]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
unbound: Vendor import 1.17.0
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(atomic_load_int(&object->shadow_count) == 0,
202             ("object %p shadow_count = %d",
203             object, atomic_load_int(&object->shadow_count)));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207         KASSERT(object->charge == 0 && object->cred == NULL,
208             ("object %p has non-zero charge %ju (%p)",
209             object, (uintmax_t)object->charge, object->cred));
210 }
211 #endif
212
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216         vm_object_t object;
217
218         object = (vm_object_t)mem;
219         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
220
221         /* These are true for any object that has been freed */
222         object->type = OBJT_DEAD;
223         vm_radix_init(&object->rtree);
224         refcount_init(&object->ref_count, 0);
225         blockcount_init(&object->paging_in_progress);
226         blockcount_init(&object->busy);
227         object->resident_page_count = 0;
228         atomic_store_int(&object->shadow_count, 0);
229         object->flags = OBJ_DEAD;
230
231         mtx_lock(&vm_object_list_mtx);
232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233         mtx_unlock(&vm_object_list_mtx);
234         return (0);
235 }
236
237 static void
238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
239     vm_object_t object, void *handle)
240 {
241
242         TAILQ_INIT(&object->memq);
243         LIST_INIT(&object->shadow_head);
244
245         object->type = type;
246         object->flags = flags;
247         if ((flags & OBJ_SWAP) != 0) {
248                 pctrie_init(&object->un_pager.swp.swp_blks);
249                 object->un_pager.swp.writemappings = 0;
250         }
251
252         /*
253          * Ensure that swap_pager_swapoff() iteration over object_list
254          * sees up to date type and pctrie head if it observed
255          * non-dead object.
256          */
257         atomic_thread_fence_rel();
258
259         object->pg_color = 0;
260         object->size = size;
261         object->domain.dr_policy = NULL;
262         object->generation = 1;
263         object->cleangeneration = 1;
264         refcount_init(&object->ref_count, 1);
265         object->memattr = VM_MEMATTR_DEFAULT;
266         object->cred = NULL;
267         object->charge = 0;
268         object->handle = handle;
269         object->backing_object = NULL;
270         object->backing_object_offset = (vm_ooffset_t) 0;
271 #if VM_NRESERVLEVEL > 0
272         LIST_INIT(&object->rvq);
273 #endif
274         umtx_shm_object_init(object);
275 }
276
277 /*
278  *      vm_object_init:
279  *
280  *      Initialize the VM objects module.
281  */
282 void
283 vm_object_init(void)
284 {
285         TAILQ_INIT(&vm_object_list);
286         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
287
288         rw_init(&kernel_object->lock, "kernel vm object");
289         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
290             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
291 #if VM_NRESERVLEVEL > 0
292         kernel_object->flags |= OBJ_COLORED;
293         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294 #endif
295         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
296
297         /*
298          * The lock portion of struct vm_object must be type stable due
299          * to vm_pageout_fallback_object_lock locking a vm object
300          * without holding any references to it.
301          *
302          * paging_in_progress is valid always.  Lockless references to
303          * the objects may acquire pip and then check OBJ_DEAD.
304          */
305         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
306 #ifdef INVARIANTS
307             vm_object_zdtor,
308 #else
309             NULL,
310 #endif
311             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
312
313         vm_radix_zinit();
314 }
315
316 void
317 vm_object_clear_flag(vm_object_t object, u_short bits)
318 {
319
320         VM_OBJECT_ASSERT_WLOCKED(object);
321         object->flags &= ~bits;
322 }
323
324 /*
325  *      Sets the default memory attribute for the specified object.  Pages
326  *      that are allocated to this object are by default assigned this memory
327  *      attribute.
328  *
329  *      Presently, this function must be called before any pages are allocated
330  *      to the object.  In the future, this requirement may be relaxed for
331  *      "default" and "swap" objects.
332  */
333 int
334 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
335 {
336
337         VM_OBJECT_ASSERT_WLOCKED(object);
338
339         if (object->type == OBJT_DEAD)
340                 return (KERN_INVALID_ARGUMENT);
341         if (!TAILQ_EMPTY(&object->memq))
342                 return (KERN_FAILURE);
343
344         object->memattr = memattr;
345         return (KERN_SUCCESS);
346 }
347
348 void
349 vm_object_pip_add(vm_object_t object, short i)
350 {
351
352         if (i > 0)
353                 blockcount_acquire(&object->paging_in_progress, i);
354 }
355
356 void
357 vm_object_pip_wakeup(vm_object_t object)
358 {
359
360         vm_object_pip_wakeupn(object, 1);
361 }
362
363 void
364 vm_object_pip_wakeupn(vm_object_t object, short i)
365 {
366
367         if (i > 0)
368                 blockcount_release(&object->paging_in_progress, i);
369 }
370
371 /*
372  * Atomically drop the object lock and wait for pip to drain.  This protects
373  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
374  * on return.
375  */
376 static void
377 vm_object_pip_sleep(vm_object_t object, const char *waitid)
378 {
379
380         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
381             waitid, PVM | PDROP);
382 }
383
384 void
385 vm_object_pip_wait(vm_object_t object, const char *waitid)
386 {
387
388         VM_OBJECT_ASSERT_WLOCKED(object);
389
390         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
391             PVM);
392 }
393
394 void
395 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
396 {
397
398         VM_OBJECT_ASSERT_UNLOCKED(object);
399
400         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
401 }
402
403 /*
404  *      vm_object_allocate:
405  *
406  *      Returns a new object with the given size.
407  */
408 vm_object_t
409 vm_object_allocate(objtype_t type, vm_pindex_t size)
410 {
411         vm_object_t object;
412         u_short flags;
413
414         switch (type) {
415         case OBJT_DEAD:
416                 panic("vm_object_allocate: can't create OBJT_DEAD");
417         case OBJT_SWAP:
418                 flags = OBJ_COLORED | OBJ_SWAP;
419                 break;
420         case OBJT_DEVICE:
421         case OBJT_SG:
422                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
423                 break;
424         case OBJT_MGTDEVICE:
425                 flags = OBJ_FICTITIOUS;
426                 break;
427         case OBJT_PHYS:
428                 flags = OBJ_UNMANAGED;
429                 break;
430         case OBJT_VNODE:
431                 flags = 0;
432                 break;
433         default:
434                 panic("vm_object_allocate: type %d is undefined or dynamic",
435                     type);
436         }
437         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
438         _vm_object_allocate(type, size, flags, object, NULL);
439
440         return (object);
441 }
442
443 vm_object_t
444 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
445 {
446         vm_object_t object;
447
448         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
449         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
450         _vm_object_allocate(dyntype, size, flags, object, NULL);
451
452         return (object);
453 }
454
455 /*
456  *      vm_object_allocate_anon:
457  *
458  *      Returns a new default object of the given size and marked as
459  *      anonymous memory for special split/collapse handling.  Color
460  *      to be initialized by the caller.
461  */
462 vm_object_t
463 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
464     struct ucred *cred, vm_size_t charge)
465 {
466         vm_object_t handle, object;
467
468         if (backing_object == NULL)
469                 handle = NULL;
470         else if ((backing_object->flags & OBJ_ANON) != 0)
471                 handle = backing_object->handle;
472         else
473                 handle = backing_object;
474         object = uma_zalloc(obj_zone, M_WAITOK);
475         _vm_object_allocate(OBJT_SWAP, size,
476             OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
477         object->cred = cred;
478         object->charge = cred != NULL ? charge : 0;
479         return (object);
480 }
481
482 static void
483 vm_object_reference_vnode(vm_object_t object)
484 {
485         u_int old;
486
487         /*
488          * vnode objects need the lock for the first reference
489          * to serialize with vnode_object_deallocate().
490          */
491         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
492                 VM_OBJECT_RLOCK(object);
493                 old = refcount_acquire(&object->ref_count);
494                 if (object->type == OBJT_VNODE && old == 0)
495                         vref(object->handle);
496                 VM_OBJECT_RUNLOCK(object);
497         }
498 }
499
500 /*
501  *      vm_object_reference:
502  *
503  *      Acquires a reference to the given object.
504  */
505 void
506 vm_object_reference(vm_object_t object)
507 {
508
509         if (object == NULL)
510                 return;
511
512         if (object->type == OBJT_VNODE)
513                 vm_object_reference_vnode(object);
514         else
515                 refcount_acquire(&object->ref_count);
516         KASSERT((object->flags & OBJ_DEAD) == 0,
517             ("vm_object_reference: Referenced dead object."));
518 }
519
520 /*
521  *      vm_object_reference_locked:
522  *
523  *      Gets another reference to the given object.
524  *
525  *      The object must be locked.
526  */
527 void
528 vm_object_reference_locked(vm_object_t object)
529 {
530         u_int old;
531
532         VM_OBJECT_ASSERT_LOCKED(object);
533         old = refcount_acquire(&object->ref_count);
534         if (object->type == OBJT_VNODE && old == 0)
535                 vref(object->handle);
536         KASSERT((object->flags & OBJ_DEAD) == 0,
537             ("vm_object_reference: Referenced dead object."));
538 }
539
540 /*
541  * Handle deallocating an object of type OBJT_VNODE.
542  */
543 static void
544 vm_object_deallocate_vnode(vm_object_t object)
545 {
546         struct vnode *vp = (struct vnode *) object->handle;
547         bool last;
548
549         KASSERT(object->type == OBJT_VNODE,
550             ("vm_object_deallocate_vnode: not a vnode object"));
551         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
552
553         /* Object lock to protect handle lookup. */
554         last = refcount_release(&object->ref_count);
555         VM_OBJECT_RUNLOCK(object);
556
557         if (!last)
558                 return;
559
560         if (!umtx_shm_vnobj_persistent)
561                 umtx_shm_object_terminated(object);
562
563         /* vrele may need the vnode lock. */
564         vrele(vp);
565 }
566
567 /*
568  * We dropped a reference on an object and discovered that it had a
569  * single remaining shadow.  This is a sibling of the reference we
570  * dropped.  Attempt to collapse the sibling and backing object.
571  */
572 static vm_object_t
573 vm_object_deallocate_anon(vm_object_t backing_object)
574 {
575         vm_object_t object;
576
577         /* Fetch the final shadow.  */
578         object = LIST_FIRST(&backing_object->shadow_head);
579         KASSERT(object != NULL &&
580             atomic_load_int(&backing_object->shadow_count) == 1,
581             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
582             backing_object->ref_count,
583             atomic_load_int(&backing_object->shadow_count)));
584         KASSERT((object->flags & OBJ_ANON) != 0,
585             ("invalid shadow object %p", object));
586
587         if (!VM_OBJECT_TRYWLOCK(object)) {
588                 /*
589                  * Prevent object from disappearing since we do not have a
590                  * reference.
591                  */
592                 vm_object_pip_add(object, 1);
593                 VM_OBJECT_WUNLOCK(backing_object);
594                 VM_OBJECT_WLOCK(object);
595                 vm_object_pip_wakeup(object);
596         } else
597                 VM_OBJECT_WUNLOCK(backing_object);
598
599         /*
600          * Check for a collapse/terminate race with the last reference holder.
601          */
602         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
603             !refcount_acquire_if_not_zero(&object->ref_count)) {
604                 VM_OBJECT_WUNLOCK(object);
605                 return (NULL);
606         }
607         backing_object = object->backing_object;
608         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
609                 vm_object_collapse(object);
610         VM_OBJECT_WUNLOCK(object);
611
612         return (object);
613 }
614
615 /*
616  *      vm_object_deallocate:
617  *
618  *      Release a reference to the specified object,
619  *      gained either through a vm_object_allocate
620  *      or a vm_object_reference call.  When all references
621  *      are gone, storage associated with this object
622  *      may be relinquished.
623  *
624  *      No object may be locked.
625  */
626 void
627 vm_object_deallocate(vm_object_t object)
628 {
629         vm_object_t temp;
630         bool released;
631
632         while (object != NULL) {
633                 /*
634                  * If the reference count goes to 0 we start calling
635                  * vm_object_terminate() on the object chain.  A ref count
636                  * of 1 may be a special case depending on the shadow count
637                  * being 0 or 1.  These cases require a write lock on the
638                  * object.
639                  */
640                 if ((object->flags & OBJ_ANON) == 0)
641                         released = refcount_release_if_gt(&object->ref_count, 1);
642                 else
643                         released = refcount_release_if_gt(&object->ref_count, 2);
644                 if (released)
645                         return;
646
647                 if (object->type == OBJT_VNODE) {
648                         VM_OBJECT_RLOCK(object);
649                         if (object->type == OBJT_VNODE) {
650                                 vm_object_deallocate_vnode(object);
651                                 return;
652                         }
653                         VM_OBJECT_RUNLOCK(object);
654                 }
655
656                 VM_OBJECT_WLOCK(object);
657                 KASSERT(object->ref_count > 0,
658                     ("vm_object_deallocate: object deallocated too many times: %d",
659                     object->type));
660
661                 /*
662                  * If this is not the final reference to an anonymous
663                  * object we may need to collapse the shadow chain.
664                  */
665                 if (!refcount_release(&object->ref_count)) {
666                         if (object->ref_count > 1 ||
667                             atomic_load_int(&object->shadow_count) == 0) {
668                                 if ((object->flags & OBJ_ANON) != 0 &&
669                                     object->ref_count == 1)
670                                         vm_object_set_flag(object,
671                                             OBJ_ONEMAPPING);
672                                 VM_OBJECT_WUNLOCK(object);
673                                 return;
674                         }
675
676                         /* Handle collapsing last ref on anonymous objects. */
677                         object = vm_object_deallocate_anon(object);
678                         continue;
679                 }
680
681                 /*
682                  * Handle the final reference to an object.  We restart
683                  * the loop with the backing object to avoid recursion.
684                  */
685                 umtx_shm_object_terminated(object);
686                 temp = object->backing_object;
687                 if (temp != NULL) {
688                         KASSERT(object->type == OBJT_SWAP,
689                             ("shadowed tmpfs v_object 2 %p", object));
690                         vm_object_backing_remove(object);
691                 }
692
693                 KASSERT((object->flags & OBJ_DEAD) == 0,
694                     ("vm_object_deallocate: Terminating dead object."));
695                 vm_object_set_flag(object, OBJ_DEAD);
696                 vm_object_terminate(object);
697                 object = temp;
698         }
699 }
700
701 void
702 vm_object_destroy(vm_object_t object)
703 {
704         uma_zfree(obj_zone, object);
705 }
706
707 static void
708 vm_object_sub_shadow(vm_object_t object)
709 {
710         KASSERT(object->shadow_count >= 1,
711             ("object %p sub_shadow count zero", object));
712         atomic_subtract_int(&object->shadow_count, 1);
713 }
714
715 static void
716 vm_object_backing_remove_locked(vm_object_t object)
717 {
718         vm_object_t backing_object;
719
720         backing_object = object->backing_object;
721         VM_OBJECT_ASSERT_WLOCKED(object);
722         VM_OBJECT_ASSERT_WLOCKED(backing_object);
723
724         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
725             ("vm_object_backing_remove: Removing collapsing object."));
726
727         vm_object_sub_shadow(backing_object);
728         if ((object->flags & OBJ_SHADOWLIST) != 0) {
729                 LIST_REMOVE(object, shadow_list);
730                 vm_object_clear_flag(object, OBJ_SHADOWLIST);
731         }
732         object->backing_object = NULL;
733 }
734
735 static void
736 vm_object_backing_remove(vm_object_t object)
737 {
738         vm_object_t backing_object;
739
740         VM_OBJECT_ASSERT_WLOCKED(object);
741
742         backing_object = object->backing_object;
743         if ((object->flags & OBJ_SHADOWLIST) != 0) {
744                 VM_OBJECT_WLOCK(backing_object);
745                 vm_object_backing_remove_locked(object);
746                 VM_OBJECT_WUNLOCK(backing_object);
747         } else {
748                 object->backing_object = NULL;
749                 vm_object_sub_shadow(backing_object);
750         }
751 }
752
753 static void
754 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
755 {
756
757         VM_OBJECT_ASSERT_WLOCKED(object);
758
759         atomic_add_int(&backing_object->shadow_count, 1);
760         if ((backing_object->flags & OBJ_ANON) != 0) {
761                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
762                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
763                     shadow_list);
764                 vm_object_set_flag(object, OBJ_SHADOWLIST);
765         }
766         object->backing_object = backing_object;
767 }
768
769 static void
770 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
771 {
772
773         VM_OBJECT_ASSERT_WLOCKED(object);
774
775         if ((backing_object->flags & OBJ_ANON) != 0) {
776                 VM_OBJECT_WLOCK(backing_object);
777                 vm_object_backing_insert_locked(object, backing_object);
778                 VM_OBJECT_WUNLOCK(backing_object);
779         } else {
780                 object->backing_object = backing_object;
781                 atomic_add_int(&backing_object->shadow_count, 1);
782         }
783 }
784
785 /*
786  * Insert an object into a backing_object's shadow list with an additional
787  * reference to the backing_object added.
788  */
789 static void
790 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
791 {
792
793         VM_OBJECT_ASSERT_WLOCKED(object);
794
795         if ((backing_object->flags & OBJ_ANON) != 0) {
796                 VM_OBJECT_WLOCK(backing_object);
797                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
798                     ("shadowing dead anonymous object"));
799                 vm_object_reference_locked(backing_object);
800                 vm_object_backing_insert_locked(object, backing_object);
801                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
802                 VM_OBJECT_WUNLOCK(backing_object);
803         } else {
804                 vm_object_reference(backing_object);
805                 atomic_add_int(&backing_object->shadow_count, 1);
806                 object->backing_object = backing_object;
807         }
808 }
809
810 /*
811  * Transfer a backing reference from backing_object to object.
812  */
813 static void
814 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
815 {
816         vm_object_t new_backing_object;
817
818         /*
819          * Note that the reference to backing_object->backing_object
820          * moves from within backing_object to within object.
821          */
822         vm_object_backing_remove_locked(object);
823         new_backing_object = backing_object->backing_object;
824         if (new_backing_object == NULL)
825                 return;
826         if ((new_backing_object->flags & OBJ_ANON) != 0) {
827                 VM_OBJECT_WLOCK(new_backing_object);
828                 vm_object_backing_remove_locked(backing_object);
829                 vm_object_backing_insert_locked(object, new_backing_object);
830                 VM_OBJECT_WUNLOCK(new_backing_object);
831         } else {
832                 /*
833                  * shadow_count for new_backing_object is left
834                  * unchanged, its reference provided by backing_object
835                  * is replaced by object.
836                  */
837                 object->backing_object = new_backing_object;
838                 backing_object->backing_object = NULL;
839         }
840 }
841
842 /*
843  * Wait for a concurrent collapse to settle.
844  */
845 static void
846 vm_object_collapse_wait(vm_object_t object)
847 {
848
849         VM_OBJECT_ASSERT_WLOCKED(object);
850
851         while ((object->flags & OBJ_COLLAPSING) != 0) {
852                 vm_object_pip_wait(object, "vmcolwait");
853                 counter_u64_add(object_collapse_waits, 1);
854         }
855 }
856
857 /*
858  * Waits for a backing object to clear a pending collapse and returns
859  * it locked if it is an ANON object.
860  */
861 static vm_object_t
862 vm_object_backing_collapse_wait(vm_object_t object)
863 {
864         vm_object_t backing_object;
865
866         VM_OBJECT_ASSERT_WLOCKED(object);
867
868         for (;;) {
869                 backing_object = object->backing_object;
870                 if (backing_object == NULL ||
871                     (backing_object->flags & OBJ_ANON) == 0)
872                         return (NULL);
873                 VM_OBJECT_WLOCK(backing_object);
874                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
875                         break;
876                 VM_OBJECT_WUNLOCK(object);
877                 vm_object_pip_sleep(backing_object, "vmbckwait");
878                 counter_u64_add(object_collapse_waits, 1);
879                 VM_OBJECT_WLOCK(object);
880         }
881         return (backing_object);
882 }
883
884 /*
885  *      vm_object_terminate_pages removes any remaining pageable pages
886  *      from the object and resets the object to an empty state.
887  */
888 static void
889 vm_object_terminate_pages(vm_object_t object)
890 {
891         vm_page_t p, p_next;
892
893         VM_OBJECT_ASSERT_WLOCKED(object);
894
895         /*
896          * Free any remaining pageable pages.  This also removes them from the
897          * paging queues.  However, don't free wired pages, just remove them
898          * from the object.  Rather than incrementally removing each page from
899          * the object, the page and object are reset to any empty state. 
900          */
901         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
902                 vm_page_assert_unbusied(p);
903                 KASSERT(p->object == object &&
904                     (p->ref_count & VPRC_OBJREF) != 0,
905                     ("vm_object_terminate_pages: page %p is inconsistent", p));
906
907                 p->object = NULL;
908                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
909                         VM_CNT_INC(v_pfree);
910                         vm_page_free(p);
911                 }
912         }
913
914         /*
915          * If the object contained any pages, then reset it to an empty state.
916          * None of the object's fields, including "resident_page_count", were
917          * modified by the preceding loop.
918          */
919         if (object->resident_page_count != 0) {
920                 vm_radix_reclaim_allnodes(&object->rtree);
921                 TAILQ_INIT(&object->memq);
922                 object->resident_page_count = 0;
923                 if (object->type == OBJT_VNODE)
924                         vdrop(object->handle);
925         }
926 }
927
928 /*
929  *      vm_object_terminate actually destroys the specified object, freeing
930  *      up all previously used resources.
931  *
932  *      The object must be locked.
933  *      This routine may block.
934  */
935 void
936 vm_object_terminate(vm_object_t object)
937 {
938
939         VM_OBJECT_ASSERT_WLOCKED(object);
940         KASSERT((object->flags & OBJ_DEAD) != 0,
941             ("terminating non-dead obj %p", object));
942         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
943             ("terminating collapsing obj %p", object));
944         KASSERT(object->backing_object == NULL,
945             ("terminating shadow obj %p", object));
946
947         /*
948          * Wait for the pageout daemon and other current users to be
949          * done with the object.  Note that new paging_in_progress
950          * users can come after this wait, but they must check
951          * OBJ_DEAD flag set (without unlocking the object), and avoid
952          * the object being terminated.
953          */
954         vm_object_pip_wait(object, "objtrm");
955
956         KASSERT(object->ref_count == 0,
957             ("vm_object_terminate: object with references, ref_count=%d",
958             object->ref_count));
959
960         if ((object->flags & OBJ_PG_DTOR) == 0)
961                 vm_object_terminate_pages(object);
962
963 #if VM_NRESERVLEVEL > 0
964         if (__predict_false(!LIST_EMPTY(&object->rvq)))
965                 vm_reserv_break_all(object);
966 #endif
967
968         KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
969             ("%s: non-swap obj %p has cred", __func__, object));
970
971         /*
972          * Let the pager know object is dead.
973          */
974         vm_pager_deallocate(object);
975         VM_OBJECT_WUNLOCK(object);
976
977         vm_object_destroy(object);
978 }
979
980 /*
981  * Make the page read-only so that we can clear the object flags.  However, if
982  * this is a nosync mmap then the object is likely to stay dirty so do not
983  * mess with the page and do not clear the object flags.  Returns TRUE if the
984  * page should be flushed, and FALSE otherwise.
985  */
986 static boolean_t
987 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
988 {
989
990         vm_page_assert_busied(p);
991
992         /*
993          * If we have been asked to skip nosync pages and this is a
994          * nosync page, skip it.  Note that the object flags were not
995          * cleared in this case so we do not have to set them.
996          */
997         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
998                 *allclean = FALSE;
999                 return (FALSE);
1000         } else {
1001                 pmap_remove_write(p);
1002                 return (p->dirty != 0);
1003         }
1004 }
1005
1006 /*
1007  *      vm_object_page_clean
1008  *
1009  *      Clean all dirty pages in the specified range of object.  Leaves page 
1010  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1011  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1012  *      leaving the object dirty.
1013  *
1014  *      For swap objects backing tmpfs regular files, do not flush anything,
1015  *      but remove write protection on the mapped pages to update mtime through
1016  *      mmaped writes.
1017  *
1018  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1019  *      synchronous clustering mode implementation.
1020  *
1021  *      Odd semantics: if start == end, we clean everything.
1022  *
1023  *      The object must be locked.
1024  *
1025  *      Returns FALSE if some page from the range was not written, as
1026  *      reported by the pager, and TRUE otherwise.
1027  */
1028 boolean_t
1029 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1030     int flags)
1031 {
1032         vm_page_t np, p;
1033         vm_pindex_t pi, tend, tstart;
1034         int curgeneration, n, pagerflags;
1035         boolean_t eio, res, allclean;
1036
1037         VM_OBJECT_ASSERT_WLOCKED(object);
1038
1039         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1040                 return (TRUE);
1041
1042         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1043             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1044         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1045
1046         tstart = OFF_TO_IDX(start);
1047         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1048         allclean = tstart == 0 && tend >= object->size;
1049         res = TRUE;
1050
1051 rescan:
1052         curgeneration = object->generation;
1053
1054         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1055                 pi = p->pindex;
1056                 if (pi >= tend)
1057                         break;
1058                 np = TAILQ_NEXT(p, listq);
1059                 if (vm_page_none_valid(p))
1060                         continue;
1061                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1062                         if (object->generation != curgeneration &&
1063                             (flags & OBJPC_SYNC) != 0)
1064                                 goto rescan;
1065                         np = vm_page_find_least(object, pi);
1066                         continue;
1067                 }
1068                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1069                         vm_page_xunbusy(p);
1070                         continue;
1071                 }
1072                 if (object->type == OBJT_VNODE) {
1073                         n = vm_object_page_collect_flush(object, p, pagerflags,
1074                             flags, &allclean, &eio);
1075                         if (eio) {
1076                                 res = FALSE;
1077                                 allclean = FALSE;
1078                         }
1079                         if (object->generation != curgeneration &&
1080                             (flags & OBJPC_SYNC) != 0)
1081                                 goto rescan;
1082
1083                         /*
1084                          * If the VOP_PUTPAGES() did a truncated write, so
1085                          * that even the first page of the run is not fully
1086                          * written, vm_pageout_flush() returns 0 as the run
1087                          * length.  Since the condition that caused truncated
1088                          * write may be permanent, e.g. exhausted free space,
1089                          * accepting n == 0 would cause an infinite loop.
1090                          *
1091                          * Forwarding the iterator leaves the unwritten page
1092                          * behind, but there is not much we can do there if
1093                          * filesystem refuses to write it.
1094                          */
1095                         if (n == 0) {
1096                                 n = 1;
1097                                 allclean = FALSE;
1098                         }
1099                 } else {
1100                         n = 1;
1101                         vm_page_xunbusy(p);
1102                 }
1103                 np = vm_page_find_least(object, pi + n);
1104         }
1105 #if 0
1106         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1107 #endif
1108
1109         /*
1110          * Leave updating cleangeneration for tmpfs objects to tmpfs
1111          * scan.  It needs to update mtime, which happens for other
1112          * filesystems during page writeouts.
1113          */
1114         if (allclean && object->type == OBJT_VNODE)
1115                 object->cleangeneration = curgeneration;
1116         return (res);
1117 }
1118
1119 static int
1120 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1121     int flags, boolean_t *allclean, boolean_t *eio)
1122 {
1123         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1124         int count, i, mreq, runlen;
1125
1126         vm_page_lock_assert(p, MA_NOTOWNED);
1127         vm_page_assert_xbusied(p);
1128         VM_OBJECT_ASSERT_WLOCKED(object);
1129
1130         count = 1;
1131         mreq = 0;
1132
1133         for (tp = p; count < vm_pageout_page_count; count++) {
1134                 tp = vm_page_next(tp);
1135                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1136                         break;
1137                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1138                         vm_page_xunbusy(tp);
1139                         break;
1140                 }
1141         }
1142
1143         for (p_first = p; count < vm_pageout_page_count; count++) {
1144                 tp = vm_page_prev(p_first);
1145                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1146                         break;
1147                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1148                         vm_page_xunbusy(tp);
1149                         break;
1150                 }
1151                 p_first = tp;
1152                 mreq++;
1153         }
1154
1155         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1156                 ma[i] = tp;
1157
1158         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1159         return (runlen);
1160 }
1161
1162 /*
1163  * Note that there is absolutely no sense in writing out
1164  * anonymous objects, so we track down the vnode object
1165  * to write out.
1166  * We invalidate (remove) all pages from the address space
1167  * for semantic correctness.
1168  *
1169  * If the backing object is a device object with unmanaged pages, then any
1170  * mappings to the specified range of pages must be removed before this
1171  * function is called.
1172  *
1173  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1174  * may start out with a NULL object.
1175  */
1176 boolean_t
1177 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1178     boolean_t syncio, boolean_t invalidate)
1179 {
1180         vm_object_t backing_object;
1181         struct vnode *vp;
1182         struct mount *mp;
1183         int error, flags, fsync_after;
1184         boolean_t res;
1185
1186         if (object == NULL)
1187                 return (TRUE);
1188         res = TRUE;
1189         error = 0;
1190         VM_OBJECT_WLOCK(object);
1191         while ((backing_object = object->backing_object) != NULL) {
1192                 VM_OBJECT_WLOCK(backing_object);
1193                 offset += object->backing_object_offset;
1194                 VM_OBJECT_WUNLOCK(object);
1195                 object = backing_object;
1196                 if (object->size < OFF_TO_IDX(offset + size))
1197                         size = IDX_TO_OFF(object->size) - offset;
1198         }
1199         /*
1200          * Flush pages if writing is allowed, invalidate them
1201          * if invalidation requested.  Pages undergoing I/O
1202          * will be ignored by vm_object_page_remove().
1203          *
1204          * We cannot lock the vnode and then wait for paging
1205          * to complete without deadlocking against vm_fault.
1206          * Instead we simply call vm_object_page_remove() and
1207          * allow it to block internally on a page-by-page
1208          * basis when it encounters pages undergoing async
1209          * I/O.
1210          */
1211         if (object->type == OBJT_VNODE &&
1212             vm_object_mightbedirty(object) != 0 &&
1213             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1214                 VM_OBJECT_WUNLOCK(object);
1215                 (void) vn_start_write(vp, &mp, V_WAIT);
1216                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1217                 if (syncio && !invalidate && offset == 0 &&
1218                     atop(size) == object->size) {
1219                         /*
1220                          * If syncing the whole mapping of the file,
1221                          * it is faster to schedule all the writes in
1222                          * async mode, also allowing the clustering,
1223                          * and then wait for i/o to complete.
1224                          */
1225                         flags = 0;
1226                         fsync_after = TRUE;
1227                 } else {
1228                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1229                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1230                         fsync_after = FALSE;
1231                 }
1232                 VM_OBJECT_WLOCK(object);
1233                 res = vm_object_page_clean(object, offset, offset + size,
1234                     flags);
1235                 VM_OBJECT_WUNLOCK(object);
1236                 if (fsync_after)
1237                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1238                 VOP_UNLOCK(vp);
1239                 vn_finished_write(mp);
1240                 if (error != 0)
1241                         res = FALSE;
1242                 VM_OBJECT_WLOCK(object);
1243         }
1244         if ((object->type == OBJT_VNODE ||
1245              object->type == OBJT_DEVICE) && invalidate) {
1246                 if (object->type == OBJT_DEVICE)
1247                         /*
1248                          * The option OBJPR_NOTMAPPED must be passed here
1249                          * because vm_object_page_remove() cannot remove
1250                          * unmanaged mappings.
1251                          */
1252                         flags = OBJPR_NOTMAPPED;
1253                 else if (old_msync)
1254                         flags = 0;
1255                 else
1256                         flags = OBJPR_CLEANONLY;
1257                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1258                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1259         }
1260         VM_OBJECT_WUNLOCK(object);
1261         return (res);
1262 }
1263
1264 /*
1265  * Determine whether the given advice can be applied to the object.  Advice is
1266  * not applied to unmanaged pages since they never belong to page queues, and
1267  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1268  * have been mapped at most once.
1269  */
1270 static bool
1271 vm_object_advice_applies(vm_object_t object, int advice)
1272 {
1273
1274         if ((object->flags & OBJ_UNMANAGED) != 0)
1275                 return (false);
1276         if (advice != MADV_FREE)
1277                 return (true);
1278         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1279             (OBJ_ONEMAPPING | OBJ_ANON));
1280 }
1281
1282 static void
1283 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1284     vm_size_t size)
1285 {
1286
1287         if (advice == MADV_FREE)
1288                 vm_pager_freespace(object, pindex, size);
1289 }
1290
1291 /*
1292  *      vm_object_madvise:
1293  *
1294  *      Implements the madvise function at the object/page level.
1295  *
1296  *      MADV_WILLNEED   (any object)
1297  *
1298  *          Activate the specified pages if they are resident.
1299  *
1300  *      MADV_DONTNEED   (any object)
1301  *
1302  *          Deactivate the specified pages if they are resident.
1303  *
1304  *      MADV_FREE       (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1305  *
1306  *          Deactivate and clean the specified pages if they are
1307  *          resident.  This permits the process to reuse the pages
1308  *          without faulting or the kernel to reclaim the pages
1309  *          without I/O.
1310  */
1311 void
1312 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1313     int advice)
1314 {
1315         vm_pindex_t tpindex;
1316         vm_object_t backing_object, tobject;
1317         vm_page_t m, tm;
1318
1319         if (object == NULL)
1320                 return;
1321
1322 relookup:
1323         VM_OBJECT_WLOCK(object);
1324         if (!vm_object_advice_applies(object, advice)) {
1325                 VM_OBJECT_WUNLOCK(object);
1326                 return;
1327         }
1328         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1329                 tobject = object;
1330
1331                 /*
1332                  * If the next page isn't resident in the top-level object, we
1333                  * need to search the shadow chain.  When applying MADV_FREE, we
1334                  * take care to release any swap space used to store
1335                  * non-resident pages.
1336                  */
1337                 if (m == NULL || pindex < m->pindex) {
1338                         /*
1339                          * Optimize a common case: if the top-level object has
1340                          * no backing object, we can skip over the non-resident
1341                          * range in constant time.
1342                          */
1343                         if (object->backing_object == NULL) {
1344                                 tpindex = (m != NULL && m->pindex < end) ?
1345                                     m->pindex : end;
1346                                 vm_object_madvise_freespace(object, advice,
1347                                     pindex, tpindex - pindex);
1348                                 if ((pindex = tpindex) == end)
1349                                         break;
1350                                 goto next_page;
1351                         }
1352
1353                         tpindex = pindex;
1354                         do {
1355                                 vm_object_madvise_freespace(tobject, advice,
1356                                     tpindex, 1);
1357                                 /*
1358                                  * Prepare to search the next object in the
1359                                  * chain.
1360                                  */
1361                                 backing_object = tobject->backing_object;
1362                                 if (backing_object == NULL)
1363                                         goto next_pindex;
1364                                 VM_OBJECT_WLOCK(backing_object);
1365                                 tpindex +=
1366                                     OFF_TO_IDX(tobject->backing_object_offset);
1367                                 if (tobject != object)
1368                                         VM_OBJECT_WUNLOCK(tobject);
1369                                 tobject = backing_object;
1370                                 if (!vm_object_advice_applies(tobject, advice))
1371                                         goto next_pindex;
1372                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1373                             NULL);
1374                 } else {
1375 next_page:
1376                         tm = m;
1377                         m = TAILQ_NEXT(m, listq);
1378                 }
1379
1380                 /*
1381                  * If the page is not in a normal state, skip it.  The page
1382                  * can not be invalidated while the object lock is held.
1383                  */
1384                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1385                         goto next_pindex;
1386                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1387                     ("vm_object_madvise: page %p is fictitious", tm));
1388                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1389                     ("vm_object_madvise: page %p is not managed", tm));
1390                 if (vm_page_tryxbusy(tm) == 0) {
1391                         if (object != tobject)
1392                                 VM_OBJECT_WUNLOCK(object);
1393                         if (advice == MADV_WILLNEED) {
1394                                 /*
1395                                  * Reference the page before unlocking and
1396                                  * sleeping so that the page daemon is less
1397                                  * likely to reclaim it.
1398                                  */
1399                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1400                         }
1401                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1402                                 VM_OBJECT_WUNLOCK(tobject);
1403                         goto relookup;
1404                 }
1405                 vm_page_advise(tm, advice);
1406                 vm_page_xunbusy(tm);
1407                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1408 next_pindex:
1409                 if (tobject != object)
1410                         VM_OBJECT_WUNLOCK(tobject);
1411         }
1412         VM_OBJECT_WUNLOCK(object);
1413 }
1414
1415 /*
1416  *      vm_object_shadow:
1417  *
1418  *      Create a new object which is backed by the
1419  *      specified existing object range.  The source
1420  *      object reference is deallocated.
1421  *
1422  *      The new object and offset into that object
1423  *      are returned in the source parameters.
1424  */
1425 void
1426 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1427     struct ucred *cred, bool shared)
1428 {
1429         vm_object_t source;
1430         vm_object_t result;
1431
1432         source = *object;
1433
1434         /*
1435          * Don't create the new object if the old object isn't shared.
1436          *
1437          * If we hold the only reference we can guarantee that it won't
1438          * increase while we have the map locked.  Otherwise the race is
1439          * harmless and we will end up with an extra shadow object that
1440          * will be collapsed later.
1441          */
1442         if (source != NULL && source->ref_count == 1 &&
1443             (source->flags & OBJ_ANON) != 0)
1444                 return;
1445
1446         /*
1447          * Allocate a new object with the given length.
1448          */
1449         result = vm_object_allocate_anon(atop(length), source, cred, length);
1450
1451         /*
1452          * Store the offset into the source object, and fix up the offset into
1453          * the new object.
1454          */
1455         result->backing_object_offset = *offset;
1456
1457         if (shared || source != NULL) {
1458                 VM_OBJECT_WLOCK(result);
1459
1460                 /*
1461                  * The new object shadows the source object, adding a
1462                  * reference to it.  Our caller changes his reference
1463                  * to point to the new object, removing a reference to
1464                  * the source object.  Net result: no change of
1465                  * reference count, unless the caller needs to add one
1466                  * more reference due to forking a shared map entry.
1467                  */
1468                 if (shared) {
1469                         vm_object_reference_locked(result);
1470                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1471                 }
1472
1473                 /*
1474                  * Try to optimize the result object's page color when
1475                  * shadowing in order to maintain page coloring
1476                  * consistency in the combined shadowed object.
1477                  */
1478                 if (source != NULL) {
1479                         vm_object_backing_insert(result, source);
1480                         result->domain = source->domain;
1481 #if VM_NRESERVLEVEL > 0
1482                         vm_object_set_flag(result,
1483                             (source->flags & OBJ_COLORED));
1484                         result->pg_color = (source->pg_color +
1485                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1486                             1)) - 1);
1487 #endif
1488                 }
1489                 VM_OBJECT_WUNLOCK(result);
1490         }
1491
1492         /*
1493          * Return the new things
1494          */
1495         *offset = 0;
1496         *object = result;
1497 }
1498
1499 /*
1500  *      vm_object_split:
1501  *
1502  * Split the pages in a map entry into a new object.  This affords
1503  * easier removal of unused pages, and keeps object inheritance from
1504  * being a negative impact on memory usage.
1505  */
1506 void
1507 vm_object_split(vm_map_entry_t entry)
1508 {
1509         vm_page_t m, m_next;
1510         vm_object_t orig_object, new_object, backing_object;
1511         vm_pindex_t idx, offidxstart;
1512         vm_size_t size;
1513
1514         orig_object = entry->object.vm_object;
1515         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1516             ("vm_object_split:  Splitting object with multiple mappings."));
1517         if ((orig_object->flags & OBJ_ANON) == 0)
1518                 return;
1519         if (orig_object->ref_count <= 1)
1520                 return;
1521         VM_OBJECT_WUNLOCK(orig_object);
1522
1523         offidxstart = OFF_TO_IDX(entry->offset);
1524         size = atop(entry->end - entry->start);
1525
1526         new_object = vm_object_allocate_anon(size, orig_object,
1527             orig_object->cred, ptoa(size));
1528
1529         /*
1530          * We must wait for the orig_object to complete any in-progress
1531          * collapse so that the swap blocks are stable below.  The
1532          * additional reference on backing_object by new object will
1533          * prevent further collapse operations until split completes.
1534          */
1535         VM_OBJECT_WLOCK(orig_object);
1536         vm_object_collapse_wait(orig_object);
1537
1538         /*
1539          * At this point, the new object is still private, so the order in
1540          * which the original and new objects are locked does not matter.
1541          */
1542         VM_OBJECT_WLOCK(new_object);
1543         new_object->domain = orig_object->domain;
1544         backing_object = orig_object->backing_object;
1545         if (backing_object != NULL) {
1546                 vm_object_backing_insert_ref(new_object, backing_object);
1547                 new_object->backing_object_offset = 
1548                     orig_object->backing_object_offset + entry->offset;
1549         }
1550         if (orig_object->cred != NULL) {
1551                 crhold(orig_object->cred);
1552                 KASSERT(orig_object->charge >= ptoa(size),
1553                     ("orig_object->charge < 0"));
1554                 orig_object->charge -= ptoa(size);
1555         }
1556
1557         /*
1558          * Mark the split operation so that swap_pager_getpages() knows
1559          * that the object is in transition.
1560          */
1561         vm_object_set_flag(orig_object, OBJ_SPLIT);
1562 #ifdef INVARIANTS
1563         idx = 0;
1564 #endif
1565 retry:
1566         m = vm_page_find_least(orig_object, offidxstart);
1567         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1568             ("%s: object %p was repopulated", __func__, orig_object));
1569         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1570             m = m_next) {
1571                 m_next = TAILQ_NEXT(m, listq);
1572
1573                 /*
1574                  * We must wait for pending I/O to complete before we can
1575                  * rename the page.
1576                  *
1577                  * We do not have to VM_PROT_NONE the page as mappings should
1578                  * not be changed by this operation.
1579                  */
1580                 if (vm_page_tryxbusy(m) == 0) {
1581                         VM_OBJECT_WUNLOCK(new_object);
1582                         if (vm_page_busy_sleep(m, "spltwt", 0))
1583                                 VM_OBJECT_WLOCK(orig_object);
1584                         VM_OBJECT_WLOCK(new_object);
1585                         goto retry;
1586                 }
1587
1588                 /*
1589                  * The page was left invalid.  Likely placed there by
1590                  * an incomplete fault.  Just remove and ignore.
1591                  */
1592                 if (vm_page_none_valid(m)) {
1593                         if (vm_page_remove(m))
1594                                 vm_page_free(m);
1595                         continue;
1596                 }
1597
1598                 /* vm_page_rename() will dirty the page. */
1599                 if (vm_page_rename(m, new_object, idx)) {
1600                         vm_page_xunbusy(m);
1601                         VM_OBJECT_WUNLOCK(new_object);
1602                         VM_OBJECT_WUNLOCK(orig_object);
1603                         vm_radix_wait();
1604                         VM_OBJECT_WLOCK(orig_object);
1605                         VM_OBJECT_WLOCK(new_object);
1606                         goto retry;
1607                 }
1608
1609 #if VM_NRESERVLEVEL > 0
1610                 /*
1611                  * If some of the reservation's allocated pages remain with
1612                  * the original object, then transferring the reservation to
1613                  * the new object is neither particularly beneficial nor
1614                  * particularly harmful as compared to leaving the reservation
1615                  * with the original object.  If, however, all of the
1616                  * reservation's allocated pages are transferred to the new
1617                  * object, then transferring the reservation is typically
1618                  * beneficial.  Determining which of these two cases applies
1619                  * would be more costly than unconditionally renaming the
1620                  * reservation.
1621                  */
1622                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1623 #endif
1624         }
1625
1626         /*
1627          * swap_pager_copy() can sleep, in which case the orig_object's
1628          * and new_object's locks are released and reacquired.
1629          */
1630         swap_pager_copy(orig_object, new_object, offidxstart, 0);
1631
1632         TAILQ_FOREACH(m, &new_object->memq, listq)
1633                 vm_page_xunbusy(m);
1634
1635         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1636         VM_OBJECT_WUNLOCK(orig_object);
1637         VM_OBJECT_WUNLOCK(new_object);
1638         entry->object.vm_object = new_object;
1639         entry->offset = 0LL;
1640         vm_object_deallocate(orig_object);
1641         VM_OBJECT_WLOCK(new_object);
1642 }
1643
1644 static vm_page_t
1645 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1646 {
1647         vm_object_t backing_object;
1648
1649         VM_OBJECT_ASSERT_WLOCKED(object);
1650         backing_object = object->backing_object;
1651         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1652
1653         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1654             ("invalid ownership %p %p %p", p, object, backing_object));
1655         /* The page is only NULL when rename fails. */
1656         if (p == NULL) {
1657                 VM_OBJECT_WUNLOCK(object);
1658                 VM_OBJECT_WUNLOCK(backing_object);
1659                 vm_radix_wait();
1660                 VM_OBJECT_WLOCK(object);
1661         } else if (p->object == object) {
1662                 VM_OBJECT_WUNLOCK(backing_object);
1663                 if (vm_page_busy_sleep(p, "vmocol", 0))
1664                         VM_OBJECT_WLOCK(object);
1665         } else {
1666                 VM_OBJECT_WUNLOCK(object);
1667                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1668                         VM_OBJECT_WUNLOCK(backing_object);
1669                 VM_OBJECT_WLOCK(object);
1670         }
1671         VM_OBJECT_WLOCK(backing_object);
1672         return (TAILQ_FIRST(&backing_object->memq));
1673 }
1674
1675 static bool
1676 vm_object_scan_all_shadowed(vm_object_t object)
1677 {
1678         vm_object_t backing_object;
1679         vm_page_t p, pp;
1680         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1681
1682         VM_OBJECT_ASSERT_WLOCKED(object);
1683         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1684
1685         backing_object = object->backing_object;
1686
1687         if ((backing_object->flags & OBJ_ANON) == 0)
1688                 return (false);
1689
1690         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1691         p = vm_page_find_least(backing_object, pi);
1692         ps = swap_pager_find_least(backing_object, pi);
1693
1694         /*
1695          * Only check pages inside the parent object's range and
1696          * inside the parent object's mapping of the backing object.
1697          */
1698         for (;; pi++) {
1699                 if (p != NULL && p->pindex < pi)
1700                         p = TAILQ_NEXT(p, listq);
1701                 if (ps < pi)
1702                         ps = swap_pager_find_least(backing_object, pi);
1703                 if (p == NULL && ps >= backing_object->size)
1704                         break;
1705                 else if (p == NULL)
1706                         pi = ps;
1707                 else
1708                         pi = MIN(p->pindex, ps);
1709
1710                 new_pindex = pi - backing_offset_index;
1711                 if (new_pindex >= object->size)
1712                         break;
1713
1714                 if (p != NULL) {
1715                         /*
1716                          * If the backing object page is busy a
1717                          * grandparent or older page may still be
1718                          * undergoing CoW.  It is not safe to collapse
1719                          * the backing object until it is quiesced.
1720                          */
1721                         if (vm_page_tryxbusy(p) == 0)
1722                                 return (false);
1723
1724                         /*
1725                          * We raced with the fault handler that left
1726                          * newly allocated invalid page on the object
1727                          * queue and retried.
1728                          */
1729                         if (!vm_page_all_valid(p))
1730                                 goto unbusy_ret;
1731                 }
1732
1733                 /*
1734                  * See if the parent has the page or if the parent's object
1735                  * pager has the page.  If the parent has the page but the page
1736                  * is not valid, the parent's object pager must have the page.
1737                  *
1738                  * If this fails, the parent does not completely shadow the
1739                  * object and we might as well give up now.
1740                  */
1741                 pp = vm_page_lookup(object, new_pindex);
1742
1743                 /*
1744                  * The valid check here is stable due to object lock
1745                  * being required to clear valid and initiate paging.
1746                  * Busy of p disallows fault handler to validate pp.
1747                  */
1748                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1749                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1750                         goto unbusy_ret;
1751                 if (p != NULL)
1752                         vm_page_xunbusy(p);
1753         }
1754         return (true);
1755
1756 unbusy_ret:
1757         if (p != NULL)
1758                 vm_page_xunbusy(p);
1759         return (false);
1760 }
1761
1762 static void
1763 vm_object_collapse_scan(vm_object_t object)
1764 {
1765         vm_object_t backing_object;
1766         vm_page_t next, p, pp;
1767         vm_pindex_t backing_offset_index, new_pindex;
1768
1769         VM_OBJECT_ASSERT_WLOCKED(object);
1770         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1771
1772         backing_object = object->backing_object;
1773         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1774
1775         /*
1776          * Our scan
1777          */
1778         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1779                 next = TAILQ_NEXT(p, listq);
1780                 new_pindex = p->pindex - backing_offset_index;
1781
1782                 /*
1783                  * Check for busy page
1784                  */
1785                 if (vm_page_tryxbusy(p) == 0) {
1786                         next = vm_object_collapse_scan_wait(object, p);
1787                         continue;
1788                 }
1789
1790                 KASSERT(object->backing_object == backing_object,
1791                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1792                     object->backing_object, backing_object));
1793                 KASSERT(p->object == backing_object,
1794                     ("vm_object_collapse_scan: object mismatch %p != %p",
1795                     p->object, backing_object));
1796
1797                 if (p->pindex < backing_offset_index ||
1798                     new_pindex >= object->size) {
1799                         vm_pager_freespace(backing_object, p->pindex, 1);
1800
1801                         KASSERT(!pmap_page_is_mapped(p),
1802                             ("freeing mapped page %p", p));
1803                         if (vm_page_remove(p))
1804                                 vm_page_free(p);
1805                         continue;
1806                 }
1807
1808                 if (!vm_page_all_valid(p)) {
1809                         KASSERT(!pmap_page_is_mapped(p),
1810                             ("freeing mapped page %p", p));
1811                         if (vm_page_remove(p))
1812                                 vm_page_free(p);
1813                         continue;
1814                 }
1815
1816                 pp = vm_page_lookup(object, new_pindex);
1817                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1818                         vm_page_xunbusy(p);
1819                         /*
1820                          * The page in the parent is busy and possibly not
1821                          * (yet) valid.  Until its state is finalized by the
1822                          * busy bit owner, we can't tell whether it shadows the
1823                          * original page.
1824                          */
1825                         next = vm_object_collapse_scan_wait(object, pp);
1826                         continue;
1827                 }
1828
1829                 if (pp != NULL && vm_page_none_valid(pp)) {
1830                         /*
1831                          * The page was invalid in the parent.  Likely placed
1832                          * there by an incomplete fault.  Just remove and
1833                          * ignore.  p can replace it.
1834                          */
1835                         if (vm_page_remove(pp))
1836                                 vm_page_free(pp);
1837                         pp = NULL;
1838                 }
1839
1840                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1841                         NULL)) {
1842                         /*
1843                          * The page already exists in the parent OR swap exists
1844                          * for this location in the parent.  Leave the parent's
1845                          * page alone.  Destroy the original page from the
1846                          * backing object.
1847                          */
1848                         vm_pager_freespace(backing_object, p->pindex, 1);
1849                         KASSERT(!pmap_page_is_mapped(p),
1850                             ("freeing mapped page %p", p));
1851                         if (vm_page_remove(p))
1852                                 vm_page_free(p);
1853                         if (pp != NULL)
1854                                 vm_page_xunbusy(pp);
1855                         continue;
1856                 }
1857
1858                 /*
1859                  * Page does not exist in parent, rename the page from the
1860                  * backing object to the main object.
1861                  *
1862                  * If the page was mapped to a process, it can remain mapped
1863                  * through the rename.  vm_page_rename() will dirty the page.
1864                  */
1865                 if (vm_page_rename(p, object, new_pindex)) {
1866                         vm_page_xunbusy(p);
1867                         next = vm_object_collapse_scan_wait(object, NULL);
1868                         continue;
1869                 }
1870
1871                 /* Use the old pindex to free the right page. */
1872                 vm_pager_freespace(backing_object, new_pindex +
1873                     backing_offset_index, 1);
1874
1875 #if VM_NRESERVLEVEL > 0
1876                 /*
1877                  * Rename the reservation.
1878                  */
1879                 vm_reserv_rename(p, object, backing_object,
1880                     backing_offset_index);
1881 #endif
1882                 vm_page_xunbusy(p);
1883         }
1884         return;
1885 }
1886
1887 /*
1888  *      vm_object_collapse:
1889  *
1890  *      Collapse an object with the object backing it.
1891  *      Pages in the backing object are moved into the
1892  *      parent, and the backing object is deallocated.
1893  */
1894 void
1895 vm_object_collapse(vm_object_t object)
1896 {
1897         vm_object_t backing_object, new_backing_object;
1898
1899         VM_OBJECT_ASSERT_WLOCKED(object);
1900
1901         while (TRUE) {
1902                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1903                     ("collapsing invalid object"));
1904
1905                 /*
1906                  * Wait for the backing_object to finish any pending
1907                  * collapse so that the caller sees the shortest possible
1908                  * shadow chain.
1909                  */
1910                 backing_object = vm_object_backing_collapse_wait(object);
1911                 if (backing_object == NULL)
1912                         return;
1913
1914                 KASSERT(object->ref_count > 0 &&
1915                     object->ref_count > atomic_load_int(&object->shadow_count),
1916                     ("collapse with invalid ref %d or shadow %d count.",
1917                     object->ref_count, atomic_load_int(&object->shadow_count)));
1918                 KASSERT((backing_object->flags &
1919                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1920                     ("vm_object_collapse: Backing object already collapsing."));
1921                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1922                     ("vm_object_collapse: object is already collapsing."));
1923
1924                 /*
1925                  * We know that we can either collapse the backing object if
1926                  * the parent is the only reference to it, or (perhaps) have
1927                  * the parent bypass the object if the parent happens to shadow
1928                  * all the resident pages in the entire backing object.
1929                  */
1930                 if (backing_object->ref_count == 1) {
1931                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1932                             == 1,
1933                             ("vm_object_collapse: shadow_count: %d",
1934                             atomic_load_int(&backing_object->shadow_count)));
1935                         vm_object_pip_add(object, 1);
1936                         vm_object_set_flag(object, OBJ_COLLAPSING);
1937                         vm_object_pip_add(backing_object, 1);
1938                         vm_object_set_flag(backing_object, OBJ_DEAD);
1939
1940                         /*
1941                          * If there is exactly one reference to the backing
1942                          * object, we can collapse it into the parent.
1943                          */
1944                         vm_object_collapse_scan(object);
1945
1946 #if VM_NRESERVLEVEL > 0
1947                         /*
1948                          * Break any reservations from backing_object.
1949                          */
1950                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1951                                 vm_reserv_break_all(backing_object);
1952 #endif
1953
1954                         /*
1955                          * Move the pager from backing_object to object.
1956                          *
1957                          * swap_pager_copy() can sleep, in which case the
1958                          * backing_object's and object's locks are released and
1959                          * reacquired.
1960                          */
1961                         swap_pager_copy(backing_object, object,
1962                             OFF_TO_IDX(object->backing_object_offset), TRUE);
1963
1964                         /*
1965                          * Object now shadows whatever backing_object did.
1966                          */
1967                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1968                         vm_object_backing_transfer(object, backing_object);
1969                         object->backing_object_offset +=
1970                             backing_object->backing_object_offset;
1971                         VM_OBJECT_WUNLOCK(object);
1972                         vm_object_pip_wakeup(object);
1973
1974                         /*
1975                          * Discard backing_object.
1976                          *
1977                          * Since the backing object has no pages, no pager left,
1978                          * and no object references within it, all that is
1979                          * necessary is to dispose of it.
1980                          */
1981                         KASSERT(backing_object->ref_count == 1, (
1982 "backing_object %p was somehow re-referenced during collapse!",
1983                             backing_object));
1984                         vm_object_pip_wakeup(backing_object);
1985                         (void)refcount_release(&backing_object->ref_count);
1986                         vm_object_terminate(backing_object);
1987                         counter_u64_add(object_collapses, 1);
1988                         VM_OBJECT_WLOCK(object);
1989                 } else {
1990                         /*
1991                          * If we do not entirely shadow the backing object,
1992                          * there is nothing we can do so we give up.
1993                          *
1994                          * The object lock and backing_object lock must not
1995                          * be dropped during this sequence.
1996                          */
1997                         if (!vm_object_scan_all_shadowed(object)) {
1998                                 VM_OBJECT_WUNLOCK(backing_object);
1999                                 break;
2000                         }
2001
2002                         /*
2003                          * Make the parent shadow the next object in the
2004                          * chain.  Deallocating backing_object will not remove
2005                          * it, since its reference count is at least 2.
2006                          */
2007                         vm_object_backing_remove_locked(object);
2008                         new_backing_object = backing_object->backing_object;
2009                         if (new_backing_object != NULL) {
2010                                 vm_object_backing_insert_ref(object,
2011                                     new_backing_object);
2012                                 object->backing_object_offset +=
2013                                     backing_object->backing_object_offset;
2014                         }
2015
2016                         /*
2017                          * Drop the reference count on backing_object. Since
2018                          * its ref_count was at least 2, it will not vanish.
2019                          */
2020                         (void)refcount_release(&backing_object->ref_count);
2021                         KASSERT(backing_object->ref_count >= 1, (
2022 "backing_object %p was somehow dereferenced during collapse!",
2023                             backing_object));
2024                         VM_OBJECT_WUNLOCK(backing_object);
2025                         counter_u64_add(object_bypasses, 1);
2026                 }
2027
2028                 /*
2029                  * Try again with this object's new backing object.
2030                  */
2031         }
2032 }
2033
2034 /*
2035  *      vm_object_page_remove:
2036  *
2037  *      For the given object, either frees or invalidates each of the
2038  *      specified pages.  In general, a page is freed.  However, if a page is
2039  *      wired for any reason other than the existence of a managed, wired
2040  *      mapping, then it may be invalidated but not removed from the object.
2041  *      Pages are specified by the given range ["start", "end") and the option
2042  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2043  *      extends from "start" to the end of the object.  If the option
2044  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2045  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2046  *      specified, then the pages within the specified range must have no
2047  *      mappings.  Otherwise, if this option is not specified, any mappings to
2048  *      the specified pages are removed before the pages are freed or
2049  *      invalidated.
2050  *
2051  *      In general, this operation should only be performed on objects that
2052  *      contain managed pages.  There are, however, two exceptions.  First, it
2053  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2054  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2055  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2056  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2057  *
2058  *      The object must be locked.
2059  */
2060 void
2061 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2062     int options)
2063 {
2064         vm_page_t p, next;
2065
2066         VM_OBJECT_ASSERT_WLOCKED(object);
2067         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2068             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2069             ("vm_object_page_remove: illegal options for object %p", object));
2070         if (object->resident_page_count == 0)
2071                 return;
2072         vm_object_pip_add(object, 1);
2073 again:
2074         p = vm_page_find_least(object, start);
2075
2076         /*
2077          * Here, the variable "p" is either (1) the page with the least pindex
2078          * greater than or equal to the parameter "start" or (2) NULL. 
2079          */
2080         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2081                 next = TAILQ_NEXT(p, listq);
2082
2083                 /*
2084                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2085                  * the busy lock, as some consumers rely on this to avoid
2086                  * deadlocks.
2087                  *
2088                  * A thread may concurrently transition the page from invalid to
2089                  * valid using only the busy lock, so the result of this check
2090                  * is immediately stale.  It is up to consumers to handle this,
2091                  * for instance by ensuring that all invalid->valid transitions
2092                  * happen with a mutex held, as may be possible for a
2093                  * filesystem.
2094                  */
2095                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2096                         continue;
2097
2098                 /*
2099                  * If the page is wired for any reason besides the existence
2100                  * of managed, wired mappings, then it cannot be freed.  For
2101                  * example, fictitious pages, which represent device memory,
2102                  * are inherently wired and cannot be freed.  They can,
2103                  * however, be invalidated if the option OBJPR_CLEANONLY is
2104                  * not specified.
2105                  */
2106                 if (vm_page_tryxbusy(p) == 0) {
2107                         if (vm_page_busy_sleep(p, "vmopar", 0))
2108                                 VM_OBJECT_WLOCK(object);
2109                         goto again;
2110                 }
2111                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2112                         vm_page_xunbusy(p);
2113                         continue;
2114                 }
2115                 if (vm_page_wired(p)) {
2116 wired:
2117                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2118                             object->ref_count != 0)
2119                                 pmap_remove_all(p);
2120                         if ((options & OBJPR_CLEANONLY) == 0) {
2121                                 vm_page_invalid(p);
2122                                 vm_page_undirty(p);
2123                         }
2124                         vm_page_xunbusy(p);
2125                         continue;
2126                 }
2127                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2128                     ("vm_object_page_remove: page %p is fictitious", p));
2129                 if ((options & OBJPR_CLEANONLY) != 0 &&
2130                     !vm_page_none_valid(p)) {
2131                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2132                             object->ref_count != 0 &&
2133                             !vm_page_try_remove_write(p))
2134                                 goto wired;
2135                         if (p->dirty != 0) {
2136                                 vm_page_xunbusy(p);
2137                                 continue;
2138                         }
2139                 }
2140                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2141                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2142                         goto wired;
2143                 vm_page_free(p);
2144         }
2145         vm_object_pip_wakeup(object);
2146
2147         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2148             start);
2149 }
2150
2151 /*
2152  *      vm_object_page_noreuse:
2153  *
2154  *      For the given object, attempt to move the specified pages to
2155  *      the head of the inactive queue.  This bypasses regular LRU
2156  *      operation and allows the pages to be reused quickly under memory
2157  *      pressure.  If a page is wired for any reason, then it will not
2158  *      be queued.  Pages are specified by the range ["start", "end").
2159  *      As a special case, if "end" is zero, then the range extends from
2160  *      "start" to the end of the object.
2161  *
2162  *      This operation should only be performed on objects that
2163  *      contain non-fictitious, managed pages.
2164  *
2165  *      The object must be locked.
2166  */
2167 void
2168 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2169 {
2170         vm_page_t p, next;
2171
2172         VM_OBJECT_ASSERT_LOCKED(object);
2173         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2174             ("vm_object_page_noreuse: illegal object %p", object));
2175         if (object->resident_page_count == 0)
2176                 return;
2177         p = vm_page_find_least(object, start);
2178
2179         /*
2180          * Here, the variable "p" is either (1) the page with the least pindex
2181          * greater than or equal to the parameter "start" or (2) NULL. 
2182          */
2183         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2184                 next = TAILQ_NEXT(p, listq);
2185                 vm_page_deactivate_noreuse(p);
2186         }
2187 }
2188
2189 /*
2190  *      Populate the specified range of the object with valid pages.  Returns
2191  *      TRUE if the range is successfully populated and FALSE otherwise.
2192  *
2193  *      Note: This function should be optimized to pass a larger array of
2194  *      pages to vm_pager_get_pages() before it is applied to a non-
2195  *      OBJT_DEVICE object.
2196  *
2197  *      The object must be locked.
2198  */
2199 boolean_t
2200 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2201 {
2202         vm_page_t m;
2203         vm_pindex_t pindex;
2204         int rv;
2205
2206         VM_OBJECT_ASSERT_WLOCKED(object);
2207         for (pindex = start; pindex < end; pindex++) {
2208                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2209                 if (rv != VM_PAGER_OK)
2210                         break;
2211
2212                 /*
2213                  * Keep "m" busy because a subsequent iteration may unlock
2214                  * the object.
2215                  */
2216         }
2217         if (pindex > start) {
2218                 m = vm_page_lookup(object, start);
2219                 while (m != NULL && m->pindex < pindex) {
2220                         vm_page_xunbusy(m);
2221                         m = TAILQ_NEXT(m, listq);
2222                 }
2223         }
2224         return (pindex == end);
2225 }
2226
2227 /*
2228  *      Routine:        vm_object_coalesce
2229  *      Function:       Coalesces two objects backing up adjoining
2230  *                      regions of memory into a single object.
2231  *
2232  *      returns TRUE if objects were combined.
2233  *
2234  *      NOTE:   Only works at the moment if the second object is NULL -
2235  *              if it's not, which object do we lock first?
2236  *
2237  *      Parameters:
2238  *              prev_object     First object to coalesce
2239  *              prev_offset     Offset into prev_object
2240  *              prev_size       Size of reference to prev_object
2241  *              next_size       Size of reference to the second object
2242  *              reserved        Indicator that extension region has
2243  *                              swap accounted for
2244  *
2245  *      Conditions:
2246  *      The object must *not* be locked.
2247  */
2248 boolean_t
2249 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2250     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2251 {
2252         vm_pindex_t next_pindex;
2253
2254         if (prev_object == NULL)
2255                 return (TRUE);
2256         if ((prev_object->flags & OBJ_ANON) == 0)
2257                 return (FALSE);
2258
2259         VM_OBJECT_WLOCK(prev_object);
2260         /*
2261          * Try to collapse the object first.
2262          */
2263         vm_object_collapse(prev_object);
2264
2265         /*
2266          * Can't coalesce if: . more than one reference . paged out . shadows
2267          * another object . has a copy elsewhere (any of which mean that the
2268          * pages not mapped to prev_entry may be in use anyway)
2269          */
2270         if (prev_object->backing_object != NULL) {
2271                 VM_OBJECT_WUNLOCK(prev_object);
2272                 return (FALSE);
2273         }
2274
2275         prev_size >>= PAGE_SHIFT;
2276         next_size >>= PAGE_SHIFT;
2277         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2278
2279         if (prev_object->ref_count > 1 &&
2280             prev_object->size != next_pindex &&
2281             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2282                 VM_OBJECT_WUNLOCK(prev_object);
2283                 return (FALSE);
2284         }
2285
2286         /*
2287          * Account for the charge.
2288          */
2289         if (prev_object->cred != NULL) {
2290                 /*
2291                  * If prev_object was charged, then this mapping,
2292                  * although not charged now, may become writable
2293                  * later. Non-NULL cred in the object would prevent
2294                  * swap reservation during enabling of the write
2295                  * access, so reserve swap now. Failed reservation
2296                  * cause allocation of the separate object for the map
2297                  * entry, and swap reservation for this entry is
2298                  * managed in appropriate time.
2299                  */
2300                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2301                     prev_object->cred)) {
2302                         VM_OBJECT_WUNLOCK(prev_object);
2303                         return (FALSE);
2304                 }
2305                 prev_object->charge += ptoa(next_size);
2306         }
2307
2308         /*
2309          * Remove any pages that may still be in the object from a previous
2310          * deallocation.
2311          */
2312         if (next_pindex < prev_object->size) {
2313                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2314                     next_size, 0);
2315 #if 0
2316                 if (prev_object->cred != NULL) {
2317                         KASSERT(prev_object->charge >=
2318                             ptoa(prev_object->size - next_pindex),
2319                             ("object %p overcharged 1 %jx %jx", prev_object,
2320                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2321                         prev_object->charge -= ptoa(prev_object->size -
2322                             next_pindex);
2323                 }
2324 #endif
2325         }
2326
2327         /*
2328          * Extend the object if necessary.
2329          */
2330         if (next_pindex + next_size > prev_object->size)
2331                 prev_object->size = next_pindex + next_size;
2332
2333         VM_OBJECT_WUNLOCK(prev_object);
2334         return (TRUE);
2335 }
2336
2337 void
2338 vm_object_set_writeable_dirty_(vm_object_t object)
2339 {
2340         atomic_add_int(&object->generation, 1);
2341 }
2342
2343 bool
2344 vm_object_mightbedirty_(vm_object_t object)
2345 {
2346         return (object->generation != object->cleangeneration);
2347 }
2348
2349 /*
2350  *      vm_object_unwire:
2351  *
2352  *      For each page offset within the specified range of the given object,
2353  *      find the highest-level page in the shadow chain and unwire it.  A page
2354  *      must exist at every page offset, and the highest-level page must be
2355  *      wired.
2356  */
2357 void
2358 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2359     uint8_t queue)
2360 {
2361         vm_object_t tobject, t1object;
2362         vm_page_t m, tm;
2363         vm_pindex_t end_pindex, pindex, tpindex;
2364         int depth, locked_depth;
2365
2366         KASSERT((offset & PAGE_MASK) == 0,
2367             ("vm_object_unwire: offset is not page aligned"));
2368         KASSERT((length & PAGE_MASK) == 0,
2369             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2370         /* The wired count of a fictitious page never changes. */
2371         if ((object->flags & OBJ_FICTITIOUS) != 0)
2372                 return;
2373         pindex = OFF_TO_IDX(offset);
2374         end_pindex = pindex + atop(length);
2375 again:
2376         locked_depth = 1;
2377         VM_OBJECT_RLOCK(object);
2378         m = vm_page_find_least(object, pindex);
2379         while (pindex < end_pindex) {
2380                 if (m == NULL || pindex < m->pindex) {
2381                         /*
2382                          * The first object in the shadow chain doesn't
2383                          * contain a page at the current index.  Therefore,
2384                          * the page must exist in a backing object.
2385                          */
2386                         tobject = object;
2387                         tpindex = pindex;
2388                         depth = 0;
2389                         do {
2390                                 tpindex +=
2391                                     OFF_TO_IDX(tobject->backing_object_offset);
2392                                 tobject = tobject->backing_object;
2393                                 KASSERT(tobject != NULL,
2394                                     ("vm_object_unwire: missing page"));
2395                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2396                                         goto next_page;
2397                                 depth++;
2398                                 if (depth == locked_depth) {
2399                                         locked_depth++;
2400                                         VM_OBJECT_RLOCK(tobject);
2401                                 }
2402                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2403                             NULL);
2404                 } else {
2405                         tm = m;
2406                         m = TAILQ_NEXT(m, listq);
2407                 }
2408                 if (vm_page_trysbusy(tm) == 0) {
2409                         for (tobject = object; locked_depth >= 1;
2410                             locked_depth--) {
2411                                 t1object = tobject->backing_object;
2412                                 if (tm->object != tobject)
2413                                         VM_OBJECT_RUNLOCK(tobject);
2414                                 tobject = t1object;
2415                         }
2416                         tobject = tm->object;
2417                         if (!vm_page_busy_sleep(tm, "unwbo",
2418                             VM_ALLOC_IGN_SBUSY))
2419                                 VM_OBJECT_RUNLOCK(tobject);
2420                         goto again;
2421                 }
2422                 vm_page_unwire(tm, queue);
2423                 vm_page_sunbusy(tm);
2424 next_page:
2425                 pindex++;
2426         }
2427         /* Release the accumulated object locks. */
2428         for (tobject = object; locked_depth >= 1; locked_depth--) {
2429                 t1object = tobject->backing_object;
2430                 VM_OBJECT_RUNLOCK(tobject);
2431                 tobject = t1object;
2432         }
2433 }
2434
2435 /*
2436  * Return the vnode for the given object, or NULL if none exists.
2437  * For tmpfs objects, the function may return NULL if there is
2438  * no vnode allocated at the time of the call.
2439  */
2440 struct vnode *
2441 vm_object_vnode(vm_object_t object)
2442 {
2443         struct vnode *vp;
2444
2445         VM_OBJECT_ASSERT_LOCKED(object);
2446         vm_pager_getvp(object, &vp, NULL);
2447         return (vp);
2448 }
2449
2450 /*
2451  * Busy the vm object.  This prevents new pages belonging to the object from
2452  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2453  * for checking page state before proceeding.
2454  */
2455 void
2456 vm_object_busy(vm_object_t obj)
2457 {
2458
2459         VM_OBJECT_ASSERT_LOCKED(obj);
2460
2461         blockcount_acquire(&obj->busy, 1);
2462         /* The fence is required to order loads of page busy. */
2463         atomic_thread_fence_acq_rel();
2464 }
2465
2466 void
2467 vm_object_unbusy(vm_object_t obj)
2468 {
2469
2470         blockcount_release(&obj->busy, 1);
2471 }
2472
2473 void
2474 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2475 {
2476
2477         VM_OBJECT_ASSERT_UNLOCKED(obj);
2478
2479         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2480 }
2481
2482 /*
2483  * This function aims to determine if the object is mapped,
2484  * specifically, if it is referenced by a vm_map_entry.  Because
2485  * objects occasionally acquire transient references that do not
2486  * represent a mapping, the method used here is inexact.  However, it
2487  * has very low overhead and is good enough for the advisory
2488  * vm.vmtotal sysctl.
2489  */
2490 bool
2491 vm_object_is_active(vm_object_t obj)
2492 {
2493
2494         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2495 }
2496
2497 static int
2498 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2499 {
2500         struct kinfo_vmobject *kvo;
2501         char *fullpath, *freepath;
2502         struct vnode *vp;
2503         struct vattr va;
2504         vm_object_t obj;
2505         vm_page_t m;
2506         u_long sp;
2507         int count, error;
2508
2509         if (req->oldptr == NULL) {
2510                 /*
2511                  * If an old buffer has not been provided, generate an
2512                  * estimate of the space needed for a subsequent call.
2513                  */
2514                 mtx_lock(&vm_object_list_mtx);
2515                 count = 0;
2516                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2517                         if (obj->type == OBJT_DEAD)
2518                                 continue;
2519                         count++;
2520                 }
2521                 mtx_unlock(&vm_object_list_mtx);
2522                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2523                     count * 11 / 10));
2524         }
2525
2526         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2527         error = 0;
2528
2529         /*
2530          * VM objects are type stable and are never removed from the
2531          * list once added.  This allows us to safely read obj->object_list
2532          * after reacquiring the VM object lock.
2533          */
2534         mtx_lock(&vm_object_list_mtx);
2535         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2536                 if (obj->type == OBJT_DEAD ||
2537                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2538                         continue;
2539                 VM_OBJECT_RLOCK(obj);
2540                 if (obj->type == OBJT_DEAD ||
2541                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2542                         VM_OBJECT_RUNLOCK(obj);
2543                         continue;
2544                 }
2545                 mtx_unlock(&vm_object_list_mtx);
2546                 kvo->kvo_size = ptoa(obj->size);
2547                 kvo->kvo_resident = obj->resident_page_count;
2548                 kvo->kvo_ref_count = obj->ref_count;
2549                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2550                 kvo->kvo_memattr = obj->memattr;
2551                 kvo->kvo_active = 0;
2552                 kvo->kvo_inactive = 0;
2553                 if (!swap_only) {
2554                         TAILQ_FOREACH(m, &obj->memq, listq) {
2555                                 /*
2556                                  * A page may belong to the object but be
2557                                  * dequeued and set to PQ_NONE while the
2558                                  * object lock is not held.  This makes the
2559                                  * reads of m->queue below racy, and we do not
2560                                  * count pages set to PQ_NONE.  However, this
2561                                  * sysctl is only meant to give an
2562                                  * approximation of the system anyway.
2563                                  */
2564                                 if (m->a.queue == PQ_ACTIVE)
2565                                         kvo->kvo_active++;
2566                                 else if (m->a.queue == PQ_INACTIVE)
2567                                         kvo->kvo_inactive++;
2568                         }
2569                 }
2570
2571                 kvo->kvo_vn_fileid = 0;
2572                 kvo->kvo_vn_fsid = 0;
2573                 kvo->kvo_vn_fsid_freebsd11 = 0;
2574                 freepath = NULL;
2575                 fullpath = "";
2576                 vp = NULL;
2577                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2578                 if (vp != NULL) {
2579                         vref(vp);
2580                 } else if ((obj->flags & OBJ_ANON) != 0) {
2581                         MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2582                         kvo->kvo_me = (uintptr_t)obj;
2583                         /* tmpfs objs are reported as vnodes */
2584                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2585                         sp = swap_pager_swapped_pages(obj);
2586                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2587                 }
2588                 VM_OBJECT_RUNLOCK(obj);
2589                 if (vp != NULL) {
2590                         vn_fullpath(vp, &fullpath, &freepath);
2591                         vn_lock(vp, LK_SHARED | LK_RETRY);
2592                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2593                                 kvo->kvo_vn_fileid = va.va_fileid;
2594                                 kvo->kvo_vn_fsid = va.va_fsid;
2595                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2596                                                                 /* truncate */
2597                         }
2598                         vput(vp);
2599                 }
2600
2601                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2602                 if (freepath != NULL)
2603                         free(freepath, M_TEMP);
2604
2605                 /* Pack record size down */
2606                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2607                     + strlen(kvo->kvo_path) + 1;
2608                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2609                     sizeof(uint64_t));
2610                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2611                 maybe_yield();
2612                 mtx_lock(&vm_object_list_mtx);
2613                 if (error)
2614                         break;
2615         }
2616         mtx_unlock(&vm_object_list_mtx);
2617         free(kvo, M_TEMP);
2618         return (error);
2619 }
2620
2621 static int
2622 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2623 {
2624         return (vm_object_list_handler(req, false));
2625 }
2626
2627 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2628     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2629     "List of VM objects");
2630
2631 static int
2632 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2633 {
2634         return (vm_object_list_handler(req, true));
2635 }
2636
2637 /*
2638  * This sysctl returns list of the anonymous or swap objects. Intent
2639  * is to provide stripped optimized list useful to analyze swap use.
2640  * Since technically non-swap (default) objects participate in the
2641  * shadow chains, and are converted to swap type as needed by swap
2642  * pager, we must report them.
2643  */
2644 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2645     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2646     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2647     "List of swap VM objects");
2648
2649 #include "opt_ddb.h"
2650 #ifdef DDB
2651 #include <sys/kernel.h>
2652
2653 #include <sys/cons.h>
2654
2655 #include <ddb/ddb.h>
2656
2657 static int
2658 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2659 {
2660         vm_map_t tmpm;
2661         vm_map_entry_t tmpe;
2662         vm_object_t obj;
2663
2664         if (map == 0)
2665                 return 0;
2666
2667         if (entry == 0) {
2668                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2669                         if (_vm_object_in_map(map, object, tmpe)) {
2670                                 return 1;
2671                         }
2672                 }
2673         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2674                 tmpm = entry->object.sub_map;
2675                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2676                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2677                                 return 1;
2678                         }
2679                 }
2680         } else if ((obj = entry->object.vm_object) != NULL) {
2681                 for (; obj; obj = obj->backing_object)
2682                         if (obj == object) {
2683                                 return 1;
2684                         }
2685         }
2686         return 0;
2687 }
2688
2689 static int
2690 vm_object_in_map(vm_object_t object)
2691 {
2692         struct proc *p;
2693
2694         /* sx_slock(&allproc_lock); */
2695         FOREACH_PROC_IN_SYSTEM(p) {
2696                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2697                         continue;
2698                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2699                         /* sx_sunlock(&allproc_lock); */
2700                         return 1;
2701                 }
2702         }
2703         /* sx_sunlock(&allproc_lock); */
2704         if (_vm_object_in_map(kernel_map, object, 0))
2705                 return 1;
2706         return 0;
2707 }
2708
2709 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2710 {
2711         vm_object_t object;
2712
2713         /*
2714          * make sure that internal objs are in a map somewhere
2715          * and none have zero ref counts.
2716          */
2717         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2718                 if ((object->flags & OBJ_ANON) != 0) {
2719                         if (object->ref_count == 0) {
2720                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2721                                         (long)object->size);
2722                         }
2723                         if (!vm_object_in_map(object)) {
2724                                 db_printf(
2725                         "vmochk: internal obj is not in a map: "
2726                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2727                                     object->ref_count, (u_long)object->size, 
2728                                     (u_long)object->size,
2729                                     (void *)object->backing_object);
2730                         }
2731                 }
2732                 if (db_pager_quit)
2733                         return;
2734         }
2735 }
2736
2737 /*
2738  *      vm_object_print:        [ debug ]
2739  */
2740 DB_SHOW_COMMAND(object, vm_object_print_static)
2741 {
2742         /* XXX convert args. */
2743         vm_object_t object = (vm_object_t)addr;
2744         boolean_t full = have_addr;
2745
2746         vm_page_t p;
2747
2748         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2749 #define count   was_count
2750
2751         int count;
2752
2753         if (object == NULL)
2754                 return;
2755
2756         db_iprintf(
2757             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2758             object, (int)object->type, (uintmax_t)object->size,
2759             object->resident_page_count, object->ref_count, object->flags,
2760             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2761         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2762             atomic_load_int(&object->shadow_count),
2763             object->backing_object ? object->backing_object->ref_count : 0,
2764             object->backing_object, (uintmax_t)object->backing_object_offset);
2765
2766         if (!full)
2767                 return;
2768
2769         db_indent += 2;
2770         count = 0;
2771         TAILQ_FOREACH(p, &object->memq, listq) {
2772                 if (count == 0)
2773                         db_iprintf("memory:=");
2774                 else if (count == 6) {
2775                         db_printf("\n");
2776                         db_iprintf(" ...");
2777                         count = 0;
2778                 } else
2779                         db_printf(",");
2780                 count++;
2781
2782                 db_printf("(off=0x%jx,page=0x%jx)",
2783                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2784
2785                 if (db_pager_quit)
2786                         break;
2787         }
2788         if (count != 0)
2789                 db_printf("\n");
2790         db_indent -= 2;
2791 }
2792
2793 /* XXX. */
2794 #undef count
2795
2796 /* XXX need this non-static entry for calling from vm_map_print. */
2797 void
2798 vm_object_print(
2799         /* db_expr_t */ long addr,
2800         boolean_t have_addr,
2801         /* db_expr_t */ long count,
2802         char *modif)
2803 {
2804         vm_object_print_static(addr, have_addr, count, modif);
2805 }
2806
2807 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2808 {
2809         vm_object_t object;
2810         vm_pindex_t fidx;
2811         vm_paddr_t pa;
2812         vm_page_t m, prev_m;
2813         int rcount;
2814
2815         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2816                 db_printf("new object: %p\n", (void *)object);
2817                 if (db_pager_quit)
2818                         return;
2819
2820                 rcount = 0;
2821                 fidx = 0;
2822                 pa = -1;
2823                 TAILQ_FOREACH(m, &object->memq, listq) {
2824                         if (m->pindex > 128)
2825                                 break;
2826                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2827                             prev_m->pindex + 1 != m->pindex) {
2828                                 if (rcount) {
2829                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2830                                                 (long)fidx, rcount, (long)pa);
2831                                         if (db_pager_quit)
2832                                                 return;
2833                                         rcount = 0;
2834                                 }
2835                         }                               
2836                         if (rcount &&
2837                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2838                                 ++rcount;
2839                                 continue;
2840                         }
2841                         if (rcount) {
2842                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2843                                         (long)fidx, rcount, (long)pa);
2844                                 if (db_pager_quit)
2845                                         return;
2846                         }
2847                         fidx = m->pindex;
2848                         pa = VM_PAGE_TO_PHYS(m);
2849                         rcount = 1;
2850                 }
2851                 if (rcount) {
2852                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2853                                 (long)fidx, rcount, (long)pa);
2854                         if (db_pager_quit)
2855                                 return;
2856                 }
2857         }
2858 }
2859 #endif /* DDB */