]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
add -n option to suppress clearing the build tree and add -DNO_CLEAN
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/vnode.h>
81 #include <sys/vmmeter.h>
82 #include <sys/sx.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_reserv.h>
96 #include <vm/uma.h>
97
98 #define EASY_SCAN_FACTOR       8
99
100 #define MSYNC_FLUSH_HARDSEQ     0x01
101 #define MSYNC_FLUSH_SOFTSEQ     0x02
102
103 /*
104  * msync / VM object flushing optimizations
105  */
106 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
107 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
108     "Enable sequential iteration optimization");
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static void     vm_object_qcollapse(vm_object_t object);
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
116 static void     vm_object_vndeallocate(vm_object_t object);
117
118 /*
119  *      Virtual memory objects maintain the actual data
120  *      associated with allocated virtual memory.  A given
121  *      page of memory exists within exactly one object.
122  *
123  *      An object is only deallocated when all "references"
124  *      are given up.  Only one "reference" to a given
125  *      region of an object should be writeable.
126  *
127  *      Associated with each object is a list of all resident
128  *      memory pages belonging to that object; this list is
129  *      maintained by the "vm_page" module, and locked by the object's
130  *      lock.
131  *
132  *      Each object also records a "pager" routine which is
133  *      used to retrieve (and store) pages to the proper backing
134  *      storage.  In addition, objects may be backed by other
135  *      objects from which they were virtual-copied.
136  *
137  *      The only items within the object structure which are
138  *      modified after time of creation are:
139  *              reference count         locked by object's lock
140  *              pager routine           locked by object's lock
141  *
142  */
143
144 struct object_q vm_object_list;
145 struct mtx vm_object_list_mtx;  /* lock for object list and count */
146
147 struct vm_object kernel_object_store;
148 struct vm_object kmem_object_store;
149
150 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
151
152 static long object_collapses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
154     &object_collapses, 0, "VM object collapses");
155
156 static long object_bypasses;
157 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses, 0, "VM object bypasses");
159
160 static uma_zone_t obj_zone;
161
162 static int vm_object_zinit(void *mem, int size, int flags);
163
164 #ifdef INVARIANTS
165 static void vm_object_zdtor(void *mem, int size, void *arg);
166
167 static void
168 vm_object_zdtor(void *mem, int size, void *arg)
169 {
170         vm_object_t object;
171
172         object = (vm_object_t)mem;
173         KASSERT(TAILQ_EMPTY(&object->memq),
174             ("object %p has resident pages",
175             object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->cache == NULL,
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         bzero(&object->mtx, sizeof(object->mtx));
203         VM_OBJECT_LOCK_INIT(object, "standard object");
204
205         /* These are true for any object that has been freed */
206         object->paging_in_progress = 0;
207         object->resident_page_count = 0;
208         object->shadow_count = 0;
209         return (0);
210 }
211
212 void
213 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
214 {
215
216         TAILQ_INIT(&object->memq);
217         LIST_INIT(&object->shadow_head);
218
219         object->root = NULL;
220         object->type = type;
221         object->size = size;
222         object->generation = 1;
223         object->ref_count = 1;
224         object->flags = 0;
225         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
226                 object->flags = OBJ_ONEMAPPING;
227         object->pg_color = 0;
228         object->handle = NULL;
229         object->backing_object = NULL;
230         object->backing_object_offset = (vm_ooffset_t) 0;
231 #if VM_NRESERVLEVEL > 0
232         LIST_INIT(&object->rvq);
233 #endif
234         object->cache = NULL;
235
236         mtx_lock(&vm_object_list_mtx);
237         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238         mtx_unlock(&vm_object_list_mtx);
239 }
240
241 /*
242  *      vm_object_init:
243  *
244  *      Initialize the VM objects module.
245  */
246 void
247 vm_object_init(void)
248 {
249         TAILQ_INIT(&vm_object_list);
250         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
251         
252         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
253         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
254             kernel_object);
255 #if VM_NRESERVLEVEL > 0
256         kernel_object->flags |= OBJ_COLORED;
257         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
258 #endif
259
260         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
261         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
262             kmem_object);
263 #if VM_NRESERVLEVEL > 0
264         kmem_object->flags |= OBJ_COLORED;
265         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
266 #endif
267
268         /*
269          * The lock portion of struct vm_object must be type stable due
270          * to vm_pageout_fallback_object_lock locking a vm object
271          * without holding any references to it.
272          */
273         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
274 #ifdef INVARIANTS
275             vm_object_zdtor,
276 #else
277             NULL,
278 #endif
279             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
280 }
281
282 void
283 vm_object_clear_flag(vm_object_t object, u_short bits)
284 {
285
286         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
287         object->flags &= ~bits;
288 }
289
290 void
291 vm_object_pip_add(vm_object_t object, short i)
292 {
293
294         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
295         object->paging_in_progress += i;
296 }
297
298 void
299 vm_object_pip_subtract(vm_object_t object, short i)
300 {
301
302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303         object->paging_in_progress -= i;
304 }
305
306 void
307 vm_object_pip_wakeup(vm_object_t object)
308 {
309
310         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
311         object->paging_in_progress--;
312         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
313                 vm_object_clear_flag(object, OBJ_PIPWNT);
314                 wakeup(object);
315         }
316 }
317
318 void
319 vm_object_pip_wakeupn(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         if (i)
324                 object->paging_in_progress -= i;
325         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
326                 vm_object_clear_flag(object, OBJ_PIPWNT);
327                 wakeup(object);
328         }
329 }
330
331 void
332 vm_object_pip_wait(vm_object_t object, char *waitid)
333 {
334
335         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
336         while (object->paging_in_progress) {
337                 object->flags |= OBJ_PIPWNT;
338                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
339         }
340 }
341
342 /*
343  *      vm_object_allocate:
344  *
345  *      Returns a new object with the given size.
346  */
347 vm_object_t
348 vm_object_allocate(objtype_t type, vm_pindex_t size)
349 {
350         vm_object_t object;
351
352         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
353         _vm_object_allocate(type, size, object);
354         return (object);
355 }
356
357
358 /*
359  *      vm_object_reference:
360  *
361  *      Gets another reference to the given object.  Note: OBJ_DEAD
362  *      objects can be referenced during final cleaning.
363  */
364 void
365 vm_object_reference(vm_object_t object)
366 {
367         if (object == NULL)
368                 return;
369         VM_OBJECT_LOCK(object);
370         vm_object_reference_locked(object);
371         VM_OBJECT_UNLOCK(object);
372 }
373
374 /*
375  *      vm_object_reference_locked:
376  *
377  *      Gets another reference to the given object.
378  *
379  *      The object must be locked.
380  */
381 void
382 vm_object_reference_locked(vm_object_t object)
383 {
384         struct vnode *vp;
385
386         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
387         object->ref_count++;
388         if (object->type == OBJT_VNODE) {
389                 vp = object->handle;
390                 vref(vp);
391         }
392 }
393
394 /*
395  * Handle deallocating an object of type OBJT_VNODE.
396  */
397 static void
398 vm_object_vndeallocate(vm_object_t object)
399 {
400         struct vnode *vp = (struct vnode *) object->handle;
401
402         VFS_ASSERT_GIANT(vp->v_mount);
403         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
404         KASSERT(object->type == OBJT_VNODE,
405             ("vm_object_vndeallocate: not a vnode object"));
406         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
407 #ifdef INVARIANTS
408         if (object->ref_count == 0) {
409                 vprint("vm_object_vndeallocate", vp);
410                 panic("vm_object_vndeallocate: bad object reference count");
411         }
412 #endif
413
414         object->ref_count--;
415         if (object->ref_count == 0) {
416                 mp_fixme("Unlocked vflag access.");
417                 vp->v_vflag &= ~VV_TEXT;
418         }
419         VM_OBJECT_UNLOCK(object);
420         /*
421          * vrele may need a vop lock
422          */
423         vrele(vp);
424 }
425
426 /*
427  *      vm_object_deallocate:
428  *
429  *      Release a reference to the specified object,
430  *      gained either through a vm_object_allocate
431  *      or a vm_object_reference call.  When all references
432  *      are gone, storage associated with this object
433  *      may be relinquished.
434  *
435  *      No object may be locked.
436  */
437 void
438 vm_object_deallocate(vm_object_t object)
439 {
440         vm_object_t temp;
441
442         while (object != NULL) {
443                 int vfslocked;
444
445                 vfslocked = 0;
446         restart:
447                 VM_OBJECT_LOCK(object);
448                 if (object->type == OBJT_VNODE) {
449                         struct vnode *vp = (struct vnode *) object->handle;
450
451                         /*
452                          * Conditionally acquire Giant for a vnode-backed
453                          * object.  We have to be careful since the type of
454                          * a vnode object can change while the object is
455                          * unlocked.
456                          */
457                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
458                                 vfslocked = 1;
459                                 if (!mtx_trylock(&Giant)) {
460                                         VM_OBJECT_UNLOCK(object);
461                                         mtx_lock(&Giant);
462                                         goto restart;
463                                 }
464                         }
465                         vm_object_vndeallocate(object);
466                         VFS_UNLOCK_GIANT(vfslocked);
467                         return;
468                 } else
469                         /*
470                          * This is to handle the case that the object
471                          * changed type while we dropped its lock to
472                          * obtain Giant.
473                          */
474                         VFS_UNLOCK_GIANT(vfslocked);
475
476                 KASSERT(object->ref_count != 0,
477                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
478
479                 /*
480                  * If the reference count goes to 0 we start calling
481                  * vm_object_terminate() on the object chain.
482                  * A ref count of 1 may be a special case depending on the
483                  * shadow count being 0 or 1.
484                  */
485                 object->ref_count--;
486                 if (object->ref_count > 1) {
487                         VM_OBJECT_UNLOCK(object);
488                         return;
489                 } else if (object->ref_count == 1) {
490                         if (object->shadow_count == 0 &&
491                             object->handle == NULL &&
492                             (object->type == OBJT_DEFAULT ||
493                              object->type == OBJT_SWAP)) {
494                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
495                         } else if ((object->shadow_count == 1) &&
496                             (object->handle == NULL) &&
497                             (object->type == OBJT_DEFAULT ||
498                              object->type == OBJT_SWAP)) {
499                                 vm_object_t robject;
500
501                                 robject = LIST_FIRST(&object->shadow_head);
502                                 KASSERT(robject != NULL,
503                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
504                                          object->ref_count,
505                                          object->shadow_count));
506                                 if (!VM_OBJECT_TRYLOCK(robject)) {
507                                         /*
508                                          * Avoid a potential deadlock.
509                                          */
510                                         object->ref_count++;
511                                         VM_OBJECT_UNLOCK(object);
512                                         /*
513                                          * More likely than not the thread
514                                          * holding robject's lock has lower
515                                          * priority than the current thread.
516                                          * Let the lower priority thread run.
517                                          */
518                                         pause("vmo_de", 1);
519                                         continue;
520                                 }
521                                 /*
522                                  * Collapse object into its shadow unless its
523                                  * shadow is dead.  In that case, object will
524                                  * be deallocated by the thread that is
525                                  * deallocating its shadow.
526                                  */
527                                 if ((robject->flags & OBJ_DEAD) == 0 &&
528                                     (robject->handle == NULL) &&
529                                     (robject->type == OBJT_DEFAULT ||
530                                      robject->type == OBJT_SWAP)) {
531
532                                         robject->ref_count++;
533 retry:
534                                         if (robject->paging_in_progress) {
535                                                 VM_OBJECT_UNLOCK(object);
536                                                 vm_object_pip_wait(robject,
537                                                     "objde1");
538                                                 temp = robject->backing_object;
539                                                 if (object == temp) {
540                                                         VM_OBJECT_LOCK(object);
541                                                         goto retry;
542                                                 }
543                                         } else if (object->paging_in_progress) {
544                                                 VM_OBJECT_UNLOCK(robject);
545                                                 object->flags |= OBJ_PIPWNT;
546                                                 msleep(object,
547                                                     VM_OBJECT_MTX(object),
548                                                     PDROP | PVM, "objde2", 0);
549                                                 VM_OBJECT_LOCK(robject);
550                                                 temp = robject->backing_object;
551                                                 if (object == temp) {
552                                                         VM_OBJECT_LOCK(object);
553                                                         goto retry;
554                                                 }
555                                         } else
556                                                 VM_OBJECT_UNLOCK(object);
557
558                                         if (robject->ref_count == 1) {
559                                                 robject->ref_count--;
560                                                 object = robject;
561                                                 goto doterm;
562                                         }
563                                         object = robject;
564                                         vm_object_collapse(object);
565                                         VM_OBJECT_UNLOCK(object);
566                                         continue;
567                                 }
568                                 VM_OBJECT_UNLOCK(robject);
569                         }
570                         VM_OBJECT_UNLOCK(object);
571                         return;
572                 }
573 doterm:
574                 temp = object->backing_object;
575                 if (temp != NULL) {
576                         VM_OBJECT_LOCK(temp);
577                         LIST_REMOVE(object, shadow_list);
578                         temp->shadow_count--;
579                         temp->generation++;
580                         VM_OBJECT_UNLOCK(temp);
581                         object->backing_object = NULL;
582                 }
583                 /*
584                  * Don't double-terminate, we could be in a termination
585                  * recursion due to the terminate having to sync data
586                  * to disk.
587                  */
588                 if ((object->flags & OBJ_DEAD) == 0)
589                         vm_object_terminate(object);
590                 else
591                         VM_OBJECT_UNLOCK(object);
592                 object = temp;
593         }
594 }
595
596 /*
597  *      vm_object_destroy removes the object from the global object list
598  *      and frees the space for the object.
599  */
600 void
601 vm_object_destroy(vm_object_t object)
602 {
603
604         /*
605          * Remove the object from the global object list.
606          */
607         mtx_lock(&vm_object_list_mtx);
608         TAILQ_REMOVE(&vm_object_list, object, object_list);
609         mtx_unlock(&vm_object_list_mtx);
610
611         /*
612          * Free the space for the object.
613          */
614         uma_zfree(obj_zone, object);
615 }
616
617 /*
618  *      vm_object_terminate actually destroys the specified object, freeing
619  *      up all previously used resources.
620  *
621  *      The object must be locked.
622  *      This routine may block.
623  */
624 void
625 vm_object_terminate(vm_object_t object)
626 {
627         vm_page_t p;
628
629         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
630
631         /*
632          * Make sure no one uses us.
633          */
634         vm_object_set_flag(object, OBJ_DEAD);
635
636         /*
637          * wait for the pageout daemon to be done with the object
638          */
639         vm_object_pip_wait(object, "objtrm");
640
641         KASSERT(!object->paging_in_progress,
642                 ("vm_object_terminate: pageout in progress"));
643
644         /*
645          * Clean and free the pages, as appropriate. All references to the
646          * object are gone, so we don't need to lock it.
647          */
648         if (object->type == OBJT_VNODE) {
649                 struct vnode *vp = (struct vnode *)object->handle;
650
651                 /*
652                  * Clean pages and flush buffers.
653                  */
654                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
655                 VM_OBJECT_UNLOCK(object);
656
657                 vinvalbuf(vp, V_SAVE, 0, 0);
658
659                 VM_OBJECT_LOCK(object);
660         }
661
662         KASSERT(object->ref_count == 0, 
663                 ("vm_object_terminate: object with references, ref_count=%d",
664                 object->ref_count));
665
666         /*
667          * Now free any remaining pages. For internal objects, this also
668          * removes them from paging queues. Don't free wired pages, just
669          * remove them from the object. 
670          */
671         vm_page_lock_queues();
672         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
673                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
674                         ("vm_object_terminate: freeing busy page %p "
675                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
676                 if (p->wire_count == 0) {
677                         vm_page_free(p);
678                         cnt.v_pfree++;
679                 } else {
680                         vm_page_remove(p);
681                 }
682         }
683         vm_page_unlock_queues();
684
685 #if VM_NRESERVLEVEL > 0
686         if (__predict_false(!LIST_EMPTY(&object->rvq)))
687                 vm_reserv_break_all(object);
688 #endif
689         if (__predict_false(object->cache != NULL))
690                 vm_page_cache_free(object, 0, 0);
691
692         /*
693          * Let the pager know object is dead.
694          */
695         vm_pager_deallocate(object);
696         VM_OBJECT_UNLOCK(object);
697
698         vm_object_destroy(object);
699 }
700
701 /*
702  *      vm_object_page_clean
703  *
704  *      Clean all dirty pages in the specified range of object.  Leaves page 
705  *      on whatever queue it is currently on.   If NOSYNC is set then do not
706  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
707  *      leaving the object dirty.
708  *
709  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
710  *      synchronous clustering mode implementation.
711  *
712  *      Odd semantics: if start == end, we clean everything.
713  *
714  *      The object must be locked.
715  */
716 void
717 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
718 {
719         vm_page_t p, np;
720         vm_pindex_t tstart, tend;
721         vm_pindex_t pi;
722         int clearobjflags;
723         int pagerflags;
724         int curgeneration;
725
726         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
727         if (object->type != OBJT_VNODE ||
728                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
729                 return;
730
731         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
732         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
733
734         vm_object_set_flag(object, OBJ_CLEANING);
735
736         tstart = start;
737         if (end == 0) {
738                 tend = object->size;
739         } else {
740                 tend = end;
741         }
742
743         vm_page_lock_queues();
744         /*
745          * If the caller is smart and only msync()s a range he knows is
746          * dirty, we may be able to avoid an object scan.  This results in
747          * a phenominal improvement in performance.  We cannot do this
748          * as a matter of course because the object may be huge - e.g.
749          * the size might be in the gigabytes or terrabytes.
750          */
751         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
752                 vm_pindex_t tscan;
753                 int scanlimit;
754                 int scanreset;
755
756                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
757                 if (scanreset < 16)
758                         scanreset = 16;
759                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
760
761                 scanlimit = scanreset;
762                 tscan = tstart;
763                 while (tscan < tend) {
764                         curgeneration = object->generation;
765                         p = vm_page_lookup(object, tscan);
766                         if (p == NULL || p->valid == 0) {
767                                 if (--scanlimit == 0)
768                                         break;
769                                 ++tscan;
770                                 continue;
771                         }
772                         vm_page_test_dirty(p);
773                         if ((p->dirty & p->valid) == 0) {
774                                 if (--scanlimit == 0)
775                                         break;
776                                 ++tscan;
777                                 continue;
778                         }
779                         /*
780                          * If we have been asked to skip nosync pages and 
781                          * this is a nosync page, we can't continue.
782                          */
783                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
784                                 if (--scanlimit == 0)
785                                         break;
786                                 ++tscan;
787                                 continue;
788                         }
789                         scanlimit = scanreset;
790
791                         /*
792                          * This returns 0 if it was unable to busy the first
793                          * page (i.e. had to sleep).
794                          */
795                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
796                 }
797
798                 /*
799                  * If everything was dirty and we flushed it successfully,
800                  * and the requested range is not the entire object, we
801                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
802                  * return immediately.
803                  */
804                 if (tscan >= tend && (tstart || tend < object->size)) {
805                         vm_page_unlock_queues();
806                         vm_object_clear_flag(object, OBJ_CLEANING);
807                         return;
808                 }
809                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
810         }
811
812         /*
813          * Generally set CLEANCHK interlock and make the page read-only so
814          * we can then clear the object flags.
815          *
816          * However, if this is a nosync mmap then the object is likely to 
817          * stay dirty so do not mess with the page and do not clear the
818          * object flags.
819          */
820         clearobjflags = 1;
821         TAILQ_FOREACH(p, &object->memq, listq) {
822                 p->oflags |= VPO_CLEANCHK;
823                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
824                         clearobjflags = 0;
825                 else
826                         pmap_remove_write(p);
827         }
828
829         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
830                 struct vnode *vp;
831
832                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
833                 if (object->type == OBJT_VNODE &&
834                     (vp = (struct vnode *)object->handle) != NULL) {
835                         VI_LOCK(vp);
836                         if (vp->v_iflag & VI_OBJDIRTY)
837                                 vp->v_iflag &= ~VI_OBJDIRTY;
838                         VI_UNLOCK(vp);
839                 }
840         }
841
842 rescan:
843         curgeneration = object->generation;
844
845         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
846                 int n;
847
848                 np = TAILQ_NEXT(p, listq);
849
850 again:
851                 pi = p->pindex;
852                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
853                         (pi < tstart) || (pi >= tend) ||
854                     p->valid == 0) {
855                         p->oflags &= ~VPO_CLEANCHK;
856                         continue;
857                 }
858
859                 vm_page_test_dirty(p);
860                 if ((p->dirty & p->valid) == 0) {
861                         p->oflags &= ~VPO_CLEANCHK;
862                         continue;
863                 }
864
865                 /*
866                  * If we have been asked to skip nosync pages and this is a
867                  * nosync page, skip it.  Note that the object flags were
868                  * not cleared in this case so we do not have to set them.
869                  */
870                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
871                         p->oflags &= ~VPO_CLEANCHK;
872                         continue;
873                 }
874
875                 n = vm_object_page_collect_flush(object, p,
876                         curgeneration, pagerflags);
877                 if (n == 0)
878                         goto rescan;
879
880                 if (object->generation != curgeneration)
881                         goto rescan;
882
883                 /*
884                  * Try to optimize the next page.  If we can't we pick up
885                  * our (random) scan where we left off.
886                  */
887                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
888                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
889                                 goto again;
890                 }
891         }
892         vm_page_unlock_queues();
893 #if 0
894         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
895 #endif
896
897         vm_object_clear_flag(object, OBJ_CLEANING);
898         return;
899 }
900
901 static int
902 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
903 {
904         int runlen;
905         int maxf;
906         int chkb;
907         int maxb;
908         int i;
909         vm_pindex_t pi;
910         vm_page_t maf[vm_pageout_page_count];
911         vm_page_t mab[vm_pageout_page_count];
912         vm_page_t ma[vm_pageout_page_count];
913
914         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
915         pi = p->pindex;
916         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
917                 vm_page_lock_queues();
918                 if (object->generation != curgeneration) {
919                         return(0);
920                 }
921         }
922         maxf = 0;
923         for(i = 1; i < vm_pageout_page_count; i++) {
924                 vm_page_t tp;
925
926                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
927                         if ((tp->oflags & VPO_BUSY) ||
928                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
929                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
930                                 (tp->busy != 0))
931                                 break;
932                         vm_page_test_dirty(tp);
933                         if ((tp->dirty & tp->valid) == 0) {
934                                 tp->oflags &= ~VPO_CLEANCHK;
935                                 break;
936                         }
937                         maf[ i - 1 ] = tp;
938                         maxf++;
939                         continue;
940                 }
941                 break;
942         }
943
944         maxb = 0;
945         chkb = vm_pageout_page_count -  maxf;
946         if (chkb) {
947                 for(i = 1; i < chkb;i++) {
948                         vm_page_t tp;
949
950                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
951                                 if ((tp->oflags & VPO_BUSY) ||
952                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
953                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
954                                         (tp->busy != 0))
955                                         break;
956                                 vm_page_test_dirty(tp);
957                                 if ((tp->dirty & tp->valid) == 0) {
958                                         tp->oflags &= ~VPO_CLEANCHK;
959                                         break;
960                                 }
961                                 mab[ i - 1 ] = tp;
962                                 maxb++;
963                                 continue;
964                         }
965                         break;
966                 }
967         }
968
969         for(i = 0; i < maxb; i++) {
970                 int index = (maxb - i) - 1;
971                 ma[index] = mab[i];
972                 ma[index]->oflags &= ~VPO_CLEANCHK;
973         }
974         p->oflags &= ~VPO_CLEANCHK;
975         ma[maxb] = p;
976         for(i = 0; i < maxf; i++) {
977                 int index = (maxb + i) + 1;
978                 ma[index] = maf[i];
979                 ma[index]->oflags &= ~VPO_CLEANCHK;
980         }
981         runlen = maxb + maxf + 1;
982
983         vm_pageout_flush(ma, runlen, pagerflags);
984         for (i = 0; i < runlen; i++) {
985                 if (ma[i]->valid & ma[i]->dirty) {
986                         pmap_remove_write(ma[i]);
987                         ma[i]->oflags |= VPO_CLEANCHK;
988
989                         /*
990                          * maxf will end up being the actual number of pages
991                          * we wrote out contiguously, non-inclusive of the
992                          * first page.  We do not count look-behind pages.
993                          */
994                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
995                                 maxf = i - maxb - 1;
996                 }
997         }
998         return(maxf + 1);
999 }
1000
1001 /*
1002  * Note that there is absolutely no sense in writing out
1003  * anonymous objects, so we track down the vnode object
1004  * to write out.
1005  * We invalidate (remove) all pages from the address space
1006  * for semantic correctness.
1007  *
1008  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1009  * may start out with a NULL object.
1010  */
1011 void
1012 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1013     boolean_t syncio, boolean_t invalidate)
1014 {
1015         vm_object_t backing_object;
1016         struct vnode *vp;
1017         struct mount *mp;
1018         int flags;
1019
1020         if (object == NULL)
1021                 return;
1022         VM_OBJECT_LOCK(object);
1023         while ((backing_object = object->backing_object) != NULL) {
1024                 VM_OBJECT_LOCK(backing_object);
1025                 offset += object->backing_object_offset;
1026                 VM_OBJECT_UNLOCK(object);
1027                 object = backing_object;
1028                 if (object->size < OFF_TO_IDX(offset + size))
1029                         size = IDX_TO_OFF(object->size) - offset;
1030         }
1031         /*
1032          * Flush pages if writing is allowed, invalidate them
1033          * if invalidation requested.  Pages undergoing I/O
1034          * will be ignored by vm_object_page_remove().
1035          *
1036          * We cannot lock the vnode and then wait for paging
1037          * to complete without deadlocking against vm_fault.
1038          * Instead we simply call vm_object_page_remove() and
1039          * allow it to block internally on a page-by-page
1040          * basis when it encounters pages undergoing async
1041          * I/O.
1042          */
1043         if (object->type == OBJT_VNODE &&
1044             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1045                 int vfslocked;
1046                 vp = object->handle;
1047                 VM_OBJECT_UNLOCK(object);
1048                 (void) vn_start_write(vp, &mp, V_WAIT);
1049                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1050                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1051                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1052                 flags |= invalidate ? OBJPC_INVAL : 0;
1053                 VM_OBJECT_LOCK(object);
1054                 vm_object_page_clean(object,
1055                     OFF_TO_IDX(offset),
1056                     OFF_TO_IDX(offset + size + PAGE_MASK),
1057                     flags);
1058                 VM_OBJECT_UNLOCK(object);
1059                 VOP_UNLOCK(vp, 0);
1060                 VFS_UNLOCK_GIANT(vfslocked);
1061                 vn_finished_write(mp);
1062                 VM_OBJECT_LOCK(object);
1063         }
1064         if ((object->type == OBJT_VNODE ||
1065              object->type == OBJT_DEVICE) && invalidate) {
1066                 boolean_t purge;
1067                 purge = old_msync || (object->type == OBJT_DEVICE);
1068                 vm_object_page_remove(object,
1069                     OFF_TO_IDX(offset),
1070                     OFF_TO_IDX(offset + size + PAGE_MASK),
1071                     purge ? FALSE : TRUE);
1072         }
1073         VM_OBJECT_UNLOCK(object);
1074 }
1075
1076 /*
1077  *      vm_object_madvise:
1078  *
1079  *      Implements the madvise function at the object/page level.
1080  *
1081  *      MADV_WILLNEED   (any object)
1082  *
1083  *          Activate the specified pages if they are resident.
1084  *
1085  *      MADV_DONTNEED   (any object)
1086  *
1087  *          Deactivate the specified pages if they are resident.
1088  *
1089  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1090  *                       OBJ_ONEMAPPING only)
1091  *
1092  *          Deactivate and clean the specified pages if they are
1093  *          resident.  This permits the process to reuse the pages
1094  *          without faulting or the kernel to reclaim the pages
1095  *          without I/O.
1096  */
1097 void
1098 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1099 {
1100         vm_pindex_t end, tpindex;
1101         vm_object_t backing_object, tobject;
1102         vm_page_t m;
1103
1104         if (object == NULL)
1105                 return;
1106         VM_OBJECT_LOCK(object);
1107         end = pindex + count;
1108         /*
1109          * Locate and adjust resident pages
1110          */
1111         for (; pindex < end; pindex += 1) {
1112 relookup:
1113                 tobject = object;
1114                 tpindex = pindex;
1115 shadowlookup:
1116                 /*
1117                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118                  * and those pages must be OBJ_ONEMAPPING.
1119                  */
1120                 if (advise == MADV_FREE) {
1121                         if ((tobject->type != OBJT_DEFAULT &&
1122                              tobject->type != OBJT_SWAP) ||
1123                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124                                 goto unlock_tobject;
1125                         }
1126                 }
1127                 m = vm_page_lookup(tobject, tpindex);
1128                 if (m == NULL && advise == MADV_WILLNEED) {
1129                         /*
1130                          * If the page is cached, reactivate it.
1131                          */
1132                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1133                             VM_ALLOC_NOBUSY);
1134                 }
1135                 if (m == NULL) {
1136                         /*
1137                          * There may be swap even if there is no backing page
1138                          */
1139                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1140                                 swap_pager_freespace(tobject, tpindex, 1);
1141                         /*
1142                          * next object
1143                          */
1144                         backing_object = tobject->backing_object;
1145                         if (backing_object == NULL)
1146                                 goto unlock_tobject;
1147                         VM_OBJECT_LOCK(backing_object);
1148                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1149                         if (tobject != object)
1150                                 VM_OBJECT_UNLOCK(tobject);
1151                         tobject = backing_object;
1152                         goto shadowlookup;
1153                 }
1154                 /*
1155                  * If the page is busy or not in a normal active state,
1156                  * we skip it.  If the page is not managed there are no
1157                  * page queues to mess with.  Things can break if we mess
1158                  * with pages in any of the below states.
1159                  */
1160                 vm_page_lock_queues();
1161                 if (m->hold_count ||
1162                     m->wire_count ||
1163                     (m->flags & PG_UNMANAGED) ||
1164                     m->valid != VM_PAGE_BITS_ALL) {
1165                         vm_page_unlock_queues();
1166                         goto unlock_tobject;
1167                 }
1168                 if ((m->oflags & VPO_BUSY) || m->busy) {
1169                         vm_page_flag_set(m, PG_REFERENCED);
1170                         vm_page_unlock_queues();
1171                         if (object != tobject)
1172                                 VM_OBJECT_UNLOCK(object);
1173                         m->oflags |= VPO_WANTED;
1174                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1175                         VM_OBJECT_LOCK(object);
1176                         goto relookup;
1177                 }
1178                 if (advise == MADV_WILLNEED) {
1179                         vm_page_activate(m);
1180                 } else if (advise == MADV_DONTNEED) {
1181                         vm_page_dontneed(m);
1182                 } else if (advise == MADV_FREE) {
1183                         /*
1184                          * Mark the page clean.  This will allow the page
1185                          * to be freed up by the system.  However, such pages
1186                          * are often reused quickly by malloc()/free()
1187                          * so we do not do anything that would cause
1188                          * a page fault if we can help it.
1189                          *
1190                          * Specifically, we do not try to actually free
1191                          * the page now nor do we try to put it in the
1192                          * cache (which would cause a page fault on reuse).
1193                          *
1194                          * But we do make the page is freeable as we
1195                          * can without actually taking the step of unmapping
1196                          * it.
1197                          */
1198                         pmap_clear_modify(m);
1199                         m->dirty = 0;
1200                         m->act_count = 0;
1201                         vm_page_dontneed(m);
1202                 }
1203                 vm_page_unlock_queues();
1204                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1205                         swap_pager_freespace(tobject, tpindex, 1);
1206 unlock_tobject:
1207                 if (tobject != object)
1208                         VM_OBJECT_UNLOCK(tobject);
1209         }       
1210         VM_OBJECT_UNLOCK(object);
1211 }
1212
1213 /*
1214  *      vm_object_shadow:
1215  *
1216  *      Create a new object which is backed by the
1217  *      specified existing object range.  The source
1218  *      object reference is deallocated.
1219  *
1220  *      The new object and offset into that object
1221  *      are returned in the source parameters.
1222  */
1223 void
1224 vm_object_shadow(
1225         vm_object_t *object,    /* IN/OUT */
1226         vm_ooffset_t *offset,   /* IN/OUT */
1227         vm_size_t length)
1228 {
1229         vm_object_t source;
1230         vm_object_t result;
1231
1232         source = *object;
1233
1234         /*
1235          * Don't create the new object if the old object isn't shared.
1236          */
1237         if (source != NULL) {
1238                 VM_OBJECT_LOCK(source);
1239                 if (source->ref_count == 1 &&
1240                     source->handle == NULL &&
1241                     (source->type == OBJT_DEFAULT ||
1242                      source->type == OBJT_SWAP)) {
1243                         VM_OBJECT_UNLOCK(source);
1244                         return;
1245                 }
1246                 VM_OBJECT_UNLOCK(source);
1247         }
1248
1249         /*
1250          * Allocate a new object with the given length.
1251          */
1252         result = vm_object_allocate(OBJT_DEFAULT, length);
1253
1254         /*
1255          * The new object shadows the source object, adding a reference to it.
1256          * Our caller changes his reference to point to the new object,
1257          * removing a reference to the source object.  Net result: no change
1258          * of reference count.
1259          *
1260          * Try to optimize the result object's page color when shadowing
1261          * in order to maintain page coloring consistency in the combined 
1262          * shadowed object.
1263          */
1264         result->backing_object = source;
1265         /*
1266          * Store the offset into the source object, and fix up the offset into
1267          * the new object.
1268          */
1269         result->backing_object_offset = *offset;
1270         if (source != NULL) {
1271                 VM_OBJECT_LOCK(source);
1272                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1273                 source->shadow_count++;
1274                 source->generation++;
1275 #if VM_NRESERVLEVEL > 0
1276                 result->flags |= source->flags & (OBJ_NEEDGIANT | OBJ_COLORED);
1277                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1278                     ((1 << (VM_NFREEORDER - 1)) - 1);
1279 #else
1280                 result->flags |= source->flags & OBJ_NEEDGIANT;
1281 #endif
1282                 VM_OBJECT_UNLOCK(source);
1283         }
1284
1285
1286         /*
1287          * Return the new things
1288          */
1289         *offset = 0;
1290         *object = result;
1291 }
1292
1293 /*
1294  *      vm_object_split:
1295  *
1296  * Split the pages in a map entry into a new object.  This affords
1297  * easier removal of unused pages, and keeps object inheritance from
1298  * being a negative impact on memory usage.
1299  */
1300 void
1301 vm_object_split(vm_map_entry_t entry)
1302 {
1303         vm_page_t m, m_next;
1304         vm_object_t orig_object, new_object, source;
1305         vm_pindex_t idx, offidxstart;
1306         vm_size_t size;
1307
1308         orig_object = entry->object.vm_object;
1309         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1310                 return;
1311         if (orig_object->ref_count <= 1)
1312                 return;
1313         VM_OBJECT_UNLOCK(orig_object);
1314
1315         offidxstart = OFF_TO_IDX(entry->offset);
1316         size = atop(entry->end - entry->start);
1317
1318         /*
1319          * If swap_pager_copy() is later called, it will convert new_object
1320          * into a swap object.
1321          */
1322         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1323
1324         /*
1325          * At this point, the new object is still private, so the order in
1326          * which the original and new objects are locked does not matter.
1327          */
1328         VM_OBJECT_LOCK(new_object);
1329         VM_OBJECT_LOCK(orig_object);
1330         source = orig_object->backing_object;
1331         if (source != NULL) {
1332                 VM_OBJECT_LOCK(source);
1333                 if ((source->flags & OBJ_DEAD) != 0) {
1334                         VM_OBJECT_UNLOCK(source);
1335                         VM_OBJECT_UNLOCK(orig_object);
1336                         VM_OBJECT_UNLOCK(new_object);
1337                         vm_object_deallocate(new_object);
1338                         VM_OBJECT_LOCK(orig_object);
1339                         return;
1340                 }
1341                 LIST_INSERT_HEAD(&source->shadow_head,
1342                                   new_object, shadow_list);
1343                 source->shadow_count++;
1344                 source->generation++;
1345                 vm_object_reference_locked(source);     /* for new_object */
1346                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1347                 VM_OBJECT_UNLOCK(source);
1348                 new_object->backing_object_offset = 
1349                         orig_object->backing_object_offset + entry->offset;
1350                 new_object->backing_object = source;
1351         }
1352         new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1353 retry:
1354         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1355                 if (m->pindex < offidxstart) {
1356                         m = vm_page_splay(offidxstart, orig_object->root);
1357                         if ((orig_object->root = m)->pindex < offidxstart)
1358                                 m = TAILQ_NEXT(m, listq);
1359                 }
1360         }
1361         vm_page_lock_queues();
1362         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1363             m = m_next) {
1364                 m_next = TAILQ_NEXT(m, listq);
1365
1366                 /*
1367                  * We must wait for pending I/O to complete before we can
1368                  * rename the page.
1369                  *
1370                  * We do not have to VM_PROT_NONE the page as mappings should
1371                  * not be changed by this operation.
1372                  */
1373                 if ((m->oflags & VPO_BUSY) || m->busy) {
1374                         vm_page_flag_set(m, PG_REFERENCED);
1375                         vm_page_unlock_queues();
1376                         VM_OBJECT_UNLOCK(new_object);
1377                         m->oflags |= VPO_WANTED;
1378                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1379                         VM_OBJECT_LOCK(new_object);
1380                         goto retry;
1381                 }
1382                 vm_page_rename(m, new_object, idx);
1383                 /* page automatically made dirty by rename and cache handled */
1384                 vm_page_busy(m);
1385         }
1386         vm_page_unlock_queues();
1387         if (orig_object->type == OBJT_SWAP) {
1388                 /*
1389                  * swap_pager_copy() can sleep, in which case the orig_object's
1390                  * and new_object's locks are released and reacquired. 
1391                  */
1392                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1393
1394                 /*
1395                  * Transfer any cached pages from orig_object to new_object.
1396                  */
1397                 if (__predict_false(orig_object->cache != NULL))
1398                         vm_page_cache_transfer(orig_object, offidxstart,
1399                             new_object);
1400         }
1401         VM_OBJECT_UNLOCK(orig_object);
1402         TAILQ_FOREACH(m, &new_object->memq, listq)
1403                 vm_page_wakeup(m);
1404         VM_OBJECT_UNLOCK(new_object);
1405         entry->object.vm_object = new_object;
1406         entry->offset = 0LL;
1407         vm_object_deallocate(orig_object);
1408         VM_OBJECT_LOCK(new_object);
1409 }
1410
1411 #define OBSC_TEST_ALL_SHADOWED  0x0001
1412 #define OBSC_COLLAPSE_NOWAIT    0x0002
1413 #define OBSC_COLLAPSE_WAIT      0x0004
1414
1415 static int
1416 vm_object_backing_scan(vm_object_t object, int op)
1417 {
1418         int r = 1;
1419         vm_page_t p;
1420         vm_object_t backing_object;
1421         vm_pindex_t backing_offset_index;
1422
1423         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1424         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1425
1426         backing_object = object->backing_object;
1427         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1428
1429         /*
1430          * Initial conditions
1431          */
1432         if (op & OBSC_TEST_ALL_SHADOWED) {
1433                 /*
1434                  * We do not want to have to test for the existence of cache
1435                  * or swap pages in the backing object.  XXX but with the
1436                  * new swapper this would be pretty easy to do.
1437                  *
1438                  * XXX what about anonymous MAP_SHARED memory that hasn't
1439                  * been ZFOD faulted yet?  If we do not test for this, the
1440                  * shadow test may succeed! XXX
1441                  */
1442                 if (backing_object->type != OBJT_DEFAULT) {
1443                         return (0);
1444                 }
1445         }
1446         if (op & OBSC_COLLAPSE_WAIT) {
1447                 vm_object_set_flag(backing_object, OBJ_DEAD);
1448         }
1449
1450         /*
1451          * Our scan
1452          */
1453         p = TAILQ_FIRST(&backing_object->memq);
1454         while (p) {
1455                 vm_page_t next = TAILQ_NEXT(p, listq);
1456                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1457
1458                 if (op & OBSC_TEST_ALL_SHADOWED) {
1459                         vm_page_t pp;
1460
1461                         /*
1462                          * Ignore pages outside the parent object's range
1463                          * and outside the parent object's mapping of the 
1464                          * backing object.
1465                          *
1466                          * note that we do not busy the backing object's
1467                          * page.
1468                          */
1469                         if (
1470                             p->pindex < backing_offset_index ||
1471                             new_pindex >= object->size
1472                         ) {
1473                                 p = next;
1474                                 continue;
1475                         }
1476
1477                         /*
1478                          * See if the parent has the page or if the parent's
1479                          * object pager has the page.  If the parent has the
1480                          * page but the page is not valid, the parent's
1481                          * object pager must have the page.
1482                          *
1483                          * If this fails, the parent does not completely shadow
1484                          * the object and we might as well give up now.
1485                          */
1486
1487                         pp = vm_page_lookup(object, new_pindex);
1488                         if (
1489                             (pp == NULL || pp->valid == 0) &&
1490                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1491                         ) {
1492                                 r = 0;
1493                                 break;
1494                         }
1495                 }
1496
1497                 /*
1498                  * Check for busy page
1499                  */
1500                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1501                         vm_page_t pp;
1502
1503                         if (op & OBSC_COLLAPSE_NOWAIT) {
1504                                 if ((p->oflags & VPO_BUSY) ||
1505                                     !p->valid || 
1506                                     p->busy) {
1507                                         p = next;
1508                                         continue;
1509                                 }
1510                         } else if (op & OBSC_COLLAPSE_WAIT) {
1511                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1512                                         vm_page_lock_queues();
1513                                         vm_page_flag_set(p, PG_REFERENCED);
1514                                         vm_page_unlock_queues();
1515                                         VM_OBJECT_UNLOCK(object);
1516                                         p->oflags |= VPO_WANTED;
1517                                         msleep(p, VM_OBJECT_MTX(backing_object),
1518                                             PDROP | PVM, "vmocol", 0);
1519                                         VM_OBJECT_LOCK(object);
1520                                         VM_OBJECT_LOCK(backing_object);
1521                                         /*
1522                                          * If we slept, anything could have
1523                                          * happened.  Since the object is
1524                                          * marked dead, the backing offset
1525                                          * should not have changed so we
1526                                          * just restart our scan.
1527                                          */
1528                                         p = TAILQ_FIRST(&backing_object->memq);
1529                                         continue;
1530                                 }
1531                         }
1532
1533                         KASSERT(
1534                             p->object == backing_object,
1535                             ("vm_object_backing_scan: object mismatch")
1536                         );
1537
1538                         /*
1539                          * Destroy any associated swap
1540                          */
1541                         if (backing_object->type == OBJT_SWAP) {
1542                                 swap_pager_freespace(
1543                                     backing_object, 
1544                                     p->pindex,
1545                                     1
1546                                 );
1547                         }
1548
1549                         if (
1550                             p->pindex < backing_offset_index ||
1551                             new_pindex >= object->size
1552                         ) {
1553                                 /*
1554                                  * Page is out of the parent object's range, we 
1555                                  * can simply destroy it. 
1556                                  */
1557                                 vm_page_lock_queues();
1558                                 KASSERT(!pmap_page_is_mapped(p),
1559                                     ("freeing mapped page %p", p));
1560                                 if (p->wire_count == 0)
1561                                         vm_page_free(p);
1562                                 else
1563                                         vm_page_remove(p);
1564                                 vm_page_unlock_queues();
1565                                 p = next;
1566                                 continue;
1567                         }
1568
1569                         pp = vm_page_lookup(object, new_pindex);
1570                         if (
1571                             pp != NULL ||
1572                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1573                         ) {
1574                                 /*
1575                                  * page already exists in parent OR swap exists
1576                                  * for this location in the parent.  Destroy 
1577                                  * the original page from the backing object.
1578                                  *
1579                                  * Leave the parent's page alone
1580                                  */
1581                                 vm_page_lock_queues();
1582                                 KASSERT(!pmap_page_is_mapped(p),
1583                                     ("freeing mapped page %p", p));
1584                                 if (p->wire_count == 0)
1585                                         vm_page_free(p);
1586                                 else
1587                                         vm_page_remove(p);
1588                                 vm_page_unlock_queues();
1589                                 p = next;
1590                                 continue;
1591                         }
1592
1593 #if VM_NRESERVLEVEL > 0
1594                         /*
1595                          * Rename the reservation.
1596                          */
1597                         vm_reserv_rename(p, object, backing_object,
1598                             backing_offset_index);
1599 #endif
1600
1601                         /*
1602                          * Page does not exist in parent, rename the
1603                          * page from the backing object to the main object. 
1604                          *
1605                          * If the page was mapped to a process, it can remain 
1606                          * mapped through the rename.
1607                          */
1608                         vm_page_lock_queues();
1609                         vm_page_rename(p, object, new_pindex);
1610                         vm_page_unlock_queues();
1611                         /* page automatically made dirty by rename */
1612                 }
1613                 p = next;
1614         }
1615         return (r);
1616 }
1617
1618
1619 /*
1620  * this version of collapse allows the operation to occur earlier and
1621  * when paging_in_progress is true for an object...  This is not a complete
1622  * operation, but should plug 99.9% of the rest of the leaks.
1623  */
1624 static void
1625 vm_object_qcollapse(vm_object_t object)
1626 {
1627         vm_object_t backing_object = object->backing_object;
1628
1629         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1630         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1631
1632         if (backing_object->ref_count != 1)
1633                 return;
1634
1635         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1636 }
1637
1638 /*
1639  *      vm_object_collapse:
1640  *
1641  *      Collapse an object with the object backing it.
1642  *      Pages in the backing object are moved into the
1643  *      parent, and the backing object is deallocated.
1644  */
1645 void
1646 vm_object_collapse(vm_object_t object)
1647 {
1648         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1649         
1650         while (TRUE) {
1651                 vm_object_t backing_object;
1652
1653                 /*
1654                  * Verify that the conditions are right for collapse:
1655                  *
1656                  * The object exists and the backing object exists.
1657                  */
1658                 if ((backing_object = object->backing_object) == NULL)
1659                         break;
1660
1661                 /*
1662                  * we check the backing object first, because it is most likely
1663                  * not collapsable.
1664                  */
1665                 VM_OBJECT_LOCK(backing_object);
1666                 if (backing_object->handle != NULL ||
1667                     (backing_object->type != OBJT_DEFAULT &&
1668                      backing_object->type != OBJT_SWAP) ||
1669                     (backing_object->flags & OBJ_DEAD) ||
1670                     object->handle != NULL ||
1671                     (object->type != OBJT_DEFAULT &&
1672                      object->type != OBJT_SWAP) ||
1673                     (object->flags & OBJ_DEAD)) {
1674                         VM_OBJECT_UNLOCK(backing_object);
1675                         break;
1676                 }
1677
1678                 if (
1679                     object->paging_in_progress != 0 ||
1680                     backing_object->paging_in_progress != 0
1681                 ) {
1682                         vm_object_qcollapse(object);
1683                         VM_OBJECT_UNLOCK(backing_object);
1684                         break;
1685                 }
1686                 /*
1687                  * We know that we can either collapse the backing object (if
1688                  * the parent is the only reference to it) or (perhaps) have
1689                  * the parent bypass the object if the parent happens to shadow
1690                  * all the resident pages in the entire backing object.
1691                  *
1692                  * This is ignoring pager-backed pages such as swap pages.
1693                  * vm_object_backing_scan fails the shadowing test in this
1694                  * case.
1695                  */
1696                 if (backing_object->ref_count == 1) {
1697                         /*
1698                          * If there is exactly one reference to the backing
1699                          * object, we can collapse it into the parent.  
1700                          */
1701                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1702
1703 #if VM_NRESERVLEVEL > 0
1704                         /*
1705                          * Break any reservations from backing_object.
1706                          */
1707                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1708                                 vm_reserv_break_all(backing_object);
1709 #endif
1710
1711                         /*
1712                          * Move the pager from backing_object to object.
1713                          */
1714                         if (backing_object->type == OBJT_SWAP) {
1715                                 /*
1716                                  * swap_pager_copy() can sleep, in which case
1717                                  * the backing_object's and object's locks are
1718                                  * released and reacquired.
1719                                  */
1720                                 swap_pager_copy(
1721                                     backing_object,
1722                                     object,
1723                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1724
1725                                 /*
1726                                  * Free any cached pages from backing_object.
1727                                  */
1728                                 if (__predict_false(backing_object->cache != NULL))
1729                                         vm_page_cache_free(backing_object, 0, 0);
1730                         }
1731                         /*
1732                          * Object now shadows whatever backing_object did.
1733                          * Note that the reference to 
1734                          * backing_object->backing_object moves from within 
1735                          * backing_object to within object.
1736                          */
1737                         LIST_REMOVE(object, shadow_list);
1738                         backing_object->shadow_count--;
1739                         backing_object->generation++;
1740                         if (backing_object->backing_object) {
1741                                 VM_OBJECT_LOCK(backing_object->backing_object);
1742                                 LIST_REMOVE(backing_object, shadow_list);
1743                                 LIST_INSERT_HEAD(
1744                                     &backing_object->backing_object->shadow_head,
1745                                     object, shadow_list);
1746                                 /*
1747                                  * The shadow_count has not changed.
1748                                  */
1749                                 backing_object->backing_object->generation++;
1750                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1751                         }
1752                         object->backing_object = backing_object->backing_object;
1753                         object->backing_object_offset +=
1754                             backing_object->backing_object_offset;
1755
1756                         /*
1757                          * Discard backing_object.
1758                          *
1759                          * Since the backing object has no pages, no pager left,
1760                          * and no object references within it, all that is
1761                          * necessary is to dispose of it.
1762                          */
1763                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1764                         VM_OBJECT_UNLOCK(backing_object);
1765
1766                         mtx_lock(&vm_object_list_mtx);
1767                         TAILQ_REMOVE(
1768                             &vm_object_list, 
1769                             backing_object,
1770                             object_list
1771                         );
1772                         mtx_unlock(&vm_object_list_mtx);
1773
1774                         uma_zfree(obj_zone, backing_object);
1775
1776                         object_collapses++;
1777                 } else {
1778                         vm_object_t new_backing_object;
1779
1780                         /*
1781                          * If we do not entirely shadow the backing object,
1782                          * there is nothing we can do so we give up.
1783                          */
1784                         if (object->resident_page_count != object->size &&
1785                             vm_object_backing_scan(object,
1786                             OBSC_TEST_ALL_SHADOWED) == 0) {
1787                                 VM_OBJECT_UNLOCK(backing_object);
1788                                 break;
1789                         }
1790
1791                         /*
1792                          * Make the parent shadow the next object in the
1793                          * chain.  Deallocating backing_object will not remove
1794                          * it, since its reference count is at least 2.
1795                          */
1796                         LIST_REMOVE(object, shadow_list);
1797                         backing_object->shadow_count--;
1798                         backing_object->generation++;
1799
1800                         new_backing_object = backing_object->backing_object;
1801                         if ((object->backing_object = new_backing_object) != NULL) {
1802                                 VM_OBJECT_LOCK(new_backing_object);
1803                                 LIST_INSERT_HEAD(
1804                                     &new_backing_object->shadow_head,
1805                                     object,
1806                                     shadow_list
1807                                 );
1808                                 new_backing_object->shadow_count++;
1809                                 new_backing_object->generation++;
1810                                 vm_object_reference_locked(new_backing_object);
1811                                 VM_OBJECT_UNLOCK(new_backing_object);
1812                                 object->backing_object_offset +=
1813                                         backing_object->backing_object_offset;
1814                         }
1815
1816                         /*
1817                          * Drop the reference count on backing_object. Since
1818                          * its ref_count was at least 2, it will not vanish.
1819                          */
1820                         backing_object->ref_count--;
1821                         VM_OBJECT_UNLOCK(backing_object);
1822                         object_bypasses++;
1823                 }
1824
1825                 /*
1826                  * Try again with this object's new backing object.
1827                  */
1828         }
1829 }
1830
1831 /*
1832  *      vm_object_page_remove:
1833  *
1834  *      For the given object, either frees or invalidates each of the
1835  *      specified pages.  In general, a page is freed.  However, if a
1836  *      page is wired for any reason other than the existence of a
1837  *      managed, wired mapping, then it may be invalidated but not
1838  *      removed from the object.  Pages are specified by the given
1839  *      range ["start", "end") and Boolean "clean_only".  As a
1840  *      special case, if "end" is zero, then the range extends from
1841  *      "start" to the end of the object.  If "clean_only" is TRUE,
1842  *      then only the non-dirty pages within the specified range are
1843  *      affected.
1844  *
1845  *      In general, this operation should only be performed on objects
1846  *      that contain managed pages.  There are two exceptions.  First,
1847  *      it may be performed on the kernel and kmem objects.  Second,
1848  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1849  *      device-backed pages.
1850  *
1851  *      The object must be locked.
1852  */
1853 void
1854 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1855     boolean_t clean_only)
1856 {
1857         vm_page_t p, next;
1858         int wirings;
1859
1860         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1861         if (object->resident_page_count == 0)
1862                 goto skipmemq;
1863
1864         /*
1865          * Since physically-backed objects do not use managed pages, we can't
1866          * remove pages from the object (we must instead remove the page
1867          * references, and then destroy the object).
1868          */
1869         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1870             object == kmem_object,
1871             ("attempt to remove pages from a physical object"));
1872
1873         vm_object_pip_add(object, 1);
1874 again:
1875         vm_page_lock_queues();
1876         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1877                 if (p->pindex < start) {
1878                         p = vm_page_splay(start, object->root);
1879                         if ((object->root = p)->pindex < start)
1880                                 p = TAILQ_NEXT(p, listq);
1881                 }
1882         }
1883         /*
1884          * Assert: the variable p is either (1) the page with the
1885          * least pindex greater than or equal to the parameter pindex
1886          * or (2) NULL.
1887          */
1888         for (;
1889              p != NULL && (p->pindex < end || end == 0);
1890              p = next) {
1891                 next = TAILQ_NEXT(p, listq);
1892
1893                 /*
1894                  * If the page is wired for any reason besides the
1895                  * existence of managed, wired mappings, then it cannot
1896                  * be freed.  For example, fictitious pages, which
1897                  * represent device memory, are inherently wired and
1898                  * cannot be freed.  They can, however, be invalidated
1899                  * if "clean_only" is FALSE.
1900                  */
1901                 if ((wirings = p->wire_count) != 0 &&
1902                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1903                         /* Fictitious pages do not have managed mappings. */
1904                         if ((p->flags & PG_FICTITIOUS) == 0)
1905                                 pmap_remove_all(p);
1906                         /* Account for removal of managed, wired mappings. */
1907                         p->wire_count -= wirings;
1908                         if (!clean_only)
1909                                 p->valid = 0;
1910                         continue;
1911                 }
1912                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1913                         goto again;
1914                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1915                     ("vm_object_page_remove: page %p is fictitious", p));
1916                 if (clean_only && p->valid) {
1917                         pmap_remove_write(p);
1918                         if (p->valid & p->dirty)
1919                                 continue;
1920                 }
1921                 pmap_remove_all(p);
1922                 /* Account for removal of managed, wired mappings. */
1923                 if (wirings != 0)
1924                         p->wire_count -= wirings;
1925                 vm_page_free(p);
1926         }
1927         vm_page_unlock_queues();
1928         vm_object_pip_wakeup(object);
1929 skipmemq:
1930         if (__predict_false(object->cache != NULL))
1931                 vm_page_cache_free(object, start, end);
1932 }
1933
1934 /*
1935  *      Routine:        vm_object_coalesce
1936  *      Function:       Coalesces two objects backing up adjoining
1937  *                      regions of memory into a single object.
1938  *
1939  *      returns TRUE if objects were combined.
1940  *
1941  *      NOTE:   Only works at the moment if the second object is NULL -
1942  *              if it's not, which object do we lock first?
1943  *
1944  *      Parameters:
1945  *              prev_object     First object to coalesce
1946  *              prev_offset     Offset into prev_object
1947  *              prev_size       Size of reference to prev_object
1948  *              next_size       Size of reference to the second object
1949  *
1950  *      Conditions:
1951  *      The object must *not* be locked.
1952  */
1953 boolean_t
1954 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1955         vm_size_t prev_size, vm_size_t next_size)
1956 {
1957         vm_pindex_t next_pindex;
1958
1959         if (prev_object == NULL)
1960                 return (TRUE);
1961         VM_OBJECT_LOCK(prev_object);
1962         if (prev_object->type != OBJT_DEFAULT &&
1963             prev_object->type != OBJT_SWAP) {
1964                 VM_OBJECT_UNLOCK(prev_object);
1965                 return (FALSE);
1966         }
1967
1968         /*
1969          * Try to collapse the object first
1970          */
1971         vm_object_collapse(prev_object);
1972
1973         /*
1974          * Can't coalesce if: . more than one reference . paged out . shadows
1975          * another object . has a copy elsewhere (any of which mean that the
1976          * pages not mapped to prev_entry may be in use anyway)
1977          */
1978         if (prev_object->backing_object != NULL) {
1979                 VM_OBJECT_UNLOCK(prev_object);
1980                 return (FALSE);
1981         }
1982
1983         prev_size >>= PAGE_SHIFT;
1984         next_size >>= PAGE_SHIFT;
1985         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1986
1987         if ((prev_object->ref_count > 1) &&
1988             (prev_object->size != next_pindex)) {
1989                 VM_OBJECT_UNLOCK(prev_object);
1990                 return (FALSE);
1991         }
1992
1993         /*
1994          * Remove any pages that may still be in the object from a previous
1995          * deallocation.
1996          */
1997         if (next_pindex < prev_object->size) {
1998                 vm_object_page_remove(prev_object,
1999                                       next_pindex,
2000                                       next_pindex + next_size, FALSE);
2001                 if (prev_object->type == OBJT_SWAP)
2002                         swap_pager_freespace(prev_object,
2003                                              next_pindex, next_size);
2004         }
2005
2006         /*
2007          * Extend the object if necessary.
2008          */
2009         if (next_pindex + next_size > prev_object->size)
2010                 prev_object->size = next_pindex + next_size;
2011
2012         VM_OBJECT_UNLOCK(prev_object);
2013         return (TRUE);
2014 }
2015
2016 void
2017 vm_object_set_writeable_dirty(vm_object_t object)
2018 {
2019         struct vnode *vp;
2020
2021         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2022         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2023                 return;
2024         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2025         if (object->type == OBJT_VNODE &&
2026             (vp = (struct vnode *)object->handle) != NULL) {
2027                 VI_LOCK(vp);
2028                 vp->v_iflag |= VI_OBJDIRTY;
2029                 VI_UNLOCK(vp);
2030         }
2031 }
2032
2033 #include "opt_ddb.h"
2034 #ifdef DDB
2035 #include <sys/kernel.h>
2036
2037 #include <sys/cons.h>
2038
2039 #include <ddb/ddb.h>
2040
2041 static int
2042 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2043 {
2044         vm_map_t tmpm;
2045         vm_map_entry_t tmpe;
2046         vm_object_t obj;
2047         int entcount;
2048
2049         if (map == 0)
2050                 return 0;
2051
2052         if (entry == 0) {
2053                 tmpe = map->header.next;
2054                 entcount = map->nentries;
2055                 while (entcount-- && (tmpe != &map->header)) {
2056                         if (_vm_object_in_map(map, object, tmpe)) {
2057                                 return 1;
2058                         }
2059                         tmpe = tmpe->next;
2060                 }
2061         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2062                 tmpm = entry->object.sub_map;
2063                 tmpe = tmpm->header.next;
2064                 entcount = tmpm->nentries;
2065                 while (entcount-- && tmpe != &tmpm->header) {
2066                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2067                                 return 1;
2068                         }
2069                         tmpe = tmpe->next;
2070                 }
2071         } else if ((obj = entry->object.vm_object) != NULL) {
2072                 for (; obj; obj = obj->backing_object)
2073                         if (obj == object) {
2074                                 return 1;
2075                         }
2076         }
2077         return 0;
2078 }
2079
2080 static int
2081 vm_object_in_map(vm_object_t object)
2082 {
2083         struct proc *p;
2084
2085         /* sx_slock(&allproc_lock); */
2086         FOREACH_PROC_IN_SYSTEM(p) {
2087                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2088                         continue;
2089                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2090                         /* sx_sunlock(&allproc_lock); */
2091                         return 1;
2092                 }
2093         }
2094         /* sx_sunlock(&allproc_lock); */
2095         if (_vm_object_in_map(kernel_map, object, 0))
2096                 return 1;
2097         if (_vm_object_in_map(kmem_map, object, 0))
2098                 return 1;
2099         if (_vm_object_in_map(pager_map, object, 0))
2100                 return 1;
2101         if (_vm_object_in_map(buffer_map, object, 0))
2102                 return 1;
2103         return 0;
2104 }
2105
2106 DB_SHOW_COMMAND(vmochk, vm_object_check)
2107 {
2108         vm_object_t object;
2109
2110         /*
2111          * make sure that internal objs are in a map somewhere
2112          * and none have zero ref counts.
2113          */
2114         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2115                 if (object->handle == NULL &&
2116                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2117                         if (object->ref_count == 0) {
2118                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2119                                         (long)object->size);
2120                         }
2121                         if (!vm_object_in_map(object)) {
2122                                 db_printf(
2123                         "vmochk: internal obj is not in a map: "
2124                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2125                                     object->ref_count, (u_long)object->size, 
2126                                     (u_long)object->size,
2127                                     (void *)object->backing_object);
2128                         }
2129                 }
2130         }
2131 }
2132
2133 /*
2134  *      vm_object_print:        [ debug ]
2135  */
2136 DB_SHOW_COMMAND(object, vm_object_print_static)
2137 {
2138         /* XXX convert args. */
2139         vm_object_t object = (vm_object_t)addr;
2140         boolean_t full = have_addr;
2141
2142         vm_page_t p;
2143
2144         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2145 #define count   was_count
2146
2147         int count;
2148
2149         if (object == NULL)
2150                 return;
2151
2152         db_iprintf(
2153             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2154             object, (int)object->type, (uintmax_t)object->size,
2155             object->resident_page_count, object->ref_count, object->flags);
2156         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2157             object->shadow_count, 
2158             object->backing_object ? object->backing_object->ref_count : 0,
2159             object->backing_object, (uintmax_t)object->backing_object_offset);
2160
2161         if (!full)
2162                 return;
2163
2164         db_indent += 2;
2165         count = 0;
2166         TAILQ_FOREACH(p, &object->memq, listq) {
2167                 if (count == 0)
2168                         db_iprintf("memory:=");
2169                 else if (count == 6) {
2170                         db_printf("\n");
2171                         db_iprintf(" ...");
2172                         count = 0;
2173                 } else
2174                         db_printf(",");
2175                 count++;
2176
2177                 db_printf("(off=0x%jx,page=0x%jx)",
2178                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2179         }
2180         if (count != 0)
2181                 db_printf("\n");
2182         db_indent -= 2;
2183 }
2184
2185 /* XXX. */
2186 #undef count
2187
2188 /* XXX need this non-static entry for calling from vm_map_print. */
2189 void
2190 vm_object_print(
2191         /* db_expr_t */ long addr,
2192         boolean_t have_addr,
2193         /* db_expr_t */ long count,
2194         char *modif)
2195 {
2196         vm_object_print_static(addr, have_addr, count, modif);
2197 }
2198
2199 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2200 {
2201         vm_object_t object;
2202         int nl = 0;
2203         int c;
2204
2205         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2206                 vm_pindex_t idx, fidx;
2207                 vm_pindex_t osize;
2208                 vm_paddr_t pa = -1;
2209                 int rcount;
2210                 vm_page_t m;
2211
2212                 db_printf("new object: %p\n", (void *)object);
2213                 if (nl > 18) {
2214                         c = cngetc();
2215                         if (c != ' ')
2216                                 return;
2217                         nl = 0;
2218                 }
2219                 nl++;
2220                 rcount = 0;
2221                 fidx = 0;
2222                 osize = object->size;
2223                 if (osize > 128)
2224                         osize = 128;
2225                 for (idx = 0; idx < osize; idx++) {
2226                         m = vm_page_lookup(object, idx);
2227                         if (m == NULL) {
2228                                 if (rcount) {
2229                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2230                                                 (long)fidx, rcount, (long)pa);
2231                                         if (nl > 18) {
2232                                                 c = cngetc();
2233                                                 if (c != ' ')
2234                                                         return;
2235                                                 nl = 0;
2236                                         }
2237                                         nl++;
2238                                         rcount = 0;
2239                                 }
2240                                 continue;
2241                         }
2242
2243                                 
2244                         if (rcount &&
2245                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2246                                 ++rcount;
2247                                 continue;
2248                         }
2249                         if (rcount) {
2250                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2251                                         (long)fidx, rcount, (long)pa);
2252                                 if (nl > 18) {
2253                                         c = cngetc();
2254                                         if (c != ' ')
2255                                                 return;
2256                                         nl = 0;
2257                                 }
2258                                 nl++;
2259                         }
2260                         fidx = idx;
2261                         pa = VM_PAGE_TO_PHYS(m);
2262                         rcount = 1;
2263                 }
2264                 if (rcount) {
2265                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2266                                 (long)fidx, rcount, (long)pa);
2267                         if (nl > 18) {
2268                                 c = cngetc();
2269                                 if (c != ' ')
2270                                         return;
2271                                 nl = 0;
2272                         }
2273                         nl++;
2274                 }
2275         }
2276 }
2277 #endif /* DDB */