]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_map.c
Remove the next and prev fields from vm_map_entry, to save a bit of
[FreeBSD/FreeBSD.git] / sys / vm / vm_map.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory mapping module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102
103 /*
104  *      Virtual memory maps provide for the mapping, protection,
105  *      and sharing of virtual memory objects.  In addition,
106  *      this module provides for an efficient virtual copy of
107  *      memory from one map to another.
108  *
109  *      Synchronization is required prior to most operations.
110  *
111  *      Maps consist of an ordered doubly-linked list of simple
112  *      entries; a self-adjusting binary search tree of these
113  *      entries is used to speed up lookups.
114  *
115  *      Since portions of maps are specified by start/end addresses,
116  *      which may not align with existing map entries, all
117  *      routines merely "clip" entries to these start/end values.
118  *      [That is, an entry is split into two, bordering at a
119  *      start or end value.]  Note that these clippings may not
120  *      always be necessary (as the two resulting entries are then
121  *      not changed); however, the clipping is done for convenience.
122  *
123  *      As mentioned above, virtual copy operations are performed
124  *      by copying VM object references from one map to
125  *      another, and then marking both regions as copy-on-write.
126  */
127
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153
154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157
158 /* 
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164
165 /*
166  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
167  *
168  *      Asserts that the starting and ending region
169  *      addresses fall within the valid range of the map.
170  */
171 #define VM_MAP_RANGE_CHECK(map, start, end)             \
172                 {                                       \
173                 if (start < vm_map_min(map))            \
174                         start = vm_map_min(map);        \
175                 if (end > vm_map_max(map))              \
176                         end = vm_map_max(map);          \
177                 if (start > end)                        \
178                         start = end;                    \
179                 }
180
181 /*
182  *      vm_map_startup:
183  *
184  *      Initialize the vm_map module.  Must be called before
185  *      any other vm_map routines.
186  *
187  *      Map and entry structures are allocated from the general
188  *      purpose memory pool with some exceptions:
189  *
190  *      - The kernel map and kmem submap are allocated statically.
191  *      - Kernel map entries are allocated out of a static pool.
192  *
193  *      These restrictions are necessary since malloc() uses the
194  *      maps and requires map entries.
195  */
196
197 void
198 vm_map_startup(void)
199 {
200         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203             vm_map_zdtor,
204 #else
205             NULL,
206 #endif
207             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208         uma_prealloc(mapzone, MAX_KMAP);
209         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216             vmspace_zdtor,
217 #else
218             NULL,
219 #endif
220             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226         struct vmspace *vm;
227
228         vm = (struct vmspace *)mem;
229
230         vm->vm_map.pmap = NULL;
231         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232         PMAP_LOCK_INIT(vmspace_pmap(vm));
233         return (0);
234 }
235
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239         vm_map_t map;
240
241         map = (vm_map_t)mem;
242         memset(map, 0, sizeof(*map));
243         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244         sx_init(&map->lock, "vm map (user)");
245         return (0);
246 }
247
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252         struct vmspace *vm;
253
254         vm = (struct vmspace *)mem;
255
256         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261         vm_map_t map;
262
263         map = (vm_map_t)mem;
264         KASSERT(map->nentries == 0,
265             ("map %p nentries == %d on free.",
266             map, map->nentries));
267         KASSERT(map->size == 0,
268             ("map %p size == %lu on free.",
269             map, (unsigned long)map->size));
270 }
271 #endif  /* INVARIANTS */
272
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282         struct vmspace *vm;
283
284         vm = uma_zalloc(vmspace_zone, M_WAITOK);
285         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286         if (!pinit(vmspace_pmap(vm))) {
287                 uma_zfree(vmspace_zone, vm);
288                 return (NULL);
289         }
290         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292         vm->vm_refcnt = 1;
293         vm->vm_shm = NULL;
294         vm->vm_swrss = 0;
295         vm->vm_tsize = 0;
296         vm->vm_dsize = 0;
297         vm->vm_ssize = 0;
298         vm->vm_taddr = 0;
299         vm->vm_daddr = 0;
300         vm->vm_maxsaddr = 0;
301         return (vm);
302 }
303
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308
309         PROC_LOCK(p);
310         racct_set(p, RACCT_DATA, 0);
311         racct_set(p, RACCT_STACK, 0);
312         racct_set(p, RACCT_RSS, 0);
313         racct_set(p, RACCT_MEMLOCK, 0);
314         racct_set(p, RACCT_VMEM, 0);
315         PROC_UNLOCK(p);
316 }
317 #endif
318
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322
323         CTR1(KTR_VM, "vmspace_free: %p", vm);
324
325         /*
326          * Make sure any SysV shm is freed, it might not have been in
327          * exit1().
328          */
329         shmexit(vm);
330
331         /*
332          * Lock the map, to wait out all other references to it.
333          * Delete all of the mappings and pages they hold, then call
334          * the pmap module to reclaim anything left.
335          */
336         (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337             vm_map_max(&vm->vm_map));
338
339         pmap_release(vmspace_pmap(vm));
340         vm->vm_map.pmap = NULL;
341         uma_zfree(vmspace_zone, vm);
342 }
343
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347
348         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349             "vmspace_free() called");
350
351         if (vm->vm_refcnt == 0)
352                 panic("vmspace_free: attempt to free already freed vmspace");
353
354         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355                 vmspace_dofree(vm);
356 }
357
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361         struct vmspace *vm;
362
363         PROC_VMSPACE_LOCK(p);
364         vm = p->p_vmspace;
365         p->p_vmspace = NULL;
366         PROC_VMSPACE_UNLOCK(p);
367         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368         vmspace_free(vm);
369 }
370
371 void
372 vmspace_exit(struct thread *td)
373 {
374         int refcnt;
375         struct vmspace *vm;
376         struct proc *p;
377
378         /*
379          * Release user portion of address space.
380          * This releases references to vnodes,
381          * which could cause I/O if the file has been unlinked.
382          * Need to do this early enough that we can still sleep.
383          *
384          * The last exiting process to reach this point releases as
385          * much of the environment as it can. vmspace_dofree() is the
386          * slower fallback in case another process had a temporary
387          * reference to the vmspace.
388          */
389
390         p = td->td_proc;
391         vm = p->p_vmspace;
392         atomic_add_int(&vmspace0.vm_refcnt, 1);
393         refcnt = vm->vm_refcnt;
394         do {
395                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396                         /* Switch now since other proc might free vmspace */
397                         PROC_VMSPACE_LOCK(p);
398                         p->p_vmspace = &vmspace0;
399                         PROC_VMSPACE_UNLOCK(p);
400                         pmap_activate(td);
401                 }
402         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403         if (refcnt == 1) {
404                 if (p->p_vmspace != vm) {
405                         /* vmspace not yet freed, switch back */
406                         PROC_VMSPACE_LOCK(p);
407                         p->p_vmspace = vm;
408                         PROC_VMSPACE_UNLOCK(p);
409                         pmap_activate(td);
410                 }
411                 pmap_remove_pages(vmspace_pmap(vm));
412                 /* Switch now since this proc will free vmspace */
413                 PROC_VMSPACE_LOCK(p);
414                 p->p_vmspace = &vmspace0;
415                 PROC_VMSPACE_UNLOCK(p);
416                 pmap_activate(td);
417                 vmspace_dofree(vm);
418         }
419 #ifdef RACCT
420         if (racct_enable)
421                 vmspace_container_reset(p);
422 #endif
423 }
424
425 /* Acquire reference to vmspace owned by another process. */
426
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430         struct vmspace *vm;
431         int refcnt;
432
433         PROC_VMSPACE_LOCK(p);
434         vm = p->p_vmspace;
435         if (vm == NULL) {
436                 PROC_VMSPACE_UNLOCK(p);
437                 return (NULL);
438         }
439         refcnt = vm->vm_refcnt;
440         do {
441                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
442                         PROC_VMSPACE_UNLOCK(p);
443                         return (NULL);
444                 }
445         } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446         if (vm != p->p_vmspace) {
447                 PROC_VMSPACE_UNLOCK(p);
448                 vmspace_free(vm);
449                 return (NULL);
450         }
451         PROC_VMSPACE_UNLOCK(p);
452         return (vm);
453 }
454
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         vmspace_free(oldvm);
494 }
495
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499
500         if (map->system_map)
501                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
502         else
503                 sx_xlock_(&map->lock, file, line);
504         map->timestamp++;
505 }
506
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510         vm_object_t object;
511         struct vnode *vp;
512         bool vp_held;
513
514         if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515                 return;
516         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517             ("Submap with execs"));
518         object = entry->object.vm_object;
519         KASSERT(object != NULL, ("No object for text, entry %p", entry));
520         if ((object->flags & OBJ_ANON) != 0)
521                 object = object->handle;
522         else
523                 KASSERT(object->backing_object == NULL,
524                     ("non-anon object %p shadows", object));
525         KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526             entry, entry->object.vm_object));
527
528         /*
529          * Mostly, we do not lock the backing object.  It is
530          * referenced by the entry we are processing, so it cannot go
531          * away.
532          */
533         vp = NULL;
534         vp_held = false;
535         if (object->type == OBJT_DEAD) {
536                 /*
537                  * For OBJT_DEAD objects, v_writecount was handled in
538                  * vnode_pager_dealloc().
539                  */
540         } else if (object->type == OBJT_VNODE) {
541                 vp = object->handle;
542         } else if (object->type == OBJT_SWAP) {
543                 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544                     ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545                     "entry %p, object %p, add %d", entry, object, add));
546                 /*
547                  * Tmpfs VREG node, which was reclaimed, has
548                  * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549                  * this case there is no v_writecount to adjust.
550                  */
551                 VM_OBJECT_RLOCK(object);
552                 if ((object->flags & OBJ_TMPFS) != 0) {
553                         vp = object->un_pager.swp.swp_tmpfs;
554                         if (vp != NULL) {
555                                 vhold(vp);
556                                 vp_held = true;
557                         }
558                 }
559                 VM_OBJECT_RUNLOCK(object);
560         } else {
561                 KASSERT(0,
562                     ("vm_map_entry_set_vnode_text: wrong object type, "
563                     "entry %p, object %p, add %d", entry, object, add));
564         }
565         if (vp != NULL) {
566                 if (add) {
567                         VOP_SET_TEXT_CHECKED(vp);
568                 } else {
569                         vn_lock(vp, LK_SHARED | LK_RETRY);
570                         VOP_UNSET_TEXT_CHECKED(vp);
571                         VOP_UNLOCK(vp, 0);
572                 }
573                 if (vp_held)
574                         vdrop(vp);
575         }
576 }
577
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583
584 static void
585 vm_map_process_deferred(void)
586 {
587         struct thread *td;
588         vm_map_entry_t entry, next;
589         vm_object_t object;
590
591         td = curthread;
592         entry = td->td_map_def_user;
593         td->td_map_def_user = NULL;
594         while (entry != NULL) {
595                 next = entry->defer_next;
596                 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597                     MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598                     MAP_ENTRY_VN_EXEC));
599                 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600                         /*
601                          * Decrement the object's writemappings and
602                          * possibly the vnode's v_writecount.
603                          */
604                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605                             ("Submap with writecount"));
606                         object = entry->object.vm_object;
607                         KASSERT(object != NULL, ("No object for writecount"));
608                         vm_pager_release_writecount(object, entry->start,
609                             entry->end);
610                 }
611                 vm_map_entry_set_vnode_text(entry, false);
612                 vm_map_entry_deallocate(entry, FALSE);
613                 entry = next;
614         }
615 }
616
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621
622         if (map->system_map)
623                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624         else
625                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627
628 #define VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {                              \
646         if (map->nupdates > map->nentries) {                            \
647                 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);     \
648                 map->nupdates = 0;                                      \
649         }                                                               \
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663
664         VM_MAP_UNLOCK_CONSISTENT(map);
665         if (map->system_map)
666                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667         else {
668                 sx_xunlock_(&map->lock, file, line);
669                 vm_map_process_deferred();
670         }
671 }
672
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676
677         if (map->system_map)
678                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
679         else
680                 sx_slock_(&map->lock, file, line);
681 }
682
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686
687         if (map->system_map)
688                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689         else {
690                 sx_sunlock_(&map->lock, file, line);
691                 vm_map_process_deferred();
692         }
693 }
694
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698         int error;
699
700         error = map->system_map ?
701             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702             !sx_try_xlock_(&map->lock, file, line);
703         if (error == 0)
704                 map->timestamp++;
705         return (error == 0);
706 }
707
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711         int error;
712
713         error = map->system_map ?
714             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715             !sx_try_slock_(&map->lock, file, line);
716         return (error == 0);
717 }
718
719 /*
720  *      _vm_map_lock_upgrade:   [ internal use only ]
721  *
722  *      Tries to upgrade a read (shared) lock on the specified map to a write
723  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *      returned without a read or write lock held.
726  *
727  *      Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732         unsigned int last_timestamp;
733
734         if (map->system_map) {
735                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736         } else {
737                 if (!sx_try_upgrade_(&map->lock, file, line)) {
738                         last_timestamp = map->timestamp;
739                         sx_sunlock_(&map->lock, file, line);
740                         vm_map_process_deferred();
741                         /*
742                          * If the map's timestamp does not change while the
743                          * map is unlocked, then the upgrade succeeds.
744                          */
745                         sx_xlock_(&map->lock, file, line);
746                         if (last_timestamp != map->timestamp) {
747                                 sx_xunlock_(&map->lock, file, line);
748                                 return (1);
749                         }
750                 }
751         }
752         map->timestamp++;
753         return (0);
754 }
755
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759
760         if (map->system_map) {
761                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762         } else {
763                 VM_MAP_UNLOCK_CONSISTENT(map);
764                 sx_downgrade_(&map->lock, file, line);
765         }
766 }
767
768 /*
769  *      vm_map_locked:
770  *
771  *      Returns a non-zero value if the caller holds a write (exclusive) lock
772  *      on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777
778         if (map->system_map)
779                 return (mtx_owned(&map->system_mtx));
780         else
781                 return (sx_xlocked(&map->lock));
782 }
783
784 /*
785  *      _vm_map_unlock_and_wait:
786  *
787  *      Atomically releases the lock on the specified map and puts the calling
788  *      thread to sleep.  The calling thread will remain asleep until either
789  *      vm_map_wakeup() is performed on the map or the specified timeout is
790  *      exceeded.
791  *
792  *      WARNING!  This function does not perform deferred deallocations of
793  *      objects and map entries.  Therefore, the calling thread is expected to
794  *      reacquire the map lock after reawakening and later perform an ordinary
795  *      unlock operation, such as vm_map_unlock(), before completing its
796  *      operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801
802         VM_MAP_UNLOCK_CONSISTENT(map);
803         mtx_lock(&map_sleep_mtx);
804         if (map->system_map)
805                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806         else
807                 sx_xunlock_(&map->lock, file, line);
808         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809             timo));
810 }
811
812 /*
813  *      vm_map_wakeup:
814  *
815  *      Awaken any threads that have slept on the map using
816  *      vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821
822         /*
823          * Acquire and release map_sleep_mtx to prevent a wakeup()
824          * from being performed (and lost) between the map unlock
825          * and the msleep() in _vm_map_unlock_and_wait().
826          */
827         mtx_lock(&map_sleep_mtx);
828         mtx_unlock(&map_sleep_mtx);
829         wakeup(&map->root);
830 }
831
832 void
833 vm_map_busy(vm_map_t map)
834 {
835
836         VM_MAP_ASSERT_LOCKED(map);
837         map->busy++;
838 }
839
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843
844         VM_MAP_ASSERT_LOCKED(map);
845         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848                 wakeup(&map->busy);
849         }
850 }
851
852 void 
853 vm_map_wait_busy(vm_map_t map)
854 {
855
856         VM_MAP_ASSERT_LOCKED(map);
857         while (map->busy) {
858                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859                 if (map->system_map)
860                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861                 else
862                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863         }
864         map->timestamp++;
865 }
866
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870         return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872
873 /*
874  *      vm_map_create:
875  *
876  *      Creates and returns a new empty VM map with
877  *      the given physical map structure, and having
878  *      the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883         vm_map_t result;
884
885         result = uma_zalloc(mapzone, M_WAITOK);
886         CTR1(KTR_VM, "vm_map_create: %p", result);
887         _vm_map_init(result, pmap, min, max);
888         return (result);
889 }
890
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898
899         map->header.eflags = MAP_ENTRY_HEADER;
900         map->needs_wakeup = FALSE;
901         map->system_map = 0;
902         map->pmap = pmap;
903         map->header.end = min;
904         map->header.start = max;
905         map->flags = 0;
906         map->header.left = map->header.right = &map->header;
907         map->root = NULL;
908         map->timestamp = 0;
909         map->busy = 0;
910         map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912         map->nupdates = 0;
913 #endif
914 }
915
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919
920         _vm_map_init(map, pmap, min, max);
921         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922         sx_init(&map->lock, "user map");
923 }
924
925 /*
926  *      vm_map_entry_dispose:   [ internal use only ]
927  *
928  *      Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935
936 /*
937  *      vm_map_entry_create:    [ internal use only ]
938  *
939  *      Allocates a VM map entry for insertion.
940  *      No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945         vm_map_entry_t new_entry;
946
947         if (map->system_map)
948                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949         else
950                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
951         if (new_entry == NULL)
952                 panic("vm_map_entry_create: kernel resources exhausted");
953         return (new_entry);
954 }
955
956 /*
957  *      vm_map_entry_set_behavior:
958  *
959  *      Set the expected access behavior, either normal, random, or
960  *      sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966             (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968
969 /*
970  *      vm_map_entry_max_free_{left,right}:
971  *
972  *      Compute the size of the largest free gap between two entries,
973  *      one the root of a tree and the other the ancestor of that root
974  *      that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979
980         return (root->left != left_ancestor ?
981             root->left->max_free : root->start - left_ancestor->end);
982 }
983
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987
988         return (root->right != right_ancestor ?
989             root->right->max_free : right_ancestor->start - root->end);
990 }
991
992 /*
993  *      vm_map_entry_{pred,succ}:
994  *
995  *      Find the {predecessor, successor} of the entry by taking one step
996  *      in the appropriate direction and backtracking as much as necessary.
997  *      vm_map_entry_succ is defined in vm_map.h.
998  */
999 static inline vm_map_entry_t
1000 vm_map_entry_pred(vm_map_entry_t entry)
1001 {
1002         vm_map_entry_t prior;
1003
1004         prior = entry->left;
1005         if (prior->right->start < entry->start) {
1006                 do
1007                         prior = prior->right;
1008                 while (prior->right != entry);
1009         }
1010         return (prior);
1011 }
1012
1013 static inline vm_size_t
1014 vm_size_max(vm_size_t a, vm_size_t b)
1015 {
1016
1017         return (a > b ? a : b);
1018 }
1019
1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {               \
1021         vm_map_entry_t z;                                               \
1022         vm_size_t max_free;                                             \
1023                                                                         \
1024         /*                                                              \
1025          * Infer root->right->max_free == root->max_free when           \
1026          * y->max_free < root->max_free || root->max_free == 0.         \
1027          * Otherwise, look right to find it.                            \
1028          */                                                             \
1029         y = root->left;                                                 \
1030         max_free = root->max_free;                                      \
1031         KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),   \
1032             ("%s: max_free invariant fails", __func__));                \
1033         if (y == llist ? max_free > 0 : max_free - 1 < y->max_free)     \
1034                 max_free = vm_map_entry_max_free_right(root, rlist);    \
1035         if (y != llist && (test)) {                                     \
1036                 /* Rotate right and make y root. */                     \
1037                 z = y->right;                                           \
1038                 if (z != root) {                                        \
1039                         root->left = z;                                 \
1040                         y->right = root;                                \
1041                         if (max_free < y->max_free)                     \
1042                             root->max_free = max_free =                 \
1043                             vm_size_max(max_free, z->max_free);         \
1044                 } else if (max_free < y->max_free)                      \
1045                         root->max_free = max_free =                     \
1046                             vm_size_max(max_free, root->start - y->end);\
1047                 root = y;                                               \
1048                 y = root->left;                                         \
1049         }                                                               \
1050         /* Copy right->max_free.  Put root on rlist. */                 \
1051         root->max_free = max_free;                                      \
1052         KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),   \
1053             ("%s: max_free not copied from right", __func__));          \
1054         root->left = rlist;                                             \
1055         rlist = root;                                                   \
1056         root = y != llist ? y : NULL;                                   \
1057 } while (0)
1058
1059 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {              \
1060         vm_map_entry_t z;                                               \
1061         vm_size_t max_free;                                             \
1062                                                                         \
1063         /*                                                              \
1064          * Infer root->left->max_free == root->max_free when            \
1065          * y->max_free < root->max_free || root->max_free == 0.         \
1066          * Otherwise, look left to find it.                             \
1067          */                                                             \
1068         y = root->right;                                                \
1069         max_free = root->max_free;                                      \
1070         KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),    \
1071             ("%s: max_free invariant fails", __func__));                \
1072         if (y == rlist ? max_free > 0 : max_free - 1 < y->max_free)     \
1073                 max_free = vm_map_entry_max_free_left(root, llist);     \
1074         if (y != rlist && (test)) {                                     \
1075                 /* Rotate left and make y root. */                      \
1076                 z = y->left;                                            \
1077                 if (z != root) {                                        \
1078                         root->right = z;                                \
1079                         y->left = root;                                 \
1080                         if (max_free < y->max_free)                     \
1081                             root->max_free = max_free =                 \
1082                             vm_size_max(max_free, z->max_free);         \
1083                 } else if (max_free < y->max_free)                      \
1084                         root->max_free = max_free =                     \
1085                             vm_size_max(max_free, y->start - root->end);\
1086                 root = y;                                               \
1087                 y = root->right;                                        \
1088         }                                                               \
1089         /* Copy left->max_free.  Put root on llist. */                  \
1090         root->max_free = max_free;                                      \
1091         KASSERT(max_free == vm_map_entry_max_free_left(root, llist),    \
1092             ("%s: max_free not copied from left", __func__));           \
1093         root->right = llist;                                            \
1094         llist = root;                                                   \
1095         root = y != rlist ? y : NULL;                                   \
1096 } while (0)
1097
1098 /*
1099  * Walk down the tree until we find addr or a gap where addr would go, breaking
1100  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1101  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1102  * the two sides in reverse order (bottom-up), with llist linked by the right
1103  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1104  * lists terminated by &map->header.  This function, and the subsequent call to
1105  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1106  * values in &map->header.
1107  */
1108 static __always_inline vm_map_entry_t
1109 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1110     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1111 {
1112         vm_map_entry_t left, right, root, y;
1113
1114         left = right = &map->header;
1115         root = map->root;
1116         while (root != NULL && root->max_free >= length) {
1117                 KASSERT(left->end <= root->start &&
1118                     root->end <= right->start,
1119                     ("%s: root not within tree bounds", __func__));
1120                 if (addr < root->start) {
1121                         SPLAY_LEFT_STEP(root, y, left, right,
1122                             y->max_free >= length && addr < y->start);
1123                 } else if (addr >= root->end) {
1124                         SPLAY_RIGHT_STEP(root, y, left, right,
1125                             y->max_free >= length && addr >= y->end);
1126                 } else
1127                         break;
1128         }
1129         *llist = left;
1130         *rlist = right;
1131         return (root);
1132 }
1133
1134 static __always_inline void
1135 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1136 {
1137         vm_map_entry_t hi, right, y;
1138
1139         right = *rlist;
1140         hi = root->right == right ? NULL : root->right;
1141         if (hi == NULL)
1142                 return;
1143         do
1144                 SPLAY_LEFT_STEP(hi, y, root, right, true);
1145         while (hi != NULL);
1146         *rlist = right;
1147 }
1148
1149 static __always_inline void
1150 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1151 {
1152         vm_map_entry_t left, lo, y;
1153
1154         left = *llist;
1155         lo = root->left == left ? NULL : root->left;
1156         if (lo == NULL)
1157                 return;
1158         do
1159                 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1160         while (lo != NULL);
1161         *llist = left;
1162 }
1163
1164 static inline void
1165 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1166 {
1167         vm_map_entry_t tmp;
1168
1169         tmp = *b;
1170         *b = *a;
1171         *a = tmp;
1172 }
1173
1174 /*
1175  * Walk back up the two spines, flip the pointers and set max_free.  The
1176  * subtrees of the root go at the bottom of llist and rlist.
1177  */
1178 static vm_size_t
1179 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1180     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1181 {
1182         do {
1183                 /*
1184                  * The max_free values of the children of llist are in
1185                  * llist->max_free and max_free.  Update with the
1186                  * max value.
1187                  */
1188                 llist->max_free = max_free =
1189                     vm_size_max(llist->max_free, max_free);
1190                 vm_map_entry_swap(&llist->right, &tail);
1191                 vm_map_entry_swap(&tail, &llist);
1192         } while (llist != header);
1193         root->left = tail;
1194         return (max_free);
1195 }
1196
1197 /*
1198  * When llist is known to be the predecessor of root.
1199  */
1200 static inline vm_size_t
1201 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1202     vm_map_entry_t llist)
1203 {
1204         vm_size_t max_free;
1205
1206         max_free = root->start - llist->end;
1207         if (llist != header) {
1208                 max_free = vm_map_splay_merge_left_walk(header, root,
1209                     root, max_free, llist);
1210         } else {
1211                 root->left = header;
1212                 header->right = root;
1213         }
1214         return (max_free);
1215 }
1216
1217 /*
1218  * When llist may or may not be the predecessor of root.
1219  */
1220 static inline vm_size_t
1221 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1222     vm_map_entry_t llist)
1223 {
1224         vm_size_t max_free;
1225
1226         max_free = vm_map_entry_max_free_left(root, llist);
1227         if (llist != header) {
1228                 max_free = vm_map_splay_merge_left_walk(header, root,
1229                     root->left == llist ? root : root->left,
1230                     max_free, llist);
1231         }
1232         return (max_free);
1233 }
1234
1235 static vm_size_t
1236 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1237     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1238 {
1239         do {
1240                 /*
1241                  * The max_free values of the children of rlist are in
1242                  * rlist->max_free and max_free.  Update with the
1243                  * max value.
1244                  */
1245                 rlist->max_free = max_free =
1246                     vm_size_max(rlist->max_free, max_free);
1247                 vm_map_entry_swap(&rlist->left, &tail);
1248                 vm_map_entry_swap(&tail, &rlist);
1249         } while (rlist != header);
1250         root->right = tail;
1251         return (max_free);
1252 }
1253
1254 /*
1255  * When rlist is known to be the succecessor of root.
1256  */
1257 static inline vm_size_t
1258 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1259     vm_map_entry_t rlist)
1260 {
1261         vm_size_t max_free;
1262
1263         max_free = rlist->start - root->end;
1264         if (rlist != header) {
1265                 max_free = vm_map_splay_merge_right_walk(header, root,
1266                     root, max_free, rlist);
1267         } else {
1268                 root->right = header;
1269                 header->left = root;
1270         }
1271         return (max_free);
1272 }
1273
1274 /*
1275  * When rlist may or may not be the succecessor of root.
1276  */
1277 static inline vm_size_t
1278 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1279     vm_map_entry_t rlist)
1280 {
1281         vm_size_t max_free;
1282
1283         max_free = vm_map_entry_max_free_right(root, rlist);
1284         if (rlist != header) {
1285                 max_free = vm_map_splay_merge_right_walk(header, root,
1286                     root->right == rlist ? root : root->right,
1287                     max_free, rlist);
1288         }
1289         return (max_free);
1290 }
1291
1292 /*
1293  *      vm_map_splay:
1294  *
1295  *      The Sleator and Tarjan top-down splay algorithm with the
1296  *      following variation.  Max_free must be computed bottom-up, so
1297  *      on the downward pass, maintain the left and right spines in
1298  *      reverse order.  Then, make a second pass up each side to fix
1299  *      the pointers and compute max_free.  The time bound is O(log n)
1300  *      amortized.
1301  *
1302  *      The tree is threaded, which means that there are no null pointers.
1303  *      When a node has no left child, its left pointer points to its
1304  *      predecessor, which the last ancestor on the search path from the root
1305  *      where the search branched right.  Likewise, when a node has no right
1306  *      child, its right pointer points to its successor.  The map header node
1307  *      is the predecessor of the first map entry, and the successor of the
1308  *      last.
1309  *
1310  *      The new root is the vm_map_entry containing "addr", or else an
1311  *      adjacent entry (lower if possible) if addr is not in the tree.
1312  *
1313  *      The map must be locked, and leaves it so.
1314  *
1315  *      Returns: the new root.
1316  */
1317 static vm_map_entry_t
1318 vm_map_splay(vm_map_t map, vm_offset_t addr)
1319 {
1320         vm_map_entry_t header, llist, rlist, root;
1321         vm_size_t max_free_left, max_free_right;
1322
1323         header = &map->header;
1324         root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1325         if (root != NULL) {
1326                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1327                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1328         } else if (llist != header) {
1329                 /*
1330                  * Recover the greatest node in the left
1331                  * subtree and make it the root.
1332                  */
1333                 root = llist;
1334                 llist = root->right;
1335                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1336                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1337         } else if (rlist != header) {
1338                 /*
1339                  * Recover the least node in the right
1340                  * subtree and make it the root.
1341                  */
1342                 root = rlist;
1343                 rlist = root->left;
1344                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1345                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346         } else {
1347                 /* There is no root. */
1348                 return (NULL);
1349         }
1350         root->max_free = vm_size_max(max_free_left, max_free_right);
1351         map->root = root;
1352         VM_MAP_ASSERT_CONSISTENT(map);
1353         return (root);
1354 }
1355
1356 /*
1357  *      vm_map_entry_{un,}link:
1358  *
1359  *      Insert/remove entries from maps.
1360  */
1361 static void
1362 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1363 {
1364         vm_map_entry_t header, llist, rlist, root;
1365
1366         CTR3(KTR_VM,
1367             "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1368             map->nentries, entry);
1369         VM_MAP_ASSERT_LOCKED(map);
1370         map->nentries++;
1371         header = &map->header;
1372         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1373         KASSERT(root == NULL,
1374             ("vm_map_entry_link: link object already mapped"));
1375         root = entry;
1376         root->max_free = vm_size_max(
1377             vm_map_splay_merge_pred(header, root, llist),
1378             vm_map_splay_merge_succ(header, root, rlist));
1379         map->root = root;
1380         VM_MAP_ASSERT_CONSISTENT(map);
1381 }
1382
1383 enum unlink_merge_type {
1384         UNLINK_MERGE_NONE,
1385         UNLINK_MERGE_NEXT
1386 };
1387
1388 static void
1389 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1390     enum unlink_merge_type op)
1391 {
1392         vm_map_entry_t header, llist, rlist, root;
1393         vm_size_t max_free_left, max_free_right;
1394
1395         VM_MAP_ASSERT_LOCKED(map);
1396         header = &map->header;
1397         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1398         KASSERT(root != NULL,
1399             ("vm_map_entry_unlink: unlink object not mapped"));
1400
1401         vm_map_splay_findprev(root, &llist);
1402         vm_map_splay_findnext(root, &rlist);
1403         if (op == UNLINK_MERGE_NEXT) {
1404                 rlist->start = root->start;
1405                 rlist->offset = root->offset;
1406         }
1407         if (llist != header) {
1408                 root = llist;
1409                 llist = root->right;
1410                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1411                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1412         } else if (rlist != header) {
1413                 root = rlist;
1414                 rlist = root->left;
1415                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1416                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1417         } else {
1418                 header->left = header->right = header;
1419                 root = NULL;
1420         }
1421         if (root != NULL)
1422                 root->max_free = vm_size_max(max_free_left, max_free_right);
1423         map->root = root;
1424         VM_MAP_ASSERT_CONSISTENT(map);
1425         map->nentries--;
1426         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1427             map->nentries, entry);
1428 }
1429
1430 /*
1431  *      vm_map_entry_resize:
1432  *
1433  *      Resize a vm_map_entry, recompute the amount of free space that
1434  *      follows it and propagate that value up the tree.
1435  *
1436  *      The map must be locked, and leaves it so.
1437  */
1438 static void
1439 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1440 {
1441         vm_map_entry_t header, llist, rlist, root;
1442
1443         VM_MAP_ASSERT_LOCKED(map);
1444         header = &map->header;
1445         root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1446         KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1447         vm_map_splay_findnext(root, &rlist);
1448         entry->end += grow_amount;
1449         root->max_free = vm_size_max(
1450             vm_map_splay_merge_left(header, root, llist),
1451             vm_map_splay_merge_succ(header, root, rlist));
1452         map->root = root;
1453         VM_MAP_ASSERT_CONSISTENT(map);
1454         CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1455             __func__, map, map->nentries, entry);
1456 }
1457
1458 /*
1459  *      vm_map_lookup_entry:    [ internal use only ]
1460  *
1461  *      Finds the map entry containing (or
1462  *      immediately preceding) the specified address
1463  *      in the given map; the entry is returned
1464  *      in the "entry" parameter.  The boolean
1465  *      result indicates whether the address is
1466  *      actually contained in the map.
1467  */
1468 boolean_t
1469 vm_map_lookup_entry(
1470         vm_map_t map,
1471         vm_offset_t address,
1472         vm_map_entry_t *entry)  /* OUT */
1473 {
1474         vm_map_entry_t cur, header, lbound, ubound;
1475         boolean_t locked;
1476
1477         /*
1478          * If the map is empty, then the map entry immediately preceding
1479          * "address" is the map's header.
1480          */
1481         header = &map->header;
1482         cur = map->root;
1483         if (cur == NULL) {
1484                 *entry = header;
1485                 return (FALSE);
1486         }
1487         if (address >= cur->start && cur->end > address) {
1488                 *entry = cur;
1489                 return (TRUE);
1490         }
1491         if ((locked = vm_map_locked(map)) ||
1492             sx_try_upgrade(&map->lock)) {
1493                 /*
1494                  * Splay requires a write lock on the map.  However, it only
1495                  * restructures the binary search tree; it does not otherwise
1496                  * change the map.  Thus, the map's timestamp need not change
1497                  * on a temporary upgrade.
1498                  */
1499                 cur = vm_map_splay(map, address);
1500                 if (!locked) {
1501                         VM_MAP_UNLOCK_CONSISTENT(map);
1502                         sx_downgrade(&map->lock);
1503                 }
1504
1505                 /*
1506                  * If "address" is contained within a map entry, the new root
1507                  * is that map entry.  Otherwise, the new root is a map entry
1508                  * immediately before or after "address".
1509                  */
1510                 if (address < cur->start) {
1511                         *entry = header;
1512                         return (FALSE);
1513                 }
1514                 *entry = cur;
1515                 return (address < cur->end);
1516         }
1517         /*
1518          * Since the map is only locked for read access, perform a
1519          * standard binary search tree lookup for "address".
1520          */
1521         lbound = ubound = header;
1522         for (;;) {
1523                 if (address < cur->start) {
1524                         ubound = cur;
1525                         cur = cur->left;
1526                         if (cur == lbound)
1527                                 break;
1528                 } else if (cur->end <= address) {
1529                         lbound = cur;
1530                         cur = cur->right;
1531                         if (cur == ubound)
1532                                 break;
1533                 } else {
1534                         *entry = cur;
1535                         return (TRUE);
1536                 }
1537         }
1538         *entry = lbound;
1539         return (FALSE);
1540 }
1541
1542 /*
1543  *      vm_map_insert:
1544  *
1545  *      Inserts the given whole VM object into the target
1546  *      map at the specified address range.  The object's
1547  *      size should match that of the address range.
1548  *
1549  *      Requires that the map be locked, and leaves it so.
1550  *
1551  *      If object is non-NULL, ref count must be bumped by caller
1552  *      prior to making call to account for the new entry.
1553  */
1554 int
1555 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1556     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1557 {
1558         vm_map_entry_t new_entry, next_entry, prev_entry;
1559         struct ucred *cred;
1560         vm_eflags_t protoeflags;
1561         vm_inherit_t inheritance;
1562
1563         VM_MAP_ASSERT_LOCKED(map);
1564         KASSERT(object != kernel_object ||
1565             (cow & MAP_COPY_ON_WRITE) == 0,
1566             ("vm_map_insert: kernel object and COW"));
1567         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1568             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1569         KASSERT((prot & ~max) == 0,
1570             ("prot %#x is not subset of max_prot %#x", prot, max));
1571
1572         /*
1573          * Check that the start and end points are not bogus.
1574          */
1575         if (start < vm_map_min(map) || end > vm_map_max(map) ||
1576             start >= end)
1577                 return (KERN_INVALID_ADDRESS);
1578
1579         /*
1580          * Find the entry prior to the proposed starting address; if it's part
1581          * of an existing entry, this range is bogus.
1582          */
1583         if (vm_map_lookup_entry(map, start, &prev_entry))
1584                 return (KERN_NO_SPACE);
1585
1586         /*
1587          * Assert that the next entry doesn't overlap the end point.
1588          */
1589         next_entry = vm_map_entry_succ(prev_entry);
1590         if (next_entry->start < end)
1591                 return (KERN_NO_SPACE);
1592
1593         if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1594             max != VM_PROT_NONE))
1595                 return (KERN_INVALID_ARGUMENT);
1596
1597         protoeflags = 0;
1598         if (cow & MAP_COPY_ON_WRITE)
1599                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1600         if (cow & MAP_NOFAULT)
1601                 protoeflags |= MAP_ENTRY_NOFAULT;
1602         if (cow & MAP_DISABLE_SYNCER)
1603                 protoeflags |= MAP_ENTRY_NOSYNC;
1604         if (cow & MAP_DISABLE_COREDUMP)
1605                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1606         if (cow & MAP_STACK_GROWS_DOWN)
1607                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1608         if (cow & MAP_STACK_GROWS_UP)
1609                 protoeflags |= MAP_ENTRY_GROWS_UP;
1610         if (cow & MAP_WRITECOUNT)
1611                 protoeflags |= MAP_ENTRY_WRITECNT;
1612         if (cow & MAP_VN_EXEC)
1613                 protoeflags |= MAP_ENTRY_VN_EXEC;
1614         if ((cow & MAP_CREATE_GUARD) != 0)
1615                 protoeflags |= MAP_ENTRY_GUARD;
1616         if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1617                 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1618         if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1619                 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1620         if (cow & MAP_INHERIT_SHARE)
1621                 inheritance = VM_INHERIT_SHARE;
1622         else
1623                 inheritance = VM_INHERIT_DEFAULT;
1624
1625         cred = NULL;
1626         if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1627                 goto charged;
1628         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1629             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1630                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1631                         return (KERN_RESOURCE_SHORTAGE);
1632                 KASSERT(object == NULL ||
1633                     (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1634                     object->cred == NULL,
1635                     ("overcommit: vm_map_insert o %p", object));
1636                 cred = curthread->td_ucred;
1637         }
1638
1639 charged:
1640         /* Expand the kernel pmap, if necessary. */
1641         if (map == kernel_map && end > kernel_vm_end)
1642                 pmap_growkernel(end);
1643         if (object != NULL) {
1644                 /*
1645                  * OBJ_ONEMAPPING must be cleared unless this mapping
1646                  * is trivially proven to be the only mapping for any
1647                  * of the object's pages.  (Object granularity
1648                  * reference counting is insufficient to recognize
1649                  * aliases with precision.)
1650                  */
1651                 if ((object->flags & OBJ_ANON) != 0) {
1652                         VM_OBJECT_WLOCK(object);
1653                         if (object->ref_count > 1 || object->shadow_count != 0)
1654                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1655                         VM_OBJECT_WUNLOCK(object);
1656                 }
1657         } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1658             protoeflags &&
1659             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1660             MAP_VN_EXEC)) == 0 &&
1661             prev_entry->end == start && (prev_entry->cred == cred ||
1662             (prev_entry->object.vm_object != NULL &&
1663             prev_entry->object.vm_object->cred == cred)) &&
1664             vm_object_coalesce(prev_entry->object.vm_object,
1665             prev_entry->offset,
1666             (vm_size_t)(prev_entry->end - prev_entry->start),
1667             (vm_size_t)(end - prev_entry->end), cred != NULL &&
1668             (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1669                 /*
1670                  * We were able to extend the object.  Determine if we
1671                  * can extend the previous map entry to include the
1672                  * new range as well.
1673                  */
1674                 if (prev_entry->inheritance == inheritance &&
1675                     prev_entry->protection == prot &&
1676                     prev_entry->max_protection == max &&
1677                     prev_entry->wired_count == 0) {
1678                         KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1679                             0, ("prev_entry %p has incoherent wiring",
1680                             prev_entry));
1681                         if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1682                                 map->size += end - prev_entry->end;
1683                         vm_map_entry_resize(map, prev_entry,
1684                             end - prev_entry->end);
1685                         vm_map_try_merge_entries(map, prev_entry, next_entry);
1686                         return (KERN_SUCCESS);
1687                 }
1688
1689                 /*
1690                  * If we can extend the object but cannot extend the
1691                  * map entry, we have to create a new map entry.  We
1692                  * must bump the ref count on the extended object to
1693                  * account for it.  object may be NULL.
1694                  */
1695                 object = prev_entry->object.vm_object;
1696                 offset = prev_entry->offset +
1697                     (prev_entry->end - prev_entry->start);
1698                 vm_object_reference(object);
1699                 if (cred != NULL && object != NULL && object->cred != NULL &&
1700                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1701                         /* Object already accounts for this uid. */
1702                         cred = NULL;
1703                 }
1704         }
1705         if (cred != NULL)
1706                 crhold(cred);
1707
1708         /*
1709          * Create a new entry
1710          */
1711         new_entry = vm_map_entry_create(map);
1712         new_entry->start = start;
1713         new_entry->end = end;
1714         new_entry->cred = NULL;
1715
1716         new_entry->eflags = protoeflags;
1717         new_entry->object.vm_object = object;
1718         new_entry->offset = offset;
1719
1720         new_entry->inheritance = inheritance;
1721         new_entry->protection = prot;
1722         new_entry->max_protection = max;
1723         new_entry->wired_count = 0;
1724         new_entry->wiring_thread = NULL;
1725         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1726         new_entry->next_read = start;
1727
1728         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1729             ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1730         new_entry->cred = cred;
1731
1732         /*
1733          * Insert the new entry into the list
1734          */
1735         vm_map_entry_link(map, new_entry);
1736         if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1737                 map->size += new_entry->end - new_entry->start;
1738
1739         /*
1740          * Try to coalesce the new entry with both the previous and next
1741          * entries in the list.  Previously, we only attempted to coalesce
1742          * with the previous entry when object is NULL.  Here, we handle the
1743          * other cases, which are less common.
1744          */
1745         vm_map_try_merge_entries(map, prev_entry, new_entry);
1746         vm_map_try_merge_entries(map, new_entry, next_entry);
1747
1748         if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1749                 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1750                     end - start, cow & MAP_PREFAULT_PARTIAL);
1751         }
1752
1753         return (KERN_SUCCESS);
1754 }
1755
1756 /*
1757  *      vm_map_findspace:
1758  *
1759  *      Find the first fit (lowest VM address) for "length" free bytes
1760  *      beginning at address >= start in the given map.
1761  *
1762  *      In a vm_map_entry, "max_free" is the maximum amount of
1763  *      contiguous free space between an entry in its subtree and a
1764  *      neighbor of that entry.  This allows finding a free region in
1765  *      one path down the tree, so O(log n) amortized with splay
1766  *      trees.
1767  *
1768  *      The map must be locked, and leaves it so.
1769  *
1770  *      Returns: starting address if sufficient space,
1771  *               vm_map_max(map)-length+1 if insufficient space.
1772  */
1773 vm_offset_t
1774 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1775 {
1776         vm_map_entry_t header, llist, rlist, root, y;
1777         vm_size_t left_length, max_free_left, max_free_right;
1778         vm_offset_t gap_end;
1779
1780         /*
1781          * Request must fit within min/max VM address and must avoid
1782          * address wrap.
1783          */
1784         start = MAX(start, vm_map_min(map));
1785         if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1786                 return (vm_map_max(map) - length + 1);
1787
1788         /* Empty tree means wide open address space. */
1789         if (map->root == NULL)
1790                 return (start);
1791
1792         /*
1793          * After splay_split, if start is within an entry, push it to the start
1794          * of the following gap.  If rlist is at the end of the gap containing
1795          * start, save the end of that gap in gap_end to see if the gap is big
1796          * enough; otherwise set gap_end to start skip gap-checking and move
1797          * directly to a search of the right subtree.
1798          */
1799         header = &map->header;
1800         root = vm_map_splay_split(map, start, length, &llist, &rlist);
1801         gap_end = rlist->start;
1802         if (root != NULL) {
1803                 start = root->end;
1804                 if (root->right != rlist)
1805                         gap_end = start;
1806                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1807                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1808         } else if (rlist != header) {
1809                 root = rlist;
1810                 rlist = root->left;
1811                 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1812                 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1813         } else {
1814                 root = llist;
1815                 llist = root->right;
1816                 max_free_left = vm_map_splay_merge_left(header, root, llist);
1817                 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1818         }
1819         root->max_free = vm_size_max(max_free_left, max_free_right);
1820         map->root = root;
1821         VM_MAP_ASSERT_CONSISTENT(map);
1822         if (length <= gap_end - start)
1823                 return (start);
1824
1825         /* With max_free, can immediately tell if no solution. */
1826         if (root->right == header || length > root->right->max_free)
1827                 return (vm_map_max(map) - length + 1);
1828
1829         /*
1830          * Splay for the least large-enough gap in the right subtree.
1831          */
1832         llist = rlist = header;
1833         for (left_length = 0;;
1834             left_length = vm_map_entry_max_free_left(root, llist)) {
1835                 if (length <= left_length)
1836                         SPLAY_LEFT_STEP(root, y, llist, rlist,
1837                             length <= vm_map_entry_max_free_left(y, llist));
1838                 else
1839                         SPLAY_RIGHT_STEP(root, y, llist, rlist,
1840                             length > vm_map_entry_max_free_left(y, root));
1841                 if (root == NULL)
1842                         break;
1843         }
1844         root = llist;
1845         llist = root->right;
1846         max_free_left = vm_map_splay_merge_left(header, root, llist);
1847         if (rlist == header) {
1848                 root->max_free = vm_size_max(max_free_left,
1849                     vm_map_splay_merge_succ(header, root, rlist));
1850         } else {
1851                 y = rlist;
1852                 rlist = y->left;
1853                 y->max_free = vm_size_max(
1854                     vm_map_splay_merge_pred(root, y, root),
1855                     vm_map_splay_merge_right(header, y, rlist));
1856                 root->max_free = vm_size_max(max_free_left, y->max_free);
1857         }
1858         map->root = root;
1859         VM_MAP_ASSERT_CONSISTENT(map);
1860         return (root->end);
1861 }
1862
1863 int
1864 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1865     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1866     vm_prot_t max, int cow)
1867 {
1868         vm_offset_t end;
1869         int result;
1870
1871         end = start + length;
1872         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1873             object == NULL,
1874             ("vm_map_fixed: non-NULL backing object for stack"));
1875         vm_map_lock(map);
1876         VM_MAP_RANGE_CHECK(map, start, end);
1877         if ((cow & MAP_CHECK_EXCL) == 0)
1878                 vm_map_delete(map, start, end);
1879         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1880                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1881                     prot, max, cow);
1882         } else {
1883                 result = vm_map_insert(map, object, offset, start, end,
1884                     prot, max, cow);
1885         }
1886         vm_map_unlock(map);
1887         return (result);
1888 }
1889
1890 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1891 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1892
1893 static int cluster_anon = 1;
1894 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1895     &cluster_anon, 0,
1896     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1897
1898 static bool
1899 clustering_anon_allowed(vm_offset_t addr)
1900 {
1901
1902         switch (cluster_anon) {
1903         case 0:
1904                 return (false);
1905         case 1:
1906                 return (addr == 0);
1907         case 2:
1908         default:
1909                 return (true);
1910         }
1911 }
1912
1913 static long aslr_restarts;
1914 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1915     &aslr_restarts, 0,
1916     "Number of aslr failures");
1917
1918 #define MAP_32BIT_MAX_ADDR      ((vm_offset_t)1 << 31)
1919
1920 /*
1921  * Searches for the specified amount of free space in the given map with the
1922  * specified alignment.  Performs an address-ordered, first-fit search from
1923  * the given address "*addr", with an optional upper bound "max_addr".  If the
1924  * parameter "alignment" is zero, then the alignment is computed from the
1925  * given (object, offset) pair so as to enable the greatest possible use of
1926  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1927  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1928  *
1929  * The map must be locked.  Initially, there must be at least "length" bytes
1930  * of free space at the given address.
1931  */
1932 static int
1933 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1934     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1935     vm_offset_t alignment)
1936 {
1937         vm_offset_t aligned_addr, free_addr;
1938
1939         VM_MAP_ASSERT_LOCKED(map);
1940         free_addr = *addr;
1941         KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1942             ("caller failed to provide space %#jx at address %p",
1943              (uintmax_t)length, (void *)free_addr));
1944         for (;;) {
1945                 /*
1946                  * At the start of every iteration, the free space at address
1947                  * "*addr" is at least "length" bytes.
1948                  */
1949                 if (alignment == 0)
1950                         pmap_align_superpage(object, offset, addr, length);
1951                 else if ((*addr & (alignment - 1)) != 0) {
1952                         *addr &= ~(alignment - 1);
1953                         *addr += alignment;
1954                 }
1955                 aligned_addr = *addr;
1956                 if (aligned_addr == free_addr) {
1957                         /*
1958                          * Alignment did not change "*addr", so "*addr" must
1959                          * still provide sufficient free space.
1960                          */
1961                         return (KERN_SUCCESS);
1962                 }
1963
1964                 /*
1965                  * Test for address wrap on "*addr".  A wrapped "*addr" could
1966                  * be a valid address, in which case vm_map_findspace() cannot
1967                  * be relied upon to fail.
1968                  */
1969                 if (aligned_addr < free_addr)
1970                         return (KERN_NO_SPACE);
1971                 *addr = vm_map_findspace(map, aligned_addr, length);
1972                 if (*addr + length > vm_map_max(map) ||
1973                     (max_addr != 0 && *addr + length > max_addr))
1974                         return (KERN_NO_SPACE);
1975                 free_addr = *addr;
1976                 if (free_addr == aligned_addr) {
1977                         /*
1978                          * If a successful call to vm_map_findspace() did not
1979                          * change "*addr", then "*addr" must still be aligned
1980                          * and provide sufficient free space.
1981                          */
1982                         return (KERN_SUCCESS);
1983                 }
1984         }
1985 }
1986
1987 /*
1988  *      vm_map_find finds an unallocated region in the target address
1989  *      map with the given length.  The search is defined to be
1990  *      first-fit from the specified address; the region found is
1991  *      returned in the same parameter.
1992  *
1993  *      If object is non-NULL, ref count must be bumped by caller
1994  *      prior to making call to account for the new entry.
1995  */
1996 int
1997 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1998             vm_offset_t *addr,  /* IN/OUT */
1999             vm_size_t length, vm_offset_t max_addr, int find_space,
2000             vm_prot_t prot, vm_prot_t max, int cow)
2001 {
2002         vm_offset_t alignment, curr_min_addr, min_addr;
2003         int gap, pidx, rv, try;
2004         bool cluster, en_aslr, update_anon;
2005
2006         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2007             object == NULL,
2008             ("vm_map_find: non-NULL backing object for stack"));
2009         MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2010             (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2011         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2012             (object->flags & OBJ_COLORED) == 0))
2013                 find_space = VMFS_ANY_SPACE;
2014         if (find_space >> 8 != 0) {
2015                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2016                 alignment = (vm_offset_t)1 << (find_space >> 8);
2017         } else
2018                 alignment = 0;
2019         en_aslr = (map->flags & MAP_ASLR) != 0;
2020         update_anon = cluster = clustering_anon_allowed(*addr) &&
2021             (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2022             find_space != VMFS_NO_SPACE && object == NULL &&
2023             (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2024             MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2025         curr_min_addr = min_addr = *addr;
2026         if (en_aslr && min_addr == 0 && !cluster &&
2027             find_space != VMFS_NO_SPACE &&
2028             (map->flags & MAP_ASLR_IGNSTART) != 0)
2029                 curr_min_addr = min_addr = vm_map_min(map);
2030         try = 0;
2031         vm_map_lock(map);
2032         if (cluster) {
2033                 curr_min_addr = map->anon_loc;
2034                 if (curr_min_addr == 0)
2035                         cluster = false;
2036         }
2037         if (find_space != VMFS_NO_SPACE) {
2038                 KASSERT(find_space == VMFS_ANY_SPACE ||
2039                     find_space == VMFS_OPTIMAL_SPACE ||
2040                     find_space == VMFS_SUPER_SPACE ||
2041                     alignment != 0, ("unexpected VMFS flag"));
2042 again:
2043                 /*
2044                  * When creating an anonymous mapping, try clustering
2045                  * with an existing anonymous mapping first.
2046                  *
2047                  * We make up to two attempts to find address space
2048                  * for a given find_space value. The first attempt may
2049                  * apply randomization or may cluster with an existing
2050                  * anonymous mapping. If this first attempt fails,
2051                  * perform a first-fit search of the available address
2052                  * space.
2053                  *
2054                  * If all tries failed, and find_space is
2055                  * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2056                  * Again enable clustering and randomization.
2057                  */
2058                 try++;
2059                 MPASS(try <= 2);
2060
2061                 if (try == 2) {
2062                         /*
2063                          * Second try: we failed either to find a
2064                          * suitable region for randomizing the
2065                          * allocation, or to cluster with an existing
2066                          * mapping.  Retry with free run.
2067                          */
2068                         curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2069                             vm_map_min(map) : min_addr;
2070                         atomic_add_long(&aslr_restarts, 1);
2071                 }
2072
2073                 if (try == 1 && en_aslr && !cluster) {
2074                         /*
2075                          * Find space for allocation, including
2076                          * gap needed for later randomization.
2077                          */
2078                         pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2079                             (find_space == VMFS_SUPER_SPACE || find_space ==
2080                             VMFS_OPTIMAL_SPACE) ? 1 : 0;
2081                         gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2082                             (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2083                             aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2084                         *addr = vm_map_findspace(map, curr_min_addr,
2085                             length + gap * pagesizes[pidx]);
2086                         if (*addr + length + gap * pagesizes[pidx] >
2087                             vm_map_max(map))
2088                                 goto again;
2089                         /* And randomize the start address. */
2090                         *addr += (arc4random() % gap) * pagesizes[pidx];
2091                         if (max_addr != 0 && *addr + length > max_addr)
2092                                 goto again;
2093                 } else {
2094                         *addr = vm_map_findspace(map, curr_min_addr, length);
2095                         if (*addr + length > vm_map_max(map) ||
2096                             (max_addr != 0 && *addr + length > max_addr)) {
2097                                 if (cluster) {
2098                                         cluster = false;
2099                                         MPASS(try == 1);
2100                                         goto again;
2101                                 }
2102                                 rv = KERN_NO_SPACE;
2103                                 goto done;
2104                         }
2105                 }
2106
2107                 if (find_space != VMFS_ANY_SPACE &&
2108                     (rv = vm_map_alignspace(map, object, offset, addr, length,
2109                     max_addr, alignment)) != KERN_SUCCESS) {
2110                         if (find_space == VMFS_OPTIMAL_SPACE) {
2111                                 find_space = VMFS_ANY_SPACE;
2112                                 curr_min_addr = min_addr;
2113                                 cluster = update_anon;
2114                                 try = 0;
2115                                 goto again;
2116                         }
2117                         goto done;
2118                 }
2119         } else if ((cow & MAP_REMAP) != 0) {
2120                 if (*addr < vm_map_min(map) ||
2121                     *addr + length > vm_map_max(map) ||
2122                     *addr + length <= length) {
2123                         rv = KERN_INVALID_ADDRESS;
2124                         goto done;
2125                 }
2126                 vm_map_delete(map, *addr, *addr + length);
2127         }
2128         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2129                 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2130                     max, cow);
2131         } else {
2132                 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2133                     prot, max, cow);
2134         }
2135         if (rv == KERN_SUCCESS && update_anon)
2136                 map->anon_loc = *addr + length;
2137 done:
2138         vm_map_unlock(map);
2139         return (rv);
2140 }
2141
2142 /*
2143  *      vm_map_find_min() is a variant of vm_map_find() that takes an
2144  *      additional parameter (min_addr) and treats the given address
2145  *      (*addr) differently.  Specifically, it treats *addr as a hint
2146  *      and not as the minimum address where the mapping is created.
2147  *
2148  *      This function works in two phases.  First, it tries to
2149  *      allocate above the hint.  If that fails and the hint is
2150  *      greater than min_addr, it performs a second pass, replacing
2151  *      the hint with min_addr as the minimum address for the
2152  *      allocation.
2153  */
2154 int
2155 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2156     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2157     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2158     int cow)
2159 {
2160         vm_offset_t hint;
2161         int rv;
2162
2163         hint = *addr;
2164         for (;;) {
2165                 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2166                     find_space, prot, max, cow);
2167                 if (rv == KERN_SUCCESS || min_addr >= hint)
2168                         return (rv);
2169                 *addr = hint = min_addr;
2170         }
2171 }
2172
2173 /*
2174  * A map entry with any of the following flags set must not be merged with
2175  * another entry.
2176  */
2177 #define MAP_ENTRY_NOMERGE_MASK  (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2178             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2179
2180 static bool
2181 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2182 {
2183
2184         KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2185             (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2186             ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2187             prev, entry));
2188         return (prev->end == entry->start &&
2189             prev->object.vm_object == entry->object.vm_object &&
2190             (prev->object.vm_object == NULL ||
2191             prev->offset + (prev->end - prev->start) == entry->offset) &&
2192             prev->eflags == entry->eflags &&
2193             prev->protection == entry->protection &&
2194             prev->max_protection == entry->max_protection &&
2195             prev->inheritance == entry->inheritance &&
2196             prev->wired_count == entry->wired_count &&
2197             prev->cred == entry->cred);
2198 }
2199
2200 static void
2201 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2202 {
2203
2204         /*
2205          * If the backing object is a vnode object, vm_object_deallocate()
2206          * calls vrele().  However, vrele() does not lock the vnode because
2207          * the vnode has additional references.  Thus, the map lock can be
2208          * kept without causing a lock-order reversal with the vnode lock.
2209          *
2210          * Since we count the number of virtual page mappings in
2211          * object->un_pager.vnp.writemappings, the writemappings value
2212          * should not be adjusted when the entry is disposed of.
2213          */
2214         if (entry->object.vm_object != NULL)
2215                 vm_object_deallocate(entry->object.vm_object);
2216         if (entry->cred != NULL)
2217                 crfree(entry->cred);
2218         vm_map_entry_dispose(map, entry);
2219 }
2220
2221 /*
2222  *      vm_map_try_merge_entries:
2223  *
2224  *      Compare the given map entry to its predecessor, and merge its precessor
2225  *      into it if possible.  The entry remains valid, and may be extended.
2226  *      The predecessor may be deleted.
2227  *
2228  *      The map must be locked.
2229  */
2230 void
2231 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2232     vm_map_entry_t entry)
2233 {
2234
2235         VM_MAP_ASSERT_LOCKED(map);
2236         if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2237             vm_map_mergeable_neighbors(prev_entry, entry)) {
2238                 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2239                 vm_map_merged_neighbor_dispose(map, prev_entry);
2240         }
2241 }
2242
2243 /*
2244  *      vm_map_entry_back:
2245  *
2246  *      Allocate an object to back a map entry.
2247  */
2248 static inline void
2249 vm_map_entry_back(vm_map_entry_t entry)
2250 {
2251         vm_object_t object;
2252
2253         KASSERT(entry->object.vm_object == NULL,
2254             ("map entry %p has backing object", entry));
2255         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2256             ("map entry %p is a submap", entry));
2257         object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2258             entry->cred, entry->end - entry->start);
2259         entry->object.vm_object = object;
2260         entry->offset = 0;
2261         entry->cred = NULL;
2262 }
2263
2264 /*
2265  *      vm_map_entry_charge_object
2266  *
2267  *      If there is no object backing this entry, create one.  Otherwise, if
2268  *      the entry has cred, give it to the backing object.
2269  */
2270 static inline void
2271 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2272 {
2273
2274         VM_MAP_ASSERT_LOCKED(map);
2275         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2276             ("map entry %p is a submap", entry));
2277         if (entry->object.vm_object == NULL && !map->system_map &&
2278             (entry->eflags & MAP_ENTRY_GUARD) == 0)
2279                 vm_map_entry_back(entry);
2280         else if (entry->object.vm_object != NULL &&
2281             ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2282             entry->cred != NULL) {
2283                 VM_OBJECT_WLOCK(entry->object.vm_object);
2284                 KASSERT(entry->object.vm_object->cred == NULL,
2285                     ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2286                 entry->object.vm_object->cred = entry->cred;
2287                 entry->object.vm_object->charge = entry->end - entry->start;
2288                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2289                 entry->cred = NULL;
2290         }
2291 }
2292
2293 /*
2294  *      vm_map_clip_start:      [ internal use only ]
2295  *
2296  *      Asserts that the given entry begins at or after
2297  *      the specified address; if necessary,
2298  *      it splits the entry into two.
2299  */
2300 #define vm_map_clip_start(map, entry, startaddr) \
2301 { \
2302         if (startaddr > entry->start) \
2303                 _vm_map_clip_start(map, entry, startaddr); \
2304 }
2305
2306 /*
2307  *      This routine is called only when it is known that
2308  *      the entry must be split.
2309  */
2310 static void
2311 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2312 {
2313         vm_map_entry_t new_entry;
2314
2315         VM_MAP_ASSERT_LOCKED(map);
2316         KASSERT(entry->end > start && entry->start < start,
2317             ("_vm_map_clip_start: invalid clip of entry %p", entry));
2318
2319         /*
2320          * Create a backing object now, if none exists, so that more individual
2321          * objects won't be created after the map entry is split.
2322          */
2323         vm_map_entry_charge_object(map, entry);
2324
2325         /* Clone the entry. */
2326         new_entry = vm_map_entry_create(map);
2327         *new_entry = *entry;
2328
2329         /*
2330          * Split off the front portion.  Insert the new entry BEFORE this one,
2331          * so that this entry has the specified starting address.
2332          */
2333         new_entry->end = start;
2334         entry->offset += (start - entry->start);
2335         entry->start = start;
2336         if (new_entry->cred != NULL)
2337                 crhold(entry->cred);
2338
2339         vm_map_entry_link(map, new_entry);
2340
2341         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2342                 vm_object_reference(new_entry->object.vm_object);
2343                 vm_map_entry_set_vnode_text(new_entry, true);
2344                 /*
2345                  * The object->un_pager.vnp.writemappings for the
2346                  * object of MAP_ENTRY_WRITECNT type entry shall be
2347                  * kept as is here.  The virtual pages are
2348                  * re-distributed among the clipped entries, so the sum is
2349                  * left the same.
2350                  */
2351         }
2352 }
2353
2354 /*
2355  *      vm_map_clip_end:        [ internal use only ]
2356  *
2357  *      Asserts that the given entry ends at or before
2358  *      the specified address; if necessary,
2359  *      it splits the entry into two.
2360  */
2361 #define vm_map_clip_end(map, entry, endaddr) \
2362 { \
2363         if ((endaddr) < (entry->end)) \
2364                 _vm_map_clip_end((map), (entry), (endaddr)); \
2365 }
2366
2367 /*
2368  *      This routine is called only when it is known that
2369  *      the entry must be split.
2370  */
2371 static void
2372 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2373 {
2374         vm_map_entry_t new_entry;
2375
2376         VM_MAP_ASSERT_LOCKED(map);
2377         KASSERT(entry->start < end && entry->end > end,
2378             ("_vm_map_clip_end: invalid clip of entry %p", entry));
2379
2380         /*
2381          * Create a backing object now, if none exists, so that more individual
2382          * objects won't be created after the map entry is split.
2383          */
2384         vm_map_entry_charge_object(map, entry);
2385
2386         /* Clone the entry. */
2387         new_entry = vm_map_entry_create(map);
2388         *new_entry = *entry;
2389
2390         /*
2391          * Split off the back portion.  Insert the new entry AFTER this one,
2392          * so that this entry has the specified ending address.
2393          */
2394         new_entry->start = entry->end = end;
2395         new_entry->offset += (end - entry->start);
2396         if (new_entry->cred != NULL)
2397                 crhold(entry->cred);
2398
2399         vm_map_entry_link(map, new_entry);
2400
2401         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2402                 vm_object_reference(new_entry->object.vm_object);
2403                 vm_map_entry_set_vnode_text(new_entry, true);
2404         }
2405 }
2406
2407 /*
2408  *      vm_map_submap:          [ kernel use only ]
2409  *
2410  *      Mark the given range as handled by a subordinate map.
2411  *
2412  *      This range must have been created with vm_map_find,
2413  *      and no other operations may have been performed on this
2414  *      range prior to calling vm_map_submap.
2415  *
2416  *      Only a limited number of operations can be performed
2417  *      within this rage after calling vm_map_submap:
2418  *              vm_fault
2419  *      [Don't try vm_map_copy!]
2420  *
2421  *      To remove a submapping, one must first remove the
2422  *      range from the superior map, and then destroy the
2423  *      submap (if desired).  [Better yet, don't try it.]
2424  */
2425 int
2426 vm_map_submap(
2427         vm_map_t map,
2428         vm_offset_t start,
2429         vm_offset_t end,
2430         vm_map_t submap)
2431 {
2432         vm_map_entry_t entry;
2433         int result;
2434
2435         result = KERN_INVALID_ARGUMENT;
2436
2437         vm_map_lock(submap);
2438         submap->flags |= MAP_IS_SUB_MAP;
2439         vm_map_unlock(submap);
2440
2441         vm_map_lock(map);
2442
2443         VM_MAP_RANGE_CHECK(map, start, end);
2444
2445         if (vm_map_lookup_entry(map, start, &entry)) {
2446                 vm_map_clip_start(map, entry, start);
2447         } else
2448                 entry = vm_map_entry_succ(entry);
2449
2450         vm_map_clip_end(map, entry, end);
2451
2452         if ((entry->start == start) && (entry->end == end) &&
2453             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2454             (entry->object.vm_object == NULL)) {
2455                 entry->object.sub_map = submap;
2456                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2457                 result = KERN_SUCCESS;
2458         }
2459         vm_map_unlock(map);
2460
2461         if (result != KERN_SUCCESS) {
2462                 vm_map_lock(submap);
2463                 submap->flags &= ~MAP_IS_SUB_MAP;
2464                 vm_map_unlock(submap);
2465         }
2466         return (result);
2467 }
2468
2469 /*
2470  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2471  */
2472 #define MAX_INIT_PT     96
2473
2474 /*
2475  *      vm_map_pmap_enter:
2476  *
2477  *      Preload the specified map's pmap with mappings to the specified
2478  *      object's memory-resident pages.  No further physical pages are
2479  *      allocated, and no further virtual pages are retrieved from secondary
2480  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2481  *      limited number of page mappings are created at the low-end of the
2482  *      specified address range.  (For this purpose, a superpage mapping
2483  *      counts as one page mapping.)  Otherwise, all resident pages within
2484  *      the specified address range are mapped.
2485  */
2486 static void
2487 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2488     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2489 {
2490         vm_offset_t start;
2491         vm_page_t p, p_start;
2492         vm_pindex_t mask, psize, threshold, tmpidx;
2493
2494         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2495                 return;
2496         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2497                 VM_OBJECT_WLOCK(object);
2498                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2499                         pmap_object_init_pt(map->pmap, addr, object, pindex,
2500                             size);
2501                         VM_OBJECT_WUNLOCK(object);
2502                         return;
2503                 }
2504                 VM_OBJECT_LOCK_DOWNGRADE(object);
2505         } else
2506                 VM_OBJECT_RLOCK(object);
2507
2508         psize = atop(size);
2509         if (psize + pindex > object->size) {
2510                 if (pindex >= object->size) {
2511                         VM_OBJECT_RUNLOCK(object);
2512                         return;
2513                 }
2514                 psize = object->size - pindex;
2515         }
2516
2517         start = 0;
2518         p_start = NULL;
2519         threshold = MAX_INIT_PT;
2520
2521         p = vm_page_find_least(object, pindex);
2522         /*
2523          * Assert: the variable p is either (1) the page with the
2524          * least pindex greater than or equal to the parameter pindex
2525          * or (2) NULL.
2526          */
2527         for (;
2528              p != NULL && (tmpidx = p->pindex - pindex) < psize;
2529              p = TAILQ_NEXT(p, listq)) {
2530                 /*
2531                  * don't allow an madvise to blow away our really
2532                  * free pages allocating pv entries.
2533                  */
2534                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2535                     vm_page_count_severe()) ||
2536                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2537                     tmpidx >= threshold)) {
2538                         psize = tmpidx;
2539                         break;
2540                 }
2541                 if (vm_page_all_valid(p)) {
2542                         if (p_start == NULL) {
2543                                 start = addr + ptoa(tmpidx);
2544                                 p_start = p;
2545                         }
2546                         /* Jump ahead if a superpage mapping is possible. */
2547                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2548                             (pagesizes[p->psind] - 1)) == 0) {
2549                                 mask = atop(pagesizes[p->psind]) - 1;
2550                                 if (tmpidx + mask < psize &&
2551                                     vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2552                                         p += mask;
2553                                         threshold += mask;
2554                                 }
2555                         }
2556                 } else if (p_start != NULL) {
2557                         pmap_enter_object(map->pmap, start, addr +
2558                             ptoa(tmpidx), p_start, prot);
2559                         p_start = NULL;
2560                 }
2561         }
2562         if (p_start != NULL)
2563                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2564                     p_start, prot);
2565         VM_OBJECT_RUNLOCK(object);
2566 }
2567
2568 /*
2569  *      vm_map_protect:
2570  *
2571  *      Sets the protection of the specified address
2572  *      region in the target map.  If "set_max" is
2573  *      specified, the maximum protection is to be set;
2574  *      otherwise, only the current protection is affected.
2575  */
2576 int
2577 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2578                vm_prot_t new_prot, boolean_t set_max)
2579 {
2580         vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2581         vm_object_t obj;
2582         struct ucred *cred;
2583         vm_prot_t old_prot;
2584         int rv;
2585
2586         if (start == end)
2587                 return (KERN_SUCCESS);
2588
2589 again:
2590         in_tran = NULL;
2591         vm_map_lock(map);
2592
2593         /*
2594          * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2595          * need to fault pages into the map and will drop the map lock while
2596          * doing so, and the VM object may end up in an inconsistent state if we
2597          * update the protection on the map entry in between faults.
2598          */
2599         vm_map_wait_busy(map);
2600
2601         VM_MAP_RANGE_CHECK(map, start, end);
2602
2603         if (!vm_map_lookup_entry(map, start, &first_entry))
2604                 first_entry = vm_map_entry_succ(first_entry);
2605
2606         /*
2607          * Make a first pass to check for protection violations.
2608          */
2609         for (entry = first_entry; entry->start < end;
2610             entry = vm_map_entry_succ(entry)) {
2611                 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2612                         continue;
2613                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2614                         vm_map_unlock(map);
2615                         return (KERN_INVALID_ARGUMENT);
2616                 }
2617                 if ((new_prot & entry->max_protection) != new_prot) {
2618                         vm_map_unlock(map);
2619                         return (KERN_PROTECTION_FAILURE);
2620                 }
2621                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2622                         in_tran = entry;
2623         }
2624
2625         /*
2626          * Postpone the operation until all in-transition map entries have
2627          * stabilized.  An in-transition entry might already have its pages
2628          * wired and wired_count incremented, but not yet have its
2629          * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2630          * vm_fault_copy_entry() in the final loop below.
2631          */
2632         if (in_tran != NULL) {
2633                 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2634                 vm_map_unlock_and_wait(map, 0);
2635                 goto again;
2636         }
2637
2638         /*
2639          * Before changing the protections, try to reserve swap space for any
2640          * private (i.e., copy-on-write) mappings that are transitioning from
2641          * read-only to read/write access.  If a reservation fails, break out
2642          * of this loop early and let the next loop simplify the entries, since
2643          * some may now be mergeable.
2644          */
2645         rv = KERN_SUCCESS;
2646         vm_map_clip_start(map, first_entry, start);
2647         for (entry = first_entry; entry->start < end;
2648             entry = vm_map_entry_succ(entry)) {
2649                 vm_map_clip_end(map, entry, end);
2650
2651                 if (set_max ||
2652                     ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2653                     ENTRY_CHARGED(entry) ||
2654                     (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2655                         continue;
2656                 }
2657
2658                 cred = curthread->td_ucred;
2659                 obj = entry->object.vm_object;
2660
2661                 if (obj == NULL ||
2662                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2663                         if (!swap_reserve(entry->end - entry->start)) {
2664                                 rv = KERN_RESOURCE_SHORTAGE;
2665                                 end = entry->end;
2666                                 break;
2667                         }
2668                         crhold(cred);
2669                         entry->cred = cred;
2670                         continue;
2671                 }
2672
2673                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2674                         continue;
2675                 VM_OBJECT_WLOCK(obj);
2676                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2677                         VM_OBJECT_WUNLOCK(obj);
2678                         continue;
2679                 }
2680
2681                 /*
2682                  * Charge for the whole object allocation now, since
2683                  * we cannot distinguish between non-charged and
2684                  * charged clipped mapping of the same object later.
2685                  */
2686                 KASSERT(obj->charge == 0,
2687                     ("vm_map_protect: object %p overcharged (entry %p)",
2688                     obj, entry));
2689                 if (!swap_reserve(ptoa(obj->size))) {
2690                         VM_OBJECT_WUNLOCK(obj);
2691                         rv = KERN_RESOURCE_SHORTAGE;
2692                         end = entry->end;
2693                         break;
2694                 }
2695
2696                 crhold(cred);
2697                 obj->cred = cred;
2698                 obj->charge = ptoa(obj->size);
2699                 VM_OBJECT_WUNLOCK(obj);
2700         }
2701
2702         /*
2703          * If enough swap space was available, go back and fix up protections.
2704          * Otherwise, just simplify entries, since some may have been modified.
2705          * [Note that clipping is not necessary the second time.]
2706          */
2707         for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2708             entry->start < end;
2709             vm_map_try_merge_entries(map, prev_entry, entry),
2710             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2711                 if (rv != KERN_SUCCESS ||
2712                     (entry->eflags & MAP_ENTRY_GUARD) != 0)
2713                         continue;
2714
2715                 old_prot = entry->protection;
2716
2717                 if (set_max)
2718                         entry->protection =
2719                             (entry->max_protection = new_prot) &
2720                             old_prot;
2721                 else
2722                         entry->protection = new_prot;
2723
2724                 /*
2725                  * For user wired map entries, the normal lazy evaluation of
2726                  * write access upgrades through soft page faults is
2727                  * undesirable.  Instead, immediately copy any pages that are
2728                  * copy-on-write and enable write access in the physical map.
2729                  */
2730                 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2731                     (entry->protection & VM_PROT_WRITE) != 0 &&
2732                     (old_prot & VM_PROT_WRITE) == 0)
2733                         vm_fault_copy_entry(map, map, entry, entry, NULL);
2734
2735                 /*
2736                  * When restricting access, update the physical map.  Worry
2737                  * about copy-on-write here.
2738                  */
2739                 if ((old_prot & ~entry->protection) != 0) {
2740 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2741                                                         VM_PROT_ALL)
2742                         pmap_protect(map->pmap, entry->start,
2743                             entry->end,
2744                             entry->protection & MASK(entry));
2745 #undef  MASK
2746                 }
2747         }
2748         vm_map_try_merge_entries(map, prev_entry, entry);
2749         vm_map_unlock(map);
2750         return (rv);
2751 }
2752
2753 /*
2754  *      vm_map_madvise:
2755  *
2756  *      This routine traverses a processes map handling the madvise
2757  *      system call.  Advisories are classified as either those effecting
2758  *      the vm_map_entry structure, or those effecting the underlying
2759  *      objects.
2760  */
2761 int
2762 vm_map_madvise(
2763         vm_map_t map,
2764         vm_offset_t start,
2765         vm_offset_t end,
2766         int behav)
2767 {
2768         vm_map_entry_t entry, prev_entry;
2769         bool modify_map;
2770
2771         /*
2772          * Some madvise calls directly modify the vm_map_entry, in which case
2773          * we need to use an exclusive lock on the map and we need to perform
2774          * various clipping operations.  Otherwise we only need a read-lock
2775          * on the map.
2776          */
2777         switch(behav) {
2778         case MADV_NORMAL:
2779         case MADV_SEQUENTIAL:
2780         case MADV_RANDOM:
2781         case MADV_NOSYNC:
2782         case MADV_AUTOSYNC:
2783         case MADV_NOCORE:
2784         case MADV_CORE:
2785                 if (start == end)
2786                         return (0);
2787                 modify_map = true;
2788                 vm_map_lock(map);
2789                 break;
2790         case MADV_WILLNEED:
2791         case MADV_DONTNEED:
2792         case MADV_FREE:
2793                 if (start == end)
2794                         return (0);
2795                 modify_map = false;
2796                 vm_map_lock_read(map);
2797                 break;
2798         default:
2799                 return (EINVAL);
2800         }
2801
2802         /*
2803          * Locate starting entry and clip if necessary.
2804          */
2805         VM_MAP_RANGE_CHECK(map, start, end);
2806
2807         if (vm_map_lookup_entry(map, start, &entry)) {
2808                 if (modify_map)
2809                         vm_map_clip_start(map, entry, start);
2810                 prev_entry = vm_map_entry_pred(entry);
2811         } else {
2812                 prev_entry = entry;
2813                 entry = vm_map_entry_succ(entry);
2814         }
2815
2816         if (modify_map) {
2817                 /*
2818                  * madvise behaviors that are implemented in the vm_map_entry.
2819                  *
2820                  * We clip the vm_map_entry so that behavioral changes are
2821                  * limited to the specified address range.
2822                  */
2823                 for (; entry->start < end;
2824                      prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2825                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2826                                 continue;
2827
2828                         vm_map_clip_end(map, entry, end);
2829
2830                         switch (behav) {
2831                         case MADV_NORMAL:
2832                                 vm_map_entry_set_behavior(entry,
2833                                     MAP_ENTRY_BEHAV_NORMAL);
2834                                 break;
2835                         case MADV_SEQUENTIAL:
2836                                 vm_map_entry_set_behavior(entry,
2837                                     MAP_ENTRY_BEHAV_SEQUENTIAL);
2838                                 break;
2839                         case MADV_RANDOM:
2840                                 vm_map_entry_set_behavior(entry,
2841                                     MAP_ENTRY_BEHAV_RANDOM);
2842                                 break;
2843                         case MADV_NOSYNC:
2844                                 entry->eflags |= MAP_ENTRY_NOSYNC;
2845                                 break;
2846                         case MADV_AUTOSYNC:
2847                                 entry->eflags &= ~MAP_ENTRY_NOSYNC;
2848                                 break;
2849                         case MADV_NOCORE:
2850                                 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2851                                 break;
2852                         case MADV_CORE:
2853                                 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2854                                 break;
2855                         default:
2856                                 break;
2857                         }
2858                         vm_map_try_merge_entries(map, prev_entry, entry);
2859                 }
2860                 vm_map_try_merge_entries(map, prev_entry, entry);
2861                 vm_map_unlock(map);
2862         } else {
2863                 vm_pindex_t pstart, pend;
2864
2865                 /*
2866                  * madvise behaviors that are implemented in the underlying
2867                  * vm_object.
2868                  *
2869                  * Since we don't clip the vm_map_entry, we have to clip
2870                  * the vm_object pindex and count.
2871                  */
2872                 for (; entry->start < end;
2873                     entry = vm_map_entry_succ(entry)) {
2874                         vm_offset_t useEnd, useStart;
2875
2876                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2877                                 continue;
2878
2879                         /*
2880                          * MADV_FREE would otherwise rewind time to
2881                          * the creation of the shadow object.  Because
2882                          * we hold the VM map read-locked, neither the
2883                          * entry's object nor the presence of a
2884                          * backing object can change.
2885                          */
2886                         if (behav == MADV_FREE &&
2887                             entry->object.vm_object != NULL &&
2888                             entry->object.vm_object->backing_object != NULL)
2889                                 continue;
2890
2891                         pstart = OFF_TO_IDX(entry->offset);
2892                         pend = pstart + atop(entry->end - entry->start);
2893                         useStart = entry->start;
2894                         useEnd = entry->end;
2895
2896                         if (entry->start < start) {
2897                                 pstart += atop(start - entry->start);
2898                                 useStart = start;
2899                         }
2900                         if (entry->end > end) {
2901                                 pend -= atop(entry->end - end);
2902                                 useEnd = end;
2903                         }
2904
2905                         if (pstart >= pend)
2906                                 continue;
2907
2908                         /*
2909                          * Perform the pmap_advise() before clearing
2910                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2911                          * concurrent pmap operation, such as pmap_remove(),
2912                          * could clear a reference in the pmap and set
2913                          * PGA_REFERENCED on the page before the pmap_advise()
2914                          * had completed.  Consequently, the page would appear
2915                          * referenced based upon an old reference that
2916                          * occurred before this pmap_advise() ran.
2917                          */
2918                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2919                                 pmap_advise(map->pmap, useStart, useEnd,
2920                                     behav);
2921
2922                         vm_object_madvise(entry->object.vm_object, pstart,
2923                             pend, behav);
2924
2925                         /*
2926                          * Pre-populate paging structures in the
2927                          * WILLNEED case.  For wired entries, the
2928                          * paging structures are already populated.
2929                          */
2930                         if (behav == MADV_WILLNEED &&
2931                             entry->wired_count == 0) {
2932                                 vm_map_pmap_enter(map,
2933                                     useStart,
2934                                     entry->protection,
2935                                     entry->object.vm_object,
2936                                     pstart,
2937                                     ptoa(pend - pstart),
2938                                     MAP_PREFAULT_MADVISE
2939                                 );
2940                         }
2941                 }
2942                 vm_map_unlock_read(map);
2943         }
2944         return (0);
2945 }
2946
2947
2948 /*
2949  *      vm_map_inherit:
2950  *
2951  *      Sets the inheritance of the specified address
2952  *      range in the target map.  Inheritance
2953  *      affects how the map will be shared with
2954  *      child maps at the time of vmspace_fork.
2955  */
2956 int
2957 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2958                vm_inherit_t new_inheritance)
2959 {
2960         vm_map_entry_t entry, prev_entry;
2961
2962         switch (new_inheritance) {
2963         case VM_INHERIT_NONE:
2964         case VM_INHERIT_COPY:
2965         case VM_INHERIT_SHARE:
2966         case VM_INHERIT_ZERO:
2967                 break;
2968         default:
2969                 return (KERN_INVALID_ARGUMENT);
2970         }
2971         if (start == end)
2972                 return (KERN_SUCCESS);
2973         vm_map_lock(map);
2974         VM_MAP_RANGE_CHECK(map, start, end);
2975         if (vm_map_lookup_entry(map, start, &prev_entry)) {
2976                 entry = prev_entry;
2977                 vm_map_clip_start(map, entry, start);
2978                 prev_entry = vm_map_entry_pred(entry);
2979         } else
2980                 entry = vm_map_entry_succ(prev_entry);
2981         for (; entry->start < end;
2982             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2983                 vm_map_clip_end(map, entry, end);
2984                 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2985                     new_inheritance != VM_INHERIT_ZERO)
2986                         entry->inheritance = new_inheritance;
2987                 vm_map_try_merge_entries(map, prev_entry, entry);
2988         }
2989         vm_map_try_merge_entries(map, prev_entry, entry);
2990         vm_map_unlock(map);
2991         return (KERN_SUCCESS);
2992 }
2993
2994 /*
2995  *      vm_map_entry_in_transition:
2996  *
2997  *      Release the map lock, and sleep until the entry is no longer in
2998  *      transition.  Awake and acquire the map lock.  If the map changed while
2999  *      another held the lock, lookup a possibly-changed entry at or after the
3000  *      'start' position of the old entry.
3001  */
3002 static vm_map_entry_t
3003 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3004     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3005 {
3006         vm_map_entry_t entry;
3007         vm_offset_t start;
3008         u_int last_timestamp;
3009
3010         VM_MAP_ASSERT_LOCKED(map);
3011         KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3012             ("not in-tranition map entry %p", in_entry));
3013         /*
3014          * We have not yet clipped the entry.
3015          */
3016         start = MAX(in_start, in_entry->start);
3017         in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3018         last_timestamp = map->timestamp;
3019         if (vm_map_unlock_and_wait(map, 0)) {
3020                 /*
3021                  * Allow interruption of user wiring/unwiring?
3022                  */
3023         }
3024         vm_map_lock(map);
3025         if (last_timestamp + 1 == map->timestamp)
3026                 return (in_entry);
3027
3028         /*
3029          * Look again for the entry because the map was modified while it was
3030          * unlocked.  Specifically, the entry may have been clipped, merged, or
3031          * deleted.
3032          */
3033         if (!vm_map_lookup_entry(map, start, &entry)) {
3034                 if (!holes_ok) {
3035                         *io_end = start;
3036                         return (NULL);
3037                 }
3038                 entry = vm_map_entry_succ(entry);
3039         }
3040         return (entry);
3041 }
3042
3043 /*
3044  *      vm_map_unwire:
3045  *
3046  *      Implements both kernel and user unwiring.
3047  */
3048 int
3049 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3050     int flags)
3051 {
3052         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3053         int rv;
3054         bool holes_ok, need_wakeup, user_unwire;
3055
3056         if (start == end)
3057                 return (KERN_SUCCESS);
3058         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3059         user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3060         vm_map_lock(map);
3061         VM_MAP_RANGE_CHECK(map, start, end);
3062         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3063                 if (holes_ok)
3064                         first_entry = vm_map_entry_succ(first_entry);
3065                 else {
3066                         vm_map_unlock(map);
3067                         return (KERN_INVALID_ADDRESS);
3068                 }
3069         }
3070         rv = KERN_SUCCESS;
3071         for (entry = first_entry; entry->start < end; entry = next_entry) {
3072                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3073                         /*
3074                          * We have not yet clipped the entry.
3075                          */
3076                         next_entry = vm_map_entry_in_transition(map, start,
3077                             &end, holes_ok, entry);
3078                         if (next_entry == NULL) {
3079                                 if (entry == first_entry) {
3080                                         vm_map_unlock(map);
3081                                         return (KERN_INVALID_ADDRESS);
3082                                 }
3083                                 rv = KERN_INVALID_ADDRESS;
3084                                 break;
3085                         }
3086                         first_entry = (entry == first_entry) ?
3087                             next_entry : NULL;
3088                         continue;
3089                 }
3090                 vm_map_clip_start(map, entry, start);
3091                 vm_map_clip_end(map, entry, end);
3092                 /*
3093                  * Mark the entry in case the map lock is released.  (See
3094                  * above.)
3095                  */
3096                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3097                     entry->wiring_thread == NULL,
3098                     ("owned map entry %p", entry));
3099                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3100                 entry->wiring_thread = curthread;
3101                 next_entry = vm_map_entry_succ(entry);
3102                 /*
3103                  * Check the map for holes in the specified region.
3104                  * If holes_ok, skip this check.
3105                  */
3106                 if (!holes_ok &&
3107                     entry->end < end && next_entry->start > entry->end) {
3108                         end = entry->end;
3109                         rv = KERN_INVALID_ADDRESS;
3110                         break;
3111                 }
3112                 /*
3113                  * If system unwiring, require that the entry is system wired.
3114                  */
3115                 if (!user_unwire &&
3116                     vm_map_entry_system_wired_count(entry) == 0) {
3117                         end = entry->end;
3118                         rv = KERN_INVALID_ARGUMENT;
3119                         break;
3120                 }
3121         }
3122         need_wakeup = false;
3123         if (first_entry == NULL &&
3124             !vm_map_lookup_entry(map, start, &first_entry)) {
3125                 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3126                 prev_entry = first_entry;
3127                 entry = vm_map_entry_succ(first_entry);
3128         } else {
3129                 prev_entry = vm_map_entry_pred(first_entry);
3130                 entry = first_entry;
3131         }
3132         for (; entry->start < end;
3133             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3134                 /*
3135                  * If holes_ok was specified, an empty
3136                  * space in the unwired region could have been mapped
3137                  * while the map lock was dropped for draining
3138                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3139                  * could be simultaneously wiring this new mapping
3140                  * entry.  Detect these cases and skip any entries
3141                  * marked as in transition by us.
3142                  */
3143                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3144                     entry->wiring_thread != curthread) {
3145                         KASSERT(holes_ok,
3146                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
3147                         continue;
3148                 }
3149
3150                 if (rv == KERN_SUCCESS && (!user_unwire ||
3151                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3152                         if (entry->wired_count == 1)
3153                                 vm_map_entry_unwire(map, entry);
3154                         else
3155                                 entry->wired_count--;
3156                         if (user_unwire)
3157                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3158                 }
3159                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3160                     ("vm_map_unwire: in-transition flag missing %p", entry));
3161                 KASSERT(entry->wiring_thread == curthread,
3162                     ("vm_map_unwire: alien wire %p", entry));
3163                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3164                 entry->wiring_thread = NULL;
3165                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3166                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3167                         need_wakeup = true;
3168                 }
3169                 vm_map_try_merge_entries(map, prev_entry, entry);
3170         }
3171         vm_map_try_merge_entries(map, prev_entry, entry);
3172         vm_map_unlock(map);
3173         if (need_wakeup)
3174                 vm_map_wakeup(map);
3175         return (rv);
3176 }
3177
3178 static void
3179 vm_map_wire_user_count_sub(u_long npages)
3180 {
3181
3182         atomic_subtract_long(&vm_user_wire_count, npages);
3183 }
3184
3185 static bool
3186 vm_map_wire_user_count_add(u_long npages)
3187 {
3188         u_long wired;
3189
3190         wired = vm_user_wire_count;
3191         do {
3192                 if (npages + wired > vm_page_max_user_wired)
3193                         return (false);
3194         } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3195             npages + wired));
3196
3197         return (true);
3198 }
3199
3200 /*
3201  *      vm_map_wire_entry_failure:
3202  *
3203  *      Handle a wiring failure on the given entry.
3204  *
3205  *      The map should be locked.
3206  */
3207 static void
3208 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3209     vm_offset_t failed_addr)
3210 {
3211
3212         VM_MAP_ASSERT_LOCKED(map);
3213         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3214             entry->wired_count == 1,
3215             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3216         KASSERT(failed_addr < entry->end,
3217             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3218
3219         /*
3220          * If any pages at the start of this entry were successfully wired,
3221          * then unwire them.
3222          */
3223         if (failed_addr > entry->start) {
3224                 pmap_unwire(map->pmap, entry->start, failed_addr);
3225                 vm_object_unwire(entry->object.vm_object, entry->offset,
3226                     failed_addr - entry->start, PQ_ACTIVE);
3227         }
3228
3229         /*
3230          * Assign an out-of-range value to represent the failure to wire this
3231          * entry.
3232          */
3233         entry->wired_count = -1;
3234 }
3235
3236 int
3237 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3238 {
3239         int rv;
3240
3241         vm_map_lock(map);
3242         rv = vm_map_wire_locked(map, start, end, flags);
3243         vm_map_unlock(map);
3244         return (rv);
3245 }
3246
3247
3248 /*
3249  *      vm_map_wire_locked:
3250  *
3251  *      Implements both kernel and user wiring.  Returns with the map locked,
3252  *      the map lock may be dropped.
3253  */
3254 int
3255 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3256 {
3257         vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3258         vm_offset_t faddr, saved_end, saved_start;
3259         u_long npages;
3260         u_int last_timestamp;
3261         int rv;
3262         bool holes_ok, need_wakeup, user_wire;
3263         vm_prot_t prot;
3264
3265         VM_MAP_ASSERT_LOCKED(map);
3266
3267         if (start == end)
3268                 return (KERN_SUCCESS);
3269         prot = 0;
3270         if (flags & VM_MAP_WIRE_WRITE)
3271                 prot |= VM_PROT_WRITE;
3272         holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3273         user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3274         VM_MAP_RANGE_CHECK(map, start, end);
3275         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3276                 if (holes_ok)
3277                         first_entry = vm_map_entry_succ(first_entry);
3278                 else
3279                         return (KERN_INVALID_ADDRESS);
3280         }
3281         for (entry = first_entry; entry->start < end; entry = next_entry) {
3282                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3283                         /*
3284                          * We have not yet clipped the entry.
3285                          */
3286                         next_entry = vm_map_entry_in_transition(map, start,
3287                             &end, holes_ok, entry);
3288                         if (next_entry == NULL) {
3289                                 if (entry == first_entry)
3290                                         return (KERN_INVALID_ADDRESS);
3291                                 rv = KERN_INVALID_ADDRESS;
3292                                 goto done;
3293                         }
3294                         first_entry = (entry == first_entry) ?
3295                             next_entry : NULL;
3296                         continue;
3297                 }
3298                 vm_map_clip_start(map, entry, start);
3299                 vm_map_clip_end(map, entry, end);
3300                 /*
3301                  * Mark the entry in case the map lock is released.  (See
3302                  * above.)
3303                  */
3304                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3305                     entry->wiring_thread == NULL,
3306                     ("owned map entry %p", entry));
3307                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3308                 entry->wiring_thread = curthread;
3309                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3310                     || (entry->protection & prot) != prot) {
3311                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3312                         if (!holes_ok) {
3313                                 end = entry->end;
3314                                 rv = KERN_INVALID_ADDRESS;
3315                                 goto done;
3316                         }
3317                 } else if (entry->wired_count == 0) {
3318                         entry->wired_count++;
3319
3320                         npages = atop(entry->end - entry->start);
3321                         if (user_wire && !vm_map_wire_user_count_add(npages)) {
3322                                 vm_map_wire_entry_failure(map, entry,
3323                                     entry->start);
3324                                 end = entry->end;
3325                                 rv = KERN_RESOURCE_SHORTAGE;
3326                                 goto done;
3327                         }
3328
3329                         /*
3330                          * Release the map lock, relying on the in-transition
3331                          * mark.  Mark the map busy for fork.
3332                          */
3333                         saved_start = entry->start;
3334                         saved_end = entry->end;
3335                         last_timestamp = map->timestamp;
3336                         vm_map_busy(map);
3337                         vm_map_unlock(map);
3338
3339                         faddr = saved_start;
3340                         do {
3341                                 /*
3342                                  * Simulate a fault to get the page and enter
3343                                  * it into the physical map.
3344                                  */
3345                                 if ((rv = vm_fault(map, faddr,
3346                                     VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3347                                     KERN_SUCCESS)
3348                                         break;
3349                         } while ((faddr += PAGE_SIZE) < saved_end);
3350                         vm_map_lock(map);
3351                         vm_map_unbusy(map);
3352                         if (last_timestamp + 1 != map->timestamp) {
3353                                 /*
3354                                  * Look again for the entry because the map was
3355                                  * modified while it was unlocked.  The entry
3356                                  * may have been clipped, but NOT merged or
3357                                  * deleted.
3358                                  */
3359                                 if (!vm_map_lookup_entry(map, saved_start,
3360                                     &next_entry))
3361                                         KASSERT(false,
3362                                             ("vm_map_wire: lookup failed"));
3363                                 first_entry = (entry == first_entry) ?
3364                                     next_entry : NULL;
3365                                 for (entry = next_entry; entry->end < saved_end;
3366                                     entry = vm_map_entry_succ(entry)) {
3367                                         /*
3368                                          * In case of failure, handle entries
3369                                          * that were not fully wired here;
3370                                          * fully wired entries are handled
3371                                          * later.
3372                                          */
3373                                         if (rv != KERN_SUCCESS &&
3374                                             faddr < entry->end)
3375                                                 vm_map_wire_entry_failure(map,
3376                                                     entry, faddr);
3377                                 }
3378                         }
3379                         if (rv != KERN_SUCCESS) {
3380                                 vm_map_wire_entry_failure(map, entry, faddr);
3381                                 if (user_wire)
3382                                         vm_map_wire_user_count_sub(npages);
3383                                 end = entry->end;
3384                                 goto done;
3385                         }
3386                 } else if (!user_wire ||
3387                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3388                         entry->wired_count++;
3389                 }
3390                 /*
3391                  * Check the map for holes in the specified region.
3392                  * If holes_ok was specified, skip this check.
3393                  */
3394                 next_entry = vm_map_entry_succ(entry);
3395                 if (!holes_ok &&
3396                     entry->end < end && next_entry->start > entry->end) {
3397                         end = entry->end;
3398                         rv = KERN_INVALID_ADDRESS;
3399                         goto done;
3400                 }
3401         }
3402         rv = KERN_SUCCESS;
3403 done:
3404         need_wakeup = false;
3405         if (first_entry == NULL &&
3406             !vm_map_lookup_entry(map, start, &first_entry)) {
3407                 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3408                 prev_entry = first_entry;
3409                 entry = vm_map_entry_succ(first_entry);
3410         } else {
3411                 prev_entry = vm_map_entry_pred(first_entry);
3412                 entry = first_entry;
3413         }
3414         for (; entry->start < end;
3415             prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3416                 /*
3417                  * If holes_ok was specified, an empty
3418                  * space in the unwired region could have been mapped
3419                  * while the map lock was dropped for faulting in the
3420                  * pages or draining MAP_ENTRY_IN_TRANSITION.
3421                  * Moreover, another thread could be simultaneously
3422                  * wiring this new mapping entry.  Detect these cases
3423                  * and skip any entries marked as in transition not by us.
3424                  */
3425                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3426                     entry->wiring_thread != curthread) {
3427                         KASSERT(holes_ok,
3428                             ("vm_map_wire: !HOLESOK and new/changed entry"));
3429                         continue;
3430                 }
3431
3432                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3433                         /* do nothing */
3434                 } else if (rv == KERN_SUCCESS) {
3435                         if (user_wire)
3436                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
3437                 } else if (entry->wired_count == -1) {
3438                         /*
3439                          * Wiring failed on this entry.  Thus, unwiring is
3440                          * unnecessary.
3441                          */
3442                         entry->wired_count = 0;
3443                 } else if (!user_wire ||
3444                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3445                         /*
3446                          * Undo the wiring.  Wiring succeeded on this entry
3447                          * but failed on a later entry.  
3448                          */
3449                         if (entry->wired_count == 1) {
3450                                 vm_map_entry_unwire(map, entry);
3451                                 if (user_wire)
3452                                         vm_map_wire_user_count_sub(
3453                                             atop(entry->end - entry->start));
3454                         } else
3455                                 entry->wired_count--;
3456                 }
3457                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3458                     ("vm_map_wire: in-transition flag missing %p", entry));
3459                 KASSERT(entry->wiring_thread == curthread,
3460                     ("vm_map_wire: alien wire %p", entry));
3461                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3462                     MAP_ENTRY_WIRE_SKIPPED);
3463                 entry->wiring_thread = NULL;
3464                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3465                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3466                         need_wakeup = true;
3467                 }
3468                 vm_map_try_merge_entries(map, prev_entry, entry);
3469         }
3470         vm_map_try_merge_entries(map, prev_entry, entry);
3471         if (need_wakeup)
3472                 vm_map_wakeup(map);
3473         return (rv);
3474 }
3475
3476 /*
3477  * vm_map_sync
3478  *
3479  * Push any dirty cached pages in the address range to their pager.
3480  * If syncio is TRUE, dirty pages are written synchronously.
3481  * If invalidate is TRUE, any cached pages are freed as well.
3482  *
3483  * If the size of the region from start to end is zero, we are
3484  * supposed to flush all modified pages within the region containing
3485  * start.  Unfortunately, a region can be split or coalesced with
3486  * neighboring regions, making it difficult to determine what the
3487  * original region was.  Therefore, we approximate this requirement by
3488  * flushing the current region containing start.
3489  *
3490  * Returns an error if any part of the specified range is not mapped.
3491  */
3492 int
3493 vm_map_sync(
3494         vm_map_t map,
3495         vm_offset_t start,
3496         vm_offset_t end,
3497         boolean_t syncio,
3498         boolean_t invalidate)
3499 {
3500         vm_map_entry_t entry, first_entry, next_entry;
3501         vm_size_t size;
3502         vm_object_t object;
3503         vm_ooffset_t offset;
3504         unsigned int last_timestamp;
3505         boolean_t failed;
3506
3507         vm_map_lock_read(map);
3508         VM_MAP_RANGE_CHECK(map, start, end);
3509         if (!vm_map_lookup_entry(map, start, &first_entry)) {
3510                 vm_map_unlock_read(map);
3511                 return (KERN_INVALID_ADDRESS);
3512         } else if (start == end) {
3513                 start = first_entry->start;
3514                 end = first_entry->end;
3515         }
3516         /*
3517          * Make a first pass to check for user-wired memory and holes.
3518          */
3519         for (entry = first_entry; entry->start < end; entry = next_entry) {
3520                 if (invalidate &&
3521                     (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3522                         vm_map_unlock_read(map);
3523                         return (KERN_INVALID_ARGUMENT);
3524                 }
3525                 next_entry = vm_map_entry_succ(entry);
3526                 if (end > entry->end &&
3527                     entry->end != next_entry->start) {
3528                         vm_map_unlock_read(map);
3529                         return (KERN_INVALID_ADDRESS);
3530                 }
3531         }
3532
3533         if (invalidate)
3534                 pmap_remove(map->pmap, start, end);
3535         failed = FALSE;
3536
3537         /*
3538          * Make a second pass, cleaning/uncaching pages from the indicated
3539          * objects as we go.
3540          */
3541         for (entry = first_entry; entry->start < end;) {
3542                 offset = entry->offset + (start - entry->start);
3543                 size = (end <= entry->end ? end : entry->end) - start;
3544                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3545                         vm_map_t smap;
3546                         vm_map_entry_t tentry;
3547                         vm_size_t tsize;
3548
3549                         smap = entry->object.sub_map;
3550                         vm_map_lock_read(smap);
3551                         (void) vm_map_lookup_entry(smap, offset, &tentry);
3552                         tsize = tentry->end - offset;
3553                         if (tsize < size)
3554                                 size = tsize;
3555                         object = tentry->object.vm_object;
3556                         offset = tentry->offset + (offset - tentry->start);
3557                         vm_map_unlock_read(smap);
3558                 } else {
3559                         object = entry->object.vm_object;
3560                 }
3561                 vm_object_reference(object);
3562                 last_timestamp = map->timestamp;
3563                 vm_map_unlock_read(map);
3564                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3565                         failed = TRUE;
3566                 start += size;
3567                 vm_object_deallocate(object);
3568                 vm_map_lock_read(map);
3569                 if (last_timestamp == map->timestamp ||
3570                     !vm_map_lookup_entry(map, start, &entry))
3571                         entry = vm_map_entry_succ(entry);
3572         }
3573
3574         vm_map_unlock_read(map);
3575         return (failed ? KERN_FAILURE : KERN_SUCCESS);
3576 }
3577
3578 /*
3579  *      vm_map_entry_unwire:    [ internal use only ]
3580  *
3581  *      Make the region specified by this entry pageable.
3582  *
3583  *      The map in question should be locked.
3584  *      [This is the reason for this routine's existence.]
3585  */
3586 static void
3587 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3588 {
3589         vm_size_t size;
3590
3591         VM_MAP_ASSERT_LOCKED(map);
3592         KASSERT(entry->wired_count > 0,
3593             ("vm_map_entry_unwire: entry %p isn't wired", entry));
3594
3595         size = entry->end - entry->start;
3596         if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3597                 vm_map_wire_user_count_sub(atop(size));
3598         pmap_unwire(map->pmap, entry->start, entry->end);
3599         vm_object_unwire(entry->object.vm_object, entry->offset, size,
3600             PQ_ACTIVE);
3601         entry->wired_count = 0;
3602 }
3603
3604 static void
3605 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3606 {
3607
3608         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3609                 vm_object_deallocate(entry->object.vm_object);
3610         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3611 }
3612
3613 /*
3614  *      vm_map_entry_delete:    [ internal use only ]
3615  *
3616  *      Deallocate the given entry from the target map.
3617  */
3618 static void
3619 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3620 {
3621         vm_object_t object;
3622         vm_pindex_t offidxstart, offidxend, count, size1;
3623         vm_size_t size;
3624
3625         vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3626         object = entry->object.vm_object;
3627
3628         if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3629                 MPASS(entry->cred == NULL);
3630                 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3631                 MPASS(object == NULL);
3632                 vm_map_entry_deallocate(entry, map->system_map);
3633                 return;
3634         }
3635
3636         size = entry->end - entry->start;
3637         map->size -= size;
3638
3639         if (entry->cred != NULL) {
3640                 swap_release_by_cred(size, entry->cred);
3641                 crfree(entry->cred);
3642         }
3643
3644         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3645                 entry->object.vm_object = NULL;
3646         } else if ((object->flags & OBJ_ANON) != 0 ||
3647             object == kernel_object) {
3648                 KASSERT(entry->cred == NULL || object->cred == NULL ||
3649                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3650                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3651                 count = atop(size);
3652                 offidxstart = OFF_TO_IDX(entry->offset);
3653                 offidxend = offidxstart + count;
3654                 VM_OBJECT_WLOCK(object);
3655                 if (object->ref_count != 1 &&
3656                     ((object->flags & OBJ_ONEMAPPING) != 0 ||
3657                     object == kernel_object)) {
3658                         vm_object_collapse(object);
3659
3660                         /*
3661                          * The option OBJPR_NOTMAPPED can be passed here
3662                          * because vm_map_delete() already performed
3663                          * pmap_remove() on the only mapping to this range
3664                          * of pages. 
3665                          */
3666                         vm_object_page_remove(object, offidxstart, offidxend,
3667                             OBJPR_NOTMAPPED);
3668                         if (object->type == OBJT_SWAP)
3669                                 swap_pager_freespace(object, offidxstart,
3670                                     count);
3671                         if (offidxend >= object->size &&
3672                             offidxstart < object->size) {
3673                                 size1 = object->size;
3674                                 object->size = offidxstart;
3675                                 if (object->cred != NULL) {
3676                                         size1 -= object->size;
3677                                         KASSERT(object->charge >= ptoa(size1),
3678                                             ("object %p charge < 0", object));
3679                                         swap_release_by_cred(ptoa(size1),
3680                                             object->cred);
3681                                         object->charge -= ptoa(size1);
3682                                 }
3683                         }
3684                 }
3685                 VM_OBJECT_WUNLOCK(object);
3686         }
3687         if (map->system_map)
3688                 vm_map_entry_deallocate(entry, TRUE);
3689         else {
3690                 entry->defer_next = curthread->td_map_def_user;
3691                 curthread->td_map_def_user = entry;
3692         }
3693 }
3694
3695 /*
3696  *      vm_map_delete:  [ internal use only ]
3697  *
3698  *      Deallocates the given address range from the target
3699  *      map.
3700  */
3701 int
3702 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3703 {
3704         vm_map_entry_t entry;
3705         vm_map_entry_t first_entry;
3706
3707         VM_MAP_ASSERT_LOCKED(map);
3708         if (start == end)
3709                 return (KERN_SUCCESS);
3710
3711         /*
3712          * Find the start of the region, and clip it
3713          */
3714         if (!vm_map_lookup_entry(map, start, &first_entry))
3715                 entry = vm_map_entry_succ(first_entry);
3716         else {
3717                 entry = first_entry;
3718                 vm_map_clip_start(map, entry, start);
3719         }
3720
3721         /*
3722          * Step through all entries in this region
3723          */
3724         while (entry->start < end) {
3725                 vm_map_entry_t next;
3726
3727                 /*
3728                  * Wait for wiring or unwiring of an entry to complete.
3729                  * Also wait for any system wirings to disappear on
3730                  * user maps.
3731                  */
3732                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3733                     (vm_map_pmap(map) != kernel_pmap &&
3734                     vm_map_entry_system_wired_count(entry) != 0)) {
3735                         unsigned int last_timestamp;
3736                         vm_offset_t saved_start;
3737                         vm_map_entry_t tmp_entry;
3738
3739                         saved_start = entry->start;
3740                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3741                         last_timestamp = map->timestamp;
3742                         (void) vm_map_unlock_and_wait(map, 0);
3743                         vm_map_lock(map);
3744                         if (last_timestamp + 1 != map->timestamp) {
3745                                 /*
3746                                  * Look again for the entry because the map was
3747                                  * modified while it was unlocked.
3748                                  * Specifically, the entry may have been
3749                                  * clipped, merged, or deleted.
3750                                  */
3751                                 if (!vm_map_lookup_entry(map, saved_start,
3752                                                          &tmp_entry))
3753                                         entry = vm_map_entry_succ(tmp_entry);
3754                                 else {
3755                                         entry = tmp_entry;
3756                                         vm_map_clip_start(map, entry,
3757                                                           saved_start);
3758                                 }
3759                         }
3760                         continue;
3761                 }
3762                 vm_map_clip_end(map, entry, end);
3763
3764                 next = vm_map_entry_succ(entry);
3765
3766                 /*
3767                  * Unwire before removing addresses from the pmap; otherwise,
3768                  * unwiring will put the entries back in the pmap.
3769                  */
3770                 if (entry->wired_count != 0)
3771                         vm_map_entry_unwire(map, entry);
3772
3773                 /*
3774                  * Remove mappings for the pages, but only if the
3775                  * mappings could exist.  For instance, it does not
3776                  * make sense to call pmap_remove() for guard entries.
3777                  */
3778                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3779                     entry->object.vm_object != NULL)
3780                         pmap_remove(map->pmap, entry->start, entry->end);
3781
3782                 if (entry->end == map->anon_loc)
3783                         map->anon_loc = entry->start;
3784
3785                 /*
3786                  * Delete the entry only after removing all pmap
3787                  * entries pointing to its pages.  (Otherwise, its
3788                  * page frames may be reallocated, and any modify bits
3789                  * will be set in the wrong object!)
3790                  */
3791                 vm_map_entry_delete(map, entry);
3792                 entry = next;
3793         }
3794         return (KERN_SUCCESS);
3795 }
3796
3797 /*
3798  *      vm_map_remove:
3799  *
3800  *      Remove the given address range from the target map.
3801  *      This is the exported form of vm_map_delete.
3802  */
3803 int
3804 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3805 {
3806         int result;
3807
3808         vm_map_lock(map);
3809         VM_MAP_RANGE_CHECK(map, start, end);
3810         result = vm_map_delete(map, start, end);
3811         vm_map_unlock(map);
3812         return (result);
3813 }
3814
3815 /*
3816  *      vm_map_check_protection:
3817  *
3818  *      Assert that the target map allows the specified privilege on the
3819  *      entire address region given.  The entire region must be allocated.
3820  *
3821  *      WARNING!  This code does not and should not check whether the
3822  *      contents of the region is accessible.  For example a smaller file
3823  *      might be mapped into a larger address space.
3824  *
3825  *      NOTE!  This code is also called by munmap().
3826  *
3827  *      The map must be locked.  A read lock is sufficient.
3828  */
3829 boolean_t
3830 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3831                         vm_prot_t protection)
3832 {
3833         vm_map_entry_t entry;
3834         vm_map_entry_t tmp_entry;
3835
3836         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3837                 return (FALSE);
3838         entry = tmp_entry;
3839
3840         while (start < end) {
3841                 /*
3842                  * No holes allowed!
3843                  */
3844                 if (start < entry->start)
3845                         return (FALSE);
3846                 /*
3847                  * Check protection associated with entry.
3848                  */
3849                 if ((entry->protection & protection) != protection)
3850                         return (FALSE);
3851                 /* go to next entry */
3852                 start = entry->end;
3853                 entry = vm_map_entry_succ(entry);
3854         }
3855         return (TRUE);
3856 }
3857
3858
3859 /*
3860  *
3861  *      vm_map_copy_swap_object:
3862  *
3863  *      Copies a swap-backed object from an existing map entry to a
3864  *      new one.  Carries forward the swap charge.  May change the
3865  *      src object on return.
3866  */
3867 static void
3868 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3869     vm_offset_t size, vm_ooffset_t *fork_charge)
3870 {
3871         vm_object_t src_object;
3872         struct ucred *cred;
3873         int charged;
3874
3875         src_object = src_entry->object.vm_object;
3876         VM_OBJECT_WLOCK(src_object);
3877         charged = ENTRY_CHARGED(src_entry);
3878         vm_object_collapse(src_object);
3879         if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3880                 vm_object_split(src_entry);
3881                 src_object = src_entry->object.vm_object;
3882         }
3883         vm_object_reference_locked(src_object);
3884         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3885         if (src_entry->cred != NULL &&
3886             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3887                 KASSERT(src_object->cred == NULL,
3888                     ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3889                      src_object));
3890                 src_object->cred = src_entry->cred;
3891                 src_object->charge = size;
3892         }
3893         VM_OBJECT_WUNLOCK(src_object);
3894         dst_entry->object.vm_object = src_object;
3895         if (charged) {
3896                 cred = curthread->td_ucred;
3897                 crhold(cred);
3898                 dst_entry->cred = cred;
3899                 *fork_charge += size;
3900                 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3901                         crhold(cred);
3902                         src_entry->cred = cred;
3903                         *fork_charge += size;
3904                 }
3905         }
3906 }
3907
3908 /*
3909  *      vm_map_copy_entry:
3910  *
3911  *      Copies the contents of the source entry to the destination
3912  *      entry.  The entries *must* be aligned properly.
3913  */
3914 static void
3915 vm_map_copy_entry(
3916         vm_map_t src_map,
3917         vm_map_t dst_map,
3918         vm_map_entry_t src_entry,
3919         vm_map_entry_t dst_entry,
3920         vm_ooffset_t *fork_charge)
3921 {
3922         vm_object_t src_object;
3923         vm_map_entry_t fake_entry;
3924         vm_offset_t size;
3925
3926         VM_MAP_ASSERT_LOCKED(dst_map);
3927
3928         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3929                 return;
3930
3931         if (src_entry->wired_count == 0 ||
3932             (src_entry->protection & VM_PROT_WRITE) == 0) {
3933                 /*
3934                  * If the source entry is marked needs_copy, it is already
3935                  * write-protected.
3936                  */
3937                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3938                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3939                         pmap_protect(src_map->pmap,
3940                             src_entry->start,
3941                             src_entry->end,
3942                             src_entry->protection & ~VM_PROT_WRITE);
3943                 }
3944
3945                 /*
3946                  * Make a copy of the object.
3947                  */
3948                 size = src_entry->end - src_entry->start;
3949                 if ((src_object = src_entry->object.vm_object) != NULL) {
3950                         if (src_object->type == OBJT_DEFAULT ||
3951                             src_object->type == OBJT_SWAP) {
3952                                 vm_map_copy_swap_object(src_entry, dst_entry,
3953                                     size, fork_charge);
3954                                 /* May have split/collapsed, reload obj. */
3955                                 src_object = src_entry->object.vm_object;
3956                         } else {
3957                                 vm_object_reference(src_object);
3958                                 dst_entry->object.vm_object = src_object;
3959                         }
3960                         src_entry->eflags |= MAP_ENTRY_COW |
3961                             MAP_ENTRY_NEEDS_COPY;
3962                         dst_entry->eflags |= MAP_ENTRY_COW |
3963                             MAP_ENTRY_NEEDS_COPY;
3964                         dst_entry->offset = src_entry->offset;
3965                         if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3966                                 /*
3967                                  * MAP_ENTRY_WRITECNT cannot
3968                                  * indicate write reference from
3969                                  * src_entry, since the entry is
3970                                  * marked as needs copy.  Allocate a
3971                                  * fake entry that is used to
3972                                  * decrement object->un_pager writecount
3973                                  * at the appropriate time.  Attach
3974                                  * fake_entry to the deferred list.
3975                                  */
3976                                 fake_entry = vm_map_entry_create(dst_map);
3977                                 fake_entry->eflags = MAP_ENTRY_WRITECNT;
3978                                 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3979                                 vm_object_reference(src_object);
3980                                 fake_entry->object.vm_object = src_object;
3981                                 fake_entry->start = src_entry->start;
3982                                 fake_entry->end = src_entry->end;
3983                                 fake_entry->defer_next =
3984                                     curthread->td_map_def_user;
3985                                 curthread->td_map_def_user = fake_entry;
3986                         }
3987
3988                         pmap_copy(dst_map->pmap, src_map->pmap,
3989                             dst_entry->start, dst_entry->end - dst_entry->start,
3990                             src_entry->start);
3991                 } else {
3992                         dst_entry->object.vm_object = NULL;
3993                         dst_entry->offset = 0;
3994                         if (src_entry->cred != NULL) {
3995                                 dst_entry->cred = curthread->td_ucred;
3996                                 crhold(dst_entry->cred);
3997                                 *fork_charge += size;
3998                         }
3999                 }
4000         } else {
4001                 /*
4002                  * We don't want to make writeable wired pages copy-on-write.
4003                  * Immediately copy these pages into the new map by simulating
4004                  * page faults.  The new pages are pageable.
4005                  */
4006                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4007                     fork_charge);
4008         }
4009 }
4010
4011 /*
4012  * vmspace_map_entry_forked:
4013  * Update the newly-forked vmspace each time a map entry is inherited
4014  * or copied.  The values for vm_dsize and vm_tsize are approximate
4015  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4016  */
4017 static void
4018 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4019     vm_map_entry_t entry)
4020 {
4021         vm_size_t entrysize;
4022         vm_offset_t newend;
4023
4024         if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4025                 return;
4026         entrysize = entry->end - entry->start;
4027         vm2->vm_map.size += entrysize;
4028         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4029                 vm2->vm_ssize += btoc(entrysize);
4030         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4031             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4032                 newend = MIN(entry->end,
4033                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4034                 vm2->vm_dsize += btoc(newend - entry->start);
4035         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4036             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4037                 newend = MIN(entry->end,
4038                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4039                 vm2->vm_tsize += btoc(newend - entry->start);
4040         }
4041 }
4042
4043 /*
4044  * vmspace_fork:
4045  * Create a new process vmspace structure and vm_map
4046  * based on those of an existing process.  The new map
4047  * is based on the old map, according to the inheritance
4048  * values on the regions in that map.
4049  *
4050  * XXX It might be worth coalescing the entries added to the new vmspace.
4051  *
4052  * The source map must not be locked.
4053  */
4054 struct vmspace *
4055 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4056 {
4057         struct vmspace *vm2;
4058         vm_map_t new_map, old_map;
4059         vm_map_entry_t new_entry, old_entry;
4060         vm_object_t object;
4061         int error, locked;
4062         vm_inherit_t inh;
4063
4064         old_map = &vm1->vm_map;
4065         /* Copy immutable fields of vm1 to vm2. */
4066         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4067             pmap_pinit);
4068         if (vm2 == NULL)
4069                 return (NULL);
4070
4071         vm2->vm_taddr = vm1->vm_taddr;
4072         vm2->vm_daddr = vm1->vm_daddr;
4073         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4074         vm_map_lock(old_map);
4075         if (old_map->busy)
4076                 vm_map_wait_busy(old_map);
4077         new_map = &vm2->vm_map;
4078         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4079         KASSERT(locked, ("vmspace_fork: lock failed"));
4080
4081         error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4082         if (error != 0) {
4083                 sx_xunlock(&old_map->lock);
4084                 sx_xunlock(&new_map->lock);
4085                 vm_map_process_deferred();
4086                 vmspace_free(vm2);
4087                 return (NULL);
4088         }
4089
4090         new_map->anon_loc = old_map->anon_loc;
4091
4092         VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4093                 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4094                         panic("vm_map_fork: encountered a submap");
4095
4096                 inh = old_entry->inheritance;
4097                 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4098                     inh != VM_INHERIT_NONE)
4099                         inh = VM_INHERIT_COPY;
4100
4101                 switch (inh) {
4102                 case VM_INHERIT_NONE:
4103                         break;
4104
4105                 case VM_INHERIT_SHARE:
4106                         /*
4107                          * Clone the entry, creating the shared object if
4108                          * necessary.
4109                          */
4110                         object = old_entry->object.vm_object;
4111                         if (object == NULL) {
4112                                 vm_map_entry_back(old_entry);
4113                                 object = old_entry->object.vm_object;
4114                         }
4115
4116                         /*
4117                          * Add the reference before calling vm_object_shadow
4118                          * to insure that a shadow object is created.
4119                          */
4120                         vm_object_reference(object);
4121                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4122                                 vm_object_shadow(&old_entry->object.vm_object,
4123                                     &old_entry->offset,
4124                                     old_entry->end - old_entry->start,
4125                                     old_entry->cred,
4126                                     /* Transfer the second reference too. */
4127                                     true);
4128                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4129                                 old_entry->cred = NULL;
4130                                 vm_object_reference(
4131                                     old_entry->object.vm_object);
4132
4133                                 /*
4134                                  * As in vm_map_merged_neighbor_dispose(),
4135                                  * the vnode lock will not be acquired in
4136                                  * this call to vm_object_deallocate().
4137                                  */
4138                                 vm_object_deallocate(object);
4139                                 object = old_entry->object.vm_object;
4140                         } else {
4141                                 VM_OBJECT_WLOCK(object);
4142                                 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4143                                 if (old_entry->cred != NULL) {
4144                                         KASSERT(object->cred == NULL,
4145                                             ("vmspace_fork both cred"));
4146                                         object->cred = old_entry->cred;
4147                                         object->charge = old_entry->end -
4148                                             old_entry->start;
4149                                         old_entry->cred = NULL;
4150                                 }
4151
4152                                 /*
4153                                  * Assert the correct state of the vnode
4154                                  * v_writecount while the object is locked, to
4155                                  * not relock it later for the assertion
4156                                  * correctness.
4157                                  */
4158                                 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4159                                     object->type == OBJT_VNODE) {
4160                                         KASSERT(((struct vnode *)object->
4161                                             handle)->v_writecount > 0,
4162                                             ("vmspace_fork: v_writecount %p",
4163                                             object));
4164                                         KASSERT(object->un_pager.vnp.
4165                                             writemappings > 0,
4166                                             ("vmspace_fork: vnp.writecount %p",
4167                                             object));
4168                                 }
4169                                 VM_OBJECT_WUNLOCK(object);
4170                         }
4171
4172                         /*
4173                          * Clone the entry, referencing the shared object.
4174                          */
4175                         new_entry = vm_map_entry_create(new_map);
4176                         *new_entry = *old_entry;
4177                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4178                             MAP_ENTRY_IN_TRANSITION);
4179                         new_entry->wiring_thread = NULL;
4180                         new_entry->wired_count = 0;
4181                         if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4182                                 vm_pager_update_writecount(object,
4183                                     new_entry->start, new_entry->end);
4184                         }
4185                         vm_map_entry_set_vnode_text(new_entry, true);
4186
4187                         /*
4188                          * Insert the entry into the new map -- we know we're
4189                          * inserting at the end of the new map.
4190                          */
4191                         vm_map_entry_link(new_map, new_entry);
4192                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4193
4194                         /*
4195                          * Update the physical map
4196                          */
4197                         pmap_copy(new_map->pmap, old_map->pmap,
4198                             new_entry->start,
4199                             (old_entry->end - old_entry->start),
4200                             old_entry->start);
4201                         break;
4202
4203                 case VM_INHERIT_COPY:
4204                         /*
4205                          * Clone the entry and link into the map.
4206                          */
4207                         new_entry = vm_map_entry_create(new_map);
4208                         *new_entry = *old_entry;
4209                         /*
4210                          * Copied entry is COW over the old object.
4211                          */
4212                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4213                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4214                         new_entry->wiring_thread = NULL;
4215                         new_entry->wired_count = 0;
4216                         new_entry->object.vm_object = NULL;
4217                         new_entry->cred = NULL;
4218                         vm_map_entry_link(new_map, new_entry);
4219                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4220                         vm_map_copy_entry(old_map, new_map, old_entry,
4221                             new_entry, fork_charge);
4222                         vm_map_entry_set_vnode_text(new_entry, true);
4223                         break;
4224
4225                 case VM_INHERIT_ZERO:
4226                         /*
4227                          * Create a new anonymous mapping entry modelled from
4228                          * the old one.
4229                          */
4230                         new_entry = vm_map_entry_create(new_map);
4231                         memset(new_entry, 0, sizeof(*new_entry));
4232
4233                         new_entry->start = old_entry->start;
4234                         new_entry->end = old_entry->end;
4235                         new_entry->eflags = old_entry->eflags &
4236                             ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4237                             MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4238                         new_entry->protection = old_entry->protection;
4239                         new_entry->max_protection = old_entry->max_protection;
4240                         new_entry->inheritance = VM_INHERIT_ZERO;
4241
4242                         vm_map_entry_link(new_map, new_entry);
4243                         vmspace_map_entry_forked(vm1, vm2, new_entry);
4244
4245                         new_entry->cred = curthread->td_ucred;
4246                         crhold(new_entry->cred);
4247                         *fork_charge += (new_entry->end - new_entry->start);
4248
4249                         break;
4250                 }
4251         }
4252         /*
4253          * Use inlined vm_map_unlock() to postpone handling the deferred
4254          * map entries, which cannot be done until both old_map and
4255          * new_map locks are released.
4256          */
4257         sx_xunlock(&old_map->lock);
4258         sx_xunlock(&new_map->lock);
4259         vm_map_process_deferred();
4260
4261         return (vm2);
4262 }
4263
4264 /*
4265  * Create a process's stack for exec_new_vmspace().  This function is never
4266  * asked to wire the newly created stack.
4267  */
4268 int
4269 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4270     vm_prot_t prot, vm_prot_t max, int cow)
4271 {
4272         vm_size_t growsize, init_ssize;
4273         rlim_t vmemlim;
4274         int rv;
4275
4276         MPASS((map->flags & MAP_WIREFUTURE) == 0);
4277         growsize = sgrowsiz;
4278         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4279         vm_map_lock(map);
4280         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4281         /* If we would blow our VMEM resource limit, no go */
4282         if (map->size + init_ssize > vmemlim) {
4283                 rv = KERN_NO_SPACE;
4284                 goto out;
4285         }
4286         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4287             max, cow);
4288 out:
4289         vm_map_unlock(map);
4290         return (rv);
4291 }
4292
4293 static int stack_guard_page = 1;
4294 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4295     &stack_guard_page, 0,
4296     "Specifies the number of guard pages for a stack that grows");
4297
4298 static int
4299 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4300     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4301 {
4302         vm_map_entry_t new_entry, prev_entry;
4303         vm_offset_t bot, gap_bot, gap_top, top;
4304         vm_size_t init_ssize, sgp;
4305         int orient, rv;
4306
4307         /*
4308          * The stack orientation is piggybacked with the cow argument.
4309          * Extract it into orient and mask the cow argument so that we
4310          * don't pass it around further.
4311          */
4312         orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4313         KASSERT(orient != 0, ("No stack grow direction"));
4314         KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4315             ("bi-dir stack"));
4316
4317         if (addrbos < vm_map_min(map) ||
4318             addrbos + max_ssize > vm_map_max(map) ||
4319             addrbos + max_ssize <= addrbos)
4320                 return (KERN_INVALID_ADDRESS);
4321         sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4322             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4323             (vm_size_t)stack_guard_page * PAGE_SIZE;
4324         if (sgp >= max_ssize)
4325                 return (KERN_INVALID_ARGUMENT);
4326
4327         init_ssize = growsize;
4328         if (max_ssize < init_ssize + sgp)
4329                 init_ssize = max_ssize - sgp;
4330
4331         /* If addr is already mapped, no go */
4332         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4333                 return (KERN_NO_SPACE);
4334
4335         /*
4336          * If we can't accommodate max_ssize in the current mapping, no go.
4337          */
4338         if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4339                 return (KERN_NO_SPACE);
4340
4341         /*
4342          * We initially map a stack of only init_ssize.  We will grow as
4343          * needed later.  Depending on the orientation of the stack (i.e.
4344          * the grow direction) we either map at the top of the range, the
4345          * bottom of the range or in the middle.
4346          *
4347          * Note: we would normally expect prot and max to be VM_PROT_ALL,
4348          * and cow to be 0.  Possibly we should eliminate these as input
4349          * parameters, and just pass these values here in the insert call.
4350          */
4351         if (orient == MAP_STACK_GROWS_DOWN) {
4352                 bot = addrbos + max_ssize - init_ssize;
4353                 top = bot + init_ssize;
4354                 gap_bot = addrbos;
4355                 gap_top = bot;
4356         } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4357                 bot = addrbos;
4358                 top = bot + init_ssize;
4359                 gap_bot = top;
4360                 gap_top = addrbos + max_ssize;
4361         }
4362         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4363         if (rv != KERN_SUCCESS)
4364                 return (rv);
4365         new_entry = vm_map_entry_succ(prev_entry);
4366         KASSERT(new_entry->end == top || new_entry->start == bot,
4367             ("Bad entry start/end for new stack entry"));
4368         KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4369             (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4370             ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4371         KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4372             (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4373             ("new entry lacks MAP_ENTRY_GROWS_UP"));
4374         if (gap_bot == gap_top)
4375                 return (KERN_SUCCESS);
4376         rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4377             VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4378             MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4379         if (rv == KERN_SUCCESS) {
4380                 /*
4381                  * Gap can never successfully handle a fault, so
4382                  * read-ahead logic is never used for it.  Re-use
4383                  * next_read of the gap entry to store
4384                  * stack_guard_page for vm_map_growstack().
4385                  */
4386                 if (orient == MAP_STACK_GROWS_DOWN)
4387                         vm_map_entry_pred(new_entry)->next_read = sgp;
4388                 else
4389                         vm_map_entry_succ(new_entry)->next_read = sgp;
4390         } else {
4391                 (void)vm_map_delete(map, bot, top);
4392         }
4393         return (rv);
4394 }
4395
4396 /*
4397  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4398  * successfully grow the stack.
4399  */
4400 static int
4401 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4402 {
4403         vm_map_entry_t stack_entry;
4404         struct proc *p;
4405         struct vmspace *vm;
4406         struct ucred *cred;
4407         vm_offset_t gap_end, gap_start, grow_start;
4408         vm_size_t grow_amount, guard, max_grow;
4409         rlim_t lmemlim, stacklim, vmemlim;
4410         int rv, rv1;
4411         bool gap_deleted, grow_down, is_procstack;
4412 #ifdef notyet
4413         uint64_t limit;
4414 #endif
4415 #ifdef RACCT
4416         int error;
4417 #endif
4418
4419         p = curproc;
4420         vm = p->p_vmspace;
4421
4422         /*
4423          * Disallow stack growth when the access is performed by a
4424          * debugger or AIO daemon.  The reason is that the wrong
4425          * resource limits are applied.
4426          */
4427         if (p != initproc && (map != &p->p_vmspace->vm_map ||
4428             p->p_textvp == NULL))
4429                 return (KERN_FAILURE);
4430
4431         MPASS(!map->system_map);
4432
4433         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4434         stacklim = lim_cur(curthread, RLIMIT_STACK);
4435         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4436 retry:
4437         /* If addr is not in a hole for a stack grow area, no need to grow. */
4438         if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4439                 return (KERN_FAILURE);
4440         if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4441                 return (KERN_SUCCESS);
4442         if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4443                 stack_entry = vm_map_entry_succ(gap_entry);
4444                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4445                     stack_entry->start != gap_entry->end)
4446                         return (KERN_FAILURE);
4447                 grow_amount = round_page(stack_entry->start - addr);
4448                 grow_down = true;
4449         } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4450                 stack_entry = vm_map_entry_pred(gap_entry);
4451                 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4452                     stack_entry->end != gap_entry->start)
4453                         return (KERN_FAILURE);
4454                 grow_amount = round_page(addr + 1 - stack_entry->end);
4455                 grow_down = false;
4456         } else {
4457                 return (KERN_FAILURE);
4458         }
4459         guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4460             (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4461             gap_entry->next_read;
4462         max_grow = gap_entry->end - gap_entry->start;
4463         if (guard > max_grow)
4464                 return (KERN_NO_SPACE);
4465         max_grow -= guard;
4466         if (grow_amount > max_grow)
4467                 return (KERN_NO_SPACE);
4468
4469         /*
4470          * If this is the main process stack, see if we're over the stack
4471          * limit.
4472          */
4473         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4474             addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4475         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4476                 return (KERN_NO_SPACE);
4477
4478 #ifdef RACCT
4479         if (racct_enable) {
4480                 PROC_LOCK(p);
4481                 if (is_procstack && racct_set(p, RACCT_STACK,
4482                     ctob(vm->vm_ssize) + grow_amount)) {
4483                         PROC_UNLOCK(p);
4484                         return (KERN_NO_SPACE);
4485                 }
4486                 PROC_UNLOCK(p);
4487         }
4488 #endif
4489
4490         grow_amount = roundup(grow_amount, sgrowsiz);
4491         if (grow_amount > max_grow)
4492                 grow_amount = max_grow;
4493         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4494                 grow_amount = trunc_page((vm_size_t)stacklim) -
4495                     ctob(vm->vm_ssize);
4496         }
4497
4498 #ifdef notyet
4499         PROC_LOCK(p);
4500         limit = racct_get_available(p, RACCT_STACK);
4501         PROC_UNLOCK(p);
4502         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4503                 grow_amount = limit - ctob(vm->vm_ssize);
4504 #endif
4505
4506         if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4507                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4508                         rv = KERN_NO_SPACE;
4509                         goto out;
4510                 }
4511 #ifdef RACCT
4512                 if (racct_enable) {
4513                         PROC_LOCK(p);
4514                         if (racct_set(p, RACCT_MEMLOCK,
4515                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4516                                 PROC_UNLOCK(p);
4517                                 rv = KERN_NO_SPACE;
4518                                 goto out;
4519                         }
4520                         PROC_UNLOCK(p);
4521                 }
4522 #endif
4523         }
4524
4525         /* If we would blow our VMEM resource limit, no go */
4526         if (map->size + grow_amount > vmemlim) {
4527                 rv = KERN_NO_SPACE;
4528                 goto out;
4529         }
4530 #ifdef RACCT
4531         if (racct_enable) {
4532                 PROC_LOCK(p);
4533                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4534                         PROC_UNLOCK(p);
4535                         rv = KERN_NO_SPACE;
4536                         goto out;
4537                 }
4538                 PROC_UNLOCK(p);
4539         }
4540 #endif
4541
4542         if (vm_map_lock_upgrade(map)) {
4543                 gap_entry = NULL;
4544                 vm_map_lock_read(map);
4545                 goto retry;
4546         }
4547
4548         if (grow_down) {
4549                 grow_start = gap_entry->end - grow_amount;
4550                 if (gap_entry->start + grow_amount == gap_entry->end) {
4551                         gap_start = gap_entry->start;
4552                         gap_end = gap_entry->end;
4553                         vm_map_entry_delete(map, gap_entry);
4554                         gap_deleted = true;
4555                 } else {
4556                         MPASS(gap_entry->start < gap_entry->end - grow_amount);
4557                         vm_map_entry_resize(map, gap_entry, -grow_amount);
4558                         gap_deleted = false;
4559                 }
4560                 rv = vm_map_insert(map, NULL, 0, grow_start,
4561                     grow_start + grow_amount,
4562                     stack_entry->protection, stack_entry->max_protection,
4563                     MAP_STACK_GROWS_DOWN);
4564                 if (rv != KERN_SUCCESS) {
4565                         if (gap_deleted) {
4566                                 rv1 = vm_map_insert(map, NULL, 0, gap_start,
4567                                     gap_end, VM_PROT_NONE, VM_PROT_NONE,
4568                                     MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4569                                 MPASS(rv1 == KERN_SUCCESS);
4570                         } else
4571                                 vm_map_entry_resize(map, gap_entry,
4572                                     grow_amount);
4573                 }
4574         } else {
4575                 grow_start = stack_entry->end;
4576                 cred = stack_entry->cred;
4577                 if (cred == NULL && stack_entry->object.vm_object != NULL)
4578                         cred = stack_entry->object.vm_object->cred;
4579                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4580                         rv = KERN_NO_SPACE;
4581                 /* Grow the underlying object if applicable. */
4582                 else if (stack_entry->object.vm_object == NULL ||
4583                     vm_object_coalesce(stack_entry->object.vm_object,
4584                     stack_entry->offset,
4585                     (vm_size_t)(stack_entry->end - stack_entry->start),
4586                     grow_amount, cred != NULL)) {
4587                         if (gap_entry->start + grow_amount == gap_entry->end) {
4588                                 vm_map_entry_delete(map, gap_entry);
4589                                 vm_map_entry_resize(map, stack_entry,
4590                                     grow_amount);
4591                         } else {
4592                                 gap_entry->start += grow_amount;
4593                                 stack_entry->end += grow_amount;
4594                         }
4595                         map->size += grow_amount;
4596                         rv = KERN_SUCCESS;
4597                 } else
4598                         rv = KERN_FAILURE;
4599         }
4600         if (rv == KERN_SUCCESS && is_procstack)
4601                 vm->vm_ssize += btoc(grow_amount);
4602
4603         /*
4604          * Heed the MAP_WIREFUTURE flag if it was set for this process.
4605          */
4606         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4607                 rv = vm_map_wire_locked(map, grow_start,
4608                     grow_start + grow_amount,
4609                     VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4610         }
4611         vm_map_lock_downgrade(map);
4612
4613 out:
4614 #ifdef RACCT
4615         if (racct_enable && rv != KERN_SUCCESS) {
4616                 PROC_LOCK(p);
4617                 error = racct_set(p, RACCT_VMEM, map->size);
4618                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4619                 if (!old_mlock) {
4620                         error = racct_set(p, RACCT_MEMLOCK,
4621                             ptoa(pmap_wired_count(map->pmap)));
4622                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4623                 }
4624                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4625                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4626                 PROC_UNLOCK(p);
4627         }
4628 #endif
4629
4630         return (rv);
4631 }
4632
4633 /*
4634  * Unshare the specified VM space for exec.  If other processes are
4635  * mapped to it, then create a new one.  The new vmspace is null.
4636  */
4637 int
4638 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4639 {
4640         struct vmspace *oldvmspace = p->p_vmspace;
4641         struct vmspace *newvmspace;
4642
4643         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4644             ("vmspace_exec recursed"));
4645         newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4646         if (newvmspace == NULL)
4647                 return (ENOMEM);
4648         newvmspace->vm_swrss = oldvmspace->vm_swrss;
4649         /*
4650          * This code is written like this for prototype purposes.  The
4651          * goal is to avoid running down the vmspace here, but let the
4652          * other process's that are still using the vmspace to finally
4653          * run it down.  Even though there is little or no chance of blocking
4654          * here, it is a good idea to keep this form for future mods.
4655          */
4656         PROC_VMSPACE_LOCK(p);
4657         p->p_vmspace = newvmspace;
4658         PROC_VMSPACE_UNLOCK(p);
4659         if (p == curthread->td_proc)
4660                 pmap_activate(curthread);
4661         curthread->td_pflags |= TDP_EXECVMSPC;
4662         return (0);
4663 }
4664
4665 /*
4666  * Unshare the specified VM space for forcing COW.  This
4667  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4668  */
4669 int
4670 vmspace_unshare(struct proc *p)
4671 {
4672         struct vmspace *oldvmspace = p->p_vmspace;
4673         struct vmspace *newvmspace;
4674         vm_ooffset_t fork_charge;
4675
4676         if (oldvmspace->vm_refcnt == 1)
4677                 return (0);
4678         fork_charge = 0;
4679         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4680         if (newvmspace == NULL)
4681                 return (ENOMEM);
4682         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4683                 vmspace_free(newvmspace);
4684                 return (ENOMEM);
4685         }
4686         PROC_VMSPACE_LOCK(p);
4687         p->p_vmspace = newvmspace;
4688         PROC_VMSPACE_UNLOCK(p);
4689         if (p == curthread->td_proc)
4690                 pmap_activate(curthread);
4691         vmspace_free(oldvmspace);
4692         return (0);
4693 }
4694
4695 /*
4696  *      vm_map_lookup:
4697  *
4698  *      Finds the VM object, offset, and
4699  *      protection for a given virtual address in the
4700  *      specified map, assuming a page fault of the
4701  *      type specified.
4702  *
4703  *      Leaves the map in question locked for read; return
4704  *      values are guaranteed until a vm_map_lookup_done
4705  *      call is performed.  Note that the map argument
4706  *      is in/out; the returned map must be used in
4707  *      the call to vm_map_lookup_done.
4708  *
4709  *      A handle (out_entry) is returned for use in
4710  *      vm_map_lookup_done, to make that fast.
4711  *
4712  *      If a lookup is requested with "write protection"
4713  *      specified, the map may be changed to perform virtual
4714  *      copying operations, although the data referenced will
4715  *      remain the same.
4716  */
4717 int
4718 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4719               vm_offset_t vaddr,
4720               vm_prot_t fault_typea,
4721               vm_map_entry_t *out_entry,        /* OUT */
4722               vm_object_t *object,              /* OUT */
4723               vm_pindex_t *pindex,              /* OUT */
4724               vm_prot_t *out_prot,              /* OUT */
4725               boolean_t *wired)                 /* OUT */
4726 {
4727         vm_map_entry_t entry;
4728         vm_map_t map = *var_map;
4729         vm_prot_t prot;
4730         vm_prot_t fault_type;
4731         vm_object_t eobject;
4732         vm_size_t size;
4733         struct ucred *cred;
4734
4735 RetryLookup:
4736
4737         vm_map_lock_read(map);
4738
4739 RetryLookupLocked:
4740         /*
4741          * Lookup the faulting address.
4742          */
4743         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4744                 vm_map_unlock_read(map);
4745                 return (KERN_INVALID_ADDRESS);
4746         }
4747
4748         entry = *out_entry;
4749
4750         /*
4751          * Handle submaps.
4752          */
4753         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4754                 vm_map_t old_map = map;
4755
4756                 *var_map = map = entry->object.sub_map;
4757                 vm_map_unlock_read(old_map);
4758                 goto RetryLookup;
4759         }
4760
4761         /*
4762          * Check whether this task is allowed to have this page.
4763          */
4764         prot = entry->protection;
4765         if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4766                 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4767                 if (prot == VM_PROT_NONE && map != kernel_map &&
4768                     (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4769                     (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4770                     MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4771                     vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4772                         goto RetryLookupLocked;
4773         }
4774         fault_type = fault_typea & VM_PROT_ALL;
4775         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4776                 vm_map_unlock_read(map);
4777                 return (KERN_PROTECTION_FAILURE);
4778         }
4779         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4780             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4781             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4782             ("entry %p flags %x", entry, entry->eflags));
4783         if ((fault_typea & VM_PROT_COPY) != 0 &&
4784             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4785             (entry->eflags & MAP_ENTRY_COW) == 0) {
4786                 vm_map_unlock_read(map);
4787                 return (KERN_PROTECTION_FAILURE);
4788         }
4789
4790         /*
4791          * If this page is not pageable, we have to get it for all possible
4792          * accesses.
4793          */
4794         *wired = (entry->wired_count != 0);
4795         if (*wired)
4796                 fault_type = entry->protection;
4797         size = entry->end - entry->start;
4798
4799         /*
4800          * If the entry was copy-on-write, we either ...
4801          */
4802         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4803                 /*
4804                  * If we want to write the page, we may as well handle that
4805                  * now since we've got the map locked.
4806                  *
4807                  * If we don't need to write the page, we just demote the
4808                  * permissions allowed.
4809                  */
4810                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4811                     (fault_typea & VM_PROT_COPY) != 0) {
4812                         /*
4813                          * Make a new object, and place it in the object
4814                          * chain.  Note that no new references have appeared
4815                          * -- one just moved from the map to the new
4816                          * object.
4817                          */
4818                         if (vm_map_lock_upgrade(map))
4819                                 goto RetryLookup;
4820
4821                         if (entry->cred == NULL) {
4822                                 /*
4823                                  * The debugger owner is charged for
4824                                  * the memory.
4825                                  */
4826                                 cred = curthread->td_ucred;
4827                                 crhold(cred);
4828                                 if (!swap_reserve_by_cred(size, cred)) {
4829                                         crfree(cred);
4830                                         vm_map_unlock(map);
4831                                         return (KERN_RESOURCE_SHORTAGE);
4832                                 }
4833                                 entry->cred = cred;
4834                         }
4835                         eobject = entry->object.vm_object;
4836                         vm_object_shadow(&entry->object.vm_object,
4837                             &entry->offset, size, entry->cred, false);
4838                         if (eobject == entry->object.vm_object) {
4839                                 /*
4840                                  * The object was not shadowed.
4841                                  */
4842                                 swap_release_by_cred(size, entry->cred);
4843                                 crfree(entry->cred);
4844                         }
4845                         entry->cred = NULL;
4846                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4847
4848                         vm_map_lock_downgrade(map);
4849                 } else {
4850                         /*
4851                          * We're attempting to read a copy-on-write page --
4852                          * don't allow writes.
4853                          */
4854                         prot &= ~VM_PROT_WRITE;
4855                 }
4856         }
4857
4858         /*
4859          * Create an object if necessary.
4860          */
4861         if (entry->object.vm_object == NULL && !map->system_map) {
4862                 if (vm_map_lock_upgrade(map))
4863                         goto RetryLookup;
4864                 entry->object.vm_object = vm_object_allocate_anon(atop(size),
4865                     NULL, entry->cred, entry->cred != NULL ? size : 0);
4866                 entry->offset = 0;
4867                 entry->cred = NULL;
4868                 vm_map_lock_downgrade(map);
4869         }
4870
4871         /*
4872          * Return the object/offset from this entry.  If the entry was
4873          * copy-on-write or empty, it has been fixed up.
4874          */
4875         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4876         *object = entry->object.vm_object;
4877
4878         *out_prot = prot;
4879         return (KERN_SUCCESS);
4880 }
4881
4882 /*
4883  *      vm_map_lookup_locked:
4884  *
4885  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4886  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4887  */
4888 int
4889 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4890                      vm_offset_t vaddr,
4891                      vm_prot_t fault_typea,
4892                      vm_map_entry_t *out_entry, /* OUT */
4893                      vm_object_t *object,       /* OUT */
4894                      vm_pindex_t *pindex,       /* OUT */
4895                      vm_prot_t *out_prot,       /* OUT */
4896                      boolean_t *wired)          /* OUT */
4897 {
4898         vm_map_entry_t entry;
4899         vm_map_t map = *var_map;
4900         vm_prot_t prot;
4901         vm_prot_t fault_type = fault_typea;
4902
4903         /*
4904          * Lookup the faulting address.
4905          */
4906         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4907                 return (KERN_INVALID_ADDRESS);
4908
4909         entry = *out_entry;
4910
4911         /*
4912          * Fail if the entry refers to a submap.
4913          */
4914         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4915                 return (KERN_FAILURE);
4916
4917         /*
4918          * Check whether this task is allowed to have this page.
4919          */
4920         prot = entry->protection;
4921         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4922         if ((fault_type & prot) != fault_type)
4923                 return (KERN_PROTECTION_FAILURE);
4924
4925         /*
4926          * If this page is not pageable, we have to get it for all possible
4927          * accesses.
4928          */
4929         *wired = (entry->wired_count != 0);
4930         if (*wired)
4931                 fault_type = entry->protection;
4932
4933         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4934                 /*
4935                  * Fail if the entry was copy-on-write for a write fault.
4936                  */
4937                 if (fault_type & VM_PROT_WRITE)
4938                         return (KERN_FAILURE);
4939                 /*
4940                  * We're attempting to read a copy-on-write page --
4941                  * don't allow writes.
4942                  */
4943                 prot &= ~VM_PROT_WRITE;
4944         }
4945
4946         /*
4947          * Fail if an object should be created.
4948          */
4949         if (entry->object.vm_object == NULL && !map->system_map)
4950                 return (KERN_FAILURE);
4951
4952         /*
4953          * Return the object/offset from this entry.  If the entry was
4954          * copy-on-write or empty, it has been fixed up.
4955          */
4956         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4957         *object = entry->object.vm_object;
4958
4959         *out_prot = prot;
4960         return (KERN_SUCCESS);
4961 }
4962
4963 /*
4964  *      vm_map_lookup_done:
4965  *
4966  *      Releases locks acquired by a vm_map_lookup
4967  *      (according to the handle returned by that lookup).
4968  */
4969 void
4970 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4971 {
4972         /*
4973          * Unlock the main-level map
4974          */
4975         vm_map_unlock_read(map);
4976 }
4977
4978 vm_offset_t
4979 vm_map_max_KBI(const struct vm_map *map)
4980 {
4981
4982         return (vm_map_max(map));
4983 }
4984
4985 vm_offset_t
4986 vm_map_min_KBI(const struct vm_map *map)
4987 {
4988
4989         return (vm_map_min(map));
4990 }
4991
4992 pmap_t
4993 vm_map_pmap_KBI(vm_map_t map)
4994 {
4995
4996         return (map->pmap);
4997 }
4998
4999 #ifdef INVARIANTS
5000 static void
5001 _vm_map_assert_consistent(vm_map_t map, int check)
5002 {
5003         vm_map_entry_t entry, prev;
5004         vm_map_entry_t cur, header, lbound, ubound;
5005         vm_size_t max_left, max_right;
5006
5007 #ifdef DIAGNOSTIC
5008         ++map->nupdates;
5009 #endif
5010         if (enable_vmmap_check != check)
5011                 return;
5012
5013         header = prev = &map->header;
5014         VM_MAP_ENTRY_FOREACH(entry, map) {
5015                 KASSERT(prev->end <= entry->start,
5016                     ("map %p prev->end = %jx, start = %jx", map,
5017                     (uintmax_t)prev->end, (uintmax_t)entry->start));
5018                 KASSERT(entry->start < entry->end,
5019                     ("map %p start = %jx, end = %jx", map,
5020                     (uintmax_t)entry->start, (uintmax_t)entry->end));
5021                 KASSERT(entry->left == header ||
5022                     entry->left->start < entry->start,
5023                     ("map %p left->start = %jx, start = %jx", map,
5024                     (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5025                 KASSERT(entry->right == header ||
5026                     entry->start < entry->right->start,
5027                     ("map %p start = %jx, right->start = %jx", map,
5028                     (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5029                 cur = map->root;
5030                 lbound = ubound = header;
5031                 for (;;) {
5032                         if (entry->start < cur->start) {
5033                                 ubound = cur;
5034                                 cur = cur->left;
5035                                 KASSERT(cur != lbound,
5036                                     ("map %p cannot find %jx",
5037                                     map, entry->start));
5038                         } else if (cur->end <= entry->start) {
5039                                 lbound = cur;
5040                                 cur = cur->right;
5041                                 KASSERT(cur != ubound,
5042                                     ("map %p cannot find %jx",
5043                                     map, entry->start));
5044                         } else {
5045                                 KASSERT(cur == entry,
5046                                     ("map %p cannot find %jx",
5047                                     map, entry->start));
5048                                 break;
5049                         }
5050                 }
5051                 max_left = vm_map_entry_max_free_left(entry, lbound);
5052                 max_right = vm_map_entry_max_free_right(entry, ubound);
5053                 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5054                     ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5055                     (uintmax_t)entry->max_free,
5056                     (uintmax_t)max_left, (uintmax_t)max_right));
5057                 prev = entry;
5058         }
5059         KASSERT(prev->end <= entry->start,
5060             ("map %p prev->end = %jx, start = %jx", map,
5061             (uintmax_t)prev->end, (uintmax_t)entry->start));
5062 }
5063 #endif
5064
5065 #include "opt_ddb.h"
5066 #ifdef DDB
5067 #include <sys/kernel.h>
5068
5069 #include <ddb/ddb.h>
5070
5071 static void
5072 vm_map_print(vm_map_t map)
5073 {
5074         vm_map_entry_t entry, prev;
5075
5076         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5077             (void *)map,
5078             (void *)map->pmap, map->nentries, map->timestamp);
5079
5080         db_indent += 2;
5081         prev = &map->header;
5082         VM_MAP_ENTRY_FOREACH(entry, map) {
5083                 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5084                     (void *)entry, (void *)entry->start, (void *)entry->end,
5085                     entry->eflags);
5086                 {
5087                         static char *inheritance_name[4] =
5088                         {"share", "copy", "none", "donate_copy"};
5089
5090                         db_iprintf(" prot=%x/%x/%s",
5091                             entry->protection,
5092                             entry->max_protection,
5093                             inheritance_name[(int)(unsigned char)
5094                             entry->inheritance]);
5095                         if (entry->wired_count != 0)
5096                                 db_printf(", wired");
5097                 }
5098                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5099                         db_printf(", share=%p, offset=0x%jx\n",
5100                             (void *)entry->object.sub_map,
5101                             (uintmax_t)entry->offset);
5102                         if (prev == &map->header ||
5103                             prev->object.sub_map !=
5104                                 entry->object.sub_map) {
5105                                 db_indent += 2;
5106                                 vm_map_print((vm_map_t)entry->object.sub_map);
5107                                 db_indent -= 2;
5108                         }
5109                 } else {
5110                         if (entry->cred != NULL)
5111                                 db_printf(", ruid %d", entry->cred->cr_ruid);
5112                         db_printf(", object=%p, offset=0x%jx",
5113                             (void *)entry->object.vm_object,
5114                             (uintmax_t)entry->offset);
5115                         if (entry->object.vm_object && entry->object.vm_object->cred)
5116                                 db_printf(", obj ruid %d charge %jx",
5117                                     entry->object.vm_object->cred->cr_ruid,
5118                                     (uintmax_t)entry->object.vm_object->charge);
5119                         if (entry->eflags & MAP_ENTRY_COW)
5120                                 db_printf(", copy (%s)",
5121                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5122                         db_printf("\n");
5123
5124                         if (prev == &map->header ||
5125                             prev->object.vm_object !=
5126                                 entry->object.vm_object) {
5127                                 db_indent += 2;
5128                                 vm_object_print((db_expr_t)(intptr_t)
5129                                                 entry->object.vm_object,
5130                                                 0, 0, (char *)0);
5131                                 db_indent -= 2;
5132                         }
5133                 }
5134                 prev = entry;
5135         }
5136         db_indent -= 2;
5137 }
5138
5139 DB_SHOW_COMMAND(map, map)
5140 {
5141
5142         if (!have_addr) {
5143                 db_printf("usage: show map <addr>\n");
5144                 return;
5145         }
5146         vm_map_print((vm_map_t)addr);
5147 }
5148
5149 DB_SHOW_COMMAND(procvm, procvm)
5150 {
5151         struct proc *p;
5152
5153         if (have_addr) {
5154                 p = db_lookup_proc(addr);
5155         } else {
5156                 p = curproc;
5157         }
5158
5159         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5160             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5161             (void *)vmspace_pmap(p->p_vmspace));
5162
5163         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5164 }
5165
5166 #endif /* DDB */