]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
ddb: don't limit pindex output in 'show vmopag'
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(atomic_load_int(&object->shadow_count) == 0,
202             ("object %p shadow_count = %d",
203             object, atomic_load_int(&object->shadow_count)));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207         KASSERT(object->charge == 0 && object->cred == NULL,
208             ("object %p has non-zero charge %ju (%p)",
209             object, (uintmax_t)object->charge, object->cred));
210 }
211 #endif
212
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216         vm_object_t object;
217
218         object = (vm_object_t)mem;
219         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
220
221         /* These are true for any object that has been freed */
222         object->type = OBJT_DEAD;
223         vm_radix_init(&object->rtree);
224         refcount_init(&object->ref_count, 0);
225         blockcount_init(&object->paging_in_progress);
226         blockcount_init(&object->busy);
227         object->resident_page_count = 0;
228         atomic_store_int(&object->shadow_count, 0);
229         object->flags = OBJ_DEAD;
230
231         mtx_lock(&vm_object_list_mtx);
232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233         mtx_unlock(&vm_object_list_mtx);
234         return (0);
235 }
236
237 static void
238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
239     vm_object_t object, void *handle)
240 {
241
242         TAILQ_INIT(&object->memq);
243         LIST_INIT(&object->shadow_head);
244
245         object->type = type;
246         object->flags = flags;
247         if ((flags & OBJ_SWAP) != 0)
248                 pctrie_init(&object->un_pager.swp.swp_blks);
249
250         /*
251          * Ensure that swap_pager_swapoff() iteration over object_list
252          * sees up to date type and pctrie head if it observed
253          * non-dead object.
254          */
255         atomic_thread_fence_rel();
256
257         object->pg_color = 0;
258         object->size = size;
259         object->domain.dr_policy = NULL;
260         object->generation = 1;
261         object->cleangeneration = 1;
262         refcount_init(&object->ref_count, 1);
263         object->memattr = VM_MEMATTR_DEFAULT;
264         object->cred = NULL;
265         object->charge = 0;
266         object->handle = handle;
267         object->backing_object = NULL;
268         object->backing_object_offset = (vm_ooffset_t) 0;
269 #if VM_NRESERVLEVEL > 0
270         LIST_INIT(&object->rvq);
271 #endif
272         umtx_shm_object_init(object);
273 }
274
275 /*
276  *      vm_object_init:
277  *
278  *      Initialize the VM objects module.
279  */
280 void
281 vm_object_init(void)
282 {
283         TAILQ_INIT(&vm_object_list);
284         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
285
286         rw_init(&kernel_object->lock, "kernel vm object");
287         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
288             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
289 #if VM_NRESERVLEVEL > 0
290         kernel_object->flags |= OBJ_COLORED;
291         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
292 #endif
293         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
294
295         /*
296          * The lock portion of struct vm_object must be type stable due
297          * to vm_pageout_fallback_object_lock locking a vm object
298          * without holding any references to it.
299          *
300          * paging_in_progress is valid always.  Lockless references to
301          * the objects may acquire pip and then check OBJ_DEAD.
302          */
303         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
304 #ifdef INVARIANTS
305             vm_object_zdtor,
306 #else
307             NULL,
308 #endif
309             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
310
311         vm_radix_zinit();
312 }
313
314 void
315 vm_object_clear_flag(vm_object_t object, u_short bits)
316 {
317
318         VM_OBJECT_ASSERT_WLOCKED(object);
319         object->flags &= ~bits;
320 }
321
322 /*
323  *      Sets the default memory attribute for the specified object.  Pages
324  *      that are allocated to this object are by default assigned this memory
325  *      attribute.
326  *
327  *      Presently, this function must be called before any pages are allocated
328  *      to the object.  In the future, this requirement may be relaxed for
329  *      "default" and "swap" objects.
330  */
331 int
332 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
333 {
334
335         VM_OBJECT_ASSERT_WLOCKED(object);
336
337         if (object->type == OBJT_DEAD)
338                 return (KERN_INVALID_ARGUMENT);
339         if (!TAILQ_EMPTY(&object->memq))
340                 return (KERN_FAILURE);
341
342         object->memattr = memattr;
343         return (KERN_SUCCESS);
344 }
345
346 void
347 vm_object_pip_add(vm_object_t object, short i)
348 {
349
350         if (i > 0)
351                 blockcount_acquire(&object->paging_in_progress, i);
352 }
353
354 void
355 vm_object_pip_wakeup(vm_object_t object)
356 {
357
358         vm_object_pip_wakeupn(object, 1);
359 }
360
361 void
362 vm_object_pip_wakeupn(vm_object_t object, short i)
363 {
364
365         if (i > 0)
366                 blockcount_release(&object->paging_in_progress, i);
367 }
368
369 /*
370  * Atomically drop the object lock and wait for pip to drain.  This protects
371  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
372  * on return.
373  */
374 static void
375 vm_object_pip_sleep(vm_object_t object, const char *waitid)
376 {
377
378         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
379             waitid, PVM | PDROP);
380 }
381
382 void
383 vm_object_pip_wait(vm_object_t object, const char *waitid)
384 {
385
386         VM_OBJECT_ASSERT_WLOCKED(object);
387
388         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
389             PVM);
390 }
391
392 void
393 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
394 {
395
396         VM_OBJECT_ASSERT_UNLOCKED(object);
397
398         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
399 }
400
401 /*
402  *      vm_object_allocate:
403  *
404  *      Returns a new object with the given size.
405  */
406 vm_object_t
407 vm_object_allocate(objtype_t type, vm_pindex_t size)
408 {
409         vm_object_t object;
410         u_short flags;
411
412         switch (type) {
413         case OBJT_DEAD:
414                 panic("vm_object_allocate: can't create OBJT_DEAD");
415         case OBJT_DEFAULT:
416                 flags = OBJ_COLORED;
417                 break;
418         case OBJT_SWAP:
419                 flags = OBJ_COLORED | OBJ_SWAP;
420                 break;
421         case OBJT_DEVICE:
422         case OBJT_SG:
423                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
424                 break;
425         case OBJT_MGTDEVICE:
426                 flags = OBJ_FICTITIOUS;
427                 break;
428         case OBJT_PHYS:
429                 flags = OBJ_UNMANAGED;
430                 break;
431         case OBJT_VNODE:
432                 flags = 0;
433                 break;
434         default:
435                 panic("vm_object_allocate: type %d is undefined or dynamic",
436                     type);
437         }
438         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
439         _vm_object_allocate(type, size, flags, object, NULL);
440
441         return (object);
442 }
443
444 vm_object_t
445 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
446 {
447         vm_object_t object;
448
449         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
450         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
451         _vm_object_allocate(dyntype, size, flags, object, NULL);
452
453         return (object);
454 }
455
456 /*
457  *      vm_object_allocate_anon:
458  *
459  *      Returns a new default object of the given size and marked as
460  *      anonymous memory for special split/collapse handling.  Color
461  *      to be initialized by the caller.
462  */
463 vm_object_t
464 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
465     struct ucred *cred, vm_size_t charge)
466 {
467         vm_object_t handle, object;
468
469         if (backing_object == NULL)
470                 handle = NULL;
471         else if ((backing_object->flags & OBJ_ANON) != 0)
472                 handle = backing_object->handle;
473         else
474                 handle = backing_object;
475         object = uma_zalloc(obj_zone, M_WAITOK);
476         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
477             object, handle);
478         object->cred = cred;
479         object->charge = cred != NULL ? charge : 0;
480         return (object);
481 }
482
483 static void
484 vm_object_reference_vnode(vm_object_t object)
485 {
486         u_int old;
487
488         /*
489          * vnode objects need the lock for the first reference
490          * to serialize with vnode_object_deallocate().
491          */
492         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
493                 VM_OBJECT_RLOCK(object);
494                 old = refcount_acquire(&object->ref_count);
495                 if (object->type == OBJT_VNODE && old == 0)
496                         vref(object->handle);
497                 VM_OBJECT_RUNLOCK(object);
498         }
499 }
500
501 /*
502  *      vm_object_reference:
503  *
504  *      Acquires a reference to the given object.
505  */
506 void
507 vm_object_reference(vm_object_t object)
508 {
509
510         if (object == NULL)
511                 return;
512
513         if (object->type == OBJT_VNODE)
514                 vm_object_reference_vnode(object);
515         else
516                 refcount_acquire(&object->ref_count);
517         KASSERT((object->flags & OBJ_DEAD) == 0,
518             ("vm_object_reference: Referenced dead object."));
519 }
520
521 /*
522  *      vm_object_reference_locked:
523  *
524  *      Gets another reference to the given object.
525  *
526  *      The object must be locked.
527  */
528 void
529 vm_object_reference_locked(vm_object_t object)
530 {
531         u_int old;
532
533         VM_OBJECT_ASSERT_LOCKED(object);
534         old = refcount_acquire(&object->ref_count);
535         if (object->type == OBJT_VNODE && old == 0)
536                 vref(object->handle);
537         KASSERT((object->flags & OBJ_DEAD) == 0,
538             ("vm_object_reference: Referenced dead object."));
539 }
540
541 /*
542  * Handle deallocating an object of type OBJT_VNODE.
543  */
544 static void
545 vm_object_deallocate_vnode(vm_object_t object)
546 {
547         struct vnode *vp = (struct vnode *) object->handle;
548         bool last;
549
550         KASSERT(object->type == OBJT_VNODE,
551             ("vm_object_deallocate_vnode: not a vnode object"));
552         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
553
554         /* Object lock to protect handle lookup. */
555         last = refcount_release(&object->ref_count);
556         VM_OBJECT_RUNLOCK(object);
557
558         if (!last)
559                 return;
560
561         if (!umtx_shm_vnobj_persistent)
562                 umtx_shm_object_terminated(object);
563
564         /* vrele may need the vnode lock. */
565         vrele(vp);
566 }
567
568 /*
569  * We dropped a reference on an object and discovered that it had a
570  * single remaining shadow.  This is a sibling of the reference we
571  * dropped.  Attempt to collapse the sibling and backing object.
572  */
573 static vm_object_t
574 vm_object_deallocate_anon(vm_object_t backing_object)
575 {
576         vm_object_t object;
577
578         /* Fetch the final shadow.  */
579         object = LIST_FIRST(&backing_object->shadow_head);
580         KASSERT(object != NULL &&
581             atomic_load_int(&backing_object->shadow_count) == 1,
582             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
583             backing_object->ref_count,
584             atomic_load_int(&backing_object->shadow_count)));
585         KASSERT((object->flags & OBJ_ANON) != 0,
586             ("invalid shadow object %p", object));
587
588         if (!VM_OBJECT_TRYWLOCK(object)) {
589                 /*
590                  * Prevent object from disappearing since we do not have a
591                  * reference.
592                  */
593                 vm_object_pip_add(object, 1);
594                 VM_OBJECT_WUNLOCK(backing_object);
595                 VM_OBJECT_WLOCK(object);
596                 vm_object_pip_wakeup(object);
597         } else
598                 VM_OBJECT_WUNLOCK(backing_object);
599
600         /*
601          * Check for a collapse/terminate race with the last reference holder.
602          */
603         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
604             !refcount_acquire_if_not_zero(&object->ref_count)) {
605                 VM_OBJECT_WUNLOCK(object);
606                 return (NULL);
607         }
608         backing_object = object->backing_object;
609         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
610                 vm_object_collapse(object);
611         VM_OBJECT_WUNLOCK(object);
612
613         return (object);
614 }
615
616 /*
617  *      vm_object_deallocate:
618  *
619  *      Release a reference to the specified object,
620  *      gained either through a vm_object_allocate
621  *      or a vm_object_reference call.  When all references
622  *      are gone, storage associated with this object
623  *      may be relinquished.
624  *
625  *      No object may be locked.
626  */
627 void
628 vm_object_deallocate(vm_object_t object)
629 {
630         vm_object_t temp;
631         bool released;
632
633         while (object != NULL) {
634                 /*
635                  * If the reference count goes to 0 we start calling
636                  * vm_object_terminate() on the object chain.  A ref count
637                  * of 1 may be a special case depending on the shadow count
638                  * being 0 or 1.  These cases require a write lock on the
639                  * object.
640                  */
641                 if ((object->flags & OBJ_ANON) == 0)
642                         released = refcount_release_if_gt(&object->ref_count, 1);
643                 else
644                         released = refcount_release_if_gt(&object->ref_count, 2);
645                 if (released)
646                         return;
647
648                 if (object->type == OBJT_VNODE) {
649                         VM_OBJECT_RLOCK(object);
650                         if (object->type == OBJT_VNODE) {
651                                 vm_object_deallocate_vnode(object);
652                                 return;
653                         }
654                         VM_OBJECT_RUNLOCK(object);
655                 }
656
657                 VM_OBJECT_WLOCK(object);
658                 KASSERT(object->ref_count > 0,
659                     ("vm_object_deallocate: object deallocated too many times: %d",
660                     object->type));
661
662                 /*
663                  * If this is not the final reference to an anonymous
664                  * object we may need to collapse the shadow chain.
665                  */
666                 if (!refcount_release(&object->ref_count)) {
667                         if (object->ref_count > 1 ||
668                             atomic_load_int(&object->shadow_count) == 0) {
669                                 if ((object->flags & OBJ_ANON) != 0 &&
670                                     object->ref_count == 1)
671                                         vm_object_set_flag(object,
672                                             OBJ_ONEMAPPING);
673                                 VM_OBJECT_WUNLOCK(object);
674                                 return;
675                         }
676
677                         /* Handle collapsing last ref on anonymous objects. */
678                         object = vm_object_deallocate_anon(object);
679                         continue;
680                 }
681
682                 /*
683                  * Handle the final reference to an object.  We restart
684                  * the loop with the backing object to avoid recursion.
685                  */
686                 umtx_shm_object_terminated(object);
687                 temp = object->backing_object;
688                 if (temp != NULL) {
689                         KASSERT(object->type == OBJT_DEFAULT ||
690                             object->type == OBJT_SWAP,
691                             ("shadowed tmpfs v_object 2 %p", object));
692                         vm_object_backing_remove(object);
693                 }
694
695                 KASSERT((object->flags & OBJ_DEAD) == 0,
696                     ("vm_object_deallocate: Terminating dead object."));
697                 vm_object_set_flag(object, OBJ_DEAD);
698                 vm_object_terminate(object);
699                 object = temp;
700         }
701 }
702
703 /*
704  *      vm_object_destroy removes the object from the global object list
705  *      and frees the space for the object.
706  */
707 void
708 vm_object_destroy(vm_object_t object)
709 {
710
711         /*
712          * Release the allocation charge.
713          */
714         if (object->cred != NULL) {
715                 swap_release_by_cred(object->charge, object->cred);
716                 object->charge = 0;
717                 crfree(object->cred);
718                 object->cred = NULL;
719         }
720
721         /*
722          * Free the space for the object.
723          */
724         uma_zfree(obj_zone, object);
725 }
726
727 static void
728 vm_object_sub_shadow(vm_object_t object)
729 {
730         KASSERT(object->shadow_count >= 1,
731             ("object %p sub_shadow count zero", object));
732         atomic_subtract_int(&object->shadow_count, 1);
733 }
734
735 static void
736 vm_object_backing_remove_locked(vm_object_t object)
737 {
738         vm_object_t backing_object;
739
740         backing_object = object->backing_object;
741         VM_OBJECT_ASSERT_WLOCKED(object);
742         VM_OBJECT_ASSERT_WLOCKED(backing_object);
743
744         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
745             ("vm_object_backing_remove: Removing collapsing object."));
746
747         vm_object_sub_shadow(backing_object);
748         if ((object->flags & OBJ_SHADOWLIST) != 0) {
749                 LIST_REMOVE(object, shadow_list);
750                 vm_object_clear_flag(object, OBJ_SHADOWLIST);
751         }
752         object->backing_object = NULL;
753 }
754
755 static void
756 vm_object_backing_remove(vm_object_t object)
757 {
758         vm_object_t backing_object;
759
760         VM_OBJECT_ASSERT_WLOCKED(object);
761
762         backing_object = object->backing_object;
763         if ((object->flags & OBJ_SHADOWLIST) != 0) {
764                 VM_OBJECT_WLOCK(backing_object);
765                 vm_object_backing_remove_locked(object);
766                 VM_OBJECT_WUNLOCK(backing_object);
767         } else {
768                 object->backing_object = NULL;
769                 vm_object_sub_shadow(backing_object);
770         }
771 }
772
773 static void
774 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
775 {
776
777         VM_OBJECT_ASSERT_WLOCKED(object);
778
779         atomic_add_int(&backing_object->shadow_count, 1);
780         if ((backing_object->flags & OBJ_ANON) != 0) {
781                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
782                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
783                     shadow_list);
784                 vm_object_set_flag(object, OBJ_SHADOWLIST);
785         }
786         object->backing_object = backing_object;
787 }
788
789 static void
790 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
791 {
792
793         VM_OBJECT_ASSERT_WLOCKED(object);
794
795         if ((backing_object->flags & OBJ_ANON) != 0) {
796                 VM_OBJECT_WLOCK(backing_object);
797                 vm_object_backing_insert_locked(object, backing_object);
798                 VM_OBJECT_WUNLOCK(backing_object);
799         } else {
800                 object->backing_object = backing_object;
801                 atomic_add_int(&backing_object->shadow_count, 1);
802         }
803 }
804
805 /*
806  * Insert an object into a backing_object's shadow list with an additional
807  * reference to the backing_object added.
808  */
809 static void
810 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
811 {
812
813         VM_OBJECT_ASSERT_WLOCKED(object);
814
815         if ((backing_object->flags & OBJ_ANON) != 0) {
816                 VM_OBJECT_WLOCK(backing_object);
817                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
818                     ("shadowing dead anonymous object"));
819                 vm_object_reference_locked(backing_object);
820                 vm_object_backing_insert_locked(object, backing_object);
821                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
822                 VM_OBJECT_WUNLOCK(backing_object);
823         } else {
824                 vm_object_reference(backing_object);
825                 atomic_add_int(&backing_object->shadow_count, 1);
826                 object->backing_object = backing_object;
827         }
828 }
829
830 /*
831  * Transfer a backing reference from backing_object to object.
832  */
833 static void
834 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
835 {
836         vm_object_t new_backing_object;
837
838         /*
839          * Note that the reference to backing_object->backing_object
840          * moves from within backing_object to within object.
841          */
842         vm_object_backing_remove_locked(object);
843         new_backing_object = backing_object->backing_object;
844         if (new_backing_object == NULL)
845                 return;
846         if ((new_backing_object->flags & OBJ_ANON) != 0) {
847                 VM_OBJECT_WLOCK(new_backing_object);
848                 vm_object_backing_remove_locked(backing_object);
849                 vm_object_backing_insert_locked(object, new_backing_object);
850                 VM_OBJECT_WUNLOCK(new_backing_object);
851         } else {
852                 /*
853                  * shadow_count for new_backing_object is left
854                  * unchanged, its reference provided by backing_object
855                  * is replaced by object.
856                  */
857                 object->backing_object = new_backing_object;
858                 backing_object->backing_object = NULL;
859         }
860 }
861
862 /*
863  * Wait for a concurrent collapse to settle.
864  */
865 static void
866 vm_object_collapse_wait(vm_object_t object)
867 {
868
869         VM_OBJECT_ASSERT_WLOCKED(object);
870
871         while ((object->flags & OBJ_COLLAPSING) != 0) {
872                 vm_object_pip_wait(object, "vmcolwait");
873                 counter_u64_add(object_collapse_waits, 1);
874         }
875 }
876
877 /*
878  * Waits for a backing object to clear a pending collapse and returns
879  * it locked if it is an ANON object.
880  */
881 static vm_object_t
882 vm_object_backing_collapse_wait(vm_object_t object)
883 {
884         vm_object_t backing_object;
885
886         VM_OBJECT_ASSERT_WLOCKED(object);
887
888         for (;;) {
889                 backing_object = object->backing_object;
890                 if (backing_object == NULL ||
891                     (backing_object->flags & OBJ_ANON) == 0)
892                         return (NULL);
893                 VM_OBJECT_WLOCK(backing_object);
894                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
895                         break;
896                 VM_OBJECT_WUNLOCK(object);
897                 vm_object_pip_sleep(backing_object, "vmbckwait");
898                 counter_u64_add(object_collapse_waits, 1);
899                 VM_OBJECT_WLOCK(object);
900         }
901         return (backing_object);
902 }
903
904 /*
905  *      vm_object_terminate_pages removes any remaining pageable pages
906  *      from the object and resets the object to an empty state.
907  */
908 static void
909 vm_object_terminate_pages(vm_object_t object)
910 {
911         vm_page_t p, p_next;
912
913         VM_OBJECT_ASSERT_WLOCKED(object);
914
915         /*
916          * Free any remaining pageable pages.  This also removes them from the
917          * paging queues.  However, don't free wired pages, just remove them
918          * from the object.  Rather than incrementally removing each page from
919          * the object, the page and object are reset to any empty state. 
920          */
921         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
922                 vm_page_assert_unbusied(p);
923                 KASSERT(p->object == object &&
924                     (p->ref_count & VPRC_OBJREF) != 0,
925                     ("vm_object_terminate_pages: page %p is inconsistent", p));
926
927                 p->object = NULL;
928                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
929                         VM_CNT_INC(v_pfree);
930                         vm_page_free(p);
931                 }
932         }
933
934         /*
935          * If the object contained any pages, then reset it to an empty state.
936          * None of the object's fields, including "resident_page_count", were
937          * modified by the preceding loop.
938          */
939         if (object->resident_page_count != 0) {
940                 vm_radix_reclaim_allnodes(&object->rtree);
941                 TAILQ_INIT(&object->memq);
942                 object->resident_page_count = 0;
943                 if (object->type == OBJT_VNODE)
944                         vdrop(object->handle);
945         }
946 }
947
948 /*
949  *      vm_object_terminate actually destroys the specified object, freeing
950  *      up all previously used resources.
951  *
952  *      The object must be locked.
953  *      This routine may block.
954  */
955 void
956 vm_object_terminate(vm_object_t object)
957 {
958
959         VM_OBJECT_ASSERT_WLOCKED(object);
960         KASSERT((object->flags & OBJ_DEAD) != 0,
961             ("terminating non-dead obj %p", object));
962         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
963             ("terminating collapsing obj %p", object));
964         KASSERT(object->backing_object == NULL,
965             ("terminating shadow obj %p", object));
966
967         /*
968          * Wait for the pageout daemon and other current users to be
969          * done with the object.  Note that new paging_in_progress
970          * users can come after this wait, but they must check
971          * OBJ_DEAD flag set (without unlocking the object), and avoid
972          * the object being terminated.
973          */
974         vm_object_pip_wait(object, "objtrm");
975
976         KASSERT(object->ref_count == 0,
977             ("vm_object_terminate: object with references, ref_count=%d",
978             object->ref_count));
979
980         if ((object->flags & OBJ_PG_DTOR) == 0)
981                 vm_object_terminate_pages(object);
982
983 #if VM_NRESERVLEVEL > 0
984         if (__predict_false(!LIST_EMPTY(&object->rvq)))
985                 vm_reserv_break_all(object);
986 #endif
987
988         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
989             (object->flags & OBJ_SWAP) != 0,
990             ("%s: non-swap obj %p has cred", __func__, object));
991
992         /*
993          * Let the pager know object is dead.
994          */
995         vm_pager_deallocate(object);
996         VM_OBJECT_WUNLOCK(object);
997
998         vm_object_destroy(object);
999 }
1000
1001 /*
1002  * Make the page read-only so that we can clear the object flags.  However, if
1003  * this is a nosync mmap then the object is likely to stay dirty so do not
1004  * mess with the page and do not clear the object flags.  Returns TRUE if the
1005  * page should be flushed, and FALSE otherwise.
1006  */
1007 static boolean_t
1008 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
1009 {
1010
1011         vm_page_assert_busied(p);
1012
1013         /*
1014          * If we have been asked to skip nosync pages and this is a
1015          * nosync page, skip it.  Note that the object flags were not
1016          * cleared in this case so we do not have to set them.
1017          */
1018         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
1019                 *allclean = FALSE;
1020                 return (FALSE);
1021         } else {
1022                 pmap_remove_write(p);
1023                 return (p->dirty != 0);
1024         }
1025 }
1026
1027 /*
1028  *      vm_object_page_clean
1029  *
1030  *      Clean all dirty pages in the specified range of object.  Leaves page 
1031  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1032  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1033  *      leaving the object dirty.
1034  *
1035  *      For swap objects backing tmpfs regular files, do not flush anything,
1036  *      but remove write protection on the mapped pages to update mtime through
1037  *      mmaped writes.
1038  *
1039  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1040  *      synchronous clustering mode implementation.
1041  *
1042  *      Odd semantics: if start == end, we clean everything.
1043  *
1044  *      The object must be locked.
1045  *
1046  *      Returns FALSE if some page from the range was not written, as
1047  *      reported by the pager, and TRUE otherwise.
1048  */
1049 boolean_t
1050 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1051     int flags)
1052 {
1053         vm_page_t np, p;
1054         vm_pindex_t pi, tend, tstart;
1055         int curgeneration, n, pagerflags;
1056         boolean_t eio, res, allclean;
1057
1058         VM_OBJECT_ASSERT_WLOCKED(object);
1059
1060         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1061                 return (TRUE);
1062
1063         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1064             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1065         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1066
1067         tstart = OFF_TO_IDX(start);
1068         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1069         allclean = tstart == 0 && tend >= object->size;
1070         res = TRUE;
1071
1072 rescan:
1073         curgeneration = object->generation;
1074
1075         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1076                 pi = p->pindex;
1077                 if (pi >= tend)
1078                         break;
1079                 np = TAILQ_NEXT(p, listq);
1080                 if (vm_page_none_valid(p))
1081                         continue;
1082                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1083                         if (object->generation != curgeneration &&
1084                             (flags & OBJPC_SYNC) != 0)
1085                                 goto rescan;
1086                         np = vm_page_find_least(object, pi);
1087                         continue;
1088                 }
1089                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1090                         vm_page_xunbusy(p);
1091                         continue;
1092                 }
1093                 if (object->type == OBJT_VNODE) {
1094                         n = vm_object_page_collect_flush(object, p, pagerflags,
1095                             flags, &allclean, &eio);
1096                         if (eio) {
1097                                 res = FALSE;
1098                                 allclean = FALSE;
1099                         }
1100                         if (object->generation != curgeneration &&
1101                             (flags & OBJPC_SYNC) != 0)
1102                                 goto rescan;
1103
1104                         /*
1105                          * If the VOP_PUTPAGES() did a truncated write, so
1106                          * that even the first page of the run is not fully
1107                          * written, vm_pageout_flush() returns 0 as the run
1108                          * length.  Since the condition that caused truncated
1109                          * write may be permanent, e.g. exhausted free space,
1110                          * accepting n == 0 would cause an infinite loop.
1111                          *
1112                          * Forwarding the iterator leaves the unwritten page
1113                          * behind, but there is not much we can do there if
1114                          * filesystem refuses to write it.
1115                          */
1116                         if (n == 0) {
1117                                 n = 1;
1118                                 allclean = FALSE;
1119                         }
1120                 } else {
1121                         n = 1;
1122                         vm_page_xunbusy(p);
1123                 }
1124                 np = vm_page_find_least(object, pi + n);
1125         }
1126 #if 0
1127         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1128 #endif
1129
1130         /*
1131          * Leave updating cleangeneration for tmpfs objects to tmpfs
1132          * scan.  It needs to update mtime, which happens for other
1133          * filesystems during page writeouts.
1134          */
1135         if (allclean && object->type == OBJT_VNODE)
1136                 object->cleangeneration = curgeneration;
1137         return (res);
1138 }
1139
1140 static int
1141 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1142     int flags, boolean_t *allclean, boolean_t *eio)
1143 {
1144         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1145         int count, i, mreq, runlen;
1146
1147         vm_page_lock_assert(p, MA_NOTOWNED);
1148         vm_page_assert_xbusied(p);
1149         VM_OBJECT_ASSERT_WLOCKED(object);
1150
1151         count = 1;
1152         mreq = 0;
1153
1154         for (tp = p; count < vm_pageout_page_count; count++) {
1155                 tp = vm_page_next(tp);
1156                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1157                         break;
1158                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1159                         vm_page_xunbusy(tp);
1160                         break;
1161                 }
1162         }
1163
1164         for (p_first = p; count < vm_pageout_page_count; count++) {
1165                 tp = vm_page_prev(p_first);
1166                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1167                         break;
1168                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1169                         vm_page_xunbusy(tp);
1170                         break;
1171                 }
1172                 p_first = tp;
1173                 mreq++;
1174         }
1175
1176         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1177                 ma[i] = tp;
1178
1179         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1180         return (runlen);
1181 }
1182
1183 /*
1184  * Note that there is absolutely no sense in writing out
1185  * anonymous objects, so we track down the vnode object
1186  * to write out.
1187  * We invalidate (remove) all pages from the address space
1188  * for semantic correctness.
1189  *
1190  * If the backing object is a device object with unmanaged pages, then any
1191  * mappings to the specified range of pages must be removed before this
1192  * function is called.
1193  *
1194  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1195  * may start out with a NULL object.
1196  */
1197 boolean_t
1198 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1199     boolean_t syncio, boolean_t invalidate)
1200 {
1201         vm_object_t backing_object;
1202         struct vnode *vp;
1203         struct mount *mp;
1204         int error, flags, fsync_after;
1205         boolean_t res;
1206
1207         if (object == NULL)
1208                 return (TRUE);
1209         res = TRUE;
1210         error = 0;
1211         VM_OBJECT_WLOCK(object);
1212         while ((backing_object = object->backing_object) != NULL) {
1213                 VM_OBJECT_WLOCK(backing_object);
1214                 offset += object->backing_object_offset;
1215                 VM_OBJECT_WUNLOCK(object);
1216                 object = backing_object;
1217                 if (object->size < OFF_TO_IDX(offset + size))
1218                         size = IDX_TO_OFF(object->size) - offset;
1219         }
1220         /*
1221          * Flush pages if writing is allowed, invalidate them
1222          * if invalidation requested.  Pages undergoing I/O
1223          * will be ignored by vm_object_page_remove().
1224          *
1225          * We cannot lock the vnode and then wait for paging
1226          * to complete without deadlocking against vm_fault.
1227          * Instead we simply call vm_object_page_remove() and
1228          * allow it to block internally on a page-by-page
1229          * basis when it encounters pages undergoing async
1230          * I/O.
1231          */
1232         if (object->type == OBJT_VNODE &&
1233             vm_object_mightbedirty(object) != 0 &&
1234             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1235                 VM_OBJECT_WUNLOCK(object);
1236                 (void) vn_start_write(vp, &mp, V_WAIT);
1237                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1238                 if (syncio && !invalidate && offset == 0 &&
1239                     atop(size) == object->size) {
1240                         /*
1241                          * If syncing the whole mapping of the file,
1242                          * it is faster to schedule all the writes in
1243                          * async mode, also allowing the clustering,
1244                          * and then wait for i/o to complete.
1245                          */
1246                         flags = 0;
1247                         fsync_after = TRUE;
1248                 } else {
1249                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1250                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1251                         fsync_after = FALSE;
1252                 }
1253                 VM_OBJECT_WLOCK(object);
1254                 res = vm_object_page_clean(object, offset, offset + size,
1255                     flags);
1256                 VM_OBJECT_WUNLOCK(object);
1257                 if (fsync_after)
1258                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1259                 VOP_UNLOCK(vp);
1260                 vn_finished_write(mp);
1261                 if (error != 0)
1262                         res = FALSE;
1263                 VM_OBJECT_WLOCK(object);
1264         }
1265         if ((object->type == OBJT_VNODE ||
1266              object->type == OBJT_DEVICE) && invalidate) {
1267                 if (object->type == OBJT_DEVICE)
1268                         /*
1269                          * The option OBJPR_NOTMAPPED must be passed here
1270                          * because vm_object_page_remove() cannot remove
1271                          * unmanaged mappings.
1272                          */
1273                         flags = OBJPR_NOTMAPPED;
1274                 else if (old_msync)
1275                         flags = 0;
1276                 else
1277                         flags = OBJPR_CLEANONLY;
1278                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1279                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1280         }
1281         VM_OBJECT_WUNLOCK(object);
1282         return (res);
1283 }
1284
1285 /*
1286  * Determine whether the given advice can be applied to the object.  Advice is
1287  * not applied to unmanaged pages since they never belong to page queues, and
1288  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1289  * have been mapped at most once.
1290  */
1291 static bool
1292 vm_object_advice_applies(vm_object_t object, int advice)
1293 {
1294
1295         if ((object->flags & OBJ_UNMANAGED) != 0)
1296                 return (false);
1297         if (advice != MADV_FREE)
1298                 return (true);
1299         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1300             (OBJ_ONEMAPPING | OBJ_ANON));
1301 }
1302
1303 static void
1304 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1305     vm_size_t size)
1306 {
1307
1308         if (advice == MADV_FREE)
1309                 vm_pager_freespace(object, pindex, size);
1310 }
1311
1312 /*
1313  *      vm_object_madvise:
1314  *
1315  *      Implements the madvise function at the object/page level.
1316  *
1317  *      MADV_WILLNEED   (any object)
1318  *
1319  *          Activate the specified pages if they are resident.
1320  *
1321  *      MADV_DONTNEED   (any object)
1322  *
1323  *          Deactivate the specified pages if they are resident.
1324  *
1325  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1326  *                       OBJ_ONEMAPPING only)
1327  *
1328  *          Deactivate and clean the specified pages if they are
1329  *          resident.  This permits the process to reuse the pages
1330  *          without faulting or the kernel to reclaim the pages
1331  *          without I/O.
1332  */
1333 void
1334 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1335     int advice)
1336 {
1337         vm_pindex_t tpindex;
1338         vm_object_t backing_object, tobject;
1339         vm_page_t m, tm;
1340
1341         if (object == NULL)
1342                 return;
1343
1344 relookup:
1345         VM_OBJECT_WLOCK(object);
1346         if (!vm_object_advice_applies(object, advice)) {
1347                 VM_OBJECT_WUNLOCK(object);
1348                 return;
1349         }
1350         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1351                 tobject = object;
1352
1353                 /*
1354                  * If the next page isn't resident in the top-level object, we
1355                  * need to search the shadow chain.  When applying MADV_FREE, we
1356                  * take care to release any swap space used to store
1357                  * non-resident pages.
1358                  */
1359                 if (m == NULL || pindex < m->pindex) {
1360                         /*
1361                          * Optimize a common case: if the top-level object has
1362                          * no backing object, we can skip over the non-resident
1363                          * range in constant time.
1364                          */
1365                         if (object->backing_object == NULL) {
1366                                 tpindex = (m != NULL && m->pindex < end) ?
1367                                     m->pindex : end;
1368                                 vm_object_madvise_freespace(object, advice,
1369                                     pindex, tpindex - pindex);
1370                                 if ((pindex = tpindex) == end)
1371                                         break;
1372                                 goto next_page;
1373                         }
1374
1375                         tpindex = pindex;
1376                         do {
1377                                 vm_object_madvise_freespace(tobject, advice,
1378                                     tpindex, 1);
1379                                 /*
1380                                  * Prepare to search the next object in the
1381                                  * chain.
1382                                  */
1383                                 backing_object = tobject->backing_object;
1384                                 if (backing_object == NULL)
1385                                         goto next_pindex;
1386                                 VM_OBJECT_WLOCK(backing_object);
1387                                 tpindex +=
1388                                     OFF_TO_IDX(tobject->backing_object_offset);
1389                                 if (tobject != object)
1390                                         VM_OBJECT_WUNLOCK(tobject);
1391                                 tobject = backing_object;
1392                                 if (!vm_object_advice_applies(tobject, advice))
1393                                         goto next_pindex;
1394                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1395                             NULL);
1396                 } else {
1397 next_page:
1398                         tm = m;
1399                         m = TAILQ_NEXT(m, listq);
1400                 }
1401
1402                 /*
1403                  * If the page is not in a normal state, skip it.  The page
1404                  * can not be invalidated while the object lock is held.
1405                  */
1406                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1407                         goto next_pindex;
1408                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1409                     ("vm_object_madvise: page %p is fictitious", tm));
1410                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1411                     ("vm_object_madvise: page %p is not managed", tm));
1412                 if (vm_page_tryxbusy(tm) == 0) {
1413                         if (object != tobject)
1414                                 VM_OBJECT_WUNLOCK(object);
1415                         if (advice == MADV_WILLNEED) {
1416                                 /*
1417                                  * Reference the page before unlocking and
1418                                  * sleeping so that the page daemon is less
1419                                  * likely to reclaim it.
1420                                  */
1421                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1422                         }
1423                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1424                                 VM_OBJECT_WUNLOCK(tobject);
1425                         goto relookup;
1426                 }
1427                 vm_page_advise(tm, advice);
1428                 vm_page_xunbusy(tm);
1429                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1430 next_pindex:
1431                 if (tobject != object)
1432                         VM_OBJECT_WUNLOCK(tobject);
1433         }
1434         VM_OBJECT_WUNLOCK(object);
1435 }
1436
1437 /*
1438  *      vm_object_shadow:
1439  *
1440  *      Create a new object which is backed by the
1441  *      specified existing object range.  The source
1442  *      object reference is deallocated.
1443  *
1444  *      The new object and offset into that object
1445  *      are returned in the source parameters.
1446  */
1447 void
1448 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1449     struct ucred *cred, bool shared)
1450 {
1451         vm_object_t source;
1452         vm_object_t result;
1453
1454         source = *object;
1455
1456         /*
1457          * Don't create the new object if the old object isn't shared.
1458          *
1459          * If we hold the only reference we can guarantee that it won't
1460          * increase while we have the map locked.  Otherwise the race is
1461          * harmless and we will end up with an extra shadow object that
1462          * will be collapsed later.
1463          */
1464         if (source != NULL && source->ref_count == 1 &&
1465             (source->flags & OBJ_ANON) != 0)
1466                 return;
1467
1468         /*
1469          * Allocate a new object with the given length.
1470          */
1471         result = vm_object_allocate_anon(atop(length), source, cred, length);
1472
1473         /*
1474          * Store the offset into the source object, and fix up the offset into
1475          * the new object.
1476          */
1477         result->backing_object_offset = *offset;
1478
1479         if (shared || source != NULL) {
1480                 VM_OBJECT_WLOCK(result);
1481
1482                 /*
1483                  * The new object shadows the source object, adding a
1484                  * reference to it.  Our caller changes his reference
1485                  * to point to the new object, removing a reference to
1486                  * the source object.  Net result: no change of
1487                  * reference count, unless the caller needs to add one
1488                  * more reference due to forking a shared map entry.
1489                  */
1490                 if (shared) {
1491                         vm_object_reference_locked(result);
1492                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1493                 }
1494
1495                 /*
1496                  * Try to optimize the result object's page color when
1497                  * shadowing in order to maintain page coloring
1498                  * consistency in the combined shadowed object.
1499                  */
1500                 if (source != NULL) {
1501                         vm_object_backing_insert(result, source);
1502                         result->domain = source->domain;
1503 #if VM_NRESERVLEVEL > 0
1504                         vm_object_set_flag(result,
1505                             (source->flags & OBJ_COLORED));
1506                         result->pg_color = (source->pg_color +
1507                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1508                             1)) - 1);
1509 #endif
1510                 }
1511                 VM_OBJECT_WUNLOCK(result);
1512         }
1513
1514         /*
1515          * Return the new things
1516          */
1517         *offset = 0;
1518         *object = result;
1519 }
1520
1521 /*
1522  *      vm_object_split:
1523  *
1524  * Split the pages in a map entry into a new object.  This affords
1525  * easier removal of unused pages, and keeps object inheritance from
1526  * being a negative impact on memory usage.
1527  */
1528 void
1529 vm_object_split(vm_map_entry_t entry)
1530 {
1531         vm_page_t m, m_busy, m_next;
1532         vm_object_t orig_object, new_object, backing_object;
1533         vm_pindex_t idx, offidxstart;
1534         vm_size_t size;
1535
1536         orig_object = entry->object.vm_object;
1537         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1538             ("vm_object_split:  Splitting object with multiple mappings."));
1539         if ((orig_object->flags & OBJ_ANON) == 0)
1540                 return;
1541         if (orig_object->ref_count <= 1)
1542                 return;
1543         VM_OBJECT_WUNLOCK(orig_object);
1544
1545         offidxstart = OFF_TO_IDX(entry->offset);
1546         size = atop(entry->end - entry->start);
1547
1548         /*
1549          * If swap_pager_copy() is later called, it will convert new_object
1550          * into a swap object.
1551          */
1552         new_object = vm_object_allocate_anon(size, orig_object,
1553             orig_object->cred, ptoa(size));
1554
1555         /*
1556          * We must wait for the orig_object to complete any in-progress
1557          * collapse so that the swap blocks are stable below.  The
1558          * additional reference on backing_object by new object will
1559          * prevent further collapse operations until split completes.
1560          */
1561         VM_OBJECT_WLOCK(orig_object);
1562         vm_object_collapse_wait(orig_object);
1563
1564         /*
1565          * At this point, the new object is still private, so the order in
1566          * which the original and new objects are locked does not matter.
1567          */
1568         VM_OBJECT_WLOCK(new_object);
1569         new_object->domain = orig_object->domain;
1570         backing_object = orig_object->backing_object;
1571         if (backing_object != NULL) {
1572                 vm_object_backing_insert_ref(new_object, backing_object);
1573                 new_object->backing_object_offset = 
1574                     orig_object->backing_object_offset + entry->offset;
1575         }
1576         if (orig_object->cred != NULL) {
1577                 crhold(orig_object->cred);
1578                 KASSERT(orig_object->charge >= ptoa(size),
1579                     ("orig_object->charge < 0"));
1580                 orig_object->charge -= ptoa(size);
1581         }
1582
1583         /*
1584          * Mark the split operation so that swap_pager_getpages() knows
1585          * that the object is in transition.
1586          */
1587         vm_object_set_flag(orig_object, OBJ_SPLIT);
1588         m_busy = NULL;
1589 #ifdef INVARIANTS
1590         idx = 0;
1591 #endif
1592 retry:
1593         m = vm_page_find_least(orig_object, offidxstart);
1594         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1595             ("%s: object %p was repopulated", __func__, orig_object));
1596         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1597             m = m_next) {
1598                 m_next = TAILQ_NEXT(m, listq);
1599
1600                 /*
1601                  * We must wait for pending I/O to complete before we can
1602                  * rename the page.
1603                  *
1604                  * We do not have to VM_PROT_NONE the page as mappings should
1605                  * not be changed by this operation.
1606                  */
1607                 if (vm_page_tryxbusy(m) == 0) {
1608                         VM_OBJECT_WUNLOCK(new_object);
1609                         if (vm_page_busy_sleep(m, "spltwt", 0))
1610                                 VM_OBJECT_WLOCK(orig_object);
1611                         VM_OBJECT_WLOCK(new_object);
1612                         goto retry;
1613                 }
1614
1615                 /*
1616                  * The page was left invalid.  Likely placed there by
1617                  * an incomplete fault.  Just remove and ignore.
1618                  */
1619                 if (vm_page_none_valid(m)) {
1620                         if (vm_page_remove(m))
1621                                 vm_page_free(m);
1622                         continue;
1623                 }
1624
1625                 /* vm_page_rename() will dirty the page. */
1626                 if (vm_page_rename(m, new_object, idx)) {
1627                         vm_page_xunbusy(m);
1628                         VM_OBJECT_WUNLOCK(new_object);
1629                         VM_OBJECT_WUNLOCK(orig_object);
1630                         vm_radix_wait();
1631                         VM_OBJECT_WLOCK(orig_object);
1632                         VM_OBJECT_WLOCK(new_object);
1633                         goto retry;
1634                 }
1635
1636 #if VM_NRESERVLEVEL > 0
1637                 /*
1638                  * If some of the reservation's allocated pages remain with
1639                  * the original object, then transferring the reservation to
1640                  * the new object is neither particularly beneficial nor
1641                  * particularly harmful as compared to leaving the reservation
1642                  * with the original object.  If, however, all of the
1643                  * reservation's allocated pages are transferred to the new
1644                  * object, then transferring the reservation is typically
1645                  * beneficial.  Determining which of these two cases applies
1646                  * would be more costly than unconditionally renaming the
1647                  * reservation.
1648                  */
1649                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1650 #endif
1651
1652                 /*
1653                  * orig_object's type may change while sleeping, so keep track
1654                  * of the beginning of the busied range.
1655                  */
1656                 if (orig_object->type != OBJT_SWAP)
1657                         vm_page_xunbusy(m);
1658                 else if (m_busy == NULL)
1659                         m_busy = m;
1660         }
1661         if ((orig_object->flags & OBJ_SWAP) != 0) {
1662                 /*
1663                  * swap_pager_copy() can sleep, in which case the orig_object's
1664                  * and new_object's locks are released and reacquired. 
1665                  */
1666                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1667                 if (m_busy != NULL)
1668                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1669                                 vm_page_xunbusy(m_busy);
1670         }
1671         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1672         VM_OBJECT_WUNLOCK(orig_object);
1673         VM_OBJECT_WUNLOCK(new_object);
1674         entry->object.vm_object = new_object;
1675         entry->offset = 0LL;
1676         vm_object_deallocate(orig_object);
1677         VM_OBJECT_WLOCK(new_object);
1678 }
1679
1680 static vm_page_t
1681 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1682 {
1683         vm_object_t backing_object;
1684
1685         VM_OBJECT_ASSERT_WLOCKED(object);
1686         backing_object = object->backing_object;
1687         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1688
1689         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1690             ("invalid ownership %p %p %p", p, object, backing_object));
1691         /* The page is only NULL when rename fails. */
1692         if (p == NULL) {
1693                 VM_OBJECT_WUNLOCK(object);
1694                 VM_OBJECT_WUNLOCK(backing_object);
1695                 vm_radix_wait();
1696                 VM_OBJECT_WLOCK(object);
1697         } else if (p->object == object) {
1698                 VM_OBJECT_WUNLOCK(backing_object);
1699                 if (vm_page_busy_sleep(p, "vmocol", 0))
1700                         VM_OBJECT_WLOCK(object);
1701         } else {
1702                 VM_OBJECT_WUNLOCK(object);
1703                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1704                         VM_OBJECT_WUNLOCK(backing_object);
1705                 VM_OBJECT_WLOCK(object);
1706         }
1707         VM_OBJECT_WLOCK(backing_object);
1708         return (TAILQ_FIRST(&backing_object->memq));
1709 }
1710
1711 static bool
1712 vm_object_scan_all_shadowed(vm_object_t object)
1713 {
1714         vm_object_t backing_object;
1715         vm_page_t p, pp;
1716         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1717
1718         VM_OBJECT_ASSERT_WLOCKED(object);
1719         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1720
1721         backing_object = object->backing_object;
1722
1723         if ((backing_object->flags & OBJ_ANON) == 0)
1724                 return (false);
1725
1726         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1727         p = vm_page_find_least(backing_object, pi);
1728         ps = swap_pager_find_least(backing_object, pi);
1729
1730         /*
1731          * Only check pages inside the parent object's range and
1732          * inside the parent object's mapping of the backing object.
1733          */
1734         for (;; pi++) {
1735                 if (p != NULL && p->pindex < pi)
1736                         p = TAILQ_NEXT(p, listq);
1737                 if (ps < pi)
1738                         ps = swap_pager_find_least(backing_object, pi);
1739                 if (p == NULL && ps >= backing_object->size)
1740                         break;
1741                 else if (p == NULL)
1742                         pi = ps;
1743                 else
1744                         pi = MIN(p->pindex, ps);
1745
1746                 new_pindex = pi - backing_offset_index;
1747                 if (new_pindex >= object->size)
1748                         break;
1749
1750                 if (p != NULL) {
1751                         /*
1752                          * If the backing object page is busy a
1753                          * grandparent or older page may still be
1754                          * undergoing CoW.  It is not safe to collapse
1755                          * the backing object until it is quiesced.
1756                          */
1757                         if (vm_page_tryxbusy(p) == 0)
1758                                 return (false);
1759
1760                         /*
1761                          * We raced with the fault handler that left
1762                          * newly allocated invalid page on the object
1763                          * queue and retried.
1764                          */
1765                         if (!vm_page_all_valid(p))
1766                                 goto unbusy_ret;
1767                 }
1768
1769                 /*
1770                  * See if the parent has the page or if the parent's object
1771                  * pager has the page.  If the parent has the page but the page
1772                  * is not valid, the parent's object pager must have the page.
1773                  *
1774                  * If this fails, the parent does not completely shadow the
1775                  * object and we might as well give up now.
1776                  */
1777                 pp = vm_page_lookup(object, new_pindex);
1778
1779                 /*
1780                  * The valid check here is stable due to object lock
1781                  * being required to clear valid and initiate paging.
1782                  * Busy of p disallows fault handler to validate pp.
1783                  */
1784                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1785                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1786                         goto unbusy_ret;
1787                 if (p != NULL)
1788                         vm_page_xunbusy(p);
1789         }
1790         return (true);
1791
1792 unbusy_ret:
1793         if (p != NULL)
1794                 vm_page_xunbusy(p);
1795         return (false);
1796 }
1797
1798 static void
1799 vm_object_collapse_scan(vm_object_t object)
1800 {
1801         vm_object_t backing_object;
1802         vm_page_t next, p, pp;
1803         vm_pindex_t backing_offset_index, new_pindex;
1804
1805         VM_OBJECT_ASSERT_WLOCKED(object);
1806         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1807
1808         backing_object = object->backing_object;
1809         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1810
1811         /*
1812          * Our scan
1813          */
1814         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1815                 next = TAILQ_NEXT(p, listq);
1816                 new_pindex = p->pindex - backing_offset_index;
1817
1818                 /*
1819                  * Check for busy page
1820                  */
1821                 if (vm_page_tryxbusy(p) == 0) {
1822                         next = vm_object_collapse_scan_wait(object, p);
1823                         continue;
1824                 }
1825
1826                 KASSERT(object->backing_object == backing_object,
1827                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1828                     object->backing_object, backing_object));
1829                 KASSERT(p->object == backing_object,
1830                     ("vm_object_collapse_scan: object mismatch %p != %p",
1831                     p->object, backing_object));
1832
1833                 if (p->pindex < backing_offset_index ||
1834                     new_pindex >= object->size) {
1835                         vm_pager_freespace(backing_object, p->pindex, 1);
1836
1837                         KASSERT(!pmap_page_is_mapped(p),
1838                             ("freeing mapped page %p", p));
1839                         if (vm_page_remove(p))
1840                                 vm_page_free(p);
1841                         continue;
1842                 }
1843
1844                 if (!vm_page_all_valid(p)) {
1845                         KASSERT(!pmap_page_is_mapped(p),
1846                             ("freeing mapped page %p", p));
1847                         if (vm_page_remove(p))
1848                                 vm_page_free(p);
1849                         continue;
1850                 }
1851
1852                 pp = vm_page_lookup(object, new_pindex);
1853                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1854                         vm_page_xunbusy(p);
1855                         /*
1856                          * The page in the parent is busy and possibly not
1857                          * (yet) valid.  Until its state is finalized by the
1858                          * busy bit owner, we can't tell whether it shadows the
1859                          * original page.
1860                          */
1861                         next = vm_object_collapse_scan_wait(object, pp);
1862                         continue;
1863                 }
1864
1865                 if (pp != NULL && vm_page_none_valid(pp)) {
1866                         /*
1867                          * The page was invalid in the parent.  Likely placed
1868                          * there by an incomplete fault.  Just remove and
1869                          * ignore.  p can replace it.
1870                          */
1871                         if (vm_page_remove(pp))
1872                                 vm_page_free(pp);
1873                         pp = NULL;
1874                 }
1875
1876                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1877                         NULL)) {
1878                         /*
1879                          * The page already exists in the parent OR swap exists
1880                          * for this location in the parent.  Leave the parent's
1881                          * page alone.  Destroy the original page from the
1882                          * backing object.
1883                          */
1884                         vm_pager_freespace(backing_object, p->pindex, 1);
1885                         KASSERT(!pmap_page_is_mapped(p),
1886                             ("freeing mapped page %p", p));
1887                         if (vm_page_remove(p))
1888                                 vm_page_free(p);
1889                         if (pp != NULL)
1890                                 vm_page_xunbusy(pp);
1891                         continue;
1892                 }
1893
1894                 /*
1895                  * Page does not exist in parent, rename the page from the
1896                  * backing object to the main object.
1897                  *
1898                  * If the page was mapped to a process, it can remain mapped
1899                  * through the rename.  vm_page_rename() will dirty the page.
1900                  */
1901                 if (vm_page_rename(p, object, new_pindex)) {
1902                         vm_page_xunbusy(p);
1903                         next = vm_object_collapse_scan_wait(object, NULL);
1904                         continue;
1905                 }
1906
1907                 /* Use the old pindex to free the right page. */
1908                 vm_pager_freespace(backing_object, new_pindex +
1909                     backing_offset_index, 1);
1910
1911 #if VM_NRESERVLEVEL > 0
1912                 /*
1913                  * Rename the reservation.
1914                  */
1915                 vm_reserv_rename(p, object, backing_object,
1916                     backing_offset_index);
1917 #endif
1918                 vm_page_xunbusy(p);
1919         }
1920         return;
1921 }
1922
1923 /*
1924  *      vm_object_collapse:
1925  *
1926  *      Collapse an object with the object backing it.
1927  *      Pages in the backing object are moved into the
1928  *      parent, and the backing object is deallocated.
1929  */
1930 void
1931 vm_object_collapse(vm_object_t object)
1932 {
1933         vm_object_t backing_object, new_backing_object;
1934
1935         VM_OBJECT_ASSERT_WLOCKED(object);
1936
1937         while (TRUE) {
1938                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1939                     ("collapsing invalid object"));
1940
1941                 /*
1942                  * Wait for the backing_object to finish any pending
1943                  * collapse so that the caller sees the shortest possible
1944                  * shadow chain.
1945                  */
1946                 backing_object = vm_object_backing_collapse_wait(object);
1947                 if (backing_object == NULL)
1948                         return;
1949
1950                 KASSERT(object->ref_count > 0 &&
1951                     object->ref_count > atomic_load_int(&object->shadow_count),
1952                     ("collapse with invalid ref %d or shadow %d count.",
1953                     object->ref_count, atomic_load_int(&object->shadow_count)));
1954                 KASSERT((backing_object->flags &
1955                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1956                     ("vm_object_collapse: Backing object already collapsing."));
1957                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1958                     ("vm_object_collapse: object is already collapsing."));
1959
1960                 /*
1961                  * We know that we can either collapse the backing object if
1962                  * the parent is the only reference to it, or (perhaps) have
1963                  * the parent bypass the object if the parent happens to shadow
1964                  * all the resident pages in the entire backing object.
1965                  */
1966                 if (backing_object->ref_count == 1) {
1967                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1968                             == 1,
1969                             ("vm_object_collapse: shadow_count: %d",
1970                             atomic_load_int(&backing_object->shadow_count)));
1971                         vm_object_pip_add(object, 1);
1972                         vm_object_set_flag(object, OBJ_COLLAPSING);
1973                         vm_object_pip_add(backing_object, 1);
1974                         vm_object_set_flag(backing_object, OBJ_DEAD);
1975
1976                         /*
1977                          * If there is exactly one reference to the backing
1978                          * object, we can collapse it into the parent.
1979                          */
1980                         vm_object_collapse_scan(object);
1981
1982 #if VM_NRESERVLEVEL > 0
1983                         /*
1984                          * Break any reservations from backing_object.
1985                          */
1986                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1987                                 vm_reserv_break_all(backing_object);
1988 #endif
1989
1990                         /*
1991                          * Move the pager from backing_object to object.
1992                          */
1993                         if ((backing_object->flags & OBJ_SWAP) != 0) {
1994                                 /*
1995                                  * swap_pager_copy() can sleep, in which case
1996                                  * the backing_object's and object's locks are
1997                                  * released and reacquired.
1998                                  * Since swap_pager_copy() is being asked to
1999                                  * destroy backing_object, it will change the
2000                                  * type to OBJT_DEFAULT.
2001                                  */
2002                                 swap_pager_copy(
2003                                     backing_object,
2004                                     object,
2005                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
2006                         }
2007
2008                         /*
2009                          * Object now shadows whatever backing_object did.
2010                          */
2011                         vm_object_clear_flag(object, OBJ_COLLAPSING);
2012                         vm_object_backing_transfer(object, backing_object);
2013                         object->backing_object_offset +=
2014                             backing_object->backing_object_offset;
2015                         VM_OBJECT_WUNLOCK(object);
2016                         vm_object_pip_wakeup(object);
2017
2018                         /*
2019                          * Discard backing_object.
2020                          *
2021                          * Since the backing object has no pages, no pager left,
2022                          * and no object references within it, all that is
2023                          * necessary is to dispose of it.
2024                          */
2025                         KASSERT(backing_object->ref_count == 1, (
2026 "backing_object %p was somehow re-referenced during collapse!",
2027                             backing_object));
2028                         vm_object_pip_wakeup(backing_object);
2029                         (void)refcount_release(&backing_object->ref_count);
2030                         vm_object_terminate(backing_object);
2031                         counter_u64_add(object_collapses, 1);
2032                         VM_OBJECT_WLOCK(object);
2033                 } else {
2034                         /*
2035                          * If we do not entirely shadow the backing object,
2036                          * there is nothing we can do so we give up.
2037                          *
2038                          * The object lock and backing_object lock must not
2039                          * be dropped during this sequence.
2040                          */
2041                         if (!vm_object_scan_all_shadowed(object)) {
2042                                 VM_OBJECT_WUNLOCK(backing_object);
2043                                 break;
2044                         }
2045
2046                         /*
2047                          * Make the parent shadow the next object in the
2048                          * chain.  Deallocating backing_object will not remove
2049                          * it, since its reference count is at least 2.
2050                          */
2051                         vm_object_backing_remove_locked(object);
2052                         new_backing_object = backing_object->backing_object;
2053                         if (new_backing_object != NULL) {
2054                                 vm_object_backing_insert_ref(object,
2055                                     new_backing_object);
2056                                 object->backing_object_offset +=
2057                                     backing_object->backing_object_offset;
2058                         }
2059
2060                         /*
2061                          * Drop the reference count on backing_object. Since
2062                          * its ref_count was at least 2, it will not vanish.
2063                          */
2064                         (void)refcount_release(&backing_object->ref_count);
2065                         KASSERT(backing_object->ref_count >= 1, (
2066 "backing_object %p was somehow dereferenced during collapse!",
2067                             backing_object));
2068                         VM_OBJECT_WUNLOCK(backing_object);
2069                         counter_u64_add(object_bypasses, 1);
2070                 }
2071
2072                 /*
2073                  * Try again with this object's new backing object.
2074                  */
2075         }
2076 }
2077
2078 /*
2079  *      vm_object_page_remove:
2080  *
2081  *      For the given object, either frees or invalidates each of the
2082  *      specified pages.  In general, a page is freed.  However, if a page is
2083  *      wired for any reason other than the existence of a managed, wired
2084  *      mapping, then it may be invalidated but not removed from the object.
2085  *      Pages are specified by the given range ["start", "end") and the option
2086  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2087  *      extends from "start" to the end of the object.  If the option
2088  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2089  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2090  *      specified, then the pages within the specified range must have no
2091  *      mappings.  Otherwise, if this option is not specified, any mappings to
2092  *      the specified pages are removed before the pages are freed or
2093  *      invalidated.
2094  *
2095  *      In general, this operation should only be performed on objects that
2096  *      contain managed pages.  There are, however, two exceptions.  First, it
2097  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2098  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2099  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2100  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2101  *
2102  *      The object must be locked.
2103  */
2104 void
2105 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2106     int options)
2107 {
2108         vm_page_t p, next;
2109
2110         VM_OBJECT_ASSERT_WLOCKED(object);
2111         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2112             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2113             ("vm_object_page_remove: illegal options for object %p", object));
2114         if (object->resident_page_count == 0)
2115                 return;
2116         vm_object_pip_add(object, 1);
2117 again:
2118         p = vm_page_find_least(object, start);
2119
2120         /*
2121          * Here, the variable "p" is either (1) the page with the least pindex
2122          * greater than or equal to the parameter "start" or (2) NULL. 
2123          */
2124         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2125                 next = TAILQ_NEXT(p, listq);
2126
2127                 /*
2128                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2129                  * the busy lock, as some consumers rely on this to avoid
2130                  * deadlocks.
2131                  *
2132                  * A thread may concurrently transition the page from invalid to
2133                  * valid using only the busy lock, so the result of this check
2134                  * is immediately stale.  It is up to consumers to handle this,
2135                  * for instance by ensuring that all invalid->valid transitions
2136                  * happen with a mutex held, as may be possible for a
2137                  * filesystem.
2138                  */
2139                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2140                         continue;
2141
2142                 /*
2143                  * If the page is wired for any reason besides the existence
2144                  * of managed, wired mappings, then it cannot be freed.  For
2145                  * example, fictitious pages, which represent device memory,
2146                  * are inherently wired and cannot be freed.  They can,
2147                  * however, be invalidated if the option OBJPR_CLEANONLY is
2148                  * not specified.
2149                  */
2150                 if (vm_page_tryxbusy(p) == 0) {
2151                         if (vm_page_busy_sleep(p, "vmopar", 0))
2152                                 VM_OBJECT_WLOCK(object);
2153                         goto again;
2154                 }
2155                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2156                         vm_page_xunbusy(p);
2157                         continue;
2158                 }
2159                 if (vm_page_wired(p)) {
2160 wired:
2161                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2162                             object->ref_count != 0)
2163                                 pmap_remove_all(p);
2164                         if ((options & OBJPR_CLEANONLY) == 0) {
2165                                 vm_page_invalid(p);
2166                                 vm_page_undirty(p);
2167                         }
2168                         vm_page_xunbusy(p);
2169                         continue;
2170                 }
2171                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2172                     ("vm_object_page_remove: page %p is fictitious", p));
2173                 if ((options & OBJPR_CLEANONLY) != 0 &&
2174                     !vm_page_none_valid(p)) {
2175                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2176                             object->ref_count != 0 &&
2177                             !vm_page_try_remove_write(p))
2178                                 goto wired;
2179                         if (p->dirty != 0) {
2180                                 vm_page_xunbusy(p);
2181                                 continue;
2182                         }
2183                 }
2184                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2185                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2186                         goto wired;
2187                 vm_page_free(p);
2188         }
2189         vm_object_pip_wakeup(object);
2190
2191         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2192             start);
2193 }
2194
2195 /*
2196  *      vm_object_page_noreuse:
2197  *
2198  *      For the given object, attempt to move the specified pages to
2199  *      the head of the inactive queue.  This bypasses regular LRU
2200  *      operation and allows the pages to be reused quickly under memory
2201  *      pressure.  If a page is wired for any reason, then it will not
2202  *      be queued.  Pages are specified by the range ["start", "end").
2203  *      As a special case, if "end" is zero, then the range extends from
2204  *      "start" to the end of the object.
2205  *
2206  *      This operation should only be performed on objects that
2207  *      contain non-fictitious, managed pages.
2208  *
2209  *      The object must be locked.
2210  */
2211 void
2212 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2213 {
2214         vm_page_t p, next;
2215
2216         VM_OBJECT_ASSERT_LOCKED(object);
2217         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2218             ("vm_object_page_noreuse: illegal object %p", object));
2219         if (object->resident_page_count == 0)
2220                 return;
2221         p = vm_page_find_least(object, start);
2222
2223         /*
2224          * Here, the variable "p" is either (1) the page with the least pindex
2225          * greater than or equal to the parameter "start" or (2) NULL. 
2226          */
2227         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2228                 next = TAILQ_NEXT(p, listq);
2229                 vm_page_deactivate_noreuse(p);
2230         }
2231 }
2232
2233 /*
2234  *      Populate the specified range of the object with valid pages.  Returns
2235  *      TRUE if the range is successfully populated and FALSE otherwise.
2236  *
2237  *      Note: This function should be optimized to pass a larger array of
2238  *      pages to vm_pager_get_pages() before it is applied to a non-
2239  *      OBJT_DEVICE object.
2240  *
2241  *      The object must be locked.
2242  */
2243 boolean_t
2244 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2245 {
2246         vm_page_t m;
2247         vm_pindex_t pindex;
2248         int rv;
2249
2250         VM_OBJECT_ASSERT_WLOCKED(object);
2251         for (pindex = start; pindex < end; pindex++) {
2252                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2253                 if (rv != VM_PAGER_OK)
2254                         break;
2255
2256                 /*
2257                  * Keep "m" busy because a subsequent iteration may unlock
2258                  * the object.
2259                  */
2260         }
2261         if (pindex > start) {
2262                 m = vm_page_lookup(object, start);
2263                 while (m != NULL && m->pindex < pindex) {
2264                         vm_page_xunbusy(m);
2265                         m = TAILQ_NEXT(m, listq);
2266                 }
2267         }
2268         return (pindex == end);
2269 }
2270
2271 /*
2272  *      Routine:        vm_object_coalesce
2273  *      Function:       Coalesces two objects backing up adjoining
2274  *                      regions of memory into a single object.
2275  *
2276  *      returns TRUE if objects were combined.
2277  *
2278  *      NOTE:   Only works at the moment if the second object is NULL -
2279  *              if it's not, which object do we lock first?
2280  *
2281  *      Parameters:
2282  *              prev_object     First object to coalesce
2283  *              prev_offset     Offset into prev_object
2284  *              prev_size       Size of reference to prev_object
2285  *              next_size       Size of reference to the second object
2286  *              reserved        Indicator that extension region has
2287  *                              swap accounted for
2288  *
2289  *      Conditions:
2290  *      The object must *not* be locked.
2291  */
2292 boolean_t
2293 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2294     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2295 {
2296         vm_pindex_t next_pindex;
2297
2298         if (prev_object == NULL)
2299                 return (TRUE);
2300         if ((prev_object->flags & OBJ_ANON) == 0)
2301                 return (FALSE);
2302
2303         VM_OBJECT_WLOCK(prev_object);
2304         /*
2305          * Try to collapse the object first.
2306          */
2307         vm_object_collapse(prev_object);
2308
2309         /*
2310          * Can't coalesce if: . more than one reference . paged out . shadows
2311          * another object . has a copy elsewhere (any of which mean that the
2312          * pages not mapped to prev_entry may be in use anyway)
2313          */
2314         if (prev_object->backing_object != NULL) {
2315                 VM_OBJECT_WUNLOCK(prev_object);
2316                 return (FALSE);
2317         }
2318
2319         prev_size >>= PAGE_SHIFT;
2320         next_size >>= PAGE_SHIFT;
2321         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2322
2323         if (prev_object->ref_count > 1 &&
2324             prev_object->size != next_pindex &&
2325             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2326                 VM_OBJECT_WUNLOCK(prev_object);
2327                 return (FALSE);
2328         }
2329
2330         /*
2331          * Account for the charge.
2332          */
2333         if (prev_object->cred != NULL) {
2334                 /*
2335                  * If prev_object was charged, then this mapping,
2336                  * although not charged now, may become writable
2337                  * later. Non-NULL cred in the object would prevent
2338                  * swap reservation during enabling of the write
2339                  * access, so reserve swap now. Failed reservation
2340                  * cause allocation of the separate object for the map
2341                  * entry, and swap reservation for this entry is
2342                  * managed in appropriate time.
2343                  */
2344                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2345                     prev_object->cred)) {
2346                         VM_OBJECT_WUNLOCK(prev_object);
2347                         return (FALSE);
2348                 }
2349                 prev_object->charge += ptoa(next_size);
2350         }
2351
2352         /*
2353          * Remove any pages that may still be in the object from a previous
2354          * deallocation.
2355          */
2356         if (next_pindex < prev_object->size) {
2357                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2358                     next_size, 0);
2359 #if 0
2360                 if (prev_object->cred != NULL) {
2361                         KASSERT(prev_object->charge >=
2362                             ptoa(prev_object->size - next_pindex),
2363                             ("object %p overcharged 1 %jx %jx", prev_object,
2364                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2365                         prev_object->charge -= ptoa(prev_object->size -
2366                             next_pindex);
2367                 }
2368 #endif
2369         }
2370
2371         /*
2372          * Extend the object if necessary.
2373          */
2374         if (next_pindex + next_size > prev_object->size)
2375                 prev_object->size = next_pindex + next_size;
2376
2377         VM_OBJECT_WUNLOCK(prev_object);
2378         return (TRUE);
2379 }
2380
2381 void
2382 vm_object_set_writeable_dirty_(vm_object_t object)
2383 {
2384         atomic_add_int(&object->generation, 1);
2385 }
2386
2387 bool
2388 vm_object_mightbedirty_(vm_object_t object)
2389 {
2390         return (object->generation != object->cleangeneration);
2391 }
2392
2393 /*
2394  *      vm_object_unwire:
2395  *
2396  *      For each page offset within the specified range of the given object,
2397  *      find the highest-level page in the shadow chain and unwire it.  A page
2398  *      must exist at every page offset, and the highest-level page must be
2399  *      wired.
2400  */
2401 void
2402 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2403     uint8_t queue)
2404 {
2405         vm_object_t tobject, t1object;
2406         vm_page_t m, tm;
2407         vm_pindex_t end_pindex, pindex, tpindex;
2408         int depth, locked_depth;
2409
2410         KASSERT((offset & PAGE_MASK) == 0,
2411             ("vm_object_unwire: offset is not page aligned"));
2412         KASSERT((length & PAGE_MASK) == 0,
2413             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2414         /* The wired count of a fictitious page never changes. */
2415         if ((object->flags & OBJ_FICTITIOUS) != 0)
2416                 return;
2417         pindex = OFF_TO_IDX(offset);
2418         end_pindex = pindex + atop(length);
2419 again:
2420         locked_depth = 1;
2421         VM_OBJECT_RLOCK(object);
2422         m = vm_page_find_least(object, pindex);
2423         while (pindex < end_pindex) {
2424                 if (m == NULL || pindex < m->pindex) {
2425                         /*
2426                          * The first object in the shadow chain doesn't
2427                          * contain a page at the current index.  Therefore,
2428                          * the page must exist in a backing object.
2429                          */
2430                         tobject = object;
2431                         tpindex = pindex;
2432                         depth = 0;
2433                         do {
2434                                 tpindex +=
2435                                     OFF_TO_IDX(tobject->backing_object_offset);
2436                                 tobject = tobject->backing_object;
2437                                 KASSERT(tobject != NULL,
2438                                     ("vm_object_unwire: missing page"));
2439                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2440                                         goto next_page;
2441                                 depth++;
2442                                 if (depth == locked_depth) {
2443                                         locked_depth++;
2444                                         VM_OBJECT_RLOCK(tobject);
2445                                 }
2446                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2447                             NULL);
2448                 } else {
2449                         tm = m;
2450                         m = TAILQ_NEXT(m, listq);
2451                 }
2452                 if (vm_page_trysbusy(tm) == 0) {
2453                         for (tobject = object; locked_depth >= 1;
2454                             locked_depth--) {
2455                                 t1object = tobject->backing_object;
2456                                 if (tm->object != tobject)
2457                                         VM_OBJECT_RUNLOCK(tobject);
2458                                 tobject = t1object;
2459                         }
2460                         tobject = tm->object;
2461                         if (!vm_page_busy_sleep(tm, "unwbo",
2462                             VM_ALLOC_IGN_SBUSY))
2463                                 VM_OBJECT_RUNLOCK(tobject);
2464                         goto again;
2465                 }
2466                 vm_page_unwire(tm, queue);
2467                 vm_page_sunbusy(tm);
2468 next_page:
2469                 pindex++;
2470         }
2471         /* Release the accumulated object locks. */
2472         for (tobject = object; locked_depth >= 1; locked_depth--) {
2473                 t1object = tobject->backing_object;
2474                 VM_OBJECT_RUNLOCK(tobject);
2475                 tobject = t1object;
2476         }
2477 }
2478
2479 /*
2480  * Return the vnode for the given object, or NULL if none exists.
2481  * For tmpfs objects, the function may return NULL if there is
2482  * no vnode allocated at the time of the call.
2483  */
2484 struct vnode *
2485 vm_object_vnode(vm_object_t object)
2486 {
2487         struct vnode *vp;
2488
2489         VM_OBJECT_ASSERT_LOCKED(object);
2490         vm_pager_getvp(object, &vp, NULL);
2491         return (vp);
2492 }
2493
2494 /*
2495  * Busy the vm object.  This prevents new pages belonging to the object from
2496  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2497  * for checking page state before proceeding.
2498  */
2499 void
2500 vm_object_busy(vm_object_t obj)
2501 {
2502
2503         VM_OBJECT_ASSERT_LOCKED(obj);
2504
2505         blockcount_acquire(&obj->busy, 1);
2506         /* The fence is required to order loads of page busy. */
2507         atomic_thread_fence_acq_rel();
2508 }
2509
2510 void
2511 vm_object_unbusy(vm_object_t obj)
2512 {
2513
2514         blockcount_release(&obj->busy, 1);
2515 }
2516
2517 void
2518 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2519 {
2520
2521         VM_OBJECT_ASSERT_UNLOCKED(obj);
2522
2523         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2524 }
2525
2526 /*
2527  * This function aims to determine if the object is mapped,
2528  * specifically, if it is referenced by a vm_map_entry.  Because
2529  * objects occasionally acquire transient references that do not
2530  * represent a mapping, the method used here is inexact.  However, it
2531  * has very low overhead and is good enough for the advisory
2532  * vm.vmtotal sysctl.
2533  */
2534 bool
2535 vm_object_is_active(vm_object_t obj)
2536 {
2537
2538         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2539 }
2540
2541 static int
2542 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2543 {
2544         struct kinfo_vmobject *kvo;
2545         char *fullpath, *freepath;
2546         struct vnode *vp;
2547         struct vattr va;
2548         vm_object_t obj;
2549         vm_page_t m;
2550         u_long sp;
2551         int count, error;
2552
2553         if (req->oldptr == NULL) {
2554                 /*
2555                  * If an old buffer has not been provided, generate an
2556                  * estimate of the space needed for a subsequent call.
2557                  */
2558                 mtx_lock(&vm_object_list_mtx);
2559                 count = 0;
2560                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2561                         if (obj->type == OBJT_DEAD)
2562                                 continue;
2563                         count++;
2564                 }
2565                 mtx_unlock(&vm_object_list_mtx);
2566                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2567                     count * 11 / 10));
2568         }
2569
2570         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2571         error = 0;
2572
2573         /*
2574          * VM objects are type stable and are never removed from the
2575          * list once added.  This allows us to safely read obj->object_list
2576          * after reacquiring the VM object lock.
2577          */
2578         mtx_lock(&vm_object_list_mtx);
2579         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2580                 if (obj->type == OBJT_DEAD ||
2581                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2582                         continue;
2583                 VM_OBJECT_RLOCK(obj);
2584                 if (obj->type == OBJT_DEAD ||
2585                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2586                         VM_OBJECT_RUNLOCK(obj);
2587                         continue;
2588                 }
2589                 mtx_unlock(&vm_object_list_mtx);
2590                 kvo->kvo_size = ptoa(obj->size);
2591                 kvo->kvo_resident = obj->resident_page_count;
2592                 kvo->kvo_ref_count = obj->ref_count;
2593                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2594                 kvo->kvo_memattr = obj->memattr;
2595                 kvo->kvo_active = 0;
2596                 kvo->kvo_inactive = 0;
2597                 if (!swap_only) {
2598                         TAILQ_FOREACH(m, &obj->memq, listq) {
2599                                 /*
2600                                  * A page may belong to the object but be
2601                                  * dequeued and set to PQ_NONE while the
2602                                  * object lock is not held.  This makes the
2603                                  * reads of m->queue below racy, and we do not
2604                                  * count pages set to PQ_NONE.  However, this
2605                                  * sysctl is only meant to give an
2606                                  * approximation of the system anyway.
2607                                  */
2608                                 if (m->a.queue == PQ_ACTIVE)
2609                                         kvo->kvo_active++;
2610                                 else if (m->a.queue == PQ_INACTIVE)
2611                                         kvo->kvo_inactive++;
2612                         }
2613                 }
2614
2615                 kvo->kvo_vn_fileid = 0;
2616                 kvo->kvo_vn_fsid = 0;
2617                 kvo->kvo_vn_fsid_freebsd11 = 0;
2618                 freepath = NULL;
2619                 fullpath = "";
2620                 vp = NULL;
2621                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2622                 if (vp != NULL) {
2623                         vref(vp);
2624                 } else if ((obj->flags & OBJ_ANON) != 0) {
2625                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2626                             kvo->kvo_type == KVME_TYPE_SWAP);
2627                         kvo->kvo_me = (uintptr_t)obj;
2628                         /* tmpfs objs are reported as vnodes */
2629                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2630                         sp = swap_pager_swapped_pages(obj);
2631                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2632                 }
2633                 VM_OBJECT_RUNLOCK(obj);
2634                 if (vp != NULL) {
2635                         vn_fullpath(vp, &fullpath, &freepath);
2636                         vn_lock(vp, LK_SHARED | LK_RETRY);
2637                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2638                                 kvo->kvo_vn_fileid = va.va_fileid;
2639                                 kvo->kvo_vn_fsid = va.va_fsid;
2640                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2641                                                                 /* truncate */
2642                         }
2643                         vput(vp);
2644                 }
2645
2646                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2647                 if (freepath != NULL)
2648                         free(freepath, M_TEMP);
2649
2650                 /* Pack record size down */
2651                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2652                     + strlen(kvo->kvo_path) + 1;
2653                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2654                     sizeof(uint64_t));
2655                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2656                 maybe_yield();
2657                 mtx_lock(&vm_object_list_mtx);
2658                 if (error)
2659                         break;
2660         }
2661         mtx_unlock(&vm_object_list_mtx);
2662         free(kvo, M_TEMP);
2663         return (error);
2664 }
2665
2666 static int
2667 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2668 {
2669         return (vm_object_list_handler(req, false));
2670 }
2671
2672 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2673     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2674     "List of VM objects");
2675
2676 static int
2677 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2678 {
2679         return (vm_object_list_handler(req, true));
2680 }
2681
2682 /*
2683  * This sysctl returns list of the anonymous or swap objects. Intent
2684  * is to provide stripped optimized list useful to analyze swap use.
2685  * Since technically non-swap (default) objects participate in the
2686  * shadow chains, and are converted to swap type as needed by swap
2687  * pager, we must report them.
2688  */
2689 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2690     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2691     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2692     "List of swap VM objects");
2693
2694 #include "opt_ddb.h"
2695 #ifdef DDB
2696 #include <sys/kernel.h>
2697
2698 #include <sys/cons.h>
2699
2700 #include <ddb/ddb.h>
2701
2702 static int
2703 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2704 {
2705         vm_map_t tmpm;
2706         vm_map_entry_t tmpe;
2707         vm_object_t obj;
2708
2709         if (map == 0)
2710                 return 0;
2711
2712         if (entry == 0) {
2713                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2714                         if (_vm_object_in_map(map, object, tmpe)) {
2715                                 return 1;
2716                         }
2717                 }
2718         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2719                 tmpm = entry->object.sub_map;
2720                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2721                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2722                                 return 1;
2723                         }
2724                 }
2725         } else if ((obj = entry->object.vm_object) != NULL) {
2726                 for (; obj; obj = obj->backing_object)
2727                         if (obj == object) {
2728                                 return 1;
2729                         }
2730         }
2731         return 0;
2732 }
2733
2734 static int
2735 vm_object_in_map(vm_object_t object)
2736 {
2737         struct proc *p;
2738
2739         /* sx_slock(&allproc_lock); */
2740         FOREACH_PROC_IN_SYSTEM(p) {
2741                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2742                         continue;
2743                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2744                         /* sx_sunlock(&allproc_lock); */
2745                         return 1;
2746                 }
2747         }
2748         /* sx_sunlock(&allproc_lock); */
2749         if (_vm_object_in_map(kernel_map, object, 0))
2750                 return 1;
2751         return 0;
2752 }
2753
2754 DB_SHOW_COMMAND(vmochk, vm_object_check)
2755 {
2756         vm_object_t object;
2757
2758         /*
2759          * make sure that internal objs are in a map somewhere
2760          * and none have zero ref counts.
2761          */
2762         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2763                 if ((object->flags & OBJ_ANON) != 0) {
2764                         if (object->ref_count == 0) {
2765                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2766                                         (long)object->size);
2767                         }
2768                         if (!vm_object_in_map(object)) {
2769                                 db_printf(
2770                         "vmochk: internal obj is not in a map: "
2771                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2772                                     object->ref_count, (u_long)object->size, 
2773                                     (u_long)object->size,
2774                                     (void *)object->backing_object);
2775                         }
2776                 }
2777                 if (db_pager_quit)
2778                         return;
2779         }
2780 }
2781
2782 /*
2783  *      vm_object_print:        [ debug ]
2784  */
2785 DB_SHOW_COMMAND(object, vm_object_print_static)
2786 {
2787         /* XXX convert args. */
2788         vm_object_t object = (vm_object_t)addr;
2789         boolean_t full = have_addr;
2790
2791         vm_page_t p;
2792
2793         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2794 #define count   was_count
2795
2796         int count;
2797
2798         if (object == NULL)
2799                 return;
2800
2801         db_iprintf(
2802             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2803             object, (int)object->type, (uintmax_t)object->size,
2804             object->resident_page_count, object->ref_count, object->flags,
2805             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2806         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2807             atomic_load_int(&object->shadow_count),
2808             object->backing_object ? object->backing_object->ref_count : 0,
2809             object->backing_object, (uintmax_t)object->backing_object_offset);
2810
2811         if (!full)
2812                 return;
2813
2814         db_indent += 2;
2815         count = 0;
2816         TAILQ_FOREACH(p, &object->memq, listq) {
2817                 if (count == 0)
2818                         db_iprintf("memory:=");
2819                 else if (count == 6) {
2820                         db_printf("\n");
2821                         db_iprintf(" ...");
2822                         count = 0;
2823                 } else
2824                         db_printf(",");
2825                 count++;
2826
2827                 db_printf("(off=0x%jx,page=0x%jx)",
2828                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2829
2830                 if (db_pager_quit)
2831                         break;
2832         }
2833         if (count != 0)
2834                 db_printf("\n");
2835         db_indent -= 2;
2836 }
2837
2838 /* XXX. */
2839 #undef count
2840
2841 /* XXX need this non-static entry for calling from vm_map_print. */
2842 void
2843 vm_object_print(
2844         /* db_expr_t */ long addr,
2845         boolean_t have_addr,
2846         /* db_expr_t */ long count,
2847         char *modif)
2848 {
2849         vm_object_print_static(addr, have_addr, count, modif);
2850 }
2851
2852 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2853 {
2854         vm_object_t object;
2855         vm_pindex_t fidx;
2856         vm_paddr_t pa;
2857         vm_page_t m, prev_m;
2858         int rcount;
2859
2860         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2861                 db_printf("new object: %p\n", (void *)object);
2862                 if (db_pager_quit)
2863                         return;
2864
2865                 rcount = 0;
2866                 fidx = 0;
2867                 pa = -1;
2868                 TAILQ_FOREACH(m, &object->memq, listq) {
2869                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2870                             prev_m->pindex + 1 != m->pindex) {
2871                                 if (rcount) {
2872                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2873                                                 (long)fidx, rcount, (long)pa);
2874                                         if (db_pager_quit)
2875                                                 return;
2876                                         rcount = 0;
2877                                 }
2878                         }                               
2879                         if (rcount &&
2880                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2881                                 ++rcount;
2882                                 continue;
2883                         }
2884                         if (rcount) {
2885                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2886                                         (long)fidx, rcount, (long)pa);
2887                                 if (db_pager_quit)
2888                                         return;
2889                         }
2890                         fidx = m->pindex;
2891                         pa = VM_PAGE_TO_PHYS(m);
2892                         rcount = 1;
2893                 }
2894                 if (rcount) {
2895                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2896                                 (long)fidx, rcount, (long)pa);
2897                         if (db_pager_quit)
2898                                 return;
2899                 }
2900         }
2901 }
2902 #endif /* DDB */