]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Merge once more from ^/vendor/llvm-project/release-10.x, to get the
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153
154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157
158 /* 
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164
165 /*
166  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
167  *
168  *      Asserts that the starting and ending region
169  *      addresses fall within the valid range of the map.
170  */
171 #define VM_MAP_RANGE_CHECK(map, start, end)             \
172                 {                                       \
173                 if (start < vm_map_min(map))            \
174                         start = vm_map_min(map);        \
175                 if (end > vm_map_max(map))              \
176                         end = vm_map_max(map);          \
177                 if (start > end)                        \
178                         start = end;                    \
179                 }
180
181 /*
182  *      vm_map_startup:
183  *
184  *      Initialize the vm_map module.  Must be called before
185  *      any other vm_map routines.
186  *
187  *      Map and entry structures are allocated from the general
188  *      purpose memory pool with some exceptions:
189  *
190  *      - The kernel map and kmem submap are allocated statically.
191  *      - Kernel map entries are allocated out of a static pool.
192  *
193  *      These restrictions are necessary since malloc() uses the
194  *      maps and requires map entries.
195  */
196
197 void
198 vm_map_startup(void)
199 {
200         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203             vm_map_zdtor,
204 #else
205             NULL,
206 #endif
207             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208         uma_prealloc(mapzone, MAX_KMAP);
209         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216             vmspace_zdtor,
217 #else
218             NULL,
219 #endif
220             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226         struct vmspace *vm;
227
228         vm = (struct vmspace *)mem;
229
230         vm->vm_map.pmap = NULL;
231         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232         PMAP_LOCK_INIT(vmspace_pmap(vm));
233         return (0);
234 }
235
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239         vm_map_t map;
240
241         map = (vm_map_t)mem;
242         memset(map, 0, sizeof(*map));
243         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244         sx_init(&map->lock, "vm map (user)");
245         return (0);
246 }
247
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252         struct vmspace *vm;
253
254         vm = (struct vmspace *)mem;
255
256         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261         vm_map_t map;
262
263         map = (vm_map_t)mem;
264         KASSERT(map->nentries == 0,
265             ("map %p nentries == %d on free.",
266             map, map->nentries));
267         KASSERT(map->size == 0,
268             ("map %p size == %lu on free.",
269             map, (unsigned long)map->size));
270 }
271 #endif  /* INVARIANTS */
272
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282         struct vmspace *vm;
283
284         vm = uma_zalloc(vmspace_zone, M_WAITOK);
285         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286         if (!pinit(vmspace_pmap(vm))) {
287                 uma_zfree(vmspace_zone, vm);
288                 return (NULL);
289         }
290         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292         vm->vm_refcnt = 1;
293         vm->vm_shm = NULL;
294         vm->vm_swrss = 0;
295         vm->vm_tsize = 0;
296         vm->vm_dsize = 0;
297         vm->vm_ssize = 0;
298         vm->vm_taddr = 0;
299         vm->vm_daddr = 0;
300         vm->vm_maxsaddr = 0;
301         return (vm);
302 }
303
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308
309         PROC_LOCK(p);
310         racct_set(p, RACCT_DATA, 0);
311         racct_set(p, RACCT_STACK, 0);
312         racct_set(p, RACCT_RSS, 0);
313         racct_set(p, RACCT_MEMLOCK, 0);
314         racct_set(p, RACCT_VMEM, 0);
315         PROC_UNLOCK(p);
316 }
317 #endif
318
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322
323         CTR1(KTR_VM, "vmspace_free: %p", vm);
324
325         /*
326          * Make sure any SysV shm is freed, it might not have been in
327          * exit1().
328          */
329         shmexit(vm);
330
331         /*
332          * Lock the map, to wait out all other references to it.
333          * Delete all of the mappings and pages they hold, then call
334          * the pmap module to reclaim anything left.
335          */
336         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337             vm_map_max(&vm->vm_map));
338
339         pmap_release(vmspace_pmap(vm));
340         vm->vm_map.pmap = NULL;
341         uma_zfree(vmspace_zone, vm);
342 }
343
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347
348         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349             "vmspace_free() called");
350
351         if (vm->vm_refcnt == 0)
352                 panic("vmspace_free: attempt to free already freed vmspace");
353
354         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355                 vmspace_dofree(vm);
356 }
357
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361         struct vmspace *vm;
362
363         PROC_VMSPACE_LOCK(p);
364         vm = p->p_vmspace;
365         p->p_vmspace = NULL;
366         PROC_VMSPACE_UNLOCK(p);
367         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368         vmspace_free(vm);
369 }
370
371 void
372 vmspace_exit(struct thread *td)
373 {
374         int refcnt;
375         struct vmspace *vm;
376         struct proc *p;
377
378         /*
379          * Release user portion of address space.
380          * This releases references to vnodes,
381          * which could cause I/O if the file has been unlinked.
382          * Need to do this early enough that we can still sleep.
383          *
384          * The last exiting process to reach this point releases as
385          * much of the environment as it can. vmspace_dofree() is the
386          * slower fallback in case another process had a temporary
387          * reference to the vmspace.
388          */
389
390         p = td->td_proc;
391         vm = p->p_vmspace;
392         atomic_add_int(&vmspace0.vm_refcnt, 1);
393         refcnt = vm->vm_refcnt;
394         do {
395                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396                         /* Switch now since other proc might free vmspace */
397                         PROC_VMSPACE_LOCK(p);
398                         p->p_vmspace = &vmspace0;
399                         PROC_VMSPACE_UNLOCK(p);
400                         pmap_activate(td);
401                 }
402         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403         if (refcnt == 1) {
404                 if (p->p_vmspace != vm) {
405                         /* vmspace not yet freed, switch back */
406                         PROC_VMSPACE_LOCK(p);
407                         p->p_vmspace = vm;
408                         PROC_VMSPACE_UNLOCK(p);
409                         pmap_activate(td);
410                 }
411                 pmap_remove_pages(vmspace_pmap(vm));
412                 /* Switch now since this proc will free vmspace */
413                 PROC_VMSPACE_LOCK(p);
414                 p->p_vmspace = &vmspace0;
415                 PROC_VMSPACE_UNLOCK(p);
416                 pmap_activate(td);
417                 vmspace_dofree(vm);
418         }
419 #ifdef RACCT
420         if (racct_enable)
421                 vmspace_container_reset(p);
422 #endif
423 }
424
425 /* Acquire reference to vmspace owned by another process. */
426
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430         struct vmspace *vm;
431         int refcnt;
432
433         PROC_VMSPACE_LOCK(p);
434         vm = p->p_vmspace;
435         if (vm == NULL) {
436                 PROC_VMSPACE_UNLOCK(p);
437                 return (NULL);
438         }
439         refcnt = vm->vm_refcnt;
440         do {
441                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
442                         PROC_VMSPACE_UNLOCK(p);
443                         return (NULL);
444                 }
445         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446         if (vm != p->p_vmspace) {
447                 PROC_VMSPACE_UNLOCK(p);
448                 vmspace_free(vm);
449                 return (NULL);
450         }
451         PROC_VMSPACE_UNLOCK(p);
452         return (vm);
453 }
454
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         vmspace_free(oldvm);
494 }
495
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499
500         if (map->system_map)
501                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
502         else
503                 sx_xlock_(&map->lock, file, line);
504         map->timestamp++;
505 }
506
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510         vm_object_t object;
511         struct vnode *vp;
512         bool vp_held;
513
514         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515                 return;
516         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517             ("Submap with execs"));
518         object = entry->object.vm_object;
519         KASSERT(object != NULL, ("No object for text, entry %p", entry));
520         if ((object->flags & OBJ_ANON) != 0)
521                 object = object->handle;
522         else
523                 KASSERT(object->backing_object == NULL,
524                     ("non-anon object %p shadows", object));
525         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526             entry, entry->object.vm_object));
527
528         /*
529          * Mostly, we do not lock the backing object.  It is
530          * referenced by the entry we are processing, so it cannot go
531          * away.
532          */
533         vp = NULL;
534         vp_held = false;
535         if (object->type == OBJT_DEAD) {
536                 /*
537                  * For OBJT_DEAD objects, v_writecount was handled in
538                  * vnode_pager_dealloc().
539                  */
540         } else if (object->type == OBJT_VNODE) {
541                 vp = object->handle;
542         } else if (object->type == OBJT_SWAP) {
543                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545                     "entry %p, object %p, add %d", entry, object, add));
546                 /*
547                  * Tmpfs VREG node, which was reclaimed, has
548                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549                  * this case there is no v_writecount to adjust.
550                  */
551                 VM_OBJECT_RLOCK(object);
552                 if ((object->flags & OBJ_TMPFS) != 0) {
553                         vp = object->un_pager.swp.swp_tmpfs;
554                         if (vp != NULL) {
555                                 vhold(vp);
556                                 vp_held = true;
557                         }
558                 }
559                 VM_OBJECT_RUNLOCK(object);
560         } else {
561                 KASSERT(0,
562                     ("vm_map_entry_set_vnode_text: wrong object type, "
563                     "entry %p, object %p, add %d", entry, object, add));
564         }
565         if (vp != NULL) {
566                 if (add) {
567                         VOP_SET_TEXT_CHECKED(vp);
568                 } else {
569                         vn_lock(vp, LK_SHARED | LK_RETRY);
570                         VOP_UNSET_TEXT_CHECKED(vp);
571                         VOP_UNLOCK(vp);
572                 }
573                 if (vp_held)
574                         vdrop(vp);
575         }
576 }
577
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587         struct thread *td;
588         vm_map_entry_t entry, next;
589         vm_object_t object;
590
591         td = curthread;
592         entry = td->td_map_def_user;
593         td->td_map_def_user = NULL;
594         while (entry != NULL) {
595                 next = entry->defer_next;
596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC));
599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600                         /*
601                          * Decrement the object's writemappings and
602                          * possibly the vnode's v_writecount.
603                          */
604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605                             ("Submap with writecount"));
606                         object = entry->object.vm_object;
607                         KASSERT(object != NULL, ("No object for writecount"));
608                         vm_pager_release_writecount(object, entry->start,
609                             entry->end);
610                 }
611                 vm_map_entry_set_vnode_text(entry, false);
612                 vm_map_entry_deallocate(entry, FALSE);
613                 entry = next;
614         }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622         if (map->system_map)
623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624         else
625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
646         if (map->nupdates > map->nentries) {                            \
647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
648                 map->nupdates = 0;                                      \
649         }                                                               \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664         VM_MAP_UNLOCK_CONSISTENT(map);
665         if (map->system_map)
666                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667         else {
668                 sx_xunlock_(&map->lock, file, line);
669                 vm_map_process_deferred();
670         }
671 }
672
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676
677         if (map->system_map)
678                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
679         else
680                 sx_slock_(&map->lock, file, line);
681 }
682
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686
687         if (map->system_map)
688                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689         else {
690                 sx_sunlock_(&map->lock, file, line);
691                 vm_map_process_deferred();
692         }
693 }
694
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698         int error;
699
700         error = map->system_map ?
701             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702             !sx_try_xlock_(&map->lock, file, line);
703         if (error == 0)
704                 map->timestamp++;
705         return (error == 0);
706 }
707
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711         int error;
712
713         error = map->system_map ?
714             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715             !sx_try_slock_(&map->lock, file, line);
716         return (error == 0);
717 }
718
719 /*
720  *      _vm_map_lock_upgrade:   [ internal use only ]
721  *
722  *      Tries to upgrade a read (shared) lock on the specified map to a write
723  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *      returned without a read or write lock held.
726  *
727  *      Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732         unsigned int last_timestamp;
733
734         if (map->system_map) {
735                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736         } else {
737                 if (!sx_try_upgrade_(&map->lock, file, line)) {
738                         last_timestamp = map->timestamp;
739                         sx_sunlock_(&map->lock, file, line);
740                         vm_map_process_deferred();
741                         /*
742                          * If the map's timestamp does not change while the
743                          * map is unlocked, then the upgrade succeeds.
744                          */
745                         sx_xlock_(&map->lock, file, line);
746                         if (last_timestamp != map->timestamp) {
747                                 sx_xunlock_(&map->lock, file, line);
748                                 return (1);
749                         }
750                 }
751         }
752         map->timestamp++;
753         return (0);
754 }
755
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759
760         if (map->system_map) {
761                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762         } else {
763                 VM_MAP_UNLOCK_CONSISTENT(map);
764                 sx_downgrade_(&map->lock, file, line);
765         }
766 }
767
768 /*
769  *      vm_map_locked:
770  *
771  *      Returns a non-zero value if the caller holds a write (exclusive) lock
772  *      on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777
778         if (map->system_map)
779                 return (mtx_owned(&map->system_mtx));
780         else
781                 return (sx_xlocked(&map->lock));
782 }
783
784 /*
785  *      _vm_map_unlock_and_wait:
786  *
787  *      Atomically releases the lock on the specified map and puts the calling
788  *      thread to sleep.  The calling thread will remain asleep until either
789  *      vm_map_wakeup() is performed on the map or the specified timeout is
790  *      exceeded.
791  *
792  *      WARNING!  This function does not perform deferred deallocations of
793  *      objects and map entries.  Therefore, the calling thread is expected to
794  *      reacquire the map lock after reawakening and later perform an ordinary
795  *      unlock operation, such as vm_map_unlock(), before completing its
796  *      operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801
802         VM_MAP_UNLOCK_CONSISTENT(map);
803         mtx_lock(&map_sleep_mtx);
804         if (map->system_map)
805                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806         else
807                 sx_xunlock_(&map->lock, file, line);
808         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809             timo));
810 }
811
812 /*
813  *      vm_map_wakeup:
814  *
815  *      Awaken any threads that have slept on the map using
816  *      vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821
822         /*
823          * Acquire and release map_sleep_mtx to prevent a wakeup()
824          * from being performed (and lost) between the map unlock
825          * and the msleep() in _vm_map_unlock_and_wait().
826          */
827         mtx_lock(&map_sleep_mtx);
828         mtx_unlock(&map_sleep_mtx);
829         wakeup(&map->root);
830 }
831
832 void
833 vm_map_busy(vm_map_t map)
834 {
835
836         VM_MAP_ASSERT_LOCKED(map);
837         map->busy++;
838 }
839
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843
844         VM_MAP_ASSERT_LOCKED(map);
845         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848                 wakeup(&map->busy);
849         }
850 }
851
852 void 
853 vm_map_wait_busy(vm_map_t map)
854 {
855
856         VM_MAP_ASSERT_LOCKED(map);
857         while (map->busy) {
858                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859                 if (map->system_map)
860                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861                 else
862                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863         }
864         map->timestamp++;
865 }
866
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870         return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872
873 /*
874  *      vm_map_create:
875  *
876  *      Creates and returns a new empty VM map with
877  *      the given physical map structure, and having
878  *      the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883         vm_map_t result;
884
885         result = uma_zalloc(mapzone, M_WAITOK);
886         CTR1(KTR_VM, "vm_map_create: %p", result);
887         _vm_map_init(result, pmap, min, max);
888         return (result);
889 }
890
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898
899         map->header.eflags = MAP_ENTRY_HEADER;
900         map->needs_wakeup = FALSE;
901         map->system_map = 0;
902         map->pmap = pmap;
903         map->header.end = min;
904         map->header.start = max;
905         map->flags = 0;
906         map->header.left = map->header.right = &map->header;
907         map->root = NULL;
908         map->timestamp = 0;
909         map->busy = 0;
910         map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912         map->nupdates = 0;
913 #endif
914 }
915
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919
920         _vm_map_init(map, pmap, min, max);
921         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922         sx_init(&map->lock, "user map");
923 }
924
925 /*
926  *      vm_map_entry_dispose:   [ internal use only ]
927  *
928  *      Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935
936 /*
937  *      vm_map_entry_create:    [ internal use only ]
938  *
939  *      Allocates a VM map entry for insertion.
940  *      No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945         vm_map_entry_t new_entry;
946
947         if (map->system_map)
948                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949         else
950                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
951         if (new_entry == NULL)
952                 panic("vm_map_entry_create: kernel resources exhausted");
953         return (new_entry);
954 }
955
956 /*
957  *      vm_map_entry_set_behavior:
958  *
959  *      Set the expected access behavior, either normal, random, or
960  *      sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966             (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968
969 /*
970  *      vm_map_entry_max_free_{left,right}:
971  *
972  *      Compute the size of the largest free gap between two entries,
973  *      one the root of a tree and the other the ancestor of that root
974  *      that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979
980         return (root->left != left_ancestor ?
981             root->left->max_free : root->start - left_ancestor->end);
982 }
983
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987
988         return (root->right != right_ancestor ?
989             root->right->max_free : right_ancestor->start - root->end);
990 }
991
992 /*
993  *      vm_map_entry_{pred,succ}:
994  *
995  *      Find the {predecessor, successor} of the entry by taking one step
996  *      in the appropriate direction and backtracking as much as necessary.
997  *      vm_map_entry_succ is defined in vm_map.h.
998  */
999 static inline vm_map_entry_t
1000 vm_map_entry_pred(vm_map_entry_t entry)
1001 {
1002         vm_map_entry_t prior;
1003
1004         prior = entry->left;
1005         if (prior->right->start < entry->start) {
1006                 do
1007                         prior = prior->right;
1008                 while (prior->right != entry);
1009         }
1010         return (prior);
1011 }
1012
1013 static inline vm_size_t
1014 vm_size_max(vm_size_t a, vm_size_t b)
1015 {
1016
1017         return (a > b ? a : b);
1018 }
1019
1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1021         vm_map_entry_t z;                                               \
1022         vm_size_t max_free;                                             \
1023                                                                         \
1024         /*                                                              \
1025          * Infer root->right->max_free == root->max_free when           \
1026          * y->max_free < root->max_free || root->max_free == 0.         \
1027          * Otherwise, look right to find it.                            \
1028          */                                                             \
1029         y = root->left;                                                 \
1030         max_free = root->max_free;                                      \
1031         KASSERT(max_free == vm_size_max(                                \
1032             vm_map_entry_max_free_left(root, llist),                    \
1033             vm_map_entry_max_free_right(root, rlist)),                  \
1034             ("%s: max_free invariant fails", __func__));                \
1035         if (max_free - 1 < vm_map_entry_max_free_left(root, llist))     \
1036                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1037         if (y != llist && (test)) {                                     \
1038                 /* Rotate right and make y root. */                     \
1039                 z = y->right;                                           \
1040                 if (z != root) {                                        \
1041                         root->left = z;                                 \
1042                         y->right = root;                                \
1043                         if (max_free < y->max_free)                     \
1044                             root->max_free = max_free =                 \
1045                             vm_size_max(max_free, z->max_free);         \
1046                 } else if (max_free < y->max_free)                      \
1047                         root->max_free = max_free =                     \
1048                             vm_size_max(max_free, root->start - y->end);\
1049                 root = y;                                               \
1050                 y = root->left;                                         \
1051         }                                                               \
1052         /* Copy right->max_free.  Put root on rlist. */                 \
1053         root->max_free = max_free;                                      \
1054         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1055             ("%s: max_free not copied from right", __func__));          \
1056         root->left = rlist;                                             \
1057         rlist = root;                                                   \
1058         root = y != llist ? y : NULL;                                   \
1059 } while (0)
1060
1061 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1062         vm_map_entry_t z;                                               \
1063         vm_size_t max_free;                                             \
1064                                                                         \
1065         /*                                                              \
1066          * Infer root->left->max_free == root->max_free when            \
1067          * y->max_free < root->max_free || root->max_free == 0.         \
1068          * Otherwise, look left to find it.                             \
1069          */                                                             \
1070         y = root->right;                                                \
1071         max_free = root->max_free;                                      \
1072         KASSERT(max_free == vm_size_max(                                \
1073             vm_map_entry_max_free_left(root, llist),                    \
1074             vm_map_entry_max_free_right(root, rlist)),                  \
1075             ("%s: max_free invariant fails", __func__));                \
1076         if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))    \
1077                 max_free = vm_map_entry_max_free_left(root, llist);     \
1078         if (y != rlist && (test)) {                                     \
1079                 /* Rotate left and make y root. */                      \
1080                 z = y->left;                                            \
1081                 if (z != root) {                                        \
1082                         root->right = z;                                \
1083                         y->left = root;                                 \
1084                         if (max_free < y->max_free)                     \
1085                             root->max_free = max_free =                 \
1086                             vm_size_max(max_free, z->max_free);         \
1087                 } else if (max_free < y->max_free)                      \
1088                         root->max_free = max_free =                     \
1089                             vm_size_max(max_free, y->start - root->end);\
1090                 root = y;                                               \
1091                 y = root->right;                                        \
1092         }                                                               \
1093         /* Copy left->max_free.  Put root on llist. */                  \
1094         root->max_free = max_free;                                      \
1095         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1096             ("%s: max_free not copied from left", __func__));           \
1097         root->right = llist;                                            \
1098         llist = root;                                                   \
1099         root = y != rlist ? y : NULL;                                   \
1100 } while (0)
1101
1102 /*
1103  * Walk down the tree until we find addr or a gap where addr would go, breaking
1104  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1105  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1106  * the two sides in reverse order (bottom-up), with llist linked by the right
1107  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1108  * lists terminated by &map->header.  This function, and the subsequent call to
1109  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1110  * values in &map->header.
1111  */
1112 static __always_inline vm_map_entry_t
1113 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1114     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1115 {
1116         vm_map_entry_t left, right, root, y;
1117
1118         left = right = &map->header;
1119         root = map->root;
1120         while (root != NULL && root->max_free >= length) {
1121                 KASSERT(left->end <= root->start &&
1122                     root->end <= right->start,
1123                     ("%s: root not within tree bounds", __func__));
1124                 if (addr < root->start) {
1125                         SPLAY_LEFT_STEP(root, y, left, right,
1126                             y->max_free >= length && addr < y->start);
1127                 } else if (addr >= root->end) {
1128                         SPLAY_RIGHT_STEP(root, y, left, right,
1129                             y->max_free >= length && addr >= y->end);
1130                 } else
1131                         break;
1132         }
1133         *llist = left;
1134         *rlist = right;
1135         return (root);
1136 }
1137
1138 static __always_inline void
1139 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1140 {
1141         vm_map_entry_t hi, right, y;
1142
1143         right = *rlist;
1144         hi = root->right == right ? NULL : root->right;
1145         if (hi == NULL)
1146                 return;
1147         do
1148                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1149         while (hi != NULL);
1150         *rlist = right;
1151 }
1152
1153 static __always_inline void
1154 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1155 {
1156         vm_map_entry_t left, lo, y;
1157
1158         left = *llist;
1159         lo = root->left == left ? NULL : root->left;
1160         if (lo == NULL)
1161                 return;
1162         do
1163                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1164         while (lo != NULL);
1165         *llist = left;
1166 }
1167
1168 static inline void
1169 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1170 {
1171         vm_map_entry_t tmp;
1172
1173         tmp = *b;
1174         *b = *a;
1175         *a = tmp;
1176 }
1177
1178 /*
1179  * Walk back up the two spines, flip the pointers and set max_free.  The
1180  * subtrees of the root go at the bottom of llist and rlist.
1181  */
1182 static vm_size_t
1183 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1184     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1185 {
1186         do {
1187                 /*
1188                  * The max_free values of the children of llist are in
1189                  * llist->max_free and max_free.  Update with the
1190                  * max value.
1191                  */
1192                 llist->max_free = max_free =
1193                     vm_size_max(llist->max_free, max_free);
1194                 vm_map_entry_swap(&llist->right, &tail);
1195                 vm_map_entry_swap(&tail, &llist);
1196         } while (llist != header);
1197         root->left = tail;
1198         return (max_free);
1199 }
1200
1201 /*
1202  * When llist is known to be the predecessor of root.
1203  */
1204 static inline vm_size_t
1205 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1206     vm_map_entry_t llist)
1207 {
1208         vm_size_t max_free;
1209
1210         max_free = root->start - llist->end;
1211         if (llist != header) {
1212                 max_free = vm_map_splay_merge_left_walk(header, root,
1213                     root, max_free, llist);
1214         } else {
1215                 root->left = header;
1216                 header->right = root;
1217         }
1218         return (max_free);
1219 }
1220
1221 /*
1222  * When llist may or may not be the predecessor of root.
1223  */
1224 static inline vm_size_t
1225 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1226     vm_map_entry_t llist)
1227 {
1228         vm_size_t max_free;
1229
1230         max_free = vm_map_entry_max_free_left(root, llist);
1231         if (llist != header) {
1232                 max_free = vm_map_splay_merge_left_walk(header, root,
1233                     root->left == llist ? root : root->left,
1234                     max_free, llist);
1235         }
1236         return (max_free);
1237 }
1238
1239 static vm_size_t
1240 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1241     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1242 {
1243         do {
1244                 /*
1245                  * The max_free values of the children of rlist are in
1246                  * rlist->max_free and max_free.  Update with the
1247                  * max value.
1248                  */
1249                 rlist->max_free = max_free =
1250                     vm_size_max(rlist->max_free, max_free);
1251                 vm_map_entry_swap(&rlist->left, &tail);
1252                 vm_map_entry_swap(&tail, &rlist);
1253         } while (rlist != header);
1254         root->right = tail;
1255         return (max_free);
1256 }
1257
1258 /*
1259  * When rlist is known to be the succecessor of root.
1260  */
1261 static inline vm_size_t
1262 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1263     vm_map_entry_t rlist)
1264 {
1265         vm_size_t max_free;
1266
1267         max_free = rlist->start - root->end;
1268         if (rlist != header) {
1269                 max_free = vm_map_splay_merge_right_walk(header, root,
1270                     root, max_free, rlist);
1271         } else {
1272                 root->right = header;
1273                 header->left = root;
1274         }
1275         return (max_free);
1276 }
1277
1278 /*
1279  * When rlist may or may not be the succecessor of root.
1280  */
1281 static inline vm_size_t
1282 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1283     vm_map_entry_t rlist)
1284 {
1285         vm_size_t max_free;
1286
1287         max_free = vm_map_entry_max_free_right(root, rlist);
1288         if (rlist != header) {
1289                 max_free = vm_map_splay_merge_right_walk(header, root,
1290                     root->right == rlist ? root : root->right,
1291                     max_free, rlist);
1292         }
1293         return (max_free);
1294 }
1295
1296 /*
1297  *      vm_map_splay:
1298  *
1299  *      The Sleator and Tarjan top-down splay algorithm with the
1300  *      following variation.  Max_free must be computed bottom-up, so
1301  *      on the downward pass, maintain the left and right spines in
1302  *      reverse order.  Then, make a second pass up each side to fix
1303  *      the pointers and compute max_free.  The time bound is O(log n)
1304  *      amortized.
1305  *
1306  *      The tree is threaded, which means that there are no null pointers.
1307  *      When a node has no left child, its left pointer points to its
1308  *      predecessor, which the last ancestor on the search path from the root
1309  *      where the search branched right.  Likewise, when a node has no right
1310  *      child, its right pointer points to its successor.  The map header node
1311  *      is the predecessor of the first map entry, and the successor of the
1312  *      last.
1313  *
1314  *      The new root is the vm_map_entry containing "addr", or else an
1315  *      adjacent entry (lower if possible) if addr is not in the tree.
1316  *
1317  *      The map must be locked, and leaves it so.
1318  *
1319  *      Returns: the new root.
1320  */
1321 static vm_map_entry_t
1322 vm_map_splay(vm_map_t map, vm_offset_t addr)
1323 {
1324         vm_map_entry_t header, llist, rlist, root;
1325         vm_size_t max_free_left, max_free_right;
1326
1327         header = &map->header;
1328         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1329         if (root != NULL) {
1330                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1331                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1332         } else if (llist != header) {
1333                 /*
1334                  * Recover the greatest node in the left
1335                  * subtree and make it the root.
1336                  */
1337                 root = llist;
1338                 llist = root->right;
1339                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1340                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1341         } else if (rlist != header) {
1342                 /*
1343                  * Recover the least node in the right
1344                  * subtree and make it the root.
1345                  */
1346                 root = rlist;
1347                 rlist = root->left;
1348                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1349                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1350         } else {
1351                 /* There is no root. */
1352                 return (NULL);
1353         }
1354         root->max_free = vm_size_max(max_free_left, max_free_right);
1355         map->root = root;
1356         VM_MAP_ASSERT_CONSISTENT(map);
1357         return (root);
1358 }
1359
1360 /*
1361  *      vm_map_entry_{un,}link:
1362  *
1363  *      Insert/remove entries from maps.  On linking, if new entry clips
1364  *      existing entry, trim existing entry to avoid overlap, and manage
1365  *      offsets.  On unlinking, merge disappearing entry with neighbor, if
1366  *      called for, and manage offsets.  Callers should not modify fields in
1367  *      entries already mapped.
1368  */
1369 static void
1370 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1371 {
1372         vm_map_entry_t header, llist, rlist, root;
1373         vm_size_t max_free_left, max_free_right;
1374
1375         CTR3(KTR_VM,
1376             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1377             map->nentries, entry);
1378         VM_MAP_ASSERT_LOCKED(map);
1379         map->nentries++;
1380         header = &map->header;
1381         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1382         if (root == NULL) {
1383                 /*
1384                  * The new entry does not overlap any existing entry in the
1385                  * map, so it becomes the new root of the map tree.
1386                  */
1387                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1388                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1389         } else if (entry->start == root->start) {
1390                 /*
1391                  * The new entry is a clone of root, with only the end field
1392                  * changed.  The root entry will be shrunk to abut the new
1393                  * entry, and will be the right child of the new root entry in
1394                  * the modified map.
1395                  */
1396                 KASSERT(entry->end < root->end,
1397                     ("%s: clip_start not within entry", __func__));
1398                 vm_map_splay_findprev(root, &llist);
1399                 root->offset += entry->end - root->start;
1400                 root->start = entry->end;
1401                 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402                 max_free_right = root->max_free = vm_size_max(
1403                     vm_map_splay_merge_pred(entry, root, entry),
1404                     vm_map_splay_merge_right(header, root, rlist));
1405         } else {
1406                 /*
1407                  * The new entry is a clone of root, with only the start field
1408                  * changed.  The root entry will be shrunk to abut the new
1409                  * entry, and will be the left child of the new root entry in
1410                  * the modified map.
1411                  */
1412                 KASSERT(entry->end == root->end,
1413                     ("%s: clip_start not within entry", __func__));
1414                 vm_map_splay_findnext(root, &rlist);
1415                 entry->offset += entry->start - root->start;
1416                 root->end = entry->start;
1417                 max_free_left = root->max_free = vm_size_max(
1418                     vm_map_splay_merge_left(header, root, llist),
1419                     vm_map_splay_merge_succ(entry, root, entry));
1420                 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1421         }
1422         entry->max_free = vm_size_max(max_free_left, max_free_right);
1423         map->root = entry;
1424         VM_MAP_ASSERT_CONSISTENT(map);
1425 }
1426
1427 enum unlink_merge_type {
1428         UNLINK_MERGE_NONE,
1429         UNLINK_MERGE_NEXT
1430 };
1431
1432 static void
1433 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1434     enum unlink_merge_type op)
1435 {
1436         vm_map_entry_t header, llist, rlist, root;
1437         vm_size_t max_free_left, max_free_right;
1438
1439         VM_MAP_ASSERT_LOCKED(map);
1440         header = &map->header;
1441         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1442         KASSERT(root != NULL,
1443             ("vm_map_entry_unlink: unlink object not mapped"));
1444
1445         vm_map_splay_findprev(root, &llist);
1446         vm_map_splay_findnext(root, &rlist);
1447         if (op == UNLINK_MERGE_NEXT) {
1448                 rlist->start = root->start;
1449                 rlist->offset = root->offset;
1450         }
1451         if (llist != header) {
1452                 root = llist;
1453                 llist = root->right;
1454                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1455                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1456         } else if (rlist != header) {
1457                 root = rlist;
1458                 rlist = root->left;
1459                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1460                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1461         } else {
1462                 header->left = header->right = header;
1463                 root = NULL;
1464         }
1465         if (root != NULL)
1466                 root->max_free = vm_size_max(max_free_left, max_free_right);
1467         map->root = root;
1468         VM_MAP_ASSERT_CONSISTENT(map);
1469         map->nentries--;
1470         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1471             map->nentries, entry);
1472 }
1473
1474 /*
1475  *      vm_map_entry_resize:
1476  *
1477  *      Resize a vm_map_entry, recompute the amount of free space that
1478  *      follows it and propagate that value up the tree.
1479  *
1480  *      The map must be locked, and leaves it so.
1481  */
1482 static void
1483 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1484 {
1485         vm_map_entry_t header, llist, rlist, root;
1486
1487         VM_MAP_ASSERT_LOCKED(map);
1488         header = &map->header;
1489         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1490         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1491         vm_map_splay_findnext(root, &rlist);
1492         entry->end += grow_amount;
1493         root->max_free = vm_size_max(
1494             vm_map_splay_merge_left(header, root, llist),
1495             vm_map_splay_merge_succ(header, root, rlist));
1496         map->root = root;
1497         VM_MAP_ASSERT_CONSISTENT(map);
1498         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1499             __func__, map, map->nentries, entry);
1500 }
1501
1502 /*
1503  *      vm_map_lookup_entry:    [ internal use only ]
1504  *
1505  *      Finds the map entry containing (or
1506  *      immediately preceding) the specified address
1507  *      in the given map; the entry is returned
1508  *      in the "entry" parameter.  The boolean
1509  *      result indicates whether the address is
1510  *      actually contained in the map.
1511  */
1512 boolean_t
1513 vm_map_lookup_entry(
1514         vm_map_t map,
1515         vm_offset_t address,
1516         vm_map_entry_t *entry)  /* OUT */
1517 {
1518         vm_map_entry_t cur, header, lbound, ubound;
1519         boolean_t locked;
1520
1521         /*
1522          * If the map is empty, then the map entry immediately preceding
1523          * "address" is the map's header.
1524          */
1525         header = &map->header;
1526         cur = map->root;
1527         if (cur == NULL) {
1528                 *entry = header;
1529                 return (FALSE);
1530         }
1531         if (address >= cur->start && cur->end > address) {
1532                 *entry = cur;
1533                 return (TRUE);
1534         }
1535         if ((locked = vm_map_locked(map)) ||
1536             sx_try_upgrade(&map->lock)) {
1537                 /*
1538                  * Splay requires a write lock on the map.  However, it only
1539                  * restructures the binary search tree; it does not otherwise
1540                  * change the map.  Thus, the map's timestamp need not change
1541                  * on a temporary upgrade.
1542                  */
1543                 cur = vm_map_splay(map, address);
1544                 if (!locked) {
1545                         VM_MAP_UNLOCK_CONSISTENT(map);
1546                         sx_downgrade(&map->lock);
1547                 }
1548
1549                 /*
1550                  * If "address" is contained within a map entry, the new root
1551                  * is that map entry.  Otherwise, the new root is a map entry
1552                  * immediately before or after "address".
1553                  */
1554                 if (address < cur->start) {
1555                         *entry = header;
1556                         return (FALSE);
1557                 }
1558                 *entry = cur;
1559                 return (address < cur->end);
1560         }
1561         /*
1562          * Since the map is only locked for read access, perform a
1563          * standard binary search tree lookup for "address".
1564          */
1565         lbound = ubound = header;
1566         for (;;) {
1567                 if (address < cur->start) {
1568                         ubound = cur;
1569                         cur = cur->left;
1570                         if (cur == lbound)
1571                                 break;
1572                 } else if (cur->end <= address) {
1573                         lbound = cur;
1574                         cur = cur->right;
1575                         if (cur == ubound)
1576                                 break;
1577                 } else {
1578                         *entry = cur;
1579                         return (TRUE);
1580                 }
1581         }
1582         *entry = lbound;
1583         return (FALSE);
1584 }
1585
1586 /*
1587  *      vm_map_insert:
1588  *
1589  *      Inserts the given whole VM object into the target
1590  *      map at the specified address range.  The object's
1591  *      size should match that of the address range.
1592  *
1593  *      Requires that the map be locked, and leaves it so.
1594  *
1595  *      If object is non-NULL, ref count must be bumped by caller
1596  *      prior to making call to account for the new entry.
1597  */
1598 int
1599 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1600     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1601 {
1602         vm_map_entry_t new_entry, next_entry, prev_entry;
1603         struct ucred *cred;
1604         vm_eflags_t protoeflags;
1605         vm_inherit_t inheritance;
1606
1607         VM_MAP_ASSERT_LOCKED(map);
1608         KASSERT(object != kernel_object ||
1609             (cow & MAP_COPY_ON_WRITE) == 0,
1610             ("vm_map_insert: kernel object and COW"));
1611         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1612             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1613         KASSERT((prot & ~max) == 0,
1614             ("prot %#x is not subset of max_prot %#x", prot, max));
1615
1616         /*
1617          * Check that the start and end points are not bogus.
1618          */
1619         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1620             start >= end)
1621                 return (KERN_INVALID_ADDRESS);
1622
1623         /*
1624          * Find the entry prior to the proposed starting address; if it's part
1625          * of an existing entry, this range is bogus.
1626          */
1627         if (vm_map_lookup_entry(map, start, &prev_entry))
1628                 return (KERN_NO_SPACE);
1629
1630         /*
1631          * Assert that the next entry doesn't overlap the end point.
1632          */
1633         next_entry = vm_map_entry_succ(prev_entry);
1634         if (next_entry->start < end)
1635                 return (KERN_NO_SPACE);
1636
1637         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1638             max != VM_PROT_NONE))
1639                 return (KERN_INVALID_ARGUMENT);
1640
1641         protoeflags = 0;
1642         if (cow & MAP_COPY_ON_WRITE)
1643                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1644         if (cow & MAP_NOFAULT)
1645                 protoeflags |= MAP_ENTRY_NOFAULT;
1646         if (cow & MAP_DISABLE_SYNCER)
1647                 protoeflags |= MAP_ENTRY_NOSYNC;
1648         if (cow & MAP_DISABLE_COREDUMP)
1649                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1650         if (cow & MAP_STACK_GROWS_DOWN)
1651                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1652         if (cow & MAP_STACK_GROWS_UP)
1653                 protoeflags |= MAP_ENTRY_GROWS_UP;
1654         if (cow & MAP_WRITECOUNT)
1655                 protoeflags |= MAP_ENTRY_WRITECNT;
1656         if (cow & MAP_VN_EXEC)
1657                 protoeflags |= MAP_ENTRY_VN_EXEC;
1658         if ((cow & MAP_CREATE_GUARD) != 0)
1659                 protoeflags |= MAP_ENTRY_GUARD;
1660         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1661                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1662         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1663                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1664         if (cow & MAP_INHERIT_SHARE)
1665                 inheritance = VM_INHERIT_SHARE;
1666         else
1667                 inheritance = VM_INHERIT_DEFAULT;
1668
1669         cred = NULL;
1670         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1671                 goto charged;
1672         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1673             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1674                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1675                         return (KERN_RESOURCE_SHORTAGE);
1676                 KASSERT(object == NULL ||
1677                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1678                     object->cred == NULL,
1679                     ("overcommit: vm_map_insert o %p", object));
1680                 cred = curthread->td_ucred;
1681         }
1682
1683 charged:
1684         /* Expand the kernel pmap, if necessary. */
1685         if (map == kernel_map && end > kernel_vm_end)
1686                 pmap_growkernel(end);
1687         if (object != NULL) {
1688                 /*
1689                  * OBJ_ONEMAPPING must be cleared unless this mapping
1690                  * is trivially proven to be the only mapping for any
1691                  * of the object's pages.  (Object granularity
1692                  * reference counting is insufficient to recognize
1693                  * aliases with precision.)
1694                  */
1695                 if ((object->flags & OBJ_ANON) != 0) {
1696                         VM_OBJECT_WLOCK(object);
1697                         if (object->ref_count > 1 || object->shadow_count != 0)
1698                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1699                         VM_OBJECT_WUNLOCK(object);
1700                 }
1701         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1702             protoeflags &&
1703             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1704             MAP_VN_EXEC)) == 0 &&
1705             prev_entry->end == start && (prev_entry->cred == cred ||
1706             (prev_entry->object.vm_object != NULL &&
1707             prev_entry->object.vm_object->cred == cred)) &&
1708             vm_object_coalesce(prev_entry->object.vm_object,
1709             prev_entry->offset,
1710             (vm_size_t)(prev_entry->end - prev_entry->start),
1711             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1712             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1713                 /*
1714                  * We were able to extend the object.  Determine if we
1715                  * can extend the previous map entry to include the
1716                  * new range as well.
1717                  */
1718                 if (prev_entry->inheritance == inheritance &&
1719                     prev_entry->protection == prot &&
1720                     prev_entry->max_protection == max &&
1721                     prev_entry->wired_count == 0) {
1722                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1723                             0, ("prev_entry %p has incoherent wiring",
1724                             prev_entry));
1725                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1726                                 map->size += end - prev_entry->end;
1727                         vm_map_entry_resize(map, prev_entry,
1728                             end - prev_entry->end);
1729                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1730                         return (KERN_SUCCESS);
1731                 }
1732
1733                 /*
1734                  * If we can extend the object but cannot extend the
1735                  * map entry, we have to create a new map entry.  We
1736                  * must bump the ref count on the extended object to
1737                  * account for it.  object may be NULL.
1738                  */
1739                 object = prev_entry->object.vm_object;
1740                 offset = prev_entry->offset +
1741                     (prev_entry->end - prev_entry->start);
1742                 vm_object_reference(object);
1743                 if (cred != NULL && object != NULL && object->cred != NULL &&
1744                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1745                         /* Object already accounts for this uid. */
1746                         cred = NULL;
1747                 }
1748         }
1749         if (cred != NULL)
1750                 crhold(cred);
1751
1752         /*
1753          * Create a new entry
1754          */
1755         new_entry = vm_map_entry_create(map);
1756         new_entry->start = start;
1757         new_entry->end = end;
1758         new_entry->cred = NULL;
1759
1760         new_entry->eflags = protoeflags;
1761         new_entry->object.vm_object = object;
1762         new_entry->offset = offset;
1763
1764         new_entry->inheritance = inheritance;
1765         new_entry->protection = prot;
1766         new_entry->max_protection = max;
1767         new_entry->wired_count = 0;
1768         new_entry->wiring_thread = NULL;
1769         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1770         new_entry->next_read = start;
1771
1772         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1773             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1774         new_entry->cred = cred;
1775
1776         /*
1777          * Insert the new entry into the list
1778          */
1779         vm_map_entry_link(map, new_entry);
1780         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1781                 map->size += new_entry->end - new_entry->start;
1782
1783         /*
1784          * Try to coalesce the new entry with both the previous and next
1785          * entries in the list.  Previously, we only attempted to coalesce
1786          * with the previous entry when object is NULL.  Here, we handle the
1787          * other cases, which are less common.
1788          */
1789         vm_map_try_merge_entries(map, prev_entry, new_entry);
1790         vm_map_try_merge_entries(map, new_entry, next_entry);
1791
1792         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1793                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1794                     end - start, cow & MAP_PREFAULT_PARTIAL);
1795         }
1796
1797         return (KERN_SUCCESS);
1798 }
1799
1800 /*
1801  *      vm_map_findspace:
1802  *
1803  *      Find the first fit (lowest VM address) for "length" free bytes
1804  *      beginning at address >= start in the given map.
1805  *
1806  *      In a vm_map_entry, "max_free" is the maximum amount of
1807  *      contiguous free space between an entry in its subtree and a
1808  *      neighbor of that entry.  This allows finding a free region in
1809  *      one path down the tree, so O(log n) amortized with splay
1810  *      trees.
1811  *
1812  *      The map must be locked, and leaves it so.
1813  *
1814  *      Returns: starting address if sufficient space,
1815  *               vm_map_max(map)-length+1 if insufficient space.
1816  */
1817 vm_offset_t
1818 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1819 {
1820         vm_map_entry_t header, llist, rlist, root, y;
1821         vm_size_t left_length, max_free_left, max_free_right;
1822         vm_offset_t gap_end;
1823
1824         /*
1825          * Request must fit within min/max VM address and must avoid
1826          * address wrap.
1827          */
1828         start = MAX(start, vm_map_min(map));
1829         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1830                 return (vm_map_max(map) - length + 1);
1831
1832         /* Empty tree means wide open address space. */
1833         if (map->root == NULL)
1834                 return (start);
1835
1836         /*
1837          * After splay_split, if start is within an entry, push it to the start
1838          * of the following gap.  If rlist is at the end of the gap containing
1839          * start, save the end of that gap in gap_end to see if the gap is big
1840          * enough; otherwise set gap_end to start skip gap-checking and move
1841          * directly to a search of the right subtree.
1842          */
1843         header = &map->header;
1844         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1845         gap_end = rlist->start;
1846         if (root != NULL) {
1847                 start = root->end;
1848                 if (root->right != rlist)
1849                         gap_end = start;
1850                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1851                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1852         } else if (rlist != header) {
1853                 root = rlist;
1854                 rlist = root->left;
1855                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1856                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1857         } else {
1858                 root = llist;
1859                 llist = root->right;
1860                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1861                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1862         }
1863         root->max_free = vm_size_max(max_free_left, max_free_right);
1864         map->root = root;
1865         VM_MAP_ASSERT_CONSISTENT(map);
1866         if (length <= gap_end - start)
1867                 return (start);
1868
1869         /* With max_free, can immediately tell if no solution. */
1870         if (root->right == header || length > root->right->max_free)
1871                 return (vm_map_max(map) - length + 1);
1872
1873         /*
1874          * Splay for the least large-enough gap in the right subtree.
1875          */
1876         llist = rlist = header;
1877         for (left_length = 0;;
1878             left_length = vm_map_entry_max_free_left(root, llist)) {
1879                 if (length <= left_length)
1880                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1881                             length <= vm_map_entry_max_free_left(y, llist));
1882                 else
1883                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1884                             length > vm_map_entry_max_free_left(y, root));
1885                 if (root == NULL)
1886                         break;
1887         }
1888         root = llist;
1889         llist = root->right;
1890         max_free_left = vm_map_splay_merge_left(header, root, llist);
1891         if (rlist == header) {
1892                 root->max_free = vm_size_max(max_free_left,
1893                     vm_map_splay_merge_succ(header, root, rlist));
1894         } else {
1895                 y = rlist;
1896                 rlist = y->left;
1897                 y->max_free = vm_size_max(
1898                     vm_map_splay_merge_pred(root, y, root),
1899                     vm_map_splay_merge_right(header, y, rlist));
1900                 root->max_free = vm_size_max(max_free_left, y->max_free);
1901         }
1902         map->root = root;
1903         VM_MAP_ASSERT_CONSISTENT(map);
1904         return (root->end);
1905 }
1906
1907 int
1908 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1909     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1910     vm_prot_t max, int cow)
1911 {
1912         vm_offset_t end;
1913         int result;
1914
1915         end = start + length;
1916         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1917             object == NULL,
1918             ("vm_map_fixed: non-NULL backing object for stack"));
1919         vm_map_lock(map);
1920         VM_MAP_RANGE_CHECK(map, start, end);
1921         if ((cow & MAP_CHECK_EXCL) == 0)
1922                 vm_map_delete(map, start, end);
1923         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1924                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1925                     prot, max, cow);
1926         } else {
1927                 result = vm_map_insert(map, object, offset, start, end,
1928                     prot, max, cow);
1929         }
1930         vm_map_unlock(map);
1931         return (result);
1932 }
1933
1934 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1935 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1936
1937 static int cluster_anon = 1;
1938 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1939     &cluster_anon, 0,
1940     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1941
1942 static bool
1943 clustering_anon_allowed(vm_offset_t addr)
1944 {
1945
1946         switch (cluster_anon) {
1947         case 0:
1948                 return (false);
1949         case 1:
1950                 return (addr == 0);
1951         case 2:
1952         default:
1953                 return (true);
1954         }
1955 }
1956
1957 static long aslr_restarts;
1958 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1959     &aslr_restarts, 0,
1960     "Number of aslr failures");
1961
1962 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1963
1964 /*
1965  * Searches for the specified amount of free space in the given map with the
1966  * specified alignment.  Performs an address-ordered, first-fit search from
1967  * the given address "*addr", with an optional upper bound "max_addr".  If the
1968  * parameter "alignment" is zero, then the alignment is computed from the
1969  * given (object, offset) pair so as to enable the greatest possible use of
1970  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1971  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1972  *
1973  * The map must be locked.  Initially, there must be at least "length" bytes
1974  * of free space at the given address.
1975  */
1976 static int
1977 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1978     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1979     vm_offset_t alignment)
1980 {
1981         vm_offset_t aligned_addr, free_addr;
1982
1983         VM_MAP_ASSERT_LOCKED(map);
1984         free_addr = *addr;
1985         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1986             ("caller failed to provide space %#jx at address %p",
1987              (uintmax_t)length, (void *)free_addr));
1988         for (;;) {
1989                 /*
1990                  * At the start of every iteration, the free space at address
1991                  * "*addr" is at least "length" bytes.
1992                  */
1993                 if (alignment == 0)
1994                         pmap_align_superpage(object, offset, addr, length);
1995                 else if ((*addr & (alignment - 1)) != 0) {
1996                         *addr &= ~(alignment - 1);
1997                         *addr += alignment;
1998                 }
1999                 aligned_addr = *addr;
2000                 if (aligned_addr == free_addr) {
2001                         /*
2002                          * Alignment did not change "*addr", so "*addr" must
2003                          * still provide sufficient free space.
2004                          */
2005                         return (KERN_SUCCESS);
2006                 }
2007
2008                 /*
2009                  * Test for address wrap on "*addr".  A wrapped "*addr" could
2010                  * be a valid address, in which case vm_map_findspace() cannot
2011                  * be relied upon to fail.
2012                  */
2013                 if (aligned_addr < free_addr)
2014                         return (KERN_NO_SPACE);
2015                 *addr = vm_map_findspace(map, aligned_addr, length);
2016                 if (*addr + length > vm_map_max(map) ||
2017                     (max_addr != 0 && *addr + length > max_addr))
2018                         return (KERN_NO_SPACE);
2019                 free_addr = *addr;
2020                 if (free_addr == aligned_addr) {
2021                         /*
2022                          * If a successful call to vm_map_findspace() did not
2023                          * change "*addr", then "*addr" must still be aligned
2024                          * and provide sufficient free space.
2025                          */
2026                         return (KERN_SUCCESS);
2027                 }
2028         }
2029 }
2030
2031 /*
2032  *      vm_map_find finds an unallocated region in the target address
2033  *      map with the given length.  The search is defined to be
2034  *      first-fit from the specified address; the region found is
2035  *      returned in the same parameter.
2036  *
2037  *      If object is non-NULL, ref count must be bumped by caller
2038  *      prior to making call to account for the new entry.
2039  */
2040 int
2041 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2042             vm_offset_t *addr,  /* IN/OUT */
2043             vm_size_t length, vm_offset_t max_addr, int find_space,
2044             vm_prot_t prot, vm_prot_t max, int cow)
2045 {
2046         vm_offset_t alignment, curr_min_addr, min_addr;
2047         int gap, pidx, rv, try;
2048         bool cluster, en_aslr, update_anon;
2049
2050         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2051             object == NULL,
2052             ("vm_map_find: non-NULL backing object for stack"));
2053         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2054             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2055         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2056             (object->flags & OBJ_COLORED) == 0))
2057                 find_space = VMFS_ANY_SPACE;
2058         if (find_space >> 8 != 0) {
2059                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2060                 alignment = (vm_offset_t)1 << (find_space >> 8);
2061         } else
2062                 alignment = 0;
2063         en_aslr = (map->flags & MAP_ASLR) != 0;
2064         update_anon = cluster = clustering_anon_allowed(*addr) &&
2065             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2066             find_space != VMFS_NO_SPACE && object == NULL &&
2067             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2068             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2069         curr_min_addr = min_addr = *addr;
2070         if (en_aslr && min_addr == 0 && !cluster &&
2071             find_space != VMFS_NO_SPACE &&
2072             (map->flags & MAP_ASLR_IGNSTART) != 0)
2073                 curr_min_addr = min_addr = vm_map_min(map);
2074         try = 0;
2075         vm_map_lock(map);
2076         if (cluster) {
2077                 curr_min_addr = map->anon_loc;
2078                 if (curr_min_addr == 0)
2079                         cluster = false;
2080         }
2081         if (find_space != VMFS_NO_SPACE) {
2082                 KASSERT(find_space == VMFS_ANY_SPACE ||
2083                     find_space == VMFS_OPTIMAL_SPACE ||
2084                     find_space == VMFS_SUPER_SPACE ||
2085                     alignment != 0, ("unexpected VMFS flag"));
2086 again:
2087                 /*
2088                  * When creating an anonymous mapping, try clustering
2089                  * with an existing anonymous mapping first.
2090                  *
2091                  * We make up to two attempts to find address space
2092                  * for a given find_space value. The first attempt may
2093                  * apply randomization or may cluster with an existing
2094                  * anonymous mapping. If this first attempt fails,
2095                  * perform a first-fit search of the available address
2096                  * space.
2097                  *
2098                  * If all tries failed, and find_space is
2099                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2100                  * Again enable clustering and randomization.
2101                  */
2102                 try++;
2103                 MPASS(try <= 2);
2104
2105                 if (try == 2) {
2106                         /*
2107                          * Second try: we failed either to find a
2108                          * suitable region for randomizing the
2109                          * allocation, or to cluster with an existing
2110                          * mapping.  Retry with free run.
2111                          */
2112                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2113                             vm_map_min(map) : min_addr;
2114                         atomic_add_long(&aslr_restarts, 1);
2115                 }
2116
2117                 if (try == 1 && en_aslr && !cluster) {
2118                         /*
2119                          * Find space for allocation, including
2120                          * gap needed for later randomization.
2121                          */
2122                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2123                             (find_space == VMFS_SUPER_SPACE || find_space ==
2124                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2125                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2126                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2127                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2128                         *addr = vm_map_findspace(map, curr_min_addr,
2129                             length + gap * pagesizes[pidx]);
2130                         if (*addr + length + gap * pagesizes[pidx] >
2131                             vm_map_max(map))
2132                                 goto again;
2133                         /* And randomize the start address. */
2134                         *addr += (arc4random() % gap) * pagesizes[pidx];
2135                         if (max_addr != 0 && *addr + length > max_addr)
2136                                 goto again;
2137                 } else {
2138                         *addr = vm_map_findspace(map, curr_min_addr, length);
2139                         if (*addr + length > vm_map_max(map) ||
2140                             (max_addr != 0 && *addr + length > max_addr)) {
2141                                 if (cluster) {
2142                                         cluster = false;
2143                                         MPASS(try == 1);
2144                                         goto again;
2145                                 }
2146                                 rv = KERN_NO_SPACE;
2147                                 goto done;
2148                         }
2149                 }
2150
2151                 if (find_space != VMFS_ANY_SPACE &&
2152                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2153                     max_addr, alignment)) != KERN_SUCCESS) {
2154                         if (find_space == VMFS_OPTIMAL_SPACE) {
2155                                 find_space = VMFS_ANY_SPACE;
2156                                 curr_min_addr = min_addr;
2157                                 cluster = update_anon;
2158                                 try = 0;
2159                                 goto again;
2160                         }
2161                         goto done;
2162                 }
2163         } else if ((cow & MAP_REMAP) != 0) {
2164                 if (*addr < vm_map_min(map) ||
2165                     *addr + length > vm_map_max(map) ||
2166                     *addr + length <= length) {
2167                         rv = KERN_INVALID_ADDRESS;
2168                         goto done;
2169                 }
2170                 vm_map_delete(map, *addr, *addr + length);
2171         }
2172         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2173                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2174                     max, cow);
2175         } else {
2176                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2177                     prot, max, cow);
2178         }
2179         if (rv == KERN_SUCCESS && update_anon)
2180                 map->anon_loc = *addr + length;
2181 done:
2182         vm_map_unlock(map);
2183         return (rv);
2184 }
2185
2186 /*
2187  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2188  *      additional parameter (min_addr) and treats the given address
2189  *      (*addr) differently.  Specifically, it treats *addr as a hint
2190  *      and not as the minimum address where the mapping is created.
2191  *
2192  *      This function works in two phases.  First, it tries to
2193  *      allocate above the hint.  If that fails and the hint is
2194  *      greater than min_addr, it performs a second pass, replacing
2195  *      the hint with min_addr as the minimum address for the
2196  *      allocation.
2197  */
2198 int
2199 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2200     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2201     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2202     int cow)
2203 {
2204         vm_offset_t hint;
2205         int rv;
2206
2207         hint = *addr;
2208         for (;;) {
2209                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2210                     find_space, prot, max, cow);
2211                 if (rv == KERN_SUCCESS || min_addr >= hint)
2212                         return (rv);
2213                 *addr = hint = min_addr;
2214         }
2215 }
2216
2217 /*
2218  * A map entry with any of the following flags set must not be merged with
2219  * another entry.
2220  */
2221 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2222             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2223
2224 static bool
2225 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2226 {
2227
2228         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2229             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2230             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2231             prev, entry));
2232         return (prev->end == entry->start &&
2233             prev->object.vm_object == entry->object.vm_object &&
2234             (prev->object.vm_object == NULL ||
2235             prev->offset + (prev->end - prev->start) == entry->offset) &&
2236             prev->eflags == entry->eflags &&
2237             prev->protection == entry->protection &&
2238             prev->max_protection == entry->max_protection &&
2239             prev->inheritance == entry->inheritance &&
2240             prev->wired_count == entry->wired_count &&
2241             prev->cred == entry->cred);
2242 }
2243
2244 static void
2245 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2246 {
2247
2248         /*
2249          * If the backing object is a vnode object, vm_object_deallocate()
2250          * calls vrele().  However, vrele() does not lock the vnode because
2251          * the vnode has additional references.  Thus, the map lock can be
2252          * kept without causing a lock-order reversal with the vnode lock.
2253          *
2254          * Since we count the number of virtual page mappings in
2255          * object->un_pager.vnp.writemappings, the writemappings value
2256          * should not be adjusted when the entry is disposed of.
2257          */
2258         if (entry->object.vm_object != NULL)
2259                 vm_object_deallocate(entry->object.vm_object);
2260         if (entry->cred != NULL)
2261                 crfree(entry->cred);
2262         vm_map_entry_dispose(map, entry);
2263 }
2264
2265 /*
2266  *      vm_map_try_merge_entries:
2267  *
2268  *      Compare the given map entry to its predecessor, and merge its precessor
2269  *      into it if possible.  The entry remains valid, and may be extended.
2270  *      The predecessor may be deleted.
2271  *
2272  *      The map must be locked.
2273  */
2274 void
2275 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2276     vm_map_entry_t entry)
2277 {
2278
2279         VM_MAP_ASSERT_LOCKED(map);
2280         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2281             vm_map_mergeable_neighbors(prev_entry, entry)) {
2282                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2283                 vm_map_merged_neighbor_dispose(map, prev_entry);
2284         }
2285 }
2286
2287 /*
2288  *      vm_map_entry_back:
2289  *
2290  *      Allocate an object to back a map entry.
2291  */
2292 static inline void
2293 vm_map_entry_back(vm_map_entry_t entry)
2294 {
2295         vm_object_t object;
2296
2297         KASSERT(entry->object.vm_object == NULL,
2298             ("map entry %p has backing object", entry));
2299         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2300             ("map entry %p is a submap", entry));
2301         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2302             entry->cred, entry->end - entry->start);
2303         entry->object.vm_object = object;
2304         entry->offset = 0;
2305         entry->cred = NULL;
2306 }
2307
2308 /*
2309  *      vm_map_entry_charge_object
2310  *
2311  *      If there is no object backing this entry, create one.  Otherwise, if
2312  *      the entry has cred, give it to the backing object.
2313  */
2314 static inline void
2315 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2316 {
2317
2318         VM_MAP_ASSERT_LOCKED(map);
2319         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2320             ("map entry %p is a submap", entry));
2321         if (entry->object.vm_object == NULL && !map->system_map &&
2322             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2323                 vm_map_entry_back(entry);
2324         else if (entry->object.vm_object != NULL &&
2325             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2326             entry->cred != NULL) {
2327                 VM_OBJECT_WLOCK(entry->object.vm_object);
2328                 KASSERT(entry->object.vm_object->cred == NULL,
2329                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2330                 entry->object.vm_object->cred = entry->cred;
2331                 entry->object.vm_object->charge = entry->end - entry->start;
2332                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2333                 entry->cred = NULL;
2334         }
2335 }
2336
2337 /*
2338  *      vm_map_entry_clone
2339  *
2340  *      Create a duplicate map entry for clipping.
2341  */
2342 static vm_map_entry_t
2343 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2344 {
2345         vm_map_entry_t new_entry;
2346
2347         VM_MAP_ASSERT_LOCKED(map);
2348
2349         /*
2350          * Create a backing object now, if none exists, so that more individual
2351          * objects won't be created after the map entry is split.
2352          */
2353         vm_map_entry_charge_object(map, entry);
2354
2355         /* Clone the entry. */
2356         new_entry = vm_map_entry_create(map);
2357         *new_entry = *entry;
2358         if (new_entry->cred != NULL)
2359                 crhold(entry->cred);
2360         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2361                 vm_object_reference(new_entry->object.vm_object);
2362                 vm_map_entry_set_vnode_text(new_entry, true);
2363                 /*
2364                  * The object->un_pager.vnp.writemappings for the object of
2365                  * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2366                  * virtual pages are re-distributed among the clipped entries,
2367                  * so the sum is left the same.
2368                  */
2369         }
2370         return (new_entry);
2371 }
2372
2373 /*
2374  *      vm_map_clip_start:      [ internal use only ]
2375  *
2376  *      Asserts that the given entry begins at or after
2377  *      the specified address; if necessary,
2378  *      it splits the entry into two.
2379  */
2380 #define vm_map_clip_start(map, entry, startaddr) \
2381 { \
2382         if (startaddr > entry->start) \
2383                 _vm_map_clip_start(map, entry, startaddr); \
2384 }
2385
2386 /*
2387  *      This routine is called only when it is known that
2388  *      the entry must be split.
2389  */
2390 static inline void
2391 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2392 {
2393         vm_map_entry_t new_entry;
2394
2395         VM_MAP_ASSERT_LOCKED(map);
2396         KASSERT(entry->end > start && entry->start < start,
2397             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2398
2399         new_entry = vm_map_entry_clone(map, entry);
2400
2401         /*
2402          * Split off the front portion.  Insert the new entry BEFORE this one,
2403          * so that this entry has the specified starting address.
2404          */
2405         new_entry->end = start;
2406         vm_map_entry_link(map, new_entry);
2407 }
2408
2409 /*
2410  *      vm_map_lookup_clip_start:
2411  *
2412  *      Find the entry at or just after 'start', and clip it if 'start' is in
2413  *      the interior of the entry.  Return entry after 'start', and in
2414  *      prev_entry set the entry before 'start'.
2415  */
2416 static inline vm_map_entry_t
2417 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2418     vm_map_entry_t *prev_entry)
2419 {
2420         vm_map_entry_t entry;
2421
2422         if (vm_map_lookup_entry(map, start, prev_entry)) {
2423                 entry = *prev_entry;
2424                 vm_map_clip_start(map, entry, start);
2425                 *prev_entry = vm_map_entry_pred(entry);
2426         } else
2427                 entry = vm_map_entry_succ(*prev_entry);
2428         return (entry);
2429 }
2430
2431 /*
2432  *      vm_map_clip_end:        [ internal use only ]
2433  *
2434  *      Asserts that the given entry ends at or before
2435  *      the specified address; if necessary,
2436  *      it splits the entry into two.
2437  */
2438 #define vm_map_clip_end(map, entry, endaddr) \
2439 { \
2440         if ((endaddr) < (entry->end)) \
2441                 _vm_map_clip_end((map), (entry), (endaddr)); \
2442 }
2443
2444 /*
2445  *      This routine is called only when it is known that
2446  *      the entry must be split.
2447  */
2448 static inline void
2449 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2450 {
2451         vm_map_entry_t new_entry;
2452
2453         VM_MAP_ASSERT_LOCKED(map);
2454         KASSERT(entry->start < end && entry->end > end,
2455             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2456
2457         new_entry = vm_map_entry_clone(map, entry);
2458
2459         /*
2460          * Split off the back portion.  Insert the new entry AFTER this one,
2461          * so that this entry has the specified ending address.
2462          */
2463         new_entry->start = end;
2464         vm_map_entry_link(map, new_entry);
2465 }
2466
2467 /*
2468  *      vm_map_submap:          [ kernel use only ]
2469  *
2470  *      Mark the given range as handled by a subordinate map.
2471  *
2472  *      This range must have been created with vm_map_find,
2473  *      and no other operations may have been performed on this
2474  *      range prior to calling vm_map_submap.
2475  *
2476  *      Only a limited number of operations can be performed
2477  *      within this rage after calling vm_map_submap:
2478  *              vm_fault
2479  *      [Don't try vm_map_copy!]
2480  *
2481  *      To remove a submapping, one must first remove the
2482  *      range from the superior map, and then destroy the
2483  *      submap (if desired).  [Better yet, don't try it.]
2484  */
2485 int
2486 vm_map_submap(
2487         vm_map_t map,
2488         vm_offset_t start,
2489         vm_offset_t end,
2490         vm_map_t submap)
2491 {
2492         vm_map_entry_t entry;
2493         int result;
2494
2495         result = KERN_INVALID_ARGUMENT;
2496
2497         vm_map_lock(submap);
2498         submap->flags |= MAP_IS_SUB_MAP;
2499         vm_map_unlock(submap);
2500
2501         vm_map_lock(map);
2502         VM_MAP_RANGE_CHECK(map, start, end);
2503         if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2504             (entry->eflags & MAP_ENTRY_COW) == 0 &&
2505             entry->object.vm_object == NULL) {
2506                 vm_map_clip_start(map, entry, start);
2507                 vm_map_clip_end(map, entry, end);
2508                 entry->object.sub_map = submap;
2509                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2510                 result = KERN_SUCCESS;
2511         }
2512         vm_map_unlock(map);
2513
2514         if (result != KERN_SUCCESS) {
2515                 vm_map_lock(submap);
2516                 submap->flags &= ~MAP_IS_SUB_MAP;
2517                 vm_map_unlock(submap);
2518         }
2519         return (result);
2520 }
2521
2522 /*
2523  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2524  */
2525 #define MAX_INIT_PT     96
2526
2527 /*
2528  *      vm_map_pmap_enter:
2529  *
2530  *      Preload the specified map's pmap with mappings to the specified
2531  *      object's memory-resident pages.  No further physical pages are
2532  *      allocated, and no further virtual pages are retrieved from secondary
2533  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2534  *      limited number of page mappings are created at the low-end of the
2535  *      specified address range.  (For this purpose, a superpage mapping
2536  *      counts as one page mapping.)  Otherwise, all resident pages within
2537  *      the specified address range are mapped.
2538  */
2539 static void
2540 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2541     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2542 {
2543         vm_offset_t start;
2544         vm_page_t p, p_start;
2545         vm_pindex_t mask, psize, threshold, tmpidx;
2546
2547         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2548                 return;
2549         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2550                 VM_OBJECT_WLOCK(object);
2551                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2552                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2553                             size);
2554                         VM_OBJECT_WUNLOCK(object);
2555                         return;
2556                 }
2557                 VM_OBJECT_LOCK_DOWNGRADE(object);
2558         } else
2559                 VM_OBJECT_RLOCK(object);
2560
2561         psize = atop(size);
2562         if (psize + pindex > object->size) {
2563                 if (pindex >= object->size) {
2564                         VM_OBJECT_RUNLOCK(object);
2565                         return;
2566                 }
2567                 psize = object->size - pindex;
2568         }
2569
2570         start = 0;
2571         p_start = NULL;
2572         threshold = MAX_INIT_PT;
2573
2574         p = vm_page_find_least(object, pindex);
2575         /*
2576          * Assert: the variable p is either (1) the page with the
2577          * least pindex greater than or equal to the parameter pindex
2578          * or (2) NULL.
2579          */
2580         for (;
2581              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2582              p = TAILQ_NEXT(p, listq)) {
2583                 /*
2584                  * don't allow an madvise to blow away our really
2585                  * free pages allocating pv entries.
2586                  */
2587                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2588                     vm_page_count_severe()) ||
2589                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2590                     tmpidx >= threshold)) {
2591                         psize = tmpidx;
2592                         break;
2593                 }
2594                 if (vm_page_all_valid(p)) {
2595                         if (p_start == NULL) {
2596                                 start = addr + ptoa(tmpidx);
2597                                 p_start = p;
2598                         }
2599                         /* Jump ahead if a superpage mapping is possible. */
2600                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2601                             (pagesizes[p->psind] - 1)) == 0) {
2602                                 mask = atop(pagesizes[p->psind]) - 1;
2603                                 if (tmpidx + mask < psize &&
2604                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2605                                         p += mask;
2606                                         threshold += mask;
2607                                 }
2608                         }
2609                 } else if (p_start != NULL) {
2610                         pmap_enter_object(map->pmap, start, addr +
2611                             ptoa(tmpidx), p_start, prot);
2612                         p_start = NULL;
2613                 }
2614         }
2615         if (p_start != NULL)
2616                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2617                     p_start, prot);
2618         VM_OBJECT_RUNLOCK(object);
2619 }
2620
2621 /*
2622  *      vm_map_protect:
2623  *
2624  *      Sets the protection of the specified address
2625  *      region in the target map.  If "set_max" is
2626  *      specified, the maximum protection is to be set;
2627  *      otherwise, only the current protection is affected.
2628  */
2629 int
2630 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2631                vm_prot_t new_prot, boolean_t set_max)
2632 {
2633         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2634         vm_object_t obj;
2635         struct ucred *cred;
2636         vm_prot_t old_prot;
2637         int rv;
2638
2639         if (start == end)
2640                 return (KERN_SUCCESS);
2641
2642 again:
2643         in_tran = NULL;
2644         vm_map_lock(map);
2645
2646         /*
2647          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2648          * need to fault pages into the map and will drop the map lock while
2649          * doing so, and the VM object may end up in an inconsistent state if we
2650          * update the protection on the map entry in between faults.
2651          */
2652         vm_map_wait_busy(map);
2653
2654         VM_MAP_RANGE_CHECK(map, start, end);
2655
2656         if (!vm_map_lookup_entry(map, start, &first_entry))
2657                 first_entry = vm_map_entry_succ(first_entry);
2658
2659         /*
2660          * Make a first pass to check for protection violations.
2661          */
2662         for (entry = first_entry; entry->start < end;
2663             entry = vm_map_entry_succ(entry)) {
2664                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2665                         continue;
2666                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2667                         vm_map_unlock(map);
2668                         return (KERN_INVALID_ARGUMENT);
2669                 }
2670                 if ((new_prot & entry->max_protection) != new_prot) {
2671                         vm_map_unlock(map);
2672                         return (KERN_PROTECTION_FAILURE);
2673                 }
2674                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2675                         in_tran = entry;
2676         }
2677
2678         /*
2679          * Postpone the operation until all in-transition map entries have
2680          * stabilized.  An in-transition entry might already have its pages
2681          * wired and wired_count incremented, but not yet have its
2682          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2683          * vm_fault_copy_entry() in the final loop below.
2684          */
2685         if (in_tran != NULL) {
2686                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2687                 vm_map_unlock_and_wait(map, 0);
2688                 goto again;
2689         }
2690
2691         /*
2692          * Before changing the protections, try to reserve swap space for any
2693          * private (i.e., copy-on-write) mappings that are transitioning from
2694          * read-only to read/write access.  If a reservation fails, break out
2695          * of this loop early and let the next loop simplify the entries, since
2696          * some may now be mergeable.
2697          */
2698         rv = KERN_SUCCESS;
2699         vm_map_clip_start(map, first_entry, start);
2700         for (entry = first_entry; entry->start < end;
2701             entry = vm_map_entry_succ(entry)) {
2702                 vm_map_clip_end(map, entry, end);
2703
2704                 if (set_max ||
2705                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2706                     ENTRY_CHARGED(entry) ||
2707                     (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2708                         continue;
2709                 }
2710
2711                 cred = curthread->td_ucred;
2712                 obj = entry->object.vm_object;
2713
2714                 if (obj == NULL ||
2715                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2716                         if (!swap_reserve(entry->end - entry->start)) {
2717                                 rv = KERN_RESOURCE_SHORTAGE;
2718                                 end = entry->end;
2719                                 break;
2720                         }
2721                         crhold(cred);
2722                         entry->cred = cred;
2723                         continue;
2724                 }
2725
2726                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2727                         continue;
2728                 VM_OBJECT_WLOCK(obj);
2729                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2730                         VM_OBJECT_WUNLOCK(obj);
2731                         continue;
2732                 }
2733
2734                 /*
2735                  * Charge for the whole object allocation now, since
2736                  * we cannot distinguish between non-charged and
2737                  * charged clipped mapping of the same object later.
2738                  */
2739                 KASSERT(obj->charge == 0,
2740                     ("vm_map_protect: object %p overcharged (entry %p)",
2741                     obj, entry));
2742                 if (!swap_reserve(ptoa(obj->size))) {
2743                         VM_OBJECT_WUNLOCK(obj);
2744                         rv = KERN_RESOURCE_SHORTAGE;
2745                         end = entry->end;
2746                         break;
2747                 }
2748
2749                 crhold(cred);
2750                 obj->cred = cred;
2751                 obj->charge = ptoa(obj->size);
2752                 VM_OBJECT_WUNLOCK(obj);
2753         }
2754
2755         /*
2756          * If enough swap space was available, go back and fix up protections.
2757          * Otherwise, just simplify entries, since some may have been modified.
2758          * [Note that clipping is not necessary the second time.]
2759          */
2760         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2761             entry->start < end;
2762             vm_map_try_merge_entries(map, prev_entry, entry),
2763             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2764                 if (rv != KERN_SUCCESS ||
2765                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2766                         continue;
2767
2768                 old_prot = entry->protection;
2769
2770                 if (set_max)
2771                         entry->protection =
2772                             (entry->max_protection = new_prot) &
2773                             old_prot;
2774                 else
2775                         entry->protection = new_prot;
2776
2777                 /*
2778                  * For user wired map entries, the normal lazy evaluation of
2779                  * write access upgrades through soft page faults is
2780                  * undesirable.  Instead, immediately copy any pages that are
2781                  * copy-on-write and enable write access in the physical map.
2782                  */
2783                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2784                     (entry->protection & VM_PROT_WRITE) != 0 &&
2785                     (old_prot & VM_PROT_WRITE) == 0)
2786                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2787
2788                 /*
2789                  * When restricting access, update the physical map.  Worry
2790                  * about copy-on-write here.
2791                  */
2792                 if ((old_prot & ~entry->protection) != 0) {
2793 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2794                                                         VM_PROT_ALL)
2795                         pmap_protect(map->pmap, entry->start,
2796                             entry->end,
2797                             entry->protection & MASK(entry));
2798 #undef  MASK
2799                 }
2800         }
2801         vm_map_try_merge_entries(map, prev_entry, entry);
2802         vm_map_unlock(map);
2803         return (rv);
2804 }
2805
2806 /*
2807  *      vm_map_madvise:
2808  *
2809  *      This routine traverses a processes map handling the madvise
2810  *      system call.  Advisories are classified as either those effecting
2811  *      the vm_map_entry structure, or those effecting the underlying
2812  *      objects.
2813  */
2814 int
2815 vm_map_madvise(
2816         vm_map_t map,
2817         vm_offset_t start,
2818         vm_offset_t end,
2819         int behav)
2820 {
2821         vm_map_entry_t entry, prev_entry;
2822         bool modify_map;
2823
2824         /*
2825          * Some madvise calls directly modify the vm_map_entry, in which case
2826          * we need to use an exclusive lock on the map and we need to perform
2827          * various clipping operations.  Otherwise we only need a read-lock
2828          * on the map.
2829          */
2830         switch(behav) {
2831         case MADV_NORMAL:
2832         case MADV_SEQUENTIAL:
2833         case MADV_RANDOM:
2834         case MADV_NOSYNC:
2835         case MADV_AUTOSYNC:
2836         case MADV_NOCORE:
2837         case MADV_CORE:
2838                 if (start == end)
2839                         return (0);
2840                 modify_map = true;
2841                 vm_map_lock(map);
2842                 break;
2843         case MADV_WILLNEED:
2844         case MADV_DONTNEED:
2845         case MADV_FREE:
2846                 if (start == end)
2847                         return (0);
2848                 modify_map = false;
2849                 vm_map_lock_read(map);
2850                 break;
2851         default:
2852                 return (EINVAL);
2853         }
2854
2855         /*
2856          * Locate starting entry and clip if necessary.
2857          */
2858         VM_MAP_RANGE_CHECK(map, start, end);
2859
2860         if (modify_map) {
2861                 /*
2862                  * madvise behaviors that are implemented in the vm_map_entry.
2863                  *
2864                  * We clip the vm_map_entry so that behavioral changes are
2865                  * limited to the specified address range.
2866                  */
2867                 for (entry = vm_map_lookup_clip_start(map, start, &prev_entry);
2868                     entry->start < end;
2869                     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2870                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2871                                 continue;
2872
2873                         vm_map_clip_end(map, entry, end);
2874
2875                         switch (behav) {
2876                         case MADV_NORMAL:
2877                                 vm_map_entry_set_behavior(entry,
2878                                     MAP_ENTRY_BEHAV_NORMAL);
2879                                 break;
2880                         case MADV_SEQUENTIAL:
2881                                 vm_map_entry_set_behavior(entry,
2882                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2883                                 break;
2884                         case MADV_RANDOM:
2885                                 vm_map_entry_set_behavior(entry,
2886                                     MAP_ENTRY_BEHAV_RANDOM);
2887                                 break;
2888                         case MADV_NOSYNC:
2889                                 entry->eflags |= MAP_ENTRY_NOSYNC;
2890                                 break;
2891                         case MADV_AUTOSYNC:
2892                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
2893                                 break;
2894                         case MADV_NOCORE:
2895                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2896                                 break;
2897                         case MADV_CORE:
2898                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2899                                 break;
2900                         default:
2901                                 break;
2902                         }
2903                         vm_map_try_merge_entries(map, prev_entry, entry);
2904                 }
2905                 vm_map_try_merge_entries(map, prev_entry, entry);
2906                 vm_map_unlock(map);
2907         } else {
2908                 vm_pindex_t pstart, pend;
2909
2910                 /*
2911                  * madvise behaviors that are implemented in the underlying
2912                  * vm_object.
2913                  *
2914                  * Since we don't clip the vm_map_entry, we have to clip
2915                  * the vm_object pindex and count.
2916                  */
2917                 if (!vm_map_lookup_entry(map, start, &entry))
2918                         entry = vm_map_entry_succ(entry);
2919                 for (; entry->start < end;
2920                     entry = vm_map_entry_succ(entry)) {
2921                         vm_offset_t useEnd, useStart;
2922
2923                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2924                                 continue;
2925
2926                         /*
2927                          * MADV_FREE would otherwise rewind time to
2928                          * the creation of the shadow object.  Because
2929                          * we hold the VM map read-locked, neither the
2930                          * entry's object nor the presence of a
2931                          * backing object can change.
2932                          */
2933                         if (behav == MADV_FREE &&
2934                             entry->object.vm_object != NULL &&
2935                             entry->object.vm_object->backing_object != NULL)
2936                                 continue;
2937
2938                         pstart = OFF_TO_IDX(entry->offset);
2939                         pend = pstart + atop(entry->end - entry->start);
2940                         useStart = entry->start;
2941                         useEnd = entry->end;
2942
2943                         if (entry->start < start) {
2944                                 pstart += atop(start - entry->start);
2945                                 useStart = start;
2946                         }
2947                         if (entry->end > end) {
2948                                 pend -= atop(entry->end - end);
2949                                 useEnd = end;
2950                         }
2951
2952                         if (pstart >= pend)
2953                                 continue;
2954
2955                         /*
2956                          * Perform the pmap_advise() before clearing
2957                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2958                          * concurrent pmap operation, such as pmap_remove(),
2959                          * could clear a reference in the pmap and set
2960                          * PGA_REFERENCED on the page before the pmap_advise()
2961                          * had completed.  Consequently, the page would appear
2962                          * referenced based upon an old reference that
2963                          * occurred before this pmap_advise() ran.
2964                          */
2965                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2966                                 pmap_advise(map->pmap, useStart, useEnd,
2967                                     behav);
2968
2969                         vm_object_madvise(entry->object.vm_object, pstart,
2970                             pend, behav);
2971
2972                         /*
2973                          * Pre-populate paging structures in the
2974                          * WILLNEED case.  For wired entries, the
2975                          * paging structures are already populated.
2976                          */
2977                         if (behav == MADV_WILLNEED &&
2978                             entry->wired_count == 0) {
2979                                 vm_map_pmap_enter(map,
2980                                     useStart,
2981                                     entry->protection,
2982                                     entry->object.vm_object,
2983                                     pstart,
2984                                     ptoa(pend - pstart),
2985                                     MAP_PREFAULT_MADVISE
2986                                 );
2987                         }
2988                 }
2989                 vm_map_unlock_read(map);
2990         }
2991         return (0);
2992 }
2993
2994
2995 /*
2996  *      vm_map_inherit:
2997  *
2998  *      Sets the inheritance of the specified address
2999  *      range in the target map.  Inheritance
3000  *      affects how the map will be shared with
3001  *      child maps at the time of vmspace_fork.
3002  */
3003 int
3004 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3005                vm_inherit_t new_inheritance)
3006 {
3007         vm_map_entry_t entry, prev_entry;
3008
3009         switch (new_inheritance) {
3010         case VM_INHERIT_NONE:
3011         case VM_INHERIT_COPY:
3012         case VM_INHERIT_SHARE:
3013         case VM_INHERIT_ZERO:
3014                 break;
3015         default:
3016                 return (KERN_INVALID_ARGUMENT);
3017         }
3018         if (start == end)
3019                 return (KERN_SUCCESS);
3020         vm_map_lock(map);
3021         VM_MAP_RANGE_CHECK(map, start, end);
3022         for (entry = vm_map_lookup_clip_start(map, start, &prev_entry);
3023             entry->start < end;
3024             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3025                 vm_map_clip_end(map, entry, end);
3026                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3027                     new_inheritance != VM_INHERIT_ZERO)
3028                         entry->inheritance = new_inheritance;
3029                 vm_map_try_merge_entries(map, prev_entry, entry);
3030         }
3031         vm_map_try_merge_entries(map, prev_entry, entry);
3032         vm_map_unlock(map);
3033         return (KERN_SUCCESS);
3034 }
3035
3036 /*
3037  *      vm_map_entry_in_transition:
3038  *
3039  *      Release the map lock, and sleep until the entry is no longer in
3040  *      transition.  Awake and acquire the map lock.  If the map changed while
3041  *      another held the lock, lookup a possibly-changed entry at or after the
3042  *      'start' position of the old entry.
3043  */
3044 static vm_map_entry_t
3045 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3046     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3047 {
3048         vm_map_entry_t entry;
3049         vm_offset_t start;
3050         u_int last_timestamp;
3051
3052         VM_MAP_ASSERT_LOCKED(map);
3053         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3054             ("not in-tranition map entry %p", in_entry));
3055         /*
3056          * We have not yet clipped the entry.
3057          */
3058         start = MAX(in_start, in_entry->start);
3059         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3060         last_timestamp = map->timestamp;
3061         if (vm_map_unlock_and_wait(map, 0)) {
3062                 /*
3063                  * Allow interruption of user wiring/unwiring?
3064                  */
3065         }
3066         vm_map_lock(map);
3067         if (last_timestamp + 1 == map->timestamp)
3068                 return (in_entry);
3069
3070         /*
3071          * Look again for the entry because the map was modified while it was
3072          * unlocked.  Specifically, the entry may have been clipped, merged, or
3073          * deleted.
3074          */
3075         if (!vm_map_lookup_entry(map, start, &entry)) {
3076                 if (!holes_ok) {
3077                         *io_end = start;
3078                         return (NULL);
3079                 }
3080                 entry = vm_map_entry_succ(entry);
3081         }
3082         return (entry);
3083 }
3084
3085 /*
3086  *      vm_map_unwire:
3087  *
3088  *      Implements both kernel and user unwiring.
3089  */
3090 int
3091 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3092     int flags)
3093 {
3094         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3095         int rv;
3096         bool holes_ok, need_wakeup, user_unwire;
3097
3098         if (start == end)
3099                 return (KERN_SUCCESS);
3100         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3101         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3102         vm_map_lock(map);
3103         VM_MAP_RANGE_CHECK(map, start, end);
3104         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3105                 if (holes_ok)
3106                         first_entry = vm_map_entry_succ(first_entry);
3107                 else {
3108                         vm_map_unlock(map);
3109                         return (KERN_INVALID_ADDRESS);
3110                 }
3111         }
3112         rv = KERN_SUCCESS;
3113         for (entry = first_entry; entry->start < end; entry = next_entry) {
3114                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3115                         /*
3116                          * We have not yet clipped the entry.
3117                          */
3118                         next_entry = vm_map_entry_in_transition(map, start,
3119                             &end, holes_ok, entry);
3120                         if (next_entry == NULL) {
3121                                 if (entry == first_entry) {
3122                                         vm_map_unlock(map);
3123                                         return (KERN_INVALID_ADDRESS);
3124                                 }
3125                                 rv = KERN_INVALID_ADDRESS;
3126                                 break;
3127                         }
3128                         first_entry = (entry == first_entry) ?
3129                             next_entry : NULL;
3130                         continue;
3131                 }
3132                 vm_map_clip_start(map, entry, start);
3133                 vm_map_clip_end(map, entry, end);
3134                 /*
3135                  * Mark the entry in case the map lock is released.  (See
3136                  * above.)
3137                  */
3138                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3139                     entry->wiring_thread == NULL,
3140                     ("owned map entry %p", entry));
3141                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3142                 entry->wiring_thread = curthread;
3143                 next_entry = vm_map_entry_succ(entry);
3144                 /*
3145                  * Check the map for holes in the specified region.
3146                  * If holes_ok, skip this check.
3147                  */
3148                 if (!holes_ok &&
3149                     entry->end < end && next_entry->start > entry->end) {
3150                         end = entry->end;
3151                         rv = KERN_INVALID_ADDRESS;
3152                         break;
3153                 }
3154                 /*
3155                  * If system unwiring, require that the entry is system wired.
3156                  */
3157                 if (!user_unwire &&
3158                     vm_map_entry_system_wired_count(entry) == 0) {
3159                         end = entry->end;
3160                         rv = KERN_INVALID_ARGUMENT;
3161                         break;
3162                 }
3163         }
3164         need_wakeup = false;
3165         if (first_entry == NULL &&
3166             !vm_map_lookup_entry(map, start, &first_entry)) {
3167                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3168                 prev_entry = first_entry;
3169                 entry = vm_map_entry_succ(first_entry);
3170         } else {
3171                 prev_entry = vm_map_entry_pred(first_entry);
3172                 entry = first_entry;
3173         }
3174         for (; entry->start < end;
3175             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3176                 /*
3177                  * If holes_ok was specified, an empty
3178                  * space in the unwired region could have been mapped
3179                  * while the map lock was dropped for draining
3180                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3181                  * could be simultaneously wiring this new mapping
3182                  * entry.  Detect these cases and skip any entries
3183                  * marked as in transition by us.
3184                  */
3185                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3186                     entry->wiring_thread != curthread) {
3187                         KASSERT(holes_ok,
3188                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3189                         continue;
3190                 }
3191
3192                 if (rv == KERN_SUCCESS && (!user_unwire ||
3193                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3194                         if (entry->wired_count == 1)
3195                                 vm_map_entry_unwire(map, entry);
3196                         else
3197                                 entry->wired_count--;
3198                         if (user_unwire)
3199                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3200                 }
3201                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3202                     ("vm_map_unwire: in-transition flag missing %p", entry));
3203                 KASSERT(entry->wiring_thread == curthread,
3204                     ("vm_map_unwire: alien wire %p", entry));
3205                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3206                 entry->wiring_thread = NULL;
3207                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3208                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3209                         need_wakeup = true;
3210                 }
3211                 vm_map_try_merge_entries(map, prev_entry, entry);
3212         }
3213         vm_map_try_merge_entries(map, prev_entry, entry);
3214         vm_map_unlock(map);
3215         if (need_wakeup)
3216                 vm_map_wakeup(map);
3217         return (rv);
3218 }
3219
3220 static void
3221 vm_map_wire_user_count_sub(u_long npages)
3222 {
3223
3224         atomic_subtract_long(&vm_user_wire_count, npages);
3225 }
3226
3227 static bool
3228 vm_map_wire_user_count_add(u_long npages)
3229 {
3230         u_long wired;
3231
3232         wired = vm_user_wire_count;
3233         do {
3234                 if (npages + wired > vm_page_max_user_wired)
3235                         return (false);
3236         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3237             npages + wired));
3238
3239         return (true);
3240 }
3241
3242 /*
3243  *      vm_map_wire_entry_failure:
3244  *
3245  *      Handle a wiring failure on the given entry.
3246  *
3247  *      The map should be locked.
3248  */
3249 static void
3250 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3251     vm_offset_t failed_addr)
3252 {
3253
3254         VM_MAP_ASSERT_LOCKED(map);
3255         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3256             entry->wired_count == 1,
3257             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3258         KASSERT(failed_addr < entry->end,
3259             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3260
3261         /*
3262          * If any pages at the start of this entry were successfully wired,
3263          * then unwire them.
3264          */
3265         if (failed_addr > entry->start) {
3266                 pmap_unwire(map->pmap, entry->start, failed_addr);
3267                 vm_object_unwire(entry->object.vm_object, entry->offset,
3268                     failed_addr - entry->start, PQ_ACTIVE);
3269         }
3270
3271         /*
3272          * Assign an out-of-range value to represent the failure to wire this
3273          * entry.
3274          */
3275         entry->wired_count = -1;
3276 }
3277
3278 int
3279 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3280 {
3281         int rv;
3282
3283         vm_map_lock(map);
3284         rv = vm_map_wire_locked(map, start, end, flags);
3285         vm_map_unlock(map);
3286         return (rv);
3287 }
3288
3289
3290 /*
3291  *      vm_map_wire_locked:
3292  *
3293  *      Implements both kernel and user wiring.  Returns with the map locked,
3294  *      the map lock may be dropped.
3295  */
3296 int
3297 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3298 {
3299         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3300         vm_offset_t faddr, saved_end, saved_start;
3301         u_long npages;
3302         u_int last_timestamp;
3303         int rv;
3304         bool holes_ok, need_wakeup, user_wire;
3305         vm_prot_t prot;
3306
3307         VM_MAP_ASSERT_LOCKED(map);
3308
3309         if (start == end)
3310                 return (KERN_SUCCESS);
3311         prot = 0;
3312         if (flags & VM_MAP_WIRE_WRITE)
3313                 prot |= VM_PROT_WRITE;
3314         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3315         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3316         VM_MAP_RANGE_CHECK(map, start, end);
3317         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3318                 if (holes_ok)
3319                         first_entry = vm_map_entry_succ(first_entry);
3320                 else
3321                         return (KERN_INVALID_ADDRESS);
3322         }
3323         for (entry = first_entry; entry->start < end; entry = next_entry) {
3324                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3325                         /*
3326                          * We have not yet clipped the entry.
3327                          */
3328                         next_entry = vm_map_entry_in_transition(map, start,
3329                             &end, holes_ok, entry);
3330                         if (next_entry == NULL) {
3331                                 if (entry == first_entry)
3332                                         return (KERN_INVALID_ADDRESS);
3333                                 rv = KERN_INVALID_ADDRESS;
3334                                 goto done;
3335                         }
3336                         first_entry = (entry == first_entry) ?
3337                             next_entry : NULL;
3338                         continue;
3339                 }
3340                 vm_map_clip_start(map, entry, start);
3341                 vm_map_clip_end(map, entry, end);
3342                 /*
3343                  * Mark the entry in case the map lock is released.  (See
3344                  * above.)
3345                  */
3346                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3347                     entry->wiring_thread == NULL,
3348                     ("owned map entry %p", entry));
3349                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3350                 entry->wiring_thread = curthread;
3351                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3352                     || (entry->protection & prot) != prot) {
3353                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3354                         if (!holes_ok) {
3355                                 end = entry->end;
3356                                 rv = KERN_INVALID_ADDRESS;
3357                                 goto done;
3358                         }
3359                 } else if (entry->wired_count == 0) {
3360                         entry->wired_count++;
3361
3362                         npages = atop(entry->end - entry->start);
3363                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3364                                 vm_map_wire_entry_failure(map, entry,
3365                                     entry->start);
3366                                 end = entry->end;
3367                                 rv = KERN_RESOURCE_SHORTAGE;
3368                                 goto done;
3369                         }
3370
3371                         /*
3372                          * Release the map lock, relying on the in-transition
3373                          * mark.  Mark the map busy for fork.
3374                          */
3375                         saved_start = entry->start;
3376                         saved_end = entry->end;
3377                         last_timestamp = map->timestamp;
3378                         vm_map_busy(map);
3379                         vm_map_unlock(map);
3380
3381                         faddr = saved_start;
3382                         do {
3383                                 /*
3384                                  * Simulate a fault to get the page and enter
3385                                  * it into the physical map.
3386                                  */
3387                                 if ((rv = vm_fault(map, faddr,
3388                                     VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3389                                     KERN_SUCCESS)
3390                                         break;
3391                         } while ((faddr += PAGE_SIZE) < saved_end);
3392                         vm_map_lock(map);
3393                         vm_map_unbusy(map);
3394                         if (last_timestamp + 1 != map->timestamp) {
3395                                 /*
3396                                  * Look again for the entry because the map was
3397                                  * modified while it was unlocked.  The entry
3398                                  * may have been clipped, but NOT merged or
3399                                  * deleted.
3400                                  */
3401                                 if (!vm_map_lookup_entry(map, saved_start,
3402                                     &next_entry))
3403                                         KASSERT(false,
3404                                             ("vm_map_wire: lookup failed"));
3405                                 first_entry = (entry == first_entry) ?
3406                                     next_entry : NULL;
3407                                 for (entry = next_entry; entry->end < saved_end;
3408                                     entry = vm_map_entry_succ(entry)) {
3409                                         /*
3410                                          * In case of failure, handle entries
3411                                          * that were not fully wired here;
3412                                          * fully wired entries are handled
3413                                          * later.
3414                                          */
3415                                         if (rv != KERN_SUCCESS &&
3416                                             faddr < entry->end)
3417                                                 vm_map_wire_entry_failure(map,
3418                                                     entry, faddr);
3419                                 }
3420                         }
3421                         if (rv != KERN_SUCCESS) {
3422                                 vm_map_wire_entry_failure(map, entry, faddr);
3423                                 if (user_wire)
3424                                         vm_map_wire_user_count_sub(npages);
3425                                 end = entry->end;
3426                                 goto done;
3427                         }
3428                 } else if (!user_wire ||
3429                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3430                         entry->wired_count++;
3431                 }
3432                 /*
3433                  * Check the map for holes in the specified region.
3434                  * If holes_ok was specified, skip this check.
3435                  */
3436                 next_entry = vm_map_entry_succ(entry);
3437                 if (!holes_ok &&
3438                     entry->end < end && next_entry->start > entry->end) {
3439                         end = entry->end;
3440                         rv = KERN_INVALID_ADDRESS;
3441                         goto done;
3442                 }
3443         }
3444         rv = KERN_SUCCESS;
3445 done:
3446         need_wakeup = false;
3447         if (first_entry == NULL &&
3448             !vm_map_lookup_entry(map, start, &first_entry)) {
3449                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3450                 prev_entry = first_entry;
3451                 entry = vm_map_entry_succ(first_entry);
3452         } else {
3453                 prev_entry = vm_map_entry_pred(first_entry);
3454                 entry = first_entry;
3455         }
3456         for (; entry->start < end;
3457             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3458                 /*
3459                  * If holes_ok was specified, an empty
3460                  * space in the unwired region could have been mapped
3461                  * while the map lock was dropped for faulting in the
3462                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3463                  * Moreover, another thread could be simultaneously
3464                  * wiring this new mapping entry.  Detect these cases
3465                  * and skip any entries marked as in transition not by us.
3466                  */
3467                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3468                     entry->wiring_thread != curthread) {
3469                         KASSERT(holes_ok,
3470                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3471                         continue;
3472                 }
3473
3474                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3475                         /* do nothing */
3476                 } else if (rv == KERN_SUCCESS) {
3477                         if (user_wire)
3478                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3479                 } else if (entry->wired_count == -1) {
3480                         /*
3481                          * Wiring failed on this entry.  Thus, unwiring is
3482                          * unnecessary.
3483                          */
3484                         entry->wired_count = 0;
3485                 } else if (!user_wire ||
3486                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3487                         /*
3488                          * Undo the wiring.  Wiring succeeded on this entry
3489                          * but failed on a later entry.  
3490                          */
3491                         if (entry->wired_count == 1) {
3492                                 vm_map_entry_unwire(map, entry);
3493                                 if (user_wire)
3494                                         vm_map_wire_user_count_sub(
3495                                             atop(entry->end - entry->start));
3496                         } else
3497                                 entry->wired_count--;
3498                 }
3499                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3500                     ("vm_map_wire: in-transition flag missing %p", entry));
3501                 KASSERT(entry->wiring_thread == curthread,
3502                     ("vm_map_wire: alien wire %p", entry));
3503                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3504                     MAP_ENTRY_WIRE_SKIPPED);
3505                 entry->wiring_thread = NULL;
3506                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3507                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3508                         need_wakeup = true;
3509                 }
3510                 vm_map_try_merge_entries(map, prev_entry, entry);
3511         }
3512         vm_map_try_merge_entries(map, prev_entry, entry);
3513         if (need_wakeup)
3514                 vm_map_wakeup(map);
3515         return (rv);
3516 }
3517
3518 /*
3519  * vm_map_sync
3520  *
3521  * Push any dirty cached pages in the address range to their pager.
3522  * If syncio is TRUE, dirty pages are written synchronously.
3523  * If invalidate is TRUE, any cached pages are freed as well.
3524  *
3525  * If the size of the region from start to end is zero, we are
3526  * supposed to flush all modified pages within the region containing
3527  * start.  Unfortunately, a region can be split or coalesced with
3528  * neighboring regions, making it difficult to determine what the
3529  * original region was.  Therefore, we approximate this requirement by
3530  * flushing the current region containing start.
3531  *
3532  * Returns an error if any part of the specified range is not mapped.
3533  */
3534 int
3535 vm_map_sync(
3536         vm_map_t map,
3537         vm_offset_t start,
3538         vm_offset_t end,
3539         boolean_t syncio,
3540         boolean_t invalidate)
3541 {
3542         vm_map_entry_t entry, first_entry, next_entry;
3543         vm_size_t size;
3544         vm_object_t object;
3545         vm_ooffset_t offset;
3546         unsigned int last_timestamp;
3547         boolean_t failed;
3548
3549         vm_map_lock_read(map);
3550         VM_MAP_RANGE_CHECK(map, start, end);
3551         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3552                 vm_map_unlock_read(map);
3553                 return (KERN_INVALID_ADDRESS);
3554         } else if (start == end) {
3555                 start = first_entry->start;
3556                 end = first_entry->end;
3557         }
3558         /*
3559          * Make a first pass to check for user-wired memory and holes.
3560          */
3561         for (entry = first_entry; entry->start < end; entry = next_entry) {
3562                 if (invalidate &&
3563                     (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3564                         vm_map_unlock_read(map);
3565                         return (KERN_INVALID_ARGUMENT);
3566                 }
3567                 next_entry = vm_map_entry_succ(entry);
3568                 if (end > entry->end &&
3569                     entry->end != next_entry->start) {
3570                         vm_map_unlock_read(map);
3571                         return (KERN_INVALID_ADDRESS);
3572                 }
3573         }
3574
3575         if (invalidate)
3576                 pmap_remove(map->pmap, start, end);
3577         failed = FALSE;
3578
3579         /*
3580          * Make a second pass, cleaning/uncaching pages from the indicated
3581          * objects as we go.
3582          */
3583         for (entry = first_entry; entry->start < end;) {
3584                 offset = entry->offset + (start - entry->start);
3585                 size = (end <= entry->end ? end : entry->end) - start;
3586                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3587                         vm_map_t smap;
3588                         vm_map_entry_t tentry;
3589                         vm_size_t tsize;
3590
3591                         smap = entry->object.sub_map;
3592                         vm_map_lock_read(smap);
3593                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3594                         tsize = tentry->end - offset;
3595                         if (tsize < size)
3596                                 size = tsize;
3597                         object = tentry->object.vm_object;
3598                         offset = tentry->offset + (offset - tentry->start);
3599                         vm_map_unlock_read(smap);
3600                 } else {
3601                         object = entry->object.vm_object;
3602                 }
3603                 vm_object_reference(object);
3604                 last_timestamp = map->timestamp;
3605                 vm_map_unlock_read(map);
3606                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3607                         failed = TRUE;
3608                 start += size;
3609                 vm_object_deallocate(object);
3610                 vm_map_lock_read(map);
3611                 if (last_timestamp == map->timestamp ||
3612                     !vm_map_lookup_entry(map, start, &entry))
3613                         entry = vm_map_entry_succ(entry);
3614         }
3615
3616         vm_map_unlock_read(map);
3617         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3618 }
3619
3620 /*
3621  *      vm_map_entry_unwire:    [ internal use only ]
3622  *
3623  *      Make the region specified by this entry pageable.
3624  *
3625  *      The map in question should be locked.
3626  *      [This is the reason for this routine's existence.]
3627  */
3628 static void
3629 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3630 {
3631         vm_size_t size;
3632
3633         VM_MAP_ASSERT_LOCKED(map);
3634         KASSERT(entry->wired_count > 0,
3635             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3636
3637         size = entry->end - entry->start;
3638         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3639                 vm_map_wire_user_count_sub(atop(size));
3640         pmap_unwire(map->pmap, entry->start, entry->end);
3641         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3642             PQ_ACTIVE);
3643         entry->wired_count = 0;
3644 }
3645
3646 static void
3647 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3648 {
3649
3650         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3651                 vm_object_deallocate(entry->object.vm_object);
3652         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3653 }
3654
3655 /*
3656  *      vm_map_entry_delete:    [ internal use only ]
3657  *
3658  *      Deallocate the given entry from the target map.
3659  */
3660 static void
3661 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3662 {
3663         vm_object_t object;
3664         vm_pindex_t offidxstart, offidxend, count, size1;
3665         vm_size_t size;
3666
3667         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3668         object = entry->object.vm_object;
3669
3670         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3671                 MPASS(entry->cred == NULL);
3672                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3673                 MPASS(object == NULL);
3674                 vm_map_entry_deallocate(entry, map->system_map);
3675                 return;
3676         }
3677
3678         size = entry->end - entry->start;
3679         map->size -= size;
3680
3681         if (entry->cred != NULL) {
3682                 swap_release_by_cred(size, entry->cred);
3683                 crfree(entry->cred);
3684         }
3685
3686         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3687                 entry->object.vm_object = NULL;
3688         } else if ((object->flags & OBJ_ANON) != 0 ||
3689             object == kernel_object) {
3690                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3691                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3692                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3693                 count = atop(size);
3694                 offidxstart = OFF_TO_IDX(entry->offset);
3695                 offidxend = offidxstart + count;
3696                 VM_OBJECT_WLOCK(object);
3697                 if (object->ref_count != 1 &&
3698                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3699                     object == kernel_object)) {
3700                         vm_object_collapse(object);
3701
3702                         /*
3703                          * The option OBJPR_NOTMAPPED can be passed here
3704                          * because vm_map_delete() already performed
3705                          * pmap_remove() on the only mapping to this range
3706                          * of pages. 
3707                          */
3708                         vm_object_page_remove(object, offidxstart, offidxend,
3709                             OBJPR_NOTMAPPED);
3710                         if (object->type == OBJT_SWAP)
3711                                 swap_pager_freespace(object, offidxstart,
3712                                     count);
3713                         if (offidxend >= object->size &&
3714                             offidxstart < object->size) {
3715                                 size1 = object->size;
3716                                 object->size = offidxstart;
3717                                 if (object->cred != NULL) {
3718                                         size1 -= object->size;
3719                                         KASSERT(object->charge >= ptoa(size1),
3720                                             ("object %p charge < 0", object));
3721                                         swap_release_by_cred(ptoa(size1),
3722                                             object->cred);
3723                                         object->charge -= ptoa(size1);
3724                                 }
3725                         }
3726                 }
3727                 VM_OBJECT_WUNLOCK(object);
3728         }
3729         if (map->system_map)
3730                 vm_map_entry_deallocate(entry, TRUE);
3731         else {
3732                 entry->defer_next = curthread->td_map_def_user;
3733                 curthread->td_map_def_user = entry;
3734         }
3735 }
3736
3737 /*
3738  *      vm_map_delete:  [ internal use only ]
3739  *
3740  *      Deallocates the given address range from the target
3741  *      map.
3742  */
3743 int
3744 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3745 {
3746         vm_map_entry_t entry, next_entry;
3747
3748         VM_MAP_ASSERT_LOCKED(map);
3749         if (start == end)
3750                 return (KERN_SUCCESS);
3751
3752         /*
3753          * Find the start of the region, and clip it.
3754          * Step through all entries in this region.
3755          */
3756         for (entry = vm_map_lookup_clip_start(map, start, &entry);
3757             entry->start < end; entry = next_entry) {
3758                 /*
3759                  * Wait for wiring or unwiring of an entry to complete.
3760                  * Also wait for any system wirings to disappear on
3761                  * user maps.
3762                  */
3763                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3764                     (vm_map_pmap(map) != kernel_pmap &&
3765                     vm_map_entry_system_wired_count(entry) != 0)) {
3766                         unsigned int last_timestamp;
3767                         vm_offset_t saved_start;
3768
3769                         saved_start = entry->start;
3770                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3771                         last_timestamp = map->timestamp;
3772                         (void) vm_map_unlock_and_wait(map, 0);
3773                         vm_map_lock(map);
3774                         if (last_timestamp + 1 != map->timestamp) {
3775                                 /*
3776                                  * Look again for the entry because the map was
3777                                  * modified while it was unlocked.
3778                                  * Specifically, the entry may have been
3779                                  * clipped, merged, or deleted.
3780                                  */
3781                                 next_entry = vm_map_lookup_clip_start(map,
3782                                     saved_start, &next_entry);
3783                         } else
3784                                 next_entry = entry;
3785                         continue;
3786                 }
3787                 vm_map_clip_end(map, entry, end);
3788                 next_entry = vm_map_entry_succ(entry);
3789
3790                 /*
3791                  * Unwire before removing addresses from the pmap; otherwise,
3792                  * unwiring will put the entries back in the pmap.
3793                  */
3794                 if (entry->wired_count != 0)
3795                         vm_map_entry_unwire(map, entry);
3796
3797                 /*
3798                  * Remove mappings for the pages, but only if the
3799                  * mappings could exist.  For instance, it does not
3800                  * make sense to call pmap_remove() for guard entries.
3801                  */
3802                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3803                     entry->object.vm_object != NULL)
3804                         pmap_remove(map->pmap, entry->start, entry->end);
3805
3806                 if (entry->end == map->anon_loc)
3807                         map->anon_loc = entry->start;
3808
3809                 /*
3810                  * Delete the entry only after removing all pmap
3811                  * entries pointing to its pages.  (Otherwise, its
3812                  * page frames may be reallocated, and any modify bits
3813                  * will be set in the wrong object!)
3814                  */
3815                 vm_map_entry_delete(map, entry);
3816         }
3817         return (KERN_SUCCESS);
3818 }
3819
3820 /*
3821  *      vm_map_remove:
3822  *
3823  *      Remove the given address range from the target map.
3824  *      This is the exported form of vm_map_delete.
3825  */
3826 int
3827 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3828 {
3829         int result;
3830
3831         vm_map_lock(map);
3832         VM_MAP_RANGE_CHECK(map, start, end);
3833         result = vm_map_delete(map, start, end);
3834         vm_map_unlock(map);
3835         return (result);
3836 }
3837
3838 /*
3839  *      vm_map_check_protection:
3840  *
3841  *      Assert that the target map allows the specified privilege on the
3842  *      entire address region given.  The entire region must be allocated.
3843  *
3844  *      WARNING!  This code does not and should not check whether the
3845  *      contents of the region is accessible.  For example a smaller file
3846  *      might be mapped into a larger address space.
3847  *
3848  *      NOTE!  This code is also called by munmap().
3849  *
3850  *      The map must be locked.  A read lock is sufficient.
3851  */
3852 boolean_t
3853 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3854                         vm_prot_t protection)
3855 {
3856         vm_map_entry_t entry;
3857         vm_map_entry_t tmp_entry;
3858
3859         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3860                 return (FALSE);
3861         entry = tmp_entry;
3862
3863         while (start < end) {
3864                 /*
3865                  * No holes allowed!
3866                  */
3867                 if (start < entry->start)
3868                         return (FALSE);
3869                 /*
3870                  * Check protection associated with entry.
3871                  */
3872                 if ((entry->protection & protection) != protection)
3873                         return (FALSE);
3874                 /* go to next entry */
3875                 start = entry->end;
3876                 entry = vm_map_entry_succ(entry);
3877         }
3878         return (TRUE);
3879 }
3880
3881
3882 /*
3883  *
3884  *      vm_map_copy_swap_object:
3885  *
3886  *      Copies a swap-backed object from an existing map entry to a
3887  *      new one.  Carries forward the swap charge.  May change the
3888  *      src object on return.
3889  */
3890 static void
3891 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3892     vm_offset_t size, vm_ooffset_t *fork_charge)
3893 {
3894         vm_object_t src_object;
3895         struct ucred *cred;
3896         int charged;
3897
3898         src_object = src_entry->object.vm_object;
3899         charged = ENTRY_CHARGED(src_entry);
3900         if ((src_object->flags & OBJ_ANON) != 0) {
3901                 VM_OBJECT_WLOCK(src_object);
3902                 vm_object_collapse(src_object);
3903                 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3904                         vm_object_split(src_entry);
3905                         src_object = src_entry->object.vm_object;
3906                 }
3907                 vm_object_reference_locked(src_object);
3908                 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3909                 VM_OBJECT_WUNLOCK(src_object);
3910         } else
3911                 vm_object_reference(src_object);
3912         if (src_entry->cred != NULL &&
3913             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3914                 KASSERT(src_object->cred == NULL,
3915                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3916                      src_object));
3917                 src_object->cred = src_entry->cred;
3918                 src_object->charge = size;
3919         }
3920         dst_entry->object.vm_object = src_object;
3921         if (charged) {
3922                 cred = curthread->td_ucred;
3923                 crhold(cred);
3924                 dst_entry->cred = cred;
3925                 *fork_charge += size;
3926                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3927                         crhold(cred);
3928                         src_entry->cred = cred;
3929                         *fork_charge += size;
3930                 }
3931         }
3932 }
3933
3934 /*
3935  *      vm_map_copy_entry:
3936  *
3937  *      Copies the contents of the source entry to the destination
3938  *      entry.  The entries *must* be aligned properly.
3939  */
3940 static void
3941 vm_map_copy_entry(
3942         vm_map_t src_map,
3943         vm_map_t dst_map,
3944         vm_map_entry_t src_entry,
3945         vm_map_entry_t dst_entry,
3946         vm_ooffset_t *fork_charge)
3947 {
3948         vm_object_t src_object;
3949         vm_map_entry_t fake_entry;
3950         vm_offset_t size;
3951
3952         VM_MAP_ASSERT_LOCKED(dst_map);
3953
3954         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3955                 return;
3956
3957         if (src_entry->wired_count == 0 ||
3958             (src_entry->protection & VM_PROT_WRITE) == 0) {
3959                 /*
3960                  * If the source entry is marked needs_copy, it is already
3961                  * write-protected.
3962                  */
3963                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3964                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3965                         pmap_protect(src_map->pmap,
3966                             src_entry->start,
3967                             src_entry->end,
3968                             src_entry->protection & ~VM_PROT_WRITE);
3969                 }
3970
3971                 /*
3972                  * Make a copy of the object.
3973                  */
3974                 size = src_entry->end - src_entry->start;
3975                 if ((src_object = src_entry->object.vm_object) != NULL) {
3976                         if (src_object->type == OBJT_DEFAULT ||
3977                             src_object->type == OBJT_SWAP) {
3978                                 vm_map_copy_swap_object(src_entry, dst_entry,
3979                                     size, fork_charge);
3980                                 /* May have split/collapsed, reload obj. */
3981                                 src_object = src_entry->object.vm_object;
3982                         } else {
3983                                 vm_object_reference(src_object);
3984                                 dst_entry->object.vm_object = src_object;
3985                         }
3986                         src_entry->eflags |= MAP_ENTRY_COW |
3987                             MAP_ENTRY_NEEDS_COPY;
3988                         dst_entry->eflags |= MAP_ENTRY_COW |
3989                             MAP_ENTRY_NEEDS_COPY;
3990                         dst_entry->offset = src_entry->offset;
3991                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3992                                 /*
3993                                  * MAP_ENTRY_WRITECNT cannot
3994                                  * indicate write reference from
3995                                  * src_entry, since the entry is
3996                                  * marked as needs copy.  Allocate a
3997                                  * fake entry that is used to
3998                                  * decrement object->un_pager writecount
3999                                  * at the appropriate time.  Attach
4000                                  * fake_entry to the deferred list.
4001                                  */
4002                                 fake_entry = vm_map_entry_create(dst_map);
4003                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4004                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4005                                 vm_object_reference(src_object);
4006                                 fake_entry->object.vm_object = src_object;
4007                                 fake_entry->start = src_entry->start;
4008                                 fake_entry->end = src_entry->end;
4009                                 fake_entry->defer_next =
4010                                     curthread->td_map_def_user;
4011                                 curthread->td_map_def_user = fake_entry;
4012                         }
4013
4014                         pmap_copy(dst_map->pmap, src_map->pmap,
4015                             dst_entry->start, dst_entry->end - dst_entry->start,
4016                             src_entry->start);
4017                 } else {
4018                         dst_entry->object.vm_object = NULL;
4019                         dst_entry->offset = 0;
4020                         if (src_entry->cred != NULL) {
4021                                 dst_entry->cred = curthread->td_ucred;
4022                                 crhold(dst_entry->cred);
4023                                 *fork_charge += size;
4024                         }
4025                 }
4026         } else {
4027                 /*
4028                  * We don't want to make writeable wired pages copy-on-write.
4029                  * Immediately copy these pages into the new map by simulating
4030                  * page faults.  The new pages are pageable.
4031                  */
4032                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4033                     fork_charge);
4034         }
4035 }
4036
4037 /*
4038  * vmspace_map_entry_forked:
4039  * Update the newly-forked vmspace each time a map entry is inherited
4040  * or copied.  The values for vm_dsize and vm_tsize are approximate
4041  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4042  */
4043 static void
4044 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4045     vm_map_entry_t entry)
4046 {
4047         vm_size_t entrysize;
4048         vm_offset_t newend;
4049
4050         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4051                 return;
4052         entrysize = entry->end - entry->start;
4053         vm2->vm_map.size += entrysize;
4054         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4055                 vm2->vm_ssize += btoc(entrysize);
4056         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4057             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4058                 newend = MIN(entry->end,
4059                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4060                 vm2->vm_dsize += btoc(newend - entry->start);
4061         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4062             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4063                 newend = MIN(entry->end,
4064                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4065                 vm2->vm_tsize += btoc(newend - entry->start);
4066         }
4067 }
4068
4069 /*
4070  * vmspace_fork:
4071  * Create a new process vmspace structure and vm_map
4072  * based on those of an existing process.  The new map
4073  * is based on the old map, according to the inheritance
4074  * values on the regions in that map.
4075  *
4076  * XXX It might be worth coalescing the entries added to the new vmspace.
4077  *
4078  * The source map must not be locked.
4079  */
4080 struct vmspace *
4081 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4082 {
4083         struct vmspace *vm2;
4084         vm_map_t new_map, old_map;
4085         vm_map_entry_t new_entry, old_entry;
4086         vm_object_t object;
4087         int error, locked;
4088         vm_inherit_t inh;
4089
4090         old_map = &vm1->vm_map;
4091         /* Copy immutable fields of vm1 to vm2. */
4092         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4093             pmap_pinit);
4094         if (vm2 == NULL)
4095                 return (NULL);
4096
4097         vm2->vm_taddr = vm1->vm_taddr;
4098         vm2->vm_daddr = vm1->vm_daddr;
4099         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4100         vm_map_lock(old_map);
4101         if (old_map->busy)
4102                 vm_map_wait_busy(old_map);
4103         new_map = &vm2->vm_map;
4104         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4105         KASSERT(locked, ("vmspace_fork: lock failed"));
4106
4107         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4108         if (error != 0) {
4109                 sx_xunlock(&old_map->lock);
4110                 sx_xunlock(&new_map->lock);
4111                 vm_map_process_deferred();
4112                 vmspace_free(vm2);
4113                 return (NULL);
4114         }
4115
4116         new_map->anon_loc = old_map->anon_loc;
4117
4118         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4119                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4120                         panic("vm_map_fork: encountered a submap");
4121
4122                 inh = old_entry->inheritance;
4123                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4124                     inh != VM_INHERIT_NONE)
4125                         inh = VM_INHERIT_COPY;
4126
4127                 switch (inh) {
4128                 case VM_INHERIT_NONE:
4129                         break;
4130
4131                 case VM_INHERIT_SHARE:
4132                         /*
4133                          * Clone the entry, creating the shared object if
4134                          * necessary.
4135                          */
4136                         object = old_entry->object.vm_object;
4137                         if (object == NULL) {
4138                                 vm_map_entry_back(old_entry);
4139                                 object = old_entry->object.vm_object;
4140                         }
4141
4142                         /*
4143                          * Add the reference before calling vm_object_shadow
4144                          * to insure that a shadow object is created.
4145                          */
4146                         vm_object_reference(object);
4147                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4148                                 vm_object_shadow(&old_entry->object.vm_object,
4149                                     &old_entry->offset,
4150                                     old_entry->end - old_entry->start,
4151                                     old_entry->cred,
4152                                     /* Transfer the second reference too. */
4153                                     true);
4154                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4155                                 old_entry->cred = NULL;
4156
4157                                 /*
4158                                  * As in vm_map_merged_neighbor_dispose(),
4159                                  * the vnode lock will not be acquired in
4160                                  * this call to vm_object_deallocate().
4161                                  */
4162                                 vm_object_deallocate(object);
4163                                 object = old_entry->object.vm_object;
4164                         } else {
4165                                 VM_OBJECT_WLOCK(object);
4166                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4167                                 if (old_entry->cred != NULL) {
4168                                         KASSERT(object->cred == NULL,
4169                                             ("vmspace_fork both cred"));
4170                                         object->cred = old_entry->cred;
4171                                         object->charge = old_entry->end -
4172                                             old_entry->start;
4173                                         old_entry->cred = NULL;
4174                                 }
4175
4176                                 /*
4177                                  * Assert the correct state of the vnode
4178                                  * v_writecount while the object is locked, to
4179                                  * not relock it later for the assertion
4180                                  * correctness.
4181                                  */
4182                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4183                                     object->type == OBJT_VNODE) {
4184                                         KASSERT(((struct vnode *)object->
4185                                             handle)->v_writecount > 0,
4186                                             ("vmspace_fork: v_writecount %p",
4187                                             object));
4188                                         KASSERT(object->un_pager.vnp.
4189                                             writemappings > 0,
4190                                             ("vmspace_fork: vnp.writecount %p",
4191                                             object));
4192                                 }
4193                                 VM_OBJECT_WUNLOCK(object);
4194                         }
4195
4196                         /*
4197                          * Clone the entry, referencing the shared object.
4198                          */
4199                         new_entry = vm_map_entry_create(new_map);
4200                         *new_entry = *old_entry;
4201                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4202                             MAP_ENTRY_IN_TRANSITION);
4203                         new_entry->wiring_thread = NULL;
4204                         new_entry->wired_count = 0;
4205                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4206                                 vm_pager_update_writecount(object,
4207                                     new_entry->start, new_entry->end);
4208                         }
4209                         vm_map_entry_set_vnode_text(new_entry, true);
4210
4211                         /*
4212                          * Insert the entry into the new map -- we know we're
4213                          * inserting at the end of the new map.
4214                          */
4215                         vm_map_entry_link(new_map, new_entry);
4216                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4217
4218                         /*
4219                          * Update the physical map
4220                          */
4221                         pmap_copy(new_map->pmap, old_map->pmap,
4222                             new_entry->start,
4223                             (old_entry->end - old_entry->start),
4224                             old_entry->start);
4225                         break;
4226
4227                 case VM_INHERIT_COPY:
4228                         /*
4229                          * Clone the entry and link into the map.
4230                          */
4231                         new_entry = vm_map_entry_create(new_map);
4232                         *new_entry = *old_entry;
4233                         /*
4234                          * Copied entry is COW over the old object.
4235                          */
4236                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4237                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4238                         new_entry->wiring_thread = NULL;
4239                         new_entry->wired_count = 0;
4240                         new_entry->object.vm_object = NULL;
4241                         new_entry->cred = NULL;
4242                         vm_map_entry_link(new_map, new_entry);
4243                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4244                         vm_map_copy_entry(old_map, new_map, old_entry,
4245                             new_entry, fork_charge);
4246                         vm_map_entry_set_vnode_text(new_entry, true);
4247                         break;
4248
4249                 case VM_INHERIT_ZERO:
4250                         /*
4251                          * Create a new anonymous mapping entry modelled from
4252                          * the old one.
4253                          */
4254                         new_entry = vm_map_entry_create(new_map);
4255                         memset(new_entry, 0, sizeof(*new_entry));
4256
4257                         new_entry->start = old_entry->start;
4258                         new_entry->end = old_entry->end;
4259                         new_entry->eflags = old_entry->eflags &
4260                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4261                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4262                         new_entry->protection = old_entry->protection;
4263                         new_entry->max_protection = old_entry->max_protection;
4264                         new_entry->inheritance = VM_INHERIT_ZERO;
4265
4266                         vm_map_entry_link(new_map, new_entry);
4267                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4268
4269                         new_entry->cred = curthread->td_ucred;
4270                         crhold(new_entry->cred);
4271                         *fork_charge += (new_entry->end - new_entry->start);
4272
4273                         break;
4274                 }
4275         }
4276         /*
4277          * Use inlined vm_map_unlock() to postpone handling the deferred
4278          * map entries, which cannot be done until both old_map and
4279          * new_map locks are released.
4280          */
4281         sx_xunlock(&old_map->lock);
4282         sx_xunlock(&new_map->lock);
4283         vm_map_process_deferred();
4284
4285         return (vm2);
4286 }
4287
4288 /*
4289  * Create a process's stack for exec_new_vmspace().  This function is never
4290  * asked to wire the newly created stack.
4291  */
4292 int
4293 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4294     vm_prot_t prot, vm_prot_t max, int cow)
4295 {
4296         vm_size_t growsize, init_ssize;
4297         rlim_t vmemlim;
4298         int rv;
4299
4300         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4301         growsize = sgrowsiz;
4302         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4303         vm_map_lock(map);
4304         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4305         /* If we would blow our VMEM resource limit, no go */
4306         if (map->size + init_ssize > vmemlim) {
4307                 rv = KERN_NO_SPACE;
4308                 goto out;
4309         }
4310         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4311             max, cow);
4312 out:
4313         vm_map_unlock(map);
4314         return (rv);
4315 }
4316
4317 static int stack_guard_page = 1;
4318 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4319     &stack_guard_page, 0,
4320     "Specifies the number of guard pages for a stack that grows");
4321
4322 static int
4323 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4324     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4325 {
4326         vm_map_entry_t new_entry, prev_entry;
4327         vm_offset_t bot, gap_bot, gap_top, top;
4328         vm_size_t init_ssize, sgp;
4329         int orient, rv;
4330
4331         /*
4332          * The stack orientation is piggybacked with the cow argument.
4333          * Extract it into orient and mask the cow argument so that we
4334          * don't pass it around further.
4335          */
4336         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4337         KASSERT(orient != 0, ("No stack grow direction"));
4338         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4339             ("bi-dir stack"));
4340
4341         if (addrbos < vm_map_min(map) ||
4342             addrbos + max_ssize > vm_map_max(map) ||
4343             addrbos + max_ssize <= addrbos)
4344                 return (KERN_INVALID_ADDRESS);
4345         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4346             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4347             (vm_size_t)stack_guard_page * PAGE_SIZE;
4348         if (sgp >= max_ssize)
4349                 return (KERN_INVALID_ARGUMENT);
4350
4351         init_ssize = growsize;
4352         if (max_ssize < init_ssize + sgp)
4353                 init_ssize = max_ssize - sgp;
4354
4355         /* If addr is already mapped, no go */
4356         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4357                 return (KERN_NO_SPACE);
4358
4359         /*
4360          * If we can't accommodate max_ssize in the current mapping, no go.
4361          */
4362         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4363                 return (KERN_NO_SPACE);
4364
4365         /*
4366          * We initially map a stack of only init_ssize.  We will grow as
4367          * needed later.  Depending on the orientation of the stack (i.e.
4368          * the grow direction) we either map at the top of the range, the
4369          * bottom of the range or in the middle.
4370          *
4371          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4372          * and cow to be 0.  Possibly we should eliminate these as input
4373          * parameters, and just pass these values here in the insert call.
4374          */
4375         if (orient == MAP_STACK_GROWS_DOWN) {
4376                 bot = addrbos + max_ssize - init_ssize;
4377                 top = bot + init_ssize;
4378                 gap_bot = addrbos;
4379                 gap_top = bot;
4380         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4381                 bot = addrbos;
4382                 top = bot + init_ssize;
4383                 gap_bot = top;
4384                 gap_top = addrbos + max_ssize;
4385         }
4386         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4387         if (rv != KERN_SUCCESS)
4388                 return (rv);
4389         new_entry = vm_map_entry_succ(prev_entry);
4390         KASSERT(new_entry->end == top || new_entry->start == bot,
4391             ("Bad entry start/end for new stack entry"));
4392         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4393             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4394             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4395         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4396             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4397             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4398         if (gap_bot == gap_top)
4399                 return (KERN_SUCCESS);
4400         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4401             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4402             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4403         if (rv == KERN_SUCCESS) {
4404                 /*
4405                  * Gap can never successfully handle a fault, so
4406                  * read-ahead logic is never used for it.  Re-use
4407                  * next_read of the gap entry to store
4408                  * stack_guard_page for vm_map_growstack().
4409                  */
4410                 if (orient == MAP_STACK_GROWS_DOWN)
4411                         vm_map_entry_pred(new_entry)->next_read = sgp;
4412                 else
4413                         vm_map_entry_succ(new_entry)->next_read = sgp;
4414         } else {
4415                 (void)vm_map_delete(map, bot, top);
4416         }
4417         return (rv);
4418 }
4419
4420 /*
4421  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4422  * successfully grow the stack.
4423  */
4424 static int
4425 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4426 {
4427         vm_map_entry_t stack_entry;
4428         struct proc *p;
4429         struct vmspace *vm;
4430         struct ucred *cred;
4431         vm_offset_t gap_end, gap_start, grow_start;
4432         vm_size_t grow_amount, guard, max_grow;
4433         rlim_t lmemlim, stacklim, vmemlim;
4434         int rv, rv1;
4435         bool gap_deleted, grow_down, is_procstack;
4436 #ifdef notyet
4437         uint64_t limit;
4438 #endif
4439 #ifdef RACCT
4440         int error;
4441 #endif
4442
4443         p = curproc;
4444         vm = p->p_vmspace;
4445
4446         /*
4447          * Disallow stack growth when the access is performed by a
4448          * debugger or AIO daemon.  The reason is that the wrong
4449          * resource limits are applied.
4450          */
4451         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4452             p->p_textvp == NULL))
4453                 return (KERN_FAILURE);
4454
4455         MPASS(!map->system_map);
4456
4457         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4458         stacklim = lim_cur(curthread, RLIMIT_STACK);
4459         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4460 retry:
4461         /* If addr is not in a hole for a stack grow area, no need to grow. */
4462         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4463                 return (KERN_FAILURE);
4464         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4465                 return (KERN_SUCCESS);
4466         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4467                 stack_entry = vm_map_entry_succ(gap_entry);
4468                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4469                     stack_entry->start != gap_entry->end)
4470                         return (KERN_FAILURE);
4471                 grow_amount = round_page(stack_entry->start - addr);
4472                 grow_down = true;
4473         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4474                 stack_entry = vm_map_entry_pred(gap_entry);
4475                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4476                     stack_entry->end != gap_entry->start)
4477                         return (KERN_FAILURE);
4478                 grow_amount = round_page(addr + 1 - stack_entry->end);
4479                 grow_down = false;
4480         } else {
4481                 return (KERN_FAILURE);
4482         }
4483         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4484             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4485             gap_entry->next_read;
4486         max_grow = gap_entry->end - gap_entry->start;
4487         if (guard > max_grow)
4488                 return (KERN_NO_SPACE);
4489         max_grow -= guard;
4490         if (grow_amount > max_grow)
4491                 return (KERN_NO_SPACE);
4492
4493         /*
4494          * If this is the main process stack, see if we're over the stack
4495          * limit.
4496          */
4497         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4498             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4499         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4500                 return (KERN_NO_SPACE);
4501
4502 #ifdef RACCT
4503         if (racct_enable) {
4504                 PROC_LOCK(p);
4505                 if (is_procstack && racct_set(p, RACCT_STACK,
4506                     ctob(vm->vm_ssize) + grow_amount)) {
4507                         PROC_UNLOCK(p);
4508                         return (KERN_NO_SPACE);
4509                 }
4510                 PROC_UNLOCK(p);
4511         }
4512 #endif
4513
4514         grow_amount = roundup(grow_amount, sgrowsiz);
4515         if (grow_amount > max_grow)
4516                 grow_amount = max_grow;
4517         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4518                 grow_amount = trunc_page((vm_size_t)stacklim) -
4519                     ctob(vm->vm_ssize);
4520         }
4521
4522 #ifdef notyet
4523         PROC_LOCK(p);
4524         limit = racct_get_available(p, RACCT_STACK);
4525         PROC_UNLOCK(p);
4526         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4527                 grow_amount = limit - ctob(vm->vm_ssize);
4528 #endif
4529
4530         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4531                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4532                         rv = KERN_NO_SPACE;
4533                         goto out;
4534                 }
4535 #ifdef RACCT
4536                 if (racct_enable) {
4537                         PROC_LOCK(p);
4538                         if (racct_set(p, RACCT_MEMLOCK,
4539                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4540                                 PROC_UNLOCK(p);
4541                                 rv = KERN_NO_SPACE;
4542                                 goto out;
4543                         }
4544                         PROC_UNLOCK(p);
4545                 }
4546 #endif
4547         }
4548
4549         /* If we would blow our VMEM resource limit, no go */
4550         if (map->size + grow_amount > vmemlim) {
4551                 rv = KERN_NO_SPACE;
4552                 goto out;
4553         }
4554 #ifdef RACCT
4555         if (racct_enable) {
4556                 PROC_LOCK(p);
4557                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4558                         PROC_UNLOCK(p);
4559                         rv = KERN_NO_SPACE;
4560                         goto out;
4561                 }
4562                 PROC_UNLOCK(p);
4563         }
4564 #endif
4565
4566         if (vm_map_lock_upgrade(map)) {
4567                 gap_entry = NULL;
4568                 vm_map_lock_read(map);
4569                 goto retry;
4570         }
4571
4572         if (grow_down) {
4573                 grow_start = gap_entry->end - grow_amount;
4574                 if (gap_entry->start + grow_amount == gap_entry->end) {
4575                         gap_start = gap_entry->start;
4576                         gap_end = gap_entry->end;
4577                         vm_map_entry_delete(map, gap_entry);
4578                         gap_deleted = true;
4579                 } else {
4580                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4581                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4582                         gap_deleted = false;
4583                 }
4584                 rv = vm_map_insert(map, NULL, 0, grow_start,
4585                     grow_start + grow_amount,
4586                     stack_entry->protection, stack_entry->max_protection,
4587                     MAP_STACK_GROWS_DOWN);
4588                 if (rv != KERN_SUCCESS) {
4589                         if (gap_deleted) {
4590                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4591                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4592                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4593                                 MPASS(rv1 == KERN_SUCCESS);
4594                         } else
4595                                 vm_map_entry_resize(map, gap_entry,
4596                                     grow_amount);
4597                 }
4598         } else {
4599                 grow_start = stack_entry->end;
4600                 cred = stack_entry->cred;
4601                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4602                         cred = stack_entry->object.vm_object->cred;
4603                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4604                         rv = KERN_NO_SPACE;
4605                 /* Grow the underlying object if applicable. */
4606                 else if (stack_entry->object.vm_object == NULL ||
4607                     vm_object_coalesce(stack_entry->object.vm_object,
4608                     stack_entry->offset,
4609                     (vm_size_t)(stack_entry->end - stack_entry->start),
4610                     grow_amount, cred != NULL)) {
4611                         if (gap_entry->start + grow_amount == gap_entry->end) {
4612                                 vm_map_entry_delete(map, gap_entry);
4613                                 vm_map_entry_resize(map, stack_entry,
4614                                     grow_amount);
4615                         } else {
4616                                 gap_entry->start += grow_amount;
4617                                 stack_entry->end += grow_amount;
4618                         }
4619                         map->size += grow_amount;
4620                         rv = KERN_SUCCESS;
4621                 } else
4622                         rv = KERN_FAILURE;
4623         }
4624         if (rv == KERN_SUCCESS && is_procstack)
4625                 vm->vm_ssize += btoc(grow_amount);
4626
4627         /*
4628          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4629          */
4630         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4631                 rv = vm_map_wire_locked(map, grow_start,
4632                     grow_start + grow_amount,
4633                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4634         }
4635         vm_map_lock_downgrade(map);
4636
4637 out:
4638 #ifdef RACCT
4639         if (racct_enable && rv != KERN_SUCCESS) {
4640                 PROC_LOCK(p);
4641                 error = racct_set(p, RACCT_VMEM, map->size);
4642                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4643                 if (!old_mlock) {
4644                         error = racct_set(p, RACCT_MEMLOCK,
4645                             ptoa(pmap_wired_count(map->pmap)));
4646                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4647                 }
4648                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4649                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4650                 PROC_UNLOCK(p);
4651         }
4652 #endif
4653
4654         return (rv);
4655 }
4656
4657 /*
4658  * Unshare the specified VM space for exec.  If other processes are
4659  * mapped to it, then create a new one.  The new vmspace is null.
4660  */
4661 int
4662 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4663 {
4664         struct vmspace *oldvmspace = p->p_vmspace;
4665         struct vmspace *newvmspace;
4666
4667         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4668             ("vmspace_exec recursed"));
4669         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4670         if (newvmspace == NULL)
4671                 return (ENOMEM);
4672         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4673         /*
4674          * This code is written like this for prototype purposes.  The
4675          * goal is to avoid running down the vmspace here, but let the
4676          * other process's that are still using the vmspace to finally
4677          * run it down.  Even though there is little or no chance of blocking
4678          * here, it is a good idea to keep this form for future mods.
4679          */
4680         PROC_VMSPACE_LOCK(p);
4681         p->p_vmspace = newvmspace;
4682         PROC_VMSPACE_UNLOCK(p);
4683         if (p == curthread->td_proc)
4684                 pmap_activate(curthread);
4685         curthread->td_pflags |= TDP_EXECVMSPC;
4686         return (0);
4687 }
4688
4689 /*
4690  * Unshare the specified VM space for forcing COW.  This
4691  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4692  */
4693 int
4694 vmspace_unshare(struct proc *p)
4695 {
4696         struct vmspace *oldvmspace = p->p_vmspace;
4697         struct vmspace *newvmspace;
4698         vm_ooffset_t fork_charge;
4699
4700         if (oldvmspace->vm_refcnt == 1)
4701                 return (0);
4702         fork_charge = 0;
4703         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4704         if (newvmspace == NULL)
4705                 return (ENOMEM);
4706         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4707                 vmspace_free(newvmspace);
4708                 return (ENOMEM);
4709         }
4710         PROC_VMSPACE_LOCK(p);
4711         p->p_vmspace = newvmspace;
4712         PROC_VMSPACE_UNLOCK(p);
4713         if (p == curthread->td_proc)
4714                 pmap_activate(curthread);
4715         vmspace_free(oldvmspace);
4716         return (0);
4717 }
4718
4719 /*
4720  *      vm_map_lookup:
4721  *
4722  *      Finds the VM object, offset, and
4723  *      protection for a given virtual address in the
4724  *      specified map, assuming a page fault of the
4725  *      type specified.
4726  *
4727  *      Leaves the map in question locked for read; return
4728  *      values are guaranteed until a vm_map_lookup_done
4729  *      call is performed.  Note that the map argument
4730  *      is in/out; the returned map must be used in
4731  *      the call to vm_map_lookup_done.
4732  *
4733  *      A handle (out_entry) is returned for use in
4734  *      vm_map_lookup_done, to make that fast.
4735  *
4736  *      If a lookup is requested with "write protection"
4737  *      specified, the map may be changed to perform virtual
4738  *      copying operations, although the data referenced will
4739  *      remain the same.
4740  */
4741 int
4742 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4743               vm_offset_t vaddr,
4744               vm_prot_t fault_typea,
4745               vm_map_entry_t *out_entry,        /* OUT */
4746               vm_object_t *object,              /* OUT */
4747               vm_pindex_t *pindex,              /* OUT */
4748               vm_prot_t *out_prot,              /* OUT */
4749               boolean_t *wired)                 /* OUT */
4750 {
4751         vm_map_entry_t entry;
4752         vm_map_t map = *var_map;
4753         vm_prot_t prot;
4754         vm_prot_t fault_type;
4755         vm_object_t eobject;
4756         vm_size_t size;
4757         struct ucred *cred;
4758
4759 RetryLookup:
4760
4761         vm_map_lock_read(map);
4762
4763 RetryLookupLocked:
4764         /*
4765          * Lookup the faulting address.
4766          */
4767         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4768                 vm_map_unlock_read(map);
4769                 return (KERN_INVALID_ADDRESS);
4770         }
4771
4772         entry = *out_entry;
4773
4774         /*
4775          * Handle submaps.
4776          */
4777         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4778                 vm_map_t old_map = map;
4779
4780                 *var_map = map = entry->object.sub_map;
4781                 vm_map_unlock_read(old_map);
4782                 goto RetryLookup;
4783         }
4784
4785         /*
4786          * Check whether this task is allowed to have this page.
4787          */
4788         prot = entry->protection;
4789         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4790                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4791                 if (prot == VM_PROT_NONE && map != kernel_map &&
4792                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4793                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4794                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4795                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4796                         goto RetryLookupLocked;
4797         }
4798         fault_type = fault_typea & VM_PROT_ALL;
4799         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4800                 vm_map_unlock_read(map);
4801                 return (KERN_PROTECTION_FAILURE);
4802         }
4803         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4804             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4805             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4806             ("entry %p flags %x", entry, entry->eflags));
4807         if ((fault_typea & VM_PROT_COPY) != 0 &&
4808             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4809             (entry->eflags & MAP_ENTRY_COW) == 0) {
4810                 vm_map_unlock_read(map);
4811                 return (KERN_PROTECTION_FAILURE);
4812         }
4813
4814         /*
4815          * If this page is not pageable, we have to get it for all possible
4816          * accesses.
4817          */
4818         *wired = (entry->wired_count != 0);
4819         if (*wired)
4820                 fault_type = entry->protection;
4821         size = entry->end - entry->start;
4822
4823         /*
4824          * If the entry was copy-on-write, we either ...
4825          */
4826         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4827                 /*
4828                  * If we want to write the page, we may as well handle that
4829                  * now since we've got the map locked.
4830                  *
4831                  * If we don't need to write the page, we just demote the
4832                  * permissions allowed.
4833                  */
4834                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4835                     (fault_typea & VM_PROT_COPY) != 0) {
4836                         /*
4837                          * Make a new object, and place it in the object
4838                          * chain.  Note that no new references have appeared
4839                          * -- one just moved from the map to the new
4840                          * object.
4841                          */
4842                         if (vm_map_lock_upgrade(map))
4843                                 goto RetryLookup;
4844
4845                         if (entry->cred == NULL) {
4846                                 /*
4847                                  * The debugger owner is charged for
4848                                  * the memory.
4849                                  */
4850                                 cred = curthread->td_ucred;
4851                                 crhold(cred);
4852                                 if (!swap_reserve_by_cred(size, cred)) {
4853                                         crfree(cred);
4854                                         vm_map_unlock(map);
4855                                         return (KERN_RESOURCE_SHORTAGE);
4856                                 }
4857                                 entry->cred = cred;
4858                         }
4859                         eobject = entry->object.vm_object;
4860                         vm_object_shadow(&entry->object.vm_object,
4861                             &entry->offset, size, entry->cred, false);
4862                         if (eobject == entry->object.vm_object) {
4863                                 /*
4864                                  * The object was not shadowed.
4865                                  */
4866                                 swap_release_by_cred(size, entry->cred);
4867                                 crfree(entry->cred);
4868                         }
4869                         entry->cred = NULL;
4870                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4871
4872                         vm_map_lock_downgrade(map);
4873                 } else {
4874                         /*
4875                          * We're attempting to read a copy-on-write page --
4876                          * don't allow writes.
4877                          */
4878                         prot &= ~VM_PROT_WRITE;
4879                 }
4880         }
4881
4882         /*
4883          * Create an object if necessary.
4884          */
4885         if (entry->object.vm_object == NULL && !map->system_map) {
4886                 if (vm_map_lock_upgrade(map))
4887                         goto RetryLookup;
4888                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
4889                     NULL, entry->cred, entry->cred != NULL ? size : 0);
4890                 entry->offset = 0;
4891                 entry->cred = NULL;
4892                 vm_map_lock_downgrade(map);
4893         }
4894
4895         /*
4896          * Return the object/offset from this entry.  If the entry was
4897          * copy-on-write or empty, it has been fixed up.
4898          */
4899         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4900         *object = entry->object.vm_object;
4901
4902         *out_prot = prot;
4903         return (KERN_SUCCESS);
4904 }
4905
4906 /*
4907  *      vm_map_lookup_locked:
4908  *
4909  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4910  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4911  */
4912 int
4913 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4914                      vm_offset_t vaddr,
4915                      vm_prot_t fault_typea,
4916                      vm_map_entry_t *out_entry, /* OUT */
4917                      vm_object_t *object,       /* OUT */
4918                      vm_pindex_t *pindex,       /* OUT */
4919                      vm_prot_t *out_prot,       /* OUT */
4920                      boolean_t *wired)          /* OUT */
4921 {
4922         vm_map_entry_t entry;
4923         vm_map_t map = *var_map;
4924         vm_prot_t prot;
4925         vm_prot_t fault_type = fault_typea;
4926
4927         /*
4928          * Lookup the faulting address.
4929          */
4930         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4931                 return (KERN_INVALID_ADDRESS);
4932
4933         entry = *out_entry;
4934
4935         /*
4936          * Fail if the entry refers to a submap.
4937          */
4938         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4939                 return (KERN_FAILURE);
4940
4941         /*
4942          * Check whether this task is allowed to have this page.
4943          */
4944         prot = entry->protection;
4945         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4946         if ((fault_type & prot) != fault_type)
4947                 return (KERN_PROTECTION_FAILURE);
4948
4949         /*
4950          * If this page is not pageable, we have to get it for all possible
4951          * accesses.
4952          */
4953         *wired = (entry->wired_count != 0);
4954         if (*wired)
4955                 fault_type = entry->protection;
4956
4957         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4958                 /*
4959                  * Fail if the entry was copy-on-write for a write fault.
4960                  */
4961                 if (fault_type & VM_PROT_WRITE)
4962                         return (KERN_FAILURE);
4963                 /*
4964                  * We're attempting to read a copy-on-write page --
4965                  * don't allow writes.
4966                  */
4967                 prot &= ~VM_PROT_WRITE;
4968         }
4969
4970         /*
4971          * Fail if an object should be created.
4972          */
4973         if (entry->object.vm_object == NULL && !map->system_map)
4974                 return (KERN_FAILURE);
4975
4976         /*
4977          * Return the object/offset from this entry.  If the entry was
4978          * copy-on-write or empty, it has been fixed up.
4979          */
4980         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4981         *object = entry->object.vm_object;
4982
4983         *out_prot = prot;
4984         return (KERN_SUCCESS);
4985 }
4986
4987 /*
4988  *      vm_map_lookup_done:
4989  *
4990  *      Releases locks acquired by a vm_map_lookup
4991  *      (according to the handle returned by that lookup).
4992  */
4993 void
4994 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4995 {
4996         /*
4997          * Unlock the main-level map
4998          */
4999         vm_map_unlock_read(map);
5000 }
5001
5002 vm_offset_t
5003 vm_map_max_KBI(const struct vm_map *map)
5004 {
5005
5006         return (vm_map_max(map));
5007 }
5008
5009 vm_offset_t
5010 vm_map_min_KBI(const struct vm_map *map)
5011 {
5012
5013         return (vm_map_min(map));
5014 }
5015
5016 pmap_t
5017 vm_map_pmap_KBI(vm_map_t map)
5018 {
5019
5020         return (map->pmap);
5021 }
5022
5023 #ifdef INVARIANTS
5024 static void
5025 _vm_map_assert_consistent(vm_map_t map, int check)
5026 {
5027         vm_map_entry_t entry, prev;
5028         vm_map_entry_t cur, header, lbound, ubound;
5029         vm_size_t max_left, max_right;
5030
5031 #ifdef DIAGNOSTIC
5032         ++map->nupdates;
5033 #endif
5034         if (enable_vmmap_check != check)
5035                 return;
5036
5037         header = prev = &map->header;
5038         VM_MAP_ENTRY_FOREACH(entry, map) {
5039                 KASSERT(prev->end <= entry->start,
5040                     ("map %p prev->end = %jx, start = %jx", map,
5041                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5042                 KASSERT(entry->start < entry->end,
5043                     ("map %p start = %jx, end = %jx", map,
5044                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5045                 KASSERT(entry->left == header ||
5046                     entry->left->start < entry->start,
5047                     ("map %p left->start = %jx, start = %jx", map,
5048                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5049                 KASSERT(entry->right == header ||
5050                     entry->start < entry->right->start,
5051                     ("map %p start = %jx, right->start = %jx", map,
5052                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5053                 cur = map->root;
5054                 lbound = ubound = header;
5055                 for (;;) {
5056                         if (entry->start < cur->start) {
5057                                 ubound = cur;
5058                                 cur = cur->left;
5059                                 KASSERT(cur != lbound,
5060                                     ("map %p cannot find %jx",
5061                                     map, (uintmax_t)entry->start));
5062                         } else if (cur->end <= entry->start) {
5063                                 lbound = cur;
5064                                 cur = cur->right;
5065                                 KASSERT(cur != ubound,
5066                                     ("map %p cannot find %jx",
5067                                     map, (uintmax_t)entry->start));
5068                         } else {
5069                                 KASSERT(cur == entry,
5070                                     ("map %p cannot find %jx",
5071                                     map, (uintmax_t)entry->start));
5072                                 break;
5073                         }
5074                 }
5075                 max_left = vm_map_entry_max_free_left(entry, lbound);
5076                 max_right = vm_map_entry_max_free_right(entry, ubound);
5077                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5078                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5079                     (uintmax_t)entry->max_free,
5080                     (uintmax_t)max_left, (uintmax_t)max_right));
5081                 prev = entry;
5082         }
5083         KASSERT(prev->end <= entry->start,
5084             ("map %p prev->end = %jx, start = %jx", map,
5085             (uintmax_t)prev->end, (uintmax_t)entry->start));
5086 }
5087 #endif
5088
5089 #include "opt_ddb.h"
5090 #ifdef DDB
5091 #include <sys/kernel.h>
5092
5093 #include <ddb/ddb.h>
5094
5095 static void
5096 vm_map_print(vm_map_t map)
5097 {
5098         vm_map_entry_t entry, prev;
5099
5100         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5101             (void *)map,
5102             (void *)map->pmap, map->nentries, map->timestamp);
5103
5104         db_indent += 2;
5105         prev = &map->header;
5106         VM_MAP_ENTRY_FOREACH(entry, map) {
5107                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5108                     (void *)entry, (void *)entry->start, (void *)entry->end,
5109                     entry->eflags);
5110                 {
5111                         static const char * const inheritance_name[4] =
5112                         {"share", "copy", "none", "donate_copy"};
5113
5114                         db_iprintf(" prot=%x/%x/%s",
5115                             entry->protection,
5116                             entry->max_protection,
5117                             inheritance_name[(int)(unsigned char)
5118                             entry->inheritance]);
5119                         if (entry->wired_count != 0)
5120                                 db_printf(", wired");
5121                 }
5122                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5123                         db_printf(", share=%p, offset=0x%jx\n",
5124                             (void *)entry->object.sub_map,
5125                             (uintmax_t)entry->offset);
5126                         if (prev == &map->header ||
5127                             prev->object.sub_map !=
5128                                 entry->object.sub_map) {
5129                                 db_indent += 2;
5130                                 vm_map_print((vm_map_t)entry->object.sub_map);
5131                                 db_indent -= 2;
5132                         }
5133                 } else {
5134                         if (entry->cred != NULL)
5135                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5136                         db_printf(", object=%p, offset=0x%jx",
5137                             (void *)entry->object.vm_object,
5138                             (uintmax_t)entry->offset);
5139                         if (entry->object.vm_object && entry->object.vm_object->cred)
5140                                 db_printf(", obj ruid %d charge %jx",
5141                                     entry->object.vm_object->cred->cr_ruid,
5142                                     (uintmax_t)entry->object.vm_object->charge);
5143                         if (entry->eflags & MAP_ENTRY_COW)
5144                                 db_printf(", copy (%s)",
5145                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5146                         db_printf("\n");
5147
5148                         if (prev == &map->header ||
5149                             prev->object.vm_object !=
5150                                 entry->object.vm_object) {
5151                                 db_indent += 2;
5152                                 vm_object_print((db_expr_t)(intptr_t)
5153                                                 entry->object.vm_object,
5154                                                 0, 0, (char *)0);
5155                                 db_indent -= 2;
5156                         }
5157                 }
5158                 prev = entry;
5159         }
5160         db_indent -= 2;
5161 }
5162
5163 DB_SHOW_COMMAND(map, map)
5164 {
5165
5166         if (!have_addr) {
5167                 db_printf("usage: show map <addr>\n");
5168                 return;
5169         }
5170         vm_map_print((vm_map_t)addr);
5171 }
5172
5173 DB_SHOW_COMMAND(procvm, procvm)
5174 {
5175         struct proc *p;
5176
5177         if (have_addr) {
5178                 p = db_lookup_proc(addr);
5179         } else {
5180                 p = curproc;
5181         }
5182
5183         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5184             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5185             (void *)vmspace_pmap(p->p_vmspace));
5186
5187         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5188 }
5189
5190 #endif /* DDB */