]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFC r315272, r315370
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100  *      Virtual memory maps provide for the mapping, protection,
101  *      and sharing of virtual memory objects.  In addition,
102  *      this module provides for an efficient virtual copy of
103  *      memory from one map to another.
104  *
105  *      Synchronization is required prior to most operations.
106  *
107  *      Maps consist of an ordered doubly-linked list of simple
108  *      entries; a self-adjusting binary search tree of these
109  *      entries is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /* 
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
161  *
162  *      Asserts that the starting and ending region
163  *      addresses fall within the valid range of the map.
164  */
165 #define VM_MAP_RANGE_CHECK(map, start, end)             \
166                 {                                       \
167                 if (start < vm_map_min(map))            \
168                         start = vm_map_min(map);        \
169                 if (end > vm_map_max(map))              \
170                         end = vm_map_max(map);          \
171                 if (start > end)                        \
172                         start = end;                    \
173                 }
174
175 /*
176  *      vm_map_startup:
177  *
178  *      Initialize the vm_map module.  Must be called before
179  *      any other vm_map routines.
180  *
181  *      Map and entry structures are allocated from the general
182  *      purpose memory pool with some exceptions:
183  *
184  *      - The kernel map and kmem submap are allocated statically.
185  *      - Kernel map entries are allocated out of a static pool.
186  *
187  *      These restrictions are necessary since malloc() uses the
188  *      maps and requires map entries.
189  */
190
191 void
192 vm_map_startup(void)
193 {
194         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197             vm_map_zdtor,
198 #else
199             NULL,
200 #endif
201             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202         uma_prealloc(mapzone, MAX_KMAP);
203         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210             vmspace_zdtor,
211 #else
212             NULL,
213 #endif
214             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220         struct vmspace *vm;
221
222         vm = (struct vmspace *)mem;
223
224         vm->vm_map.pmap = NULL;
225         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226         PMAP_LOCK_INIT(vmspace_pmap(vm));
227         return (0);
228 }
229
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233         vm_map_t map;
234
235         map = (vm_map_t)mem;
236         memset(map, 0, sizeof(*map));
237         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238         sx_init(&map->lock, "vm map (user)");
239         return (0);
240 }
241
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246         struct vmspace *vm;
247
248         vm = (struct vmspace *)mem;
249
250         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255         vm_map_t map;
256
257         map = (vm_map_t)mem;
258         KASSERT(map->nentries == 0,
259             ("map %p nentries == %d on free.",
260             map, map->nentries));
261         KASSERT(map->size == 0,
262             ("map %p size == %lu on free.",
263             map, (unsigned long)map->size));
264 }
265 #endif  /* INVARIANTS */
266
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276         struct vmspace *vm;
277
278         vm = uma_zalloc(vmspace_zone, M_WAITOK);
279
280         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281
282         if (pinit == NULL)
283                 pinit = &pmap_pinit;
284
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336             vm->vm_map.max_offset);
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         do {
393                 refcnt = vm->vm_refcnt;
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         do {
439                 refcnt = vm->vm_refcnt;
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         /* Remove the daemon's reference to the old address space. */
494         KASSERT(oldvm->vm_refcnt > 1,
495             ("vmspace_switch_aio: oldvm dropping last reference"));
496         vmspace_free(oldvm);
497 }
498
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502
503         if (map->system_map)
504                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
505         else
506                 sx_xlock_(&map->lock, file, line);
507         map->timestamp++;
508 }
509
510 static void
511 vm_map_process_deferred(void)
512 {
513         struct thread *td;
514         vm_map_entry_t entry, next;
515         vm_object_t object;
516
517         td = curthread;
518         entry = td->td_map_def_user;
519         td->td_map_def_user = NULL;
520         while (entry != NULL) {
521                 next = entry->next;
522                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523                         /*
524                          * Decrement the object's writemappings and
525                          * possibly the vnode's v_writecount.
526                          */
527                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528                             ("Submap with writecount"));
529                         object = entry->object.vm_object;
530                         KASSERT(object != NULL, ("No object for writecount"));
531                         vnode_pager_release_writecount(object, entry->start,
532                             entry->end);
533                 }
534                 vm_map_entry_deallocate(entry, FALSE);
535                 entry = next;
536         }
537 }
538
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542
543         if (map->system_map)
544                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545         else {
546                 sx_xunlock_(&map->lock, file, line);
547                 vm_map_process_deferred();
548         }
549 }
550
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554
555         if (map->system_map)
556                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
557         else
558                 sx_slock_(&map->lock, file, line);
559 }
560
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564
565         if (map->system_map)
566                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567         else {
568                 sx_sunlock_(&map->lock, file, line);
569                 vm_map_process_deferred();
570         }
571 }
572
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576         int error;
577
578         error = map->system_map ?
579             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580             !sx_try_xlock_(&map->lock, file, line);
581         if (error == 0)
582                 map->timestamp++;
583         return (error == 0);
584 }
585
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589         int error;
590
591         error = map->system_map ?
592             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593             !sx_try_slock_(&map->lock, file, line);
594         return (error == 0);
595 }
596
597 /*
598  *      _vm_map_lock_upgrade:   [ internal use only ]
599  *
600  *      Tries to upgrade a read (shared) lock on the specified map to a write
601  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *      returned without a read or write lock held.
604  *
605  *      Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610         unsigned int last_timestamp;
611
612         if (map->system_map) {
613                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614         } else {
615                 if (!sx_try_upgrade_(&map->lock, file, line)) {
616                         last_timestamp = map->timestamp;
617                         sx_sunlock_(&map->lock, file, line);
618                         vm_map_process_deferred();
619                         /*
620                          * If the map's timestamp does not change while the
621                          * map is unlocked, then the upgrade succeeds.
622                          */
623                         sx_xlock_(&map->lock, file, line);
624                         if (last_timestamp != map->timestamp) {
625                                 sx_xunlock_(&map->lock, file, line);
626                                 return (1);
627                         }
628                 }
629         }
630         map->timestamp++;
631         return (0);
632 }
633
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637
638         if (map->system_map) {
639                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640         } else
641                 sx_downgrade_(&map->lock, file, line);
642 }
643
644 /*
645  *      vm_map_locked:
646  *
647  *      Returns a non-zero value if the caller holds a write (exclusive) lock
648  *      on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653
654         if (map->system_map)
655                 return (mtx_owned(&map->system_mtx));
656         else
657                 return (sx_xlocked(&map->lock));
658 }
659
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664
665         if (map->system_map)
666                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667         else
668                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670
671 #define VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define VM_MAP_ASSERT_LOCKED(map)
675 #endif
676
677 /*
678  *      _vm_map_unlock_and_wait:
679  *
680  *      Atomically releases the lock on the specified map and puts the calling
681  *      thread to sleep.  The calling thread will remain asleep until either
682  *      vm_map_wakeup() is performed on the map or the specified timeout is
683  *      exceeded.
684  *
685  *      WARNING!  This function does not perform deferred deallocations of
686  *      objects and map entries.  Therefore, the calling thread is expected to
687  *      reacquire the map lock after reawakening and later perform an ordinary
688  *      unlock operation, such as vm_map_unlock(), before completing its
689  *      operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694
695         mtx_lock(&map_sleep_mtx);
696         if (map->system_map)
697                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698         else
699                 sx_xunlock_(&map->lock, file, line);
700         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701             timo));
702 }
703
704 /*
705  *      vm_map_wakeup:
706  *
707  *      Awaken any threads that have slept on the map using
708  *      vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713
714         /*
715          * Acquire and release map_sleep_mtx to prevent a wakeup()
716          * from being performed (and lost) between the map unlock
717          * and the msleep() in _vm_map_unlock_and_wait().
718          */
719         mtx_lock(&map_sleep_mtx);
720         mtx_unlock(&map_sleep_mtx);
721         wakeup(&map->root);
722 }
723
724 void
725 vm_map_busy(vm_map_t map)
726 {
727
728         VM_MAP_ASSERT_LOCKED(map);
729         map->busy++;
730 }
731
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735
736         VM_MAP_ASSERT_LOCKED(map);
737         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740                 wakeup(&map->busy);
741         }
742 }
743
744 void 
745 vm_map_wait_busy(vm_map_t map)
746 {
747
748         VM_MAP_ASSERT_LOCKED(map);
749         while (map->busy) {
750                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751                 if (map->system_map)
752                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753                 else
754                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755         }
756         map->timestamp++;
757 }
758
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762         return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764
765 /*
766  *      vm_map_create:
767  *
768  *      Creates and returns a new empty VM map with
769  *      the given physical map structure, and having
770  *      the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775         vm_map_t result;
776
777         result = uma_zalloc(mapzone, M_WAITOK);
778         CTR1(KTR_VM, "vm_map_create: %p", result);
779         _vm_map_init(result, pmap, min, max);
780         return (result);
781 }
782
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790
791         map->header.next = map->header.prev = &map->header;
792         map->needs_wakeup = FALSE;
793         map->system_map = 0;
794         map->pmap = pmap;
795         map->min_offset = min;
796         map->max_offset = max;
797         map->flags = 0;
798         map->root = NULL;
799         map->timestamp = 0;
800         map->busy = 0;
801 }
802
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806
807         _vm_map_init(map, pmap, min, max);
808         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809         sx_init(&map->lock, "user map");
810 }
811
812 /*
813  *      vm_map_entry_dispose:   [ internal use only ]
814  *
815  *      Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822
823 /*
824  *      vm_map_entry_create:    [ internal use only ]
825  *
826  *      Allocates a VM map entry for insertion.
827  *      No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832         vm_map_entry_t new_entry;
833
834         if (map->system_map)
835                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836         else
837                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
838         if (new_entry == NULL)
839                 panic("vm_map_entry_create: kernel resources exhausted");
840         return (new_entry);
841 }
842
843 /*
844  *      vm_map_entry_set_behavior:
845  *
846  *      Set the expected access behavior, either normal, random, or
847  *      sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853             (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855
856 /*
857  *      vm_map_entry_set_max_free:
858  *
859  *      Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864
865         entry->max_free = entry->adj_free;
866         if (entry->left != NULL && entry->left->max_free > entry->max_free)
867                 entry->max_free = entry->left->max_free;
868         if (entry->right != NULL && entry->right->max_free > entry->max_free)
869                 entry->max_free = entry->right->max_free;
870 }
871
872 /*
873  *      vm_map_entry_splay:
874  *
875  *      The Sleator and Tarjan top-down splay algorithm with the
876  *      following variation.  Max_free must be computed bottom-up, so
877  *      on the downward pass, maintain the left and right spines in
878  *      reverse order.  Then, make a second pass up each side to fix
879  *      the pointers and compute max_free.  The time bound is O(log n)
880  *      amortized.
881  *
882  *      The new root is the vm_map_entry containing "addr", or else an
883  *      adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *      The map must be locked, and leaves it so.
886  *
887  *      Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892         vm_map_entry_t llist, rlist;
893         vm_map_entry_t ltree, rtree;
894         vm_map_entry_t y;
895
896         /* Special case of empty tree. */
897         if (root == NULL)
898                 return (root);
899
900         /*
901          * Pass One: Splay down the tree until we find addr or a NULL
902          * pointer where addr would go.  llist and rlist are the two
903          * sides in reverse order (bottom-up), with llist linked by
904          * the right pointer and rlist linked by the left pointer in
905          * the vm_map_entry.  Wait until Pass Two to set max_free on
906          * the two spines.
907          */
908         llist = NULL;
909         rlist = NULL;
910         for (;;) {
911                 /* root is never NULL in here. */
912                 if (addr < root->start) {
913                         y = root->left;
914                         if (y == NULL)
915                                 break;
916                         if (addr < y->start && y->left != NULL) {
917                                 /* Rotate right and put y on rlist. */
918                                 root->left = y->right;
919                                 y->right = root;
920                                 vm_map_entry_set_max_free(root);
921                                 root = y->left;
922                                 y->left = rlist;
923                                 rlist = y;
924                         } else {
925                                 /* Put root on rlist. */
926                                 root->left = rlist;
927                                 rlist = root;
928                                 root = y;
929                         }
930                 } else if (addr >= root->end) {
931                         y = root->right;
932                         if (y == NULL)
933                                 break;
934                         if (addr >= y->end && y->right != NULL) {
935                                 /* Rotate left and put y on llist. */
936                                 root->right = y->left;
937                                 y->left = root;
938                                 vm_map_entry_set_max_free(root);
939                                 root = y->right;
940                                 y->right = llist;
941                                 llist = y;
942                         } else {
943                                 /* Put root on llist. */
944                                 root->right = llist;
945                                 llist = root;
946                                 root = y;
947                         }
948                 } else
949                         break;
950         }
951
952         /*
953          * Pass Two: Walk back up the two spines, flip the pointers
954          * and set max_free.  The subtrees of the root go at the
955          * bottom of llist and rlist.
956          */
957         ltree = root->left;
958         while (llist != NULL) {
959                 y = llist->right;
960                 llist->right = ltree;
961                 vm_map_entry_set_max_free(llist);
962                 ltree = llist;
963                 llist = y;
964         }
965         rtree = root->right;
966         while (rlist != NULL) {
967                 y = rlist->left;
968                 rlist->left = rtree;
969                 vm_map_entry_set_max_free(rlist);
970                 rtree = rlist;
971                 rlist = y;
972         }
973
974         /*
975          * Final assembly: add ltree and rtree as subtrees of root.
976          */
977         root->left = ltree;
978         root->right = rtree;
979         vm_map_entry_set_max_free(root);
980
981         return (root);
982 }
983
984 /*
985  *      vm_map_entry_{un,}link:
986  *
987  *      Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991                   vm_map_entry_t after_where,
992                   vm_map_entry_t entry)
993 {
994
995         CTR4(KTR_VM,
996             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997             map->nentries, entry, after_where);
998         VM_MAP_ASSERT_LOCKED(map);
999         KASSERT(after_where == &map->header ||
1000             after_where->end <= entry->start,
1001             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003         KASSERT(after_where->next == &map->header ||
1004             entry->end <= after_where->next->start,
1005             ("vm_map_entry_link: new end %jx next start %jx overlap",
1006             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007
1008         map->nentries++;
1009         entry->prev = after_where;
1010         entry->next = after_where->next;
1011         entry->next->prev = entry;
1012         after_where->next = entry;
1013
1014         if (after_where != &map->header) {
1015                 if (after_where != map->root)
1016                         vm_map_entry_splay(after_where->start, map->root);
1017                 entry->right = after_where->right;
1018                 entry->left = after_where;
1019                 after_where->right = NULL;
1020                 after_where->adj_free = entry->start - after_where->end;
1021                 vm_map_entry_set_max_free(after_where);
1022         } else {
1023                 entry->right = map->root;
1024                 entry->left = NULL;
1025         }
1026         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027             entry->next->start) - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1047                     entry->next->start) - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084             entry->next->start) - entry->end;
1085         vm_map_entry_set_max_free(entry);
1086 }
1087
1088 /*
1089  *      vm_map_lookup_entry:    [ internal use only ]
1090  *
1091  *      Finds the map entry containing (or
1092  *      immediately preceding) the specified address
1093  *      in the given map; the entry is returned
1094  *      in the "entry" parameter.  The boolean
1095  *      result indicates whether the address is
1096  *      actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100         vm_map_t map,
1101         vm_offset_t address,
1102         vm_map_entry_t *entry)  /* OUT */
1103 {
1104         vm_map_entry_t cur;
1105         boolean_t locked;
1106
1107         /*
1108          * If the map is empty, then the map entry immediately preceding
1109          * "address" is the map's header.
1110          */
1111         cur = map->root;
1112         if (cur == NULL)
1113                 *entry = &map->header;
1114         else if (address >= cur->start && cur->end > address) {
1115                 *entry = cur;
1116                 return (TRUE);
1117         } else if ((locked = vm_map_locked(map)) ||
1118             sx_try_upgrade(&map->lock)) {
1119                 /*
1120                  * Splay requires a write lock on the map.  However, it only
1121                  * restructures the binary search tree; it does not otherwise
1122                  * change the map.  Thus, the map's timestamp need not change
1123                  * on a temporary upgrade.
1124                  */
1125                 map->root = cur = vm_map_entry_splay(address, cur);
1126                 if (!locked)
1127                         sx_downgrade(&map->lock);
1128
1129                 /*
1130                  * If "address" is contained within a map entry, the new root
1131                  * is that map entry.  Otherwise, the new root is a map entry
1132                  * immediately before or after "address".
1133                  */
1134                 if (address >= cur->start) {
1135                         *entry = cur;
1136                         if (cur->end > address)
1137                                 return (TRUE);
1138                 } else
1139                         *entry = cur->prev;
1140         } else
1141                 /*
1142                  * Since the map is only locked for read access, perform a
1143                  * standard binary search tree lookup for "address".
1144                  */
1145                 for (;;) {
1146                         if (address < cur->start) {
1147                                 if (cur->left == NULL) {
1148                                         *entry = cur->prev;
1149                                         break;
1150                                 }
1151                                 cur = cur->left;
1152                         } else if (cur->end > address) {
1153                                 *entry = cur;
1154                                 return (TRUE);
1155                         } else {
1156                                 if (cur->right == NULL) {
1157                                         *entry = cur;
1158                                         break;
1159                                 }
1160                                 cur = cur->right;
1161                         }
1162                 }
1163         return (FALSE);
1164 }
1165
1166 /*
1167  *      vm_map_insert:
1168  *
1169  *      Inserts the given whole VM object into the target
1170  *      map at the specified address range.  The object's
1171  *      size should match that of the address range.
1172  *
1173  *      Requires that the map be locked, and leaves it so.
1174  *
1175  *      If object is non-NULL, ref count must be bumped by caller
1176  *      prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182         vm_map_entry_t new_entry, prev_entry, temp_entry;
1183         struct ucred *cred;
1184         vm_eflags_t protoeflags;
1185         vm_inherit_t inheritance;
1186
1187         VM_MAP_ASSERT_LOCKED(map);
1188         KASSERT((object != kmem_object && object != kernel_object) ||
1189             (cow & MAP_COPY_ON_WRITE) == 0,
1190             ("vm_map_insert: kmem or kernel object and COW"));
1191         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193
1194         /*
1195          * Check that the start and end points are not bogus.
1196          */
1197         if (start < map->min_offset || end > map->max_offset || start >= end)
1198                 return (KERN_INVALID_ADDRESS);
1199
1200         /*
1201          * Find the entry prior to the proposed starting address; if it's part
1202          * of an existing entry, this range is bogus.
1203          */
1204         if (vm_map_lookup_entry(map, start, &temp_entry))
1205                 return (KERN_NO_SPACE);
1206
1207         prev_entry = temp_entry;
1208
1209         /*
1210          * Assert that the next entry doesn't overlap the end point.
1211          */
1212         if (prev_entry->next != &map->header && prev_entry->next->start < end)
1213                 return (KERN_NO_SPACE);
1214
1215         protoeflags = 0;
1216         if (cow & MAP_COPY_ON_WRITE)
1217                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1218         if (cow & MAP_NOFAULT)
1219                 protoeflags |= MAP_ENTRY_NOFAULT;
1220         if (cow & MAP_DISABLE_SYNCER)
1221                 protoeflags |= MAP_ENTRY_NOSYNC;
1222         if (cow & MAP_DISABLE_COREDUMP)
1223                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1224         if (cow & MAP_STACK_GROWS_DOWN)
1225                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1226         if (cow & MAP_STACK_GROWS_UP)
1227                 protoeflags |= MAP_ENTRY_GROWS_UP;
1228         if (cow & MAP_VN_WRITECOUNT)
1229                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1230         if (cow & MAP_INHERIT_SHARE)
1231                 inheritance = VM_INHERIT_SHARE;
1232         else
1233                 inheritance = VM_INHERIT_DEFAULT;
1234
1235         cred = NULL;
1236         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1237                 goto charged;
1238         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1239             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1240                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1241                         return (KERN_RESOURCE_SHORTAGE);
1242                 KASSERT(object == NULL ||
1243                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1244                     object->cred == NULL,
1245                     ("overcommit: vm_map_insert o %p", object));
1246                 cred = curthread->td_ucred;
1247         }
1248
1249 charged:
1250         /* Expand the kernel pmap, if necessary. */
1251         if (map == kernel_map && end > kernel_vm_end)
1252                 pmap_growkernel(end);
1253         if (object != NULL) {
1254                 /*
1255                  * OBJ_ONEMAPPING must be cleared unless this mapping
1256                  * is trivially proven to be the only mapping for any
1257                  * of the object's pages.  (Object granularity
1258                  * reference counting is insufficient to recognize
1259                  * aliases with precision.)
1260                  */
1261                 VM_OBJECT_WLOCK(object);
1262                 if (object->ref_count > 1 || object->shadow_count != 0)
1263                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1264                 VM_OBJECT_WUNLOCK(object);
1265         } else if (prev_entry != &map->header &&
1266             prev_entry->eflags == protoeflags &&
1267             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1268             prev_entry->end == start && prev_entry->wired_count == 0 &&
1269             (prev_entry->cred == cred ||
1270             (prev_entry->object.vm_object != NULL &&
1271             prev_entry->object.vm_object->cred == cred)) &&
1272             vm_object_coalesce(prev_entry->object.vm_object,
1273             prev_entry->offset,
1274             (vm_size_t)(prev_entry->end - prev_entry->start),
1275             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1276             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1277                 /*
1278                  * We were able to extend the object.  Determine if we
1279                  * can extend the previous map entry to include the
1280                  * new range as well.
1281                  */
1282                 if (prev_entry->inheritance == inheritance &&
1283                     prev_entry->protection == prot &&
1284                     prev_entry->max_protection == max) {
1285                         map->size += end - prev_entry->end;
1286                         prev_entry->end = end;
1287                         vm_map_entry_resize_free(map, prev_entry);
1288                         vm_map_simplify_entry(map, prev_entry);
1289                         return (KERN_SUCCESS);
1290                 }
1291
1292                 /*
1293                  * If we can extend the object but cannot extend the
1294                  * map entry, we have to create a new map entry.  We
1295                  * must bump the ref count on the extended object to
1296                  * account for it.  object may be NULL.
1297                  */
1298                 object = prev_entry->object.vm_object;
1299                 offset = prev_entry->offset +
1300                     (prev_entry->end - prev_entry->start);
1301                 vm_object_reference(object);
1302                 if (cred != NULL && object != NULL && object->cred != NULL &&
1303                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1304                         /* Object already accounts for this uid. */
1305                         cred = NULL;
1306                 }
1307         }
1308         if (cred != NULL)
1309                 crhold(cred);
1310
1311         /*
1312          * Create a new entry
1313          */
1314         new_entry = vm_map_entry_create(map);
1315         new_entry->start = start;
1316         new_entry->end = end;
1317         new_entry->cred = NULL;
1318
1319         new_entry->eflags = protoeflags;
1320         new_entry->object.vm_object = object;
1321         new_entry->offset = offset;
1322         new_entry->avail_ssize = 0;
1323
1324         new_entry->inheritance = inheritance;
1325         new_entry->protection = prot;
1326         new_entry->max_protection = max;
1327         new_entry->wired_count = 0;
1328         new_entry->wiring_thread = NULL;
1329         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1330         new_entry->next_read = start;
1331
1332         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1333             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1334         new_entry->cred = cred;
1335
1336         /*
1337          * Insert the new entry into the list
1338          */
1339         vm_map_entry_link(map, prev_entry, new_entry);
1340         map->size += new_entry->end - new_entry->start;
1341
1342         /*
1343          * Try to coalesce the new entry with both the previous and next
1344          * entries in the list.  Previously, we only attempted to coalesce
1345          * with the previous entry when object is NULL.  Here, we handle the
1346          * other cases, which are less common.
1347          */
1348         vm_map_simplify_entry(map, new_entry);
1349
1350         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1351                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1352                     end - start, cow & MAP_PREFAULT_PARTIAL);
1353         }
1354
1355         return (KERN_SUCCESS);
1356 }
1357
1358 /*
1359  *      vm_map_findspace:
1360  *
1361  *      Find the first fit (lowest VM address) for "length" free bytes
1362  *      beginning at address >= start in the given map.
1363  *
1364  *      In a vm_map_entry, "adj_free" is the amount of free space
1365  *      adjacent (higher address) to this entry, and "max_free" is the
1366  *      maximum amount of contiguous free space in its subtree.  This
1367  *      allows finding a free region in one path down the tree, so
1368  *      O(log n) amortized with splay trees.
1369  *
1370  *      The map must be locked, and leaves it so.
1371  *
1372  *      Returns: 0 on success, and starting address in *addr,
1373  *               1 if insufficient space.
1374  */
1375 int
1376 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1377     vm_offset_t *addr)  /* OUT */
1378 {
1379         vm_map_entry_t entry;
1380         vm_offset_t st;
1381
1382         /*
1383          * Request must fit within min/max VM address and must avoid
1384          * address wrap.
1385          */
1386         if (start < map->min_offset)
1387                 start = map->min_offset;
1388         if (start + length > map->max_offset || start + length < start)
1389                 return (1);
1390
1391         /* Empty tree means wide open address space. */
1392         if (map->root == NULL) {
1393                 *addr = start;
1394                 return (0);
1395         }
1396
1397         /*
1398          * After splay, if start comes before root node, then there
1399          * must be a gap from start to the root.
1400          */
1401         map->root = vm_map_entry_splay(start, map->root);
1402         if (start + length <= map->root->start) {
1403                 *addr = start;
1404                 return (0);
1405         }
1406
1407         /*
1408          * Root is the last node that might begin its gap before
1409          * start, and this is the last comparison where address
1410          * wrap might be a problem.
1411          */
1412         st = (start > map->root->end) ? start : map->root->end;
1413         if (length <= map->root->end + map->root->adj_free - st) {
1414                 *addr = st;
1415                 return (0);
1416         }
1417
1418         /* With max_free, can immediately tell if no solution. */
1419         entry = map->root->right;
1420         if (entry == NULL || length > entry->max_free)
1421                 return (1);
1422
1423         /*
1424          * Search the right subtree in the order: left subtree, root,
1425          * right subtree (first fit).  The previous splay implies that
1426          * all regions in the right subtree have addresses > start.
1427          */
1428         while (entry != NULL) {
1429                 if (entry->left != NULL && entry->left->max_free >= length)
1430                         entry = entry->left;
1431                 else if (entry->adj_free >= length) {
1432                         *addr = entry->end;
1433                         return (0);
1434                 } else
1435                         entry = entry->right;
1436         }
1437
1438         /* Can't get here, so panic if we do. */
1439         panic("vm_map_findspace: max_free corrupt");
1440 }
1441
1442 int
1443 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1444     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1445     vm_prot_t max, int cow)
1446 {
1447         vm_offset_t end;
1448         int result;
1449
1450         end = start + length;
1451         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1452             object == NULL,
1453             ("vm_map_fixed: non-NULL backing object for stack"));
1454         vm_map_lock(map);
1455         VM_MAP_RANGE_CHECK(map, start, end);
1456         if ((cow & MAP_CHECK_EXCL) == 0)
1457                 vm_map_delete(map, start, end);
1458         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1459                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1460                     prot, max, cow);
1461         } else {
1462                 result = vm_map_insert(map, object, offset, start, end,
1463                     prot, max, cow);
1464         }
1465         vm_map_unlock(map);
1466         return (result);
1467 }
1468
1469 /*
1470  *      vm_map_find finds an unallocated region in the target address
1471  *      map with the given length.  The search is defined to be
1472  *      first-fit from the specified address; the region found is
1473  *      returned in the same parameter.
1474  *
1475  *      If object is non-NULL, ref count must be bumped by caller
1476  *      prior to making call to account for the new entry.
1477  */
1478 int
1479 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1480             vm_offset_t *addr,  /* IN/OUT */
1481             vm_size_t length, vm_offset_t max_addr, int find_space,
1482             vm_prot_t prot, vm_prot_t max, int cow)
1483 {
1484         vm_offset_t alignment, initial_addr, start;
1485         int result;
1486
1487         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1488             object == NULL,
1489             ("vm_map_find: non-NULL backing object for stack"));
1490         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1491             (object->flags & OBJ_COLORED) == 0))
1492                 find_space = VMFS_ANY_SPACE;
1493         if (find_space >> 8 != 0) {
1494                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1495                 alignment = (vm_offset_t)1 << (find_space >> 8);
1496         } else
1497                 alignment = 0;
1498         initial_addr = *addr;
1499 again:
1500         start = initial_addr;
1501         vm_map_lock(map);
1502         do {
1503                 if (find_space != VMFS_NO_SPACE) {
1504                         if (vm_map_findspace(map, start, length, addr) ||
1505                             (max_addr != 0 && *addr + length > max_addr)) {
1506                                 vm_map_unlock(map);
1507                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1508                                         find_space = VMFS_ANY_SPACE;
1509                                         goto again;
1510                                 }
1511                                 return (KERN_NO_SPACE);
1512                         }
1513                         switch (find_space) {
1514                         case VMFS_SUPER_SPACE:
1515                         case VMFS_OPTIMAL_SPACE:
1516                                 pmap_align_superpage(object, offset, addr,
1517                                     length);
1518                                 break;
1519                         case VMFS_ANY_SPACE:
1520                                 break;
1521                         default:
1522                                 if ((*addr & (alignment - 1)) != 0) {
1523                                         *addr &= ~(alignment - 1);
1524                                         *addr += alignment;
1525                                 }
1526                                 break;
1527                         }
1528
1529                         start = *addr;
1530                 }
1531                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1532                         result = vm_map_stack_locked(map, start, length,
1533                             sgrowsiz, prot, max, cow);
1534                 } else {
1535                         result = vm_map_insert(map, object, offset, start,
1536                             start + length, prot, max, cow);
1537                 }
1538         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1539             find_space != VMFS_ANY_SPACE);
1540         vm_map_unlock(map);
1541         return (result);
1542 }
1543
1544 /*
1545  *      vm_map_simplify_entry:
1546  *
1547  *      Simplify the given map entry by merging with either neighbor.  This
1548  *      routine also has the ability to merge with both neighbors.
1549  *
1550  *      The map must be locked.
1551  *
1552  *      This routine guarantees that the passed entry remains valid (though
1553  *      possibly extended).  When merging, this routine may delete one or
1554  *      both neighbors.
1555  */
1556 void
1557 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1558 {
1559         vm_map_entry_t next, prev;
1560         vm_size_t prevsize, esize;
1561
1562         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1563             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1564                 return;
1565
1566         prev = entry->prev;
1567         if (prev != &map->header) {
1568                 prevsize = prev->end - prev->start;
1569                 if ( (prev->end == entry->start) &&
1570                      (prev->object.vm_object == entry->object.vm_object) &&
1571                      (!prev->object.vm_object ||
1572                         (prev->offset + prevsize == entry->offset)) &&
1573                      (prev->eflags == entry->eflags) &&
1574                      (prev->protection == entry->protection) &&
1575                      (prev->max_protection == entry->max_protection) &&
1576                      (prev->inheritance == entry->inheritance) &&
1577                      (prev->wired_count == entry->wired_count) &&
1578                      (prev->cred == entry->cred)) {
1579                         vm_map_entry_unlink(map, prev);
1580                         entry->start = prev->start;
1581                         entry->offset = prev->offset;
1582                         if (entry->prev != &map->header)
1583                                 vm_map_entry_resize_free(map, entry->prev);
1584
1585                         /*
1586                          * If the backing object is a vnode object,
1587                          * vm_object_deallocate() calls vrele().
1588                          * However, vrele() does not lock the vnode
1589                          * because the vnode has additional
1590                          * references.  Thus, the map lock can be kept
1591                          * without causing a lock-order reversal with
1592                          * the vnode lock.
1593                          *
1594                          * Since we count the number of virtual page
1595                          * mappings in object->un_pager.vnp.writemappings,
1596                          * the writemappings value should not be adjusted
1597                          * when the entry is disposed of.
1598                          */
1599                         if (prev->object.vm_object)
1600                                 vm_object_deallocate(prev->object.vm_object);
1601                         if (prev->cred != NULL)
1602                                 crfree(prev->cred);
1603                         vm_map_entry_dispose(map, prev);
1604                 }
1605         }
1606
1607         next = entry->next;
1608         if (next != &map->header) {
1609                 esize = entry->end - entry->start;
1610                 if ((entry->end == next->start) &&
1611                     (next->object.vm_object == entry->object.vm_object) &&
1612                      (!entry->object.vm_object ||
1613                         (entry->offset + esize == next->offset)) &&
1614                     (next->eflags == entry->eflags) &&
1615                     (next->protection == entry->protection) &&
1616                     (next->max_protection == entry->max_protection) &&
1617                     (next->inheritance == entry->inheritance) &&
1618                     (next->wired_count == entry->wired_count) &&
1619                     (next->cred == entry->cred)) {
1620                         vm_map_entry_unlink(map, next);
1621                         entry->end = next->end;
1622                         vm_map_entry_resize_free(map, entry);
1623
1624                         /*
1625                          * See comment above.
1626                          */
1627                         if (next->object.vm_object)
1628                                 vm_object_deallocate(next->object.vm_object);
1629                         if (next->cred != NULL)
1630                                 crfree(next->cred);
1631                         vm_map_entry_dispose(map, next);
1632                 }
1633         }
1634 }
1635 /*
1636  *      vm_map_clip_start:      [ internal use only ]
1637  *
1638  *      Asserts that the given entry begins at or after
1639  *      the specified address; if necessary,
1640  *      it splits the entry into two.
1641  */
1642 #define vm_map_clip_start(map, entry, startaddr) \
1643 { \
1644         if (startaddr > entry->start) \
1645                 _vm_map_clip_start(map, entry, startaddr); \
1646 }
1647
1648 /*
1649  *      This routine is called only when it is known that
1650  *      the entry must be split.
1651  */
1652 static void
1653 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1654 {
1655         vm_map_entry_t new_entry;
1656
1657         VM_MAP_ASSERT_LOCKED(map);
1658         KASSERT(entry->end > start && entry->start < start,
1659             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1660
1661         /*
1662          * Split off the front portion -- note that we must insert the new
1663          * entry BEFORE this one, so that this entry has the specified
1664          * starting address.
1665          */
1666         vm_map_simplify_entry(map, entry);
1667
1668         /*
1669          * If there is no object backing this entry, we might as well create
1670          * one now.  If we defer it, an object can get created after the map
1671          * is clipped, and individual objects will be created for the split-up
1672          * map.  This is a bit of a hack, but is also about the best place to
1673          * put this improvement.
1674          */
1675         if (entry->object.vm_object == NULL && !map->system_map) {
1676                 vm_object_t object;
1677                 object = vm_object_allocate(OBJT_DEFAULT,
1678                                 atop(entry->end - entry->start));
1679                 entry->object.vm_object = object;
1680                 entry->offset = 0;
1681                 if (entry->cred != NULL) {
1682                         object->cred = entry->cred;
1683                         object->charge = entry->end - entry->start;
1684                         entry->cred = NULL;
1685                 }
1686         } else if (entry->object.vm_object != NULL &&
1687                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1688                    entry->cred != NULL) {
1689                 VM_OBJECT_WLOCK(entry->object.vm_object);
1690                 KASSERT(entry->object.vm_object->cred == NULL,
1691                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1692                 entry->object.vm_object->cred = entry->cred;
1693                 entry->object.vm_object->charge = entry->end - entry->start;
1694                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1695                 entry->cred = NULL;
1696         }
1697
1698         new_entry = vm_map_entry_create(map);
1699         *new_entry = *entry;
1700
1701         new_entry->end = start;
1702         entry->offset += (start - entry->start);
1703         entry->start = start;
1704         if (new_entry->cred != NULL)
1705                 crhold(entry->cred);
1706
1707         vm_map_entry_link(map, entry->prev, new_entry);
1708
1709         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1710                 vm_object_reference(new_entry->object.vm_object);
1711                 /*
1712                  * The object->un_pager.vnp.writemappings for the
1713                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1714                  * kept as is here.  The virtual pages are
1715                  * re-distributed among the clipped entries, so the sum is
1716                  * left the same.
1717                  */
1718         }
1719 }
1720
1721 /*
1722  *      vm_map_clip_end:        [ internal use only ]
1723  *
1724  *      Asserts that the given entry ends at or before
1725  *      the specified address; if necessary,
1726  *      it splits the entry into two.
1727  */
1728 #define vm_map_clip_end(map, entry, endaddr) \
1729 { \
1730         if ((endaddr) < (entry->end)) \
1731                 _vm_map_clip_end((map), (entry), (endaddr)); \
1732 }
1733
1734 /*
1735  *      This routine is called only when it is known that
1736  *      the entry must be split.
1737  */
1738 static void
1739 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1740 {
1741         vm_map_entry_t new_entry;
1742
1743         VM_MAP_ASSERT_LOCKED(map);
1744         KASSERT(entry->start < end && entry->end > end,
1745             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1746
1747         /*
1748          * If there is no object backing this entry, we might as well create
1749          * one now.  If we defer it, an object can get created after the map
1750          * is clipped, and individual objects will be created for the split-up
1751          * map.  This is a bit of a hack, but is also about the best place to
1752          * put this improvement.
1753          */
1754         if (entry->object.vm_object == NULL && !map->system_map) {
1755                 vm_object_t object;
1756                 object = vm_object_allocate(OBJT_DEFAULT,
1757                                 atop(entry->end - entry->start));
1758                 entry->object.vm_object = object;
1759                 entry->offset = 0;
1760                 if (entry->cred != NULL) {
1761                         object->cred = entry->cred;
1762                         object->charge = entry->end - entry->start;
1763                         entry->cred = NULL;
1764                 }
1765         } else if (entry->object.vm_object != NULL &&
1766                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1767                    entry->cred != NULL) {
1768                 VM_OBJECT_WLOCK(entry->object.vm_object);
1769                 KASSERT(entry->object.vm_object->cred == NULL,
1770                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1771                 entry->object.vm_object->cred = entry->cred;
1772                 entry->object.vm_object->charge = entry->end - entry->start;
1773                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1774                 entry->cred = NULL;
1775         }
1776
1777         /*
1778          * Create a new entry and insert it AFTER the specified entry
1779          */
1780         new_entry = vm_map_entry_create(map);
1781         *new_entry = *entry;
1782
1783         new_entry->start = entry->end = end;
1784         new_entry->offset += (end - entry->start);
1785         if (new_entry->cred != NULL)
1786                 crhold(entry->cred);
1787
1788         vm_map_entry_link(map, entry, new_entry);
1789
1790         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1791                 vm_object_reference(new_entry->object.vm_object);
1792         }
1793 }
1794
1795 /*
1796  *      vm_map_submap:          [ kernel use only ]
1797  *
1798  *      Mark the given range as handled by a subordinate map.
1799  *
1800  *      This range must have been created with vm_map_find,
1801  *      and no other operations may have been performed on this
1802  *      range prior to calling vm_map_submap.
1803  *
1804  *      Only a limited number of operations can be performed
1805  *      within this rage after calling vm_map_submap:
1806  *              vm_fault
1807  *      [Don't try vm_map_copy!]
1808  *
1809  *      To remove a submapping, one must first remove the
1810  *      range from the superior map, and then destroy the
1811  *      submap (if desired).  [Better yet, don't try it.]
1812  */
1813 int
1814 vm_map_submap(
1815         vm_map_t map,
1816         vm_offset_t start,
1817         vm_offset_t end,
1818         vm_map_t submap)
1819 {
1820         vm_map_entry_t entry;
1821         int result = KERN_INVALID_ARGUMENT;
1822
1823         vm_map_lock(map);
1824
1825         VM_MAP_RANGE_CHECK(map, start, end);
1826
1827         if (vm_map_lookup_entry(map, start, &entry)) {
1828                 vm_map_clip_start(map, entry, start);
1829         } else
1830                 entry = entry->next;
1831
1832         vm_map_clip_end(map, entry, end);
1833
1834         if ((entry->start == start) && (entry->end == end) &&
1835             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1836             (entry->object.vm_object == NULL)) {
1837                 entry->object.sub_map = submap;
1838                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1839                 result = KERN_SUCCESS;
1840         }
1841         vm_map_unlock(map);
1842
1843         return (result);
1844 }
1845
1846 /*
1847  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1848  */
1849 #define MAX_INIT_PT     96
1850
1851 /*
1852  *      vm_map_pmap_enter:
1853  *
1854  *      Preload the specified map's pmap with mappings to the specified
1855  *      object's memory-resident pages.  No further physical pages are
1856  *      allocated, and no further virtual pages are retrieved from secondary
1857  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1858  *      limited number of page mappings are created at the low-end of the
1859  *      specified address range.  (For this purpose, a superpage mapping
1860  *      counts as one page mapping.)  Otherwise, all resident pages within
1861  *      the specified address range are mapped.
1862  */
1863 static void
1864 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1865     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1866 {
1867         vm_offset_t start;
1868         vm_page_t p, p_start;
1869         vm_pindex_t mask, psize, threshold, tmpidx;
1870
1871         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1872                 return;
1873         VM_OBJECT_RLOCK(object);
1874         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1875                 VM_OBJECT_RUNLOCK(object);
1876                 VM_OBJECT_WLOCK(object);
1877                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1878                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1879                             size);
1880                         VM_OBJECT_WUNLOCK(object);
1881                         return;
1882                 }
1883                 VM_OBJECT_LOCK_DOWNGRADE(object);
1884         }
1885
1886         psize = atop(size);
1887         if (psize + pindex > object->size) {
1888                 if (object->size < pindex) {
1889                         VM_OBJECT_RUNLOCK(object);
1890                         return;
1891                 }
1892                 psize = object->size - pindex;
1893         }
1894
1895         start = 0;
1896         p_start = NULL;
1897         threshold = MAX_INIT_PT;
1898
1899         p = vm_page_find_least(object, pindex);
1900         /*
1901          * Assert: the variable p is either (1) the page with the
1902          * least pindex greater than or equal to the parameter pindex
1903          * or (2) NULL.
1904          */
1905         for (;
1906              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1907              p = TAILQ_NEXT(p, listq)) {
1908                 /*
1909                  * don't allow an madvise to blow away our really
1910                  * free pages allocating pv entries.
1911                  */
1912                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1913                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1914                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1915                     tmpidx >= threshold)) {
1916                         psize = tmpidx;
1917                         break;
1918                 }
1919                 if (p->valid == VM_PAGE_BITS_ALL) {
1920                         if (p_start == NULL) {
1921                                 start = addr + ptoa(tmpidx);
1922                                 p_start = p;
1923                         }
1924                         /* Jump ahead if a superpage mapping is possible. */
1925                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1926                             (pagesizes[p->psind] - 1)) == 0) {
1927                                 mask = atop(pagesizes[p->psind]) - 1;
1928                                 if (tmpidx + mask < psize &&
1929                                     vm_page_ps_is_valid(p)) {
1930                                         p += mask;
1931                                         threshold += mask;
1932                                 }
1933                         }
1934                 } else if (p_start != NULL) {
1935                         pmap_enter_object(map->pmap, start, addr +
1936                             ptoa(tmpidx), p_start, prot);
1937                         p_start = NULL;
1938                 }
1939         }
1940         if (p_start != NULL)
1941                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1942                     p_start, prot);
1943         VM_OBJECT_RUNLOCK(object);
1944 }
1945
1946 /*
1947  *      vm_map_protect:
1948  *
1949  *      Sets the protection of the specified address
1950  *      region in the target map.  If "set_max" is
1951  *      specified, the maximum protection is to be set;
1952  *      otherwise, only the current protection is affected.
1953  */
1954 int
1955 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1956                vm_prot_t new_prot, boolean_t set_max)
1957 {
1958         vm_map_entry_t current, entry;
1959         vm_object_t obj;
1960         struct ucred *cred;
1961         vm_prot_t old_prot;
1962
1963         if (start == end)
1964                 return (KERN_SUCCESS);
1965
1966         vm_map_lock(map);
1967
1968         /*
1969          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
1970          * need to fault pages into the map and will drop the map lock while
1971          * doing so, and the VM object may end up in an inconsistent state if we
1972          * update the protection on the map entry in between faults.
1973          */
1974         vm_map_wait_busy(map);
1975
1976         VM_MAP_RANGE_CHECK(map, start, end);
1977
1978         if (vm_map_lookup_entry(map, start, &entry)) {
1979                 vm_map_clip_start(map, entry, start);
1980         } else {
1981                 entry = entry->next;
1982         }
1983
1984         /*
1985          * Make a first pass to check for protection violations.
1986          */
1987         for (current = entry; current != &map->header && current->start < end;
1988             current = current->next) {
1989                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1990                         vm_map_unlock(map);
1991                         return (KERN_INVALID_ARGUMENT);
1992                 }
1993                 if ((new_prot & current->max_protection) != new_prot) {
1994                         vm_map_unlock(map);
1995                         return (KERN_PROTECTION_FAILURE);
1996                 }
1997         }
1998
1999         /*
2000          * Do an accounting pass for private read-only mappings that
2001          * now will do cow due to allowed write (e.g. debugger sets
2002          * breakpoint on text segment)
2003          */
2004         for (current = entry; current != &map->header && current->start < end;
2005             current = current->next) {
2006
2007                 vm_map_clip_end(map, current, end);
2008
2009                 if (set_max ||
2010                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2011                     ENTRY_CHARGED(current)) {
2012                         continue;
2013                 }
2014
2015                 cred = curthread->td_ucred;
2016                 obj = current->object.vm_object;
2017
2018                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2019                         if (!swap_reserve(current->end - current->start)) {
2020                                 vm_map_unlock(map);
2021                                 return (KERN_RESOURCE_SHORTAGE);
2022                         }
2023                         crhold(cred);
2024                         current->cred = cred;
2025                         continue;
2026                 }
2027
2028                 VM_OBJECT_WLOCK(obj);
2029                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2030                         VM_OBJECT_WUNLOCK(obj);
2031                         continue;
2032                 }
2033
2034                 /*
2035                  * Charge for the whole object allocation now, since
2036                  * we cannot distinguish between non-charged and
2037                  * charged clipped mapping of the same object later.
2038                  */
2039                 KASSERT(obj->charge == 0,
2040                     ("vm_map_protect: object %p overcharged (entry %p)",
2041                     obj, current));
2042                 if (!swap_reserve(ptoa(obj->size))) {
2043                         VM_OBJECT_WUNLOCK(obj);
2044                         vm_map_unlock(map);
2045                         return (KERN_RESOURCE_SHORTAGE);
2046                 }
2047
2048                 crhold(cred);
2049                 obj->cred = cred;
2050                 obj->charge = ptoa(obj->size);
2051                 VM_OBJECT_WUNLOCK(obj);
2052         }
2053
2054         /*
2055          * Go back and fix up protections. [Note that clipping is not
2056          * necessary the second time.]
2057          */
2058         for (current = entry; current != &map->header && current->start < end;
2059             current = current->next) {
2060                 old_prot = current->protection;
2061
2062                 if (set_max)
2063                         current->protection =
2064                             (current->max_protection = new_prot) &
2065                             old_prot;
2066                 else
2067                         current->protection = new_prot;
2068
2069                 /*
2070                  * For user wired map entries, the normal lazy evaluation of
2071                  * write access upgrades through soft page faults is
2072                  * undesirable.  Instead, immediately copy any pages that are
2073                  * copy-on-write and enable write access in the physical map.
2074                  */
2075                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2076                     (current->protection & VM_PROT_WRITE) != 0 &&
2077                     (old_prot & VM_PROT_WRITE) == 0)
2078                         vm_fault_copy_entry(map, map, current, current, NULL);
2079
2080                 /*
2081                  * When restricting access, update the physical map.  Worry
2082                  * about copy-on-write here.
2083                  */
2084                 if ((old_prot & ~current->protection) != 0) {
2085 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2086                                                         VM_PROT_ALL)
2087                         pmap_protect(map->pmap, current->start,
2088                             current->end,
2089                             current->protection & MASK(current));
2090 #undef  MASK
2091                 }
2092                 vm_map_simplify_entry(map, current);
2093         }
2094         vm_map_unlock(map);
2095         return (KERN_SUCCESS);
2096 }
2097
2098 /*
2099  *      vm_map_madvise:
2100  *
2101  *      This routine traverses a processes map handling the madvise
2102  *      system call.  Advisories are classified as either those effecting
2103  *      the vm_map_entry structure, or those effecting the underlying
2104  *      objects.
2105  */
2106 int
2107 vm_map_madvise(
2108         vm_map_t map,
2109         vm_offset_t start,
2110         vm_offset_t end,
2111         int behav)
2112 {
2113         vm_map_entry_t current, entry;
2114         int modify_map = 0;
2115
2116         /*
2117          * Some madvise calls directly modify the vm_map_entry, in which case
2118          * we need to use an exclusive lock on the map and we need to perform
2119          * various clipping operations.  Otherwise we only need a read-lock
2120          * on the map.
2121          */
2122         switch(behav) {
2123         case MADV_NORMAL:
2124         case MADV_SEQUENTIAL:
2125         case MADV_RANDOM:
2126         case MADV_NOSYNC:
2127         case MADV_AUTOSYNC:
2128         case MADV_NOCORE:
2129         case MADV_CORE:
2130                 if (start == end)
2131                         return (KERN_SUCCESS);
2132                 modify_map = 1;
2133                 vm_map_lock(map);
2134                 break;
2135         case MADV_WILLNEED:
2136         case MADV_DONTNEED:
2137         case MADV_FREE:
2138                 if (start == end)
2139                         return (KERN_SUCCESS);
2140                 vm_map_lock_read(map);
2141                 break;
2142         default:
2143                 return (KERN_INVALID_ARGUMENT);
2144         }
2145
2146         /*
2147          * Locate starting entry and clip if necessary.
2148          */
2149         VM_MAP_RANGE_CHECK(map, start, end);
2150
2151         if (vm_map_lookup_entry(map, start, &entry)) {
2152                 if (modify_map)
2153                         vm_map_clip_start(map, entry, start);
2154         } else {
2155                 entry = entry->next;
2156         }
2157
2158         if (modify_map) {
2159                 /*
2160                  * madvise behaviors that are implemented in the vm_map_entry.
2161                  *
2162                  * We clip the vm_map_entry so that behavioral changes are
2163                  * limited to the specified address range.
2164                  */
2165                 for (current = entry;
2166                      (current != &map->header) && (current->start < end);
2167                      current = current->next
2168                 ) {
2169                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2170                                 continue;
2171
2172                         vm_map_clip_end(map, current, end);
2173
2174                         switch (behav) {
2175                         case MADV_NORMAL:
2176                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2177                                 break;
2178                         case MADV_SEQUENTIAL:
2179                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2180                                 break;
2181                         case MADV_RANDOM:
2182                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2183                                 break;
2184                         case MADV_NOSYNC:
2185                                 current->eflags |= MAP_ENTRY_NOSYNC;
2186                                 break;
2187                         case MADV_AUTOSYNC:
2188                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2189                                 break;
2190                         case MADV_NOCORE:
2191                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2192                                 break;
2193                         case MADV_CORE:
2194                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2195                                 break;
2196                         default:
2197                                 break;
2198                         }
2199                         vm_map_simplify_entry(map, current);
2200                 }
2201                 vm_map_unlock(map);
2202         } else {
2203                 vm_pindex_t pstart, pend;
2204
2205                 /*
2206                  * madvise behaviors that are implemented in the underlying
2207                  * vm_object.
2208                  *
2209                  * Since we don't clip the vm_map_entry, we have to clip
2210                  * the vm_object pindex and count.
2211                  */
2212                 for (current = entry;
2213                      (current != &map->header) && (current->start < end);
2214                      current = current->next
2215                 ) {
2216                         vm_offset_t useEnd, useStart;
2217
2218                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2219                                 continue;
2220
2221                         pstart = OFF_TO_IDX(current->offset);
2222                         pend = pstart + atop(current->end - current->start);
2223                         useStart = current->start;
2224                         useEnd = current->end;
2225
2226                         if (current->start < start) {
2227                                 pstart += atop(start - current->start);
2228                                 useStart = start;
2229                         }
2230                         if (current->end > end) {
2231                                 pend -= atop(current->end - end);
2232                                 useEnd = end;
2233                         }
2234
2235                         if (pstart >= pend)
2236                                 continue;
2237
2238                         /*
2239                          * Perform the pmap_advise() before clearing
2240                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2241                          * concurrent pmap operation, such as pmap_remove(),
2242                          * could clear a reference in the pmap and set
2243                          * PGA_REFERENCED on the page before the pmap_advise()
2244                          * had completed.  Consequently, the page would appear
2245                          * referenced based upon an old reference that
2246                          * occurred before this pmap_advise() ran.
2247                          */
2248                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2249                                 pmap_advise(map->pmap, useStart, useEnd,
2250                                     behav);
2251
2252                         vm_object_madvise(current->object.vm_object, pstart,
2253                             pend, behav);
2254
2255                         /*
2256                          * Pre-populate paging structures in the
2257                          * WILLNEED case.  For wired entries, the
2258                          * paging structures are already populated.
2259                          */
2260                         if (behav == MADV_WILLNEED &&
2261                             current->wired_count == 0) {
2262                                 vm_map_pmap_enter(map,
2263                                     useStart,
2264                                     current->protection,
2265                                     current->object.vm_object,
2266                                     pstart,
2267                                     ptoa(pend - pstart),
2268                                     MAP_PREFAULT_MADVISE
2269                                 );
2270                         }
2271                 }
2272                 vm_map_unlock_read(map);
2273         }
2274         return (0);
2275 }
2276
2277
2278 /*
2279  *      vm_map_inherit:
2280  *
2281  *      Sets the inheritance of the specified address
2282  *      range in the target map.  Inheritance
2283  *      affects how the map will be shared with
2284  *      child maps at the time of vmspace_fork.
2285  */
2286 int
2287 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2288                vm_inherit_t new_inheritance)
2289 {
2290         vm_map_entry_t entry;
2291         vm_map_entry_t temp_entry;
2292
2293         switch (new_inheritance) {
2294         case VM_INHERIT_NONE:
2295         case VM_INHERIT_COPY:
2296         case VM_INHERIT_SHARE:
2297         case VM_INHERIT_ZERO:
2298                 break;
2299         default:
2300                 return (KERN_INVALID_ARGUMENT);
2301         }
2302         if (start == end)
2303                 return (KERN_SUCCESS);
2304         vm_map_lock(map);
2305         VM_MAP_RANGE_CHECK(map, start, end);
2306         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2307                 entry = temp_entry;
2308                 vm_map_clip_start(map, entry, start);
2309         } else
2310                 entry = temp_entry->next;
2311         while ((entry != &map->header) && (entry->start < end)) {
2312                 vm_map_clip_end(map, entry, end);
2313                 entry->inheritance = new_inheritance;
2314                 vm_map_simplify_entry(map, entry);
2315                 entry = entry->next;
2316         }
2317         vm_map_unlock(map);
2318         return (KERN_SUCCESS);
2319 }
2320
2321 /*
2322  *      vm_map_unwire:
2323  *
2324  *      Implements both kernel and user unwiring.
2325  */
2326 int
2327 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2328     int flags)
2329 {
2330         vm_map_entry_t entry, first_entry, tmp_entry;
2331         vm_offset_t saved_start;
2332         unsigned int last_timestamp;
2333         int rv;
2334         boolean_t need_wakeup, result, user_unwire;
2335
2336         if (start == end)
2337                 return (KERN_SUCCESS);
2338         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2339         vm_map_lock(map);
2340         VM_MAP_RANGE_CHECK(map, start, end);
2341         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2342                 if (flags & VM_MAP_WIRE_HOLESOK)
2343                         first_entry = first_entry->next;
2344                 else {
2345                         vm_map_unlock(map);
2346                         return (KERN_INVALID_ADDRESS);
2347                 }
2348         }
2349         last_timestamp = map->timestamp;
2350         entry = first_entry;
2351         while (entry != &map->header && entry->start < end) {
2352                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2353                         /*
2354                          * We have not yet clipped the entry.
2355                          */
2356                         saved_start = (start >= entry->start) ? start :
2357                             entry->start;
2358                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2359                         if (vm_map_unlock_and_wait(map, 0)) {
2360                                 /*
2361                                  * Allow interruption of user unwiring?
2362                                  */
2363                         }
2364                         vm_map_lock(map);
2365                         if (last_timestamp+1 != map->timestamp) {
2366                                 /*
2367                                  * Look again for the entry because the map was
2368                                  * modified while it was unlocked.
2369                                  * Specifically, the entry may have been
2370                                  * clipped, merged, or deleted.
2371                                  */
2372                                 if (!vm_map_lookup_entry(map, saved_start,
2373                                     &tmp_entry)) {
2374                                         if (flags & VM_MAP_WIRE_HOLESOK)
2375                                                 tmp_entry = tmp_entry->next;
2376                                         else {
2377                                                 if (saved_start == start) {
2378                                                         /*
2379                                                          * First_entry has been deleted.
2380                                                          */
2381                                                         vm_map_unlock(map);
2382                                                         return (KERN_INVALID_ADDRESS);
2383                                                 }
2384                                                 end = saved_start;
2385                                                 rv = KERN_INVALID_ADDRESS;
2386                                                 goto done;
2387                                         }
2388                                 }
2389                                 if (entry == first_entry)
2390                                         first_entry = tmp_entry;
2391                                 else
2392                                         first_entry = NULL;
2393                                 entry = tmp_entry;
2394                         }
2395                         last_timestamp = map->timestamp;
2396                         continue;
2397                 }
2398                 vm_map_clip_start(map, entry, start);
2399                 vm_map_clip_end(map, entry, end);
2400                 /*
2401                  * Mark the entry in case the map lock is released.  (See
2402                  * above.)
2403                  */
2404                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2405                     entry->wiring_thread == NULL,
2406                     ("owned map entry %p", entry));
2407                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2408                 entry->wiring_thread = curthread;
2409                 /*
2410                  * Check the map for holes in the specified region.
2411                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2412                  */
2413                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2414                     (entry->end < end && (entry->next == &map->header ||
2415                     entry->next->start > entry->end))) {
2416                         end = entry->end;
2417                         rv = KERN_INVALID_ADDRESS;
2418                         goto done;
2419                 }
2420                 /*
2421                  * If system unwiring, require that the entry is system wired.
2422                  */
2423                 if (!user_unwire &&
2424                     vm_map_entry_system_wired_count(entry) == 0) {
2425                         end = entry->end;
2426                         rv = KERN_INVALID_ARGUMENT;
2427                         goto done;
2428                 }
2429                 entry = entry->next;
2430         }
2431         rv = KERN_SUCCESS;
2432 done:
2433         need_wakeup = FALSE;
2434         if (first_entry == NULL) {
2435                 result = vm_map_lookup_entry(map, start, &first_entry);
2436                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2437                         first_entry = first_entry->next;
2438                 else
2439                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2440         }
2441         for (entry = first_entry; entry != &map->header && entry->start < end;
2442             entry = entry->next) {
2443                 /*
2444                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2445                  * space in the unwired region could have been mapped
2446                  * while the map lock was dropped for draining
2447                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2448                  * could be simultaneously wiring this new mapping
2449                  * entry.  Detect these cases and skip any entries
2450                  * marked as in transition by us.
2451                  */
2452                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2453                     entry->wiring_thread != curthread) {
2454                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2455                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2456                         continue;
2457                 }
2458
2459                 if (rv == KERN_SUCCESS && (!user_unwire ||
2460                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2461                         if (user_unwire)
2462                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2463                         if (entry->wired_count == 1)
2464                                 vm_map_entry_unwire(map, entry);
2465                         else
2466                                 entry->wired_count--;
2467                 }
2468                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2469                     ("vm_map_unwire: in-transition flag missing %p", entry));
2470                 KASSERT(entry->wiring_thread == curthread,
2471                     ("vm_map_unwire: alien wire %p", entry));
2472                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2473                 entry->wiring_thread = NULL;
2474                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2475                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2476                         need_wakeup = TRUE;
2477                 }
2478                 vm_map_simplify_entry(map, entry);
2479         }
2480         vm_map_unlock(map);
2481         if (need_wakeup)
2482                 vm_map_wakeup(map);
2483         return (rv);
2484 }
2485
2486 /*
2487  *      vm_map_wire_entry_failure:
2488  *
2489  *      Handle a wiring failure on the given entry.
2490  *
2491  *      The map should be locked.
2492  */
2493 static void
2494 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2495     vm_offset_t failed_addr)
2496 {
2497
2498         VM_MAP_ASSERT_LOCKED(map);
2499         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2500             entry->wired_count == 1,
2501             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2502         KASSERT(failed_addr < entry->end,
2503             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2504
2505         /*
2506          * If any pages at the start of this entry were successfully wired,
2507          * then unwire them.
2508          */
2509         if (failed_addr > entry->start) {
2510                 pmap_unwire(map->pmap, entry->start, failed_addr);
2511                 vm_object_unwire(entry->object.vm_object, entry->offset,
2512                     failed_addr - entry->start, PQ_ACTIVE);
2513         }
2514
2515         /*
2516          * Assign an out-of-range value to represent the failure to wire this
2517          * entry.
2518          */
2519         entry->wired_count = -1;
2520 }
2521
2522 /*
2523  *      vm_map_wire:
2524  *
2525  *      Implements both kernel and user wiring.
2526  */
2527 int
2528 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2529     int flags)
2530 {
2531         vm_map_entry_t entry, first_entry, tmp_entry;
2532         vm_offset_t faddr, saved_end, saved_start;
2533         unsigned int last_timestamp;
2534         int rv;
2535         boolean_t need_wakeup, result, user_wire;
2536         vm_prot_t prot;
2537
2538         if (start == end)
2539                 return (KERN_SUCCESS);
2540         prot = 0;
2541         if (flags & VM_MAP_WIRE_WRITE)
2542                 prot |= VM_PROT_WRITE;
2543         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2544         vm_map_lock(map);
2545         VM_MAP_RANGE_CHECK(map, start, end);
2546         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2547                 if (flags & VM_MAP_WIRE_HOLESOK)
2548                         first_entry = first_entry->next;
2549                 else {
2550                         vm_map_unlock(map);
2551                         return (KERN_INVALID_ADDRESS);
2552                 }
2553         }
2554         last_timestamp = map->timestamp;
2555         entry = first_entry;
2556         while (entry != &map->header && entry->start < end) {
2557                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2558                         /*
2559                          * We have not yet clipped the entry.
2560                          */
2561                         saved_start = (start >= entry->start) ? start :
2562                             entry->start;
2563                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2564                         if (vm_map_unlock_and_wait(map, 0)) {
2565                                 /*
2566                                  * Allow interruption of user wiring?
2567                                  */
2568                         }
2569                         vm_map_lock(map);
2570                         if (last_timestamp + 1 != map->timestamp) {
2571                                 /*
2572                                  * Look again for the entry because the map was
2573                                  * modified while it was unlocked.
2574                                  * Specifically, the entry may have been
2575                                  * clipped, merged, or deleted.
2576                                  */
2577                                 if (!vm_map_lookup_entry(map, saved_start,
2578                                     &tmp_entry)) {
2579                                         if (flags & VM_MAP_WIRE_HOLESOK)
2580                                                 tmp_entry = tmp_entry->next;
2581                                         else {
2582                                                 if (saved_start == start) {
2583                                                         /*
2584                                                          * first_entry has been deleted.
2585                                                          */
2586                                                         vm_map_unlock(map);
2587                                                         return (KERN_INVALID_ADDRESS);
2588                                                 }
2589                                                 end = saved_start;
2590                                                 rv = KERN_INVALID_ADDRESS;
2591                                                 goto done;
2592                                         }
2593                                 }
2594                                 if (entry == first_entry)
2595                                         first_entry = tmp_entry;
2596                                 else
2597                                         first_entry = NULL;
2598                                 entry = tmp_entry;
2599                         }
2600                         last_timestamp = map->timestamp;
2601                         continue;
2602                 }
2603                 vm_map_clip_start(map, entry, start);
2604                 vm_map_clip_end(map, entry, end);
2605                 /*
2606                  * Mark the entry in case the map lock is released.  (See
2607                  * above.)
2608                  */
2609                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2610                     entry->wiring_thread == NULL,
2611                     ("owned map entry %p", entry));
2612                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2613                 entry->wiring_thread = curthread;
2614                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2615                     || (entry->protection & prot) != prot) {
2616                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2617                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2618                                 end = entry->end;
2619                                 rv = KERN_INVALID_ADDRESS;
2620                                 goto done;
2621                         }
2622                         goto next_entry;
2623                 }
2624                 if (entry->wired_count == 0) {
2625                         entry->wired_count++;
2626                         saved_start = entry->start;
2627                         saved_end = entry->end;
2628
2629                         /*
2630                          * Release the map lock, relying on the in-transition
2631                          * mark.  Mark the map busy for fork.
2632                          */
2633                         vm_map_busy(map);
2634                         vm_map_unlock(map);
2635
2636                         faddr = saved_start;
2637                         do {
2638                                 /*
2639                                  * Simulate a fault to get the page and enter
2640                                  * it into the physical map.
2641                                  */
2642                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2643                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2644                                         break;
2645                         } while ((faddr += PAGE_SIZE) < saved_end);
2646                         vm_map_lock(map);
2647                         vm_map_unbusy(map);
2648                         if (last_timestamp + 1 != map->timestamp) {
2649                                 /*
2650                                  * Look again for the entry because the map was
2651                                  * modified while it was unlocked.  The entry
2652                                  * may have been clipped, but NOT merged or
2653                                  * deleted.
2654                                  */
2655                                 result = vm_map_lookup_entry(map, saved_start,
2656                                     &tmp_entry);
2657                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2658                                 if (entry == first_entry)
2659                                         first_entry = tmp_entry;
2660                                 else
2661                                         first_entry = NULL;
2662                                 entry = tmp_entry;
2663                                 while (entry->end < saved_end) {
2664                                         /*
2665                                          * In case of failure, handle entries
2666                                          * that were not fully wired here;
2667                                          * fully wired entries are handled
2668                                          * later.
2669                                          */
2670                                         if (rv != KERN_SUCCESS &&
2671                                             faddr < entry->end)
2672                                                 vm_map_wire_entry_failure(map,
2673                                                     entry, faddr);
2674                                         entry = entry->next;
2675                                 }
2676                         }
2677                         last_timestamp = map->timestamp;
2678                         if (rv != KERN_SUCCESS) {
2679                                 vm_map_wire_entry_failure(map, entry, faddr);
2680                                 end = entry->end;
2681                                 goto done;
2682                         }
2683                 } else if (!user_wire ||
2684                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2685                         entry->wired_count++;
2686                 }
2687                 /*
2688                  * Check the map for holes in the specified region.
2689                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2690                  */
2691         next_entry:
2692                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2693                     (entry->end < end && (entry->next == &map->header ||
2694                     entry->next->start > entry->end))) {
2695                         end = entry->end;
2696                         rv = KERN_INVALID_ADDRESS;
2697                         goto done;
2698                 }
2699                 entry = entry->next;
2700         }
2701         rv = KERN_SUCCESS;
2702 done:
2703         need_wakeup = FALSE;
2704         if (first_entry == NULL) {
2705                 result = vm_map_lookup_entry(map, start, &first_entry);
2706                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2707                         first_entry = first_entry->next;
2708                 else
2709                         KASSERT(result, ("vm_map_wire: lookup failed"));
2710         }
2711         for (entry = first_entry; entry != &map->header && entry->start < end;
2712             entry = entry->next) {
2713                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2714                         goto next_entry_done;
2715
2716                 /*
2717                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2718                  * space in the unwired region could have been mapped
2719                  * while the map lock was dropped for faulting in the
2720                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2721                  * Moreover, another thread could be simultaneously
2722                  * wiring this new mapping entry.  Detect these cases
2723                  * and skip any entries marked as in transition by us.
2724                  */
2725                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2726                     entry->wiring_thread != curthread) {
2727                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2728                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2729                         continue;
2730                 }
2731
2732                 if (rv == KERN_SUCCESS) {
2733                         if (user_wire)
2734                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2735                 } else if (entry->wired_count == -1) {
2736                         /*
2737                          * Wiring failed on this entry.  Thus, unwiring is
2738                          * unnecessary.
2739                          */
2740                         entry->wired_count = 0;
2741                 } else if (!user_wire ||
2742                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2743                         /*
2744                          * Undo the wiring.  Wiring succeeded on this entry
2745                          * but failed on a later entry.  
2746                          */
2747                         if (entry->wired_count == 1)
2748                                 vm_map_entry_unwire(map, entry);
2749                         else
2750                                 entry->wired_count--;
2751                 }
2752         next_entry_done:
2753                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2754                     ("vm_map_wire: in-transition flag missing %p", entry));
2755                 KASSERT(entry->wiring_thread == curthread,
2756                     ("vm_map_wire: alien wire %p", entry));
2757                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2758                     MAP_ENTRY_WIRE_SKIPPED);
2759                 entry->wiring_thread = NULL;
2760                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2761                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2762                         need_wakeup = TRUE;
2763                 }
2764                 vm_map_simplify_entry(map, entry);
2765         }
2766         vm_map_unlock(map);
2767         if (need_wakeup)
2768                 vm_map_wakeup(map);
2769         return (rv);
2770 }
2771
2772 /*
2773  * vm_map_sync
2774  *
2775  * Push any dirty cached pages in the address range to their pager.
2776  * If syncio is TRUE, dirty pages are written synchronously.
2777  * If invalidate is TRUE, any cached pages are freed as well.
2778  *
2779  * If the size of the region from start to end is zero, we are
2780  * supposed to flush all modified pages within the region containing
2781  * start.  Unfortunately, a region can be split or coalesced with
2782  * neighboring regions, making it difficult to determine what the
2783  * original region was.  Therefore, we approximate this requirement by
2784  * flushing the current region containing start.
2785  *
2786  * Returns an error if any part of the specified range is not mapped.
2787  */
2788 int
2789 vm_map_sync(
2790         vm_map_t map,
2791         vm_offset_t start,
2792         vm_offset_t end,
2793         boolean_t syncio,
2794         boolean_t invalidate)
2795 {
2796         vm_map_entry_t current;
2797         vm_map_entry_t entry;
2798         vm_size_t size;
2799         vm_object_t object;
2800         vm_ooffset_t offset;
2801         unsigned int last_timestamp;
2802         boolean_t failed;
2803
2804         vm_map_lock_read(map);
2805         VM_MAP_RANGE_CHECK(map, start, end);
2806         if (!vm_map_lookup_entry(map, start, &entry)) {
2807                 vm_map_unlock_read(map);
2808                 return (KERN_INVALID_ADDRESS);
2809         } else if (start == end) {
2810                 start = entry->start;
2811                 end = entry->end;
2812         }
2813         /*
2814          * Make a first pass to check for user-wired memory and holes.
2815          */
2816         for (current = entry; current != &map->header && current->start < end;
2817             current = current->next) {
2818                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2819                         vm_map_unlock_read(map);
2820                         return (KERN_INVALID_ARGUMENT);
2821                 }
2822                 if (end > current->end &&
2823                     (current->next == &map->header ||
2824                         current->end != current->next->start)) {
2825                         vm_map_unlock_read(map);
2826                         return (KERN_INVALID_ADDRESS);
2827                 }
2828         }
2829
2830         if (invalidate)
2831                 pmap_remove(map->pmap, start, end);
2832         failed = FALSE;
2833
2834         /*
2835          * Make a second pass, cleaning/uncaching pages from the indicated
2836          * objects as we go.
2837          */
2838         for (current = entry; current != &map->header && current->start < end;) {
2839                 offset = current->offset + (start - current->start);
2840                 size = (end <= current->end ? end : current->end) - start;
2841                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2842                         vm_map_t smap;
2843                         vm_map_entry_t tentry;
2844                         vm_size_t tsize;
2845
2846                         smap = current->object.sub_map;
2847                         vm_map_lock_read(smap);
2848                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2849                         tsize = tentry->end - offset;
2850                         if (tsize < size)
2851                                 size = tsize;
2852                         object = tentry->object.vm_object;
2853                         offset = tentry->offset + (offset - tentry->start);
2854                         vm_map_unlock_read(smap);
2855                 } else {
2856                         object = current->object.vm_object;
2857                 }
2858                 vm_object_reference(object);
2859                 last_timestamp = map->timestamp;
2860                 vm_map_unlock_read(map);
2861                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2862                         failed = TRUE;
2863                 start += size;
2864                 vm_object_deallocate(object);
2865                 vm_map_lock_read(map);
2866                 if (last_timestamp == map->timestamp ||
2867                     !vm_map_lookup_entry(map, start, &current))
2868                         current = current->next;
2869         }
2870
2871         vm_map_unlock_read(map);
2872         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2873 }
2874
2875 /*
2876  *      vm_map_entry_unwire:    [ internal use only ]
2877  *
2878  *      Make the region specified by this entry pageable.
2879  *
2880  *      The map in question should be locked.
2881  *      [This is the reason for this routine's existence.]
2882  */
2883 static void
2884 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2885 {
2886
2887         VM_MAP_ASSERT_LOCKED(map);
2888         KASSERT(entry->wired_count > 0,
2889             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2890         pmap_unwire(map->pmap, entry->start, entry->end);
2891         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2892             entry->start, PQ_ACTIVE);
2893         entry->wired_count = 0;
2894 }
2895
2896 static void
2897 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2898 {
2899
2900         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2901                 vm_object_deallocate(entry->object.vm_object);
2902         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2903 }
2904
2905 /*
2906  *      vm_map_entry_delete:    [ internal use only ]
2907  *
2908  *      Deallocate the given entry from the target map.
2909  */
2910 static void
2911 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2912 {
2913         vm_object_t object;
2914         vm_pindex_t offidxstart, offidxend, count, size1;
2915         vm_size_t size;
2916
2917         vm_map_entry_unlink(map, entry);
2918         object = entry->object.vm_object;
2919         size = entry->end - entry->start;
2920         map->size -= size;
2921
2922         if (entry->cred != NULL) {
2923                 swap_release_by_cred(size, entry->cred);
2924                 crfree(entry->cred);
2925         }
2926
2927         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2928             (object != NULL)) {
2929                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2930                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2931                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2932                 count = atop(size);
2933                 offidxstart = OFF_TO_IDX(entry->offset);
2934                 offidxend = offidxstart + count;
2935                 VM_OBJECT_WLOCK(object);
2936                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2937                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2938                     object == kernel_object || object == kmem_object)) {
2939                         vm_object_collapse(object);
2940
2941                         /*
2942                          * The option OBJPR_NOTMAPPED can be passed here
2943                          * because vm_map_delete() already performed
2944                          * pmap_remove() on the only mapping to this range
2945                          * of pages. 
2946                          */
2947                         vm_object_page_remove(object, offidxstart, offidxend,
2948                             OBJPR_NOTMAPPED);
2949                         if (object->type == OBJT_SWAP)
2950                                 swap_pager_freespace(object, offidxstart,
2951                                     count);
2952                         if (offidxend >= object->size &&
2953                             offidxstart < object->size) {
2954                                 size1 = object->size;
2955                                 object->size = offidxstart;
2956                                 if (object->cred != NULL) {
2957                                         size1 -= object->size;
2958                                         KASSERT(object->charge >= ptoa(size1),
2959                                             ("object %p charge < 0", object));
2960                                         swap_release_by_cred(ptoa(size1),
2961                                             object->cred);
2962                                         object->charge -= ptoa(size1);
2963                                 }
2964                         }
2965                 }
2966                 VM_OBJECT_WUNLOCK(object);
2967         } else
2968                 entry->object.vm_object = NULL;
2969         if (map->system_map)
2970                 vm_map_entry_deallocate(entry, TRUE);
2971         else {
2972                 entry->next = curthread->td_map_def_user;
2973                 curthread->td_map_def_user = entry;
2974         }
2975 }
2976
2977 /*
2978  *      vm_map_delete:  [ internal use only ]
2979  *
2980  *      Deallocates the given address range from the target
2981  *      map.
2982  */
2983 int
2984 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2985 {
2986         vm_map_entry_t entry;
2987         vm_map_entry_t first_entry;
2988
2989         VM_MAP_ASSERT_LOCKED(map);
2990         if (start == end)
2991                 return (KERN_SUCCESS);
2992
2993         /*
2994          * Find the start of the region, and clip it
2995          */
2996         if (!vm_map_lookup_entry(map, start, &first_entry))
2997                 entry = first_entry->next;
2998         else {
2999                 entry = first_entry;
3000                 vm_map_clip_start(map, entry, start);
3001         }
3002
3003         /*
3004          * Step through all entries in this region
3005          */
3006         while ((entry != &map->header) && (entry->start < end)) {
3007                 vm_map_entry_t next;
3008
3009                 /*
3010                  * Wait for wiring or unwiring of an entry to complete.
3011                  * Also wait for any system wirings to disappear on
3012                  * user maps.
3013                  */
3014                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3015                     (vm_map_pmap(map) != kernel_pmap &&
3016                     vm_map_entry_system_wired_count(entry) != 0)) {
3017                         unsigned int last_timestamp;
3018                         vm_offset_t saved_start;
3019                         vm_map_entry_t tmp_entry;
3020
3021                         saved_start = entry->start;
3022                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3023                         last_timestamp = map->timestamp;
3024                         (void) vm_map_unlock_and_wait(map, 0);
3025                         vm_map_lock(map);
3026                         if (last_timestamp + 1 != map->timestamp) {
3027                                 /*
3028                                  * Look again for the entry because the map was
3029                                  * modified while it was unlocked.
3030                                  * Specifically, the entry may have been
3031                                  * clipped, merged, or deleted.
3032                                  */
3033                                 if (!vm_map_lookup_entry(map, saved_start,
3034                                                          &tmp_entry))
3035                                         entry = tmp_entry->next;
3036                                 else {
3037                                         entry = tmp_entry;
3038                                         vm_map_clip_start(map, entry,
3039                                                           saved_start);
3040                                 }
3041                         }
3042                         continue;
3043                 }
3044                 vm_map_clip_end(map, entry, end);
3045
3046                 next = entry->next;
3047
3048                 /*
3049                  * Unwire before removing addresses from the pmap; otherwise,
3050                  * unwiring will put the entries back in the pmap.
3051                  */
3052                 if (entry->wired_count != 0) {
3053                         vm_map_entry_unwire(map, entry);
3054                 }
3055
3056                 pmap_remove(map->pmap, entry->start, entry->end);
3057
3058                 /*
3059                  * Delete the entry only after removing all pmap
3060                  * entries pointing to its pages.  (Otherwise, its
3061                  * page frames may be reallocated, and any modify bits
3062                  * will be set in the wrong object!)
3063                  */
3064                 vm_map_entry_delete(map, entry);
3065                 entry = next;
3066         }
3067         return (KERN_SUCCESS);
3068 }
3069
3070 /*
3071  *      vm_map_remove:
3072  *
3073  *      Remove the given address range from the target map.
3074  *      This is the exported form of vm_map_delete.
3075  */
3076 int
3077 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3078 {
3079         int result;
3080
3081         vm_map_lock(map);
3082         VM_MAP_RANGE_CHECK(map, start, end);
3083         result = vm_map_delete(map, start, end);
3084         vm_map_unlock(map);
3085         return (result);
3086 }
3087
3088 /*
3089  *      vm_map_check_protection:
3090  *
3091  *      Assert that the target map allows the specified privilege on the
3092  *      entire address region given.  The entire region must be allocated.
3093  *
3094  *      WARNING!  This code does not and should not check whether the
3095  *      contents of the region is accessible.  For example a smaller file
3096  *      might be mapped into a larger address space.
3097  *
3098  *      NOTE!  This code is also called by munmap().
3099  *
3100  *      The map must be locked.  A read lock is sufficient.
3101  */
3102 boolean_t
3103 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3104                         vm_prot_t protection)
3105 {
3106         vm_map_entry_t entry;
3107         vm_map_entry_t tmp_entry;
3108
3109         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3110                 return (FALSE);
3111         entry = tmp_entry;
3112
3113         while (start < end) {
3114                 if (entry == &map->header)
3115                         return (FALSE);
3116                 /*
3117                  * No holes allowed!
3118                  */
3119                 if (start < entry->start)
3120                         return (FALSE);
3121                 /*
3122                  * Check protection associated with entry.
3123                  */
3124                 if ((entry->protection & protection) != protection)
3125                         return (FALSE);
3126                 /* go to next entry */
3127                 start = entry->end;
3128                 entry = entry->next;
3129         }
3130         return (TRUE);
3131 }
3132
3133 /*
3134  *      vm_map_copy_entry:
3135  *
3136  *      Copies the contents of the source entry to the destination
3137  *      entry.  The entries *must* be aligned properly.
3138  */
3139 static void
3140 vm_map_copy_entry(
3141         vm_map_t src_map,
3142         vm_map_t dst_map,
3143         vm_map_entry_t src_entry,
3144         vm_map_entry_t dst_entry,
3145         vm_ooffset_t *fork_charge)
3146 {
3147         vm_object_t src_object;
3148         vm_map_entry_t fake_entry;
3149         vm_offset_t size;
3150         struct ucred *cred;
3151         int charged;
3152
3153         VM_MAP_ASSERT_LOCKED(dst_map);
3154
3155         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3156                 return;
3157
3158         if (src_entry->wired_count == 0 ||
3159             (src_entry->protection & VM_PROT_WRITE) == 0) {
3160                 /*
3161                  * If the source entry is marked needs_copy, it is already
3162                  * write-protected.
3163                  */
3164                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3165                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3166                         pmap_protect(src_map->pmap,
3167                             src_entry->start,
3168                             src_entry->end,
3169                             src_entry->protection & ~VM_PROT_WRITE);
3170                 }
3171
3172                 /*
3173                  * Make a copy of the object.
3174                  */
3175                 size = src_entry->end - src_entry->start;
3176                 if ((src_object = src_entry->object.vm_object) != NULL) {
3177                         VM_OBJECT_WLOCK(src_object);
3178                         charged = ENTRY_CHARGED(src_entry);
3179                         if (src_object->handle == NULL &&
3180                             (src_object->type == OBJT_DEFAULT ||
3181                             src_object->type == OBJT_SWAP)) {
3182                                 vm_object_collapse(src_object);
3183                                 if ((src_object->flags & (OBJ_NOSPLIT |
3184                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3185                                         vm_object_split(src_entry);
3186                                         src_object =
3187                                             src_entry->object.vm_object;
3188                                 }
3189                         }
3190                         vm_object_reference_locked(src_object);
3191                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3192                         if (src_entry->cred != NULL &&
3193                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3194                                 KASSERT(src_object->cred == NULL,
3195                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3196                                      src_object));
3197                                 src_object->cred = src_entry->cred;
3198                                 src_object->charge = size;
3199                         }
3200                         VM_OBJECT_WUNLOCK(src_object);
3201                         dst_entry->object.vm_object = src_object;
3202                         if (charged) {
3203                                 cred = curthread->td_ucred;
3204                                 crhold(cred);
3205                                 dst_entry->cred = cred;
3206                                 *fork_charge += size;
3207                                 if (!(src_entry->eflags &
3208                                       MAP_ENTRY_NEEDS_COPY)) {
3209                                         crhold(cred);
3210                                         src_entry->cred = cred;
3211                                         *fork_charge += size;
3212                                 }
3213                         }
3214                         src_entry->eflags |= MAP_ENTRY_COW |
3215                             MAP_ENTRY_NEEDS_COPY;
3216                         dst_entry->eflags |= MAP_ENTRY_COW |
3217                             MAP_ENTRY_NEEDS_COPY;
3218                         dst_entry->offset = src_entry->offset;
3219                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3220                                 /*
3221                                  * MAP_ENTRY_VN_WRITECNT cannot
3222                                  * indicate write reference from
3223                                  * src_entry, since the entry is
3224                                  * marked as needs copy.  Allocate a
3225                                  * fake entry that is used to
3226                                  * decrement object->un_pager.vnp.writecount
3227                                  * at the appropriate time.  Attach
3228                                  * fake_entry to the deferred list.
3229                                  */
3230                                 fake_entry = vm_map_entry_create(dst_map);
3231                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3232                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3233                                 vm_object_reference(src_object);
3234                                 fake_entry->object.vm_object = src_object;
3235                                 fake_entry->start = src_entry->start;
3236                                 fake_entry->end = src_entry->end;
3237                                 fake_entry->next = curthread->td_map_def_user;
3238                                 curthread->td_map_def_user = fake_entry;
3239                         }
3240                 } else {
3241                         dst_entry->object.vm_object = NULL;
3242                         dst_entry->offset = 0;
3243                         if (src_entry->cred != NULL) {
3244                                 dst_entry->cred = curthread->td_ucred;
3245                                 crhold(dst_entry->cred);
3246                                 *fork_charge += size;
3247                         }
3248                 }
3249
3250                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3251                     dst_entry->end - dst_entry->start, src_entry->start);
3252         } else {
3253                 /*
3254                  * We don't want to make writeable wired pages copy-on-write.
3255                  * Immediately copy these pages into the new map by simulating
3256                  * page faults.  The new pages are pageable.
3257                  */
3258                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3259                     fork_charge);
3260         }
3261 }
3262
3263 /*
3264  * vmspace_map_entry_forked:
3265  * Update the newly-forked vmspace each time a map entry is inherited
3266  * or copied.  The values for vm_dsize and vm_tsize are approximate
3267  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3268  */
3269 static void
3270 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3271     vm_map_entry_t entry)
3272 {
3273         vm_size_t entrysize;
3274         vm_offset_t newend;
3275
3276         entrysize = entry->end - entry->start;
3277         vm2->vm_map.size += entrysize;
3278         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3279                 vm2->vm_ssize += btoc(entrysize);
3280         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3281             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3282                 newend = MIN(entry->end,
3283                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3284                 vm2->vm_dsize += btoc(newend - entry->start);
3285         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3286             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3287                 newend = MIN(entry->end,
3288                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3289                 vm2->vm_tsize += btoc(newend - entry->start);
3290         }
3291 }
3292
3293 /*
3294  * vmspace_fork:
3295  * Create a new process vmspace structure and vm_map
3296  * based on those of an existing process.  The new map
3297  * is based on the old map, according to the inheritance
3298  * values on the regions in that map.
3299  *
3300  * XXX It might be worth coalescing the entries added to the new vmspace.
3301  *
3302  * The source map must not be locked.
3303  */
3304 struct vmspace *
3305 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3306 {
3307         struct vmspace *vm2;
3308         vm_map_t new_map, old_map;
3309         vm_map_entry_t new_entry, old_entry;
3310         vm_object_t object;
3311         int locked;
3312
3313         old_map = &vm1->vm_map;
3314         /* Copy immutable fields of vm1 to vm2. */
3315         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3316         if (vm2 == NULL)
3317                 return (NULL);
3318         vm2->vm_taddr = vm1->vm_taddr;
3319         vm2->vm_daddr = vm1->vm_daddr;
3320         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3321         vm_map_lock(old_map);
3322         if (old_map->busy)
3323                 vm_map_wait_busy(old_map);
3324         new_map = &vm2->vm_map;
3325         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3326         KASSERT(locked, ("vmspace_fork: lock failed"));
3327
3328         old_entry = old_map->header.next;
3329
3330         while (old_entry != &old_map->header) {
3331                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3332                         panic("vm_map_fork: encountered a submap");
3333
3334                 switch (old_entry->inheritance) {
3335                 case VM_INHERIT_NONE:
3336                         break;
3337
3338                 case VM_INHERIT_SHARE:
3339                         /*
3340                          * Clone the entry, creating the shared object if necessary.
3341                          */
3342                         object = old_entry->object.vm_object;
3343                         if (object == NULL) {
3344                                 object = vm_object_allocate(OBJT_DEFAULT,
3345                                         atop(old_entry->end - old_entry->start));
3346                                 old_entry->object.vm_object = object;
3347                                 old_entry->offset = 0;
3348                                 if (old_entry->cred != NULL) {
3349                                         object->cred = old_entry->cred;
3350                                         object->charge = old_entry->end -
3351                                             old_entry->start;
3352                                         old_entry->cred = NULL;
3353                                 }
3354                         }
3355
3356                         /*
3357                          * Add the reference before calling vm_object_shadow
3358                          * to insure that a shadow object is created.
3359                          */
3360                         vm_object_reference(object);
3361                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3362                                 vm_object_shadow(&old_entry->object.vm_object,
3363                                     &old_entry->offset,
3364                                     old_entry->end - old_entry->start);
3365                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3366                                 /* Transfer the second reference too. */
3367                                 vm_object_reference(
3368                                     old_entry->object.vm_object);
3369
3370                                 /*
3371                                  * As in vm_map_simplify_entry(), the
3372                                  * vnode lock will not be acquired in
3373                                  * this call to vm_object_deallocate().
3374                                  */
3375                                 vm_object_deallocate(object);
3376                                 object = old_entry->object.vm_object;
3377                         }
3378                         VM_OBJECT_WLOCK(object);
3379                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3380                         if (old_entry->cred != NULL) {
3381                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3382                                 object->cred = old_entry->cred;
3383                                 object->charge = old_entry->end - old_entry->start;
3384                                 old_entry->cred = NULL;
3385                         }
3386
3387                         /*
3388                          * Assert the correct state of the vnode
3389                          * v_writecount while the object is locked, to
3390                          * not relock it later for the assertion
3391                          * correctness.
3392                          */
3393                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3394                             object->type == OBJT_VNODE) {
3395                                 KASSERT(((struct vnode *)object->handle)->
3396                                     v_writecount > 0,
3397                                     ("vmspace_fork: v_writecount %p", object));
3398                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3399                                     ("vmspace_fork: vnp.writecount %p",
3400                                     object));
3401                         }
3402                         VM_OBJECT_WUNLOCK(object);
3403
3404                         /*
3405                          * Clone the entry, referencing the shared object.
3406                          */
3407                         new_entry = vm_map_entry_create(new_map);
3408                         *new_entry = *old_entry;
3409                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3410                             MAP_ENTRY_IN_TRANSITION);
3411                         new_entry->wiring_thread = NULL;
3412                         new_entry->wired_count = 0;
3413                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3414                                 vnode_pager_update_writecount(object,
3415                                     new_entry->start, new_entry->end);
3416                         }
3417
3418                         /*
3419                          * Insert the entry into the new map -- we know we're
3420                          * inserting at the end of the new map.
3421                          */
3422                         vm_map_entry_link(new_map, new_map->header.prev,
3423                             new_entry);
3424                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3425
3426                         /*
3427                          * Update the physical map
3428                          */
3429                         pmap_copy(new_map->pmap, old_map->pmap,
3430                             new_entry->start,
3431                             (old_entry->end - old_entry->start),
3432                             old_entry->start);
3433                         break;
3434
3435                 case VM_INHERIT_COPY:
3436                         /*
3437                          * Clone the entry and link into the map.
3438                          */
3439                         new_entry = vm_map_entry_create(new_map);
3440                         *new_entry = *old_entry;
3441                         /*
3442                          * Copied entry is COW over the old object.
3443                          */
3444                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3445                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3446                         new_entry->wiring_thread = NULL;
3447                         new_entry->wired_count = 0;
3448                         new_entry->object.vm_object = NULL;
3449                         new_entry->cred = NULL;
3450                         vm_map_entry_link(new_map, new_map->header.prev,
3451                             new_entry);
3452                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3453                         vm_map_copy_entry(old_map, new_map, old_entry,
3454                             new_entry, fork_charge);
3455                         break;
3456
3457                 case VM_INHERIT_ZERO:
3458                         /*
3459                          * Create a new anonymous mapping entry modelled from
3460                          * the old one.
3461                          */
3462                         new_entry = vm_map_entry_create(new_map);
3463                         memset(new_entry, 0, sizeof(*new_entry));
3464
3465                         new_entry->start = old_entry->start;
3466                         new_entry->end = old_entry->end;
3467                         new_entry->avail_ssize = old_entry->avail_ssize;
3468                         new_entry->eflags = old_entry->eflags &
3469                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3470                             MAP_ENTRY_VN_WRITECNT);
3471                         new_entry->protection = old_entry->protection;
3472                         new_entry->max_protection = old_entry->max_protection;
3473                         new_entry->inheritance = VM_INHERIT_ZERO;
3474
3475                         vm_map_entry_link(new_map, new_map->header.prev,
3476                             new_entry);
3477                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3478
3479                         new_entry->cred = curthread->td_ucred;
3480                         crhold(new_entry->cred);
3481                         *fork_charge += (new_entry->end - new_entry->start);
3482
3483                         break;
3484                 }
3485                 old_entry = old_entry->next;
3486         }
3487         /*
3488          * Use inlined vm_map_unlock() to postpone handling the deferred
3489          * map entries, which cannot be done until both old_map and
3490          * new_map locks are released.
3491          */
3492         sx_xunlock(&old_map->lock);
3493         sx_xunlock(&new_map->lock);
3494         vm_map_process_deferred();
3495
3496         return (vm2);
3497 }
3498
3499 int
3500 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3501     vm_prot_t prot, vm_prot_t max, int cow)
3502 {
3503         vm_size_t growsize, init_ssize;
3504         rlim_t lmemlim, vmemlim;
3505         int rv;
3506
3507         growsize = sgrowsiz;
3508         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3509         vm_map_lock(map);
3510         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3511         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3512         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3513                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3514                         rv = KERN_NO_SPACE;
3515                         goto out;
3516                 }
3517         }
3518         /* If we would blow our VMEM resource limit, no go */
3519         if (map->size + init_ssize > vmemlim) {
3520                 rv = KERN_NO_SPACE;
3521                 goto out;
3522         }
3523         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3524             max, cow);
3525 out:
3526         vm_map_unlock(map);
3527         return (rv);
3528 }
3529
3530 static int
3531 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3532     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3533 {
3534         vm_map_entry_t new_entry, prev_entry;
3535         vm_offset_t bot, top;
3536         vm_size_t init_ssize;
3537         int orient, rv;
3538
3539         /*
3540          * The stack orientation is piggybacked with the cow argument.
3541          * Extract it into orient and mask the cow argument so that we
3542          * don't pass it around further.
3543          * NOTE: We explicitly allow bi-directional stacks.
3544          */
3545         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3546         KASSERT(orient != 0, ("No stack grow direction"));
3547
3548         if (addrbos < vm_map_min(map) ||
3549             addrbos > vm_map_max(map) ||
3550             addrbos + max_ssize < addrbos)
3551                 return (KERN_NO_SPACE);
3552
3553         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3554
3555         /* If addr is already mapped, no go */
3556         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3557                 return (KERN_NO_SPACE);
3558
3559         /*
3560          * If we can't accommodate max_ssize in the current mapping, no go.
3561          * However, we need to be aware that subsequent user mappings might
3562          * map into the space we have reserved for stack, and currently this
3563          * space is not protected.
3564          *
3565          * Hopefully we will at least detect this condition when we try to
3566          * grow the stack.
3567          */
3568         if ((prev_entry->next != &map->header) &&
3569             (prev_entry->next->start < addrbos + max_ssize))
3570                 return (KERN_NO_SPACE);
3571
3572         /*
3573          * We initially map a stack of only init_ssize.  We will grow as
3574          * needed later.  Depending on the orientation of the stack (i.e.
3575          * the grow direction) we either map at the top of the range, the
3576          * bottom of the range or in the middle.
3577          *
3578          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3579          * and cow to be 0.  Possibly we should eliminate these as input
3580          * parameters, and just pass these values here in the insert call.
3581          */
3582         if (orient == MAP_STACK_GROWS_DOWN)
3583                 bot = addrbos + max_ssize - init_ssize;
3584         else if (orient == MAP_STACK_GROWS_UP)
3585                 bot = addrbos;
3586         else
3587                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3588         top = bot + init_ssize;
3589         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3590
3591         /* Now set the avail_ssize amount. */
3592         if (rv == KERN_SUCCESS) {
3593                 new_entry = prev_entry->next;
3594                 if (new_entry->end != top || new_entry->start != bot)
3595                         panic("Bad entry start/end for new stack entry");
3596
3597                 new_entry->avail_ssize = max_ssize - init_ssize;
3598                 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3599                     (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3600                     ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3601                 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3602                     (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3603                     ("new entry lacks MAP_ENTRY_GROWS_UP"));
3604         }
3605
3606         return (rv);
3607 }
3608
3609 static int stack_guard_page = 0;
3610 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3611     &stack_guard_page, 0,
3612     "Insert stack guard page ahead of the growable segments.");
3613
3614 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3615  * desired address is already mapped, or if we successfully grow
3616  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3617  * stack range (this is strange, but preserves compatibility with
3618  * the grow function in vm_machdep.c).
3619  */
3620 int
3621 vm_map_growstack(struct proc *p, vm_offset_t addr)
3622 {
3623         vm_map_entry_t next_entry, prev_entry;
3624         vm_map_entry_t new_entry, stack_entry;
3625         struct vmspace *vm = p->p_vmspace;
3626         vm_map_t map = &vm->vm_map;
3627         vm_offset_t end;
3628         vm_size_t growsize;
3629         size_t grow_amount, max_grow;
3630         rlim_t lmemlim, stacklim, vmemlim;
3631         int is_procstack, rv;
3632         struct ucred *cred;
3633 #ifdef notyet
3634         uint64_t limit;
3635 #endif
3636 #ifdef RACCT
3637         int error;
3638 #endif
3639
3640         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3641         stacklim = lim_cur(curthread, RLIMIT_STACK);
3642         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3643 Retry:
3644
3645         vm_map_lock_read(map);
3646
3647         /* If addr is already in the entry range, no need to grow.*/
3648         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3649                 vm_map_unlock_read(map);
3650                 return (KERN_SUCCESS);
3651         }
3652
3653         next_entry = prev_entry->next;
3654         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3655                 /*
3656                  * This entry does not grow upwards. Since the address lies
3657                  * beyond this entry, the next entry (if one exists) has to
3658                  * be a downward growable entry. The entry list header is
3659                  * never a growable entry, so it suffices to check the flags.
3660                  */
3661                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3662                         vm_map_unlock_read(map);
3663                         return (KERN_SUCCESS);
3664                 }
3665                 stack_entry = next_entry;
3666         } else {
3667                 /*
3668                  * This entry grows upward. If the next entry does not at
3669                  * least grow downwards, this is the entry we need to grow.
3670                  * otherwise we have two possible choices and we have to
3671                  * select one.
3672                  */
3673                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3674                         /*
3675                          * We have two choices; grow the entry closest to
3676                          * the address to minimize the amount of growth.
3677                          */
3678                         if (addr - prev_entry->end <= next_entry->start - addr)
3679                                 stack_entry = prev_entry;
3680                         else
3681                                 stack_entry = next_entry;
3682                 } else
3683                         stack_entry = prev_entry;
3684         }
3685
3686         if (stack_entry == next_entry) {
3687                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3688                 KASSERT(addr < stack_entry->start, ("foo"));
3689                 end = (prev_entry != &map->header) ? prev_entry->end :
3690                     stack_entry->start - stack_entry->avail_ssize;
3691                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3692                 max_grow = stack_entry->start - end;
3693         } else {
3694                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3695                 KASSERT(addr >= stack_entry->end, ("foo"));
3696                 end = (next_entry != &map->header) ? next_entry->start :
3697                     stack_entry->end + stack_entry->avail_ssize;
3698                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3699                 max_grow = end - stack_entry->end;
3700         }
3701
3702         if (grow_amount > stack_entry->avail_ssize) {
3703                 vm_map_unlock_read(map);
3704                 return (KERN_NO_SPACE);
3705         }
3706
3707         /*
3708          * If there is no longer enough space between the entries nogo, and
3709          * adjust the available space.  Note: this  should only happen if the
3710          * user has mapped into the stack area after the stack was created,
3711          * and is probably an error.
3712          *
3713          * This also effectively destroys any guard page the user might have
3714          * intended by limiting the stack size.
3715          */
3716         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3717                 if (vm_map_lock_upgrade(map))
3718                         goto Retry;
3719
3720                 stack_entry->avail_ssize = max_grow;
3721
3722                 vm_map_unlock(map);
3723                 return (KERN_NO_SPACE);
3724         }
3725
3726         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3727             addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3728
3729         /*
3730          * If this is the main process stack, see if we're over the stack
3731          * limit.
3732          */
3733         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3734                 vm_map_unlock_read(map);
3735                 return (KERN_NO_SPACE);
3736         }
3737 #ifdef RACCT
3738         if (racct_enable) {
3739                 PROC_LOCK(p);
3740                 if (is_procstack && racct_set(p, RACCT_STACK,
3741                     ctob(vm->vm_ssize) + grow_amount)) {
3742                         PROC_UNLOCK(p);
3743                         vm_map_unlock_read(map);
3744                         return (KERN_NO_SPACE);
3745                 }
3746                 PROC_UNLOCK(p);
3747         }
3748 #endif
3749
3750         /* Round up the grow amount modulo sgrowsiz */
3751         growsize = sgrowsiz;
3752         grow_amount = roundup(grow_amount, growsize);
3753         if (grow_amount > stack_entry->avail_ssize)
3754                 grow_amount = stack_entry->avail_ssize;
3755         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3756                 grow_amount = trunc_page((vm_size_t)stacklim) -
3757                     ctob(vm->vm_ssize);
3758         }
3759 #ifdef notyet
3760         PROC_LOCK(p);
3761         limit = racct_get_available(p, RACCT_STACK);
3762         PROC_UNLOCK(p);
3763         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3764                 grow_amount = limit - ctob(vm->vm_ssize);
3765 #endif
3766         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3767                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3768                         vm_map_unlock_read(map);
3769                         rv = KERN_NO_SPACE;
3770                         goto out;
3771                 }
3772 #ifdef RACCT
3773                 if (racct_enable) {
3774                         PROC_LOCK(p);
3775                         if (racct_set(p, RACCT_MEMLOCK,
3776                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3777                                 PROC_UNLOCK(p);
3778                                 vm_map_unlock_read(map);
3779                                 rv = KERN_NO_SPACE;
3780                                 goto out;
3781                         }
3782                         PROC_UNLOCK(p);
3783                 }
3784 #endif
3785         }
3786         /* If we would blow our VMEM resource limit, no go */
3787         if (map->size + grow_amount > vmemlim) {
3788                 vm_map_unlock_read(map);
3789                 rv = KERN_NO_SPACE;
3790                 goto out;
3791         }
3792 #ifdef RACCT
3793         if (racct_enable) {
3794                 PROC_LOCK(p);
3795                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3796                         PROC_UNLOCK(p);
3797                         vm_map_unlock_read(map);
3798                         rv = KERN_NO_SPACE;
3799                         goto out;
3800                 }
3801                 PROC_UNLOCK(p);
3802         }
3803 #endif
3804
3805         if (vm_map_lock_upgrade(map))
3806                 goto Retry;
3807
3808         if (stack_entry == next_entry) {
3809                 /*
3810                  * Growing downward.
3811                  */
3812                 /* Get the preliminary new entry start value */
3813                 addr = stack_entry->start - grow_amount;
3814
3815                 /*
3816                  * If this puts us into the previous entry, cut back our
3817                  * growth to the available space. Also, see the note above.
3818                  */
3819                 if (addr < end) {
3820                         stack_entry->avail_ssize = max_grow;
3821                         addr = end;
3822                         if (stack_guard_page)
3823                                 addr += PAGE_SIZE;
3824                 }
3825
3826                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3827                     next_entry->protection, next_entry->max_protection,
3828                     MAP_STACK_GROWS_DOWN);
3829
3830                 /* Adjust the available stack space by the amount we grew. */
3831                 if (rv == KERN_SUCCESS) {
3832                         new_entry = prev_entry->next;
3833                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3834                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3835                         KASSERT(new_entry->start == addr, ("foo"));
3836                         KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3837                             0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3838                         grow_amount = new_entry->end - new_entry->start;
3839                         new_entry->avail_ssize = stack_entry->avail_ssize -
3840                             grow_amount;
3841                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3842                 }
3843         } else {
3844                 /*
3845                  * Growing upward.
3846                  */
3847                 addr = stack_entry->end + grow_amount;
3848
3849                 /*
3850                  * If this puts us into the next entry, cut back our growth
3851                  * to the available space. Also, see the note above.
3852                  */
3853                 if (addr > end) {
3854                         stack_entry->avail_ssize = end - stack_entry->end;
3855                         addr = end;
3856                         if (stack_guard_page)
3857                                 addr -= PAGE_SIZE;
3858                 }
3859
3860                 grow_amount = addr - stack_entry->end;
3861                 cred = stack_entry->cred;
3862                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3863                         cred = stack_entry->object.vm_object->cred;
3864                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3865                         rv = KERN_NO_SPACE;
3866                 /* Grow the underlying object if applicable. */
3867                 else if (stack_entry->object.vm_object == NULL ||
3868                     vm_object_coalesce(stack_entry->object.vm_object,
3869                     stack_entry->offset,
3870                     (vm_size_t)(stack_entry->end - stack_entry->start),
3871                     (vm_size_t)grow_amount, cred != NULL)) {
3872                         map->size += (addr - stack_entry->end);
3873                         /* Update the current entry. */
3874                         stack_entry->end = addr;
3875                         stack_entry->avail_ssize -= grow_amount;
3876                         vm_map_entry_resize_free(map, stack_entry);
3877                         rv = KERN_SUCCESS;
3878                 } else
3879                         rv = KERN_FAILURE;
3880         }
3881
3882         if (rv == KERN_SUCCESS && is_procstack)
3883                 vm->vm_ssize += btoc(grow_amount);
3884
3885         vm_map_unlock(map);
3886
3887         /*
3888          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3889          */
3890         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3891                 vm_map_wire(map,
3892                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3893                     (stack_entry == next_entry) ? stack_entry->start : addr,
3894                     (p->p_flag & P_SYSTEM)
3895                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3896                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3897         }
3898
3899 out:
3900 #ifdef RACCT
3901         if (racct_enable && rv != KERN_SUCCESS) {
3902                 PROC_LOCK(p);
3903                 error = racct_set(p, RACCT_VMEM, map->size);
3904                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3905                 if (!old_mlock) {
3906                         error = racct_set(p, RACCT_MEMLOCK,
3907                             ptoa(pmap_wired_count(map->pmap)));
3908                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3909                 }
3910                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3911                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3912                 PROC_UNLOCK(p);
3913         }
3914 #endif
3915
3916         return (rv);
3917 }
3918
3919 /*
3920  * Unshare the specified VM space for exec.  If other processes are
3921  * mapped to it, then create a new one.  The new vmspace is null.
3922  */
3923 int
3924 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3925 {
3926         struct vmspace *oldvmspace = p->p_vmspace;
3927         struct vmspace *newvmspace;
3928
3929         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3930             ("vmspace_exec recursed"));
3931         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3932         if (newvmspace == NULL)
3933                 return (ENOMEM);
3934         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3935         /*
3936          * This code is written like this for prototype purposes.  The
3937          * goal is to avoid running down the vmspace here, but let the
3938          * other process's that are still using the vmspace to finally
3939          * run it down.  Even though there is little or no chance of blocking
3940          * here, it is a good idea to keep this form for future mods.
3941          */
3942         PROC_VMSPACE_LOCK(p);
3943         p->p_vmspace = newvmspace;
3944         PROC_VMSPACE_UNLOCK(p);
3945         if (p == curthread->td_proc)
3946                 pmap_activate(curthread);
3947         curthread->td_pflags |= TDP_EXECVMSPC;
3948         return (0);
3949 }
3950
3951 /*
3952  * Unshare the specified VM space for forcing COW.  This
3953  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3954  */
3955 int
3956 vmspace_unshare(struct proc *p)
3957 {
3958         struct vmspace *oldvmspace = p->p_vmspace;
3959         struct vmspace *newvmspace;
3960         vm_ooffset_t fork_charge;
3961
3962         if (oldvmspace->vm_refcnt == 1)
3963                 return (0);
3964         fork_charge = 0;
3965         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3966         if (newvmspace == NULL)
3967                 return (ENOMEM);
3968         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3969                 vmspace_free(newvmspace);
3970                 return (ENOMEM);
3971         }
3972         PROC_VMSPACE_LOCK(p);
3973         p->p_vmspace = newvmspace;
3974         PROC_VMSPACE_UNLOCK(p);
3975         if (p == curthread->td_proc)
3976                 pmap_activate(curthread);
3977         vmspace_free(oldvmspace);
3978         return (0);
3979 }
3980
3981 /*
3982  *      vm_map_lookup:
3983  *
3984  *      Finds the VM object, offset, and
3985  *      protection for a given virtual address in the
3986  *      specified map, assuming a page fault of the
3987  *      type specified.
3988  *
3989  *      Leaves the map in question locked for read; return
3990  *      values are guaranteed until a vm_map_lookup_done
3991  *      call is performed.  Note that the map argument
3992  *      is in/out; the returned map must be used in
3993  *      the call to vm_map_lookup_done.
3994  *
3995  *      A handle (out_entry) is returned for use in
3996  *      vm_map_lookup_done, to make that fast.
3997  *
3998  *      If a lookup is requested with "write protection"
3999  *      specified, the map may be changed to perform virtual
4000  *      copying operations, although the data referenced will
4001  *      remain the same.
4002  */
4003 int
4004 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4005               vm_offset_t vaddr,
4006               vm_prot_t fault_typea,
4007               vm_map_entry_t *out_entry,        /* OUT */
4008               vm_object_t *object,              /* OUT */
4009               vm_pindex_t *pindex,              /* OUT */
4010               vm_prot_t *out_prot,              /* OUT */
4011               boolean_t *wired)                 /* OUT */
4012 {
4013         vm_map_entry_t entry;
4014         vm_map_t map = *var_map;
4015         vm_prot_t prot;
4016         vm_prot_t fault_type = fault_typea;
4017         vm_object_t eobject;
4018         vm_size_t size;
4019         struct ucred *cred;
4020
4021 RetryLookup:;
4022
4023         vm_map_lock_read(map);
4024
4025         /*
4026          * Lookup the faulting address.
4027          */
4028         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4029                 vm_map_unlock_read(map);
4030                 return (KERN_INVALID_ADDRESS);
4031         }
4032
4033         entry = *out_entry;
4034
4035         /*
4036          * Handle submaps.
4037          */
4038         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4039                 vm_map_t old_map = map;
4040
4041                 *var_map = map = entry->object.sub_map;
4042                 vm_map_unlock_read(old_map);
4043                 goto RetryLookup;
4044         }
4045
4046         /*
4047          * Check whether this task is allowed to have this page.
4048          */
4049         prot = entry->protection;
4050         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4051         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4052                 vm_map_unlock_read(map);
4053                 return (KERN_PROTECTION_FAILURE);
4054         }
4055         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4056             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4057             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4058             ("entry %p flags %x", entry, entry->eflags));
4059         if ((fault_typea & VM_PROT_COPY) != 0 &&
4060             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4061             (entry->eflags & MAP_ENTRY_COW) == 0) {
4062                 vm_map_unlock_read(map);
4063                 return (KERN_PROTECTION_FAILURE);
4064         }
4065
4066         /*
4067          * If this page is not pageable, we have to get it for all possible
4068          * accesses.
4069          */
4070         *wired = (entry->wired_count != 0);
4071         if (*wired)
4072                 fault_type = entry->protection;
4073         size = entry->end - entry->start;
4074         /*
4075          * If the entry was copy-on-write, we either ...
4076          */
4077         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4078                 /*
4079                  * If we want to write the page, we may as well handle that
4080                  * now since we've got the map locked.
4081                  *
4082                  * If we don't need to write the page, we just demote the
4083                  * permissions allowed.
4084                  */
4085                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4086                     (fault_typea & VM_PROT_COPY) != 0) {
4087                         /*
4088                          * Make a new object, and place it in the object
4089                          * chain.  Note that no new references have appeared
4090                          * -- one just moved from the map to the new
4091                          * object.
4092                          */
4093                         if (vm_map_lock_upgrade(map))
4094                                 goto RetryLookup;
4095
4096                         if (entry->cred == NULL) {
4097                                 /*
4098                                  * The debugger owner is charged for
4099                                  * the memory.
4100                                  */
4101                                 cred = curthread->td_ucred;
4102                                 crhold(cred);
4103                                 if (!swap_reserve_by_cred(size, cred)) {
4104                                         crfree(cred);
4105                                         vm_map_unlock(map);
4106                                         return (KERN_RESOURCE_SHORTAGE);
4107                                 }
4108                                 entry->cred = cred;
4109                         }
4110                         vm_object_shadow(&entry->object.vm_object,
4111                             &entry->offset, size);
4112                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4113                         eobject = entry->object.vm_object;
4114                         if (eobject->cred != NULL) {
4115                                 /*
4116                                  * The object was not shadowed.
4117                                  */
4118                                 swap_release_by_cred(size, entry->cred);
4119                                 crfree(entry->cred);
4120                                 entry->cred = NULL;
4121                         } else if (entry->cred != NULL) {
4122                                 VM_OBJECT_WLOCK(eobject);
4123                                 eobject->cred = entry->cred;
4124                                 eobject->charge = size;
4125                                 VM_OBJECT_WUNLOCK(eobject);
4126                                 entry->cred = NULL;
4127                         }
4128
4129                         vm_map_lock_downgrade(map);
4130                 } else {
4131                         /*
4132                          * We're attempting to read a copy-on-write page --
4133                          * don't allow writes.
4134                          */
4135                         prot &= ~VM_PROT_WRITE;
4136                 }
4137         }
4138
4139         /*
4140          * Create an object if necessary.
4141          */
4142         if (entry->object.vm_object == NULL &&
4143             !map->system_map) {
4144                 if (vm_map_lock_upgrade(map))
4145                         goto RetryLookup;
4146                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4147                     atop(size));
4148                 entry->offset = 0;
4149                 if (entry->cred != NULL) {
4150                         VM_OBJECT_WLOCK(entry->object.vm_object);
4151                         entry->object.vm_object->cred = entry->cred;
4152                         entry->object.vm_object->charge = size;
4153                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4154                         entry->cred = NULL;
4155                 }
4156                 vm_map_lock_downgrade(map);
4157         }
4158
4159         /*
4160          * Return the object/offset from this entry.  If the entry was
4161          * copy-on-write or empty, it has been fixed up.
4162          */
4163         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4164         *object = entry->object.vm_object;
4165
4166         *out_prot = prot;
4167         return (KERN_SUCCESS);
4168 }
4169
4170 /*
4171  *      vm_map_lookup_locked:
4172  *
4173  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4174  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4175  */
4176 int
4177 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4178                      vm_offset_t vaddr,
4179                      vm_prot_t fault_typea,
4180                      vm_map_entry_t *out_entry, /* OUT */
4181                      vm_object_t *object,       /* OUT */
4182                      vm_pindex_t *pindex,       /* OUT */
4183                      vm_prot_t *out_prot,       /* OUT */
4184                      boolean_t *wired)          /* OUT */
4185 {
4186         vm_map_entry_t entry;
4187         vm_map_t map = *var_map;
4188         vm_prot_t prot;
4189         vm_prot_t fault_type = fault_typea;
4190
4191         /*
4192          * Lookup the faulting address.
4193          */
4194         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4195                 return (KERN_INVALID_ADDRESS);
4196
4197         entry = *out_entry;
4198
4199         /*
4200          * Fail if the entry refers to a submap.
4201          */
4202         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4203                 return (KERN_FAILURE);
4204
4205         /*
4206          * Check whether this task is allowed to have this page.
4207          */
4208         prot = entry->protection;
4209         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4210         if ((fault_type & prot) != fault_type)
4211                 return (KERN_PROTECTION_FAILURE);
4212
4213         /*
4214          * If this page is not pageable, we have to get it for all possible
4215          * accesses.
4216          */
4217         *wired = (entry->wired_count != 0);
4218         if (*wired)
4219                 fault_type = entry->protection;
4220
4221         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4222                 /*
4223                  * Fail if the entry was copy-on-write for a write fault.
4224                  */
4225                 if (fault_type & VM_PROT_WRITE)
4226                         return (KERN_FAILURE);
4227                 /*
4228                  * We're attempting to read a copy-on-write page --
4229                  * don't allow writes.
4230                  */
4231                 prot &= ~VM_PROT_WRITE;
4232         }
4233
4234         /*
4235          * Fail if an object should be created.
4236          */
4237         if (entry->object.vm_object == NULL && !map->system_map)
4238                 return (KERN_FAILURE);
4239
4240         /*
4241          * Return the object/offset from this entry.  If the entry was
4242          * copy-on-write or empty, it has been fixed up.
4243          */
4244         *pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4245         *object = entry->object.vm_object;
4246
4247         *out_prot = prot;
4248         return (KERN_SUCCESS);
4249 }
4250
4251 /*
4252  *      vm_map_lookup_done:
4253  *
4254  *      Releases locks acquired by a vm_map_lookup
4255  *      (according to the handle returned by that lookup).
4256  */
4257 void
4258 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4259 {
4260         /*
4261          * Unlock the main-level map
4262          */
4263         vm_map_unlock_read(map);
4264 }
4265
4266 #include "opt_ddb.h"
4267 #ifdef DDB
4268 #include <sys/kernel.h>
4269
4270 #include <ddb/ddb.h>
4271
4272 static void
4273 vm_map_print(vm_map_t map)
4274 {
4275         vm_map_entry_t entry;
4276
4277         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4278             (void *)map,
4279             (void *)map->pmap, map->nentries, map->timestamp);
4280
4281         db_indent += 2;
4282         for (entry = map->header.next; entry != &map->header;
4283             entry = entry->next) {
4284                 db_iprintf("map entry %p: start=%p, end=%p\n",
4285                     (void *)entry, (void *)entry->start, (void *)entry->end);
4286                 {
4287                         static char *inheritance_name[4] =
4288                         {"share", "copy", "none", "donate_copy"};
4289
4290                         db_iprintf(" prot=%x/%x/%s",
4291                             entry->protection,
4292                             entry->max_protection,
4293                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4294                         if (entry->wired_count != 0)
4295                                 db_printf(", wired");
4296                 }
4297                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4298                         db_printf(", share=%p, offset=0x%jx\n",
4299                             (void *)entry->object.sub_map,
4300                             (uintmax_t)entry->offset);
4301                         if ((entry->prev == &map->header) ||
4302                             (entry->prev->object.sub_map !=
4303                                 entry->object.sub_map)) {
4304                                 db_indent += 2;
4305                                 vm_map_print((vm_map_t)entry->object.sub_map);
4306                                 db_indent -= 2;
4307                         }
4308                 } else {
4309                         if (entry->cred != NULL)
4310                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4311                         db_printf(", object=%p, offset=0x%jx",
4312                             (void *)entry->object.vm_object,
4313                             (uintmax_t)entry->offset);
4314                         if (entry->object.vm_object && entry->object.vm_object->cred)
4315                                 db_printf(", obj ruid %d charge %jx",
4316                                     entry->object.vm_object->cred->cr_ruid,
4317                                     (uintmax_t)entry->object.vm_object->charge);
4318                         if (entry->eflags & MAP_ENTRY_COW)
4319                                 db_printf(", copy (%s)",
4320                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4321                         db_printf("\n");
4322
4323                         if ((entry->prev == &map->header) ||
4324                             (entry->prev->object.vm_object !=
4325                                 entry->object.vm_object)) {
4326                                 db_indent += 2;
4327                                 vm_object_print((db_expr_t)(intptr_t)
4328                                                 entry->object.vm_object,
4329                                                 0, 0, (char *)0);
4330                                 db_indent -= 2;
4331                         }
4332                 }
4333         }
4334         db_indent -= 2;
4335 }
4336
4337 DB_SHOW_COMMAND(map, map)
4338 {
4339
4340         if (!have_addr) {
4341                 db_printf("usage: show map <addr>\n");
4342                 return;
4343         }
4344         vm_map_print((vm_map_t)addr);
4345 }
4346
4347 DB_SHOW_COMMAND(procvm, procvm)
4348 {
4349         struct proc *p;
4350
4351         if (have_addr) {
4352                 p = db_lookup_proc(addr);
4353         } else {
4354                 p = curproc;
4355         }
4356
4357         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4358             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4359             (void *)vmspace_pmap(p->p_vmspace));
4360
4361         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4362 }
4363
4364 #endif /* DDB */