]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Remove comments about creating DMA tags as children of the DMA tags of their
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102
103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104                     int pagerflags, int flags, int *clearobjflags);
105 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
106                     int *clearobjflags);
107 static void     vm_object_qcollapse(vm_object_t object);
108 static void     vm_object_vndeallocate(vm_object_t object);
109
110 /*
111  *      Virtual memory objects maintain the actual data
112  *      associated with allocated virtual memory.  A given
113  *      page of memory exists within exactly one object.
114  *
115  *      An object is only deallocated when all "references"
116  *      are given up.  Only one "reference" to a given
117  *      region of an object should be writeable.
118  *
119  *      Associated with each object is a list of all resident
120  *      memory pages belonging to that object; this list is
121  *      maintained by the "vm_page" module, and locked by the object's
122  *      lock.
123  *
124  *      Each object also records a "pager" routine which is
125  *      used to retrieve (and store) pages to the proper backing
126  *      storage.  In addition, objects may be backed by other
127  *      objects from which they were virtual-copied.
128  *
129  *      The only items within the object structure which are
130  *      modified after time of creation are:
131  *              reference count         locked by object's lock
132  *              pager routine           locked by object's lock
133  *
134  */
135
136 struct object_q vm_object_list;
137 struct mtx vm_object_list_mtx;  /* lock for object list and count */
138
139 struct vm_object kernel_object_store;
140 struct vm_object kmem_object_store;
141
142 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
143     "VM object stats");
144
145 static long object_collapses;
146 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
147     &object_collapses, 0, "VM object collapses");
148
149 static long object_bypasses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
151     &object_bypasses, 0, "VM object bypasses");
152
153 static uma_zone_t obj_zone;
154
155 static int vm_object_zinit(void *mem, int size, int flags);
156
157 #ifdef INVARIANTS
158 static void vm_object_zdtor(void *mem, int size, void *arg);
159
160 static void
161 vm_object_zdtor(void *mem, int size, void *arg)
162 {
163         vm_object_t object;
164
165         object = (vm_object_t)mem;
166         KASSERT(TAILQ_EMPTY(&object->memq),
167             ("object %p has resident pages",
168             object));
169 #if VM_NRESERVLEVEL > 0
170         KASSERT(LIST_EMPTY(&object->rvq),
171             ("object %p has reservations",
172             object));
173 #endif
174         KASSERT(object->cache == NULL,
175             ("object %p has cached pages",
176             object));
177         KASSERT(object->paging_in_progress == 0,
178             ("object %p paging_in_progress = %d",
179             object, object->paging_in_progress));
180         KASSERT(object->resident_page_count == 0,
181             ("object %p resident_page_count = %d",
182             object, object->resident_page_count));
183         KASSERT(object->shadow_count == 0,
184             ("object %p shadow_count = %d",
185             object, object->shadow_count));
186 }
187 #endif
188
189 static int
190 vm_object_zinit(void *mem, int size, int flags)
191 {
192         vm_object_t object;
193
194         object = (vm_object_t)mem;
195         bzero(&object->mtx, sizeof(object->mtx));
196         VM_OBJECT_LOCK_INIT(object, "standard object");
197
198         /* These are true for any object that has been freed */
199         object->paging_in_progress = 0;
200         object->resident_page_count = 0;
201         object->shadow_count = 0;
202         return (0);
203 }
204
205 void
206 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
207 {
208
209         TAILQ_INIT(&object->memq);
210         LIST_INIT(&object->shadow_head);
211
212         object->root = NULL;
213         object->type = type;
214         object->size = size;
215         object->generation = 1;
216         object->ref_count = 1;
217         object->memattr = VM_MEMATTR_DEFAULT;
218         object->flags = 0;
219         object->cred = NULL;
220         object->charge = 0;
221         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
222                 object->flags = OBJ_ONEMAPPING;
223         object->pg_color = 0;
224         object->handle = NULL;
225         object->backing_object = NULL;
226         object->backing_object_offset = (vm_ooffset_t) 0;
227 #if VM_NRESERVLEVEL > 0
228         LIST_INIT(&object->rvq);
229 #endif
230         object->cache = NULL;
231
232         mtx_lock(&vm_object_list_mtx);
233         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
234         mtx_unlock(&vm_object_list_mtx);
235 }
236
237 /*
238  *      vm_object_init:
239  *
240  *      Initialize the VM objects module.
241  */
242 void
243 vm_object_init(void)
244 {
245         TAILQ_INIT(&vm_object_list);
246         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
247         
248         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
249         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
250             kernel_object);
251 #if VM_NRESERVLEVEL > 0
252         kernel_object->flags |= OBJ_COLORED;
253         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
254 #endif
255
256         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258             kmem_object);
259 #if VM_NRESERVLEVEL > 0
260         kmem_object->flags |= OBJ_COLORED;
261         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263
264         /*
265          * The lock portion of struct vm_object must be type stable due
266          * to vm_pageout_fallback_object_lock locking a vm object
267          * without holding any references to it.
268          */
269         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
270 #ifdef INVARIANTS
271             vm_object_zdtor,
272 #else
273             NULL,
274 #endif
275             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
276 }
277
278 void
279 vm_object_clear_flag(vm_object_t object, u_short bits)
280 {
281
282         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
283         object->flags &= ~bits;
284 }
285
286 /*
287  *      Sets the default memory attribute for the specified object.  Pages
288  *      that are allocated to this object are by default assigned this memory
289  *      attribute.
290  *
291  *      Presently, this function must be called before any pages are allocated
292  *      to the object.  In the future, this requirement may be relaxed for
293  *      "default" and "swap" objects.
294  */
295 int
296 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
297 {
298
299         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
300         switch (object->type) {
301         case OBJT_DEFAULT:
302         case OBJT_DEVICE:
303         case OBJT_PHYS:
304         case OBJT_SG:
305         case OBJT_SWAP:
306         case OBJT_VNODE:
307                 if (!TAILQ_EMPTY(&object->memq))
308                         return (KERN_FAILURE);
309                 break;
310         case OBJT_DEAD:
311                 return (KERN_INVALID_ARGUMENT);
312         }
313         object->memattr = memattr;
314         return (KERN_SUCCESS);
315 }
316
317 void
318 vm_object_pip_add(vm_object_t object, short i)
319 {
320
321         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
322         object->paging_in_progress += i;
323 }
324
325 void
326 vm_object_pip_subtract(vm_object_t object, short i)
327 {
328
329         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330         object->paging_in_progress -= i;
331 }
332
333 void
334 vm_object_pip_wakeup(vm_object_t object)
335 {
336
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338         object->paging_in_progress--;
339         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
340                 vm_object_clear_flag(object, OBJ_PIPWNT);
341                 wakeup(object);
342         }
343 }
344
345 void
346 vm_object_pip_wakeupn(vm_object_t object, short i)
347 {
348
349         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
350         if (i)
351                 object->paging_in_progress -= i;
352         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
353                 vm_object_clear_flag(object, OBJ_PIPWNT);
354                 wakeup(object);
355         }
356 }
357
358 void
359 vm_object_pip_wait(vm_object_t object, char *waitid)
360 {
361
362         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
363         while (object->paging_in_progress) {
364                 object->flags |= OBJ_PIPWNT;
365                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
366         }
367 }
368
369 /*
370  *      vm_object_allocate:
371  *
372  *      Returns a new object with the given size.
373  */
374 vm_object_t
375 vm_object_allocate(objtype_t type, vm_pindex_t size)
376 {
377         vm_object_t object;
378
379         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
380         _vm_object_allocate(type, size, object);
381         return (object);
382 }
383
384
385 /*
386  *      vm_object_reference:
387  *
388  *      Gets another reference to the given object.  Note: OBJ_DEAD
389  *      objects can be referenced during final cleaning.
390  */
391 void
392 vm_object_reference(vm_object_t object)
393 {
394         if (object == NULL)
395                 return;
396         VM_OBJECT_LOCK(object);
397         vm_object_reference_locked(object);
398         VM_OBJECT_UNLOCK(object);
399 }
400
401 /*
402  *      vm_object_reference_locked:
403  *
404  *      Gets another reference to the given object.
405  *
406  *      The object must be locked.
407  */
408 void
409 vm_object_reference_locked(vm_object_t object)
410 {
411         struct vnode *vp;
412
413         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
414         object->ref_count++;
415         if (object->type == OBJT_VNODE) {
416                 vp = object->handle;
417                 vref(vp);
418         }
419 }
420
421 /*
422  * Handle deallocating an object of type OBJT_VNODE.
423  */
424 static void
425 vm_object_vndeallocate(vm_object_t object)
426 {
427         struct vnode *vp = (struct vnode *) object->handle;
428
429         VFS_ASSERT_GIANT(vp->v_mount);
430         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
431         KASSERT(object->type == OBJT_VNODE,
432             ("vm_object_vndeallocate: not a vnode object"));
433         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
434 #ifdef INVARIANTS
435         if (object->ref_count == 0) {
436                 vprint("vm_object_vndeallocate", vp);
437                 panic("vm_object_vndeallocate: bad object reference count");
438         }
439 #endif
440
441         if (object->ref_count > 1) {
442                 object->ref_count--;
443                 VM_OBJECT_UNLOCK(object);
444                 /* vrele may need the vnode lock. */
445                 vrele(vp);
446         } else {
447                 vhold(vp);
448                 VM_OBJECT_UNLOCK(object);
449                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
450                 vdrop(vp);
451                 VM_OBJECT_LOCK(object);
452                 object->ref_count--;
453                 if (object->type == OBJT_DEAD) {
454                         VM_OBJECT_UNLOCK(object);
455                         VOP_UNLOCK(vp, 0);
456                 } else {
457                         if (object->ref_count == 0)
458                                 vp->v_vflag &= ~VV_TEXT;
459                         VM_OBJECT_UNLOCK(object);
460                         vput(vp);
461                 }
462         }
463 }
464
465 /*
466  *      vm_object_deallocate:
467  *
468  *      Release a reference to the specified object,
469  *      gained either through a vm_object_allocate
470  *      or a vm_object_reference call.  When all references
471  *      are gone, storage associated with this object
472  *      may be relinquished.
473  *
474  *      No object may be locked.
475  */
476 void
477 vm_object_deallocate(vm_object_t object)
478 {
479         vm_object_t temp;
480
481         while (object != NULL) {
482                 int vfslocked;
483
484                 vfslocked = 0;
485         restart:
486                 VM_OBJECT_LOCK(object);
487                 if (object->type == OBJT_VNODE) {
488                         struct vnode *vp = (struct vnode *) object->handle;
489
490                         /*
491                          * Conditionally acquire Giant for a vnode-backed
492                          * object.  We have to be careful since the type of
493                          * a vnode object can change while the object is
494                          * unlocked.
495                          */
496                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
497                                 vfslocked = 1;
498                                 if (!mtx_trylock(&Giant)) {
499                                         VM_OBJECT_UNLOCK(object);
500                                         mtx_lock(&Giant);
501                                         goto restart;
502                                 }
503                         }
504                         vm_object_vndeallocate(object);
505                         VFS_UNLOCK_GIANT(vfslocked);
506                         return;
507                 } else
508                         /*
509                          * This is to handle the case that the object
510                          * changed type while we dropped its lock to
511                          * obtain Giant.
512                          */
513                         VFS_UNLOCK_GIANT(vfslocked);
514
515                 KASSERT(object->ref_count != 0,
516                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
517
518                 /*
519                  * If the reference count goes to 0 we start calling
520                  * vm_object_terminate() on the object chain.
521                  * A ref count of 1 may be a special case depending on the
522                  * shadow count being 0 or 1.
523                  */
524                 object->ref_count--;
525                 if (object->ref_count > 1) {
526                         VM_OBJECT_UNLOCK(object);
527                         return;
528                 } else if (object->ref_count == 1) {
529                         if (object->shadow_count == 0 &&
530                             object->handle == NULL &&
531                             (object->type == OBJT_DEFAULT ||
532                              object->type == OBJT_SWAP)) {
533                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
534                         } else if ((object->shadow_count == 1) &&
535                             (object->handle == NULL) &&
536                             (object->type == OBJT_DEFAULT ||
537                              object->type == OBJT_SWAP)) {
538                                 vm_object_t robject;
539
540                                 robject = LIST_FIRST(&object->shadow_head);
541                                 KASSERT(robject != NULL,
542                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
543                                          object->ref_count,
544                                          object->shadow_count));
545                                 if (!VM_OBJECT_TRYLOCK(robject)) {
546                                         /*
547                                          * Avoid a potential deadlock.
548                                          */
549                                         object->ref_count++;
550                                         VM_OBJECT_UNLOCK(object);
551                                         /*
552                                          * More likely than not the thread
553                                          * holding robject's lock has lower
554                                          * priority than the current thread.
555                                          * Let the lower priority thread run.
556                                          */
557                                         pause("vmo_de", 1);
558                                         continue;
559                                 }
560                                 /*
561                                  * Collapse object into its shadow unless its
562                                  * shadow is dead.  In that case, object will
563                                  * be deallocated by the thread that is
564                                  * deallocating its shadow.
565                                  */
566                                 if ((robject->flags & OBJ_DEAD) == 0 &&
567                                     (robject->handle == NULL) &&
568                                     (robject->type == OBJT_DEFAULT ||
569                                      robject->type == OBJT_SWAP)) {
570
571                                         robject->ref_count++;
572 retry:
573                                         if (robject->paging_in_progress) {
574                                                 VM_OBJECT_UNLOCK(object);
575                                                 vm_object_pip_wait(robject,
576                                                     "objde1");
577                                                 temp = robject->backing_object;
578                                                 if (object == temp) {
579                                                         VM_OBJECT_LOCK(object);
580                                                         goto retry;
581                                                 }
582                                         } else if (object->paging_in_progress) {
583                                                 VM_OBJECT_UNLOCK(robject);
584                                                 object->flags |= OBJ_PIPWNT;
585                                                 msleep(object,
586                                                     VM_OBJECT_MTX(object),
587                                                     PDROP | PVM, "objde2", 0);
588                                                 VM_OBJECT_LOCK(robject);
589                                                 temp = robject->backing_object;
590                                                 if (object == temp) {
591                                                         VM_OBJECT_LOCK(object);
592                                                         goto retry;
593                                                 }
594                                         } else
595                                                 VM_OBJECT_UNLOCK(object);
596
597                                         if (robject->ref_count == 1) {
598                                                 robject->ref_count--;
599                                                 object = robject;
600                                                 goto doterm;
601                                         }
602                                         object = robject;
603                                         vm_object_collapse(object);
604                                         VM_OBJECT_UNLOCK(object);
605                                         continue;
606                                 }
607                                 VM_OBJECT_UNLOCK(robject);
608                         }
609                         VM_OBJECT_UNLOCK(object);
610                         return;
611                 }
612 doterm:
613                 temp = object->backing_object;
614                 if (temp != NULL) {
615                         VM_OBJECT_LOCK(temp);
616                         LIST_REMOVE(object, shadow_list);
617                         temp->shadow_count--;
618                         VM_OBJECT_UNLOCK(temp);
619                         object->backing_object = NULL;
620                 }
621                 /*
622                  * Don't double-terminate, we could be in a termination
623                  * recursion due to the terminate having to sync data
624                  * to disk.
625                  */
626                 if ((object->flags & OBJ_DEAD) == 0)
627                         vm_object_terminate(object);
628                 else
629                         VM_OBJECT_UNLOCK(object);
630                 object = temp;
631         }
632 }
633
634 /*
635  *      vm_object_destroy removes the object from the global object list
636  *      and frees the space for the object.
637  */
638 void
639 vm_object_destroy(vm_object_t object)
640 {
641
642         /*
643          * Remove the object from the global object list.
644          */
645         mtx_lock(&vm_object_list_mtx);
646         TAILQ_REMOVE(&vm_object_list, object, object_list);
647         mtx_unlock(&vm_object_list_mtx);
648
649         /*
650          * Release the allocation charge.
651          */
652         if (object->cred != NULL) {
653                 KASSERT(object->type == OBJT_DEFAULT ||
654                     object->type == OBJT_SWAP,
655                     ("vm_object_terminate: non-swap obj %p has cred",
656                      object));
657                 swap_release_by_cred(object->charge, object->cred);
658                 object->charge = 0;
659                 crfree(object->cred);
660                 object->cred = NULL;
661         }
662
663         /*
664          * Free the space for the object.
665          */
666         uma_zfree(obj_zone, object);
667 }
668
669 /*
670  *      vm_object_terminate actually destroys the specified object, freeing
671  *      up all previously used resources.
672  *
673  *      The object must be locked.
674  *      This routine may block.
675  */
676 void
677 vm_object_terminate(vm_object_t object)
678 {
679         vm_page_t p, p_next;
680
681         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
682
683         /*
684          * Make sure no one uses us.
685          */
686         vm_object_set_flag(object, OBJ_DEAD);
687
688         /*
689          * wait for the pageout daemon to be done with the object
690          */
691         vm_object_pip_wait(object, "objtrm");
692
693         KASSERT(!object->paging_in_progress,
694                 ("vm_object_terminate: pageout in progress"));
695
696         /*
697          * Clean and free the pages, as appropriate. All references to the
698          * object are gone, so we don't need to lock it.
699          */
700         if (object->type == OBJT_VNODE) {
701                 struct vnode *vp = (struct vnode *)object->handle;
702
703                 /*
704                  * Clean pages and flush buffers.
705                  */
706                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707                 VM_OBJECT_UNLOCK(object);
708
709                 vinvalbuf(vp, V_SAVE, 0, 0);
710
711                 VM_OBJECT_LOCK(object);
712         }
713
714         KASSERT(object->ref_count == 0, 
715                 ("vm_object_terminate: object with references, ref_count=%d",
716                 object->ref_count));
717
718         /*
719          * Free any remaining pageable pages.  This also removes them from the
720          * paging queues.  However, don't free wired pages, just remove them
721          * from the object.  Rather than incrementally removing each page from
722          * the object, the page and object are reset to any empty state. 
723          */
724         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726                     ("vm_object_terminate: freeing busy page %p", p));
727                 vm_page_lock(p);
728                 /*
729                  * Optimize the page's removal from the object by resetting
730                  * its "object" field.  Specifically, if the page is not
731                  * wired, then the effect of this assignment is that
732                  * vm_page_free()'s call to vm_page_remove() will return
733                  * immediately without modifying the page or the object.
734                  */ 
735                 p->object = NULL;
736                 if (p->wire_count == 0) {
737                         vm_page_free(p);
738                         PCPU_INC(cnt.v_pfree);
739                 }
740                 vm_page_unlock(p);
741         }
742         /*
743          * If the object contained any pages, then reset it to an empty state.
744          * None of the object's fields, including "resident_page_count", were
745          * modified by the preceding loop.
746          */
747         if (object->resident_page_count != 0) {
748                 object->root = NULL;
749                 TAILQ_INIT(&object->memq);
750                 object->resident_page_count = 0;
751                 if (object->type == OBJT_VNODE)
752                         vdrop(object->handle);
753         }
754
755 #if VM_NRESERVLEVEL > 0
756         if (__predict_false(!LIST_EMPTY(&object->rvq)))
757                 vm_reserv_break_all(object);
758 #endif
759         if (__predict_false(object->cache != NULL))
760                 vm_page_cache_free(object, 0, 0);
761
762         /*
763          * Let the pager know object is dead.
764          */
765         vm_pager_deallocate(object);
766         VM_OBJECT_UNLOCK(object);
767
768         vm_object_destroy(object);
769 }
770
771 /*
772  * Make the page read-only so that we can clear the object flags.  However, if
773  * this is a nosync mmap then the object is likely to stay dirty so do not
774  * mess with the page and do not clear the object flags.  Returns TRUE if the
775  * page should be flushed, and FALSE otherwise.
776  */
777 static boolean_t
778 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
779 {
780
781         /*
782          * If we have been asked to skip nosync pages and this is a
783          * nosync page, skip it.  Note that the object flags were not
784          * cleared in this case so we do not have to set them.
785          */
786         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787                 *clearobjflags = 0;
788                 return (FALSE);
789         } else {
790                 pmap_remove_write(p);
791                 return (p->dirty != 0);
792         }
793 }
794
795 /*
796  *      vm_object_page_clean
797  *
798  *      Clean all dirty pages in the specified range of object.  Leaves page 
799  *      on whatever queue it is currently on.   If NOSYNC is set then do not
800  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801  *      leaving the object dirty.
802  *
803  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
804  *      synchronous clustering mode implementation.
805  *
806  *      Odd semantics: if start == end, we clean everything.
807  *
808  *      The object must be locked.
809  */
810 void
811 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
812     int flags)
813 {
814         vm_page_t np, p;
815         vm_pindex_t pi, tend, tstart;
816         int clearobjflags, curgeneration, n, pagerflags;
817
818         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
819         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
820         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
821         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
822             object->resident_page_count == 0)
823                 return;
824
825         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
826             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
827         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
828
829         tstart = OFF_TO_IDX(start);
830         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
831         clearobjflags = tstart == 0 && tend >= object->size;
832
833 rescan:
834         curgeneration = object->generation;
835
836         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
837                 pi = p->pindex;
838                 if (pi >= tend)
839                         break;
840                 np = TAILQ_NEXT(p, listq);
841                 if (p->valid == 0)
842                         continue;
843                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
844                         if (object->generation != curgeneration) {
845                                 if ((flags & OBJPC_SYNC) != 0)
846                                         goto rescan;
847                                 else
848                                         clearobjflags = 0;
849                         }
850                         np = vm_page_find_least(object, pi);
851                         continue;
852                 }
853                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
854                         continue;
855
856                 n = vm_object_page_collect_flush(object, p, pagerflags,
857                     flags, &clearobjflags);
858                 if (object->generation != curgeneration) {
859                         if ((flags & OBJPC_SYNC) != 0)
860                                 goto rescan;
861                         else
862                                 clearobjflags = 0;
863                 }
864
865                 /*
866                  * If the VOP_PUTPAGES() did a truncated write, so
867                  * that even the first page of the run is not fully
868                  * written, vm_pageout_flush() returns 0 as the run
869                  * length.  Since the condition that caused truncated
870                  * write may be permanent, e.g. exhausted free space,
871                  * accepting n == 0 would cause an infinite loop.
872                  *
873                  * Forwarding the iterator leaves the unwritten page
874                  * behind, but there is not much we can do there if
875                  * filesystem refuses to write it.
876                  */
877                 if (n == 0)
878                         n = 1;
879                 np = vm_page_find_least(object, pi + n);
880         }
881 #if 0
882         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
883 #endif
884
885         if (clearobjflags)
886                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
887 }
888
889 static int
890 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
891     int flags, int *clearobjflags)
892 {
893         vm_page_t ma[vm_pageout_page_count], p_first, tp;
894         int count, i, mreq, runlen;
895
896         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
897         vm_page_lock_assert(p, MA_NOTOWNED);
898         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
899
900         count = 1;
901         mreq = 0;
902
903         for (tp = p; count < vm_pageout_page_count; count++) {
904                 tp = vm_page_next(tp);
905                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
906                         break;
907                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
908                         break;
909         }
910
911         for (p_first = p; count < vm_pageout_page_count; count++) {
912                 tp = vm_page_prev(p_first);
913                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
914                         break;
915                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
916                         break;
917                 p_first = tp;
918                 mreq++;
919         }
920
921         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
922                 ma[i] = tp;
923
924         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
925         return (runlen);
926 }
927
928 /*
929  * Note that there is absolutely no sense in writing out
930  * anonymous objects, so we track down the vnode object
931  * to write out.
932  * We invalidate (remove) all pages from the address space
933  * for semantic correctness.
934  *
935  * If the backing object is a device object with unmanaged pages, then any
936  * mappings to the specified range of pages must be removed before this
937  * function is called.
938  *
939  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
940  * may start out with a NULL object.
941  */
942 void
943 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
944     boolean_t syncio, boolean_t invalidate)
945 {
946         vm_object_t backing_object;
947         struct vnode *vp;
948         struct mount *mp;
949         int flags, fsync_after;
950
951         if (object == NULL)
952                 return;
953         VM_OBJECT_LOCK(object);
954         while ((backing_object = object->backing_object) != NULL) {
955                 VM_OBJECT_LOCK(backing_object);
956                 offset += object->backing_object_offset;
957                 VM_OBJECT_UNLOCK(object);
958                 object = backing_object;
959                 if (object->size < OFF_TO_IDX(offset + size))
960                         size = IDX_TO_OFF(object->size) - offset;
961         }
962         /*
963          * Flush pages if writing is allowed, invalidate them
964          * if invalidation requested.  Pages undergoing I/O
965          * will be ignored by vm_object_page_remove().
966          *
967          * We cannot lock the vnode and then wait for paging
968          * to complete without deadlocking against vm_fault.
969          * Instead we simply call vm_object_page_remove() and
970          * allow it to block internally on a page-by-page
971          * basis when it encounters pages undergoing async
972          * I/O.
973          */
974         if (object->type == OBJT_VNODE &&
975             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
976                 int vfslocked;
977                 vp = object->handle;
978                 VM_OBJECT_UNLOCK(object);
979                 (void) vn_start_write(vp, &mp, V_WAIT);
980                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
981                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
982                 if (syncio && !invalidate && offset == 0 &&
983                     OFF_TO_IDX(size) == object->size) {
984                         /*
985                          * If syncing the whole mapping of the file,
986                          * it is faster to schedule all the writes in
987                          * async mode, also allowing the clustering,
988                          * and then wait for i/o to complete.
989                          */
990                         flags = 0;
991                         fsync_after = TRUE;
992                 } else {
993                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
994                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
995                         fsync_after = FALSE;
996                 }
997                 VM_OBJECT_LOCK(object);
998                 vm_object_page_clean(object, offset, offset + size, flags);
999                 VM_OBJECT_UNLOCK(object);
1000                 if (fsync_after)
1001                         (void) VOP_FSYNC(vp, MNT_WAIT, curthread);
1002                 VOP_UNLOCK(vp, 0);
1003                 VFS_UNLOCK_GIANT(vfslocked);
1004                 vn_finished_write(mp);
1005                 VM_OBJECT_LOCK(object);
1006         }
1007         if ((object->type == OBJT_VNODE ||
1008              object->type == OBJT_DEVICE) && invalidate) {
1009                 if (object->type == OBJT_DEVICE)
1010                         /*
1011                          * The option OBJPR_NOTMAPPED must be passed here
1012                          * because vm_object_page_remove() cannot remove
1013                          * unmanaged mappings.
1014                          */
1015                         flags = OBJPR_NOTMAPPED;
1016                 else if (old_msync)
1017                         flags = 0;
1018                 else
1019                         flags = OBJPR_CLEANONLY;
1020                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1021                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1022         }
1023         VM_OBJECT_UNLOCK(object);
1024 }
1025
1026 /*
1027  *      vm_object_madvise:
1028  *
1029  *      Implements the madvise function at the object/page level.
1030  *
1031  *      MADV_WILLNEED   (any object)
1032  *
1033  *          Activate the specified pages if they are resident.
1034  *
1035  *      MADV_DONTNEED   (any object)
1036  *
1037  *          Deactivate the specified pages if they are resident.
1038  *
1039  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1040  *                       OBJ_ONEMAPPING only)
1041  *
1042  *          Deactivate and clean the specified pages if they are
1043  *          resident.  This permits the process to reuse the pages
1044  *          without faulting or the kernel to reclaim the pages
1045  *          without I/O.
1046  */
1047 void
1048 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1049 {
1050         vm_pindex_t end, tpindex;
1051         vm_object_t backing_object, tobject;
1052         vm_page_t m;
1053
1054         if (object == NULL)
1055                 return;
1056         VM_OBJECT_LOCK(object);
1057         end = pindex + count;
1058         /*
1059          * Locate and adjust resident pages
1060          */
1061         for (; pindex < end; pindex += 1) {
1062 relookup:
1063                 tobject = object;
1064                 tpindex = pindex;
1065 shadowlookup:
1066                 /*
1067                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1068                  * and those pages must be OBJ_ONEMAPPING.
1069                  */
1070                 if (advise == MADV_FREE) {
1071                         if ((tobject->type != OBJT_DEFAULT &&
1072                              tobject->type != OBJT_SWAP) ||
1073                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1074                                 goto unlock_tobject;
1075                         }
1076                 } else if (tobject->type == OBJT_PHYS)
1077                         goto unlock_tobject;
1078                 m = vm_page_lookup(tobject, tpindex);
1079                 if (m == NULL && advise == MADV_WILLNEED) {
1080                         /*
1081                          * If the page is cached, reactivate it.
1082                          */
1083                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1084                             VM_ALLOC_NOBUSY);
1085                 }
1086                 if (m == NULL) {
1087                         /*
1088                          * There may be swap even if there is no backing page
1089                          */
1090                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1091                                 swap_pager_freespace(tobject, tpindex, 1);
1092                         /*
1093                          * next object
1094                          */
1095                         backing_object = tobject->backing_object;
1096                         if (backing_object == NULL)
1097                                 goto unlock_tobject;
1098                         VM_OBJECT_LOCK(backing_object);
1099                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1100                         if (tobject != object)
1101                                 VM_OBJECT_UNLOCK(tobject);
1102                         tobject = backing_object;
1103                         goto shadowlookup;
1104                 } else if (m->valid != VM_PAGE_BITS_ALL)
1105                         goto unlock_tobject;
1106                 /*
1107                  * If the page is not in a normal state, skip it.
1108                  */
1109                 vm_page_lock(m);
1110                 if (m->hold_count != 0 || m->wire_count != 0) {
1111                         vm_page_unlock(m);
1112                         goto unlock_tobject;
1113                 }
1114                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1115                     ("vm_object_madvise: page %p is fictitious", m));
1116                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1117                     ("vm_object_madvise: page %p is not managed", m));
1118                 if ((m->oflags & VPO_BUSY) || m->busy) {
1119                         if (advise == MADV_WILLNEED) {
1120                                 /*
1121                                  * Reference the page before unlocking and
1122                                  * sleeping so that the page daemon is less
1123                                  * likely to reclaim it. 
1124                                  */
1125                                 vm_page_aflag_set(m, PGA_REFERENCED);
1126                         }
1127                         vm_page_unlock(m);
1128                         if (object != tobject)
1129                                 VM_OBJECT_UNLOCK(object);
1130                         m->oflags |= VPO_WANTED;
1131                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1132                             0);
1133                         VM_OBJECT_LOCK(object);
1134                         goto relookup;
1135                 }
1136                 if (advise == MADV_WILLNEED) {
1137                         vm_page_activate(m);
1138                 } else if (advise == MADV_DONTNEED) {
1139                         vm_page_dontneed(m);
1140                 } else if (advise == MADV_FREE) {
1141                         /*
1142                          * Mark the page clean.  This will allow the page
1143                          * to be freed up by the system.  However, such pages
1144                          * are often reused quickly by malloc()/free()
1145                          * so we do not do anything that would cause
1146                          * a page fault if we can help it.
1147                          *
1148                          * Specifically, we do not try to actually free
1149                          * the page now nor do we try to put it in the
1150                          * cache (which would cause a page fault on reuse).
1151                          *
1152                          * But we do make the page is freeable as we
1153                          * can without actually taking the step of unmapping
1154                          * it.
1155                          */
1156                         pmap_clear_modify(m);
1157                         m->dirty = 0;
1158                         m->act_count = 0;
1159                         vm_page_dontneed(m);
1160                 }
1161                 vm_page_unlock(m);
1162                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1163                         swap_pager_freespace(tobject, tpindex, 1);
1164 unlock_tobject:
1165                 if (tobject != object)
1166                         VM_OBJECT_UNLOCK(tobject);
1167         }       
1168         VM_OBJECT_UNLOCK(object);
1169 }
1170
1171 /*
1172  *      vm_object_shadow:
1173  *
1174  *      Create a new object which is backed by the
1175  *      specified existing object range.  The source
1176  *      object reference is deallocated.
1177  *
1178  *      The new object and offset into that object
1179  *      are returned in the source parameters.
1180  */
1181 void
1182 vm_object_shadow(
1183         vm_object_t *object,    /* IN/OUT */
1184         vm_ooffset_t *offset,   /* IN/OUT */
1185         vm_size_t length)
1186 {
1187         vm_object_t source;
1188         vm_object_t result;
1189
1190         source = *object;
1191
1192         /*
1193          * Don't create the new object if the old object isn't shared.
1194          */
1195         if (source != NULL) {
1196                 VM_OBJECT_LOCK(source);
1197                 if (source->ref_count == 1 &&
1198                     source->handle == NULL &&
1199                     (source->type == OBJT_DEFAULT ||
1200                      source->type == OBJT_SWAP)) {
1201                         VM_OBJECT_UNLOCK(source);
1202                         return;
1203                 }
1204                 VM_OBJECT_UNLOCK(source);
1205         }
1206
1207         /*
1208          * Allocate a new object with the given length.
1209          */
1210         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1211
1212         /*
1213          * The new object shadows the source object, adding a reference to it.
1214          * Our caller changes his reference to point to the new object,
1215          * removing a reference to the source object.  Net result: no change
1216          * of reference count.
1217          *
1218          * Try to optimize the result object's page color when shadowing
1219          * in order to maintain page coloring consistency in the combined 
1220          * shadowed object.
1221          */
1222         result->backing_object = source;
1223         /*
1224          * Store the offset into the source object, and fix up the offset into
1225          * the new object.
1226          */
1227         result->backing_object_offset = *offset;
1228         if (source != NULL) {
1229                 VM_OBJECT_LOCK(source);
1230                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1231                 source->shadow_count++;
1232 #if VM_NRESERVLEVEL > 0
1233                 result->flags |= source->flags & OBJ_COLORED;
1234                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1235                     ((1 << (VM_NFREEORDER - 1)) - 1);
1236 #endif
1237                 VM_OBJECT_UNLOCK(source);
1238         }
1239
1240
1241         /*
1242          * Return the new things
1243          */
1244         *offset = 0;
1245         *object = result;
1246 }
1247
1248 /*
1249  *      vm_object_split:
1250  *
1251  * Split the pages in a map entry into a new object.  This affords
1252  * easier removal of unused pages, and keeps object inheritance from
1253  * being a negative impact on memory usage.
1254  */
1255 void
1256 vm_object_split(vm_map_entry_t entry)
1257 {
1258         vm_page_t m, m_next;
1259         vm_object_t orig_object, new_object, source;
1260         vm_pindex_t idx, offidxstart;
1261         vm_size_t size;
1262
1263         orig_object = entry->object.vm_object;
1264         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1265                 return;
1266         if (orig_object->ref_count <= 1)
1267                 return;
1268         VM_OBJECT_UNLOCK(orig_object);
1269
1270         offidxstart = OFF_TO_IDX(entry->offset);
1271         size = atop(entry->end - entry->start);
1272
1273         /*
1274          * If swap_pager_copy() is later called, it will convert new_object
1275          * into a swap object.
1276          */
1277         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1278
1279         /*
1280          * At this point, the new object is still private, so the order in
1281          * which the original and new objects are locked does not matter.
1282          */
1283         VM_OBJECT_LOCK(new_object);
1284         VM_OBJECT_LOCK(orig_object);
1285         source = orig_object->backing_object;
1286         if (source != NULL) {
1287                 VM_OBJECT_LOCK(source);
1288                 if ((source->flags & OBJ_DEAD) != 0) {
1289                         VM_OBJECT_UNLOCK(source);
1290                         VM_OBJECT_UNLOCK(orig_object);
1291                         VM_OBJECT_UNLOCK(new_object);
1292                         vm_object_deallocate(new_object);
1293                         VM_OBJECT_LOCK(orig_object);
1294                         return;
1295                 }
1296                 LIST_INSERT_HEAD(&source->shadow_head,
1297                                   new_object, shadow_list);
1298                 source->shadow_count++;
1299                 vm_object_reference_locked(source);     /* for new_object */
1300                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1301                 VM_OBJECT_UNLOCK(source);
1302                 new_object->backing_object_offset = 
1303                         orig_object->backing_object_offset + entry->offset;
1304                 new_object->backing_object = source;
1305         }
1306         if (orig_object->cred != NULL) {
1307                 new_object->cred = orig_object->cred;
1308                 crhold(orig_object->cred);
1309                 new_object->charge = ptoa(size);
1310                 KASSERT(orig_object->charge >= ptoa(size),
1311                     ("orig_object->charge < 0"));
1312                 orig_object->charge -= ptoa(size);
1313         }
1314 retry:
1315         m = vm_page_find_least(orig_object, offidxstart);
1316         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1317             m = m_next) {
1318                 m_next = TAILQ_NEXT(m, listq);
1319
1320                 /*
1321                  * We must wait for pending I/O to complete before we can
1322                  * rename the page.
1323                  *
1324                  * We do not have to VM_PROT_NONE the page as mappings should
1325                  * not be changed by this operation.
1326                  */
1327                 if ((m->oflags & VPO_BUSY) || m->busy) {
1328                         VM_OBJECT_UNLOCK(new_object);
1329                         m->oflags |= VPO_WANTED;
1330                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1331                         VM_OBJECT_LOCK(new_object);
1332                         goto retry;
1333                 }
1334 #if VM_NRESERVLEVEL > 0
1335                 /*
1336                  * If some of the reservation's allocated pages remain with
1337                  * the original object, then transferring the reservation to
1338                  * the new object is neither particularly beneficial nor
1339                  * particularly harmful as compared to leaving the reservation
1340                  * with the original object.  If, however, all of the
1341                  * reservation's allocated pages are transferred to the new
1342                  * object, then transferring the reservation is typically
1343                  * beneficial.  Determining which of these two cases applies
1344                  * would be more costly than unconditionally renaming the
1345                  * reservation.
1346                  */
1347                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1348 #endif
1349                 vm_page_lock(m);
1350                 vm_page_rename(m, new_object, idx);
1351                 vm_page_unlock(m);
1352                 /* page automatically made dirty by rename and cache handled */
1353                 vm_page_busy(m);
1354         }
1355         if (orig_object->type == OBJT_SWAP) {
1356                 /*
1357                  * swap_pager_copy() can sleep, in which case the orig_object's
1358                  * and new_object's locks are released and reacquired. 
1359                  */
1360                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1361
1362                 /*
1363                  * Transfer any cached pages from orig_object to new_object.
1364                  */
1365                 if (__predict_false(orig_object->cache != NULL))
1366                         vm_page_cache_transfer(orig_object, offidxstart,
1367                             new_object);
1368         }
1369         VM_OBJECT_UNLOCK(orig_object);
1370         TAILQ_FOREACH(m, &new_object->memq, listq)
1371                 vm_page_wakeup(m);
1372         VM_OBJECT_UNLOCK(new_object);
1373         entry->object.vm_object = new_object;
1374         entry->offset = 0LL;
1375         vm_object_deallocate(orig_object);
1376         VM_OBJECT_LOCK(new_object);
1377 }
1378
1379 #define OBSC_TEST_ALL_SHADOWED  0x0001
1380 #define OBSC_COLLAPSE_NOWAIT    0x0002
1381 #define OBSC_COLLAPSE_WAIT      0x0004
1382
1383 static int
1384 vm_object_backing_scan(vm_object_t object, int op)
1385 {
1386         int r = 1;
1387         vm_page_t p;
1388         vm_object_t backing_object;
1389         vm_pindex_t backing_offset_index;
1390
1391         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1392         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1393
1394         backing_object = object->backing_object;
1395         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1396
1397         /*
1398          * Initial conditions
1399          */
1400         if (op & OBSC_TEST_ALL_SHADOWED) {
1401                 /*
1402                  * We do not want to have to test for the existence of cache
1403                  * or swap pages in the backing object.  XXX but with the
1404                  * new swapper this would be pretty easy to do.
1405                  *
1406                  * XXX what about anonymous MAP_SHARED memory that hasn't
1407                  * been ZFOD faulted yet?  If we do not test for this, the
1408                  * shadow test may succeed! XXX
1409                  */
1410                 if (backing_object->type != OBJT_DEFAULT) {
1411                         return (0);
1412                 }
1413         }
1414         if (op & OBSC_COLLAPSE_WAIT) {
1415                 vm_object_set_flag(backing_object, OBJ_DEAD);
1416         }
1417
1418         /*
1419          * Our scan
1420          */
1421         p = TAILQ_FIRST(&backing_object->memq);
1422         while (p) {
1423                 vm_page_t next = TAILQ_NEXT(p, listq);
1424                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1425
1426                 if (op & OBSC_TEST_ALL_SHADOWED) {
1427                         vm_page_t pp;
1428
1429                         /*
1430                          * Ignore pages outside the parent object's range
1431                          * and outside the parent object's mapping of the 
1432                          * backing object.
1433                          *
1434                          * note that we do not busy the backing object's
1435                          * page.
1436                          */
1437                         if (
1438                             p->pindex < backing_offset_index ||
1439                             new_pindex >= object->size
1440                         ) {
1441                                 p = next;
1442                                 continue;
1443                         }
1444
1445                         /*
1446                          * See if the parent has the page or if the parent's
1447                          * object pager has the page.  If the parent has the
1448                          * page but the page is not valid, the parent's
1449                          * object pager must have the page.
1450                          *
1451                          * If this fails, the parent does not completely shadow
1452                          * the object and we might as well give up now.
1453                          */
1454
1455                         pp = vm_page_lookup(object, new_pindex);
1456                         if (
1457                             (pp == NULL || pp->valid == 0) &&
1458                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1459                         ) {
1460                                 r = 0;
1461                                 break;
1462                         }
1463                 }
1464
1465                 /*
1466                  * Check for busy page
1467                  */
1468                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1469                         vm_page_t pp;
1470
1471                         if (op & OBSC_COLLAPSE_NOWAIT) {
1472                                 if ((p->oflags & VPO_BUSY) ||
1473                                     !p->valid || 
1474                                     p->busy) {
1475                                         p = next;
1476                                         continue;
1477                                 }
1478                         } else if (op & OBSC_COLLAPSE_WAIT) {
1479                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1480                                         VM_OBJECT_UNLOCK(object);
1481                                         p->oflags |= VPO_WANTED;
1482                                         msleep(p, VM_OBJECT_MTX(backing_object),
1483                                             PDROP | PVM, "vmocol", 0);
1484                                         VM_OBJECT_LOCK(object);
1485                                         VM_OBJECT_LOCK(backing_object);
1486                                         /*
1487                                          * If we slept, anything could have
1488                                          * happened.  Since the object is
1489                                          * marked dead, the backing offset
1490                                          * should not have changed so we
1491                                          * just restart our scan.
1492                                          */
1493                                         p = TAILQ_FIRST(&backing_object->memq);
1494                                         continue;
1495                                 }
1496                         }
1497
1498                         KASSERT(
1499                             p->object == backing_object,
1500                             ("vm_object_backing_scan: object mismatch")
1501                         );
1502
1503                         /*
1504                          * Destroy any associated swap
1505                          */
1506                         if (backing_object->type == OBJT_SWAP) {
1507                                 swap_pager_freespace(
1508                                     backing_object, 
1509                                     p->pindex,
1510                                     1
1511                                 );
1512                         }
1513
1514                         if (
1515                             p->pindex < backing_offset_index ||
1516                             new_pindex >= object->size
1517                         ) {
1518                                 /*
1519                                  * Page is out of the parent object's range, we 
1520                                  * can simply destroy it. 
1521                                  */
1522                                 vm_page_lock(p);
1523                                 KASSERT(!pmap_page_is_mapped(p),
1524                                     ("freeing mapped page %p", p));
1525                                 if (p->wire_count == 0)
1526                                         vm_page_free(p);
1527                                 else
1528                                         vm_page_remove(p);
1529                                 vm_page_unlock(p);
1530                                 p = next;
1531                                 continue;
1532                         }
1533
1534                         pp = vm_page_lookup(object, new_pindex);
1535                         if (
1536                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1537                             (pp != NULL && pp->valid == 0)
1538                         ) {
1539                                 /*
1540                                  * The page in the parent is not (yet) valid.
1541                                  * We don't know anything about the state of
1542                                  * the original page.  It might be mapped,
1543                                  * so we must avoid the next if here.
1544                                  *
1545                                  * This is due to a race in vm_fault() where
1546                                  * we must unbusy the original (backing_obj)
1547                                  * page before we can (re)lock the parent.
1548                                  * Hence we can get here.
1549                                  */
1550                                 p = next;
1551                                 continue;
1552                         }
1553                         if (
1554                             pp != NULL ||
1555                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1556                         ) {
1557                                 /*
1558                                  * page already exists in parent OR swap exists
1559                                  * for this location in the parent.  Destroy 
1560                                  * the original page from the backing object.
1561                                  *
1562                                  * Leave the parent's page alone
1563                                  */
1564                                 vm_page_lock(p);
1565                                 KASSERT(!pmap_page_is_mapped(p),
1566                                     ("freeing mapped page %p", p));
1567                                 if (p->wire_count == 0)
1568                                         vm_page_free(p);
1569                                 else
1570                                         vm_page_remove(p);
1571                                 vm_page_unlock(p);
1572                                 p = next;
1573                                 continue;
1574                         }
1575
1576 #if VM_NRESERVLEVEL > 0
1577                         /*
1578                          * Rename the reservation.
1579                          */
1580                         vm_reserv_rename(p, object, backing_object,
1581                             backing_offset_index);
1582 #endif
1583
1584                         /*
1585                          * Page does not exist in parent, rename the
1586                          * page from the backing object to the main object. 
1587                          *
1588                          * If the page was mapped to a process, it can remain 
1589                          * mapped through the rename.
1590                          */
1591                         vm_page_lock(p);
1592                         vm_page_rename(p, object, new_pindex);
1593                         vm_page_unlock(p);
1594                         /* page automatically made dirty by rename */
1595                 }
1596                 p = next;
1597         }
1598         return (r);
1599 }
1600
1601
1602 /*
1603  * this version of collapse allows the operation to occur earlier and
1604  * when paging_in_progress is true for an object...  This is not a complete
1605  * operation, but should plug 99.9% of the rest of the leaks.
1606  */
1607 static void
1608 vm_object_qcollapse(vm_object_t object)
1609 {
1610         vm_object_t backing_object = object->backing_object;
1611
1612         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1613         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1614
1615         if (backing_object->ref_count != 1)
1616                 return;
1617
1618         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1619 }
1620
1621 /*
1622  *      vm_object_collapse:
1623  *
1624  *      Collapse an object with the object backing it.
1625  *      Pages in the backing object are moved into the
1626  *      parent, and the backing object is deallocated.
1627  */
1628 void
1629 vm_object_collapse(vm_object_t object)
1630 {
1631         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1632         
1633         while (TRUE) {
1634                 vm_object_t backing_object;
1635
1636                 /*
1637                  * Verify that the conditions are right for collapse:
1638                  *
1639                  * The object exists and the backing object exists.
1640                  */
1641                 if ((backing_object = object->backing_object) == NULL)
1642                         break;
1643
1644                 /*
1645                  * we check the backing object first, because it is most likely
1646                  * not collapsable.
1647                  */
1648                 VM_OBJECT_LOCK(backing_object);
1649                 if (backing_object->handle != NULL ||
1650                     (backing_object->type != OBJT_DEFAULT &&
1651                      backing_object->type != OBJT_SWAP) ||
1652                     (backing_object->flags & OBJ_DEAD) ||
1653                     object->handle != NULL ||
1654                     (object->type != OBJT_DEFAULT &&
1655                      object->type != OBJT_SWAP) ||
1656                     (object->flags & OBJ_DEAD)) {
1657                         VM_OBJECT_UNLOCK(backing_object);
1658                         break;
1659                 }
1660
1661                 if (
1662                     object->paging_in_progress != 0 ||
1663                     backing_object->paging_in_progress != 0
1664                 ) {
1665                         vm_object_qcollapse(object);
1666                         VM_OBJECT_UNLOCK(backing_object);
1667                         break;
1668                 }
1669                 /*
1670                  * We know that we can either collapse the backing object (if
1671                  * the parent is the only reference to it) or (perhaps) have
1672                  * the parent bypass the object if the parent happens to shadow
1673                  * all the resident pages in the entire backing object.
1674                  *
1675                  * This is ignoring pager-backed pages such as swap pages.
1676                  * vm_object_backing_scan fails the shadowing test in this
1677                  * case.
1678                  */
1679                 if (backing_object->ref_count == 1) {
1680                         /*
1681                          * If there is exactly one reference to the backing
1682                          * object, we can collapse it into the parent.  
1683                          */
1684                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1685
1686 #if VM_NRESERVLEVEL > 0
1687                         /*
1688                          * Break any reservations from backing_object.
1689                          */
1690                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1691                                 vm_reserv_break_all(backing_object);
1692 #endif
1693
1694                         /*
1695                          * Move the pager from backing_object to object.
1696                          */
1697                         if (backing_object->type == OBJT_SWAP) {
1698                                 /*
1699                                  * swap_pager_copy() can sleep, in which case
1700                                  * the backing_object's and object's locks are
1701                                  * released and reacquired.
1702                                  */
1703                                 swap_pager_copy(
1704                                     backing_object,
1705                                     object,
1706                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1707
1708                                 /*
1709                                  * Free any cached pages from backing_object.
1710                                  */
1711                                 if (__predict_false(backing_object->cache != NULL))
1712                                         vm_page_cache_free(backing_object, 0, 0);
1713                         }
1714                         /*
1715                          * Object now shadows whatever backing_object did.
1716                          * Note that the reference to 
1717                          * backing_object->backing_object moves from within 
1718                          * backing_object to within object.
1719                          */
1720                         LIST_REMOVE(object, shadow_list);
1721                         backing_object->shadow_count--;
1722                         if (backing_object->backing_object) {
1723                                 VM_OBJECT_LOCK(backing_object->backing_object);
1724                                 LIST_REMOVE(backing_object, shadow_list);
1725                                 LIST_INSERT_HEAD(
1726                                     &backing_object->backing_object->shadow_head,
1727                                     object, shadow_list);
1728                                 /*
1729                                  * The shadow_count has not changed.
1730                                  */
1731                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1732                         }
1733                         object->backing_object = backing_object->backing_object;
1734                         object->backing_object_offset +=
1735                             backing_object->backing_object_offset;
1736
1737                         /*
1738                          * Discard backing_object.
1739                          *
1740                          * Since the backing object has no pages, no pager left,
1741                          * and no object references within it, all that is
1742                          * necessary is to dispose of it.
1743                          */
1744                         KASSERT(backing_object->ref_count == 1, (
1745 "backing_object %p was somehow re-referenced during collapse!",
1746                             backing_object));
1747                         VM_OBJECT_UNLOCK(backing_object);
1748                         vm_object_destroy(backing_object);
1749
1750                         object_collapses++;
1751                 } else {
1752                         vm_object_t new_backing_object;
1753
1754                         /*
1755                          * If we do not entirely shadow the backing object,
1756                          * there is nothing we can do so we give up.
1757                          */
1758                         if (object->resident_page_count != object->size &&
1759                             vm_object_backing_scan(object,
1760                             OBSC_TEST_ALL_SHADOWED) == 0) {
1761                                 VM_OBJECT_UNLOCK(backing_object);
1762                                 break;
1763                         }
1764
1765                         /*
1766                          * Make the parent shadow the next object in the
1767                          * chain.  Deallocating backing_object will not remove
1768                          * it, since its reference count is at least 2.
1769                          */
1770                         LIST_REMOVE(object, shadow_list);
1771                         backing_object->shadow_count--;
1772
1773                         new_backing_object = backing_object->backing_object;
1774                         if ((object->backing_object = new_backing_object) != NULL) {
1775                                 VM_OBJECT_LOCK(new_backing_object);
1776                                 LIST_INSERT_HEAD(
1777                                     &new_backing_object->shadow_head,
1778                                     object,
1779                                     shadow_list
1780                                 );
1781                                 new_backing_object->shadow_count++;
1782                                 vm_object_reference_locked(new_backing_object);
1783                                 VM_OBJECT_UNLOCK(new_backing_object);
1784                                 object->backing_object_offset +=
1785                                         backing_object->backing_object_offset;
1786                         }
1787
1788                         /*
1789                          * Drop the reference count on backing_object. Since
1790                          * its ref_count was at least 2, it will not vanish.
1791                          */
1792                         backing_object->ref_count--;
1793                         VM_OBJECT_UNLOCK(backing_object);
1794                         object_bypasses++;
1795                 }
1796
1797                 /*
1798                  * Try again with this object's new backing object.
1799                  */
1800         }
1801 }
1802
1803 /*
1804  *      vm_object_page_remove:
1805  *
1806  *      For the given object, either frees or invalidates each of the
1807  *      specified pages.  In general, a page is freed.  However, if a page is
1808  *      wired for any reason other than the existence of a managed, wired
1809  *      mapping, then it may be invalidated but not removed from the object.
1810  *      Pages are specified by the given range ["start", "end") and the option
1811  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1812  *      extends from "start" to the end of the object.  If the option
1813  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1814  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1815  *      specified, then the pages within the specified range must have no
1816  *      mappings.  Otherwise, if this option is not specified, any mappings to
1817  *      the specified pages are removed before the pages are freed or
1818  *      invalidated.
1819  *
1820  *      In general, this operation should only be performed on objects that
1821  *      contain managed pages.  There are, however, two exceptions.  First, it
1822  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1823  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1824  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1825  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1826  *
1827  *      The object must be locked.
1828  */
1829 void
1830 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1831     int options)
1832 {
1833         vm_page_t p, next;
1834         int wirings;
1835
1836         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1837         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1838             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1839             ("vm_object_page_remove: illegal options for object %p", object));
1840         if (object->resident_page_count == 0)
1841                 goto skipmemq;
1842         vm_object_pip_add(object, 1);
1843 again:
1844         p = vm_page_find_least(object, start);
1845
1846         /*
1847          * Here, the variable "p" is either (1) the page with the least pindex
1848          * greater than or equal to the parameter "start" or (2) NULL. 
1849          */
1850         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1851                 next = TAILQ_NEXT(p, listq);
1852
1853                 /*
1854                  * If the page is wired for any reason besides the existence
1855                  * of managed, wired mappings, then it cannot be freed.  For
1856                  * example, fictitious pages, which represent device memory,
1857                  * are inherently wired and cannot be freed.  They can,
1858                  * however, be invalidated if the option OBJPR_CLEANONLY is
1859                  * not specified.
1860                  */
1861                 vm_page_lock(p);
1862                 if ((wirings = p->wire_count) != 0 &&
1863                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1864                         if ((options & OBJPR_NOTMAPPED) == 0) {
1865                                 pmap_remove_all(p);
1866                                 /* Account for removal of wired mappings. */
1867                                 if (wirings != 0)
1868                                         p->wire_count -= wirings;
1869                         }
1870                         if ((options & OBJPR_CLEANONLY) == 0) {
1871                                 p->valid = 0;
1872                                 vm_page_undirty(p);
1873                         }
1874                         vm_page_unlock(p);
1875                         continue;
1876                 }
1877                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1878                         goto again;
1879                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1880                     ("vm_object_page_remove: page %p is fictitious", p));
1881                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1882                         if ((options & OBJPR_NOTMAPPED) == 0)
1883                                 pmap_remove_write(p);
1884                         if (p->dirty) {
1885                                 vm_page_unlock(p);
1886                                 continue;
1887                         }
1888                 }
1889                 if ((options & OBJPR_NOTMAPPED) == 0) {
1890                         pmap_remove_all(p);
1891                         /* Account for removal of wired mappings. */
1892                         if (wirings != 0)
1893                                 p->wire_count -= wirings;
1894                 }
1895                 vm_page_free(p);
1896                 vm_page_unlock(p);
1897         }
1898         vm_object_pip_wakeup(object);
1899 skipmemq:
1900         if (__predict_false(object->cache != NULL))
1901                 vm_page_cache_free(object, start, end);
1902 }
1903
1904 /*
1905  *      vm_object_page_cache:
1906  *
1907  *      For the given object, attempt to move the specified clean
1908  *      pages to the cache queue.  If a page is wired for any reason,
1909  *      then it will not be changed.  Pages are specified by the given
1910  *      range ["start", "end").  As a special case, if "end" is zero,
1911  *      then the range extends from "start" to the end of the object.
1912  *      Any mappings to the specified pages are removed before the
1913  *      pages are moved to the cache queue.
1914  *
1915  *      This operation should only be performed on objects that
1916  *      contain managed pages.
1917  *
1918  *      The object must be locked.
1919  */
1920 void
1921 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1922 {
1923         struct mtx *mtx, *new_mtx;
1924         vm_page_t p, next;
1925
1926         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1927         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1928             object->type != OBJT_PHYS),
1929             ("vm_object_page_cache: illegal object %p", object));
1930         if (object->resident_page_count == 0)
1931                 return;
1932         p = vm_page_find_least(object, start);
1933
1934         /*
1935          * Here, the variable "p" is either (1) the page with the least pindex
1936          * greater than or equal to the parameter "start" or (2) NULL. 
1937          */
1938         mtx = NULL;
1939         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1940                 next = TAILQ_NEXT(p, listq);
1941
1942                 /*
1943                  * Avoid releasing and reacquiring the same page lock.
1944                  */
1945                 new_mtx = vm_page_lockptr(p);
1946                 if (mtx != new_mtx) {
1947                         if (mtx != NULL)
1948                                 mtx_unlock(mtx);
1949                         mtx = new_mtx;
1950                         mtx_lock(mtx);
1951                 }
1952                 vm_page_try_to_cache(p);
1953         }
1954         if (mtx != NULL)
1955                 mtx_unlock(mtx);
1956 }
1957
1958 /*
1959  *      Populate the specified range of the object with valid pages.  Returns
1960  *      TRUE if the range is successfully populated and FALSE otherwise.
1961  *
1962  *      Note: This function should be optimized to pass a larger array of
1963  *      pages to vm_pager_get_pages() before it is applied to a non-
1964  *      OBJT_DEVICE object.
1965  *
1966  *      The object must be locked.
1967  */
1968 boolean_t
1969 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1970 {
1971         vm_page_t m, ma[1];
1972         vm_pindex_t pindex;
1973         int rv;
1974
1975         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1976         for (pindex = start; pindex < end; pindex++) {
1977                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1978                     VM_ALLOC_RETRY);
1979                 if (m->valid != VM_PAGE_BITS_ALL) {
1980                         ma[0] = m;
1981                         rv = vm_pager_get_pages(object, ma, 1, 0);
1982                         m = vm_page_lookup(object, pindex);
1983                         if (m == NULL)
1984                                 break;
1985                         if (rv != VM_PAGER_OK) {
1986                                 vm_page_lock(m);
1987                                 vm_page_free(m);
1988                                 vm_page_unlock(m);
1989                                 break;
1990                         }
1991                 }
1992                 /*
1993                  * Keep "m" busy because a subsequent iteration may unlock
1994                  * the object.
1995                  */
1996         }
1997         if (pindex > start) {
1998                 m = vm_page_lookup(object, start);
1999                 while (m != NULL && m->pindex < pindex) {
2000                         vm_page_wakeup(m);
2001                         m = TAILQ_NEXT(m, listq);
2002                 }
2003         }
2004         return (pindex == end);
2005 }
2006
2007 /*
2008  *      Routine:        vm_object_coalesce
2009  *      Function:       Coalesces two objects backing up adjoining
2010  *                      regions of memory into a single object.
2011  *
2012  *      returns TRUE if objects were combined.
2013  *
2014  *      NOTE:   Only works at the moment if the second object is NULL -
2015  *              if it's not, which object do we lock first?
2016  *
2017  *      Parameters:
2018  *              prev_object     First object to coalesce
2019  *              prev_offset     Offset into prev_object
2020  *              prev_size       Size of reference to prev_object
2021  *              next_size       Size of reference to the second object
2022  *              reserved        Indicator that extension region has
2023  *                              swap accounted for
2024  *
2025  *      Conditions:
2026  *      The object must *not* be locked.
2027  */
2028 boolean_t
2029 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2030     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2031 {
2032         vm_pindex_t next_pindex;
2033
2034         if (prev_object == NULL)
2035                 return (TRUE);
2036         VM_OBJECT_LOCK(prev_object);
2037         if (prev_object->type != OBJT_DEFAULT &&
2038             prev_object->type != OBJT_SWAP) {
2039                 VM_OBJECT_UNLOCK(prev_object);
2040                 return (FALSE);
2041         }
2042
2043         /*
2044          * Try to collapse the object first
2045          */
2046         vm_object_collapse(prev_object);
2047
2048         /*
2049          * Can't coalesce if: . more than one reference . paged out . shadows
2050          * another object . has a copy elsewhere (any of which mean that the
2051          * pages not mapped to prev_entry may be in use anyway)
2052          */
2053         if (prev_object->backing_object != NULL) {
2054                 VM_OBJECT_UNLOCK(prev_object);
2055                 return (FALSE);
2056         }
2057
2058         prev_size >>= PAGE_SHIFT;
2059         next_size >>= PAGE_SHIFT;
2060         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2061
2062         if ((prev_object->ref_count > 1) &&
2063             (prev_object->size != next_pindex)) {
2064                 VM_OBJECT_UNLOCK(prev_object);
2065                 return (FALSE);
2066         }
2067
2068         /*
2069          * Account for the charge.
2070          */
2071         if (prev_object->cred != NULL) {
2072
2073                 /*
2074                  * If prev_object was charged, then this mapping,
2075                  * althought not charged now, may become writable
2076                  * later. Non-NULL cred in the object would prevent
2077                  * swap reservation during enabling of the write
2078                  * access, so reserve swap now. Failed reservation
2079                  * cause allocation of the separate object for the map
2080                  * entry, and swap reservation for this entry is
2081                  * managed in appropriate time.
2082                  */
2083                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2084                     prev_object->cred)) {
2085                         return (FALSE);
2086                 }
2087                 prev_object->charge += ptoa(next_size);
2088         }
2089
2090         /*
2091          * Remove any pages that may still be in the object from a previous
2092          * deallocation.
2093          */
2094         if (next_pindex < prev_object->size) {
2095                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2096                     next_size, 0);
2097                 if (prev_object->type == OBJT_SWAP)
2098                         swap_pager_freespace(prev_object,
2099                                              next_pindex, next_size);
2100 #if 0
2101                 if (prev_object->cred != NULL) {
2102                         KASSERT(prev_object->charge >=
2103                             ptoa(prev_object->size - next_pindex),
2104                             ("object %p overcharged 1 %jx %jx", prev_object,
2105                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2106                         prev_object->charge -= ptoa(prev_object->size -
2107                             next_pindex);
2108                 }
2109 #endif
2110         }
2111
2112         /*
2113          * Extend the object if necessary.
2114          */
2115         if (next_pindex + next_size > prev_object->size)
2116                 prev_object->size = next_pindex + next_size;
2117
2118         VM_OBJECT_UNLOCK(prev_object);
2119         return (TRUE);
2120 }
2121
2122 void
2123 vm_object_set_writeable_dirty(vm_object_t object)
2124 {
2125
2126         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2127         if (object->type != OBJT_VNODE)
2128                 return;
2129         object->generation++;
2130         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2131                 return;
2132         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2133 }
2134
2135 #include "opt_ddb.h"
2136 #ifdef DDB
2137 #include <sys/kernel.h>
2138
2139 #include <sys/cons.h>
2140
2141 #include <ddb/ddb.h>
2142
2143 static int
2144 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2145 {
2146         vm_map_t tmpm;
2147         vm_map_entry_t tmpe;
2148         vm_object_t obj;
2149         int entcount;
2150
2151         if (map == 0)
2152                 return 0;
2153
2154         if (entry == 0) {
2155                 tmpe = map->header.next;
2156                 entcount = map->nentries;
2157                 while (entcount-- && (tmpe != &map->header)) {
2158                         if (_vm_object_in_map(map, object, tmpe)) {
2159                                 return 1;
2160                         }
2161                         tmpe = tmpe->next;
2162                 }
2163         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2164                 tmpm = entry->object.sub_map;
2165                 tmpe = tmpm->header.next;
2166                 entcount = tmpm->nentries;
2167                 while (entcount-- && tmpe != &tmpm->header) {
2168                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2169                                 return 1;
2170                         }
2171                         tmpe = tmpe->next;
2172                 }
2173         } else if ((obj = entry->object.vm_object) != NULL) {
2174                 for (; obj; obj = obj->backing_object)
2175                         if (obj == object) {
2176                                 return 1;
2177                         }
2178         }
2179         return 0;
2180 }
2181
2182 static int
2183 vm_object_in_map(vm_object_t object)
2184 {
2185         struct proc *p;
2186
2187         /* sx_slock(&allproc_lock); */
2188         FOREACH_PROC_IN_SYSTEM(p) {
2189                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2190                         continue;
2191                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2192                         /* sx_sunlock(&allproc_lock); */
2193                         return 1;
2194                 }
2195         }
2196         /* sx_sunlock(&allproc_lock); */
2197         if (_vm_object_in_map(kernel_map, object, 0))
2198                 return 1;
2199         if (_vm_object_in_map(kmem_map, object, 0))
2200                 return 1;
2201         if (_vm_object_in_map(pager_map, object, 0))
2202                 return 1;
2203         if (_vm_object_in_map(buffer_map, object, 0))
2204                 return 1;
2205         return 0;
2206 }
2207
2208 DB_SHOW_COMMAND(vmochk, vm_object_check)
2209 {
2210         vm_object_t object;
2211
2212         /*
2213          * make sure that internal objs are in a map somewhere
2214          * and none have zero ref counts.
2215          */
2216         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2217                 if (object->handle == NULL &&
2218                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2219                         if (object->ref_count == 0) {
2220                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2221                                         (long)object->size);
2222                         }
2223                         if (!vm_object_in_map(object)) {
2224                                 db_printf(
2225                         "vmochk: internal obj is not in a map: "
2226                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2227                                     object->ref_count, (u_long)object->size, 
2228                                     (u_long)object->size,
2229                                     (void *)object->backing_object);
2230                         }
2231                 }
2232         }
2233 }
2234
2235 /*
2236  *      vm_object_print:        [ debug ]
2237  */
2238 DB_SHOW_COMMAND(object, vm_object_print_static)
2239 {
2240         /* XXX convert args. */
2241         vm_object_t object = (vm_object_t)addr;
2242         boolean_t full = have_addr;
2243
2244         vm_page_t p;
2245
2246         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2247 #define count   was_count
2248
2249         int count;
2250
2251         if (object == NULL)
2252                 return;
2253
2254         db_iprintf(
2255             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2256             object, (int)object->type, (uintmax_t)object->size,
2257             object->resident_page_count, object->ref_count, object->flags,
2258             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2259         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2260             object->shadow_count, 
2261             object->backing_object ? object->backing_object->ref_count : 0,
2262             object->backing_object, (uintmax_t)object->backing_object_offset);
2263
2264         if (!full)
2265                 return;
2266
2267         db_indent += 2;
2268         count = 0;
2269         TAILQ_FOREACH(p, &object->memq, listq) {
2270                 if (count == 0)
2271                         db_iprintf("memory:=");
2272                 else if (count == 6) {
2273                         db_printf("\n");
2274                         db_iprintf(" ...");
2275                         count = 0;
2276                 } else
2277                         db_printf(",");
2278                 count++;
2279
2280                 db_printf("(off=0x%jx,page=0x%jx)",
2281                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2282         }
2283         if (count != 0)
2284                 db_printf("\n");
2285         db_indent -= 2;
2286 }
2287
2288 /* XXX. */
2289 #undef count
2290
2291 /* XXX need this non-static entry for calling from vm_map_print. */
2292 void
2293 vm_object_print(
2294         /* db_expr_t */ long addr,
2295         boolean_t have_addr,
2296         /* db_expr_t */ long count,
2297         char *modif)
2298 {
2299         vm_object_print_static(addr, have_addr, count, modif);
2300 }
2301
2302 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2303 {
2304         vm_object_t object;
2305         vm_pindex_t fidx;
2306         vm_paddr_t pa;
2307         vm_page_t m, prev_m;
2308         int rcount, nl, c;
2309
2310         nl = 0;
2311         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2312                 db_printf("new object: %p\n", (void *)object);
2313                 if (nl > 18) {
2314                         c = cngetc();
2315                         if (c != ' ')
2316                                 return;
2317                         nl = 0;
2318                 }
2319                 nl++;
2320                 rcount = 0;
2321                 fidx = 0;
2322                 pa = -1;
2323                 TAILQ_FOREACH(m, &object->memq, listq) {
2324                         if (m->pindex > 128)
2325                                 break;
2326                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2327                             prev_m->pindex + 1 != m->pindex) {
2328                                 if (rcount) {
2329                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2330                                                 (long)fidx, rcount, (long)pa);
2331                                         if (nl > 18) {
2332                                                 c = cngetc();
2333                                                 if (c != ' ')
2334                                                         return;
2335                                                 nl = 0;
2336                                         }
2337                                         nl++;
2338                                         rcount = 0;
2339                                 }
2340                         }                               
2341                         if (rcount &&
2342                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2343                                 ++rcount;
2344                                 continue;
2345                         }
2346                         if (rcount) {
2347                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2348                                         (long)fidx, rcount, (long)pa);
2349                                 if (nl > 18) {
2350                                         c = cngetc();
2351                                         if (c != ' ')
2352                                                 return;
2353                                         nl = 0;
2354                                 }
2355                                 nl++;
2356                         }
2357                         fidx = m->pindex;
2358                         pa = VM_PAGE_TO_PHYS(m);
2359                         rcount = 1;
2360                 }
2361                 if (rcount) {
2362                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2363                                 (long)fidx, rcount, (long)pa);
2364                         if (nl > 18) {
2365                                 c = cngetc();
2366                                 if (c != ' ')
2367                                         return;
2368                                 nl = 0;
2369                         }
2370                         nl++;
2371                 }
2372         }
2373 }
2374 #endif /* DDB */