]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
MFV r342175:
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100
101 /*
102  *      Virtual memory maps provide for the mapping, protection,
103  *      and sharing of virtual memory objects.  In addition,
104  *      this module provides for an efficient virtual copy of
105  *      memory from one map to another.
106  *
107  *      Synchronization is required prior to most operations.
108  *
109  *      Maps consist of an ordered doubly-linked list of simple
110  *      entries; a self-adjusting binary search tree of these
111  *      entries is used to speed up lookups.
112  *
113  *      Since portions of maps are specified by start/end addresses,
114  *      which may not align with existing map entries, all
115  *      routines merely "clip" entries to these start/end values.
116  *      [That is, an entry is split into two, bordering at a
117  *      start or end value.]  Note that these clippings may not
118  *      always be necessary (as the two resulting entries are then
119  *      not changed); however, the clipping is done for convenience.
120  *
121  *      As mentioned above, virtual copy operations are performed
122  *      by copying VM object references from one map to
123  *      another, and then marking both regions as copy-on-write.
124  */
125
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154
155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158
159 /* 
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165
166 /*
167  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
168  *
169  *      Asserts that the starting and ending region
170  *      addresses fall within the valid range of the map.
171  */
172 #define VM_MAP_RANGE_CHECK(map, start, end)             \
173                 {                                       \
174                 if (start < vm_map_min(map))            \
175                         start = vm_map_min(map);        \
176                 if (end > vm_map_max(map))              \
177                         end = vm_map_max(map);          \
178                 if (start > end)                        \
179                         start = end;                    \
180                 }
181
182 /*
183  *      vm_map_startup:
184  *
185  *      Initialize the vm_map module.  Must be called before
186  *      any other vm_map routines.
187  *
188  *      Map and entry structures are allocated from the general
189  *      purpose memory pool with some exceptions:
190  *
191  *      - The kernel map and kmem submap are allocated statically.
192  *      - Kernel map entries are allocated out of a static pool.
193  *
194  *      These restrictions are necessary since malloc() uses the
195  *      maps and requires map entries.
196  */
197
198 void
199 vm_map_startup(void)
200 {
201         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204             vm_map_zdtor,
205 #else
206             NULL,
207 #endif
208             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209         uma_prealloc(mapzone, MAX_KMAP);
210         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217             vmspace_zdtor,
218 #else
219             NULL,
220 #endif
221             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227         struct vmspace *vm;
228
229         vm = (struct vmspace *)mem;
230
231         vm->vm_map.pmap = NULL;
232         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233         PMAP_LOCK_INIT(vmspace_pmap(vm));
234         return (0);
235 }
236
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240         vm_map_t map;
241
242         map = (vm_map_t)mem;
243         memset(map, 0, sizeof(*map));
244         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245         sx_init(&map->lock, "vm map (user)");
246         return (0);
247 }
248
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253         struct vmspace *vm;
254
255         vm = (struct vmspace *)mem;
256
257         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262         vm_map_t map;
263
264         map = (vm_map_t)mem;
265         KASSERT(map->nentries == 0,
266             ("map %p nentries == %d on free.",
267             map, map->nentries));
268         KASSERT(map->size == 0,
269             ("map %p size == %lu on free.",
270             map, (unsigned long)map->size));
271 }
272 #endif  /* INVARIANTS */
273
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283         struct vmspace *vm;
284
285         vm = uma_zalloc(vmspace_zone, M_WAITOK);
286         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
287         if (!pinit(vmspace_pmap(vm))) {
288                 uma_zfree(vmspace_zone, vm);
289                 return (NULL);
290         }
291         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293         vm->vm_refcnt = 1;
294         vm->vm_shm = NULL;
295         vm->vm_swrss = 0;
296         vm->vm_tsize = 0;
297         vm->vm_dsize = 0;
298         vm->vm_ssize = 0;
299         vm->vm_taddr = 0;
300         vm->vm_daddr = 0;
301         vm->vm_maxsaddr = 0;
302         return (vm);
303 }
304
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309
310         PROC_LOCK(p);
311         racct_set(p, RACCT_DATA, 0);
312         racct_set(p, RACCT_STACK, 0);
313         racct_set(p, RACCT_RSS, 0);
314         racct_set(p, RACCT_MEMLOCK, 0);
315         racct_set(p, RACCT_VMEM, 0);
316         PROC_UNLOCK(p);
317 }
318 #endif
319
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323
324         CTR1(KTR_VM, "vmspace_free: %p", vm);
325
326         /*
327          * Make sure any SysV shm is freed, it might not have been in
328          * exit1().
329          */
330         shmexit(vm);
331
332         /*
333          * Lock the map, to wait out all other references to it.
334          * Delete all of the mappings and pages they hold, then call
335          * the pmap module to reclaim anything left.
336          */
337         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
338             vm_map_max(&vm->vm_map));
339
340         pmap_release(vmspace_pmap(vm));
341         vm->vm_map.pmap = NULL;
342         uma_zfree(vmspace_zone, vm);
343 }
344
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348
349         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350             "vmspace_free() called");
351
352         if (vm->vm_refcnt == 0)
353                 panic("vmspace_free: attempt to free already freed vmspace");
354
355         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356                 vmspace_dofree(vm);
357 }
358
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362         struct vmspace *vm;
363
364         PROC_VMSPACE_LOCK(p);
365         vm = p->p_vmspace;
366         p->p_vmspace = NULL;
367         PROC_VMSPACE_UNLOCK(p);
368         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369         vmspace_free(vm);
370 }
371
372 void
373 vmspace_exit(struct thread *td)
374 {
375         int refcnt;
376         struct vmspace *vm;
377         struct proc *p;
378
379         /*
380          * Release user portion of address space.
381          * This releases references to vnodes,
382          * which could cause I/O if the file has been unlinked.
383          * Need to do this early enough that we can still sleep.
384          *
385          * The last exiting process to reach this point releases as
386          * much of the environment as it can. vmspace_dofree() is the
387          * slower fallback in case another process had a temporary
388          * reference to the vmspace.
389          */
390
391         p = td->td_proc;
392         vm = p->p_vmspace;
393         atomic_add_int(&vmspace0.vm_refcnt, 1);
394         refcnt = vm->vm_refcnt;
395         do {
396                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397                         /* Switch now since other proc might free vmspace */
398                         PROC_VMSPACE_LOCK(p);
399                         p->p_vmspace = &vmspace0;
400                         PROC_VMSPACE_UNLOCK(p);
401                         pmap_activate(td);
402                 }
403         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
404         if (refcnt == 1) {
405                 if (p->p_vmspace != vm) {
406                         /* vmspace not yet freed, switch back */
407                         PROC_VMSPACE_LOCK(p);
408                         p->p_vmspace = vm;
409                         PROC_VMSPACE_UNLOCK(p);
410                         pmap_activate(td);
411                 }
412                 pmap_remove_pages(vmspace_pmap(vm));
413                 /* Switch now since this proc will free vmspace */
414                 PROC_VMSPACE_LOCK(p);
415                 p->p_vmspace = &vmspace0;
416                 PROC_VMSPACE_UNLOCK(p);
417                 pmap_activate(td);
418                 vmspace_dofree(vm);
419         }
420 #ifdef RACCT
421         if (racct_enable)
422                 vmspace_container_reset(p);
423 #endif
424 }
425
426 /* Acquire reference to vmspace owned by another process. */
427
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431         struct vmspace *vm;
432         int refcnt;
433
434         PROC_VMSPACE_LOCK(p);
435         vm = p->p_vmspace;
436         if (vm == NULL) {
437                 PROC_VMSPACE_UNLOCK(p);
438                 return (NULL);
439         }
440         refcnt = vm->vm_refcnt;
441         do {
442                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
443                         PROC_VMSPACE_UNLOCK(p);
444                         return (NULL);
445                 }
446         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
447         if (vm != p->p_vmspace) {
448                 PROC_VMSPACE_UNLOCK(p);
449                 vmspace_free(vm);
450                 return (NULL);
451         }
452         PROC_VMSPACE_UNLOCK(p);
453         return (vm);
454 }
455
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475         struct vmspace *oldvm;
476
477         /* XXX: Need some way to assert that this is an aio daemon. */
478
479         KASSERT(newvm->vm_refcnt > 0,
480             ("vmspace_switch_aio: newvm unreferenced"));
481
482         oldvm = curproc->p_vmspace;
483         if (oldvm == newvm)
484                 return;
485
486         /*
487          * Point to the new address space and refer to it.
488          */
489         curproc->p_vmspace = newvm;
490         atomic_add_int(&newvm->vm_refcnt, 1);
491
492         /* Activate the new mapping. */
493         pmap_activate(curthread);
494
495         /* Remove the daemon's reference to the old address space. */
496         KASSERT(oldvm->vm_refcnt > 1,
497             ("vmspace_switch_aio: oldvm dropping last reference"));
498         vmspace_free(oldvm);
499 }
500
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504
505         if (map->system_map)
506                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
507         else
508                 sx_xlock_(&map->lock, file, line);
509         map->timestamp++;
510 }
511
512 static void
513 vm_map_process_deferred(void)
514 {
515         struct thread *td;
516         vm_map_entry_t entry, next;
517         vm_object_t object;
518
519         td = curthread;
520         entry = td->td_map_def_user;
521         td->td_map_def_user = NULL;
522         while (entry != NULL) {
523                 next = entry->next;
524                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525                         /*
526                          * Decrement the object's writemappings and
527                          * possibly the vnode's v_writecount.
528                          */
529                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530                             ("Submap with writecount"));
531                         object = entry->object.vm_object;
532                         KASSERT(object != NULL, ("No object for writecount"));
533                         vnode_pager_release_writecount(object, entry->start,
534                             entry->end);
535                 }
536                 vm_map_entry_deallocate(entry, FALSE);
537                 entry = next;
538         }
539 }
540
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544
545         if (map->system_map)
546                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547         else {
548                 sx_xunlock_(&map->lock, file, line);
549                 vm_map_process_deferred();
550         }
551 }
552
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556
557         if (map->system_map)
558                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
559         else
560                 sx_slock_(&map->lock, file, line);
561 }
562
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566
567         if (map->system_map)
568                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569         else {
570                 sx_sunlock_(&map->lock, file, line);
571                 vm_map_process_deferred();
572         }
573 }
574
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578         int error;
579
580         error = map->system_map ?
581             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582             !sx_try_xlock_(&map->lock, file, line);
583         if (error == 0)
584                 map->timestamp++;
585         return (error == 0);
586 }
587
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591         int error;
592
593         error = map->system_map ?
594             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595             !sx_try_slock_(&map->lock, file, line);
596         return (error == 0);
597 }
598
599 /*
600  *      _vm_map_lock_upgrade:   [ internal use only ]
601  *
602  *      Tries to upgrade a read (shared) lock on the specified map to a write
603  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *      returned without a read or write lock held.
606  *
607  *      Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612         unsigned int last_timestamp;
613
614         if (map->system_map) {
615                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616         } else {
617                 if (!sx_try_upgrade_(&map->lock, file, line)) {
618                         last_timestamp = map->timestamp;
619                         sx_sunlock_(&map->lock, file, line);
620                         vm_map_process_deferred();
621                         /*
622                          * If the map's timestamp does not change while the
623                          * map is unlocked, then the upgrade succeeds.
624                          */
625                         sx_xlock_(&map->lock, file, line);
626                         if (last_timestamp != map->timestamp) {
627                                 sx_xunlock_(&map->lock, file, line);
628                                 return (1);
629                         }
630                 }
631         }
632         map->timestamp++;
633         return (0);
634 }
635
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639
640         if (map->system_map) {
641                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642         } else
643                 sx_downgrade_(&map->lock, file, line);
644 }
645
646 /*
647  *      vm_map_locked:
648  *
649  *      Returns a non-zero value if the caller holds a write (exclusive) lock
650  *      on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655
656         if (map->system_map)
657                 return (mtx_owned(&map->system_mtx));
658         else
659                 return (sx_xlocked(&map->lock));
660 }
661
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666
667         if (map->system_map)
668                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669         else
670                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672
673 #define VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define VM_MAP_ASSERT_LOCKED(map)
677 #endif
678
679 /*
680  *      _vm_map_unlock_and_wait:
681  *
682  *      Atomically releases the lock on the specified map and puts the calling
683  *      thread to sleep.  The calling thread will remain asleep until either
684  *      vm_map_wakeup() is performed on the map or the specified timeout is
685  *      exceeded.
686  *
687  *      WARNING!  This function does not perform deferred deallocations of
688  *      objects and map entries.  Therefore, the calling thread is expected to
689  *      reacquire the map lock after reawakening and later perform an ordinary
690  *      unlock operation, such as vm_map_unlock(), before completing its
691  *      operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696
697         mtx_lock(&map_sleep_mtx);
698         if (map->system_map)
699                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700         else
701                 sx_xunlock_(&map->lock, file, line);
702         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703             timo));
704 }
705
706 /*
707  *      vm_map_wakeup:
708  *
709  *      Awaken any threads that have slept on the map using
710  *      vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715
716         /*
717          * Acquire and release map_sleep_mtx to prevent a wakeup()
718          * from being performed (and lost) between the map unlock
719          * and the msleep() in _vm_map_unlock_and_wait().
720          */
721         mtx_lock(&map_sleep_mtx);
722         mtx_unlock(&map_sleep_mtx);
723         wakeup(&map->root);
724 }
725
726 void
727 vm_map_busy(vm_map_t map)
728 {
729
730         VM_MAP_ASSERT_LOCKED(map);
731         map->busy++;
732 }
733
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737
738         VM_MAP_ASSERT_LOCKED(map);
739         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742                 wakeup(&map->busy);
743         }
744 }
745
746 void 
747 vm_map_wait_busy(vm_map_t map)
748 {
749
750         VM_MAP_ASSERT_LOCKED(map);
751         while (map->busy) {
752                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753                 if (map->system_map)
754                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755                 else
756                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757         }
758         map->timestamp++;
759 }
760
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764         return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766
767 /*
768  *      vm_map_create:
769  *
770  *      Creates and returns a new empty VM map with
771  *      the given physical map structure, and having
772  *      the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777         vm_map_t result;
778
779         result = uma_zalloc(mapzone, M_WAITOK);
780         CTR1(KTR_VM, "vm_map_create: %p", result);
781         _vm_map_init(result, pmap, min, max);
782         return (result);
783 }
784
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792
793         map->header.next = map->header.prev = &map->header;
794         map->header.eflags = MAP_ENTRY_HEADER;
795         map->needs_wakeup = FALSE;
796         map->system_map = 0;
797         map->pmap = pmap;
798         map->header.end = min;
799         map->header.start = max;
800         map->flags = 0;
801         map->root = NULL;
802         map->timestamp = 0;
803         map->busy = 0;
804 }
805
806 void
807 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
808 {
809
810         _vm_map_init(map, pmap, min, max);
811         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
812         sx_init(&map->lock, "user map");
813 }
814
815 /*
816  *      vm_map_entry_dispose:   [ internal use only ]
817  *
818  *      Inverse of vm_map_entry_create.
819  */
820 static void
821 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
822 {
823         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
824 }
825
826 /*
827  *      vm_map_entry_create:    [ internal use only ]
828  *
829  *      Allocates a VM map entry for insertion.
830  *      No entry fields are filled in.
831  */
832 static vm_map_entry_t
833 vm_map_entry_create(vm_map_t map)
834 {
835         vm_map_entry_t new_entry;
836
837         if (map->system_map)
838                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
839         else
840                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
841         if (new_entry == NULL)
842                 panic("vm_map_entry_create: kernel resources exhausted");
843         return (new_entry);
844 }
845
846 /*
847  *      vm_map_entry_set_behavior:
848  *
849  *      Set the expected access behavior, either normal, random, or
850  *      sequential.
851  */
852 static inline void
853 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
854 {
855         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
856             (behavior & MAP_ENTRY_BEHAV_MASK);
857 }
858
859 /*
860  *      vm_map_entry_set_max_free:
861  *
862  *      Set the max_free field in a vm_map_entry.
863  */
864 static inline void
865 vm_map_entry_set_max_free(vm_map_entry_t entry)
866 {
867
868         entry->max_free = entry->adj_free;
869         if (entry->left != NULL && entry->left->max_free > entry->max_free)
870                 entry->max_free = entry->left->max_free;
871         if (entry->right != NULL && entry->right->max_free > entry->max_free)
872                 entry->max_free = entry->right->max_free;
873 }
874
875 /*
876  *      vm_map_entry_splay:
877  *
878  *      The Sleator and Tarjan top-down splay algorithm with the
879  *      following variation.  Max_free must be computed bottom-up, so
880  *      on the downward pass, maintain the left and right spines in
881  *      reverse order.  Then, make a second pass up each side to fix
882  *      the pointers and compute max_free.  The time bound is O(log n)
883  *      amortized.
884  *
885  *      The new root is the vm_map_entry containing "addr", or else an
886  *      adjacent entry (lower or higher) if addr is not in the tree.
887  *
888  *      The map must be locked, and leaves it so.
889  *
890  *      Returns: the new root.
891  */
892 static vm_map_entry_t
893 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
894 {
895         vm_map_entry_t llist, rlist;
896         vm_map_entry_t ltree, rtree;
897         vm_map_entry_t y;
898
899         /* Special case of empty tree. */
900         if (root == NULL)
901                 return (root);
902
903         /*
904          * Pass One: Splay down the tree until we find addr or a NULL
905          * pointer where addr would go.  llist and rlist are the two
906          * sides in reverse order (bottom-up), with llist linked by
907          * the right pointer and rlist linked by the left pointer in
908          * the vm_map_entry.  Wait until Pass Two to set max_free on
909          * the two spines.
910          */
911         llist = NULL;
912         rlist = NULL;
913         for (;;) {
914                 /* root is never NULL in here. */
915                 if (addr < root->start) {
916                         y = root->left;
917                         if (y == NULL)
918                                 break;
919                         if (addr < y->start && y->left != NULL) {
920                                 /* Rotate right and put y on rlist. */
921                                 root->left = y->right;
922                                 y->right = root;
923                                 vm_map_entry_set_max_free(root);
924                                 root = y->left;
925                                 y->left = rlist;
926                                 rlist = y;
927                         } else {
928                                 /* Put root on rlist. */
929                                 root->left = rlist;
930                                 rlist = root;
931                                 root = y;
932                         }
933                 } else if (addr >= root->end) {
934                         y = root->right;
935                         if (y == NULL)
936                                 break;
937                         if (addr >= y->end && y->right != NULL) {
938                                 /* Rotate left and put y on llist. */
939                                 root->right = y->left;
940                                 y->left = root;
941                                 vm_map_entry_set_max_free(root);
942                                 root = y->right;
943                                 y->right = llist;
944                                 llist = y;
945                         } else {
946                                 /* Put root on llist. */
947                                 root->right = llist;
948                                 llist = root;
949                                 root = y;
950                         }
951                 } else
952                         break;
953         }
954
955         /*
956          * Pass Two: Walk back up the two spines, flip the pointers
957          * and set max_free.  The subtrees of the root go at the
958          * bottom of llist and rlist.
959          */
960         ltree = root->left;
961         while (llist != NULL) {
962                 y = llist->right;
963                 llist->right = ltree;
964                 vm_map_entry_set_max_free(llist);
965                 ltree = llist;
966                 llist = y;
967         }
968         rtree = root->right;
969         while (rlist != NULL) {
970                 y = rlist->left;
971                 rlist->left = rtree;
972                 vm_map_entry_set_max_free(rlist);
973                 rtree = rlist;
974                 rlist = y;
975         }
976
977         /*
978          * Final assembly: add ltree and rtree as subtrees of root.
979          */
980         root->left = ltree;
981         root->right = rtree;
982         vm_map_entry_set_max_free(root);
983
984         return (root);
985 }
986
987 /*
988  *      vm_map_entry_{un,}link:
989  *
990  *      Insert/remove entries from maps.
991  */
992 static void
993 vm_map_entry_link(vm_map_t map,
994                   vm_map_entry_t after_where,
995                   vm_map_entry_t entry)
996 {
997
998         CTR4(KTR_VM,
999             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1000             map->nentries, entry, after_where);
1001         VM_MAP_ASSERT_LOCKED(map);
1002         KASSERT(after_where->end <= entry->start,
1003             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1004             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1005         KASSERT(entry->end <= after_where->next->start,
1006             ("vm_map_entry_link: new end %jx next start %jx overlap",
1007             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1008
1009         map->nentries++;
1010         entry->prev = after_where;
1011         entry->next = after_where->next;
1012         entry->next->prev = entry;
1013         after_where->next = entry;
1014
1015         if (after_where != &map->header) {
1016                 if (after_where != map->root)
1017                         vm_map_entry_splay(after_where->start, map->root);
1018                 entry->right = after_where->right;
1019                 entry->left = after_where;
1020                 after_where->right = NULL;
1021                 after_where->adj_free = entry->start - after_where->end;
1022                 vm_map_entry_set_max_free(after_where);
1023         } else {
1024                 entry->right = map->root;
1025                 entry->left = NULL;
1026         }
1027         entry->adj_free = entry->next->start - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = entry->next->start - root->end;
1047                 vm_map_entry_set_max_free(root);
1048         }
1049         map->root = root;
1050
1051         prev = entry->prev;
1052         next = entry->next;
1053         next->prev = prev;
1054         prev->next = next;
1055         map->nentries--;
1056         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1057             map->nentries, entry);
1058 }
1059
1060 /*
1061  *      vm_map_entry_resize_free:
1062  *
1063  *      Recompute the amount of free space following a vm_map_entry
1064  *      and propagate that value up the tree.  Call this function after
1065  *      resizing a map entry in-place, that is, without a call to
1066  *      vm_map_entry_link() or _unlink().
1067  *
1068  *      The map must be locked, and leaves it so.
1069  */
1070 static void
1071 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1072 {
1073
1074         /*
1075          * Using splay trees without parent pointers, propagating
1076          * max_free up the tree is done by moving the entry to the
1077          * root and making the change there.
1078          */
1079         if (entry != map->root)
1080                 map->root = vm_map_entry_splay(entry->start, map->root);
1081
1082         entry->adj_free = entry->next->start - entry->end;
1083         vm_map_entry_set_max_free(entry);
1084 }
1085
1086 /*
1087  *      vm_map_lookup_entry:    [ internal use only ]
1088  *
1089  *      Finds the map entry containing (or
1090  *      immediately preceding) the specified address
1091  *      in the given map; the entry is returned
1092  *      in the "entry" parameter.  The boolean
1093  *      result indicates whether the address is
1094  *      actually contained in the map.
1095  */
1096 boolean_t
1097 vm_map_lookup_entry(
1098         vm_map_t map,
1099         vm_offset_t address,
1100         vm_map_entry_t *entry)  /* OUT */
1101 {
1102         vm_map_entry_t cur;
1103         boolean_t locked;
1104
1105         /*
1106          * If the map is empty, then the map entry immediately preceding
1107          * "address" is the map's header.
1108          */
1109         cur = map->root;
1110         if (cur == NULL)
1111                 *entry = &map->header;
1112         else if (address >= cur->start && cur->end > address) {
1113                 *entry = cur;
1114                 return (TRUE);
1115         } else if ((locked = vm_map_locked(map)) ||
1116             sx_try_upgrade(&map->lock)) {
1117                 /*
1118                  * Splay requires a write lock on the map.  However, it only
1119                  * restructures the binary search tree; it does not otherwise
1120                  * change the map.  Thus, the map's timestamp need not change
1121                  * on a temporary upgrade.
1122                  */
1123                 map->root = cur = vm_map_entry_splay(address, cur);
1124                 if (!locked)
1125                         sx_downgrade(&map->lock);
1126
1127                 /*
1128                  * If "address" is contained within a map entry, the new root
1129                  * is that map entry.  Otherwise, the new root is a map entry
1130                  * immediately before or after "address".
1131                  */
1132                 if (address >= cur->start) {
1133                         *entry = cur;
1134                         if (cur->end > address)
1135                                 return (TRUE);
1136                 } else
1137                         *entry = cur->prev;
1138         } else
1139                 /*
1140                  * Since the map is only locked for read access, perform a
1141                  * standard binary search tree lookup for "address".
1142                  */
1143                 for (;;) {
1144                         if (address < cur->start) {
1145                                 if (cur->left == NULL) {
1146                                         *entry = cur->prev;
1147                                         break;
1148                                 }
1149                                 cur = cur->left;
1150                         } else if (cur->end > address) {
1151                                 *entry = cur;
1152                                 return (TRUE);
1153                         } else {
1154                                 if (cur->right == NULL) {
1155                                         *entry = cur;
1156                                         break;
1157                                 }
1158                                 cur = cur->right;
1159                         }
1160                 }
1161         return (FALSE);
1162 }
1163
1164 /*
1165  *      vm_map_insert:
1166  *
1167  *      Inserts the given whole VM object into the target
1168  *      map at the specified address range.  The object's
1169  *      size should match that of the address range.
1170  *
1171  *      Requires that the map be locked, and leaves it so.
1172  *
1173  *      If object is non-NULL, ref count must be bumped by caller
1174  *      prior to making call to account for the new entry.
1175  */
1176 int
1177 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1178     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1179 {
1180         vm_map_entry_t new_entry, prev_entry, temp_entry;
1181         struct ucred *cred;
1182         vm_eflags_t protoeflags;
1183         vm_inherit_t inheritance;
1184
1185         VM_MAP_ASSERT_LOCKED(map);
1186         KASSERT(object != kernel_object ||
1187             (cow & MAP_COPY_ON_WRITE) == 0,
1188             ("vm_map_insert: kernel object and COW"));
1189         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1190             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1191         KASSERT((prot & ~max) == 0,
1192             ("prot %#x is not subset of max_prot %#x", prot, max));
1193
1194         /*
1195          * Check that the start and end points are not bogus.
1196          */
1197         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1198             start >= end)
1199                 return (KERN_INVALID_ADDRESS);
1200
1201         /*
1202          * Find the entry prior to the proposed starting address; if it's part
1203          * of an existing entry, this range is bogus.
1204          */
1205         if (vm_map_lookup_entry(map, start, &temp_entry))
1206                 return (KERN_NO_SPACE);
1207
1208         prev_entry = temp_entry;
1209
1210         /*
1211          * Assert that the next entry doesn't overlap the end point.
1212          */
1213         if (prev_entry->next->start < end)
1214                 return (KERN_NO_SPACE);
1215
1216         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1217             max != VM_PROT_NONE))
1218                 return (KERN_INVALID_ARGUMENT);
1219
1220         protoeflags = 0;
1221         if (cow & MAP_COPY_ON_WRITE)
1222                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1223         if (cow & MAP_NOFAULT)
1224                 protoeflags |= MAP_ENTRY_NOFAULT;
1225         if (cow & MAP_DISABLE_SYNCER)
1226                 protoeflags |= MAP_ENTRY_NOSYNC;
1227         if (cow & MAP_DISABLE_COREDUMP)
1228                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1229         if (cow & MAP_STACK_GROWS_DOWN)
1230                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1231         if (cow & MAP_STACK_GROWS_UP)
1232                 protoeflags |= MAP_ENTRY_GROWS_UP;
1233         if (cow & MAP_VN_WRITECOUNT)
1234                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1235         if ((cow & MAP_CREATE_GUARD) != 0)
1236                 protoeflags |= MAP_ENTRY_GUARD;
1237         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1238                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1239         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1240                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1241         if (cow & MAP_INHERIT_SHARE)
1242                 inheritance = VM_INHERIT_SHARE;
1243         else
1244                 inheritance = VM_INHERIT_DEFAULT;
1245
1246         cred = NULL;
1247         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1248                 goto charged;
1249         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1250             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1251                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1252                         return (KERN_RESOURCE_SHORTAGE);
1253                 KASSERT(object == NULL ||
1254                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1255                     object->cred == NULL,
1256                     ("overcommit: vm_map_insert o %p", object));
1257                 cred = curthread->td_ucred;
1258         }
1259
1260 charged:
1261         /* Expand the kernel pmap, if necessary. */
1262         if (map == kernel_map && end > kernel_vm_end)
1263                 pmap_growkernel(end);
1264         if (object != NULL) {
1265                 /*
1266                  * OBJ_ONEMAPPING must be cleared unless this mapping
1267                  * is trivially proven to be the only mapping for any
1268                  * of the object's pages.  (Object granularity
1269                  * reference counting is insufficient to recognize
1270                  * aliases with precision.)
1271                  */
1272                 VM_OBJECT_WLOCK(object);
1273                 if (object->ref_count > 1 || object->shadow_count != 0)
1274                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1275                 VM_OBJECT_WUNLOCK(object);
1276         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1277             protoeflags &&
1278             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1279             prev_entry->end == start && (prev_entry->cred == cred ||
1280             (prev_entry->object.vm_object != NULL &&
1281             prev_entry->object.vm_object->cred == cred)) &&
1282             vm_object_coalesce(prev_entry->object.vm_object,
1283             prev_entry->offset,
1284             (vm_size_t)(prev_entry->end - prev_entry->start),
1285             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1286             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1287                 /*
1288                  * We were able to extend the object.  Determine if we
1289                  * can extend the previous map entry to include the
1290                  * new range as well.
1291                  */
1292                 if (prev_entry->inheritance == inheritance &&
1293                     prev_entry->protection == prot &&
1294                     prev_entry->max_protection == max &&
1295                     prev_entry->wired_count == 0) {
1296                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1297                             0, ("prev_entry %p has incoherent wiring",
1298                             prev_entry));
1299                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300                                 map->size += end - prev_entry->end;
1301                         prev_entry->end = end;
1302                         vm_map_entry_resize_free(map, prev_entry);
1303                         vm_map_simplify_entry(map, prev_entry);
1304                         return (KERN_SUCCESS);
1305                 }
1306
1307                 /*
1308                  * If we can extend the object but cannot extend the
1309                  * map entry, we have to create a new map entry.  We
1310                  * must bump the ref count on the extended object to
1311                  * account for it.  object may be NULL.
1312                  */
1313                 object = prev_entry->object.vm_object;
1314                 offset = prev_entry->offset +
1315                     (prev_entry->end - prev_entry->start);
1316                 vm_object_reference(object);
1317                 if (cred != NULL && object != NULL && object->cred != NULL &&
1318                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319                         /* Object already accounts for this uid. */
1320                         cred = NULL;
1321                 }
1322         }
1323         if (cred != NULL)
1324                 crhold(cred);
1325
1326         /*
1327          * Create a new entry
1328          */
1329         new_entry = vm_map_entry_create(map);
1330         new_entry->start = start;
1331         new_entry->end = end;
1332         new_entry->cred = NULL;
1333
1334         new_entry->eflags = protoeflags;
1335         new_entry->object.vm_object = object;
1336         new_entry->offset = offset;
1337
1338         new_entry->inheritance = inheritance;
1339         new_entry->protection = prot;
1340         new_entry->max_protection = max;
1341         new_entry->wired_count = 0;
1342         new_entry->wiring_thread = NULL;
1343         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344         new_entry->next_read = start;
1345
1346         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348         new_entry->cred = cred;
1349
1350         /*
1351          * Insert the new entry into the list
1352          */
1353         vm_map_entry_link(map, prev_entry, new_entry);
1354         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355                 map->size += new_entry->end - new_entry->start;
1356
1357         /*
1358          * Try to coalesce the new entry with both the previous and next
1359          * entries in the list.  Previously, we only attempted to coalesce
1360          * with the previous entry when object is NULL.  Here, we handle the
1361          * other cases, which are less common.
1362          */
1363         vm_map_simplify_entry(map, new_entry);
1364
1365         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367                     end - start, cow & MAP_PREFAULT_PARTIAL);
1368         }
1369
1370         return (KERN_SUCCESS);
1371 }
1372
1373 /*
1374  *      vm_map_findspace:
1375  *
1376  *      Find the first fit (lowest VM address) for "length" free bytes
1377  *      beginning at address >= start in the given map.
1378  *
1379  *      In a vm_map_entry, "adj_free" is the amount of free space
1380  *      adjacent (higher address) to this entry, and "max_free" is the
1381  *      maximum amount of contiguous free space in its subtree.  This
1382  *      allows finding a free region in one path down the tree, so
1383  *      O(log n) amortized with splay trees.
1384  *
1385  *      The map must be locked, and leaves it so.
1386  *
1387  *      Returns: 0 on success, and starting address in *addr,
1388  *               1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)  /* OUT */
1393 {
1394         vm_map_entry_t entry;
1395         vm_offset_t st;
1396
1397         /*
1398          * Request must fit within min/max VM address and must avoid
1399          * address wrap.
1400          */
1401         start = MAX(start, vm_map_min(map));
1402         if (start + length > vm_map_max(map) || start + length < start)
1403                 return (1);
1404
1405         /* Empty tree means wide open address space. */
1406         if (map->root == NULL) {
1407                 *addr = start;
1408                 return (0);
1409         }
1410
1411         /*
1412          * After splay, if start comes before root node, then there
1413          * must be a gap from start to the root.
1414          */
1415         map->root = vm_map_entry_splay(start, map->root);
1416         if (start + length <= map->root->start) {
1417                 *addr = start;
1418                 return (0);
1419         }
1420
1421         /*
1422          * Root is the last node that might begin its gap before
1423          * start, and this is the last comparison where address
1424          * wrap might be a problem.
1425          */
1426         st = (start > map->root->end) ? start : map->root->end;
1427         if (length <= map->root->end + map->root->adj_free - st) {
1428                 *addr = st;
1429                 return (0);
1430         }
1431
1432         /* With max_free, can immediately tell if no solution. */
1433         entry = map->root->right;
1434         if (entry == NULL || length > entry->max_free)
1435                 return (1);
1436
1437         /*
1438          * Search the right subtree in the order: left subtree, root,
1439          * right subtree (first fit).  The previous splay implies that
1440          * all regions in the right subtree have addresses > start.
1441          */
1442         while (entry != NULL) {
1443                 if (entry->left != NULL && entry->left->max_free >= length)
1444                         entry = entry->left;
1445                 else if (entry->adj_free >= length) {
1446                         *addr = entry->end;
1447                         return (0);
1448                 } else
1449                         entry = entry->right;
1450         }
1451
1452         /* Can't get here, so panic if we do. */
1453         panic("vm_map_findspace: max_free corrupt");
1454 }
1455
1456 int
1457 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1458     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1459     vm_prot_t max, int cow)
1460 {
1461         vm_offset_t end;
1462         int result;
1463
1464         end = start + length;
1465         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1466             object == NULL,
1467             ("vm_map_fixed: non-NULL backing object for stack"));
1468         vm_map_lock(map);
1469         VM_MAP_RANGE_CHECK(map, start, end);
1470         if ((cow & MAP_CHECK_EXCL) == 0)
1471                 vm_map_delete(map, start, end);
1472         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1473                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1474                     prot, max, cow);
1475         } else {
1476                 result = vm_map_insert(map, object, offset, start, end,
1477                     prot, max, cow);
1478         }
1479         vm_map_unlock(map);
1480         return (result);
1481 }
1482
1483 /*
1484  * Searches for the specified amount of free space in the given map with the
1485  * specified alignment.  Performs an address-ordered, first-fit search from
1486  * the given address "*addr", with an optional upper bound "max_addr".  If the
1487  * parameter "alignment" is zero, then the alignment is computed from the
1488  * given (object, offset) pair so as to enable the greatest possible use of
1489  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1490  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1491  *
1492  * The map must be locked.  Initially, there must be at least "length" bytes
1493  * of free space at the given address.
1494  */
1495 static int
1496 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1497     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1498     vm_offset_t alignment)
1499 {
1500         vm_offset_t aligned_addr, free_addr;
1501
1502         VM_MAP_ASSERT_LOCKED(map);
1503         free_addr = *addr;
1504         KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1505             free_addr == *addr, ("caller provided insufficient free space"));
1506         for (;;) {
1507                 /*
1508                  * At the start of every iteration, the free space at address
1509                  * "*addr" is at least "length" bytes.
1510                  */
1511                 if (alignment == 0)
1512                         pmap_align_superpage(object, offset, addr, length);
1513                 else if ((*addr & (alignment - 1)) != 0) {
1514                         *addr &= ~(alignment - 1);
1515                         *addr += alignment;
1516                 }
1517                 aligned_addr = *addr;
1518                 if (aligned_addr == free_addr) {
1519                         /*
1520                          * Alignment did not change "*addr", so "*addr" must
1521                          * still provide sufficient free space.
1522                          */
1523                         return (KERN_SUCCESS);
1524                 }
1525
1526                 /*
1527                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1528                  * be a valid address, in which case vm_map_findspace() cannot
1529                  * be relied upon to fail.
1530                  */
1531                 if (aligned_addr < free_addr ||
1532                     vm_map_findspace(map, aligned_addr, length, addr) ||
1533                     (max_addr != 0 && *addr + length > max_addr))
1534                         return (KERN_NO_SPACE);
1535                 free_addr = *addr;
1536                 if (free_addr == aligned_addr) {
1537                         /*
1538                          * If a successful call to vm_map_findspace() did not
1539                          * change "*addr", then "*addr" must still be aligned
1540                          * and provide sufficient free space.
1541                          */
1542                         return (KERN_SUCCESS);
1543                 }
1544         }
1545 }
1546
1547 /*
1548  *      vm_map_find finds an unallocated region in the target address
1549  *      map with the given length.  The search is defined to be
1550  *      first-fit from the specified address; the region found is
1551  *      returned in the same parameter.
1552  *
1553  *      If object is non-NULL, ref count must be bumped by caller
1554  *      prior to making call to account for the new entry.
1555  */
1556 int
1557 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1558             vm_offset_t *addr,  /* IN/OUT */
1559             vm_size_t length, vm_offset_t max_addr, int find_space,
1560             vm_prot_t prot, vm_prot_t max, int cow)
1561 {
1562         vm_offset_t alignment, min_addr;
1563         int rv;
1564
1565         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1566             object == NULL,
1567             ("vm_map_find: non-NULL backing object for stack"));
1568         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1569             (object->flags & OBJ_COLORED) == 0))
1570                 find_space = VMFS_ANY_SPACE;
1571         if (find_space >> 8 != 0) {
1572                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1573                 alignment = (vm_offset_t)1 << (find_space >> 8);
1574         } else
1575                 alignment = 0;
1576         vm_map_lock(map);
1577         if (find_space != VMFS_NO_SPACE) {
1578                 KASSERT(find_space == VMFS_ANY_SPACE ||
1579                     find_space == VMFS_OPTIMAL_SPACE ||
1580                     find_space == VMFS_SUPER_SPACE ||
1581                     alignment != 0, ("unexpected VMFS flag"));
1582                 min_addr = *addr;
1583 again:
1584                 if (vm_map_findspace(map, min_addr, length, addr) ||
1585                     (max_addr != 0 && *addr + length > max_addr)) {
1586                         rv = KERN_NO_SPACE;
1587                         goto done;
1588                 }
1589                 if (find_space != VMFS_ANY_SPACE &&
1590                     (rv = vm_map_alignspace(map, object, offset, addr, length,
1591                     max_addr, alignment)) != KERN_SUCCESS) {
1592                         if (find_space == VMFS_OPTIMAL_SPACE) {
1593                                 find_space = VMFS_ANY_SPACE;
1594                                 goto again;
1595                         }
1596                         goto done;
1597                 }
1598         }
1599         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1600                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1601                     max, cow);
1602         } else {
1603                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1604                     prot, max, cow);
1605         }
1606 done:
1607         vm_map_unlock(map);
1608         return (rv);
1609 }
1610
1611 /*
1612  *      vm_map_find_min() is a variant of vm_map_find() that takes an
1613  *      additional parameter (min_addr) and treats the given address
1614  *      (*addr) differently.  Specifically, it treats *addr as a hint
1615  *      and not as the minimum address where the mapping is created.
1616  *
1617  *      This function works in two phases.  First, it tries to
1618  *      allocate above the hint.  If that fails and the hint is
1619  *      greater than min_addr, it performs a second pass, replacing
1620  *      the hint with min_addr as the minimum address for the
1621  *      allocation.
1622  */
1623 int
1624 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1625     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1626     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1627     int cow)
1628 {
1629         vm_offset_t hint;
1630         int rv;
1631
1632         hint = *addr;
1633         for (;;) {
1634                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
1635                     find_space, prot, max, cow);
1636                 if (rv == KERN_SUCCESS || min_addr >= hint)
1637                         return (rv);
1638                 *addr = hint = min_addr;
1639         }
1640 }
1641
1642 /*
1643  * A map entry with any of the following flags set must not be merged with
1644  * another entry.
1645  */
1646 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1647             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1648
1649 static bool
1650 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1651 {
1652
1653         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1654             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1655             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1656             prev, entry));
1657         return (prev->end == entry->start &&
1658             prev->object.vm_object == entry->object.vm_object &&
1659             (prev->object.vm_object == NULL ||
1660             prev->offset + (prev->end - prev->start) == entry->offset) &&
1661             prev->eflags == entry->eflags &&
1662             prev->protection == entry->protection &&
1663             prev->max_protection == entry->max_protection &&
1664             prev->inheritance == entry->inheritance &&
1665             prev->wired_count == entry->wired_count &&
1666             prev->cred == entry->cred);
1667 }
1668
1669 static void
1670 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1671 {
1672
1673         /*
1674          * If the backing object is a vnode object, vm_object_deallocate()
1675          * calls vrele().  However, vrele() does not lock the vnode because
1676          * the vnode has additional references.  Thus, the map lock can be
1677          * kept without causing a lock-order reversal with the vnode lock.
1678          *
1679          * Since we count the number of virtual page mappings in
1680          * object->un_pager.vnp.writemappings, the writemappings value
1681          * should not be adjusted when the entry is disposed of.
1682          */
1683         if (entry->object.vm_object != NULL)
1684                 vm_object_deallocate(entry->object.vm_object);
1685         if (entry->cred != NULL)
1686                 crfree(entry->cred);
1687         vm_map_entry_dispose(map, entry);
1688 }
1689
1690 /*
1691  *      vm_map_simplify_entry:
1692  *
1693  *      Simplify the given map entry by merging with either neighbor.  This
1694  *      routine also has the ability to merge with both neighbors.
1695  *
1696  *      The map must be locked.
1697  *
1698  *      This routine guarantees that the passed entry remains valid (though
1699  *      possibly extended).  When merging, this routine may delete one or
1700  *      both neighbors.
1701  */
1702 void
1703 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1704 {
1705         vm_map_entry_t next, prev;
1706
1707         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1708                 return;
1709         prev = entry->prev;
1710         if (vm_map_mergeable_neighbors(prev, entry)) {
1711                 vm_map_entry_unlink(map, prev);
1712                 entry->start = prev->start;
1713                 entry->offset = prev->offset;
1714                 if (entry->prev != &map->header)
1715                         vm_map_entry_resize_free(map, entry->prev);
1716                 vm_map_merged_neighbor_dispose(map, prev);
1717         }
1718         next = entry->next;
1719         if (vm_map_mergeable_neighbors(entry, next)) {
1720                 vm_map_entry_unlink(map, next);
1721                 entry->end = next->end;
1722                 vm_map_entry_resize_free(map, entry);
1723                 vm_map_merged_neighbor_dispose(map, next);
1724         }
1725 }
1726
1727 /*
1728  *      vm_map_clip_start:      [ internal use only ]
1729  *
1730  *      Asserts that the given entry begins at or after
1731  *      the specified address; if necessary,
1732  *      it splits the entry into two.
1733  */
1734 #define vm_map_clip_start(map, entry, startaddr) \
1735 { \
1736         if (startaddr > entry->start) \
1737                 _vm_map_clip_start(map, entry, startaddr); \
1738 }
1739
1740 /*
1741  *      This routine is called only when it is known that
1742  *      the entry must be split.
1743  */
1744 static void
1745 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1746 {
1747         vm_map_entry_t new_entry;
1748
1749         VM_MAP_ASSERT_LOCKED(map);
1750         KASSERT(entry->end > start && entry->start < start,
1751             ("_vm_map_clip_start: invalid clip of entry %p", entry));
1752
1753         /*
1754          * Split off the front portion -- note that we must insert the new
1755          * entry BEFORE this one, so that this entry has the specified
1756          * starting address.
1757          */
1758         vm_map_simplify_entry(map, entry);
1759
1760         /*
1761          * If there is no object backing this entry, we might as well create
1762          * one now.  If we defer it, an object can get created after the map
1763          * is clipped, and individual objects will be created for the split-up
1764          * map.  This is a bit of a hack, but is also about the best place to
1765          * put this improvement.
1766          */
1767         if (entry->object.vm_object == NULL && !map->system_map &&
1768             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1769                 vm_object_t object;
1770                 object = vm_object_allocate(OBJT_DEFAULT,
1771                                 atop(entry->end - entry->start));
1772                 entry->object.vm_object = object;
1773                 entry->offset = 0;
1774                 if (entry->cred != NULL) {
1775                         object->cred = entry->cred;
1776                         object->charge = entry->end - entry->start;
1777                         entry->cred = NULL;
1778                 }
1779         } else if (entry->object.vm_object != NULL &&
1780                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1781                    entry->cred != NULL) {
1782                 VM_OBJECT_WLOCK(entry->object.vm_object);
1783                 KASSERT(entry->object.vm_object->cred == NULL,
1784                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1785                 entry->object.vm_object->cred = entry->cred;
1786                 entry->object.vm_object->charge = entry->end - entry->start;
1787                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1788                 entry->cred = NULL;
1789         }
1790
1791         new_entry = vm_map_entry_create(map);
1792         *new_entry = *entry;
1793
1794         new_entry->end = start;
1795         entry->offset += (start - entry->start);
1796         entry->start = start;
1797         if (new_entry->cred != NULL)
1798                 crhold(entry->cred);
1799
1800         vm_map_entry_link(map, entry->prev, new_entry);
1801
1802         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1803                 vm_object_reference(new_entry->object.vm_object);
1804                 /*
1805                  * The object->un_pager.vnp.writemappings for the
1806                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1807                  * kept as is here.  The virtual pages are
1808                  * re-distributed among the clipped entries, so the sum is
1809                  * left the same.
1810                  */
1811         }
1812 }
1813
1814 /*
1815  *      vm_map_clip_end:        [ internal use only ]
1816  *
1817  *      Asserts that the given entry ends at or before
1818  *      the specified address; if necessary,
1819  *      it splits the entry into two.
1820  */
1821 #define vm_map_clip_end(map, entry, endaddr) \
1822 { \
1823         if ((endaddr) < (entry->end)) \
1824                 _vm_map_clip_end((map), (entry), (endaddr)); \
1825 }
1826
1827 /*
1828  *      This routine is called only when it is known that
1829  *      the entry must be split.
1830  */
1831 static void
1832 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1833 {
1834         vm_map_entry_t new_entry;
1835
1836         VM_MAP_ASSERT_LOCKED(map);
1837         KASSERT(entry->start < end && entry->end > end,
1838             ("_vm_map_clip_end: invalid clip of entry %p", entry));
1839
1840         /*
1841          * If there is no object backing this entry, we might as well create
1842          * one now.  If we defer it, an object can get created after the map
1843          * is clipped, and individual objects will be created for the split-up
1844          * map.  This is a bit of a hack, but is also about the best place to
1845          * put this improvement.
1846          */
1847         if (entry->object.vm_object == NULL && !map->system_map &&
1848             (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1849                 vm_object_t object;
1850                 object = vm_object_allocate(OBJT_DEFAULT,
1851                                 atop(entry->end - entry->start));
1852                 entry->object.vm_object = object;
1853                 entry->offset = 0;
1854                 if (entry->cred != NULL) {
1855                         object->cred = entry->cred;
1856                         object->charge = entry->end - entry->start;
1857                         entry->cred = NULL;
1858                 }
1859         } else if (entry->object.vm_object != NULL &&
1860                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1861                    entry->cred != NULL) {
1862                 VM_OBJECT_WLOCK(entry->object.vm_object);
1863                 KASSERT(entry->object.vm_object->cred == NULL,
1864                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1865                 entry->object.vm_object->cred = entry->cred;
1866                 entry->object.vm_object->charge = entry->end - entry->start;
1867                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1868                 entry->cred = NULL;
1869         }
1870
1871         /*
1872          * Create a new entry and insert it AFTER the specified entry
1873          */
1874         new_entry = vm_map_entry_create(map);
1875         *new_entry = *entry;
1876
1877         new_entry->start = entry->end = end;
1878         new_entry->offset += (end - entry->start);
1879         if (new_entry->cred != NULL)
1880                 crhold(entry->cred);
1881
1882         vm_map_entry_link(map, entry, new_entry);
1883
1884         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1885                 vm_object_reference(new_entry->object.vm_object);
1886         }
1887 }
1888
1889 /*
1890  *      vm_map_submap:          [ kernel use only ]
1891  *
1892  *      Mark the given range as handled by a subordinate map.
1893  *
1894  *      This range must have been created with vm_map_find,
1895  *      and no other operations may have been performed on this
1896  *      range prior to calling vm_map_submap.
1897  *
1898  *      Only a limited number of operations can be performed
1899  *      within this rage after calling vm_map_submap:
1900  *              vm_fault
1901  *      [Don't try vm_map_copy!]
1902  *
1903  *      To remove a submapping, one must first remove the
1904  *      range from the superior map, and then destroy the
1905  *      submap (if desired).  [Better yet, don't try it.]
1906  */
1907 int
1908 vm_map_submap(
1909         vm_map_t map,
1910         vm_offset_t start,
1911         vm_offset_t end,
1912         vm_map_t submap)
1913 {
1914         vm_map_entry_t entry;
1915         int result = KERN_INVALID_ARGUMENT;
1916
1917         vm_map_lock(map);
1918
1919         VM_MAP_RANGE_CHECK(map, start, end);
1920
1921         if (vm_map_lookup_entry(map, start, &entry)) {
1922                 vm_map_clip_start(map, entry, start);
1923         } else
1924                 entry = entry->next;
1925
1926         vm_map_clip_end(map, entry, end);
1927
1928         if ((entry->start == start) && (entry->end == end) &&
1929             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1930             (entry->object.vm_object == NULL)) {
1931                 entry->object.sub_map = submap;
1932                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1933                 result = KERN_SUCCESS;
1934         }
1935         vm_map_unlock(map);
1936
1937         return (result);
1938 }
1939
1940 /*
1941  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1942  */
1943 #define MAX_INIT_PT     96
1944
1945 /*
1946  *      vm_map_pmap_enter:
1947  *
1948  *      Preload the specified map's pmap with mappings to the specified
1949  *      object's memory-resident pages.  No further physical pages are
1950  *      allocated, and no further virtual pages are retrieved from secondary
1951  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1952  *      limited number of page mappings are created at the low-end of the
1953  *      specified address range.  (For this purpose, a superpage mapping
1954  *      counts as one page mapping.)  Otherwise, all resident pages within
1955  *      the specified address range are mapped.
1956  */
1957 static void
1958 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1959     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1960 {
1961         vm_offset_t start;
1962         vm_page_t p, p_start;
1963         vm_pindex_t mask, psize, threshold, tmpidx;
1964
1965         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1966                 return;
1967         VM_OBJECT_RLOCK(object);
1968         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1969                 VM_OBJECT_RUNLOCK(object);
1970                 VM_OBJECT_WLOCK(object);
1971                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1972                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1973                             size);
1974                         VM_OBJECT_WUNLOCK(object);
1975                         return;
1976                 }
1977                 VM_OBJECT_LOCK_DOWNGRADE(object);
1978         }
1979
1980         psize = atop(size);
1981         if (psize + pindex > object->size) {
1982                 if (object->size < pindex) {
1983                         VM_OBJECT_RUNLOCK(object);
1984                         return;
1985                 }
1986                 psize = object->size - pindex;
1987         }
1988
1989         start = 0;
1990         p_start = NULL;
1991         threshold = MAX_INIT_PT;
1992
1993         p = vm_page_find_least(object, pindex);
1994         /*
1995          * Assert: the variable p is either (1) the page with the
1996          * least pindex greater than or equal to the parameter pindex
1997          * or (2) NULL.
1998          */
1999         for (;
2000              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2001              p = TAILQ_NEXT(p, listq)) {
2002                 /*
2003                  * don't allow an madvise to blow away our really
2004                  * free pages allocating pv entries.
2005                  */
2006                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2007                     vm_page_count_severe()) ||
2008                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2009                     tmpidx >= threshold)) {
2010                         psize = tmpidx;
2011                         break;
2012                 }
2013                 if (p->valid == VM_PAGE_BITS_ALL) {
2014                         if (p_start == NULL) {
2015                                 start = addr + ptoa(tmpidx);
2016                                 p_start = p;
2017                         }
2018                         /* Jump ahead if a superpage mapping is possible. */
2019                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2020                             (pagesizes[p->psind] - 1)) == 0) {
2021                                 mask = atop(pagesizes[p->psind]) - 1;
2022                                 if (tmpidx + mask < psize &&
2023                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2024                                         p += mask;
2025                                         threshold += mask;
2026                                 }
2027                         }
2028                 } else if (p_start != NULL) {
2029                         pmap_enter_object(map->pmap, start, addr +
2030                             ptoa(tmpidx), p_start, prot);
2031                         p_start = NULL;
2032                 }
2033         }
2034         if (p_start != NULL)
2035                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2036                     p_start, prot);
2037         VM_OBJECT_RUNLOCK(object);
2038 }
2039
2040 /*
2041  *      vm_map_protect:
2042  *
2043  *      Sets the protection of the specified address
2044  *      region in the target map.  If "set_max" is
2045  *      specified, the maximum protection is to be set;
2046  *      otherwise, only the current protection is affected.
2047  */
2048 int
2049 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2050                vm_prot_t new_prot, boolean_t set_max)
2051 {
2052         vm_map_entry_t current, entry;
2053         vm_object_t obj;
2054         struct ucred *cred;
2055         vm_prot_t old_prot;
2056
2057         if (start == end)
2058                 return (KERN_SUCCESS);
2059
2060         vm_map_lock(map);
2061
2062         /*
2063          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2064          * need to fault pages into the map and will drop the map lock while
2065          * doing so, and the VM object may end up in an inconsistent state if we
2066          * update the protection on the map entry in between faults.
2067          */
2068         vm_map_wait_busy(map);
2069
2070         VM_MAP_RANGE_CHECK(map, start, end);
2071
2072         if (vm_map_lookup_entry(map, start, &entry)) {
2073                 vm_map_clip_start(map, entry, start);
2074         } else {
2075                 entry = entry->next;
2076         }
2077
2078         /*
2079          * Make a first pass to check for protection violations.
2080          */
2081         for (current = entry; current->start < end; current = current->next) {
2082                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2083                         continue;
2084                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2085                         vm_map_unlock(map);
2086                         return (KERN_INVALID_ARGUMENT);
2087                 }
2088                 if ((new_prot & current->max_protection) != new_prot) {
2089                         vm_map_unlock(map);
2090                         return (KERN_PROTECTION_FAILURE);
2091                 }
2092         }
2093
2094         /*
2095          * Do an accounting pass for private read-only mappings that
2096          * now will do cow due to allowed write (e.g. debugger sets
2097          * breakpoint on text segment)
2098          */
2099         for (current = entry; current->start < end; current = current->next) {
2100
2101                 vm_map_clip_end(map, current, end);
2102
2103                 if (set_max ||
2104                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2105                     ENTRY_CHARGED(current) ||
2106                     (current->eflags & MAP_ENTRY_GUARD) != 0) {
2107                         continue;
2108                 }
2109
2110                 cred = curthread->td_ucred;
2111                 obj = current->object.vm_object;
2112
2113                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2114                         if (!swap_reserve(current->end - current->start)) {
2115                                 vm_map_unlock(map);
2116                                 return (KERN_RESOURCE_SHORTAGE);
2117                         }
2118                         crhold(cred);
2119                         current->cred = cred;
2120                         continue;
2121                 }
2122
2123                 VM_OBJECT_WLOCK(obj);
2124                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2125                         VM_OBJECT_WUNLOCK(obj);
2126                         continue;
2127                 }
2128
2129                 /*
2130                  * Charge for the whole object allocation now, since
2131                  * we cannot distinguish between non-charged and
2132                  * charged clipped mapping of the same object later.
2133                  */
2134                 KASSERT(obj->charge == 0,
2135                     ("vm_map_protect: object %p overcharged (entry %p)",
2136                     obj, current));
2137                 if (!swap_reserve(ptoa(obj->size))) {
2138                         VM_OBJECT_WUNLOCK(obj);
2139                         vm_map_unlock(map);
2140                         return (KERN_RESOURCE_SHORTAGE);
2141                 }
2142
2143                 crhold(cred);
2144                 obj->cred = cred;
2145                 obj->charge = ptoa(obj->size);
2146                 VM_OBJECT_WUNLOCK(obj);
2147         }
2148
2149         /*
2150          * Go back and fix up protections. [Note that clipping is not
2151          * necessary the second time.]
2152          */
2153         for (current = entry; current->start < end; current = current->next) {
2154                 if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2155                         continue;
2156
2157                 old_prot = current->protection;
2158
2159                 if (set_max)
2160                         current->protection =
2161                             (current->max_protection = new_prot) &
2162                             old_prot;
2163                 else
2164                         current->protection = new_prot;
2165
2166                 /*
2167                  * For user wired map entries, the normal lazy evaluation of
2168                  * write access upgrades through soft page faults is
2169                  * undesirable.  Instead, immediately copy any pages that are
2170                  * copy-on-write and enable write access in the physical map.
2171                  */
2172                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2173                     (current->protection & VM_PROT_WRITE) != 0 &&
2174                     (old_prot & VM_PROT_WRITE) == 0)
2175                         vm_fault_copy_entry(map, map, current, current, NULL);
2176
2177                 /*
2178                  * When restricting access, update the physical map.  Worry
2179                  * about copy-on-write here.
2180                  */
2181                 if ((old_prot & ~current->protection) != 0) {
2182 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2183                                                         VM_PROT_ALL)
2184                         pmap_protect(map->pmap, current->start,
2185                             current->end,
2186                             current->protection & MASK(current));
2187 #undef  MASK
2188                 }
2189                 vm_map_simplify_entry(map, current);
2190         }
2191         vm_map_unlock(map);
2192         return (KERN_SUCCESS);
2193 }
2194
2195 /*
2196  *      vm_map_madvise:
2197  *
2198  *      This routine traverses a processes map handling the madvise
2199  *      system call.  Advisories are classified as either those effecting
2200  *      the vm_map_entry structure, or those effecting the underlying
2201  *      objects.
2202  */
2203 int
2204 vm_map_madvise(
2205         vm_map_t map,
2206         vm_offset_t start,
2207         vm_offset_t end,
2208         int behav)
2209 {
2210         vm_map_entry_t current, entry;
2211         bool modify_map;
2212
2213         /*
2214          * Some madvise calls directly modify the vm_map_entry, in which case
2215          * we need to use an exclusive lock on the map and we need to perform
2216          * various clipping operations.  Otherwise we only need a read-lock
2217          * on the map.
2218          */
2219         switch(behav) {
2220         case MADV_NORMAL:
2221         case MADV_SEQUENTIAL:
2222         case MADV_RANDOM:
2223         case MADV_NOSYNC:
2224         case MADV_AUTOSYNC:
2225         case MADV_NOCORE:
2226         case MADV_CORE:
2227                 if (start == end)
2228                         return (0);
2229                 modify_map = true;
2230                 vm_map_lock(map);
2231                 break;
2232         case MADV_WILLNEED:
2233         case MADV_DONTNEED:
2234         case MADV_FREE:
2235                 if (start == end)
2236                         return (0);
2237                 modify_map = false;
2238                 vm_map_lock_read(map);
2239                 break;
2240         default:
2241                 return (EINVAL);
2242         }
2243
2244         /*
2245          * Locate starting entry and clip if necessary.
2246          */
2247         VM_MAP_RANGE_CHECK(map, start, end);
2248
2249         if (vm_map_lookup_entry(map, start, &entry)) {
2250                 if (modify_map)
2251                         vm_map_clip_start(map, entry, start);
2252         } else {
2253                 entry = entry->next;
2254         }
2255
2256         if (modify_map) {
2257                 /*
2258                  * madvise behaviors that are implemented in the vm_map_entry.
2259                  *
2260                  * We clip the vm_map_entry so that behavioral changes are
2261                  * limited to the specified address range.
2262                  */
2263                 for (current = entry; current->start < end;
2264                     current = current->next) {
2265                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2266                                 continue;
2267
2268                         vm_map_clip_end(map, current, end);
2269
2270                         switch (behav) {
2271                         case MADV_NORMAL:
2272                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2273                                 break;
2274                         case MADV_SEQUENTIAL:
2275                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2276                                 break;
2277                         case MADV_RANDOM:
2278                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2279                                 break;
2280                         case MADV_NOSYNC:
2281                                 current->eflags |= MAP_ENTRY_NOSYNC;
2282                                 break;
2283                         case MADV_AUTOSYNC:
2284                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2285                                 break;
2286                         case MADV_NOCORE:
2287                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2288                                 break;
2289                         case MADV_CORE:
2290                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2291                                 break;
2292                         default:
2293                                 break;
2294                         }
2295                         vm_map_simplify_entry(map, current);
2296                 }
2297                 vm_map_unlock(map);
2298         } else {
2299                 vm_pindex_t pstart, pend;
2300
2301                 /*
2302                  * madvise behaviors that are implemented in the underlying
2303                  * vm_object.
2304                  *
2305                  * Since we don't clip the vm_map_entry, we have to clip
2306                  * the vm_object pindex and count.
2307                  */
2308                 for (current = entry; current->start < end;
2309                     current = current->next) {
2310                         vm_offset_t useEnd, useStart;
2311
2312                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2313                                 continue;
2314
2315                         pstart = OFF_TO_IDX(current->offset);
2316                         pend = pstart + atop(current->end - current->start);
2317                         useStart = current->start;
2318                         useEnd = current->end;
2319
2320                         if (current->start < start) {
2321                                 pstart += atop(start - current->start);
2322                                 useStart = start;
2323                         }
2324                         if (current->end > end) {
2325                                 pend -= atop(current->end - end);
2326                                 useEnd = end;
2327                         }
2328
2329                         if (pstart >= pend)
2330                                 continue;
2331
2332                         /*
2333                          * Perform the pmap_advise() before clearing
2334                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2335                          * concurrent pmap operation, such as pmap_remove(),
2336                          * could clear a reference in the pmap and set
2337                          * PGA_REFERENCED on the page before the pmap_advise()
2338                          * had completed.  Consequently, the page would appear
2339                          * referenced based upon an old reference that
2340                          * occurred before this pmap_advise() ran.
2341                          */
2342                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2343                                 pmap_advise(map->pmap, useStart, useEnd,
2344                                     behav);
2345
2346                         vm_object_madvise(current->object.vm_object, pstart,
2347                             pend, behav);
2348
2349                         /*
2350                          * Pre-populate paging structures in the
2351                          * WILLNEED case.  For wired entries, the
2352                          * paging structures are already populated.
2353                          */
2354                         if (behav == MADV_WILLNEED &&
2355                             current->wired_count == 0) {
2356                                 vm_map_pmap_enter(map,
2357                                     useStart,
2358                                     current->protection,
2359                                     current->object.vm_object,
2360                                     pstart,
2361                                     ptoa(pend - pstart),
2362                                     MAP_PREFAULT_MADVISE
2363                                 );
2364                         }
2365                 }
2366                 vm_map_unlock_read(map);
2367         }
2368         return (0);
2369 }
2370
2371
2372 /*
2373  *      vm_map_inherit:
2374  *
2375  *      Sets the inheritance of the specified address
2376  *      range in the target map.  Inheritance
2377  *      affects how the map will be shared with
2378  *      child maps at the time of vmspace_fork.
2379  */
2380 int
2381 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2382                vm_inherit_t new_inheritance)
2383 {
2384         vm_map_entry_t entry;
2385         vm_map_entry_t temp_entry;
2386
2387         switch (new_inheritance) {
2388         case VM_INHERIT_NONE:
2389         case VM_INHERIT_COPY:
2390         case VM_INHERIT_SHARE:
2391         case VM_INHERIT_ZERO:
2392                 break;
2393         default:
2394                 return (KERN_INVALID_ARGUMENT);
2395         }
2396         if (start == end)
2397                 return (KERN_SUCCESS);
2398         vm_map_lock(map);
2399         VM_MAP_RANGE_CHECK(map, start, end);
2400         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2401                 entry = temp_entry;
2402                 vm_map_clip_start(map, entry, start);
2403         } else
2404                 entry = temp_entry->next;
2405         while (entry->start < end) {
2406                 vm_map_clip_end(map, entry, end);
2407                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2408                     new_inheritance != VM_INHERIT_ZERO)
2409                         entry->inheritance = new_inheritance;
2410                 vm_map_simplify_entry(map, entry);
2411                 entry = entry->next;
2412         }
2413         vm_map_unlock(map);
2414         return (KERN_SUCCESS);
2415 }
2416
2417 /*
2418  *      vm_map_unwire:
2419  *
2420  *      Implements both kernel and user unwiring.
2421  */
2422 int
2423 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2424     int flags)
2425 {
2426         vm_map_entry_t entry, first_entry, tmp_entry;
2427         vm_offset_t saved_start;
2428         unsigned int last_timestamp;
2429         int rv;
2430         boolean_t need_wakeup, result, user_unwire;
2431
2432         if (start == end)
2433                 return (KERN_SUCCESS);
2434         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2435         vm_map_lock(map);
2436         VM_MAP_RANGE_CHECK(map, start, end);
2437         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2438                 if (flags & VM_MAP_WIRE_HOLESOK)
2439                         first_entry = first_entry->next;
2440                 else {
2441                         vm_map_unlock(map);
2442                         return (KERN_INVALID_ADDRESS);
2443                 }
2444         }
2445         last_timestamp = map->timestamp;
2446         entry = first_entry;
2447         while (entry->start < end) {
2448                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2449                         /*
2450                          * We have not yet clipped the entry.
2451                          */
2452                         saved_start = (start >= entry->start) ? start :
2453                             entry->start;
2454                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2455                         if (vm_map_unlock_and_wait(map, 0)) {
2456                                 /*
2457                                  * Allow interruption of user unwiring?
2458                                  */
2459                         }
2460                         vm_map_lock(map);
2461                         if (last_timestamp+1 != map->timestamp) {
2462                                 /*
2463                                  * Look again for the entry because the map was
2464                                  * modified while it was unlocked.
2465                                  * Specifically, the entry may have been
2466                                  * clipped, merged, or deleted.
2467                                  */
2468                                 if (!vm_map_lookup_entry(map, saved_start,
2469                                     &tmp_entry)) {
2470                                         if (flags & VM_MAP_WIRE_HOLESOK)
2471                                                 tmp_entry = tmp_entry->next;
2472                                         else {
2473                                                 if (saved_start == start) {
2474                                                         /*
2475                                                          * First_entry has been deleted.
2476                                                          */
2477                                                         vm_map_unlock(map);
2478                                                         return (KERN_INVALID_ADDRESS);
2479                                                 }
2480                                                 end = saved_start;
2481                                                 rv = KERN_INVALID_ADDRESS;
2482                                                 goto done;
2483                                         }
2484                                 }
2485                                 if (entry == first_entry)
2486                                         first_entry = tmp_entry;
2487                                 else
2488                                         first_entry = NULL;
2489                                 entry = tmp_entry;
2490                         }
2491                         last_timestamp = map->timestamp;
2492                         continue;
2493                 }
2494                 vm_map_clip_start(map, entry, start);
2495                 vm_map_clip_end(map, entry, end);
2496                 /*
2497                  * Mark the entry in case the map lock is released.  (See
2498                  * above.)
2499                  */
2500                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2501                     entry->wiring_thread == NULL,
2502                     ("owned map entry %p", entry));
2503                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2504                 entry->wiring_thread = curthread;
2505                 /*
2506                  * Check the map for holes in the specified region.
2507                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2508                  */
2509                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2510                     (entry->end < end && entry->next->start > entry->end)) {
2511                         end = entry->end;
2512                         rv = KERN_INVALID_ADDRESS;
2513                         goto done;
2514                 }
2515                 /*
2516                  * If system unwiring, require that the entry is system wired.
2517                  */
2518                 if (!user_unwire &&
2519                     vm_map_entry_system_wired_count(entry) == 0) {
2520                         end = entry->end;
2521                         rv = KERN_INVALID_ARGUMENT;
2522                         goto done;
2523                 }
2524                 entry = entry->next;
2525         }
2526         rv = KERN_SUCCESS;
2527 done:
2528         need_wakeup = FALSE;
2529         if (first_entry == NULL) {
2530                 result = vm_map_lookup_entry(map, start, &first_entry);
2531                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2532                         first_entry = first_entry->next;
2533                 else
2534                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2535         }
2536         for (entry = first_entry; entry->start < end; entry = entry->next) {
2537                 /*
2538                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2539                  * space in the unwired region could have been mapped
2540                  * while the map lock was dropped for draining
2541                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2542                  * could be simultaneously wiring this new mapping
2543                  * entry.  Detect these cases and skip any entries
2544                  * marked as in transition by us.
2545                  */
2546                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2547                     entry->wiring_thread != curthread) {
2548                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2549                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2550                         continue;
2551                 }
2552
2553                 if (rv == KERN_SUCCESS && (!user_unwire ||
2554                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2555                         if (user_unwire)
2556                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2557                         if (entry->wired_count == 1)
2558                                 vm_map_entry_unwire(map, entry);
2559                         else
2560                                 entry->wired_count--;
2561                 }
2562                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2563                     ("vm_map_unwire: in-transition flag missing %p", entry));
2564                 KASSERT(entry->wiring_thread == curthread,
2565                     ("vm_map_unwire: alien wire %p", entry));
2566                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2567                 entry->wiring_thread = NULL;
2568                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2569                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2570                         need_wakeup = TRUE;
2571                 }
2572                 vm_map_simplify_entry(map, entry);
2573         }
2574         vm_map_unlock(map);
2575         if (need_wakeup)
2576                 vm_map_wakeup(map);
2577         return (rv);
2578 }
2579
2580 /*
2581  *      vm_map_wire_entry_failure:
2582  *
2583  *      Handle a wiring failure on the given entry.
2584  *
2585  *      The map should be locked.
2586  */
2587 static void
2588 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2589     vm_offset_t failed_addr)
2590 {
2591
2592         VM_MAP_ASSERT_LOCKED(map);
2593         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2594             entry->wired_count == 1,
2595             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2596         KASSERT(failed_addr < entry->end,
2597             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2598
2599         /*
2600          * If any pages at the start of this entry were successfully wired,
2601          * then unwire them.
2602          */
2603         if (failed_addr > entry->start) {
2604                 pmap_unwire(map->pmap, entry->start, failed_addr);
2605                 vm_object_unwire(entry->object.vm_object, entry->offset,
2606                     failed_addr - entry->start, PQ_ACTIVE);
2607         }
2608
2609         /*
2610          * Assign an out-of-range value to represent the failure to wire this
2611          * entry.
2612          */
2613         entry->wired_count = -1;
2614 }
2615
2616 /*
2617  *      vm_map_wire:
2618  *
2619  *      Implements both kernel and user wiring.
2620  */
2621 int
2622 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2623     int flags)
2624 {
2625         vm_map_entry_t entry, first_entry, tmp_entry;
2626         vm_offset_t faddr, saved_end, saved_start;
2627         unsigned int last_timestamp;
2628         int rv;
2629         boolean_t need_wakeup, result, user_wire;
2630         vm_prot_t prot;
2631
2632         if (start == end)
2633                 return (KERN_SUCCESS);
2634         prot = 0;
2635         if (flags & VM_MAP_WIRE_WRITE)
2636                 prot |= VM_PROT_WRITE;
2637         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2638         vm_map_lock(map);
2639         VM_MAP_RANGE_CHECK(map, start, end);
2640         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2641                 if (flags & VM_MAP_WIRE_HOLESOK)
2642                         first_entry = first_entry->next;
2643                 else {
2644                         vm_map_unlock(map);
2645                         return (KERN_INVALID_ADDRESS);
2646                 }
2647         }
2648         last_timestamp = map->timestamp;
2649         entry = first_entry;
2650         while (entry->start < end) {
2651                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2652                         /*
2653                          * We have not yet clipped the entry.
2654                          */
2655                         saved_start = (start >= entry->start) ? start :
2656                             entry->start;
2657                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2658                         if (vm_map_unlock_and_wait(map, 0)) {
2659                                 /*
2660                                  * Allow interruption of user wiring?
2661                                  */
2662                         }
2663                         vm_map_lock(map);
2664                         if (last_timestamp + 1 != map->timestamp) {
2665                                 /*
2666                                  * Look again for the entry because the map was
2667                                  * modified while it was unlocked.
2668                                  * Specifically, the entry may have been
2669                                  * clipped, merged, or deleted.
2670                                  */
2671                                 if (!vm_map_lookup_entry(map, saved_start,
2672                                     &tmp_entry)) {
2673                                         if (flags & VM_MAP_WIRE_HOLESOK)
2674                                                 tmp_entry = tmp_entry->next;
2675                                         else {
2676                                                 if (saved_start == start) {
2677                                                         /*
2678                                                          * first_entry has been deleted.
2679                                                          */
2680                                                         vm_map_unlock(map);
2681                                                         return (KERN_INVALID_ADDRESS);
2682                                                 }
2683                                                 end = saved_start;
2684                                                 rv = KERN_INVALID_ADDRESS;
2685                                                 goto done;
2686                                         }
2687                                 }
2688                                 if (entry == first_entry)
2689                                         first_entry = tmp_entry;
2690                                 else
2691                                         first_entry = NULL;
2692                                 entry = tmp_entry;
2693                         }
2694                         last_timestamp = map->timestamp;
2695                         continue;
2696                 }
2697                 vm_map_clip_start(map, entry, start);
2698                 vm_map_clip_end(map, entry, end);
2699                 /*
2700                  * Mark the entry in case the map lock is released.  (See
2701                  * above.)
2702                  */
2703                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2704                     entry->wiring_thread == NULL,
2705                     ("owned map entry %p", entry));
2706                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2707                 entry->wiring_thread = curthread;
2708                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2709                     || (entry->protection & prot) != prot) {
2710                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2711                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2712                                 end = entry->end;
2713                                 rv = KERN_INVALID_ADDRESS;
2714                                 goto done;
2715                         }
2716                         goto next_entry;
2717                 }
2718                 if (entry->wired_count == 0) {
2719                         entry->wired_count++;
2720                         saved_start = entry->start;
2721                         saved_end = entry->end;
2722
2723                         /*
2724                          * Release the map lock, relying on the in-transition
2725                          * mark.  Mark the map busy for fork.
2726                          */
2727                         vm_map_busy(map);
2728                         vm_map_unlock(map);
2729
2730                         faddr = saved_start;
2731                         do {
2732                                 /*
2733                                  * Simulate a fault to get the page and enter
2734                                  * it into the physical map.
2735                                  */
2736                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2737                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2738                                         break;
2739                         } while ((faddr += PAGE_SIZE) < saved_end);
2740                         vm_map_lock(map);
2741                         vm_map_unbusy(map);
2742                         if (last_timestamp + 1 != map->timestamp) {
2743                                 /*
2744                                  * Look again for the entry because the map was
2745                                  * modified while it was unlocked.  The entry
2746                                  * may have been clipped, but NOT merged or
2747                                  * deleted.
2748                                  */
2749                                 result = vm_map_lookup_entry(map, saved_start,
2750                                     &tmp_entry);
2751                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2752                                 if (entry == first_entry)
2753                                         first_entry = tmp_entry;
2754                                 else
2755                                         first_entry = NULL;
2756                                 entry = tmp_entry;
2757                                 while (entry->end < saved_end) {
2758                                         /*
2759                                          * In case of failure, handle entries
2760                                          * that were not fully wired here;
2761                                          * fully wired entries are handled
2762                                          * later.
2763                                          */
2764                                         if (rv != KERN_SUCCESS &&
2765                                             faddr < entry->end)
2766                                                 vm_map_wire_entry_failure(map,
2767                                                     entry, faddr);
2768                                         entry = entry->next;
2769                                 }
2770                         }
2771                         last_timestamp = map->timestamp;
2772                         if (rv != KERN_SUCCESS) {
2773                                 vm_map_wire_entry_failure(map, entry, faddr);
2774                                 end = entry->end;
2775                                 goto done;
2776                         }
2777                 } else if (!user_wire ||
2778                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2779                         entry->wired_count++;
2780                 }
2781                 /*
2782                  * Check the map for holes in the specified region.
2783                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2784                  */
2785         next_entry:
2786                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2787                     entry->end < end && entry->next->start > entry->end) {
2788                         end = entry->end;
2789                         rv = KERN_INVALID_ADDRESS;
2790                         goto done;
2791                 }
2792                 entry = entry->next;
2793         }
2794         rv = KERN_SUCCESS;
2795 done:
2796         need_wakeup = FALSE;
2797         if (first_entry == NULL) {
2798                 result = vm_map_lookup_entry(map, start, &first_entry);
2799                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2800                         first_entry = first_entry->next;
2801                 else
2802                         KASSERT(result, ("vm_map_wire: lookup failed"));
2803         }
2804         for (entry = first_entry; entry->start < end; entry = entry->next) {
2805                 /*
2806                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2807                  * space in the unwired region could have been mapped
2808                  * while the map lock was dropped for faulting in the
2809                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2810                  * Moreover, another thread could be simultaneously
2811                  * wiring this new mapping entry.  Detect these cases
2812                  * and skip any entries marked as in transition not by us.
2813                  */
2814                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2815                     entry->wiring_thread != curthread) {
2816                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2817                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2818                         continue;
2819                 }
2820
2821                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2822                         goto next_entry_done;
2823
2824                 if (rv == KERN_SUCCESS) {
2825                         if (user_wire)
2826                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2827                 } else if (entry->wired_count == -1) {
2828                         /*
2829                          * Wiring failed on this entry.  Thus, unwiring is
2830                          * unnecessary.
2831                          */
2832                         entry->wired_count = 0;
2833                 } else if (!user_wire ||
2834                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2835                         /*
2836                          * Undo the wiring.  Wiring succeeded on this entry
2837                          * but failed on a later entry.  
2838                          */
2839                         if (entry->wired_count == 1)
2840                                 vm_map_entry_unwire(map, entry);
2841                         else
2842                                 entry->wired_count--;
2843                 }
2844         next_entry_done:
2845                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2846                     ("vm_map_wire: in-transition flag missing %p", entry));
2847                 KASSERT(entry->wiring_thread == curthread,
2848                     ("vm_map_wire: alien wire %p", entry));
2849                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2850                     MAP_ENTRY_WIRE_SKIPPED);
2851                 entry->wiring_thread = NULL;
2852                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2853                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2854                         need_wakeup = TRUE;
2855                 }
2856                 vm_map_simplify_entry(map, entry);
2857         }
2858         vm_map_unlock(map);
2859         if (need_wakeup)
2860                 vm_map_wakeup(map);
2861         return (rv);
2862 }
2863
2864 /*
2865  * vm_map_sync
2866  *
2867  * Push any dirty cached pages in the address range to their pager.
2868  * If syncio is TRUE, dirty pages are written synchronously.
2869  * If invalidate is TRUE, any cached pages are freed as well.
2870  *
2871  * If the size of the region from start to end is zero, we are
2872  * supposed to flush all modified pages within the region containing
2873  * start.  Unfortunately, a region can be split or coalesced with
2874  * neighboring regions, making it difficult to determine what the
2875  * original region was.  Therefore, we approximate this requirement by
2876  * flushing the current region containing start.
2877  *
2878  * Returns an error if any part of the specified range is not mapped.
2879  */
2880 int
2881 vm_map_sync(
2882         vm_map_t map,
2883         vm_offset_t start,
2884         vm_offset_t end,
2885         boolean_t syncio,
2886         boolean_t invalidate)
2887 {
2888         vm_map_entry_t current;
2889         vm_map_entry_t entry;
2890         vm_size_t size;
2891         vm_object_t object;
2892         vm_ooffset_t offset;
2893         unsigned int last_timestamp;
2894         boolean_t failed;
2895
2896         vm_map_lock_read(map);
2897         VM_MAP_RANGE_CHECK(map, start, end);
2898         if (!vm_map_lookup_entry(map, start, &entry)) {
2899                 vm_map_unlock_read(map);
2900                 return (KERN_INVALID_ADDRESS);
2901         } else if (start == end) {
2902                 start = entry->start;
2903                 end = entry->end;
2904         }
2905         /*
2906          * Make a first pass to check for user-wired memory and holes.
2907          */
2908         for (current = entry; current->start < end; current = current->next) {
2909                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2910                         vm_map_unlock_read(map);
2911                         return (KERN_INVALID_ARGUMENT);
2912                 }
2913                 if (end > current->end &&
2914                     current->end != current->next->start) {
2915                         vm_map_unlock_read(map);
2916                         return (KERN_INVALID_ADDRESS);
2917                 }
2918         }
2919
2920         if (invalidate)
2921                 pmap_remove(map->pmap, start, end);
2922         failed = FALSE;
2923
2924         /*
2925          * Make a second pass, cleaning/uncaching pages from the indicated
2926          * objects as we go.
2927          */
2928         for (current = entry; current->start < end;) {
2929                 offset = current->offset + (start - current->start);
2930                 size = (end <= current->end ? end : current->end) - start;
2931                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2932                         vm_map_t smap;
2933                         vm_map_entry_t tentry;
2934                         vm_size_t tsize;
2935
2936                         smap = current->object.sub_map;
2937                         vm_map_lock_read(smap);
2938                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2939                         tsize = tentry->end - offset;
2940                         if (tsize < size)
2941                                 size = tsize;
2942                         object = tentry->object.vm_object;
2943                         offset = tentry->offset + (offset - tentry->start);
2944                         vm_map_unlock_read(smap);
2945                 } else {
2946                         object = current->object.vm_object;
2947                 }
2948                 vm_object_reference(object);
2949                 last_timestamp = map->timestamp;
2950                 vm_map_unlock_read(map);
2951                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2952                         failed = TRUE;
2953                 start += size;
2954                 vm_object_deallocate(object);
2955                 vm_map_lock_read(map);
2956                 if (last_timestamp == map->timestamp ||
2957                     !vm_map_lookup_entry(map, start, &current))
2958                         current = current->next;
2959         }
2960
2961         vm_map_unlock_read(map);
2962         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2963 }
2964
2965 /*
2966  *      vm_map_entry_unwire:    [ internal use only ]
2967  *
2968  *      Make the region specified by this entry pageable.
2969  *
2970  *      The map in question should be locked.
2971  *      [This is the reason for this routine's existence.]
2972  */
2973 static void
2974 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2975 {
2976
2977         VM_MAP_ASSERT_LOCKED(map);
2978         KASSERT(entry->wired_count > 0,
2979             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2980         pmap_unwire(map->pmap, entry->start, entry->end);
2981         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2982             entry->start, PQ_ACTIVE);
2983         entry->wired_count = 0;
2984 }
2985
2986 static void
2987 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2988 {
2989
2990         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2991                 vm_object_deallocate(entry->object.vm_object);
2992         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2993 }
2994
2995 /*
2996  *      vm_map_entry_delete:    [ internal use only ]
2997  *
2998  *      Deallocate the given entry from the target map.
2999  */
3000 static void
3001 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3002 {
3003         vm_object_t object;
3004         vm_pindex_t offidxstart, offidxend, count, size1;
3005         vm_size_t size;
3006
3007         vm_map_entry_unlink(map, entry);
3008         object = entry->object.vm_object;
3009
3010         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3011                 MPASS(entry->cred == NULL);
3012                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3013                 MPASS(object == NULL);
3014                 vm_map_entry_deallocate(entry, map->system_map);
3015                 return;
3016         }
3017
3018         size = entry->end - entry->start;
3019         map->size -= size;
3020
3021         if (entry->cred != NULL) {
3022                 swap_release_by_cred(size, entry->cred);
3023                 crfree(entry->cred);
3024         }
3025
3026         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3027             (object != NULL)) {
3028                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3029                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3030                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3031                 count = atop(size);
3032                 offidxstart = OFF_TO_IDX(entry->offset);
3033                 offidxend = offidxstart + count;
3034                 VM_OBJECT_WLOCK(object);
3035                 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3036                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3037                     object == kernel_object)) {
3038                         vm_object_collapse(object);
3039
3040                         /*
3041                          * The option OBJPR_NOTMAPPED can be passed here
3042                          * because vm_map_delete() already performed
3043                          * pmap_remove() on the only mapping to this range
3044                          * of pages. 
3045                          */
3046                         vm_object_page_remove(object, offidxstart, offidxend,
3047                             OBJPR_NOTMAPPED);
3048                         if (object->type == OBJT_SWAP)
3049                                 swap_pager_freespace(object, offidxstart,
3050                                     count);
3051                         if (offidxend >= object->size &&
3052                             offidxstart < object->size) {
3053                                 size1 = object->size;
3054                                 object->size = offidxstart;
3055                                 if (object->cred != NULL) {
3056                                         size1 -= object->size;
3057                                         KASSERT(object->charge >= ptoa(size1),
3058                                             ("object %p charge < 0", object));
3059                                         swap_release_by_cred(ptoa(size1),
3060                                             object->cred);
3061                                         object->charge -= ptoa(size1);
3062                                 }
3063                         }
3064                 }
3065                 VM_OBJECT_WUNLOCK(object);
3066         } else
3067                 entry->object.vm_object = NULL;
3068         if (map->system_map)
3069                 vm_map_entry_deallocate(entry, TRUE);
3070         else {
3071                 entry->next = curthread->td_map_def_user;
3072                 curthread->td_map_def_user = entry;
3073         }
3074 }
3075
3076 /*
3077  *      vm_map_delete:  [ internal use only ]
3078  *
3079  *      Deallocates the given address range from the target
3080  *      map.
3081  */
3082 int
3083 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3084 {
3085         vm_map_entry_t entry;
3086         vm_map_entry_t first_entry;
3087
3088         VM_MAP_ASSERT_LOCKED(map);
3089         if (start == end)
3090                 return (KERN_SUCCESS);
3091
3092         /*
3093          * Find the start of the region, and clip it
3094          */
3095         if (!vm_map_lookup_entry(map, start, &first_entry))
3096                 entry = first_entry->next;
3097         else {
3098                 entry = first_entry;
3099                 vm_map_clip_start(map, entry, start);
3100         }
3101
3102         /*
3103          * Step through all entries in this region
3104          */
3105         while (entry->start < end) {
3106                 vm_map_entry_t next;
3107
3108                 /*
3109                  * Wait for wiring or unwiring of an entry to complete.
3110                  * Also wait for any system wirings to disappear on
3111                  * user maps.
3112                  */
3113                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3114                     (vm_map_pmap(map) != kernel_pmap &&
3115                     vm_map_entry_system_wired_count(entry) != 0)) {
3116                         unsigned int last_timestamp;
3117                         vm_offset_t saved_start;
3118                         vm_map_entry_t tmp_entry;
3119
3120                         saved_start = entry->start;
3121                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3122                         last_timestamp = map->timestamp;
3123                         (void) vm_map_unlock_and_wait(map, 0);
3124                         vm_map_lock(map);
3125                         if (last_timestamp + 1 != map->timestamp) {
3126                                 /*
3127                                  * Look again for the entry because the map was
3128                                  * modified while it was unlocked.
3129                                  * Specifically, the entry may have been
3130                                  * clipped, merged, or deleted.
3131                                  */
3132                                 if (!vm_map_lookup_entry(map, saved_start,
3133                                                          &tmp_entry))
3134                                         entry = tmp_entry->next;
3135                                 else {
3136                                         entry = tmp_entry;
3137                                         vm_map_clip_start(map, entry,
3138                                                           saved_start);
3139                                 }
3140                         }
3141                         continue;
3142                 }
3143                 vm_map_clip_end(map, entry, end);
3144
3145                 next = entry->next;
3146
3147                 /*
3148                  * Unwire before removing addresses from the pmap; otherwise,
3149                  * unwiring will put the entries back in the pmap.
3150                  */
3151                 if (entry->wired_count != 0)
3152                         vm_map_entry_unwire(map, entry);
3153
3154                 /*
3155                  * Remove mappings for the pages, but only if the
3156                  * mappings could exist.  For instance, it does not
3157                  * make sense to call pmap_remove() for guard entries.
3158                  */
3159                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3160                     entry->object.vm_object != NULL)
3161                         pmap_remove(map->pmap, entry->start, entry->end);
3162
3163                 /*
3164                  * Delete the entry only after removing all pmap
3165                  * entries pointing to its pages.  (Otherwise, its
3166                  * page frames may be reallocated, and any modify bits
3167                  * will be set in the wrong object!)
3168                  */
3169                 vm_map_entry_delete(map, entry);
3170                 entry = next;
3171         }
3172         return (KERN_SUCCESS);
3173 }
3174
3175 /*
3176  *      vm_map_remove:
3177  *
3178  *      Remove the given address range from the target map.
3179  *      This is the exported form of vm_map_delete.
3180  */
3181 int
3182 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3183 {
3184         int result;
3185
3186         vm_map_lock(map);
3187         VM_MAP_RANGE_CHECK(map, start, end);
3188         result = vm_map_delete(map, start, end);
3189         vm_map_unlock(map);
3190         return (result);
3191 }
3192
3193 /*
3194  *      vm_map_check_protection:
3195  *
3196  *      Assert that the target map allows the specified privilege on the
3197  *      entire address region given.  The entire region must be allocated.
3198  *
3199  *      WARNING!  This code does not and should not check whether the
3200  *      contents of the region is accessible.  For example a smaller file
3201  *      might be mapped into a larger address space.
3202  *
3203  *      NOTE!  This code is also called by munmap().
3204  *
3205  *      The map must be locked.  A read lock is sufficient.
3206  */
3207 boolean_t
3208 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3209                         vm_prot_t protection)
3210 {
3211         vm_map_entry_t entry;
3212         vm_map_entry_t tmp_entry;
3213
3214         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3215                 return (FALSE);
3216         entry = tmp_entry;
3217
3218         while (start < end) {
3219                 /*
3220                  * No holes allowed!
3221                  */
3222                 if (start < entry->start)
3223                         return (FALSE);
3224                 /*
3225                  * Check protection associated with entry.
3226                  */
3227                 if ((entry->protection & protection) != protection)
3228                         return (FALSE);
3229                 /* go to next entry */
3230                 start = entry->end;
3231                 entry = entry->next;
3232         }
3233         return (TRUE);
3234 }
3235
3236 /*
3237  *      vm_map_copy_entry:
3238  *
3239  *      Copies the contents of the source entry to the destination
3240  *      entry.  The entries *must* be aligned properly.
3241  */
3242 static void
3243 vm_map_copy_entry(
3244         vm_map_t src_map,
3245         vm_map_t dst_map,
3246         vm_map_entry_t src_entry,
3247         vm_map_entry_t dst_entry,
3248         vm_ooffset_t *fork_charge)
3249 {
3250         vm_object_t src_object;
3251         vm_map_entry_t fake_entry;
3252         vm_offset_t size;
3253         struct ucred *cred;
3254         int charged;
3255
3256         VM_MAP_ASSERT_LOCKED(dst_map);
3257
3258         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3259                 return;
3260
3261         if (src_entry->wired_count == 0 ||
3262             (src_entry->protection & VM_PROT_WRITE) == 0) {
3263                 /*
3264                  * If the source entry is marked needs_copy, it is already
3265                  * write-protected.
3266                  */
3267                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3268                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3269                         pmap_protect(src_map->pmap,
3270                             src_entry->start,
3271                             src_entry->end,
3272                             src_entry->protection & ~VM_PROT_WRITE);
3273                 }
3274
3275                 /*
3276                  * Make a copy of the object.
3277                  */
3278                 size = src_entry->end - src_entry->start;
3279                 if ((src_object = src_entry->object.vm_object) != NULL) {
3280                         VM_OBJECT_WLOCK(src_object);
3281                         charged = ENTRY_CHARGED(src_entry);
3282                         if (src_object->handle == NULL &&
3283                             (src_object->type == OBJT_DEFAULT ||
3284                             src_object->type == OBJT_SWAP)) {
3285                                 vm_object_collapse(src_object);
3286                                 if ((src_object->flags & (OBJ_NOSPLIT |
3287                                     OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3288                                         vm_object_split(src_entry);
3289                                         src_object =
3290                                             src_entry->object.vm_object;
3291                                 }
3292                         }
3293                         vm_object_reference_locked(src_object);
3294                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3295                         if (src_entry->cred != NULL &&
3296                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3297                                 KASSERT(src_object->cred == NULL,
3298                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3299                                      src_object));
3300                                 src_object->cred = src_entry->cred;
3301                                 src_object->charge = size;
3302                         }
3303                         VM_OBJECT_WUNLOCK(src_object);
3304                         dst_entry->object.vm_object = src_object;
3305                         if (charged) {
3306                                 cred = curthread->td_ucred;
3307                                 crhold(cred);
3308                                 dst_entry->cred = cred;
3309                                 *fork_charge += size;
3310                                 if (!(src_entry->eflags &
3311                                       MAP_ENTRY_NEEDS_COPY)) {
3312                                         crhold(cred);
3313                                         src_entry->cred = cred;
3314                                         *fork_charge += size;
3315                                 }
3316                         }
3317                         src_entry->eflags |= MAP_ENTRY_COW |
3318                             MAP_ENTRY_NEEDS_COPY;
3319                         dst_entry->eflags |= MAP_ENTRY_COW |
3320                             MAP_ENTRY_NEEDS_COPY;
3321                         dst_entry->offset = src_entry->offset;
3322                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3323                                 /*
3324                                  * MAP_ENTRY_VN_WRITECNT cannot
3325                                  * indicate write reference from
3326                                  * src_entry, since the entry is
3327                                  * marked as needs copy.  Allocate a
3328                                  * fake entry that is used to
3329                                  * decrement object->un_pager.vnp.writecount
3330                                  * at the appropriate time.  Attach
3331                                  * fake_entry to the deferred list.
3332                                  */
3333                                 fake_entry = vm_map_entry_create(dst_map);
3334                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3335                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3336                                 vm_object_reference(src_object);
3337                                 fake_entry->object.vm_object = src_object;
3338                                 fake_entry->start = src_entry->start;
3339                                 fake_entry->end = src_entry->end;
3340                                 fake_entry->next = curthread->td_map_def_user;
3341                                 curthread->td_map_def_user = fake_entry;
3342                         }
3343
3344                         pmap_copy(dst_map->pmap, src_map->pmap,
3345                             dst_entry->start, dst_entry->end - dst_entry->start,
3346                             src_entry->start);
3347                 } else {
3348                         dst_entry->object.vm_object = NULL;
3349                         dst_entry->offset = 0;
3350                         if (src_entry->cred != NULL) {
3351                                 dst_entry->cred = curthread->td_ucred;
3352                                 crhold(dst_entry->cred);
3353                                 *fork_charge += size;
3354                         }
3355                 }
3356         } else {
3357                 /*
3358                  * We don't want to make writeable wired pages copy-on-write.
3359                  * Immediately copy these pages into the new map by simulating
3360                  * page faults.  The new pages are pageable.
3361                  */
3362                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3363                     fork_charge);
3364         }
3365 }
3366
3367 /*
3368  * vmspace_map_entry_forked:
3369  * Update the newly-forked vmspace each time a map entry is inherited
3370  * or copied.  The values for vm_dsize and vm_tsize are approximate
3371  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3372  */
3373 static void
3374 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3375     vm_map_entry_t entry)
3376 {
3377         vm_size_t entrysize;
3378         vm_offset_t newend;
3379
3380         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3381                 return;
3382         entrysize = entry->end - entry->start;
3383         vm2->vm_map.size += entrysize;
3384         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3385                 vm2->vm_ssize += btoc(entrysize);
3386         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3387             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3388                 newend = MIN(entry->end,
3389                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3390                 vm2->vm_dsize += btoc(newend - entry->start);
3391         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3392             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3393                 newend = MIN(entry->end,
3394                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3395                 vm2->vm_tsize += btoc(newend - entry->start);
3396         }
3397 }
3398
3399 /*
3400  * vmspace_fork:
3401  * Create a new process vmspace structure and vm_map
3402  * based on those of an existing process.  The new map
3403  * is based on the old map, according to the inheritance
3404  * values on the regions in that map.
3405  *
3406  * XXX It might be worth coalescing the entries added to the new vmspace.
3407  *
3408  * The source map must not be locked.
3409  */
3410 struct vmspace *
3411 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3412 {
3413         struct vmspace *vm2;
3414         vm_map_t new_map, old_map;
3415         vm_map_entry_t new_entry, old_entry;
3416         vm_object_t object;
3417         int locked;
3418         vm_inherit_t inh;
3419
3420         old_map = &vm1->vm_map;
3421         /* Copy immutable fields of vm1 to vm2. */
3422         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3423             pmap_pinit);
3424         if (vm2 == NULL)
3425                 return (NULL);
3426         vm2->vm_taddr = vm1->vm_taddr;
3427         vm2->vm_daddr = vm1->vm_daddr;
3428         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3429         vm_map_lock(old_map);
3430         if (old_map->busy)
3431                 vm_map_wait_busy(old_map);
3432         new_map = &vm2->vm_map;
3433         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3434         KASSERT(locked, ("vmspace_fork: lock failed"));
3435
3436         old_entry = old_map->header.next;
3437
3438         while (old_entry != &old_map->header) {
3439                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3440                         panic("vm_map_fork: encountered a submap");
3441
3442                 inh = old_entry->inheritance;
3443                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3444                     inh != VM_INHERIT_NONE)
3445                         inh = VM_INHERIT_COPY;
3446
3447                 switch (inh) {
3448                 case VM_INHERIT_NONE:
3449                         break;
3450
3451                 case VM_INHERIT_SHARE:
3452                         /*
3453                          * Clone the entry, creating the shared object if necessary.
3454                          */
3455                         object = old_entry->object.vm_object;
3456                         if (object == NULL) {
3457                                 object = vm_object_allocate(OBJT_DEFAULT,
3458                                         atop(old_entry->end - old_entry->start));
3459                                 old_entry->object.vm_object = object;
3460                                 old_entry->offset = 0;
3461                                 if (old_entry->cred != NULL) {
3462                                         object->cred = old_entry->cred;
3463                                         object->charge = old_entry->end -
3464                                             old_entry->start;
3465                                         old_entry->cred = NULL;
3466                                 }
3467                         }
3468
3469                         /*
3470                          * Add the reference before calling vm_object_shadow
3471                          * to insure that a shadow object is created.
3472                          */
3473                         vm_object_reference(object);
3474                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3475                                 vm_object_shadow(&old_entry->object.vm_object,
3476                                     &old_entry->offset,
3477                                     old_entry->end - old_entry->start);
3478                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3479                                 /* Transfer the second reference too. */
3480                                 vm_object_reference(
3481                                     old_entry->object.vm_object);
3482
3483                                 /*
3484                                  * As in vm_map_simplify_entry(), the
3485                                  * vnode lock will not be acquired in
3486                                  * this call to vm_object_deallocate().
3487                                  */
3488                                 vm_object_deallocate(object);
3489                                 object = old_entry->object.vm_object;
3490                         }
3491                         VM_OBJECT_WLOCK(object);
3492                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3493                         if (old_entry->cred != NULL) {
3494                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3495                                 object->cred = old_entry->cred;
3496                                 object->charge = old_entry->end - old_entry->start;
3497                                 old_entry->cred = NULL;
3498                         }
3499
3500                         /*
3501                          * Assert the correct state of the vnode
3502                          * v_writecount while the object is locked, to
3503                          * not relock it later for the assertion
3504                          * correctness.
3505                          */
3506                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3507                             object->type == OBJT_VNODE) {
3508                                 KASSERT(((struct vnode *)object->handle)->
3509                                     v_writecount > 0,
3510                                     ("vmspace_fork: v_writecount %p", object));
3511                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3512                                     ("vmspace_fork: vnp.writecount %p",
3513                                     object));
3514                         }
3515                         VM_OBJECT_WUNLOCK(object);
3516
3517                         /*
3518                          * Clone the entry, referencing the shared object.
3519                          */
3520                         new_entry = vm_map_entry_create(new_map);
3521                         *new_entry = *old_entry;
3522                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3523                             MAP_ENTRY_IN_TRANSITION);
3524                         new_entry->wiring_thread = NULL;
3525                         new_entry->wired_count = 0;
3526                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3527                                 vnode_pager_update_writecount(object,
3528                                     new_entry->start, new_entry->end);
3529                         }
3530
3531                         /*
3532                          * Insert the entry into the new map -- we know we're
3533                          * inserting at the end of the new map.
3534                          */
3535                         vm_map_entry_link(new_map, new_map->header.prev,
3536                             new_entry);
3537                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3538
3539                         /*
3540                          * Update the physical map
3541                          */
3542                         pmap_copy(new_map->pmap, old_map->pmap,
3543                             new_entry->start,
3544                             (old_entry->end - old_entry->start),
3545                             old_entry->start);
3546                         break;
3547
3548                 case VM_INHERIT_COPY:
3549                         /*
3550                          * Clone the entry and link into the map.
3551                          */
3552                         new_entry = vm_map_entry_create(new_map);
3553                         *new_entry = *old_entry;
3554                         /*
3555                          * Copied entry is COW over the old object.
3556                          */
3557                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3558                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3559                         new_entry->wiring_thread = NULL;
3560                         new_entry->wired_count = 0;
3561                         new_entry->object.vm_object = NULL;
3562                         new_entry->cred = NULL;
3563                         vm_map_entry_link(new_map, new_map->header.prev,
3564                             new_entry);
3565                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3566                         vm_map_copy_entry(old_map, new_map, old_entry,
3567                             new_entry, fork_charge);
3568                         break;
3569
3570                 case VM_INHERIT_ZERO:
3571                         /*
3572                          * Create a new anonymous mapping entry modelled from
3573                          * the old one.
3574                          */
3575                         new_entry = vm_map_entry_create(new_map);
3576                         memset(new_entry, 0, sizeof(*new_entry));
3577
3578                         new_entry->start = old_entry->start;
3579                         new_entry->end = old_entry->end;
3580                         new_entry->eflags = old_entry->eflags &
3581                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3582                             MAP_ENTRY_VN_WRITECNT);
3583                         new_entry->protection = old_entry->protection;
3584                         new_entry->max_protection = old_entry->max_protection;
3585                         new_entry->inheritance = VM_INHERIT_ZERO;
3586
3587                         vm_map_entry_link(new_map, new_map->header.prev,
3588                             new_entry);
3589                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3590
3591                         new_entry->cred = curthread->td_ucred;
3592                         crhold(new_entry->cred);
3593                         *fork_charge += (new_entry->end - new_entry->start);
3594
3595                         break;
3596                 }
3597                 old_entry = old_entry->next;
3598         }
3599         /*
3600          * Use inlined vm_map_unlock() to postpone handling the deferred
3601          * map entries, which cannot be done until both old_map and
3602          * new_map locks are released.
3603          */
3604         sx_xunlock(&old_map->lock);
3605         sx_xunlock(&new_map->lock);
3606         vm_map_process_deferred();
3607
3608         return (vm2);
3609 }
3610
3611 /*
3612  * Create a process's stack for exec_new_vmspace().  This function is never
3613  * asked to wire the newly created stack.
3614  */
3615 int
3616 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3617     vm_prot_t prot, vm_prot_t max, int cow)
3618 {
3619         vm_size_t growsize, init_ssize;
3620         rlim_t vmemlim;
3621         int rv;
3622
3623         MPASS((map->flags & MAP_WIREFUTURE) == 0);
3624         growsize = sgrowsiz;
3625         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3626         vm_map_lock(map);
3627         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3628         /* If we would blow our VMEM resource limit, no go */
3629         if (map->size + init_ssize > vmemlim) {
3630                 rv = KERN_NO_SPACE;
3631                 goto out;
3632         }
3633         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3634             max, cow);
3635 out:
3636         vm_map_unlock(map);
3637         return (rv);
3638 }
3639
3640 static int stack_guard_page = 1;
3641 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3642     &stack_guard_page, 0,
3643     "Specifies the number of guard pages for a stack that grows");
3644
3645 static int
3646 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3647     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3648 {
3649         vm_map_entry_t new_entry, prev_entry;
3650         vm_offset_t bot, gap_bot, gap_top, top;
3651         vm_size_t init_ssize, sgp;
3652         int orient, rv;
3653
3654         /*
3655          * The stack orientation is piggybacked with the cow argument.
3656          * Extract it into orient and mask the cow argument so that we
3657          * don't pass it around further.
3658          */
3659         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3660         KASSERT(orient != 0, ("No stack grow direction"));
3661         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3662             ("bi-dir stack"));
3663
3664         if (addrbos < vm_map_min(map) ||
3665             addrbos + max_ssize > vm_map_max(map) ||
3666             addrbos + max_ssize <= addrbos)
3667                 return (KERN_INVALID_ADDRESS);
3668         sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3669         if (sgp >= max_ssize)
3670                 return (KERN_INVALID_ARGUMENT);
3671
3672         init_ssize = growsize;
3673         if (max_ssize < init_ssize + sgp)
3674                 init_ssize = max_ssize - sgp;
3675
3676         /* If addr is already mapped, no go */
3677         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3678                 return (KERN_NO_SPACE);
3679
3680         /*
3681          * If we can't accommodate max_ssize in the current mapping, no go.
3682          */
3683         if (prev_entry->next->start < addrbos + max_ssize)
3684                 return (KERN_NO_SPACE);
3685
3686         /*
3687          * We initially map a stack of only init_ssize.  We will grow as
3688          * needed later.  Depending on the orientation of the stack (i.e.
3689          * the grow direction) we either map at the top of the range, the
3690          * bottom of the range or in the middle.
3691          *
3692          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3693          * and cow to be 0.  Possibly we should eliminate these as input
3694          * parameters, and just pass these values here in the insert call.
3695          */
3696         if (orient == MAP_STACK_GROWS_DOWN) {
3697                 bot = addrbos + max_ssize - init_ssize;
3698                 top = bot + init_ssize;
3699                 gap_bot = addrbos;
3700                 gap_top = bot;
3701         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
3702                 bot = addrbos;
3703                 top = bot + init_ssize;
3704                 gap_bot = top;
3705                 gap_top = addrbos + max_ssize;
3706         }
3707         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3708         if (rv != KERN_SUCCESS)
3709                 return (rv);
3710         new_entry = prev_entry->next;
3711         KASSERT(new_entry->end == top || new_entry->start == bot,
3712             ("Bad entry start/end for new stack entry"));
3713         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3714             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3715             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3716         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3717             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3718             ("new entry lacks MAP_ENTRY_GROWS_UP"));
3719         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3720             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3721             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3722         if (rv != KERN_SUCCESS)
3723                 (void)vm_map_delete(map, bot, top);
3724         return (rv);
3725 }
3726
3727 /*
3728  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3729  * successfully grow the stack.
3730  */
3731 static int
3732 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3733 {
3734         vm_map_entry_t stack_entry;
3735         struct proc *p;
3736         struct vmspace *vm;
3737         struct ucred *cred;
3738         vm_offset_t gap_end, gap_start, grow_start;
3739         size_t grow_amount, guard, max_grow;
3740         rlim_t lmemlim, stacklim, vmemlim;
3741         int rv, rv1;
3742         bool gap_deleted, grow_down, is_procstack;
3743 #ifdef notyet
3744         uint64_t limit;
3745 #endif
3746 #ifdef RACCT
3747         int error;
3748 #endif
3749
3750         p = curproc;
3751         vm = p->p_vmspace;
3752
3753         /*
3754          * Disallow stack growth when the access is performed by a
3755          * debugger or AIO daemon.  The reason is that the wrong
3756          * resource limits are applied.
3757          */
3758         if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3759                 return (KERN_FAILURE);
3760
3761         MPASS(!map->system_map);
3762
3763         guard = stack_guard_page * PAGE_SIZE;
3764         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3765         stacklim = lim_cur(curthread, RLIMIT_STACK);
3766         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3767 retry:
3768         /* If addr is not in a hole for a stack grow area, no need to grow. */
3769         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3770                 return (KERN_FAILURE);
3771         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3772                 return (KERN_SUCCESS);
3773         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3774                 stack_entry = gap_entry->next;
3775                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3776                     stack_entry->start != gap_entry->end)
3777                         return (KERN_FAILURE);
3778                 grow_amount = round_page(stack_entry->start - addr);
3779                 grow_down = true;
3780         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3781                 stack_entry = gap_entry->prev;
3782                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3783                     stack_entry->end != gap_entry->start)
3784                         return (KERN_FAILURE);
3785                 grow_amount = round_page(addr + 1 - stack_entry->end);
3786                 grow_down = false;
3787         } else {
3788                 return (KERN_FAILURE);
3789         }
3790         max_grow = gap_entry->end - gap_entry->start;
3791         if (guard > max_grow)
3792                 return (KERN_NO_SPACE);
3793         max_grow -= guard;
3794         if (grow_amount > max_grow)
3795                 return (KERN_NO_SPACE);
3796
3797         /*
3798          * If this is the main process stack, see if we're over the stack
3799          * limit.
3800          */
3801         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3802             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3803         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3804                 return (KERN_NO_SPACE);
3805
3806 #ifdef RACCT
3807         if (racct_enable) {
3808                 PROC_LOCK(p);
3809                 if (is_procstack && racct_set(p, RACCT_STACK,
3810                     ctob(vm->vm_ssize) + grow_amount)) {
3811                         PROC_UNLOCK(p);
3812                         return (KERN_NO_SPACE);
3813                 }
3814                 PROC_UNLOCK(p);
3815         }
3816 #endif
3817
3818         grow_amount = roundup(grow_amount, sgrowsiz);
3819         if (grow_amount > max_grow)
3820                 grow_amount = max_grow;
3821         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3822                 grow_amount = trunc_page((vm_size_t)stacklim) -
3823                     ctob(vm->vm_ssize);
3824         }
3825
3826 #ifdef notyet
3827         PROC_LOCK(p);
3828         limit = racct_get_available(p, RACCT_STACK);
3829         PROC_UNLOCK(p);
3830         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3831                 grow_amount = limit - ctob(vm->vm_ssize);
3832 #endif
3833
3834         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3835                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3836                         rv = KERN_NO_SPACE;
3837                         goto out;
3838                 }
3839 #ifdef RACCT
3840                 if (racct_enable) {
3841                         PROC_LOCK(p);
3842                         if (racct_set(p, RACCT_MEMLOCK,
3843                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3844                                 PROC_UNLOCK(p);
3845                                 rv = KERN_NO_SPACE;
3846                                 goto out;
3847                         }
3848                         PROC_UNLOCK(p);
3849                 }
3850 #endif
3851         }
3852
3853         /* If we would blow our VMEM resource limit, no go */
3854         if (map->size + grow_amount > vmemlim) {
3855                 rv = KERN_NO_SPACE;
3856                 goto out;
3857         }
3858 #ifdef RACCT
3859         if (racct_enable) {
3860                 PROC_LOCK(p);
3861                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3862                         PROC_UNLOCK(p);
3863                         rv = KERN_NO_SPACE;
3864                         goto out;
3865                 }
3866                 PROC_UNLOCK(p);
3867         }
3868 #endif
3869
3870         if (vm_map_lock_upgrade(map)) {
3871                 gap_entry = NULL;
3872                 vm_map_lock_read(map);
3873                 goto retry;
3874         }
3875
3876         if (grow_down) {
3877                 grow_start = gap_entry->end - grow_amount;
3878                 if (gap_entry->start + grow_amount == gap_entry->end) {
3879                         gap_start = gap_entry->start;
3880                         gap_end = gap_entry->end;
3881                         vm_map_entry_delete(map, gap_entry);
3882                         gap_deleted = true;
3883                 } else {
3884                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
3885                         gap_entry->end -= grow_amount;
3886                         vm_map_entry_resize_free(map, gap_entry);
3887                         gap_deleted = false;
3888                 }
3889                 rv = vm_map_insert(map, NULL, 0, grow_start,
3890                     grow_start + grow_amount,
3891                     stack_entry->protection, stack_entry->max_protection,
3892                     MAP_STACK_GROWS_DOWN);
3893                 if (rv != KERN_SUCCESS) {
3894                         if (gap_deleted) {
3895                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
3896                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
3897                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3898                                 MPASS(rv1 == KERN_SUCCESS);
3899                         } else {
3900                                 gap_entry->end += grow_amount;
3901                                 vm_map_entry_resize_free(map, gap_entry);
3902                         }
3903                 }
3904         } else {
3905                 grow_start = stack_entry->end;
3906                 cred = stack_entry->cred;
3907                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3908                         cred = stack_entry->object.vm_object->cred;
3909                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3910                         rv = KERN_NO_SPACE;
3911                 /* Grow the underlying object if applicable. */
3912                 else if (stack_entry->object.vm_object == NULL ||
3913                     vm_object_coalesce(stack_entry->object.vm_object,
3914                     stack_entry->offset,
3915                     (vm_size_t)(stack_entry->end - stack_entry->start),
3916                     (vm_size_t)grow_amount, cred != NULL)) {
3917                         if (gap_entry->start + grow_amount == gap_entry->end)
3918                                 vm_map_entry_delete(map, gap_entry);
3919                         else
3920                                 gap_entry->start += grow_amount;
3921                         stack_entry->end += grow_amount;
3922                         map->size += grow_amount;
3923                         vm_map_entry_resize_free(map, stack_entry);
3924                         rv = KERN_SUCCESS;
3925                 } else
3926                         rv = KERN_FAILURE;
3927         }
3928         if (rv == KERN_SUCCESS && is_procstack)
3929                 vm->vm_ssize += btoc(grow_amount);
3930
3931         /*
3932          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3933          */
3934         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3935                 vm_map_unlock(map);
3936                 vm_map_wire(map, grow_start, grow_start + grow_amount,
3937                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3938                 vm_map_lock_read(map);
3939         } else
3940                 vm_map_lock_downgrade(map);
3941
3942 out:
3943 #ifdef RACCT
3944         if (racct_enable && rv != KERN_SUCCESS) {
3945                 PROC_LOCK(p);
3946                 error = racct_set(p, RACCT_VMEM, map->size);
3947                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3948                 if (!old_mlock) {
3949                         error = racct_set(p, RACCT_MEMLOCK,
3950                             ptoa(pmap_wired_count(map->pmap)));
3951                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3952                 }
3953                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3954                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3955                 PROC_UNLOCK(p);
3956         }
3957 #endif
3958
3959         return (rv);
3960 }
3961
3962 /*
3963  * Unshare the specified VM space for exec.  If other processes are
3964  * mapped to it, then create a new one.  The new vmspace is null.
3965  */
3966 int
3967 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3968 {
3969         struct vmspace *oldvmspace = p->p_vmspace;
3970         struct vmspace *newvmspace;
3971
3972         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3973             ("vmspace_exec recursed"));
3974         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
3975         if (newvmspace == NULL)
3976                 return (ENOMEM);
3977         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3978         /*
3979          * This code is written like this for prototype purposes.  The
3980          * goal is to avoid running down the vmspace here, but let the
3981          * other process's that are still using the vmspace to finally
3982          * run it down.  Even though there is little or no chance of blocking
3983          * here, it is a good idea to keep this form for future mods.
3984          */
3985         PROC_VMSPACE_LOCK(p);
3986         p->p_vmspace = newvmspace;
3987         PROC_VMSPACE_UNLOCK(p);
3988         if (p == curthread->td_proc)
3989                 pmap_activate(curthread);
3990         curthread->td_pflags |= TDP_EXECVMSPC;
3991         return (0);
3992 }
3993
3994 /*
3995  * Unshare the specified VM space for forcing COW.  This
3996  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3997  */
3998 int
3999 vmspace_unshare(struct proc *p)
4000 {
4001         struct vmspace *oldvmspace = p->p_vmspace;
4002         struct vmspace *newvmspace;
4003         vm_ooffset_t fork_charge;
4004
4005         if (oldvmspace->vm_refcnt == 1)
4006                 return (0);
4007         fork_charge = 0;
4008         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4009         if (newvmspace == NULL)
4010                 return (ENOMEM);
4011         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4012                 vmspace_free(newvmspace);
4013                 return (ENOMEM);
4014         }
4015         PROC_VMSPACE_LOCK(p);
4016         p->p_vmspace = newvmspace;
4017         PROC_VMSPACE_UNLOCK(p);
4018         if (p == curthread->td_proc)
4019                 pmap_activate(curthread);
4020         vmspace_free(oldvmspace);
4021         return (0);
4022 }
4023
4024 /*
4025  *      vm_map_lookup:
4026  *
4027  *      Finds the VM object, offset, and
4028  *      protection for a given virtual address in the
4029  *      specified map, assuming a page fault of the
4030  *      type specified.
4031  *
4032  *      Leaves the map in question locked for read; return
4033  *      values are guaranteed until a vm_map_lookup_done
4034  *      call is performed.  Note that the map argument
4035  *      is in/out; the returned map must be used in
4036  *      the call to vm_map_lookup_done.
4037  *
4038  *      A handle (out_entry) is returned for use in
4039  *      vm_map_lookup_done, to make that fast.
4040  *
4041  *      If a lookup is requested with "write protection"
4042  *      specified, the map may be changed to perform virtual
4043  *      copying operations, although the data referenced will
4044  *      remain the same.
4045  */
4046 int
4047 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4048               vm_offset_t vaddr,
4049               vm_prot_t fault_typea,
4050               vm_map_entry_t *out_entry,        /* OUT */
4051               vm_object_t *object,              /* OUT */
4052               vm_pindex_t *pindex,              /* OUT */
4053               vm_prot_t *out_prot,              /* OUT */
4054               boolean_t *wired)                 /* OUT */
4055 {
4056         vm_map_entry_t entry;
4057         vm_map_t map = *var_map;
4058         vm_prot_t prot;
4059         vm_prot_t fault_type = fault_typea;
4060         vm_object_t eobject;
4061         vm_size_t size;
4062         struct ucred *cred;
4063
4064 RetryLookup:
4065
4066         vm_map_lock_read(map);
4067
4068 RetryLookupLocked:
4069         /*
4070          * Lookup the faulting address.
4071          */
4072         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4073                 vm_map_unlock_read(map);
4074                 return (KERN_INVALID_ADDRESS);
4075         }
4076
4077         entry = *out_entry;
4078
4079         /*
4080          * Handle submaps.
4081          */
4082         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4083                 vm_map_t old_map = map;
4084
4085                 *var_map = map = entry->object.sub_map;
4086                 vm_map_unlock_read(old_map);
4087                 goto RetryLookup;
4088         }
4089
4090         /*
4091          * Check whether this task is allowed to have this page.
4092          */
4093         prot = entry->protection;
4094         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4095                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4096                 if (prot == VM_PROT_NONE && map != kernel_map &&
4097                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4098                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4099                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4100                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4101                         goto RetryLookupLocked;
4102         }
4103         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4104         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4105                 vm_map_unlock_read(map);
4106                 return (KERN_PROTECTION_FAILURE);
4107         }
4108         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4109             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4110             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4111             ("entry %p flags %x", entry, entry->eflags));
4112         if ((fault_typea & VM_PROT_COPY) != 0 &&
4113             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4114             (entry->eflags & MAP_ENTRY_COW) == 0) {
4115                 vm_map_unlock_read(map);
4116                 return (KERN_PROTECTION_FAILURE);
4117         }
4118
4119         /*
4120          * If this page is not pageable, we have to get it for all possible
4121          * accesses.
4122          */
4123         *wired = (entry->wired_count != 0);
4124         if (*wired)
4125                 fault_type = entry->protection;
4126         size = entry->end - entry->start;
4127         /*
4128          * If the entry was copy-on-write, we either ...
4129          */
4130         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4131                 /*
4132                  * If we want to write the page, we may as well handle that
4133                  * now since we've got the map locked.
4134                  *
4135                  * If we don't need to write the page, we just demote the
4136                  * permissions allowed.
4137                  */
4138                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4139                     (fault_typea & VM_PROT_COPY) != 0) {
4140                         /*
4141                          * Make a new object, and place it in the object
4142                          * chain.  Note that no new references have appeared
4143                          * -- one just moved from the map to the new
4144                          * object.
4145                          */
4146                         if (vm_map_lock_upgrade(map))
4147                                 goto RetryLookup;
4148
4149                         if (entry->cred == NULL) {
4150                                 /*
4151                                  * The debugger owner is charged for
4152                                  * the memory.
4153                                  */
4154                                 cred = curthread->td_ucred;
4155                                 crhold(cred);
4156                                 if (!swap_reserve_by_cred(size, cred)) {
4157                                         crfree(cred);
4158                                         vm_map_unlock(map);
4159                                         return (KERN_RESOURCE_SHORTAGE);
4160                                 }
4161                                 entry->cred = cred;
4162                         }
4163                         vm_object_shadow(&entry->object.vm_object,
4164                             &entry->offset, size);
4165                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4166                         eobject = entry->object.vm_object;
4167                         if (eobject->cred != NULL) {
4168                                 /*
4169                                  * The object was not shadowed.
4170                                  */
4171                                 swap_release_by_cred(size, entry->cred);
4172                                 crfree(entry->cred);
4173                                 entry->cred = NULL;
4174                         } else if (entry->cred != NULL) {
4175                                 VM_OBJECT_WLOCK(eobject);
4176                                 eobject->cred = entry->cred;
4177                                 eobject->charge = size;
4178                                 VM_OBJECT_WUNLOCK(eobject);
4179                                 entry->cred = NULL;
4180                         }
4181
4182                         vm_map_lock_downgrade(map);
4183                 } else {
4184                         /*
4185                          * We're attempting to read a copy-on-write page --
4186                          * don't allow writes.
4187                          */
4188                         prot &= ~VM_PROT_WRITE;
4189                 }
4190         }
4191
4192         /*
4193          * Create an object if necessary.
4194          */
4195         if (entry->object.vm_object == NULL &&
4196             !map->system_map) {
4197                 if (vm_map_lock_upgrade(map))
4198                         goto RetryLookup;
4199                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4200                     atop(size));
4201                 entry->offset = 0;
4202                 if (entry->cred != NULL) {
4203                         VM_OBJECT_WLOCK(entry->object.vm_object);
4204                         entry->object.vm_object->cred = entry->cred;
4205                         entry->object.vm_object->charge = size;
4206                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4207                         entry->cred = NULL;
4208                 }
4209                 vm_map_lock_downgrade(map);
4210         }
4211
4212         /*
4213          * Return the object/offset from this entry.  If the entry was
4214          * copy-on-write or empty, it has been fixed up.
4215          */
4216         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4217         *object = entry->object.vm_object;
4218
4219         *out_prot = prot;
4220         return (KERN_SUCCESS);
4221 }
4222
4223 /*
4224  *      vm_map_lookup_locked:
4225  *
4226  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4227  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4228  */
4229 int
4230 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4231                      vm_offset_t vaddr,
4232                      vm_prot_t fault_typea,
4233                      vm_map_entry_t *out_entry, /* OUT */
4234                      vm_object_t *object,       /* OUT */
4235                      vm_pindex_t *pindex,       /* OUT */
4236                      vm_prot_t *out_prot,       /* OUT */
4237                      boolean_t *wired)          /* OUT */
4238 {
4239         vm_map_entry_t entry;
4240         vm_map_t map = *var_map;
4241         vm_prot_t prot;
4242         vm_prot_t fault_type = fault_typea;
4243
4244         /*
4245          * Lookup the faulting address.
4246          */
4247         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4248                 return (KERN_INVALID_ADDRESS);
4249
4250         entry = *out_entry;
4251
4252         /*
4253          * Fail if the entry refers to a submap.
4254          */
4255         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4256                 return (KERN_FAILURE);
4257
4258         /*
4259          * Check whether this task is allowed to have this page.
4260          */
4261         prot = entry->protection;
4262         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4263         if ((fault_type & prot) != fault_type)
4264                 return (KERN_PROTECTION_FAILURE);
4265
4266         /*
4267          * If this page is not pageable, we have to get it for all possible
4268          * accesses.
4269          */
4270         *wired = (entry->wired_count != 0);
4271         if (*wired)
4272                 fault_type = entry->protection;
4273
4274         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4275                 /*
4276                  * Fail if the entry was copy-on-write for a write fault.
4277                  */
4278                 if (fault_type & VM_PROT_WRITE)
4279                         return (KERN_FAILURE);
4280                 /*
4281                  * We're attempting to read a copy-on-write page --
4282                  * don't allow writes.
4283                  */
4284                 prot &= ~VM_PROT_WRITE;
4285         }
4286
4287         /*
4288          * Fail if an object should be created.
4289          */
4290         if (entry->object.vm_object == NULL && !map->system_map)
4291                 return (KERN_FAILURE);
4292
4293         /*
4294          * Return the object/offset from this entry.  If the entry was
4295          * copy-on-write or empty, it has been fixed up.
4296          */
4297         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4298         *object = entry->object.vm_object;
4299
4300         *out_prot = prot;
4301         return (KERN_SUCCESS);
4302 }
4303
4304 /*
4305  *      vm_map_lookup_done:
4306  *
4307  *      Releases locks acquired by a vm_map_lookup
4308  *      (according to the handle returned by that lookup).
4309  */
4310 void
4311 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4312 {
4313         /*
4314          * Unlock the main-level map
4315          */
4316         vm_map_unlock_read(map);
4317 }
4318
4319 vm_offset_t
4320 vm_map_max_KBI(const struct vm_map *map)
4321 {
4322
4323         return (vm_map_max(map));
4324 }
4325
4326 vm_offset_t
4327 vm_map_min_KBI(const struct vm_map *map)
4328 {
4329
4330         return (vm_map_min(map));
4331 }
4332
4333 pmap_t
4334 vm_map_pmap_KBI(vm_map_t map)
4335 {
4336
4337         return (map->pmap);
4338 }
4339
4340 #include "opt_ddb.h"
4341 #ifdef DDB
4342 #include <sys/kernel.h>
4343
4344 #include <ddb/ddb.h>
4345
4346 static void
4347 vm_map_print(vm_map_t map)
4348 {
4349         vm_map_entry_t entry;
4350
4351         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4352             (void *)map,
4353             (void *)map->pmap, map->nentries, map->timestamp);
4354
4355         db_indent += 2;
4356         for (entry = map->header.next; entry != &map->header;
4357             entry = entry->next) {
4358                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4359                     (void *)entry, (void *)entry->start, (void *)entry->end,
4360                     entry->eflags);
4361                 {
4362                         static char *inheritance_name[4] =
4363                         {"share", "copy", "none", "donate_copy"};
4364
4365                         db_iprintf(" prot=%x/%x/%s",
4366                             entry->protection,
4367                             entry->max_protection,
4368                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4369                         if (entry->wired_count != 0)
4370                                 db_printf(", wired");
4371                 }
4372                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4373                         db_printf(", share=%p, offset=0x%jx\n",
4374                             (void *)entry->object.sub_map,
4375                             (uintmax_t)entry->offset);
4376                         if ((entry->prev == &map->header) ||
4377                             (entry->prev->object.sub_map !=
4378                                 entry->object.sub_map)) {
4379                                 db_indent += 2;
4380                                 vm_map_print((vm_map_t)entry->object.sub_map);
4381                                 db_indent -= 2;
4382                         }
4383                 } else {
4384                         if (entry->cred != NULL)
4385                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4386                         db_printf(", object=%p, offset=0x%jx",
4387                             (void *)entry->object.vm_object,
4388                             (uintmax_t)entry->offset);
4389                         if (entry->object.vm_object && entry->object.vm_object->cred)
4390                                 db_printf(", obj ruid %d charge %jx",
4391                                     entry->object.vm_object->cred->cr_ruid,
4392                                     (uintmax_t)entry->object.vm_object->charge);
4393                         if (entry->eflags & MAP_ENTRY_COW)
4394                                 db_printf(", copy (%s)",
4395                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4396                         db_printf("\n");
4397
4398                         if ((entry->prev == &map->header) ||
4399                             (entry->prev->object.vm_object !=
4400                                 entry->object.vm_object)) {
4401                                 db_indent += 2;
4402                                 vm_object_print((db_expr_t)(intptr_t)
4403                                                 entry->object.vm_object,
4404                                                 0, 0, (char *)0);
4405                                 db_indent -= 2;
4406                         }
4407                 }
4408         }
4409         db_indent -= 2;
4410 }
4411
4412 DB_SHOW_COMMAND(map, map)
4413 {
4414
4415         if (!have_addr) {
4416                 db_printf("usage: show map <addr>\n");
4417                 return;
4418         }
4419         vm_map_print((vm_map_t)addr);
4420 }
4421
4422 DB_SHOW_COMMAND(procvm, procvm)
4423 {
4424         struct proc *p;
4425
4426         if (have_addr) {
4427                 p = db_lookup_proc(addr);
4428         } else {
4429                 p = curproc;
4430         }
4431
4432         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4433             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4434             (void *)vmspace_pmap(p->p_vmspace));
4435
4436         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4437 }
4438
4439 #endif /* DDB */