offset +
1001                         (prev_entry->end - prev_entry->start);
1002                 vm_object_reference(object);
1003         }
1004
1005         /*
1006          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1007          * in things like the buffer map where we manage kva but do not manage
1008          * backing objects.
1009          */
1010
1011         /*
1012          * Create a new entry
1013          */
1014         new_entry = vm_map_entry_create(map);
1015         new_entry->start = start;
1016         new_entry->end = end;
1017
1018         new_entry->eflags = protoeflags;
1019         new_entry->object.vm_object = object;
1020         new_entry->offset = offset;
1021         new_entry->avail_ssize = 0;
1022
1023         new_entry->inheritance = VM_INHERIT_DEFAULT;
1024         new_entry->protection = prot;
1025         new_entry->max_protection = max;
1026         new_entry->wired_count = 0;
1027
1028         /*
1029          * Insert the new entry into the list
1030          */
1031         vm_map_entry_link(map, prev_entry, new_entry);
1032         map->size += new_entry->end - new_entry->start;
1033
1034 #if 0
1035         /*
1036          * Temporarily removed to avoid MAP_STACK panic, due to
1037          * MAP_STACK being a huge hack.  Will be added back in
1038          * when MAP_STACK (and the user stack mapping) is fixed.
1039          */
1040         /*
1041          * It may be possible to simplify the entry
1042          */
1043         vm_map_simplify_entry(map, new_entry);
1044 #endif
1045
1046         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1047                 vm_map_pmap_enter(map, start, prot,
1048                                     object, OFF_TO_IDX(offset), end - start,
1049                                     cow & MAP_PREFAULT_PARTIAL);
1050         }
1051
1052         return (KERN_SUCCESS);
1053 }
1054
1055 /*
1056  *      vm_map_findspace:
1057  *
1058  *      Find the first fit (lowest VM address) for "length" free bytes
1059  *      beginning at address >= start in the given map.
1060  *
1061  *      In a vm_map_entry, "adj_free" is the amount of free space
1062  *      adjacent (higher address) to this entry, and "max_free" is the
1063  *      maximum amount of contiguous free space in its subtree.  This
1064  *      allows finding a free region in one path down the tree, so
1065  *      O(log n) amortized with splay trees.
1066  *
1067  *      The map must be locked, and leaves it so.
1068  *
1069  *      Returns: 0 on success, and starting address in *addr,
1070  *               1 if insufficient space.
1071  */
1072 int
1073 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1074     vm_offset_t *addr)  /* OUT */
1075 {
1076         vm_map_entry_t entry;
1077         vm_offset_t end, st;
1078
1079         /*
1080          * Request must fit within min/max VM address and must avoid
1081          * address wrap.
1082          */
1083         if (start < map->min_offset)
1084                 start = map->min_offset;
1085         if (start + length > map->max_offset || start + length < start)
1086                 return (1);
1087
1088         /* Empty tree means wide open address space. */
1089         if (map->root == NULL) {
1090                 *addr = start;
1091                 goto found;
1092         }
1093
1094         /*
1095          * After splay, if start comes before root node, then there
1096          * must be a gap from start to the root.
1097          */
1098         map->root = vm_map_entry_splay(start, map->root);
1099         if (start + length <= map->root->start) {
1100                 *addr = start;
1101                 goto found;
1102         }
1103
1104         /*
1105          * Root is the last node that might begin its gap before
1106          * start, and this is the last comparison where address
1107          * wrap might be a problem.
1108          */
1109         st = (start > map->root->end) ? start : map->root->end;
1110         if (length <= map->root->end + map->root->adj_free - st) {
1111                 *addr = st;
1112                 goto found;
1113         }
1114
1115         /* With max_free, can immediately tell if no solution. */
1116         entry = map->root->right;
1117         if (entry == NULL || length > entry->max_free)
1118                 return (1);
1119
1120         /*
1121          * Search the right subtree in the order: left subtree, root,
1122          * right subtree (first fit).  The previous splay implies that
1123          * all regions in the right subtree have addresses > start.
1124          */
1125         while (entry != NULL) {
1126                 if (entry->left != NULL && entry->left->max_free >= length)
1127                         entry = entry->left;
1128                 else if (entry->adj_free >= length) {
1129                         *addr = entry->end;
1130                         goto found;
1131                 } else
1132                         entry = entry->right;
1133         }
1134
1135         /* Can't get here, so panic if we do. */
1136         panic("vm_map_findspace: max_free corrupt");
1137
1138 found:
1139         /* Expand the kernel pmap, if necessary. */
1140         if (map == kernel_map) {
1141                 end = round_page(*addr + length);
1142                 if (end > kernel_vm_end)
1143                         pmap_growkernel(end);
1144         }
1145         return (0);
1146 }
1147
1148 /*
1149  *      vm_map_find finds an unallocated region in the target address
1150  *      map with the given length.  The search is defined to be
1151  *      first-fit from the specified address; the region found is
1152  *      returned in the same parameter.
1153  *
1154  *      If object is non-NULL, ref count must be bumped by caller
1155  *      prior to making call to account for the new entry.
1156  */
1157 int
1158 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1159             vm_offset_t *addr,  /* IN/OUT */
1160             vm_size_t length, boolean_t find_space, vm_prot_t prot,
1161             vm_prot_t max, int cow)
1162 {
1163         vm_offset_t start;
1164         int result;
1165
1166         start = *addr;
1167         vm_map_lock(map);
1168         if (find_space) {
1169                 if (vm_map_findspace(map, start, length, addr)) {
1170                         vm_map_unlock(map);
1171                         return (KERN_NO_SPACE);
1172                 }
1173                 start = *addr;
1174         }
1175         result = vm_map_insert(map, object, offset,
1176                 start, start + length, prot, max, cow);
1177         vm_map_unlock(map);
1178         return (result);
1179 }
1180
1181 /*
1182  *      vm_map_simplify_entry:
1183  *
1184  *      Simplify the given map entry by merging with either neighbor.  This
1185  *      routine also has the ability to merge with both neighbors.
1186  *
1187  *      The map must be locked.
1188  *
1189  *      This routine guarentees that the passed entry remains valid (though
1190  *      possibly extended).  When merging, this routine may delete one or
1191  *      both neighbors.
1192  */
1193 void
1194 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1195 {
1196         vm_map_entry_t next, prev;
1197         vm_size_t prevsize, esize;
1198
1199         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1200                 return;
1201
1202         prev = entry->prev;
1203         if (prev != &map->header) {
1204                 prevsize = prev->end - prev->start;
1205                 if ( (prev->end == entry->start) &&
1206                      (prev->object.vm_object == entry->object.vm_object) &&
1207                      (!prev->object.vm_object ||
1208                         (prev->offset + prevsize == entry->offset)) &&
1209                      (prev->eflags == entry->eflags) &&
1210                      (prev->protection == entry->protection) &&
1211                      (prev->max_protection == entry->max_protection) &&
1212                      (prev->inheritance == entry->inheritance) &&
1213                      (prev->wired_count == entry->wired_count)) {
1214                         vm_map_entry_unlink(map, prev);
1215                         entry->start = prev->start;
1216                         entry->offset = prev->offset;
1217                         if (entry->prev != &map->header)
1218                                 vm_map_entry_resize_free(map, entry->prev);
1219                         if (prev->object.vm_object)
1220                                 vm_object_deallocate(prev->object.vm_object);
1221                         vm_map_entry_dispose(map, prev);
1222                 }
1223         }
1224
1225         next = entry->next;
1226         if (next != &map->header) {
1227                 esize = entry->end - entry->start;
1228                 if ((entry->end == next->start) &&
1229                     (next->object.vm_object == entry->object.vm_object) &&
1230                      (!entry->object.vm_object ||
1231                         (entry->offset + esize == next->offset)) &&
1232                     (next->eflags == entry->eflags) &&
1233                     (next->protection == entry->protection) &&
1234                     (next->max_protection == entry->max_protection) &&
1235                     (next->inheritance == entry->inheritance) &&
1236                     (next->wired_count == entry->wired_count)) {
1237                         vm_map_entry_unlink(map, next);
1238                         entry->end = next->end;
1239                         vm_map_entry_resize_free(map, entry);
1240                         if (next->object.vm_object)
1241                                 vm_object_deallocate(next->object.vm_object);
1242                         vm_map_entry_dispose(map, next);
1243                 }
1244         }
1245 }
1246 /*
1247  *      vm_map_clip_start:      [ internal use only ]
1248  *
1249  *      Asserts that the given entry begins at or after
1250  *      the specified address; if necessary,
1251  *      it splits the entry into two.
1252  */
1253 #define vm_map_clip_start(map, entry, startaddr) \
1254 { \
1255         if (startaddr > entry->start) \
1256                 _vm_map_clip_start(map, entry, startaddr); \
1257 }
1258
1259 /*
1260  *      This routine is called only when it is known that
1261  *      the entry must be split.
1262  */
1263 static void
1264 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1265 {
1266         vm_map_entry_t new_entry;
1267
1268         /*
1269          * Split off the front portion -- note that we must insert the new
1270          * entry BEFORE this one, so that this entry has the specified
1271          * starting address.
1272          */
1273         vm_map_simplify_entry(map, entry);
1274
1275         /*
1276          * If there is no object backing this entry, we might as well create
1277          * one now.  If we defer it, an object can get created after the map
1278          * is clipped, and individual objects will be created for the split-up
1279          * map.  This is a bit of a hack, but is also about the best place to
1280          * put this improvement.
1281          */
1282         if (entry->object.vm_object == NULL && !map->system_map) {
1283                 vm_object_t object;
1284                 object = vm_object_allocate(OBJT_DEFAULT,
1285                                 atop(entry->end - entry->start));
1286                 entry->object.vm_object = object;
1287                 entry->offset = 0;
1288         }
1289
1290         new_entry = vm_map_entry_create(map);
1291         *new_entry = *entry;
1292
1293         new_entry->end = start;
1294         entry->offset += (start - entry->start);
1295         entry->start = start;
1296
1297         vm_map_entry_link(map, entry->prev, new_entry);
1298
1299         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1300                 vm_object_reference(new_entry->object.vm_object);
1301         }
1302 }
1303
1304 /*
1305  *      vm_map_clip_end:        [ internal use only ]
1306  *
1307  *      Asserts that the given entry ends at or before
1308  *      the specified address; if necessary,
1309  *      it splits the entry into two.
1310  */
1311 #define vm_map_clip_end(map, entry, endaddr) \
1312 { \
1313         if ((endaddr) < (entry->end)) \
1314                 _vm_map_clip_end((map), (entry), (endaddr)); \
1315 }
1316
1317 /*
1318  *      This routine is called only when it is known that
1319  *      the entry must be split.
1320  */
1321 static void
1322 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1323 {
1324         vm_map_entry_t new_entry;
1325
1326         /*
1327          * If there is no object backing this entry, we might as well create
1328          * one now.  If we defer it, an object can get created after the map
1329          * is clipped, and individual objects will be created for the split-up
1330          * map.  This is a bit of a hack, but is also about the best place to
1331          * put this improvement.
1332          */
1333         if (entry->object.vm_object == NULL && !map->system_map) {
1334                 vm_object_t object;
1335                 object = vm_object_allocate(OBJT_DEFAULT,
1336                                 atop(entry->end - entry->start));
1337                 entry->object.vm_object = object;
1338                 entry->offset = 0;
1339         }
1340
1341         /*
1342          * Create a new entry and insert it AFTER the specified entry
1343          */
1344         new_entry = vm_map_entry_create(map);
1345         *new_entry = *entry;
1346
1347         new_entry->start = entry->end = end;
1348         new_entry->offset += (end - entry->start);
1349
1350         vm_map_entry_link(map, entry, new_entry);
1351
1352         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1353                 vm_object_reference(new_entry->object.vm_object);
1354         }
1355 }
1356
1357 /*
1358  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1359  *
1360  *      Asserts that the starting and ending region
1361  *      addresses fall within the valid range of the map.
1362  */
1363 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1364                 {                                       \
1365                 if (start < vm_map_min(map))            \
1366                         start = vm_map_min(map);        \
1367                 if (end > vm_map_max(map))              \
1368                         end = vm_map_max(map);          \
1369                 if (start > end)                        \
1370                         start = end;                    \
1371                 }
1372
1373 /*
1374  *      vm_map_submap:          [ kernel use only ]
1375  *
1376  *      Mark the given range as handled by a subordinate map.
1377  *
1378  *      This range must have been created with vm_map_find,
1379  *      and no other operations may have been performed on this
1380  *      range prior to calling vm_map_submap.
1381  *
1382  *      Only a limited number of operations can be performed
1383  *      within this rage after calling vm_map_submap:
1384  *              vm_fault
1385  *      [Don't try vm_map_copy!]
1386  *
1387  *      To remove a submapping, one must first remove the
1388  *      range from the superior map, and then destroy the
1389  *      submap (if desired).  [Better yet, don't try it.]
1390  */
1391 int
1392 vm_map_submap(
1393         vm_map_t map,
1394         vm_offset_t start,
1395         vm_offset_t end,
1396         vm_map_t submap)
1397 {
1398         vm_map_entry_t entry;
1399         int result = KERN_INVALID_ARGUMENT;
1400
1401         vm_map_lock(map);
1402
1403         VM_MAP_RANGE_CHECK(map, start, end);
1404
1405         if (vm_map_lookup_entry(map, start, &entry)) {
1406                 vm_map_clip_start(map, entry, start);
1407         } else
1408                 entry = entry->next;
1409
1410         vm_map_clip_end(map, entry, end);
1411
1412         if ((entry->start == start) && (entry->end == end) &&
1413             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1414             (entry->object.vm_object == NULL)) {
1415                 entry->object.sub_map = submap;
1416                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1417                 result = KERN_SUCCESS;
1418         }
1419         vm_map_unlock(map);
1420
1421         return (result);
1422 }
1423
1424 /*
1425  * The maximum number of pages to map
1426  */
1427 #define MAX_INIT_PT     96
1428
1429 /*
1430  *      vm_map_pmap_enter:
1431  *
1432  *      Preload read-only mappings for the given object into the specified
1433  *      map.  This eliminates the soft faults on process startup and
1434  *      immediately after an mmap(2).
1435  */
1436 void
1437 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1438     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1439 {
1440         vm_offset_t start, tmpidx;
1441         int psize;
1442         vm_page_t p, p_start;
1443         boolean_t are_queues_locked;
1444
1445         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1446                 return;
1447         VM_OBJECT_LOCK(object);
1448         if (object->type == OBJT_DEVICE) {
1449                 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1450                 goto unlock_return;
1451         }
1452
1453         psize = atop(size);
1454
1455         if (object->type != OBJT_VNODE ||
1456             ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1457              (object->resident_page_count > MAX_INIT_PT))) {
1458                 goto unlock_return;
1459         }
1460
1461         if (psize + pindex > object->size) {
1462                 if (object->size < pindex)
1463                         goto unlock_return;
1464                 psize = object->size - pindex;
1465         }
1466
1467         are_queues_locked = FALSE;
1468         start = 0;
1469         p_start = NULL;
1470
1471         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1472                 if (p->pindex < pindex) {
1473                         p = vm_page_splay(pindex, object->root);
1474                         if ((object->root = p)->pindex < pindex)
1475                                 p = TAILQ_NEXT(p, listq);
1476                 }
1477         }
1478         /*
1479          * Assert: the variable p is either (1) the page with the
1480          * least pindex greater than or equal to the parameter pindex
1481          * or (2) NULL.
1482          */
1483         for (;
1484              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1485              p = TAILQ_NEXT(p, listq)) {
1486                 /*
1487                  * don't allow an madvise to blow away our really
1488                  * free pages allocating pv entries.
1489                  */
1490                 if ((flags & MAP_PREFAULT_MADVISE) &&
1491                     cnt.v_free_count < cnt.v_free_reserved) {
1492                         psize = tmpidx;
1493                         break;
1494                 }
1495                 if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1496                     (p->busy == 0) &&
1497                     (p->flags & PG_FICTITIOUS) == 0) {
1498                         if (p_start == NULL) {
1499                                 start = addr + ptoa(tmpidx);
1500                                 p_start = p;
1501                         }
1502                         if (!are_queues_locked) {
1503                                 are_queues_locked = TRUE;
1504                                 vm_page_lock_queues();
1505                         }
1506                         if (VM_PAGE_INQUEUE1(p, PQ_CACHE))
1507                                 vm_page_deactivate(p);
1508                 } else if (p_start != NULL) {
1509                         pmap_enter_object(map->pmap, start, addr +
1510                             ptoa(tmpidx), p_start, prot);
1511                         p_start = NULL;
1512                 }
1513         }
1514         if (p_start != NULL)
1515                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1516                     p_start, prot);
1517         if (are_queues_locked)
1518                 vm_page_unlock_queues();
1519 unlock_return:
1520         VM_OBJECT_UNLOCK(object);
1521 }
1522
1523 /*
1524  *      vm_map_protect:
1525  *
1526  *      Sets the protection of the specified address
1527  *      region in the target map.  If "set_max" is
1528  *      specified, the maximum protection is to be set;
1529  *      otherwise, only the current protection is affected.
1530  */
1531 int
1532 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1533                vm_prot_t new_prot, boolean_t set_max)
1534 {
1535         vm_map_entry_t current;
1536         vm_map_entry_t entry;
1537
1538         vm_map_lock(map);
1539
1540         VM_MAP_RANGE_CHECK(map, start, end);
1541
1542         if (vm_map_lookup_entry(map, start, &entry)) {
1543                 vm_map_clip_start(map, entry, start);
1544         } else {
1545                 entry = entry->next;
1546         }
1547
1548         /*
1549          * Make a first pass to check for protection violations.
1550          */
1551         current = entry;
1552         while ((current != &map->header) && (current->start < end)) {
1553                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1554                         vm_map_unlock(map);
1555                         return (KERN_INVALID_ARGUMENT);
1556                 }
1557                 if ((new_prot & current->max_protection) != new_prot) {
1558                         vm_map_unlock(map);
1559                         return (KERN_PROTECTION_FAILURE);
1560                 }
1561                 current = current->next;
1562         }
1563
1564         /*
1565          * Go back and fix up protections. [Note that clipping is not
1566          * necessary the second time.]
1567          */
1568         current = entry;
1569         while ((current != &map->header) && (current->start < end)) {
1570                 vm_prot_t old_prot;
1571
1572                 vm_map_clip_end(map, current, end);
1573
1574                 old_prot = current->protection;
1575                 if (set_max)
1576                         current->protection =
1577                             (current->max_protection = new_prot) &
1578                             old_prot;
1579                 else
1580                         current->protection = new_prot;
1581
1582                 /*
1583                  * Update physical map if necessary. Worry about copy-on-write
1584                  * here -- CHECK THIS XXX
1585                  */
1586                 if (current->protection != old_prot) {
1587 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1588                                                         VM_PROT_ALL)
1589                         pmap_protect(map->pmap, current->start,
1590                             current->end,
1591                             current->protection & MASK(current));
1592 #undef  MASK
1593                 }
1594                 vm_map_simplify_entry(map, current);
1595                 current = current->next;
1596         }
1597         vm_map_unlock(map);
1598         return (KERN_SUCCESS);
1599 }
1600
1601 /*
1602  *      vm_map_madvise:
1603  *
1604  *      This routine traverses a processes map handling the madvise
1605  *      system call.  Advisories are classified as either those effecting
1606  *      the vm_map_entry structure, or those effecting the underlying
1607  *      objects.
1608  */
1609 int
1610 vm_map_madvise(
1611         vm_map_t map,
1612         vm_offset_t start,
1613         vm_offset_t end,
1614         int behav)
1615 {
1616         vm_map_entry_t current, entry;
1617         int modify_map = 0;
1618
1619         /*
1620          * Some madvise calls directly modify the vm_map_entry, in which case
1621          * we need to use an exclusive lock on the map and we need to perform
1622          * various clipping operations.  Otherwise we only need a read-lock
1623          * on the map.
1624          */
1625         switch(behav) {
1626         case MADV_NORMAL:
1627         case MADV_SEQUENTIAL:
1628         case MADV_RANDOM:
1629         case MADV_NOSYNC:
1630         case MADV_AUTOSYNC:
1631         case MADV_NOCORE:
1632         case MADV_CORE:
1633                 modify_map = 1;
1634                 vm_map_lock(map);
1635                 break;
1636         case MADV_WILLNEED:
1637         case MADV_DONTNEED:
1638         case MADV_FREE:
1639                 vm_map_lock_read(map);
1640                 break;
1641         default:
1642                 return (KERN_INVALID_ARGUMENT);
1643         }
1644
1645         /*
1646          * Locate starting entry and clip if necessary.
1647          */
1648         VM_MAP_RANGE_CHECK(map, start, end);
1649
1650         if (vm_map_lookup_entry(map, start, &entry)) {
1651                 if (modify_map)
1652                         vm_map_clip_start(map, entry, start);
1653         } else {
1654                 entry = entry->next;
1655         }
1656
1657         if (modify_map) {
1658                 /*
1659                  * madvise behaviors that are implemented in the vm_map_entry.
1660                  *
1661                  * We clip the vm_map_entry so that behavioral changes are
1662                  * limited to the specified address range.
1663                  */
1664                 for (current = entry;
1665                      (current != &map->header) && (current->start < end);
1666                      current = current->next
1667                 ) {
1668                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1669                                 continue;
1670
1671                         vm_map_clip_end(map, current, end);
1672
1673                         switch (behav) {
1674                         case MADV_NORMAL:
1675                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1676                                 break;
1677                         case MADV_SEQUENTIAL:
1678                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1679                                 break;
1680                         case MADV_RANDOM:
1681                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1682                                 break;
1683                         case MADV_NOSYNC:
1684                                 current->eflags |= MAP_ENTRY_NOSYNC;
1685                                 break;
1686                         case MADV_AUTOSYNC:
1687                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1688                                 break;
1689                         case MADV_NOCORE:
1690                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1691                                 break;
1692                         case MADV_CORE:
1693                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1694                                 break;
1695                         default:
1696                                 break;
1697                         }
1698                         vm_map_simplify_entry(map, current);
1699                 }
1700                 vm_map_unlock(map);
1701         } else {
1702                 vm_pindex_t pindex;
1703                 int count;
1704
1705                 /*
1706                  * madvise behaviors that are implemented in the underlying
1707                  * vm_object.
1708                  *
1709                  * Since we don't clip the vm_map_entry, we have to clip
1710                  * the vm_object pindex and count.
1711                  */
1712                 for (current = entry;
1713                      (current != &map->header) && (current->start < end);
1714                      current = current->next
1715                 ) {
1716                         vm_offset_t useStart;
1717
1718                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1719                                 continue;
1720
1721                         pindex = OFF_TO_IDX(current->offset);
1722                         count = atop(current->end - current->start);
1723                         useStart = current->start;
1724
1725                         if (current->start < start) {
1726                                 pindex += atop(start - current->start);
1727                                 count -= atop(start - current->start);
1728                                 useStart = start;
1729                         }
1730                         if (current->end > end)
1731                                 count -= atop(current->end - end);
1732
1733                         if (count <= 0)
1734                                 continue;
1735
1736                         vm_object_madvise(current->object.vm_object,
1737                                           pindex, count, behav);
1738                         if (behav == MADV_WILLNEED) {
1739                                 vm_map_pmap_enter(map,
1740                                     useStart,
1741                                     current->protection,
1742                                     current->object.vm_object,
1743                                     pindex,
1744                                     (count << PAGE_SHIFT),
1745                                     MAP_PREFAULT_MADVISE
1746                                 );
1747                         }
1748                 }
1749                 vm_map_unlock_read(map);
1750         }
1751         return (0);
1752 }
1753
1754
1755 /*
1756  *      vm_map_inherit:
1757  *
1758  *      Sets the inheritance of the specified address
1759  *      range in the target map.  Inheritance
1760  *      affects how the map will be shared with
1761  *      child maps at the time of vm_map_fork.
1762  */
1763 int
1764 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1765                vm_inherit_t new_inheritance)
1766 {
1767         vm_map_entry_t entry;
1768         vm_map_entry_t temp_entry;
1769
1770         switch (new_inheritance) {
1771         case VM_INHERIT_NONE:
1772         case VM_INHERIT_COPY:
1773         case VM_INHERIT_SHARE:
1774                 break;
1775         default:
1776                 return (KERN_INVALID_ARGUMENT);
1777         }
1778         vm_map_lock(map);
1779         VM_MAP_RANGE_CHECK(map, start, end);
1780         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1781                 entry = temp_entry;
1782                 vm_map_clip_start(map, entry, start);
1783         } else
1784                 entry = temp_entry->next;
1785         while ((entry != &map->header) && (entry->start < end)) {
1786                 vm_map_clip_end(map, entry, end);
1787                 entry->inheritance = new_inheritance;
1788                 vm_map_simplify_entry(map, entry);
1789                 entry = entry->next;
1790         }
1791         vm_map_unlock(map);
1792         return (KERN_SUCCESS);
1793 }
1794
1795 /*
1796  *      vm_map_unwire:
1797  *
1798  *      Implements both kernel and user unwiring.
1799  */
1800 int
1801 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1802     int flags)
1803 {
1804         vm_map_entry_t entry, first_entry, tmp_entry;
1805         vm_offset_t saved_start;
1806         unsigned int last_timestamp;
1807         int rv;
1808         boolean_t need_wakeup, result, user_unwire;
1809
1810         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1811         vm_map_lock(map);
1812         VM_MAP_RANGE_CHECK(map, start, end);
1813         if (!vm_map_lookup_entry(map, start, &first_entry)) {
1814                 if (flags & VM_MAP_WIRE_HOLESOK)
1815                         first_entry = first_entry->next;
1816                 else {
1817                         vm_map_unlock(map);
1818                         return (KERN_INVALID_ADDRESS);
1819                 }
1820         }
1821         last_timestamp = map->timestamp;
1822         entry = first_entry;
1823         while (entry != &map->header && entry->start < end) {
1824                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1825                         /*
1826                          * We have not yet clipped the entry.
1827                          */
1828                         saved_start = (start >= entry->start) ? start :
1829                             entry->start;
1830                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1831                         if (vm_map_unlock_and_wait(map, user_unwire)) {
1832                                 /*
1833                                  * Allow interruption of user unwiring?
1834                                  */
1835                         }
1836                         vm_map_lock(map);
1837                         if (last_timestamp+1 != map->timestamp) {
1838                                 /*
1839                                  * Look again for the entry because the map was
1840                                  * modified while it was unlocked.
1841                                  * Specifically, the entry may have been
1842                                  * clipped, merged, or deleted.
1843                                  */
1844                                 if (!vm_map_lookup_entry(map, saved_start,
1845                                     &tmp_entry)) {
1846                                         if (flags & VM_MAP_WIRE_HOLESOK)
1847                                                 tmp_entry = tmp_entry->next;
1848                                         else {
1849                                                 if (saved_start == start) {
1850                                                         /*
1851                                                          * First_entry has been deleted.
1852                                                          */
1853                                                         vm_map_unlock(map);
1854                                                         return (KERN_INVALID_ADDRESS);
1855                                                 }
1856                                                 end = saved_start;
1857                                                 rv = KERN_INVALID_ADDRESS;
1858                                                 goto done;
1859                                         }
1860                                 }
1861                                 if (entry == first_entry)
1862                                         first_entry = tmp_entry;
1863                                 else
1864                                         first_entry = NULL;
1865                                 entry = tmp_entry;
1866                         }
1867                         last_timestamp = map->timestamp;
1868                         continue;
1869                 }
1870                 vm_map_clip_start(map, entry, start);
1871                 vm_map_clip_end(map, entry, end);
1872                 /*
1873                  * Mark the entry in case the map lock is released.  (See
1874                  * above.)
1875                  */
1876                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1877                 /*
1878                  * Check the map for holes in the specified region.
1879                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
1880                  */
1881                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
1882                     (entry->end < end && (entry->next == &map->header ||
1883                     entry->next->start > entry->end))) {
1884                         end = entry->end;
1885                         rv = KERN_INVALID_ADDRESS;
1886                         goto done;
1887                 }
1888                 /*
1889                  * If system unwiring, require that the entry is system wired.
1890                  */
1891                 if (!user_unwire &&
1892                     vm_map_entry_system_wired_count(entry) == 0) {
1893                         end = entry->end;
1894                         rv = KERN_INVALID_ARGUMENT;
1895                         goto done;
1896                 }
1897                 entry = entry->next;
1898         }
1899         rv = KERN_SUCCESS;
1900 done:
1901         need_wakeup = FALSE;
1902         if (first_entry == NULL) {
1903                 result = vm_map_lookup_entry(map, start, &first_entry);
1904                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
1905                         first_entry = first_entry->next;
1906                 else
1907                         KASSERT(result, ("vm_map_unwire: lookup failed"));
1908         }
1909         entry = first_entry;
1910         while (entry != &map->header && entry->start < end) {
1911                 if (rv == KERN_SUCCESS && (!user_unwire ||
1912                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
1913                         if (user_unwire)
1914                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1915                         entry->wired_count--;
1916                         if (entry->wired_count == 0) {
1917                                 /*
1918                                  * Retain the map lock.
1919                                  */
1920                                 vm_fault_unwire(map, entry->start, entry->end,
1921                                     entry->object.vm_object != NULL &&
1922                                     entry->object.vm_object->type == OBJT_DEVICE);
1923                         }
1924                 }
1925                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1926                         ("vm_map_unwire: in-transition flag missing"));
1927                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1928                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1929                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1930                         need_wakeup = TRUE;
1931                 }
1932                 vm_map_simplify_entry(map, entry);
1933                 entry = entry->next;
1934         }
1935         vm_map_unlock(map);
1936         if (need_wakeup)
1937                 vm_map_wakeup(map);
1938         return (rv);
1939 }
1940
1941 /*
1942  *      vm_map_wire:
1943  *
1944  *      Implements both kernel and user wiring.
1945  */
1946 int
1947 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1948     int flags)
1949 {
1950         vm_map_entry_t entry, first_entry, tmp_entry;
1951         vm_offset_t saved_end, saved_start;
1952         unsigned int last_timestamp;
1953         int rv;
1954         boolean_t fictitious, need_wakeup, result, user_wire;
1955
1956         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1957         vm_map_lock(map);
1958         VM_MAP_RANGE_CHECK(map, start, end);
1959         if (!vm_map_lookup_entry(map, start, &first_entry)) {
1960                 if (flags & VM_MAP_WIRE_HOLESOK)
1961                         first_entry = first_entry->next;
1962                 else {
1963                         vm_map_unlock(map);
1964                         return (KERN_INVALID_ADDRESS);
1965                 }
1966         }
1967         last_timestamp = map->timestamp;
1968         entry = first_entry;
1969         while (entry != &map->header && entry->start < end) {
1970                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1971                         /*
1972                          * We have not yet clipped the entry.
1973                          */
1974                         saved_start = (start >= entry->start) ? start :
1975                             entry->start;
1976                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1977                         if (vm_map_unlock_and_wait(map, user_wire)) {
1978                                 /*
1979                                  * Allow interruption of user wiring?
1980                                  */
1981                         }
1982                         vm_map_lock(map);
1983                         if (last_timestamp + 1 != map->timestamp) {
1984                                 /*
1985                                  * Look again for the entry because the map was
1986                                  * modified while it was unlocked.
1987                                  * Specifically, the entry may have been
1988                                  * clipped, merged, or deleted.
1989                                  */
1990                                 if (!vm_map_lookup_entry(map, saved_start,
1991                                     &tmp_entry)) {
1992                                         if (flags & VM_MAP_WIRE_HOLESOK)
1993                                                 tmp_entry = tmp_entry->next;
1994                                         else {
1995                                                 if (saved_start == start) {
1996                                                         /*
1997                                                          * first_entry has been deleted.
1998                                                          */
1999                                                         vm_map_unlock(map);
2000                                                         return (KERN_INVALID_ADDRESS);
2001                                                 }
2002                                                 end = saved_start;
2003                                                 rv = KERN_INVALID_ADDRESS;
2004                                                 goto done;
2005                                         }
2006                                 }
2007                                 if (entry == first_entry)
2008                                         first_entry = tmp_entry;
2009                                 else
2010                                         first_entry = NULL;
2011                                 entry = tmp_entry;
2012                         }
2013                         last_timestamp = map->timestamp;
2014                         continue;
2015                 }
2016                 vm_map_clip_start(map, entry, start);
2017                 vm_map_clip_end(map, entry, end);
2018                 /*
2019                  * Mark the entry in case the map lock is released.  (See
2020                  * above.)
2021                  */
2022                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2023                 /*
2024                  *
2025                  */
2026                 if (entry->wired_count == 0) {
2027                         entry->wired_count++;
2028                         saved_start = entry->start;
2029                         saved_end = entry->end;
2030                         fictitious = entry->object.vm_object != NULL &&
2031                             entry->object.vm_object->type == OBJT_DEVICE;
2032                         /*
2033                          * Release the map lock, relying on the in-transition
2034                          * mark.
2035                          */
2036                         vm_map_unlock(map);
2037                         rv = vm_fault_wire(map, saved_start, saved_end,
2038                             user_wire, fictitious);
2039                         vm_map_lock(map);
2040                         if (last_timestamp + 1 != map->timestamp) {
2041                                 /*
2042                                  * Look again for the entry because the map was
2043                                  * modified while it was unlocked.  The entry
2044                                  * may have been clipped, but NOT merged or
2045                                  * deleted.
2046                                  */
2047                                 result = vm_map_lookup_entry(map, saved_start,
2048                                     &tmp_entry);
2049                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2050                                 if (entry == first_entry)
2051                                         first_entry = tmp_entry;
2052                                 else
2053                                         first_entry = NULL;
2054                                 entry = tmp_entry;
2055                                 while (entry->end < saved_end) {
2056                                         if (rv != KERN_SUCCESS) {
2057                                                 KASSERT(entry->wired_count == 1,
2058                                                     ("vm_map_wire: bad count"));
2059                                                 entry->wired_count = -1;
2060                                         }
2061                                         entry = entry->next;
2062                                 }
2063                         }
2064                         last_timestamp = map->timestamp;
2065                         if (rv != KERN_SUCCESS) {
2066                                 KASSERT(entry->wired_count == 1,
2067                                     ("vm_map_wire: bad count"));
2068                                 /*
2069                                  * Assign an out-of-range value to represent
2070                                  * the failure to wire this entry.
2071                                  */
2072                                 entry->wired_count = -1;
2073                                 end = entry->end;
2074                                 goto done;
2075                         }
2076                 } else if (!user_wire ||
2077                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2078                         entry->wired_count++;
2079                 }
2080                 /*
2081                  * Check the map for holes in the specified region.
2082                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2083                  */
2084                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2085                     (entry->end < end && (entry->next == &map->header ||
2086                     entry->next->start > entry->end))) {
2087                         end = entry->end;
2088                         rv = KERN_INVALID_ADDRESS;
2089                         goto done;
2090                 }
2091                 entry = entry->next;
2092         }
2093         rv = KERN_SUCCESS;
2094 done:
2095         need_wakeup = FALSE;
2096         if (first_entry == NULL) {
2097                 result = vm_map_lookup_entry(map, start, &first_entry);
2098                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2099                         first_entry = first_entry->next;
2100                 else
2101                         KASSERT(result, ("vm_map_wire: lookup failed"));
2102         }
2103         entry = first_entry;
2104         while (entry != &map->header && entry->start < end) {
2105                 if (rv == KERN_SUCCESS) {
2106                         if (user_wire)
2107                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2108                 } else if (entry->wired_count == -1) {
2109                         /*
2110                          * Wiring failed on this entry.  Thus, unwiring is
2111                          * unnecessary.
2112                          */
2113                         entry->wired_count = 0;
2114                 } else {
2115                         if (!user_wire ||
2116                             (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2117                                 entry->wired_count--;
2118                         if (entry->wired_count == 0) {
2119                                 /*
2120                                  * Retain the map lock.
2121                                  */
2122                                 vm_fault_unwire(map, entry->start, entry->end,
2123                                     entry->object.vm_object != NULL &&
2124                                     entry->object.vm_object->type == OBJT_DEVICE);
2125                         }
2126                 }
2127                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2128                         ("vm_map_wire: in-transition flag missing"));
2129                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2130                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2131                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2132                         need_wakeup = TRUE;
2133                 }
2134                 vm_map_simplify_entry(map, entry);
2135                 entry = entry->next;
2136         }
2137         vm_map_unlock(map);
2138         if (need_wakeup)
2139                 vm_map_wakeup(map);
2140         return (rv);
2141 }
2142
2143 /*
2144  * vm_map_sync
2145  *
2146  * Push any dirty cached pages in the address range to their pager.
2147  * If syncio is TRUE, dirty pages are written synchronously.
2148  * If invalidate is TRUE, any cached pages are freed as well.
2149  *
2150  * If the size of the region from start to end is zero, we are
2151  * supposed to flush all modified pages within the region containing
2152  * start.  Unfortunately, a region can be split or coalesced with
2153  * neighboring regions, making it difficult to determine what the
2154  * original region was.  Therefore, we approximate this requirement by
2155  * flushing the current region containing start.
2156  *
2157  * Returns an error if any part of the specified range is not mapped.
2158  */
2159 int
2160 vm_map_sync(
2161         vm_map_t map,
2162         vm_offset_t start,
2163         vm_offset_t end,
2164         boolean_t syncio,
2165         boolean_t invalidate)
2166 {
2167         vm_map_entry_t current;
2168         vm_map_entry_t entry;
2169         vm_size_t size;
2170         vm_object_t object;
2171         vm_ooffset_t offset;
2172
2173         vm_map_lock_read(map);
2174         VM_MAP_RANGE_CHECK(map, start, end);
2175         if (!vm_map_lookup_entry(map, start, &entry)) {
2176                 vm_map_unlock_read(map);
2177                 return (KERN_INVALID_ADDRESS);
2178         } else if (start == end) {
2179                 start = entry->start;
2180                 end = entry->end;
2181         }
2182         /*
2183          * Make a first pass to check for user-wired memory and holes.
2184          */
2185         for (current = entry; current->start < end; current = current->next) {
2186                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2187                         vm_map_unlock_read(map);
2188                         return (KERN_INVALID_ARGUMENT);
2189                 }
2190                 if (end > current->end &&
2191                     (current->next == &map->header ||
2192                         current->end != current->next->start)) {
2193                         vm_map_unlock_read(map);
2194                         return (KERN_INVALID_ADDRESS);
2195                 }
2196         }
2197
2198         if (invalidate)
2199                 pmap_remove(map->pmap, start, end);
2200
2201         /*
2202          * Make a second pass, cleaning/uncaching pages from the indicated
2203          * objects as we go.
2204          */
2205         for (current = entry; current->start < end; current = current->next) {
2206                 offset = current->offset + (start - current->start);
2207                 size = (end <= current->end ? end : current->end) - start;
2208                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2209                         vm_map_t smap;
2210                         vm_map_entry_t tentry;
2211                         vm_size_t tsize;
2212
2213                         smap = current->object.sub_map;
2214                         vm_map_lock_read(smap);
2215                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2216                         tsize = tentry->end - offset;
2217                         if (tsize < size)
2218                                 size = tsize;
2219                         object = tentry->object.vm_object;
2220                         offset = tentry->offset + (offset - tentry->start);
2221                         vm_map_unlock_read(smap);
2222                 } else {
2223                         object = current->object.vm_object;
2224                 }
2225                 vm_object_sync(object, offset, size, syncio, invalidate);
2226                 start += size;
2227         }
2228
2229         vm_map_unlock_read(map);
2230         return (KERN_SUCCESS);
2231 }
2232
2233 /*
2234  *      vm_map_entry_unwire:    [ internal use only ]
2235  *
2236  *      Make the region specified by this entry pageable.
2237  *
2238  *      The map in question should be locked.
2239  *      [This is the reason for this routine's existence.]
2240  */
2241 static void
2242 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2243 {
2244         vm_fault_unwire(map, entry->start, entry->end,
2245             entry->object.vm_object != NULL &&
2246             entry->object.vm_object->type == OBJT_DEVICE);
2247         entry->wired_count = 0;
2248 }
2249
2250 /*
2251  *      vm_map_entry_delete:    [ internal use only ]
2252  *
2253  *      Deallocate the given entry from the target map.
2254  */
2255 static void
2256 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2257 {
2258         vm_object_t object;
2259         vm_pindex_t offidxstart, offidxend, count;
2260
2261         vm_map_entry_unlink(map, entry);
2262         map->size -= entry->end - entry->start;
2263
2264         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2265             (object = entry->object.vm_object) != NULL) {
2266                 count = OFF_TO_IDX(entry->end - entry->start);
2267                 offidxstart = OFF_TO_IDX(entry->offset);
2268                 offidxend = offidxstart + count;
2269                 VM_OBJECT_LOCK(object);
2270                 if (object->ref_count != 1 &&
2271                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2272                      object == kernel_object || object == kmem_object) &&
2273                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2274                         vm_object_collapse(object);
2275                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2276                         if (object->type == OBJT_SWAP)
2277                                 swap_pager_freespace(object, offidxstart, count);
2278                         if (offidxend >= object->size &&
2279                             offidxstart < object->size)
2280                                 object->size = offidxstart;
2281                 }
2282                 VM_OBJECT_UNLOCK(object);
2283                 vm_object_deallocate(object);
2284         }
2285
2286         vm_map_entry_dispose(map, entry);
2287 }
2288
2289 /*
2290  *      vm_map_delete:  [ internal use only ]
2291  *
2292  *      Deallocates the given address range from the target
2293  *      map.
2294  */
2295 int
2296 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2297 {
2298         vm_map_entry_t entry;
2299         vm_map_entry_t first_entry;
2300
2301         /*
2302          * Find the start of the region, and clip it
2303          */
2304         if (!vm_map_lookup_entry(map, start, &first_entry))
2305                 entry = first_entry->next;
2306         else {
2307                 entry = first_entry;
2308                 vm_map_clip_start(map, entry, start);
2309         }
2310
2311         /*
2312          * Step through all entries in this region
2313          */
2314         while ((entry != &map->header) && (entry->start < end)) {
2315                 vm_map_entry_t next;
2316
2317                 /*
2318                  * Wait for wiring or unwiring of an entry to complete.
2319                  * Also wait for any system wirings to disappear on
2320                  * user maps.
2321                  */
2322                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2323                     (vm_map_pmap(map) != kernel_pmap &&
2324                     vm_map_entry_system_wired_count(entry) != 0)) {
2325                         unsigned int last_timestamp;
2326                         vm_offset_t saved_start;
2327                         vm_map_entry_t tmp_entry;
2328
2329                         saved_start = entry->start;
2330                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2331                         last_timestamp = map->timestamp;
2332                         (void) vm_map_unlock_and_wait(map, FALSE);
2333                         vm_map_lock(map);
2334                         if (last_timestamp + 1 != map->timestamp) {
2335                                 /*
2336                                  * Look again for the entry because the map was
2337                                  * modified while it was unlocked.
2338                                  * Specifically, the entry may have been
2339                                  * clipped, merged, or deleted.
2340                                  */
2341                                 if (!vm_map_lookup_entry(map, saved_start,
2342                                                          &tmp_entry))
2343                                         entry = tmp_entry->next;
2344                                 else {
2345                                         entry = tmp_entry;
2346                                         vm_map_clip_start(map, entry,
2347                                                           saved_start);
2348                                 }
2349                         }
2350                         continue;
2351                 }
2352                 vm_map_clip_end(map, entry, end);
2353
2354                 next = entry->next;
2355
2356                 /*
2357                  * Unwire before removing addresses from the pmap; otherwise,
2358                  * unwiring will put the entries back in the pmap.
2359                  */
2360                 if (entry->wired_count != 0) {
2361                         vm_map_entry_unwire(map, entry);
2362                 }
2363
2364                 pmap_remove(map->pmap, entry->start, entry->end);
2365
2366                 /*
2367                  * Delete the entry (which may delete the object) only after
2368                  * removing all pmap entries pointing to its pages.
2369                  * (Otherwise, its page frames may be reallocated, and any
2370                  * modify bits will be set in the wrong object!)
2371                  */
2372                 vm_map_entry_delete(map, entry);
2373                 entry = next;
2374         }
2375         return (KERN_SUCCESS);
2376 }
2377
2378 /*
2379  *      vm_map_remove:
2380  *
2381  *      Remove the given address range from the target map.
2382  *      This is the exported form of vm_map_delete.
2383  */
2384 int
2385 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2386 {
2387         int result;
2388
2389         vm_map_lock(map);
2390         VM_MAP_RANGE_CHECK(map, start, end);
2391         result = vm_map_delete(map, start, end);
2392         vm_map_unlock(map);
2393         return (result);
2394 }
2395
2396 /*
2397  *      vm_map_check_protection:
2398  *
2399  *      Assert that the target map allows the specified privilege on the
2400  *      entire address region given.  The entire region must be allocated.
2401  *
2402  *      WARNING!  This code does not and should not check whether the
2403  *      contents of the region is accessible.  For example a smaller file
2404  *      might be mapped into a larger address space.
2405  *
2406  *      NOTE!  This code is also called by munmap().
2407  *
2408  *      The map must be locked.  A read lock is sufficient.
2409  */
2410 boolean_t
2411 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2412                         vm_prot_t protection)
2413 {
2414         vm_map_entry_t entry;
2415         vm_map_entry_t tmp_entry;
2416
2417         if (!vm_map_lookup_entry(map, start, &tmp_entry))
2418                 return (FALSE);
2419         entry = tmp_entry;
2420
2421         while (start < end) {
2422                 if (entry == &map->header)
2423                         return (FALSE);
2424                 /*
2425                  * No holes allowed!
2426                  */
2427                 if (start < entry->start)
2428                         return (FALSE);
2429                 /*
2430                  * Check protection associated with entry.
2431                  */
2432                 if ((entry->protection & protection) != protection)
2433                         return (FALSE);
2434                 /* go to next entry */
2435                 start = entry->end;
2436                 entry = entry->next;
2437         }
2438         return (TRUE);
2439 }
2440
2441 /*
2442  *      vm_map_copy_entry:
2443  *
2444  *      Copies the contents of the source entry to the destination
2445  *      entry.  The entries *must* be aligned properly.
2446  */
2447 static void
2448 vm_map_copy_entry(
2449         vm_map_t src_map,
2450         vm_map_t dst_map,
2451         vm_map_entry_t src_entry,
2452         vm_map_entry_t dst_entry)
2453 {
2454         vm_object_t src_object;
2455
2456         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2457                 return;
2458
2459         if (src_entry->wired_count == 0) {
2460
2461                 /*
2462                  * If the source entry is marked needs_copy, it is already
2463                  * write-protected.
2464                  */
2465                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2466                         pmap_protect(src_map->pmap,
2467                             src_entry->start,
2468                             src_entry->end,
2469                             src_entry->protection & ~VM_PROT_WRITE);
2470                 }
2471
2472                 /*
2473                  * Make a copy of the object.
2474                  */
2475                 if ((src_object = src_entry->object.vm_object) != NULL) {
2476                         VM_OBJECT_LOCK(src_object);
2477                         if ((src_object->handle == NULL) &&
2478                                 (src_object->type == OBJT_DEFAULT ||
2479                                  src_object->type == OBJT_SWAP)) {
2480                                 vm_object_collapse(src_object);
2481                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2482                                         vm_object_split(src_entry);
2483                                         src_object = src_entry->object.vm_object;
2484                                 }
2485                         }
2486                         vm_object_reference_locked(src_object);
2487                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2488                         VM_OBJECT_UNLOCK(src_object);
2489                         dst_entry->object.vm_object = src_object;
2490                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2491                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2492                         dst_entry->offset = src_entry->offset;
2493                 } else {
2494                         dst_entry->object.vm_object = NULL;
2495                         dst_entry->offset = 0;
2496                 }
2497
2498                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2499                     dst_entry->end - dst_entry->start, src_entry->start);
2500         } else {
2501                 /*
2502                  * Of course, wired down pages can't be set copy-on-write.
2503                  * Cause wired pages to be copied into the new map by
2504                  * simulating faults (the new pages are pageable)
2505                  */
2506                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2507         }
2508 }
2509
2510 /*
2511  * vmspace_map_entry_forked:
2512  * Update the newly-forked vmspace each time a map entry is inherited
2513  * or copied.  The values for vm_dsize and vm_tsize are approximate
2514  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2515  */
2516 static void
2517 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2518     vm_map_entry_t entry)
2519 {
2520         vm_size_t entrysize;
2521         vm_offset_t newend;
2522
2523         entrysize = entry->end - entry->start;
2524         vm2->vm_map.size += entrysize;
2525         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2526                 vm2->vm_ssize += btoc(entrysize);
2527         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2528             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2529                 newend = MIN(entry->end,
2530                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2531                 vm2->vm_dsize += btoc(newend - entry->start);
2532         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2533             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2534                 newend = MIN(entry->end,
2535                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2536                 vm2->vm_tsize += btoc(newend - entry->start);
2537         }
2538 }
2539
2540 /*
2541  * vmspace_fork:
2542  * Create a new process vmspace structure and vm_map
2543  * based on those of an existing process.  The new map
2544  * is based on the old map, according to the inheritance
2545  * values on the regions in that map.
2546  *
2547  * XXX It might be worth coalescing the entries added to the new vmspace.
2548  *
2549  * The source map must not be locked.
2550  */
2551 struct vmspace *
2552 vmspace_fork(struct vmspace *vm1)
2553 {
2554         struct vmspace *vm2;
2555         vm_map_t old_map = &vm1->vm_map;
2556         vm_map_t new_map;
2557         vm_map_entry_t old_entry;
2558         vm_map_entry_t new_entry;
2559         vm_object_t object;
2560
2561         vm_map_lock(old_map);
2562
2563         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2564         vm2->vm_taddr = vm1->vm_taddr;
2565         vm2->vm_daddr = vm1->vm_daddr;
2566         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2567         new_map = &vm2->vm_map; /* XXX */
2568         new_map->timestamp = 1;
2569
2570         /* Do not inherit the MAP_WIREFUTURE property. */
2571         if ((new_map->flags & MAP_WIREFUTURE) == MAP_WIREFUTURE)
2572                 new_map->flags &= ~MAP_WIREFUTURE;
2573
2574         old_entry = old_map->header.next;
2575
2576         while (old_entry != &old_map->header) {
2577                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2578                         panic("vm_map_fork: encountered a submap");
2579
2580                 switch (old_entry->inheritance) {
2581                 case VM_INHERIT_NONE:
2582                         break;
2583
2584                 case VM_INHERIT_SHARE:
2585                         /*
2586                          * Clone the entry, creating the shared object if necessary.
2587                          */
2588                         object = old_entry->object.vm_object;
2589                         if (object == NULL) {
2590                                 object = vm_object_allocate(OBJT_DEFAULT,
2591                                         atop(old_entry->end - old_entry->start));
2592                                 old_entry->object.vm_object = object;
2593                                 old_entry->offset = 0;
2594                         }
2595
2596                         /*
2597                          * Add the reference before calling vm_object_shadow
2598                          * to insure that a shadow object is created.
2599                          */
2600                         vm_object_reference(object);
2601                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2602                                 vm_object_shadow(&old_entry->object.vm_object,
2603                                         &old_entry->offset,
2604                                         atop(old_entry->end - old_entry->start));
2605                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2606                                 /* Transfer the second reference too. */
2607                                 vm_object_reference(
2608                                     old_entry->object.vm_object);
2609                                 vm_object_deallocate(object);
2610                                 object = old_entry->object.vm_object;
2611                         }
2612                         VM_OBJECT_LOCK(object);
2613                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2614                         VM_OBJECT_UNLOCK(object);
2615
2616                         /*
2617                          * Clone the entry, referencing the shared object.
2618                          */
2619                         new_entry = vm_map_entry_create(new_map);
2620                         *new_entry = *old_entry;
2621                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2622                         new_entry->wired_count = 0;
2623
2624                         /*
2625                          * Insert the entry into the new map -- we know we're
2626                          * inserting at the end of the new map.
2627                          */
2628                         vm_map_entry_link(new_map, new_map->header.prev,
2629                             new_entry);
2630                         vmspace_map_entry_forked(vm1, vm2, new_entry);
2631
2632                         /*
2633                          * Update the physical map
2634                          */
2635                         pmap_copy(new_map->pmap, old_map->pmap,
2636                             new_entry->start,
2637                             (old_entry->end - old_entry->start),
2638                             old_entry->start);
2639                         break;
2640
2641                 case VM_INHERIT_COPY:
2642                         /*
2643                          * Clone the entry and link into the map.
2644                          */
2645                         new_entry = vm_map_entry_create(new_map);
2646                         *new_entry = *old_entry;
2647                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2648                         new_entry->wired_count = 0;
2649                         new_entry->object.vm_object = NULL;
2650                         vm_map_entry_link(new_map, new_map->header.prev,
2651                             new_entry);
2652                         vmspace_map_entry_forked(vm1, vm2, new_entry);
2653                         vm_map_copy_entry(old_map, new_map, old_entry,
2654                             new_entry);
2655                         break;
2656                 }
2657                 old_entry = old_entry->next;
2658         }
2659
2660         vm_map_unlock(old_map);
2661
2662         return (vm2);
2663 }
2664
2665 int
2666 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2667     vm_prot_t prot, vm_prot_t max, int cow)
2668 {
2669         vm_map_entry_t new_entry, prev_entry;
2670         vm_offset_t bot, top;
2671         vm_size_t init_ssize;
2672         int orient, rv;
2673         rlim_t vmemlim;
2674
2675         /*
2676          * The stack orientation is piggybacked with the cow argument.
2677          * Extract it into orient and mask the cow argument so that we
2678          * don't pass it around further.
2679          * NOTE: We explicitly allow bi-directional stacks.
2680          */
2681         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2682         cow &= ~orient;
2683         KASSERT(orient != 0, ("No stack grow direction"));
2684
2685         if (addrbos < vm_map_min(map) || addrbos > map->max_offset)
2686                 return (KERN_NO_SPACE);
2687
2688         init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2689
2690         PROC_LOCK(curthread->td_proc);
2691         vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2692         PROC_UNLOCK(curthread->td_proc);
2693
2694         vm_map_lock(map);
2695
2696         /* If addr is already mapped, no go */
2697         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2698                 vm_map_unlock(map);
2699                 return (KERN_NO_SPACE);
2700         }
2701
2702         /* If we would blow our VMEM resource limit, no go */
2703         if (map->size + init_ssize > vmemlim) {
2704                 vm_map_unlock(map);
2705                 return (KERN_NO_SPACE);
2706         }
2707
2708         /*
2709          * If we can't accomodate max_ssize in the current mapping, no go.
2710          * However, we need to be aware that subsequent user mappings might
2711          * map into the space we have reserved for stack, and currently this
2712          * space is not protected.
2713          *
2714          * Hopefully we will at least detect this condition when we try to
2715          * grow the stack.
2716          */
2717         if ((prev_entry->next != &map->header) &&
2718             (prev_entry->next->start < addrbos + max_ssize)) {
2719                 vm_map_unlock(map);
2720                 return (KERN_NO_SPACE);
2721         }
2722
2723         /*
2724          * We initially map a stack of only init_ssize.  We will grow as
2725          * needed later.  Depending on the orientation of the stack (i.e.
2726          * the grow direction) we either map at the top of the range, the
2727          * bottom of the range or in the middle.
2728          *
2729          * Note: we would normally expect prot and max to be VM_PROT_ALL,
2730          * and cow to be 0.  Possibly we should eliminate these as input
2731          * parameters, and just pass these values here in the insert call.
2732          */
2733         if (orient == MAP_STACK_GROWS_DOWN)
2734                 bot = addrbos + max_ssize - init_ssize;
2735         else if (orient == MAP_STACK_GROWS_UP)
2736                 bot = addrbos;
2737         else
2738                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2739         top = bot + init_ssize;
2740         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2741
2742         /* Now set the avail_ssize amount. */
2743         if (rv == KERN_SUCCESS) {
2744                 if (prev_entry != &map->header)
2745                         vm_map_clip_end(map, prev_entry, bot);
2746                 new_entry = prev_entry->next;
2747                 if (new_entry->end != top || new_entry->start != bot)
2748                         panic("Bad entry start/end for new stack entry");
2749
2750                 new_entry->avail_ssize = max_ssize - init_ssize;
2751                 if (orient & MAP_STACK_GROWS_DOWN)
2752                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2753                 if (orient & MAP_STACK_GROWS_UP)
2754                         new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2755         }
2756
2757         vm_map_unlock(map);
2758         return (rv);
2759 }
2760
2761 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2762  * desired address is already mapped, or if we successfully grow
2763  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2764  * stack range (this is strange, but preserves compatibility with
2765  * the grow function in vm_machdep.c).
2766  */
2767 int
2768 vm_map_growstack(struct proc *p, vm_offset_t addr)
2769 {
2770         vm_map_entry_t next_entry, prev_entry;
2771         vm_map_entry_t new_entry, stack_entry;
2772         struct vmspace *vm = p->p_vmspace;
2773         vm_map_t map = &vm->vm_map;
2774         vm_offset_t end;
2775         size_t grow_amount, max_grow;
2776         rlim_t stacklim, vmemlim;
2777         int is_procstack, rv;
2778
2779 Retry:
2780         PROC_LOCK(p);
2781         stacklim = lim_cur(p, RLIMIT_STACK);
2782         vmemlim = lim_cur(p, RLIMIT_VMEM);
2783         PROC_UNLOCK(p);
2784
2785         vm_map_lock_read(map);
2786
2787         /* If addr is already in the entry range, no need to grow.*/
2788         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2789                 vm_map_unlock_read(map);
2790                 return (KERN_SUCCESS);
2791         }
2792
2793         next_entry = prev_entry->next;
2794         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2795                 /*
2796                  * This entry does not grow upwards. Since the address lies
2797                  * beyond this entry, the next entry (if one exists) has to
2798                  * be a downward growable entry. The entry list header is
2799                  * never a growable entry, so it suffices to check the flags.
2800                  */
2801                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2802                         vm_map_unlock_read(map);
2803                         return (KERN_SUCCESS);
2804                 }
2805                 stack_entry = next_entry;
2806         } else {
2807                 /*
2808                  * This entry grows upward. If the next entry does not at
2809                  * least grow downwards, this is the entry we need to grow.
2810                  * otherwise we have two possible choices and we have to
2811                  * select one.
2812                  */
2813                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2814                         /*
2815                          * We have two choices; grow the entry closest to
2816                          * the address to minimize the amount of growth.
2817                          */
2818                         if (addr - prev_entry->end <= next_entry->start - addr)
2819                                 stack_entry = prev_entry;
2820                         else
2821                                 stack_entry = next_entry;
2822                 } else
2823                         stack_entry = prev_entry;
2824         }
2825
2826         if (stack_entry == next_entry) {
2827                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
2828                 KASSERT(addr < stack_entry->start, ("foo"));
2829                 end = (prev_entry != &map->header) ? prev_entry->end :
2830                     stack_entry->start - stack_entry->avail_ssize;
2831                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
2832                 max_grow = stack_entry->start - end;
2833         } else {
2834                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
2835                 KASSERT(addr >= stack_entry->end, ("foo"));
2836                 end = (next_entry != &map->header) ? next_entry->start :
2837                     stack_entry->end + stack_entry->avail_ssize;
2838                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
2839                 max_grow = end - stack_entry->end;
2840         }
2841
2842         if (grow_amount > stack_entry->avail_ssize) {
2843                 vm_map_unlock_read(map);
2844                 return (KERN_NO_SPACE);
2845         }
2846
2847         /*
2848          * If there is no longer enough space between the entries nogo, and
2849          * adjust the available space.  Note: this  should only happen if the
2850          * user has mapped into the stack area after the stack was created,
2851          * and is probably an error.
2852          *
2853          * This also effectively destroys any guard page the user might have
2854          * intended by limiting the stack size.
2855          */
2856         if (grow_amount > max_grow) {
2857                 if (vm_map_lock_upgrade(map))
2858                         goto Retry;
2859
2860                 stack_entry->avail_ssize = max_grow;
2861
2862                 vm_map_unlock(map);
2863                 return (KERN_NO_SPACE);
2864         }
2865
2866         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
2867
2868         /*
2869          * If this is the main process stack, see if we're over the stack
2870          * limit.
2871          */
2872         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2873                 vm_map_unlock_read(map);
2874                 return (KERN_NO_SPACE);
2875         }
2876
2877         /* Round up the grow amount modulo SGROWSIZ */
2878         grow_amount = roundup (grow_amount, sgrowsiz);
2879         if (grow_amount > stack_entry->avail_ssize)
2880                 grow_amount = stack_entry->avail_ssize;
2881         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2882                 grow_amount = stacklim - ctob(vm->vm_ssize);
2883         }
2884
2885         /* If we would blow our VMEM resource limit, no go */
2886         if (map->size + grow_amount > vmemlim) {
2887                 vm_map_unlock_read(map);
2888                 return (KERN_NO_SPACE);
2889         }
2890
2891         if (vm_map_lock_upgrade(map))
2892                 goto Retry;
2893
2894         if (stack_entry == next_entry) {
2895                 /*
2896                  * Growing downward.
2897                  */
2898                 /* Get the preliminary new entry start value */
2899                 addr = stack_entry->start - grow_amount;
2900
2901                 /*
2902                  * If this puts us into the previous entry, cut back our
2903                  * growth to the available space. Also, see the note above.
2904                  */
2905                 if (addr < end) {
2906                         stack_entry->avail_ssize = max_grow;
2907                         addr = end;
2908                 }
2909
2910                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2911                     p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2912
2913                 /* Adjust the available stack space by the amount we grew. */
2914                 if (rv == KERN_SUCCESS) {
2915                         if (prev_entry != &map->header)
2916                                 vm_map_clip_end(map, prev_entry, addr);
2917                         new_entry = prev_entry->next;
2918                         KASSERT(new_entry == stack_entry->prev, ("foo"));
2919                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
2920                         KASSERT(new_entry->start == addr, ("foo"));
2921                         grow_amount = new_entry->end - new_entry->start;
2922                         new_entry->avail_ssize = stack_entry->avail_ssize -
2923                             grow_amount;
2924                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
2925                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2926                 }
2927         } else {
2928                 /*
2929                  * Growing upward.
2930                  */
2931                 addr = stack_entry->end + grow_amount;
2932
2933                 /*
2934                  * If this puts us into the next entry, cut back our growth
2935                  * to the available space. Also, see the note above.
2936                  */
2937                 if (addr > end) {
2938                         stack_entry->avail_ssize = end - stack_entry->end;
2939                         addr = end;
2940                 }
2941
2942                 grow_amount = addr - stack_entry->end;
2943
2944                 /* Grow the underlying object if applicable. */
2945                 if (stack_entry->object.vm_object == NULL ||
2946                     vm_object_coalesce(stack_entry->object.vm_object,
2947                     stack_entry->offset,
2948                     (vm_size_t)(stack_entry->end - stack_entry->start),
2949                     (vm_size_t)grow_amount)) {
2950                         map->size += (addr - stack_entry->end);
2951                         /* Update the current entry. */
2952                         stack_entry->end = addr;
2953                         stack_entry->avail_ssize -= grow_amount;
2954                         vm_map_entry_resize_free(map, stack_entry);
2955                         rv = KERN_SUCCESS;
2956
2957                         if (next_entry != &map->header)
2958                                 vm_map_clip_start(map, next_entry, addr);
2959                 } else
2960                         rv = KERN_FAILURE;
2961         }
2962
2963         if (rv == KERN_SUCCESS && is_procstack)
2964                 vm->vm_ssize += btoc(grow_amount);
2965
2966         vm_map_unlock(map);
2967
2968         /*
2969          * Heed the MAP_WIREFUTURE flag if it was set for this process.
2970          */
2971         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
2972                 vm_map_wire(map,
2973                     (stack_entry == next_entry) ? addr : addr - grow_amount,
2974                     (stack_entry == next_entry) ? stack_entry->start : addr,
2975                     (p->p_flag & P_SYSTEM)
2976                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
2977                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
2978         }
2979
2980         return (rv);
2981 }
2982
2983 /*
2984  * Unshare the specified VM space for exec.  If other processes are
2985  * mapped to it, then create a new one.  The new vmspace is null.
2986  */
2987 void
2988 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
2989 {
2990         struct vmspace *oldvmspace = p->p_vmspace;
2991         struct vmspace *newvmspace;
2992
2993         newvmspace = vmspace_alloc(minuser, maxuser);
2994         newvmspace->vm_swrss = oldvmspace->vm_swrss;
2995         /*
2996          * This code is written like this for prototype purposes.  The
2997          * goal is to avoid running down the vmspace here, but let the
2998          * other process's that are still using the vmspace to finally
2999          * run it down.  Even though there is little or no chance of blocking
3000          * here, it is a good idea to keep this form for future mods.
3001          */
3002         PROC_VMSPACE_LOCK(p);
3003         p->p_vmspace = newvmspace;
3004         PROC_VMSPACE_UNLOCK(p);
3005         if (p == curthread->td_proc)            /* XXXKSE ? */
3006                 pmap_activate(curthread);
3007         vmspace_free(oldvmspace);
3008 }
3009
3010 /*
3011  * Unshare the specified VM space for forcing COW.  This
3012  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3013  */
3014 void
3015 vmspace_unshare(struct proc *p)
3016 {
3017         struct vmspace *oldvmspace = p->p_vmspace;
3018         struct vmspace *newvmspace;
3019
3020         if (oldvmspace->vm_refcnt == 1)
3021                 return;
3022         newvmspace = vmspace_fork(oldvmspace);
3023         PROC_VMSPACE_LOCK(p);
3024         p->p_vmspace = newvmspace;
3025         PROC_VMSPACE_UNLOCK(p);
3026         if (p == curthread->td_proc)            /* XXXKSE ? */
3027                 pmap_activate(curthread);
3028         vmspace_free(oldvmspace);
3029 }
3030
3031 /*
3032  *      vm_map_lookup:
3033  *
3034  *      Finds the VM object, offset, and
3035  *      protection for a given virtual address in the
3036  *      specified map, assuming a page fault of the
3037  *      type specified.
3038  *
3039  *      Leaves the map in question locked for read; return
3040  *      values are guaranteed until a vm_map_lookup_done
3041  *      call is performed.  Note that the map argument
3042  *      is in/out; the returned map must be used in
3043  *      the call to vm_map_lookup_done.
3044  *
3045  *      A handle (out_entry) is returned for use in
3046  *      vm_map_lookup_done, to make that fast.
3047  *
3048  *      If a lookup is requested with "write protection"
3049  *      specified, the map may be changed to perform virtual
3050  *      copying operations, although the data referenced will
3051  *      remain the same.
3052  */
3053 int
3054 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3055               vm_offset_t vaddr,
3056               vm_prot_t fault_typea,
3057               vm_map_entry_t *out_entry,        /* OUT */
3058               vm_object_t *object,              /* OUT */
3059               vm_pindex_t *pindex,              /* OUT */
3060               vm_prot_t *out_prot,              /* OUT */
3061               boolean_t *wired)                 /* OUT */
3062 {
3063         vm_map_entry_t entry;
3064         vm_map_t map = *var_map;
3065         vm_prot_t prot;
3066         vm_prot_t fault_type = fault_typea;
3067
3068 RetryLookup:;
3069         /*
3070          * Lookup the faulting address.
3071          */
3072
3073         vm_map_lock_read(map);
3074 #define RETURN(why) \
3075                 { \
3076                 vm_map_unlock_read(map); \
3077                 return (why); \
3078                 }
3079
3080         /*
3081          * If the map has an interesting hint, try it before calling full
3082          * blown lookup routine.
3083          */
3084         entry = map->root;
3085         *out_entry = entry;
3086         if (entry == NULL ||
3087             (vaddr < entry->start) || (vaddr >= entry->end)) {
3088                 /*
3089                  * Entry was either not a valid hint, or the vaddr was not
3090                  * contained in the entry, so do a full lookup.
3091                  */
3092                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3093                         RETURN(KERN_INVALID_ADDRESS);
3094
3095                 entry = *out_entry;
3096         }
3097
3098         /*
3099          * Handle submaps.
3100          */
3101         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3102                 vm_map_t old_map = map;
3103
3104                 *var_map = map = entry->object.sub_map;
3105                 vm_map_unlock_read(old_map);
3106                 goto RetryLookup;
3107         }
3108
3109         /*
3110          * Check whether this task is allowed to have this page.
3111          * Note the special case for MAP_ENTRY_COW
3112          * pages with an override.  This is to implement a forced
3113          * COW for debuggers.
3114          */
3115         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3116                 prot = entry->max_protection;
3117         else
3118                 prot = entry->protection;
3119         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3120         if ((fault_type & prot) != fault_type) {
3121                         RETURN(KERN_PROTECTION_FAILURE);
3122         }
3123         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3124             (entry->eflags & MAP_ENTRY_COW) &&
3125             (fault_type & VM_PROT_WRITE) &&
3126             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3127                 RETURN(KERN_PROTECTION_FAILURE);
3128         }
3129
3130         /*
3131          * If this page is not pageable, we have to get it for all possible
3132          * accesses.
3133          */
3134         *wired = (entry->wired_count != 0);
3135         if (*wired)
3136                 prot = fault_type = entry->protection;
3137
3138         /*
3139          * If the entry was copy-on-write, we either ...
3140          */
3141         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3142                 /*
3143                  * If we want to write the page, we may as well handle that
3144                  * now since we've got the map locked.
3145                  *
3146                  * If we don't need to write the page, we just demote the
3147                  * permissions allowed.
3148                  */
3149                 if (fault_type & VM_PROT_WRITE) {
3150                         /*
3151                          * Make a new object, and place it in the object
3152                          * chain.  Note that no new references have appeared
3153                          * -- one just moved from the map to the new
3154                          * object.
3155                          */
3156                         if (vm_map_lock_upgrade(map))
3157                                 goto RetryLookup;
3158
3159                         vm_object_shadow(
3160                             &entry->object.vm_object,
3161                             &entry->offset,
3162                             atop(entry->end - entry->start));
3163                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3164
3165                         vm_map_lock_downgrade(map);
3166                 } else {
3167                         /*
3168                          * We're attempting to read a copy-on-write page --
3169                          * don't allow writes.
3170                          */
3171                         prot &= ~VM_PROT_WRITE;
3172                 }
3173         }
3174
3175         /*
3176          * Create an object if necessary.
3177          */
3178         if (entry->object.vm_object == NULL &&
3179             !map->system_map) {
3180                 if (vm_map_lock_upgrade(map))
3181                         goto RetryLookup;
3182                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3183                     atop(entry->end - entry->start));
3184                 entry->offset = 0;
3185                 vm_map_lock_downgrade(map);
3186         }
3187
3188         /*
3189          * Return the object/offset from this entry.  If the entry was
3190          * copy-on-write or empty, it has been fixed up.
3191          */
3192         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3193         *object = entry->object.vm_object;
3194
3195         *out_prot = prot;
3196         return (KERN_SUCCESS);
3197
3198 #undef  RETURN
3199 }
3200
3201 /*
3202  *      vm_map_lookup_locked:
3203  *
3204  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
3205  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3206  */
3207 int
3208 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
3209                      vm_offset_t vaddr,
3210                      vm_prot_t fault_typea,
3211                      vm_map_entry_t *out_entry, /* OUT */
3212                      vm_object_t *object,       /* OUT */
3213                      vm_pindex_t *pindex,       /* OUT */
3214                      vm_prot_t *out_prot,       /* OUT */
3215                      boolean_t *wired)          /* OUT */
3216 {
3217         vm_map_entry_t entry;
3218         vm_map_t map = *var_map;
3219         vm_prot_t prot;
3220         vm_prot_t fault_type = fault_typea;
3221
3222         /*
3223          * If the map has an interesting hint, try it before calling full
3224          * blown lookup routine.
3225          */
3226         entry = map->root;
3227         *out_entry = entry;
3228         if (entry == NULL ||
3229             (vaddr < entry->start) || (vaddr >= entry->end)) {
3230                 /*
3231                  * Entry was either not a valid hint, or the vaddr was not
3232                  * contained in the entry, so do a full lookup.
3233                  */
3234                 if (!vm_map_lookup_entry(map, vaddr, out_entry))
3235                         return (KERN_INVALID_ADDRESS);
3236
3237                 entry = *out_entry;
3238         }
3239
3240         /*
3241          * Fail if the entry refers to a submap.
3242          */
3243         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3244                 return (KERN_FAILURE);
3245
3246         /*
3247          * Check whether this task is allowed to have this page.
3248          * Note the special case for MAP_ENTRY_COW
3249          * pages with an override.  This is to implement a forced
3250          * COW for debuggers.
3251          */
3252         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3253                 prot = entry->max_protection;
3254         else
3255                 prot = entry->protection;
3256         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3257         if ((fault_type & prot) != fault_type)
3258                 return (KERN_PROTECTION_FAILURE);
3259         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3260             (entry->eflags & MAP_ENTRY_COW) &&
3261             (fault_type & VM_PROT_WRITE) &&
3262             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3263                 return (KERN_PROTECTION_FAILURE);
3264
3265         /*
3266          * If this page is not pageable, we have to get it for all possible
3267          * accesses.
3268          */
3269         *wired = (entry->wired_count != 0);
3270         if (*wired)
3271                 prot = fault_type = entry->protection;
3272
3273         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3274                 /*
3275                  * Fail if the entry was copy-on-write for a write fault.
3276                  */
3277                 if (fault_type & VM_PROT_WRITE)
3278                         return (KERN_FAILURE);
3279                 /*
3280                  * We're attempting to read a copy-on-write page --
3281                  * don't allow writes.
3282                  */
3283                 prot &= ~VM_PROT_WRITE;
3284         }
3285
3286         /*
3287          * Fail if an object should be created.
3288          */
3289         if (entry->object.vm_object == NULL && !map->system_map)
3290                 return (KERN_FAILURE);
3291
3292         /*
3293          * Return the object/offset from this entry.  If the entry was
3294          * copy-on-write or empty, it has been fixed up.
3295          */
3296         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3297         *object = entry->object.vm_object;
3298
3299         *out_prot = prot;
3300         return (KERN_SUCCESS);
3301 }
3302
3303 /*
3304  *      vm_map_lookup_done:
3305  *
3306  *      Releases locks acquired by a vm_map_lookup
3307  *      (according to the handle returned by that lookup).
3308  */
3309 void
3310 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3311 {
3312         /*
3313          * Unlock the main-level map
3314          */
3315         vm_map_unlock_read(map);
3316 }
3317
3318 #include "opt_ddb.h"
3319 #ifdef DDB
3320 #include <sys/kernel.h>
3321
3322 #include <ddb/ddb.h>
3323
3324 /*
3325  *      vm_map_print:   [ debug ]
3326  */
3327 DB_SHOW_COMMAND(map, vm_map_print)
3328 {
3329         static int nlines;
3330         /* XXX convert args. */
3331         vm_map_t map = (vm_map_t)addr;
3332         boolean_t full = have_addr;
3333
3334         vm_map_entry_t entry;
3335
3336         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3337             (void *)map,
3338             (void *)map->pmap, map->nentries, map->timestamp);
3339         nlines++;
3340
3341         if (!full && db_indent)
3342                 return;
3343
3344         db_indent += 2;
3345         for (entry = map->header.next; entry != &map->header;
3346             entry = entry->next) {
3347                 db_iprintf("map entry %p: start=%p, end=%p\n",
3348                     (void *)entry, (void *)entry->start, (void *)entry->end);
3349                 nlines++;
3350                 {
3351                         static char *inheritance_name[4] =
3352                         {"share", "copy", "none", "donate_copy"};
3353
3354                         db_iprintf(" prot=%x/%x/%s",
3355                             entry->protection,
3356                             entry->max_protection,
3357                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3358                         if (entry->wired_count != 0)
3359                                 db_printf(", wired");
3360                 }
3361                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3362                         db_printf(", share=%p, offset=0x%jx\n",
3363                             (void *)entry->object.sub_map,
3364                             (uintmax_t)entry->offset);
3365                         nlines++;
3366                         if ((entry->prev == &map->header) ||
3367                             (entry->prev->object.sub_map !=
3368                                 entry->object.sub_map)) {
3369                                 db_indent += 2;
3370                                 vm_map_print((db_expr_t)(intptr_t)
3371                                              entry->object.sub_map,
3372                                              full, 0, (char *)0);
3373                                 db_indent -= 2;
3374                         }
3375                 } else {
3376                         db_printf(", object=%p, offset=0x%jx",
3377                             (void *)entry->object.vm_object,
3378                             (uintmax_t)entry->offset);
3379                         if (entry->eflags & MAP_ENTRY_COW)
3380                                 db_printf(", copy (%s)",
3381                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3382                         db_printf("\n");
3383                         nlines++;
3384
3385                         if ((entry->prev == &map->header) ||
3386                             (entry->prev->object.vm_object !=
3387                                 entry->object.vm_object)) {
3388                                 db_indent += 2;
3389                                 vm_object_print((db_expr_t)(intptr_t)
3390                                                 entry->object.vm_object,
3391                                                 full, 0, (char *)0);
3392                                 nlines += 4;
3393                                 db_indent -= 2;
3394                         }
3395                 }
3396         }
3397         db_indent -= 2;
3398         if (db_indent == 0)
3399                 nlines = 0;
3400 }
3401
3402
3403 DB_SHOW_COMMAND(procvm, procvm)
3404 {
3405         struct proc *p;
3406
3407         if (have_addr) {
3408                 p = (struct proc *) addr;
3409         } else {
3410                 p = curproc;
3411         }
3412
3413         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3414             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3415             (void *)vmspace_pmap(p->p_vmspace));
3416
3417         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3418 }
3419
3420 #endif /* DDB */