]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Remove spurious newline
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113                     int pagerflags, int flags, boolean_t *clearobjflags,
114                     boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116                     boolean_t *clearobjflags);
117 static void     vm_object_qcollapse(vm_object_t object);
118 static void     vm_object_vndeallocate(vm_object_t object);
119
120 /*
121  *      Virtual memory objects maintain the actual data
122  *      associated with allocated virtual memory.  A given
123  *      page of memory exists within exactly one object.
124  *
125  *      An object is only deallocated when all "references"
126  *      are given up.  Only one "reference" to a given
127  *      region of an object should be writeable.
128  *
129  *      Associated with each object is a list of all resident
130  *      memory pages belonging to that object; this list is
131  *      maintained by the "vm_page" module, and locked by the object's
132  *      lock.
133  *
134  *      Each object also records a "pager" routine which is
135  *      used to retrieve (and store) pages to the proper backing
136  *      storage.  In addition, objects may be backed by other
137  *      objects from which they were virtual-copied.
138  *
139  *      The only items within the object structure which are
140  *      modified after time of creation are:
141  *              reference count         locked by object's lock
142  *              pager routine           locked by object's lock
143  *
144  */
145
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
148
149 struct vm_object kernel_object_store;
150
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163
164 static void
165 counter_startup(void)
166 {
167
168         object_collapses = counter_u64_alloc(M_WAITOK);
169         object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172
173 static uma_zone_t obj_zone;
174
175 static int vm_object_zinit(void *mem, int size, int flags);
176
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183         vm_object_t object;
184
185         object = (vm_object_t)mem;
186         KASSERT(object->ref_count == 0,
187             ("object %p ref_count = %d", object, object->ref_count));
188         KASSERT(TAILQ_EMPTY(&object->memq),
189             ("object %p has resident pages in its memq", object));
190         KASSERT(vm_radix_is_empty(&object->rtree),
191             ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193         KASSERT(LIST_EMPTY(&object->rvq),
194             ("object %p has reservations",
195             object));
196 #endif
197         KASSERT(object->paging_in_progress == 0,
198             ("object %p paging_in_progress = %d",
199             object, object->paging_in_progress));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         object->ref_count = 0;
223         vm_radix_init(&object->rtree);
224         object->paging_in_progress = 0;
225         object->resident_page_count = 0;
226         object->shadow_count = 0;
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         switch (type) {
254         case OBJT_DEAD:
255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
256         case OBJT_DEFAULT:
257         case OBJT_SWAP:
258                 object->flags = OBJ_ONEMAPPING;
259                 break;
260         case OBJT_DEVICE:
261         case OBJT_SG:
262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263                 break;
264         case OBJT_MGTDEVICE:
265                 object->flags = OBJ_FICTITIOUS;
266                 break;
267         case OBJT_PHYS:
268                 object->flags = OBJ_UNMANAGED;
269                 break;
270         case OBJT_VNODE:
271                 object->flags = 0;
272                 break;
273         default:
274                 panic("_vm_object_allocate: type %d is undefined", type);
275         }
276         object->size = size;
277         object->domain.dr_policy = NULL;
278         object->generation = 1;
279         object->ref_count = 1;
280         object->memattr = VM_MEMATTR_DEFAULT;
281         object->cred = NULL;
282         object->charge = 0;
283         object->handle = NULL;
284         object->backing_object = NULL;
285         object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287         LIST_INIT(&object->rvq);
288 #endif
289         umtx_shm_object_init(object);
290 }
291
292 /*
293  *      vm_object_init:
294  *
295  *      Initialize the VM objects module.
296  */
297 void
298 vm_object_init(void)
299 {
300         TAILQ_INIT(&vm_object_list);
301         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302         
303         rw_init(&kernel_object->lock, "kernel vm object");
304         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305             VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307         kernel_object->flags |= OBJ_COLORED;
308         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310
311         /*
312          * The lock portion of struct vm_object must be type stable due
313          * to vm_pageout_fallback_object_lock locking a vm object
314          * without holding any references to it.
315          */
316         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
317 #ifdef INVARIANTS
318             vm_object_zdtor,
319 #else
320             NULL,
321 #endif
322             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323
324         vm_radix_zinit();
325 }
326
327 void
328 vm_object_clear_flag(vm_object_t object, u_short bits)
329 {
330
331         VM_OBJECT_ASSERT_WLOCKED(object);
332         object->flags &= ~bits;
333 }
334
335 /*
336  *      Sets the default memory attribute for the specified object.  Pages
337  *      that are allocated to this object are by default assigned this memory
338  *      attribute.
339  *
340  *      Presently, this function must be called before any pages are allocated
341  *      to the object.  In the future, this requirement may be relaxed for
342  *      "default" and "swap" objects.
343  */
344 int
345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
346 {
347
348         VM_OBJECT_ASSERT_WLOCKED(object);
349         switch (object->type) {
350         case OBJT_DEFAULT:
351         case OBJT_DEVICE:
352         case OBJT_MGTDEVICE:
353         case OBJT_PHYS:
354         case OBJT_SG:
355         case OBJT_SWAP:
356         case OBJT_VNODE:
357                 if (!TAILQ_EMPTY(&object->memq))
358                         return (KERN_FAILURE);
359                 break;
360         case OBJT_DEAD:
361                 return (KERN_INVALID_ARGUMENT);
362         default:
363                 panic("vm_object_set_memattr: object %p is of undefined type",
364                     object);
365         }
366         object->memattr = memattr;
367         return (KERN_SUCCESS);
368 }
369
370 void
371 vm_object_pip_add(vm_object_t object, short i)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(object);
375         object->paging_in_progress += i;
376 }
377
378 void
379 vm_object_pip_subtract(vm_object_t object, short i)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         object->paging_in_progress -= i;
384 }
385
386 void
387 vm_object_pip_wakeup(vm_object_t object)
388 {
389
390         VM_OBJECT_ASSERT_WLOCKED(object);
391         object->paging_in_progress--;
392         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
393                 vm_object_clear_flag(object, OBJ_PIPWNT);
394                 wakeup(object);
395         }
396 }
397
398 void
399 vm_object_pip_wakeupn(vm_object_t object, short i)
400 {
401
402         VM_OBJECT_ASSERT_WLOCKED(object);
403         if (i)
404                 object->paging_in_progress -= i;
405         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
406                 vm_object_clear_flag(object, OBJ_PIPWNT);
407                 wakeup(object);
408         }
409 }
410
411 void
412 vm_object_pip_wait(vm_object_t object, char *waitid)
413 {
414
415         VM_OBJECT_ASSERT_WLOCKED(object);
416         while (object->paging_in_progress) {
417                 object->flags |= OBJ_PIPWNT;
418                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
419         }
420 }
421
422 /*
423  *      vm_object_allocate:
424  *
425  *      Returns a new object with the given size.
426  */
427 vm_object_t
428 vm_object_allocate(objtype_t type, vm_pindex_t size)
429 {
430         vm_object_t object;
431
432         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433         _vm_object_allocate(type, size, object);
434         return (object);
435 }
436
437
438 /*
439  *      vm_object_reference:
440  *
441  *      Gets another reference to the given object.  Note: OBJ_DEAD
442  *      objects can be referenced during final cleaning.
443  */
444 void
445 vm_object_reference(vm_object_t object)
446 {
447         if (object == NULL)
448                 return;
449         VM_OBJECT_WLOCK(object);
450         vm_object_reference_locked(object);
451         VM_OBJECT_WUNLOCK(object);
452 }
453
454 /*
455  *      vm_object_reference_locked:
456  *
457  *      Gets another reference to the given object.
458  *
459  *      The object must be locked.
460  */
461 void
462 vm_object_reference_locked(vm_object_t object)
463 {
464         struct vnode *vp;
465
466         VM_OBJECT_ASSERT_WLOCKED(object);
467         object->ref_count++;
468         if (object->type == OBJT_VNODE) {
469                 vp = object->handle;
470                 vref(vp);
471         }
472 }
473
474 /*
475  * Handle deallocating an object of type OBJT_VNODE.
476  */
477 static void
478 vm_object_vndeallocate(vm_object_t object)
479 {
480         struct vnode *vp = (struct vnode *) object->handle;
481
482         VM_OBJECT_ASSERT_WLOCKED(object);
483         KASSERT(object->type == OBJT_VNODE,
484             ("vm_object_vndeallocate: not a vnode object"));
485         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
486 #ifdef INVARIANTS
487         if (object->ref_count == 0) {
488                 vn_printf(vp, "vm_object_vndeallocate ");
489                 panic("vm_object_vndeallocate: bad object reference count");
490         }
491 #endif
492
493         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
494                 umtx_shm_object_terminated(object);
495
496         object->ref_count--;
497
498         /* vrele may need the vnode lock. */
499         VM_OBJECT_WUNLOCK(object);
500         vrele(vp);
501 }
502
503 /*
504  *      vm_object_deallocate:
505  *
506  *      Release a reference to the specified object,
507  *      gained either through a vm_object_allocate
508  *      or a vm_object_reference call.  When all references
509  *      are gone, storage associated with this object
510  *      may be relinquished.
511  *
512  *      No object may be locked.
513  */
514 void
515 vm_object_deallocate(vm_object_t object)
516 {
517         vm_object_t temp;
518         struct vnode *vp;
519
520         while (object != NULL) {
521                 VM_OBJECT_WLOCK(object);
522                 if (object->type == OBJT_VNODE) {
523                         vm_object_vndeallocate(object);
524                         return;
525                 }
526
527                 KASSERT(object->ref_count != 0,
528                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
529
530                 /*
531                  * If the reference count goes to 0 we start calling
532                  * vm_object_terminate() on the object chain.
533                  * A ref count of 1 may be a special case depending on the
534                  * shadow count being 0 or 1.
535                  */
536                 object->ref_count--;
537                 if (object->ref_count > 1) {
538                         VM_OBJECT_WUNLOCK(object);
539                         return;
540                 } else if (object->ref_count == 1) {
541                         if (object->type == OBJT_SWAP &&
542                             (object->flags & OBJ_TMPFS) != 0) {
543                                 vp = object->un_pager.swp.swp_tmpfs;
544                                 vhold(vp);
545                                 VM_OBJECT_WUNLOCK(object);
546                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
547                                 VM_OBJECT_WLOCK(object);
548                                 if (object->type == OBJT_DEAD ||
549                                     object->ref_count != 1) {
550                                         VM_OBJECT_WUNLOCK(object);
551                                         VOP_UNLOCK(vp, 0);
552                                         vdrop(vp);
553                                         return;
554                                 }
555                                 if ((object->flags & OBJ_TMPFS) != 0)
556                                         VOP_UNSET_TEXT(vp);
557                                 VOP_UNLOCK(vp, 0);
558                                 vdrop(vp);
559                         }
560                         if (object->shadow_count == 0 &&
561                             object->handle == NULL &&
562                             (object->type == OBJT_DEFAULT ||
563                             (object->type == OBJT_SWAP &&
564                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
565                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
566                         } else if ((object->shadow_count == 1) &&
567                             (object->handle == NULL) &&
568                             (object->type == OBJT_DEFAULT ||
569                              object->type == OBJT_SWAP)) {
570                                 vm_object_t robject;
571
572                                 robject = LIST_FIRST(&object->shadow_head);
573                                 KASSERT(robject != NULL,
574                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
575                                          object->ref_count,
576                                          object->shadow_count));
577                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
578                                     ("shadowed tmpfs v_object %p", object));
579                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
580                                         /*
581                                          * Avoid a potential deadlock.
582                                          */
583                                         object->ref_count++;
584                                         VM_OBJECT_WUNLOCK(object);
585                                         /*
586                                          * More likely than not the thread
587                                          * holding robject's lock has lower
588                                          * priority than the current thread.
589                                          * Let the lower priority thread run.
590                                          */
591                                         pause("vmo_de", 1);
592                                         continue;
593                                 }
594                                 /*
595                                  * Collapse object into its shadow unless its
596                                  * shadow is dead.  In that case, object will
597                                  * be deallocated by the thread that is
598                                  * deallocating its shadow.
599                                  */
600                                 if ((robject->flags & OBJ_DEAD) == 0 &&
601                                     (robject->handle == NULL) &&
602                                     (robject->type == OBJT_DEFAULT ||
603                                      robject->type == OBJT_SWAP)) {
604
605                                         robject->ref_count++;
606 retry:
607                                         if (robject->paging_in_progress) {
608                                                 VM_OBJECT_WUNLOCK(object);
609                                                 vm_object_pip_wait(robject,
610                                                     "objde1");
611                                                 temp = robject->backing_object;
612                                                 if (object == temp) {
613                                                         VM_OBJECT_WLOCK(object);
614                                                         goto retry;
615                                                 }
616                                         } else if (object->paging_in_progress) {
617                                                 VM_OBJECT_WUNLOCK(robject);
618                                                 object->flags |= OBJ_PIPWNT;
619                                                 VM_OBJECT_SLEEP(object, object,
620                                                     PDROP | PVM, "objde2", 0);
621                                                 VM_OBJECT_WLOCK(robject);
622                                                 temp = robject->backing_object;
623                                                 if (object == temp) {
624                                                         VM_OBJECT_WLOCK(object);
625                                                         goto retry;
626                                                 }
627                                         } else
628                                                 VM_OBJECT_WUNLOCK(object);
629
630                                         if (robject->ref_count == 1) {
631                                                 robject->ref_count--;
632                                                 object = robject;
633                                                 goto doterm;
634                                         }
635                                         object = robject;
636                                         vm_object_collapse(object);
637                                         VM_OBJECT_WUNLOCK(object);
638                                         continue;
639                                 }
640                                 VM_OBJECT_WUNLOCK(robject);
641                         }
642                         VM_OBJECT_WUNLOCK(object);
643                         return;
644                 }
645 doterm:
646                 umtx_shm_object_terminated(object);
647                 temp = object->backing_object;
648                 if (temp != NULL) {
649                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
650                             ("shadowed tmpfs v_object 2 %p", object));
651                         VM_OBJECT_WLOCK(temp);
652                         LIST_REMOVE(object, shadow_list);
653                         temp->shadow_count--;
654                         VM_OBJECT_WUNLOCK(temp);
655                         object->backing_object = NULL;
656                 }
657                 /*
658                  * Don't double-terminate, we could be in a termination
659                  * recursion due to the terminate having to sync data
660                  * to disk.
661                  */
662                 if ((object->flags & OBJ_DEAD) == 0)
663                         vm_object_terminate(object);
664                 else
665                         VM_OBJECT_WUNLOCK(object);
666                 object = temp;
667         }
668 }
669
670 /*
671  *      vm_object_destroy removes the object from the global object list
672  *      and frees the space for the object.
673  */
674 void
675 vm_object_destroy(vm_object_t object)
676 {
677
678         /*
679          * Release the allocation charge.
680          */
681         if (object->cred != NULL) {
682                 swap_release_by_cred(object->charge, object->cred);
683                 object->charge = 0;
684                 crfree(object->cred);
685                 object->cred = NULL;
686         }
687
688         /*
689          * Free the space for the object.
690          */
691         uma_zfree(obj_zone, object);
692 }
693
694 /*
695  *      vm_object_terminate_pages removes any remaining pageable pages
696  *      from the object and resets the object to an empty state.
697  */
698 static void
699 vm_object_terminate_pages(vm_object_t object)
700 {
701         vm_page_t p, p_next;
702         struct mtx *mtx;
703
704         VM_OBJECT_ASSERT_WLOCKED(object);
705
706         mtx = NULL;
707
708         /*
709          * Free any remaining pageable pages.  This also removes them from the
710          * paging queues.  However, don't free wired pages, just remove them
711          * from the object.  Rather than incrementally removing each page from
712          * the object, the page and object are reset to any empty state. 
713          */
714         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
715                 vm_page_assert_unbusied(p);
716                 if ((object->flags & OBJ_UNMANAGED) == 0)
717                         /*
718                          * vm_page_free_prep() only needs the page
719                          * lock for managed pages.
720                          */
721                         vm_page_change_lock(p, &mtx);
722                 p->object = NULL;
723                 if (p->wire_count != 0)
724                         continue;
725                 VM_CNT_INC(v_pfree);
726                 vm_page_free(p);
727         }
728         if (mtx != NULL)
729                 mtx_unlock(mtx);
730
731         /*
732          * If the object contained any pages, then reset it to an empty state.
733          * None of the object's fields, including "resident_page_count", were
734          * modified by the preceding loop.
735          */
736         if (object->resident_page_count != 0) {
737                 vm_radix_reclaim_allnodes(&object->rtree);
738                 TAILQ_INIT(&object->memq);
739                 object->resident_page_count = 0;
740                 if (object->type == OBJT_VNODE)
741                         vdrop(object->handle);
742         }
743 }
744
745 /*
746  *      vm_object_terminate actually destroys the specified object, freeing
747  *      up all previously used resources.
748  *
749  *      The object must be locked.
750  *      This routine may block.
751  */
752 void
753 vm_object_terminate(vm_object_t object)
754 {
755
756         VM_OBJECT_ASSERT_WLOCKED(object);
757
758         /*
759          * Make sure no one uses us.
760          */
761         vm_object_set_flag(object, OBJ_DEAD);
762
763         /*
764          * wait for the pageout daemon to be done with the object
765          */
766         vm_object_pip_wait(object, "objtrm");
767
768         KASSERT(!object->paging_in_progress,
769                 ("vm_object_terminate: pageout in progress"));
770
771         /*
772          * Clean and free the pages, as appropriate. All references to the
773          * object are gone, so we don't need to lock it.
774          */
775         if (object->type == OBJT_VNODE) {
776                 struct vnode *vp = (struct vnode *)object->handle;
777
778                 /*
779                  * Clean pages and flush buffers.
780                  */
781                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
782                 VM_OBJECT_WUNLOCK(object);
783
784                 vinvalbuf(vp, V_SAVE, 0, 0);
785
786                 BO_LOCK(&vp->v_bufobj);
787                 vp->v_bufobj.bo_flag |= BO_DEAD;
788                 BO_UNLOCK(&vp->v_bufobj);
789
790                 VM_OBJECT_WLOCK(object);
791         }
792
793         KASSERT(object->ref_count == 0, 
794                 ("vm_object_terminate: object with references, ref_count=%d",
795                 object->ref_count));
796
797         if ((object->flags & OBJ_PG_DTOR) == 0)
798                 vm_object_terminate_pages(object);
799
800 #if VM_NRESERVLEVEL > 0
801         if (__predict_false(!LIST_EMPTY(&object->rvq)))
802                 vm_reserv_break_all(object);
803 #endif
804
805         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
806             object->type == OBJT_SWAP,
807             ("%s: non-swap obj %p has cred", __func__, object));
808
809         /*
810          * Let the pager know object is dead.
811          */
812         vm_pager_deallocate(object);
813         VM_OBJECT_WUNLOCK(object);
814
815         vm_object_destroy(object);
816 }
817
818 /*
819  * Make the page read-only so that we can clear the object flags.  However, if
820  * this is a nosync mmap then the object is likely to stay dirty so do not
821  * mess with the page and do not clear the object flags.  Returns TRUE if the
822  * page should be flushed, and FALSE otherwise.
823  */
824 static boolean_t
825 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
826 {
827
828         /*
829          * If we have been asked to skip nosync pages and this is a
830          * nosync page, skip it.  Note that the object flags were not
831          * cleared in this case so we do not have to set them.
832          */
833         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
834                 *clearobjflags = FALSE;
835                 return (FALSE);
836         } else {
837                 pmap_remove_write(p);
838                 return (p->dirty != 0);
839         }
840 }
841
842 /*
843  *      vm_object_page_clean
844  *
845  *      Clean all dirty pages in the specified range of object.  Leaves page 
846  *      on whatever queue it is currently on.   If NOSYNC is set then do not
847  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
848  *      leaving the object dirty.
849  *
850  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
851  *      synchronous clustering mode implementation.
852  *
853  *      Odd semantics: if start == end, we clean everything.
854  *
855  *      The object must be locked.
856  *
857  *      Returns FALSE if some page from the range was not written, as
858  *      reported by the pager, and TRUE otherwise.
859  */
860 boolean_t
861 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
862     int flags)
863 {
864         vm_page_t np, p;
865         vm_pindex_t pi, tend, tstart;
866         int curgeneration, n, pagerflags;
867         boolean_t clearobjflags, eio, res;
868
869         VM_OBJECT_ASSERT_WLOCKED(object);
870
871         /*
872          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
873          * objects.  The check below prevents the function from
874          * operating on non-vnode objects.
875          */
876         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
877             object->resident_page_count == 0)
878                 return (TRUE);
879
880         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
881             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
882         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
883
884         tstart = OFF_TO_IDX(start);
885         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
886         clearobjflags = tstart == 0 && tend >= object->size;
887         res = TRUE;
888
889 rescan:
890         curgeneration = object->generation;
891
892         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
893                 pi = p->pindex;
894                 if (pi >= tend)
895                         break;
896                 np = TAILQ_NEXT(p, listq);
897                 if (p->valid == 0)
898                         continue;
899                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
900                         if (object->generation != curgeneration) {
901                                 if ((flags & OBJPC_SYNC) != 0)
902                                         goto rescan;
903                                 else
904                                         clearobjflags = FALSE;
905                         }
906                         np = vm_page_find_least(object, pi);
907                         continue;
908                 }
909                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
910                         continue;
911
912                 n = vm_object_page_collect_flush(object, p, pagerflags,
913                     flags, &clearobjflags, &eio);
914                 if (eio) {
915                         res = FALSE;
916                         clearobjflags = FALSE;
917                 }
918                 if (object->generation != curgeneration) {
919                         if ((flags & OBJPC_SYNC) != 0)
920                                 goto rescan;
921                         else
922                                 clearobjflags = FALSE;
923                 }
924
925                 /*
926                  * If the VOP_PUTPAGES() did a truncated write, so
927                  * that even the first page of the run is not fully
928                  * written, vm_pageout_flush() returns 0 as the run
929                  * length.  Since the condition that caused truncated
930                  * write may be permanent, e.g. exhausted free space,
931                  * accepting n == 0 would cause an infinite loop.
932                  *
933                  * Forwarding the iterator leaves the unwritten page
934                  * behind, but there is not much we can do there if
935                  * filesystem refuses to write it.
936                  */
937                 if (n == 0) {
938                         n = 1;
939                         clearobjflags = FALSE;
940                 }
941                 np = vm_page_find_least(object, pi + n);
942         }
943 #if 0
944         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
945 #endif
946
947         if (clearobjflags)
948                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
949         return (res);
950 }
951
952 static int
953 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
954     int flags, boolean_t *clearobjflags, boolean_t *eio)
955 {
956         vm_page_t ma[vm_pageout_page_count], p_first, tp;
957         int count, i, mreq, runlen;
958
959         vm_page_lock_assert(p, MA_NOTOWNED);
960         VM_OBJECT_ASSERT_WLOCKED(object);
961
962         count = 1;
963         mreq = 0;
964
965         for (tp = p; count < vm_pageout_page_count; count++) {
966                 tp = vm_page_next(tp);
967                 if (tp == NULL || vm_page_busied(tp))
968                         break;
969                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
970                         break;
971         }
972
973         for (p_first = p; count < vm_pageout_page_count; count++) {
974                 tp = vm_page_prev(p_first);
975                 if (tp == NULL || vm_page_busied(tp))
976                         break;
977                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
978                         break;
979                 p_first = tp;
980                 mreq++;
981         }
982
983         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
984                 ma[i] = tp;
985
986         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
987         return (runlen);
988 }
989
990 /*
991  * Note that there is absolutely no sense in writing out
992  * anonymous objects, so we track down the vnode object
993  * to write out.
994  * We invalidate (remove) all pages from the address space
995  * for semantic correctness.
996  *
997  * If the backing object is a device object with unmanaged pages, then any
998  * mappings to the specified range of pages must be removed before this
999  * function is called.
1000  *
1001  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1002  * may start out with a NULL object.
1003  */
1004 boolean_t
1005 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1006     boolean_t syncio, boolean_t invalidate)
1007 {
1008         vm_object_t backing_object;
1009         struct vnode *vp;
1010         struct mount *mp;
1011         int error, flags, fsync_after;
1012         boolean_t res;
1013
1014         if (object == NULL)
1015                 return (TRUE);
1016         res = TRUE;
1017         error = 0;
1018         VM_OBJECT_WLOCK(object);
1019         while ((backing_object = object->backing_object) != NULL) {
1020                 VM_OBJECT_WLOCK(backing_object);
1021                 offset += object->backing_object_offset;
1022                 VM_OBJECT_WUNLOCK(object);
1023                 object = backing_object;
1024                 if (object->size < OFF_TO_IDX(offset + size))
1025                         size = IDX_TO_OFF(object->size) - offset;
1026         }
1027         /*
1028          * Flush pages if writing is allowed, invalidate them
1029          * if invalidation requested.  Pages undergoing I/O
1030          * will be ignored by vm_object_page_remove().
1031          *
1032          * We cannot lock the vnode and then wait for paging
1033          * to complete without deadlocking against vm_fault.
1034          * Instead we simply call vm_object_page_remove() and
1035          * allow it to block internally on a page-by-page
1036          * basis when it encounters pages undergoing async
1037          * I/O.
1038          */
1039         if (object->type == OBJT_VNODE &&
1040             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1041             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1042                 VM_OBJECT_WUNLOCK(object);
1043                 (void) vn_start_write(vp, &mp, V_WAIT);
1044                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1045                 if (syncio && !invalidate && offset == 0 &&
1046                     atop(size) == object->size) {
1047                         /*
1048                          * If syncing the whole mapping of the file,
1049                          * it is faster to schedule all the writes in
1050                          * async mode, also allowing the clustering,
1051                          * and then wait for i/o to complete.
1052                          */
1053                         flags = 0;
1054                         fsync_after = TRUE;
1055                 } else {
1056                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1057                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1058                         fsync_after = FALSE;
1059                 }
1060                 VM_OBJECT_WLOCK(object);
1061                 res = vm_object_page_clean(object, offset, offset + size,
1062                     flags);
1063                 VM_OBJECT_WUNLOCK(object);
1064                 if (fsync_after)
1065                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1066                 VOP_UNLOCK(vp, 0);
1067                 vn_finished_write(mp);
1068                 if (error != 0)
1069                         res = FALSE;
1070                 VM_OBJECT_WLOCK(object);
1071         }
1072         if ((object->type == OBJT_VNODE ||
1073              object->type == OBJT_DEVICE) && invalidate) {
1074                 if (object->type == OBJT_DEVICE)
1075                         /*
1076                          * The option OBJPR_NOTMAPPED must be passed here
1077                          * because vm_object_page_remove() cannot remove
1078                          * unmanaged mappings.
1079                          */
1080                         flags = OBJPR_NOTMAPPED;
1081                 else if (old_msync)
1082                         flags = 0;
1083                 else
1084                         flags = OBJPR_CLEANONLY;
1085                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1086                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1087         }
1088         VM_OBJECT_WUNLOCK(object);
1089         return (res);
1090 }
1091
1092 /*
1093  * Determine whether the given advice can be applied to the object.  Advice is
1094  * not applied to unmanaged pages since they never belong to page queues, and
1095  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1096  * have been mapped at most once.
1097  */
1098 static bool
1099 vm_object_advice_applies(vm_object_t object, int advice)
1100 {
1101
1102         if ((object->flags & OBJ_UNMANAGED) != 0)
1103                 return (false);
1104         if (advice != MADV_FREE)
1105                 return (true);
1106         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1107             (object->flags & OBJ_ONEMAPPING) != 0);
1108 }
1109
1110 static void
1111 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1112     vm_size_t size)
1113 {
1114
1115         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1116                 swap_pager_freespace(object, pindex, size);
1117 }
1118
1119 /*
1120  *      vm_object_madvise:
1121  *
1122  *      Implements the madvise function at the object/page level.
1123  *
1124  *      MADV_WILLNEED   (any object)
1125  *
1126  *          Activate the specified pages if they are resident.
1127  *
1128  *      MADV_DONTNEED   (any object)
1129  *
1130  *          Deactivate the specified pages if they are resident.
1131  *
1132  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1133  *                       OBJ_ONEMAPPING only)
1134  *
1135  *          Deactivate and clean the specified pages if they are
1136  *          resident.  This permits the process to reuse the pages
1137  *          without faulting or the kernel to reclaim the pages
1138  *          without I/O.
1139  */
1140 void
1141 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1142     int advice)
1143 {
1144         vm_pindex_t tpindex;
1145         vm_object_t backing_object, tobject;
1146         vm_page_t m, tm;
1147
1148         if (object == NULL)
1149                 return;
1150
1151 relookup:
1152         VM_OBJECT_WLOCK(object);
1153         if (!vm_object_advice_applies(object, advice)) {
1154                 VM_OBJECT_WUNLOCK(object);
1155                 return;
1156         }
1157         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1158                 tobject = object;
1159
1160                 /*
1161                  * If the next page isn't resident in the top-level object, we
1162                  * need to search the shadow chain.  When applying MADV_FREE, we
1163                  * take care to release any swap space used to store
1164                  * non-resident pages.
1165                  */
1166                 if (m == NULL || pindex < m->pindex) {
1167                         /*
1168                          * Optimize a common case: if the top-level object has
1169                          * no backing object, we can skip over the non-resident
1170                          * range in constant time.
1171                          */
1172                         if (object->backing_object == NULL) {
1173                                 tpindex = (m != NULL && m->pindex < end) ?
1174                                     m->pindex : end;
1175                                 vm_object_madvise_freespace(object, advice,
1176                                     pindex, tpindex - pindex);
1177                                 if ((pindex = tpindex) == end)
1178                                         break;
1179                                 goto next_page;
1180                         }
1181
1182                         tpindex = pindex;
1183                         do {
1184                                 vm_object_madvise_freespace(tobject, advice,
1185                                     tpindex, 1);
1186                                 /*
1187                                  * Prepare to search the next object in the
1188                                  * chain.
1189                                  */
1190                                 backing_object = tobject->backing_object;
1191                                 if (backing_object == NULL)
1192                                         goto next_pindex;
1193                                 VM_OBJECT_WLOCK(backing_object);
1194                                 tpindex +=
1195                                     OFF_TO_IDX(tobject->backing_object_offset);
1196                                 if (tobject != object)
1197                                         VM_OBJECT_WUNLOCK(tobject);
1198                                 tobject = backing_object;
1199                                 if (!vm_object_advice_applies(tobject, advice))
1200                                         goto next_pindex;
1201                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1202                             NULL);
1203                 } else {
1204 next_page:
1205                         tm = m;
1206                         m = TAILQ_NEXT(m, listq);
1207                 }
1208
1209                 /*
1210                  * If the page is not in a normal state, skip it.
1211                  */
1212                 if (tm->valid != VM_PAGE_BITS_ALL)
1213                         goto next_pindex;
1214                 vm_page_lock(tm);
1215                 if (vm_page_held(tm)) {
1216                         vm_page_unlock(tm);
1217                         goto next_pindex;
1218                 }
1219                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1220                     ("vm_object_madvise: page %p is fictitious", tm));
1221                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1222                     ("vm_object_madvise: page %p is not managed", tm));
1223                 if (vm_page_busied(tm)) {
1224                         if (object != tobject)
1225                                 VM_OBJECT_WUNLOCK(tobject);
1226                         VM_OBJECT_WUNLOCK(object);
1227                         if (advice == MADV_WILLNEED) {
1228                                 /*
1229                                  * Reference the page before unlocking and
1230                                  * sleeping so that the page daemon is less
1231                                  * likely to reclaim it.
1232                                  */
1233                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1234                         }
1235                         vm_page_busy_sleep(tm, "madvpo", false);
1236                         goto relookup;
1237                 }
1238                 vm_page_advise(tm, advice);
1239                 vm_page_unlock(tm);
1240                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1241 next_pindex:
1242                 if (tobject != object)
1243                         VM_OBJECT_WUNLOCK(tobject);
1244         }
1245         VM_OBJECT_WUNLOCK(object);
1246 }
1247
1248 /*
1249  *      vm_object_shadow:
1250  *
1251  *      Create a new object which is backed by the
1252  *      specified existing object range.  The source
1253  *      object reference is deallocated.
1254  *
1255  *      The new object and offset into that object
1256  *      are returned in the source parameters.
1257  */
1258 void
1259 vm_object_shadow(
1260         vm_object_t *object,    /* IN/OUT */
1261         vm_ooffset_t *offset,   /* IN/OUT */
1262         vm_size_t length)
1263 {
1264         vm_object_t source;
1265         vm_object_t result;
1266
1267         source = *object;
1268
1269         /*
1270          * Don't create the new object if the old object isn't shared.
1271          */
1272         if (source != NULL) {
1273                 VM_OBJECT_WLOCK(source);
1274                 if (source->ref_count == 1 &&
1275                     source->handle == NULL &&
1276                     (source->type == OBJT_DEFAULT ||
1277                      source->type == OBJT_SWAP)) {
1278                         VM_OBJECT_WUNLOCK(source);
1279                         return;
1280                 }
1281                 VM_OBJECT_WUNLOCK(source);
1282         }
1283
1284         /*
1285          * Allocate a new object with the given length.
1286          */
1287         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1288
1289         /*
1290          * The new object shadows the source object, adding a reference to it.
1291          * Our caller changes his reference to point to the new object,
1292          * removing a reference to the source object.  Net result: no change
1293          * of reference count.
1294          *
1295          * Try to optimize the result object's page color when shadowing
1296          * in order to maintain page coloring consistency in the combined 
1297          * shadowed object.
1298          */
1299         result->backing_object = source;
1300         /*
1301          * Store the offset into the source object, and fix up the offset into
1302          * the new object.
1303          */
1304         result->backing_object_offset = *offset;
1305         if (source != NULL) {
1306                 VM_OBJECT_WLOCK(source);
1307                 result->domain = source->domain;
1308                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1309                 source->shadow_count++;
1310 #if VM_NRESERVLEVEL > 0
1311                 result->flags |= source->flags & OBJ_COLORED;
1312                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1313                     ((1 << (VM_NFREEORDER - 1)) - 1);
1314 #endif
1315                 VM_OBJECT_WUNLOCK(source);
1316         }
1317
1318
1319         /*
1320          * Return the new things
1321          */
1322         *offset = 0;
1323         *object = result;
1324 }
1325
1326 /*
1327  *      vm_object_split:
1328  *
1329  * Split the pages in a map entry into a new object.  This affords
1330  * easier removal of unused pages, and keeps object inheritance from
1331  * being a negative impact on memory usage.
1332  */
1333 void
1334 vm_object_split(vm_map_entry_t entry)
1335 {
1336         vm_page_t m, m_next;
1337         vm_object_t orig_object, new_object, source;
1338         vm_pindex_t idx, offidxstart;
1339         vm_size_t size;
1340
1341         orig_object = entry->object.vm_object;
1342         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1343                 return;
1344         if (orig_object->ref_count <= 1)
1345                 return;
1346         VM_OBJECT_WUNLOCK(orig_object);
1347
1348         offidxstart = OFF_TO_IDX(entry->offset);
1349         size = atop(entry->end - entry->start);
1350
1351         /*
1352          * If swap_pager_copy() is later called, it will convert new_object
1353          * into a swap object.
1354          */
1355         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1356
1357         /*
1358          * At this point, the new object is still private, so the order in
1359          * which the original and new objects are locked does not matter.
1360          */
1361         VM_OBJECT_WLOCK(new_object);
1362         VM_OBJECT_WLOCK(orig_object);
1363         new_object->domain = orig_object->domain;
1364         source = orig_object->backing_object;
1365         if (source != NULL) {
1366                 VM_OBJECT_WLOCK(source);
1367                 if ((source->flags & OBJ_DEAD) != 0) {
1368                         VM_OBJECT_WUNLOCK(source);
1369                         VM_OBJECT_WUNLOCK(orig_object);
1370                         VM_OBJECT_WUNLOCK(new_object);
1371                         vm_object_deallocate(new_object);
1372                         VM_OBJECT_WLOCK(orig_object);
1373                         return;
1374                 }
1375                 LIST_INSERT_HEAD(&source->shadow_head,
1376                                   new_object, shadow_list);
1377                 source->shadow_count++;
1378                 vm_object_reference_locked(source);     /* for new_object */
1379                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1380                 VM_OBJECT_WUNLOCK(source);
1381                 new_object->backing_object_offset = 
1382                         orig_object->backing_object_offset + entry->offset;
1383                 new_object->backing_object = source;
1384         }
1385         if (orig_object->cred != NULL) {
1386                 new_object->cred = orig_object->cred;
1387                 crhold(orig_object->cred);
1388                 new_object->charge = ptoa(size);
1389                 KASSERT(orig_object->charge >= ptoa(size),
1390                     ("orig_object->charge < 0"));
1391                 orig_object->charge -= ptoa(size);
1392         }
1393 retry:
1394         m = vm_page_find_least(orig_object, offidxstart);
1395         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1396             m = m_next) {
1397                 m_next = TAILQ_NEXT(m, listq);
1398
1399                 /*
1400                  * We must wait for pending I/O to complete before we can
1401                  * rename the page.
1402                  *
1403                  * We do not have to VM_PROT_NONE the page as mappings should
1404                  * not be changed by this operation.
1405                  */
1406                 if (vm_page_busied(m)) {
1407                         VM_OBJECT_WUNLOCK(new_object);
1408                         vm_page_lock(m);
1409                         VM_OBJECT_WUNLOCK(orig_object);
1410                         vm_page_busy_sleep(m, "spltwt", false);
1411                         VM_OBJECT_WLOCK(orig_object);
1412                         VM_OBJECT_WLOCK(new_object);
1413                         goto retry;
1414                 }
1415
1416                 /* vm_page_rename() will dirty the page. */
1417                 if (vm_page_rename(m, new_object, idx)) {
1418                         VM_OBJECT_WUNLOCK(new_object);
1419                         VM_OBJECT_WUNLOCK(orig_object);
1420                         vm_radix_wait();
1421                         VM_OBJECT_WLOCK(orig_object);
1422                         VM_OBJECT_WLOCK(new_object);
1423                         goto retry;
1424                 }
1425 #if VM_NRESERVLEVEL > 0
1426                 /*
1427                  * If some of the reservation's allocated pages remain with
1428                  * the original object, then transferring the reservation to
1429                  * the new object is neither particularly beneficial nor
1430                  * particularly harmful as compared to leaving the reservation
1431                  * with the original object.  If, however, all of the
1432                  * reservation's allocated pages are transferred to the new
1433                  * object, then transferring the reservation is typically
1434                  * beneficial.  Determining which of these two cases applies
1435                  * would be more costly than unconditionally renaming the
1436                  * reservation.
1437                  */
1438                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1439 #endif
1440                 if (orig_object->type == OBJT_SWAP)
1441                         vm_page_xbusy(m);
1442         }
1443         if (orig_object->type == OBJT_SWAP) {
1444                 /*
1445                  * swap_pager_copy() can sleep, in which case the orig_object's
1446                  * and new_object's locks are released and reacquired. 
1447                  */
1448                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1449                 TAILQ_FOREACH(m, &new_object->memq, listq)
1450                         vm_page_xunbusy(m);
1451         }
1452         VM_OBJECT_WUNLOCK(orig_object);
1453         VM_OBJECT_WUNLOCK(new_object);
1454         entry->object.vm_object = new_object;
1455         entry->offset = 0LL;
1456         vm_object_deallocate(orig_object);
1457         VM_OBJECT_WLOCK(new_object);
1458 }
1459
1460 #define OBSC_COLLAPSE_NOWAIT    0x0002
1461 #define OBSC_COLLAPSE_WAIT      0x0004
1462
1463 static vm_page_t
1464 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1465     int op)
1466 {
1467         vm_object_t backing_object;
1468
1469         VM_OBJECT_ASSERT_WLOCKED(object);
1470         backing_object = object->backing_object;
1471         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1472
1473         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1474         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1475             ("invalid ownership %p %p %p", p, object, backing_object));
1476         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1477                 return (next);
1478         if (p != NULL)
1479                 vm_page_lock(p);
1480         VM_OBJECT_WUNLOCK(object);
1481         VM_OBJECT_WUNLOCK(backing_object);
1482         /* The page is only NULL when rename fails. */
1483         if (p == NULL)
1484                 vm_radix_wait();
1485         else
1486                 vm_page_busy_sleep(p, "vmocol", false);
1487         VM_OBJECT_WLOCK(object);
1488         VM_OBJECT_WLOCK(backing_object);
1489         return (TAILQ_FIRST(&backing_object->memq));
1490 }
1491
1492 static bool
1493 vm_object_scan_all_shadowed(vm_object_t object)
1494 {
1495         vm_object_t backing_object;
1496         vm_page_t p, pp;
1497         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1498
1499         VM_OBJECT_ASSERT_WLOCKED(object);
1500         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1501
1502         backing_object = object->backing_object;
1503
1504         if (backing_object->type != OBJT_DEFAULT &&
1505             backing_object->type != OBJT_SWAP)
1506                 return (false);
1507
1508         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1509         p = vm_page_find_least(backing_object, pi);
1510         ps = swap_pager_find_least(backing_object, pi);
1511
1512         /*
1513          * Only check pages inside the parent object's range and
1514          * inside the parent object's mapping of the backing object.
1515          */
1516         for (;; pi++) {
1517                 if (p != NULL && p->pindex < pi)
1518                         p = TAILQ_NEXT(p, listq);
1519                 if (ps < pi)
1520                         ps = swap_pager_find_least(backing_object, pi);
1521                 if (p == NULL && ps >= backing_object->size)
1522                         break;
1523                 else if (p == NULL)
1524                         pi = ps;
1525                 else
1526                         pi = MIN(p->pindex, ps);
1527
1528                 new_pindex = pi - backing_offset_index;
1529                 if (new_pindex >= object->size)
1530                         break;
1531
1532                 /*
1533                  * See if the parent has the page or if the parent's object
1534                  * pager has the page.  If the parent has the page but the page
1535                  * is not valid, the parent's object pager must have the page.
1536                  *
1537                  * If this fails, the parent does not completely shadow the
1538                  * object and we might as well give up now.
1539                  */
1540                 pp = vm_page_lookup(object, new_pindex);
1541                 if ((pp == NULL || pp->valid == 0) &&
1542                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1543                         return (false);
1544         }
1545         return (true);
1546 }
1547
1548 static bool
1549 vm_object_collapse_scan(vm_object_t object, int op)
1550 {
1551         vm_object_t backing_object;
1552         vm_page_t next, p, pp;
1553         vm_pindex_t backing_offset_index, new_pindex;
1554
1555         VM_OBJECT_ASSERT_WLOCKED(object);
1556         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1557
1558         backing_object = object->backing_object;
1559         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1560
1561         /*
1562          * Initial conditions
1563          */
1564         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1565                 vm_object_set_flag(backing_object, OBJ_DEAD);
1566
1567         /*
1568          * Our scan
1569          */
1570         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1571                 next = TAILQ_NEXT(p, listq);
1572                 new_pindex = p->pindex - backing_offset_index;
1573
1574                 /*
1575                  * Check for busy page
1576                  */
1577                 if (vm_page_busied(p)) {
1578                         next = vm_object_collapse_scan_wait(object, p, next, op);
1579                         continue;
1580                 }
1581
1582                 KASSERT(p->object == backing_object,
1583                     ("vm_object_collapse_scan: object mismatch"));
1584
1585                 if (p->pindex < backing_offset_index ||
1586                     new_pindex >= object->size) {
1587                         if (backing_object->type == OBJT_SWAP)
1588                                 swap_pager_freespace(backing_object, p->pindex,
1589                                     1);
1590
1591                         /*
1592                          * Page is out of the parent object's range, we can
1593                          * simply destroy it.
1594                          */
1595                         vm_page_lock(p);
1596                         KASSERT(!pmap_page_is_mapped(p),
1597                             ("freeing mapped page %p", p));
1598                         if (p->wire_count == 0)
1599                                 vm_page_free(p);
1600                         else
1601                                 vm_page_remove(p);
1602                         vm_page_unlock(p);
1603                         continue;
1604                 }
1605
1606                 pp = vm_page_lookup(object, new_pindex);
1607                 if (pp != NULL && vm_page_busied(pp)) {
1608                         /*
1609                          * The page in the parent is busy and possibly not
1610                          * (yet) valid.  Until its state is finalized by the
1611                          * busy bit owner, we can't tell whether it shadows the
1612                          * original page.  Therefore, we must either skip it
1613                          * and the original (backing_object) page or wait for
1614                          * its state to be finalized.
1615                          *
1616                          * This is due to a race with vm_fault() where we must
1617                          * unbusy the original (backing_obj) page before we can
1618                          * (re)lock the parent.  Hence we can get here.
1619                          */
1620                         next = vm_object_collapse_scan_wait(object, pp, next,
1621                             op);
1622                         continue;
1623                 }
1624
1625                 KASSERT(pp == NULL || pp->valid != 0,
1626                     ("unbusy invalid page %p", pp));
1627
1628                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1629                         NULL)) {
1630                         /*
1631                          * The page already exists in the parent OR swap exists
1632                          * for this location in the parent.  Leave the parent's
1633                          * page alone.  Destroy the original page from the
1634                          * backing object.
1635                          */
1636                         if (backing_object->type == OBJT_SWAP)
1637                                 swap_pager_freespace(backing_object, p->pindex,
1638                                     1);
1639                         vm_page_lock(p);
1640                         KASSERT(!pmap_page_is_mapped(p),
1641                             ("freeing mapped page %p", p));
1642                         if (p->wire_count == 0)
1643                                 vm_page_free(p);
1644                         else
1645                                 vm_page_remove(p);
1646                         vm_page_unlock(p);
1647                         continue;
1648                 }
1649
1650                 /*
1651                  * Page does not exist in parent, rename the page from the
1652                  * backing object to the main object.
1653                  *
1654                  * If the page was mapped to a process, it can remain mapped
1655                  * through the rename.  vm_page_rename() will dirty the page.
1656                  */
1657                 if (vm_page_rename(p, object, new_pindex)) {
1658                         next = vm_object_collapse_scan_wait(object, NULL, next,
1659                             op);
1660                         continue;
1661                 }
1662
1663                 /* Use the old pindex to free the right page. */
1664                 if (backing_object->type == OBJT_SWAP)
1665                         swap_pager_freespace(backing_object,
1666                             new_pindex + backing_offset_index, 1);
1667
1668 #if VM_NRESERVLEVEL > 0
1669                 /*
1670                  * Rename the reservation.
1671                  */
1672                 vm_reserv_rename(p, object, backing_object,
1673                     backing_offset_index);
1674 #endif
1675         }
1676         return (true);
1677 }
1678
1679
1680 /*
1681  * this version of collapse allows the operation to occur earlier and
1682  * when paging_in_progress is true for an object...  This is not a complete
1683  * operation, but should plug 99.9% of the rest of the leaks.
1684  */
1685 static void
1686 vm_object_qcollapse(vm_object_t object)
1687 {
1688         vm_object_t backing_object = object->backing_object;
1689
1690         VM_OBJECT_ASSERT_WLOCKED(object);
1691         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1692
1693         if (backing_object->ref_count != 1)
1694                 return;
1695
1696         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1697 }
1698
1699 /*
1700  *      vm_object_collapse:
1701  *
1702  *      Collapse an object with the object backing it.
1703  *      Pages in the backing object are moved into the
1704  *      parent, and the backing object is deallocated.
1705  */
1706 void
1707 vm_object_collapse(vm_object_t object)
1708 {
1709         vm_object_t backing_object, new_backing_object;
1710
1711         VM_OBJECT_ASSERT_WLOCKED(object);
1712
1713         while (TRUE) {
1714                 /*
1715                  * Verify that the conditions are right for collapse:
1716                  *
1717                  * The object exists and the backing object exists.
1718                  */
1719                 if ((backing_object = object->backing_object) == NULL)
1720                         break;
1721
1722                 /*
1723                  * we check the backing object first, because it is most likely
1724                  * not collapsable.
1725                  */
1726                 VM_OBJECT_WLOCK(backing_object);
1727                 if (backing_object->handle != NULL ||
1728                     (backing_object->type != OBJT_DEFAULT &&
1729                     backing_object->type != OBJT_SWAP) ||
1730                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1731                     object->handle != NULL ||
1732                     (object->type != OBJT_DEFAULT &&
1733                      object->type != OBJT_SWAP) ||
1734                     (object->flags & OBJ_DEAD)) {
1735                         VM_OBJECT_WUNLOCK(backing_object);
1736                         break;
1737                 }
1738
1739                 if (object->paging_in_progress != 0 ||
1740                     backing_object->paging_in_progress != 0) {
1741                         vm_object_qcollapse(object);
1742                         VM_OBJECT_WUNLOCK(backing_object);
1743                         break;
1744                 }
1745
1746                 /*
1747                  * We know that we can either collapse the backing object (if
1748                  * the parent is the only reference to it) or (perhaps) have
1749                  * the parent bypass the object if the parent happens to shadow
1750                  * all the resident pages in the entire backing object.
1751                  *
1752                  * This is ignoring pager-backed pages such as swap pages.
1753                  * vm_object_collapse_scan fails the shadowing test in this
1754                  * case.
1755                  */
1756                 if (backing_object->ref_count == 1) {
1757                         vm_object_pip_add(object, 1);
1758                         vm_object_pip_add(backing_object, 1);
1759
1760                         /*
1761                          * If there is exactly one reference to the backing
1762                          * object, we can collapse it into the parent.
1763                          */
1764                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1765
1766 #if VM_NRESERVLEVEL > 0
1767                         /*
1768                          * Break any reservations from backing_object.
1769                          */
1770                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1771                                 vm_reserv_break_all(backing_object);
1772 #endif
1773
1774                         /*
1775                          * Move the pager from backing_object to object.
1776                          */
1777                         if (backing_object->type == OBJT_SWAP) {
1778                                 /*
1779                                  * swap_pager_copy() can sleep, in which case
1780                                  * the backing_object's and object's locks are
1781                                  * released and reacquired.
1782                                  * Since swap_pager_copy() is being asked to
1783                                  * destroy the source, it will change the
1784                                  * backing_object's type to OBJT_DEFAULT.
1785                                  */
1786                                 swap_pager_copy(
1787                                     backing_object,
1788                                     object,
1789                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1790                         }
1791                         /*
1792                          * Object now shadows whatever backing_object did.
1793                          * Note that the reference to 
1794                          * backing_object->backing_object moves from within 
1795                          * backing_object to within object.
1796                          */
1797                         LIST_REMOVE(object, shadow_list);
1798                         backing_object->shadow_count--;
1799                         if (backing_object->backing_object) {
1800                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1801                                 LIST_REMOVE(backing_object, shadow_list);
1802                                 LIST_INSERT_HEAD(
1803                                     &backing_object->backing_object->shadow_head,
1804                                     object, shadow_list);
1805                                 /*
1806                                  * The shadow_count has not changed.
1807                                  */
1808                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1809                         }
1810                         object->backing_object = backing_object->backing_object;
1811                         object->backing_object_offset +=
1812                             backing_object->backing_object_offset;
1813
1814                         /*
1815                          * Discard backing_object.
1816                          *
1817                          * Since the backing object has no pages, no pager left,
1818                          * and no object references within it, all that is
1819                          * necessary is to dispose of it.
1820                          */
1821                         KASSERT(backing_object->ref_count == 1, (
1822 "backing_object %p was somehow re-referenced during collapse!",
1823                             backing_object));
1824                         vm_object_pip_wakeup(backing_object);
1825                         backing_object->type = OBJT_DEAD;
1826                         backing_object->ref_count = 0;
1827                         VM_OBJECT_WUNLOCK(backing_object);
1828                         vm_object_destroy(backing_object);
1829
1830                         vm_object_pip_wakeup(object);
1831                         counter_u64_add(object_collapses, 1);
1832                 } else {
1833                         /*
1834                          * If we do not entirely shadow the backing object,
1835                          * there is nothing we can do so we give up.
1836                          */
1837                         if (object->resident_page_count != object->size &&
1838                             !vm_object_scan_all_shadowed(object)) {
1839                                 VM_OBJECT_WUNLOCK(backing_object);
1840                                 break;
1841                         }
1842
1843                         /*
1844                          * Make the parent shadow the next object in the
1845                          * chain.  Deallocating backing_object will not remove
1846                          * it, since its reference count is at least 2.
1847                          */
1848                         LIST_REMOVE(object, shadow_list);
1849                         backing_object->shadow_count--;
1850
1851                         new_backing_object = backing_object->backing_object;
1852                         if ((object->backing_object = new_backing_object) != NULL) {
1853                                 VM_OBJECT_WLOCK(new_backing_object);
1854                                 LIST_INSERT_HEAD(
1855                                     &new_backing_object->shadow_head,
1856                                     object,
1857                                     shadow_list
1858                                 );
1859                                 new_backing_object->shadow_count++;
1860                                 vm_object_reference_locked(new_backing_object);
1861                                 VM_OBJECT_WUNLOCK(new_backing_object);
1862                                 object->backing_object_offset +=
1863                                         backing_object->backing_object_offset;
1864                         }
1865
1866                         /*
1867                          * Drop the reference count on backing_object. Since
1868                          * its ref_count was at least 2, it will not vanish.
1869                          */
1870                         backing_object->ref_count--;
1871                         VM_OBJECT_WUNLOCK(backing_object);
1872                         counter_u64_add(object_bypasses, 1);
1873                 }
1874
1875                 /*
1876                  * Try again with this object's new backing object.
1877                  */
1878         }
1879 }
1880
1881 /*
1882  *      vm_object_page_remove:
1883  *
1884  *      For the given object, either frees or invalidates each of the
1885  *      specified pages.  In general, a page is freed.  However, if a page is
1886  *      wired for any reason other than the existence of a managed, wired
1887  *      mapping, then it may be invalidated but not removed from the object.
1888  *      Pages are specified by the given range ["start", "end") and the option
1889  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1890  *      extends from "start" to the end of the object.  If the option
1891  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1892  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1893  *      specified, then the pages within the specified range must have no
1894  *      mappings.  Otherwise, if this option is not specified, any mappings to
1895  *      the specified pages are removed before the pages are freed or
1896  *      invalidated.
1897  *
1898  *      In general, this operation should only be performed on objects that
1899  *      contain managed pages.  There are, however, two exceptions.  First, it
1900  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1901  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1902  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1903  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1904  *
1905  *      The object must be locked.
1906  */
1907 void
1908 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1909     int options)
1910 {
1911         vm_page_t p, next;
1912         struct mtx *mtx;
1913
1914         VM_OBJECT_ASSERT_WLOCKED(object);
1915         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1916             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1917             ("vm_object_page_remove: illegal options for object %p", object));
1918         if (object->resident_page_count == 0)
1919                 return;
1920         vm_object_pip_add(object, 1);
1921 again:
1922         p = vm_page_find_least(object, start);
1923         mtx = NULL;
1924
1925         /*
1926          * Here, the variable "p" is either (1) the page with the least pindex
1927          * greater than or equal to the parameter "start" or (2) NULL. 
1928          */
1929         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1930                 next = TAILQ_NEXT(p, listq);
1931
1932                 /*
1933                  * If the page is wired for any reason besides the existence
1934                  * of managed, wired mappings, then it cannot be freed.  For
1935                  * example, fictitious pages, which represent device memory,
1936                  * are inherently wired and cannot be freed.  They can,
1937                  * however, be invalidated if the option OBJPR_CLEANONLY is
1938                  * not specified.
1939                  */
1940                 vm_page_change_lock(p, &mtx);
1941                 if (vm_page_xbusied(p)) {
1942                         VM_OBJECT_WUNLOCK(object);
1943                         vm_page_busy_sleep(p, "vmopax", true);
1944                         VM_OBJECT_WLOCK(object);
1945                         goto again;
1946                 }
1947                 if (p->wire_count != 0) {
1948                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1949                             object->ref_count != 0)
1950                                 pmap_remove_all(p);
1951                         if ((options & OBJPR_CLEANONLY) == 0) {
1952                                 p->valid = 0;
1953                                 vm_page_undirty(p);
1954                         }
1955                         continue;
1956                 }
1957                 if (vm_page_busied(p)) {
1958                         VM_OBJECT_WUNLOCK(object);
1959                         vm_page_busy_sleep(p, "vmopar", false);
1960                         VM_OBJECT_WLOCK(object);
1961                         goto again;
1962                 }
1963                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1964                     ("vm_object_page_remove: page %p is fictitious", p));
1965                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1966                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1967                             object->ref_count != 0)
1968                                 pmap_remove_write(p);
1969                         if (p->dirty != 0)
1970                                 continue;
1971                 }
1972                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1973                         pmap_remove_all(p);
1974                 vm_page_free(p);
1975         }
1976         if (mtx != NULL)
1977                 mtx_unlock(mtx);
1978         vm_object_pip_wakeup(object);
1979 }
1980
1981 /*
1982  *      vm_object_page_noreuse:
1983  *
1984  *      For the given object, attempt to move the specified pages to
1985  *      the head of the inactive queue.  This bypasses regular LRU
1986  *      operation and allows the pages to be reused quickly under memory
1987  *      pressure.  If a page is wired for any reason, then it will not
1988  *      be queued.  Pages are specified by the range ["start", "end").
1989  *      As a special case, if "end" is zero, then the range extends from
1990  *      "start" to the end of the object.
1991  *
1992  *      This operation should only be performed on objects that
1993  *      contain non-fictitious, managed pages.
1994  *
1995  *      The object must be locked.
1996  */
1997 void
1998 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1999 {
2000         struct mtx *mtx;
2001         vm_page_t p, next;
2002
2003         VM_OBJECT_ASSERT_LOCKED(object);
2004         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2005             ("vm_object_page_noreuse: illegal object %p", object));
2006         if (object->resident_page_count == 0)
2007                 return;
2008         p = vm_page_find_least(object, start);
2009
2010         /*
2011          * Here, the variable "p" is either (1) the page with the least pindex
2012          * greater than or equal to the parameter "start" or (2) NULL. 
2013          */
2014         mtx = NULL;
2015         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2016                 next = TAILQ_NEXT(p, listq);
2017                 vm_page_change_lock(p, &mtx);
2018                 vm_page_deactivate_noreuse(p);
2019         }
2020         if (mtx != NULL)
2021                 mtx_unlock(mtx);
2022 }
2023
2024 /*
2025  *      Populate the specified range of the object with valid pages.  Returns
2026  *      TRUE if the range is successfully populated and FALSE otherwise.
2027  *
2028  *      Note: This function should be optimized to pass a larger array of
2029  *      pages to vm_pager_get_pages() before it is applied to a non-
2030  *      OBJT_DEVICE object.
2031  *
2032  *      The object must be locked.
2033  */
2034 boolean_t
2035 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2036 {
2037         vm_page_t m;
2038         vm_pindex_t pindex;
2039         int rv;
2040
2041         VM_OBJECT_ASSERT_WLOCKED(object);
2042         for (pindex = start; pindex < end; pindex++) {
2043                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2044                 if (m->valid != VM_PAGE_BITS_ALL) {
2045                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2046                         if (rv != VM_PAGER_OK) {
2047                                 vm_page_lock(m);
2048                                 vm_page_free(m);
2049                                 vm_page_unlock(m);
2050                                 break;
2051                         }
2052                 }
2053                 /*
2054                  * Keep "m" busy because a subsequent iteration may unlock
2055                  * the object.
2056                  */
2057         }
2058         if (pindex > start) {
2059                 m = vm_page_lookup(object, start);
2060                 while (m != NULL && m->pindex < pindex) {
2061                         vm_page_xunbusy(m);
2062                         m = TAILQ_NEXT(m, listq);
2063                 }
2064         }
2065         return (pindex == end);
2066 }
2067
2068 /*
2069  *      Routine:        vm_object_coalesce
2070  *      Function:       Coalesces two objects backing up adjoining
2071  *                      regions of memory into a single object.
2072  *
2073  *      returns TRUE if objects were combined.
2074  *
2075  *      NOTE:   Only works at the moment if the second object is NULL -
2076  *              if it's not, which object do we lock first?
2077  *
2078  *      Parameters:
2079  *              prev_object     First object to coalesce
2080  *              prev_offset     Offset into prev_object
2081  *              prev_size       Size of reference to prev_object
2082  *              next_size       Size of reference to the second object
2083  *              reserved        Indicator that extension region has
2084  *                              swap accounted for
2085  *
2086  *      Conditions:
2087  *      The object must *not* be locked.
2088  */
2089 boolean_t
2090 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2091     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2092 {
2093         vm_pindex_t next_pindex;
2094
2095         if (prev_object == NULL)
2096                 return (TRUE);
2097         VM_OBJECT_WLOCK(prev_object);
2098         if ((prev_object->type != OBJT_DEFAULT &&
2099             prev_object->type != OBJT_SWAP) ||
2100             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2101                 VM_OBJECT_WUNLOCK(prev_object);
2102                 return (FALSE);
2103         }
2104
2105         /*
2106          * Try to collapse the object first
2107          */
2108         vm_object_collapse(prev_object);
2109
2110         /*
2111          * Can't coalesce if: . more than one reference . paged out . shadows
2112          * another object . has a copy elsewhere (any of which mean that the
2113          * pages not mapped to prev_entry may be in use anyway)
2114          */
2115         if (prev_object->backing_object != NULL) {
2116                 VM_OBJECT_WUNLOCK(prev_object);
2117                 return (FALSE);
2118         }
2119
2120         prev_size >>= PAGE_SHIFT;
2121         next_size >>= PAGE_SHIFT;
2122         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2123
2124         if (prev_object->ref_count > 1 &&
2125             prev_object->size != next_pindex &&
2126             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2127                 VM_OBJECT_WUNLOCK(prev_object);
2128                 return (FALSE);
2129         }
2130
2131         /*
2132          * Account for the charge.
2133          */
2134         if (prev_object->cred != NULL) {
2135
2136                 /*
2137                  * If prev_object was charged, then this mapping,
2138                  * although not charged now, may become writable
2139                  * later. Non-NULL cred in the object would prevent
2140                  * swap reservation during enabling of the write
2141                  * access, so reserve swap now. Failed reservation
2142                  * cause allocation of the separate object for the map
2143                  * entry, and swap reservation for this entry is
2144                  * managed in appropriate time.
2145                  */
2146                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2147                     prev_object->cred)) {
2148                         VM_OBJECT_WUNLOCK(prev_object);
2149                         return (FALSE);
2150                 }
2151                 prev_object->charge += ptoa(next_size);
2152         }
2153
2154         /*
2155          * Remove any pages that may still be in the object from a previous
2156          * deallocation.
2157          */
2158         if (next_pindex < prev_object->size) {
2159                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2160                     next_size, 0);
2161                 if (prev_object->type == OBJT_SWAP)
2162                         swap_pager_freespace(prev_object,
2163                                              next_pindex, next_size);
2164 #if 0
2165                 if (prev_object->cred != NULL) {
2166                         KASSERT(prev_object->charge >=
2167                             ptoa(prev_object->size - next_pindex),
2168                             ("object %p overcharged 1 %jx %jx", prev_object,
2169                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2170                         prev_object->charge -= ptoa(prev_object->size -
2171                             next_pindex);
2172                 }
2173 #endif
2174         }
2175
2176         /*
2177          * Extend the object if necessary.
2178          */
2179         if (next_pindex + next_size > prev_object->size)
2180                 prev_object->size = next_pindex + next_size;
2181
2182         VM_OBJECT_WUNLOCK(prev_object);
2183         return (TRUE);
2184 }
2185
2186 void
2187 vm_object_set_writeable_dirty(vm_object_t object)
2188 {
2189
2190         VM_OBJECT_ASSERT_WLOCKED(object);
2191         if (object->type != OBJT_VNODE) {
2192                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2193                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2194                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2195                 }
2196                 return;
2197         }
2198         object->generation++;
2199         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2200                 return;
2201         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2202 }
2203
2204 /*
2205  *      vm_object_unwire:
2206  *
2207  *      For each page offset within the specified range of the given object,
2208  *      find the highest-level page in the shadow chain and unwire it.  A page
2209  *      must exist at every page offset, and the highest-level page must be
2210  *      wired.
2211  */
2212 void
2213 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2214     uint8_t queue)
2215 {
2216         vm_object_t tobject, t1object;
2217         vm_page_t m, tm;
2218         vm_pindex_t end_pindex, pindex, tpindex;
2219         int depth, locked_depth;
2220
2221         KASSERT((offset & PAGE_MASK) == 0,
2222             ("vm_object_unwire: offset is not page aligned"));
2223         KASSERT((length & PAGE_MASK) == 0,
2224             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2225         /* The wired count of a fictitious page never changes. */
2226         if ((object->flags & OBJ_FICTITIOUS) != 0)
2227                 return;
2228         pindex = OFF_TO_IDX(offset);
2229         end_pindex = pindex + atop(length);
2230 again:
2231         locked_depth = 1;
2232         VM_OBJECT_RLOCK(object);
2233         m = vm_page_find_least(object, pindex);
2234         while (pindex < end_pindex) {
2235                 if (m == NULL || pindex < m->pindex) {
2236                         /*
2237                          * The first object in the shadow chain doesn't
2238                          * contain a page at the current index.  Therefore,
2239                          * the page must exist in a backing object.
2240                          */
2241                         tobject = object;
2242                         tpindex = pindex;
2243                         depth = 0;
2244                         do {
2245                                 tpindex +=
2246                                     OFF_TO_IDX(tobject->backing_object_offset);
2247                                 tobject = tobject->backing_object;
2248                                 KASSERT(tobject != NULL,
2249                                     ("vm_object_unwire: missing page"));
2250                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2251                                         goto next_page;
2252                                 depth++;
2253                                 if (depth == locked_depth) {
2254                                         locked_depth++;
2255                                         VM_OBJECT_RLOCK(tobject);
2256                                 }
2257                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2258                             NULL);
2259                 } else {
2260                         tm = m;
2261                         m = TAILQ_NEXT(m, listq);
2262                 }
2263                 vm_page_lock(tm);
2264                 if (vm_page_xbusied(tm)) {
2265                         for (tobject = object; locked_depth >= 1;
2266                             locked_depth--) {
2267                                 t1object = tobject->backing_object;
2268                                 VM_OBJECT_RUNLOCK(tobject);
2269                                 tobject = t1object;
2270                         }
2271                         vm_page_busy_sleep(tm, "unwbo", true);
2272                         goto again;
2273                 }
2274                 vm_page_unwire(tm, queue);
2275                 vm_page_unlock(tm);
2276 next_page:
2277                 pindex++;
2278         }
2279         /* Release the accumulated object locks. */
2280         for (tobject = object; locked_depth >= 1; locked_depth--) {
2281                 t1object = tobject->backing_object;
2282                 VM_OBJECT_RUNLOCK(tobject);
2283                 tobject = t1object;
2284         }
2285 }
2286
2287 /*
2288  * Return the vnode for the given object, or NULL if none exists.
2289  * For tmpfs objects, the function may return NULL if there is
2290  * no vnode allocated at the time of the call.
2291  */
2292 struct vnode *
2293 vm_object_vnode(vm_object_t object)
2294 {
2295         struct vnode *vp;
2296
2297         VM_OBJECT_ASSERT_LOCKED(object);
2298         if (object->type == OBJT_VNODE) {
2299                 vp = object->handle;
2300                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2301         } else if (object->type == OBJT_SWAP &&
2302             (object->flags & OBJ_TMPFS) != 0) {
2303                 vp = object->un_pager.swp.swp_tmpfs;
2304                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2305         } else {
2306                 vp = NULL;
2307         }
2308         return (vp);
2309 }
2310
2311 /*
2312  * Return the kvme type of the given object.
2313  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2314  */
2315 int
2316 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2317 {
2318
2319         VM_OBJECT_ASSERT_LOCKED(object);
2320         if (vpp != NULL)
2321                 *vpp = vm_object_vnode(object);
2322         switch (object->type) {
2323         case OBJT_DEFAULT:
2324                 return (KVME_TYPE_DEFAULT);
2325         case OBJT_VNODE:
2326                 return (KVME_TYPE_VNODE);
2327         case OBJT_SWAP:
2328                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2329                         return (KVME_TYPE_VNODE);
2330                 return (KVME_TYPE_SWAP);
2331         case OBJT_DEVICE:
2332                 return (KVME_TYPE_DEVICE);
2333         case OBJT_PHYS:
2334                 return (KVME_TYPE_PHYS);
2335         case OBJT_DEAD:
2336                 return (KVME_TYPE_DEAD);
2337         case OBJT_SG:
2338                 return (KVME_TYPE_SG);
2339         case OBJT_MGTDEVICE:
2340                 return (KVME_TYPE_MGTDEVICE);
2341         default:
2342                 return (KVME_TYPE_UNKNOWN);
2343         }
2344 }
2345
2346 static int
2347 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2348 {
2349         struct kinfo_vmobject *kvo;
2350         char *fullpath, *freepath;
2351         struct vnode *vp;
2352         struct vattr va;
2353         vm_object_t obj;
2354         vm_page_t m;
2355         int count, error;
2356
2357         if (req->oldptr == NULL) {
2358                 /*
2359                  * If an old buffer has not been provided, generate an
2360                  * estimate of the space needed for a subsequent call.
2361                  */
2362                 mtx_lock(&vm_object_list_mtx);
2363                 count = 0;
2364                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2365                         if (obj->type == OBJT_DEAD)
2366                                 continue;
2367                         count++;
2368                 }
2369                 mtx_unlock(&vm_object_list_mtx);
2370                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2371                     count * 11 / 10));
2372         }
2373
2374         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2375         error = 0;
2376
2377         /*
2378          * VM objects are type stable and are never removed from the
2379          * list once added.  This allows us to safely read obj->object_list
2380          * after reacquiring the VM object lock.
2381          */
2382         mtx_lock(&vm_object_list_mtx);
2383         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2384                 if (obj->type == OBJT_DEAD)
2385                         continue;
2386                 VM_OBJECT_RLOCK(obj);
2387                 if (obj->type == OBJT_DEAD) {
2388                         VM_OBJECT_RUNLOCK(obj);
2389                         continue;
2390                 }
2391                 mtx_unlock(&vm_object_list_mtx);
2392                 kvo->kvo_size = ptoa(obj->size);
2393                 kvo->kvo_resident = obj->resident_page_count;
2394                 kvo->kvo_ref_count = obj->ref_count;
2395                 kvo->kvo_shadow_count = obj->shadow_count;
2396                 kvo->kvo_memattr = obj->memattr;
2397                 kvo->kvo_active = 0;
2398                 kvo->kvo_inactive = 0;
2399                 TAILQ_FOREACH(m, &obj->memq, listq) {
2400                         /*
2401                          * A page may belong to the object but be
2402                          * dequeued and set to PQ_NONE while the
2403                          * object lock is not held.  This makes the
2404                          * reads of m->queue below racy, and we do not
2405                          * count pages set to PQ_NONE.  However, this
2406                          * sysctl is only meant to give an
2407                          * approximation of the system anyway.
2408                          */
2409                         if (m->queue == PQ_ACTIVE)
2410                                 kvo->kvo_active++;
2411                         else if (m->queue == PQ_INACTIVE)
2412                                 kvo->kvo_inactive++;
2413                 }
2414
2415                 kvo->kvo_vn_fileid = 0;
2416                 kvo->kvo_vn_fsid = 0;
2417                 kvo->kvo_vn_fsid_freebsd11 = 0;
2418                 freepath = NULL;
2419                 fullpath = "";
2420                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2421                 if (vp != NULL)
2422                         vref(vp);
2423                 VM_OBJECT_RUNLOCK(obj);
2424                 if (vp != NULL) {
2425                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2426                         vn_lock(vp, LK_SHARED | LK_RETRY);
2427                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2428                                 kvo->kvo_vn_fileid = va.va_fileid;
2429                                 kvo->kvo_vn_fsid = va.va_fsid;
2430                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2431                                                                 /* truncate */
2432                         }
2433                         vput(vp);
2434                 }
2435
2436                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2437                 if (freepath != NULL)
2438                         free(freepath, M_TEMP);
2439
2440                 /* Pack record size down */
2441                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2442                     + strlen(kvo->kvo_path) + 1;
2443                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2444                     sizeof(uint64_t));
2445                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2446                 mtx_lock(&vm_object_list_mtx);
2447                 if (error)
2448                         break;
2449         }
2450         mtx_unlock(&vm_object_list_mtx);
2451         free(kvo, M_TEMP);
2452         return (error);
2453 }
2454 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2455     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2456     "List of VM objects");
2457
2458 #include "opt_ddb.h"
2459 #ifdef DDB
2460 #include <sys/kernel.h>
2461
2462 #include <sys/cons.h>
2463
2464 #include <ddb/ddb.h>
2465
2466 static int
2467 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2468 {
2469         vm_map_t tmpm;
2470         vm_map_entry_t tmpe;
2471         vm_object_t obj;
2472         int entcount;
2473
2474         if (map == 0)
2475                 return 0;
2476
2477         if (entry == 0) {
2478                 tmpe = map->header.next;
2479                 entcount = map->nentries;
2480                 while (entcount-- && (tmpe != &map->header)) {
2481                         if (_vm_object_in_map(map, object, tmpe)) {
2482                                 return 1;
2483                         }
2484                         tmpe = tmpe->next;
2485                 }
2486         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2487                 tmpm = entry->object.sub_map;
2488                 tmpe = tmpm->header.next;
2489                 entcount = tmpm->nentries;
2490                 while (entcount-- && tmpe != &tmpm->header) {
2491                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2492                                 return 1;
2493                         }
2494                         tmpe = tmpe->next;
2495                 }
2496         } else if ((obj = entry->object.vm_object) != NULL) {
2497                 for (; obj; obj = obj->backing_object)
2498                         if (obj == object) {
2499                                 return 1;
2500                         }
2501         }
2502         return 0;
2503 }
2504
2505 static int
2506 vm_object_in_map(vm_object_t object)
2507 {
2508         struct proc *p;
2509
2510         /* sx_slock(&allproc_lock); */
2511         FOREACH_PROC_IN_SYSTEM(p) {
2512                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2513                         continue;
2514                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2515                         /* sx_sunlock(&allproc_lock); */
2516                         return 1;
2517                 }
2518         }
2519         /* sx_sunlock(&allproc_lock); */
2520         if (_vm_object_in_map(kernel_map, object, 0))
2521                 return 1;
2522         return 0;
2523 }
2524
2525 DB_SHOW_COMMAND(vmochk, vm_object_check)
2526 {
2527         vm_object_t object;
2528
2529         /*
2530          * make sure that internal objs are in a map somewhere
2531          * and none have zero ref counts.
2532          */
2533         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2534                 if (object->handle == NULL &&
2535                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2536                         if (object->ref_count == 0) {
2537                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2538                                         (long)object->size);
2539                         }
2540                         if (!vm_object_in_map(object)) {
2541                                 db_printf(
2542                         "vmochk: internal obj is not in a map: "
2543                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2544                                     object->ref_count, (u_long)object->size, 
2545                                     (u_long)object->size,
2546                                     (void *)object->backing_object);
2547                         }
2548                 }
2549         }
2550 }
2551
2552 /*
2553  *      vm_object_print:        [ debug ]
2554  */
2555 DB_SHOW_COMMAND(object, vm_object_print_static)
2556 {
2557         /* XXX convert args. */
2558         vm_object_t object = (vm_object_t)addr;
2559         boolean_t full = have_addr;
2560
2561         vm_page_t p;
2562
2563         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2564 #define count   was_count
2565
2566         int count;
2567
2568         if (object == NULL)
2569                 return;
2570
2571         db_iprintf(
2572             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2573             object, (int)object->type, (uintmax_t)object->size,
2574             object->resident_page_count, object->ref_count, object->flags,
2575             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2576         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2577             object->shadow_count, 
2578             object->backing_object ? object->backing_object->ref_count : 0,
2579             object->backing_object, (uintmax_t)object->backing_object_offset);
2580
2581         if (!full)
2582                 return;
2583
2584         db_indent += 2;
2585         count = 0;
2586         TAILQ_FOREACH(p, &object->memq, listq) {
2587                 if (count == 0)
2588                         db_iprintf("memory:=");
2589                 else if (count == 6) {
2590                         db_printf("\n");
2591                         db_iprintf(" ...");
2592                         count = 0;
2593                 } else
2594                         db_printf(",");
2595                 count++;
2596
2597                 db_printf("(off=0x%jx,page=0x%jx)",
2598                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2599         }
2600         if (count != 0)
2601                 db_printf("\n");
2602         db_indent -= 2;
2603 }
2604
2605 /* XXX. */
2606 #undef count
2607
2608 /* XXX need this non-static entry for calling from vm_map_print. */
2609 void
2610 vm_object_print(
2611         /* db_expr_t */ long addr,
2612         boolean_t have_addr,
2613         /* db_expr_t */ long count,
2614         char *modif)
2615 {
2616         vm_object_print_static(addr, have_addr, count, modif);
2617 }
2618
2619 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2620 {
2621         vm_object_t object;
2622         vm_pindex_t fidx;
2623         vm_paddr_t pa;
2624         vm_page_t m, prev_m;
2625         int rcount, nl, c;
2626
2627         nl = 0;
2628         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2629                 db_printf("new object: %p\n", (void *)object);
2630                 if (nl > 18) {
2631                         c = cngetc();
2632                         if (c != ' ')
2633                                 return;
2634                         nl = 0;
2635                 }
2636                 nl++;
2637                 rcount = 0;
2638                 fidx = 0;
2639                 pa = -1;
2640                 TAILQ_FOREACH(m, &object->memq, listq) {
2641                         if (m->pindex > 128)
2642                                 break;
2643                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2644                             prev_m->pindex + 1 != m->pindex) {
2645                                 if (rcount) {
2646                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2647                                                 (long)fidx, rcount, (long)pa);
2648                                         if (nl > 18) {
2649                                                 c = cngetc();
2650                                                 if (c != ' ')
2651                                                         return;
2652                                                 nl = 0;
2653                                         }
2654                                         nl++;
2655                                         rcount = 0;
2656                                 }
2657                         }                               
2658                         if (rcount &&
2659                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2660                                 ++rcount;
2661                                 continue;
2662                         }
2663                         if (rcount) {
2664                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2665                                         (long)fidx, rcount, (long)pa);
2666                                 if (nl > 18) {
2667                                         c = cngetc();
2668                                         if (c != ' ')
2669                                                 return;
2670                                         nl = 0;
2671                                 }
2672                                 nl++;
2673                         }
2674                         fidx = m->pindex;
2675                         pa = VM_PAGE_TO_PHYS(m);
2676                         rcount = 1;
2677                 }
2678                 if (rcount) {
2679                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2680                                 (long)fidx, rcount, (long)pa);
2681                         if (nl > 18) {
2682                                 c = cngetc();
2683                                 if (c != ' ')
2684                                         return;
2685                                 nl = 0;
2686                         }
2687                         nl++;
2688                 }
2689         }
2690 }
2691 #endif /* DDB */