]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
sysctl(9): Fix a few mandoc related issues
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/lock.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/pctrie.h>
81 #include <sys/sysctl.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>           /* for curproc, pageproc */
84 #include <sys/refcount.h>
85 #include <sys/socket.h>
86 #include <sys/resourcevar.h>
87 #include <sys/refcount.h>
88 #include <sys/rwlock.h>
89 #include <sys/user.h>
90 #include <sys/vnode.h>
91 #include <sys/vmmeter.h>
92 #include <sys/sx.h>
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_radix.h>
108 #include <vm/vm_reserv.h>
109 #include <vm/uma.h>
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
116                     int pagerflags, int flags, boolean_t *allclean,
117                     boolean_t *eio);
118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
119                     boolean_t *allclean);
120 static void     vm_object_backing_remove(vm_object_t object);
121
122 /*
123  *      Virtual memory objects maintain the actual data
124  *      associated with allocated virtual memory.  A given
125  *      page of memory exists within exactly one object.
126  *
127  *      An object is only deallocated when all "references"
128  *      are given up.  Only one "reference" to a given
129  *      region of an object should be writeable.
130  *
131  *      Associated with each object is a list of all resident
132  *      memory pages belonging to that object; this list is
133  *      maintained by the "vm_page" module, and locked by the object's
134  *      lock.
135  *
136  *      Each object also records a "pager" routine which is
137  *      used to retrieve (and store) pages to the proper backing
138  *      storage.  In addition, objects may be backed by other
139  *      objects from which they were virtual-copied.
140  *
141  *      The only items within the object structure which are
142  *      modified after time of creation are:
143  *              reference count         locked by object's lock
144  *              pager routine           locked by object's lock
145  *
146  */
147
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;  /* lock for object list and count */
150
151 struct vm_object kernel_object_store;
152
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "VM object stats");
155
156 static COUNTER_U64_DEFINE_EARLY(object_collapses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165
166 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
168     &object_collapse_waits,
169     "Number of sleeps for collapse");
170
171 static uma_zone_t obj_zone;
172
173 static int vm_object_zinit(void *mem, int size, int flags);
174
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181         vm_object_t object;
182
183         object = (vm_object_t)mem;
184         KASSERT(object->ref_count == 0,
185             ("object %p ref_count = %d", object, object->ref_count));
186         KASSERT(TAILQ_EMPTY(&object->memq),
187             ("object %p has resident pages in its memq", object));
188         KASSERT(vm_radix_is_empty(&object->rtree),
189             ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191         KASSERT(LIST_EMPTY(&object->rvq),
192             ("object %p has reservations",
193             object));
194 #endif
195         KASSERT(!vm_object_busied(object),
196             ("object %p busy = %d", object, blockcount_read(&object->busy)));
197         KASSERT(object->resident_page_count == 0,
198             ("object %p resident_page_count = %d",
199             object, object->resident_page_count));
200         KASSERT(object->shadow_count == 0,
201             ("object %p shadow_count = %d",
202             object, object->shadow_count));
203         KASSERT(object->type == OBJT_DEAD,
204             ("object %p has non-dead type %d",
205             object, object->type));
206 }
207 #endif
208
209 static int
210 vm_object_zinit(void *mem, int size, int flags)
211 {
212         vm_object_t object;
213
214         object = (vm_object_t)mem;
215         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
216
217         /* These are true for any object that has been freed */
218         object->type = OBJT_DEAD;
219         vm_radix_init(&object->rtree);
220         refcount_init(&object->ref_count, 0);
221         blockcount_init(&object->paging_in_progress);
222         blockcount_init(&object->busy);
223         object->resident_page_count = 0;
224         object->shadow_count = 0;
225         object->flags = OBJ_DEAD;
226
227         mtx_lock(&vm_object_list_mtx);
228         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
229         mtx_unlock(&vm_object_list_mtx);
230         return (0);
231 }
232
233 static void
234 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
235     vm_object_t object, void *handle)
236 {
237
238         TAILQ_INIT(&object->memq);
239         LIST_INIT(&object->shadow_head);
240
241         object->type = type;
242         if (type == OBJT_SWAP)
243                 pctrie_init(&object->un_pager.swp.swp_blks);
244
245         /*
246          * Ensure that swap_pager_swapoff() iteration over object_list
247          * sees up to date type and pctrie head if it observed
248          * non-dead object.
249          */
250         atomic_thread_fence_rel();
251
252         object->pg_color = 0;
253         object->flags = flags;
254         object->size = size;
255         object->domain.dr_policy = NULL;
256         object->generation = 1;
257         object->cleangeneration = 1;
258         refcount_init(&object->ref_count, 1);
259         object->memattr = VM_MEMATTR_DEFAULT;
260         object->cred = NULL;
261         object->charge = 0;
262         object->handle = handle;
263         object->backing_object = NULL;
264         object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266         LIST_INIT(&object->rvq);
267 #endif
268         umtx_shm_object_init(object);
269 }
270
271 /*
272  *      vm_object_init:
273  *
274  *      Initialize the VM objects module.
275  */
276 void
277 vm_object_init(void)
278 {
279         TAILQ_INIT(&vm_object_list);
280         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
281
282         rw_init(&kernel_object->lock, "kernel vm object");
283         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
284             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
285 #if VM_NRESERVLEVEL > 0
286         kernel_object->flags |= OBJ_COLORED;
287         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
288 #endif
289         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
290
291         /*
292          * The lock portion of struct vm_object must be type stable due
293          * to vm_pageout_fallback_object_lock locking a vm object
294          * without holding any references to it.
295          *
296          * paging_in_progress is valid always.  Lockless references to
297          * the objects may acquire pip and then check OBJ_DEAD.
298          */
299         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
300 #ifdef INVARIANTS
301             vm_object_zdtor,
302 #else
303             NULL,
304 #endif
305             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306
307         vm_radix_zinit();
308 }
309
310 void
311 vm_object_clear_flag(vm_object_t object, u_short bits)
312 {
313
314         VM_OBJECT_ASSERT_WLOCKED(object);
315         object->flags &= ~bits;
316 }
317
318 /*
319  *      Sets the default memory attribute for the specified object.  Pages
320  *      that are allocated to this object are by default assigned this memory
321  *      attribute.
322  *
323  *      Presently, this function must be called before any pages are allocated
324  *      to the object.  In the future, this requirement may be relaxed for
325  *      "default" and "swap" objects.
326  */
327 int
328 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
329 {
330
331         VM_OBJECT_ASSERT_WLOCKED(object);
332         switch (object->type) {
333         case OBJT_DEFAULT:
334         case OBJT_DEVICE:
335         case OBJT_MGTDEVICE:
336         case OBJT_PHYS:
337         case OBJT_SG:
338         case OBJT_SWAP:
339         case OBJT_VNODE:
340                 if (!TAILQ_EMPTY(&object->memq))
341                         return (KERN_FAILURE);
342                 break;
343         case OBJT_DEAD:
344                 return (KERN_INVALID_ARGUMENT);
345         default:
346                 panic("vm_object_set_memattr: object %p is of undefined type",
347                     object);
348         }
349         object->memattr = memattr;
350         return (KERN_SUCCESS);
351 }
352
353 void
354 vm_object_pip_add(vm_object_t object, short i)
355 {
356
357         if (i > 0)
358                 blockcount_acquire(&object->paging_in_progress, i);
359 }
360
361 void
362 vm_object_pip_wakeup(vm_object_t object)
363 {
364
365         vm_object_pip_wakeupn(object, 1);
366 }
367
368 void
369 vm_object_pip_wakeupn(vm_object_t object, short i)
370 {
371
372         if (i > 0)
373                 blockcount_release(&object->paging_in_progress, i);
374 }
375
376 /*
377  * Atomically drop the object lock and wait for pip to drain.  This protects
378  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
379  * on return.
380  */
381 static void
382 vm_object_pip_sleep(vm_object_t object, const char *waitid)
383 {
384
385         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
386             waitid, PVM | PDROP);
387 }
388
389 void
390 vm_object_pip_wait(vm_object_t object, const char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_WLOCKED(object);
394
395         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
396             PVM);
397 }
398
399 void
400 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
401 {
402
403         VM_OBJECT_ASSERT_UNLOCKED(object);
404
405         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
406 }
407
408 /*
409  *      vm_object_allocate:
410  *
411  *      Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416         vm_object_t object;
417         u_short flags;
418
419         switch (type) {
420         case OBJT_DEAD:
421                 panic("vm_object_allocate: can't create OBJT_DEAD");
422         case OBJT_DEFAULT:
423         case OBJT_SWAP:
424                 flags = OBJ_COLORED;
425                 break;
426         case OBJT_DEVICE:
427         case OBJT_SG:
428                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
429                 break;
430         case OBJT_MGTDEVICE:
431                 flags = OBJ_FICTITIOUS;
432                 break;
433         case OBJT_PHYS:
434                 flags = OBJ_UNMANAGED;
435                 break;
436         case OBJT_VNODE:
437                 flags = 0;
438                 break;
439         default:
440                 panic("vm_object_allocate: type %d is undefined", type);
441         }
442         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
443         _vm_object_allocate(type, size, flags, object, NULL);
444
445         return (object);
446 }
447
448 /*
449  *      vm_object_allocate_anon:
450  *
451  *      Returns a new default object of the given size and marked as
452  *      anonymous memory for special split/collapse handling.  Color
453  *      to be initialized by the caller.
454  */
455 vm_object_t
456 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
457     struct ucred *cred, vm_size_t charge)
458 {
459         vm_object_t handle, object;
460
461         if (backing_object == NULL)
462                 handle = NULL;
463         else if ((backing_object->flags & OBJ_ANON) != 0)
464                 handle = backing_object->handle;
465         else
466                 handle = backing_object;
467         object = uma_zalloc(obj_zone, M_WAITOK);
468         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
469             object, handle);
470         object->cred = cred;
471         object->charge = cred != NULL ? charge : 0;
472         return (object);
473 }
474
475 static void
476 vm_object_reference_vnode(vm_object_t object)
477 {
478         u_int old;
479
480         /*
481          * vnode objects need the lock for the first reference
482          * to serialize with vnode_object_deallocate().
483          */
484         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
485                 VM_OBJECT_RLOCK(object);
486                 old = refcount_acquire(&object->ref_count);
487                 if (object->type == OBJT_VNODE && old == 0)
488                         vref(object->handle);
489                 VM_OBJECT_RUNLOCK(object);
490         }
491 }
492
493 /*
494  *      vm_object_reference:
495  *
496  *      Acquires a reference to the given object.
497  */
498 void
499 vm_object_reference(vm_object_t object)
500 {
501
502         if (object == NULL)
503                 return;
504
505         if (object->type == OBJT_VNODE)
506                 vm_object_reference_vnode(object);
507         else
508                 refcount_acquire(&object->ref_count);
509         KASSERT((object->flags & OBJ_DEAD) == 0,
510             ("vm_object_reference: Referenced dead object."));
511 }
512
513 /*
514  *      vm_object_reference_locked:
515  *
516  *      Gets another reference to the given object.
517  *
518  *      The object must be locked.
519  */
520 void
521 vm_object_reference_locked(vm_object_t object)
522 {
523         u_int old;
524
525         VM_OBJECT_ASSERT_LOCKED(object);
526         old = refcount_acquire(&object->ref_count);
527         if (object->type == OBJT_VNODE && old == 0)
528                 vref(object->handle);
529         KASSERT((object->flags & OBJ_DEAD) == 0,
530             ("vm_object_reference: Referenced dead object."));
531 }
532
533 /*
534  * Handle deallocating an object of type OBJT_VNODE.
535  */
536 static void
537 vm_object_deallocate_vnode(vm_object_t object)
538 {
539         struct vnode *vp = (struct vnode *) object->handle;
540         bool last;
541
542         KASSERT(object->type == OBJT_VNODE,
543             ("vm_object_deallocate_vnode: not a vnode object"));
544         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
545
546         /* Object lock to protect handle lookup. */
547         last = refcount_release(&object->ref_count);
548         VM_OBJECT_RUNLOCK(object);
549
550         if (!last)
551                 return;
552
553         if (!umtx_shm_vnobj_persistent)
554                 umtx_shm_object_terminated(object);
555
556         /* vrele may need the vnode lock. */
557         vrele(vp);
558 }
559
560 /*
561  * We dropped a reference on an object and discovered that it had a
562  * single remaining shadow.  This is a sibling of the reference we
563  * dropped.  Attempt to collapse the sibling and backing object.
564  */
565 static vm_object_t
566 vm_object_deallocate_anon(vm_object_t backing_object)
567 {
568         vm_object_t object;
569
570         /* Fetch the final shadow.  */
571         object = LIST_FIRST(&backing_object->shadow_head);
572         KASSERT(object != NULL && backing_object->shadow_count == 1,
573             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
574             backing_object->ref_count, backing_object->shadow_count));
575         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
576             ("invalid shadow object %p", object));
577
578         if (!VM_OBJECT_TRYWLOCK(object)) {
579                 /*
580                  * Prevent object from disappearing since we do not have a
581                  * reference.
582                  */
583                 vm_object_pip_add(object, 1);
584                 VM_OBJECT_WUNLOCK(backing_object);
585                 VM_OBJECT_WLOCK(object);
586                 vm_object_pip_wakeup(object);
587         } else
588                 VM_OBJECT_WUNLOCK(backing_object);
589
590         /*
591          * Check for a collapse/terminate race with the last reference holder.
592          */
593         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594             !refcount_acquire_if_not_zero(&object->ref_count)) {
595                 VM_OBJECT_WUNLOCK(object);
596                 return (NULL);
597         }
598         backing_object = object->backing_object;
599         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600                 vm_object_collapse(object);
601         VM_OBJECT_WUNLOCK(object);
602
603         return (object);
604 }
605
606 /*
607  *      vm_object_deallocate:
608  *
609  *      Release a reference to the specified object,
610  *      gained either through a vm_object_allocate
611  *      or a vm_object_reference call.  When all references
612  *      are gone, storage associated with this object
613  *      may be relinquished.
614  *
615  *      No object may be locked.
616  */
617 void
618 vm_object_deallocate(vm_object_t object)
619 {
620         vm_object_t temp;
621         bool released;
622
623         while (object != NULL) {
624                 /*
625                  * If the reference count goes to 0 we start calling
626                  * vm_object_terminate() on the object chain.  A ref count
627                  * of 1 may be a special case depending on the shadow count
628                  * being 0 or 1.  These cases require a write lock on the
629                  * object.
630                  */
631                 if ((object->flags & OBJ_ANON) == 0)
632                         released = refcount_release_if_gt(&object->ref_count, 1);
633                 else
634                         released = refcount_release_if_gt(&object->ref_count, 2);
635                 if (released)
636                         return;
637
638                 if (object->type == OBJT_VNODE) {
639                         VM_OBJECT_RLOCK(object);
640                         if (object->type == OBJT_VNODE) {
641                                 vm_object_deallocate_vnode(object);
642                                 return;
643                         }
644                         VM_OBJECT_RUNLOCK(object);
645                 }
646
647                 VM_OBJECT_WLOCK(object);
648                 KASSERT(object->ref_count > 0,
649                     ("vm_object_deallocate: object deallocated too many times: %d",
650                     object->type));
651
652                 /*
653                  * If this is not the final reference to an anonymous
654                  * object we may need to collapse the shadow chain.
655                  */
656                 if (!refcount_release(&object->ref_count)) {
657                         if (object->ref_count > 1 ||
658                             object->shadow_count == 0) {
659                                 if ((object->flags & OBJ_ANON) != 0 &&
660                                     object->ref_count == 1)
661                                         vm_object_set_flag(object,
662                                             OBJ_ONEMAPPING);
663                                 VM_OBJECT_WUNLOCK(object);
664                                 return;
665                         }
666
667                         /* Handle collapsing last ref on anonymous objects. */
668                         object = vm_object_deallocate_anon(object);
669                         continue;
670                 }
671
672                 /*
673                  * Handle the final reference to an object.  We restart
674                  * the loop with the backing object to avoid recursion.
675                  */
676                 umtx_shm_object_terminated(object);
677                 temp = object->backing_object;
678                 if (temp != NULL) {
679                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
680                             ("shadowed tmpfs v_object 2 %p", object));
681                         vm_object_backing_remove(object);
682                 }
683
684                 KASSERT((object->flags & OBJ_DEAD) == 0,
685                     ("vm_object_deallocate: Terminating dead object."));
686                 vm_object_set_flag(object, OBJ_DEAD);
687                 vm_object_terminate(object);
688                 object = temp;
689         }
690 }
691
692 /*
693  *      vm_object_destroy removes the object from the global object list
694  *      and frees the space for the object.
695  */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699
700         /*
701          * Release the allocation charge.
702          */
703         if (object->cred != NULL) {
704                 swap_release_by_cred(object->charge, object->cred);
705                 object->charge = 0;
706                 crfree(object->cred);
707                 object->cred = NULL;
708         }
709
710         /*
711          * Free the space for the object.
712          */
713         uma_zfree(obj_zone, object);
714 }
715
716 static void
717 vm_object_backing_remove_locked(vm_object_t object)
718 {
719         vm_object_t backing_object;
720
721         backing_object = object->backing_object;
722         VM_OBJECT_ASSERT_WLOCKED(object);
723         VM_OBJECT_ASSERT_WLOCKED(backing_object);
724
725         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
726             ("vm_object_backing_remove: Removing collapsing object."));
727
728         if ((object->flags & OBJ_SHADOWLIST) != 0) {
729                 LIST_REMOVE(object, shadow_list);
730                 backing_object->shadow_count--;
731                 object->flags &= ~OBJ_SHADOWLIST;
732         }
733         object->backing_object = NULL;
734 }
735
736 static void
737 vm_object_backing_remove(vm_object_t object)
738 {
739         vm_object_t backing_object;
740
741         VM_OBJECT_ASSERT_WLOCKED(object);
742
743         if ((object->flags & OBJ_SHADOWLIST) != 0) {
744                 backing_object = object->backing_object;
745                 VM_OBJECT_WLOCK(backing_object);
746                 vm_object_backing_remove_locked(object);
747                 VM_OBJECT_WUNLOCK(backing_object);
748         } else
749                 object->backing_object = NULL;
750 }
751
752 static void
753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
754 {
755
756         VM_OBJECT_ASSERT_WLOCKED(object);
757
758         if ((backing_object->flags & OBJ_ANON) != 0) {
759                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
760                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
761                     shadow_list);
762                 backing_object->shadow_count++;
763                 object->flags |= OBJ_SHADOWLIST;
764         }
765         object->backing_object = backing_object;
766 }
767
768 static void
769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
770 {
771
772         VM_OBJECT_ASSERT_WLOCKED(object);
773
774         if ((backing_object->flags & OBJ_ANON) != 0) {
775                 VM_OBJECT_WLOCK(backing_object);
776                 vm_object_backing_insert_locked(object, backing_object);
777                 VM_OBJECT_WUNLOCK(backing_object);
778         } else
779                 object->backing_object = backing_object;
780 }
781
782 /*
783  * Insert an object into a backing_object's shadow list with an additional
784  * reference to the backing_object added.
785  */
786 static void
787 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
788 {
789
790         VM_OBJECT_ASSERT_WLOCKED(object);
791
792         if ((backing_object->flags & OBJ_ANON) != 0) {
793                 VM_OBJECT_WLOCK(backing_object);
794                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
795                     ("shadowing dead anonymous object"));
796                 vm_object_reference_locked(backing_object);
797                 vm_object_backing_insert_locked(object, backing_object);
798                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
799                 VM_OBJECT_WUNLOCK(backing_object);
800         } else {
801                 vm_object_reference(backing_object);
802                 object->backing_object = backing_object;
803         }
804 }
805
806 /*
807  * Transfer a backing reference from backing_object to object.
808  */
809 static void
810 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
811 {
812         vm_object_t new_backing_object;
813
814         /*
815          * Note that the reference to backing_object->backing_object
816          * moves from within backing_object to within object.
817          */
818         vm_object_backing_remove_locked(object);
819         new_backing_object = backing_object->backing_object;
820         if (new_backing_object == NULL)
821                 return;
822         if ((new_backing_object->flags & OBJ_ANON) != 0) {
823                 VM_OBJECT_WLOCK(new_backing_object);
824                 vm_object_backing_remove_locked(backing_object);
825                 vm_object_backing_insert_locked(object, new_backing_object);
826                 VM_OBJECT_WUNLOCK(new_backing_object);
827         } else {
828                 object->backing_object = new_backing_object;
829                 backing_object->backing_object = NULL;
830         }
831 }
832
833 /*
834  * Wait for a concurrent collapse to settle.
835  */
836 static void
837 vm_object_collapse_wait(vm_object_t object)
838 {
839
840         VM_OBJECT_ASSERT_WLOCKED(object);
841
842         while ((object->flags & OBJ_COLLAPSING) != 0) {
843                 vm_object_pip_wait(object, "vmcolwait");
844                 counter_u64_add(object_collapse_waits, 1);
845         }
846 }
847
848 /*
849  * Waits for a backing object to clear a pending collapse and returns
850  * it locked if it is an ANON object.
851  */
852 static vm_object_t
853 vm_object_backing_collapse_wait(vm_object_t object)
854 {
855         vm_object_t backing_object;
856
857         VM_OBJECT_ASSERT_WLOCKED(object);
858
859         for (;;) {
860                 backing_object = object->backing_object;
861                 if (backing_object == NULL ||
862                     (backing_object->flags & OBJ_ANON) == 0)
863                         return (NULL);
864                 VM_OBJECT_WLOCK(backing_object);
865                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866                         break;
867                 VM_OBJECT_WUNLOCK(object);
868                 vm_object_pip_sleep(backing_object, "vmbckwait");
869                 counter_u64_add(object_collapse_waits, 1);
870                 VM_OBJECT_WLOCK(object);
871         }
872         return (backing_object);
873 }
874
875 /*
876  *      vm_object_terminate_pages removes any remaining pageable pages
877  *      from the object and resets the object to an empty state.
878  */
879 static void
880 vm_object_terminate_pages(vm_object_t object)
881 {
882         vm_page_t p, p_next;
883
884         VM_OBJECT_ASSERT_WLOCKED(object);
885
886         /*
887          * Free any remaining pageable pages.  This also removes them from the
888          * paging queues.  However, don't free wired pages, just remove them
889          * from the object.  Rather than incrementally removing each page from
890          * the object, the page and object are reset to any empty state. 
891          */
892         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
893                 vm_page_assert_unbusied(p);
894                 KASSERT(p->object == object &&
895                     (p->ref_count & VPRC_OBJREF) != 0,
896                     ("vm_object_terminate_pages: page %p is inconsistent", p));
897
898                 p->object = NULL;
899                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
900                         VM_CNT_INC(v_pfree);
901                         vm_page_free(p);
902                 }
903         }
904
905         /*
906          * If the object contained any pages, then reset it to an empty state.
907          * None of the object's fields, including "resident_page_count", were
908          * modified by the preceding loop.
909          */
910         if (object->resident_page_count != 0) {
911                 vm_radix_reclaim_allnodes(&object->rtree);
912                 TAILQ_INIT(&object->memq);
913                 object->resident_page_count = 0;
914                 if (object->type == OBJT_VNODE)
915                         vdrop(object->handle);
916         }
917 }
918
919 /*
920  *      vm_object_terminate actually destroys the specified object, freeing
921  *      up all previously used resources.
922  *
923  *      The object must be locked.
924  *      This routine may block.
925  */
926 void
927 vm_object_terminate(vm_object_t object)
928 {
929
930         VM_OBJECT_ASSERT_WLOCKED(object);
931         KASSERT((object->flags & OBJ_DEAD) != 0,
932             ("terminating non-dead obj %p", object));
933         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
934             ("terminating collapsing obj %p", object));
935         KASSERT(object->backing_object == NULL,
936             ("terminating shadow obj %p", object));
937
938         /*
939          * Wait for the pageout daemon and other current users to be
940          * done with the object.  Note that new paging_in_progress
941          * users can come after this wait, but they must check
942          * OBJ_DEAD flag set (without unlocking the object), and avoid
943          * the object being terminated.
944          */
945         vm_object_pip_wait(object, "objtrm");
946
947         KASSERT(object->ref_count == 0,
948             ("vm_object_terminate: object with references, ref_count=%d",
949             object->ref_count));
950
951         if ((object->flags & OBJ_PG_DTOR) == 0)
952                 vm_object_terminate_pages(object);
953
954 #if VM_NRESERVLEVEL > 0
955         if (__predict_false(!LIST_EMPTY(&object->rvq)))
956                 vm_reserv_break_all(object);
957 #endif
958
959         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
960             object->type == OBJT_SWAP,
961             ("%s: non-swap obj %p has cred", __func__, object));
962
963         /*
964          * Let the pager know object is dead.
965          */
966         vm_pager_deallocate(object);
967         VM_OBJECT_WUNLOCK(object);
968
969         vm_object_destroy(object);
970 }
971
972 /*
973  * Make the page read-only so that we can clear the object flags.  However, if
974  * this is a nosync mmap then the object is likely to stay dirty so do not
975  * mess with the page and do not clear the object flags.  Returns TRUE if the
976  * page should be flushed, and FALSE otherwise.
977  */
978 static boolean_t
979 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
980 {
981
982         vm_page_assert_busied(p);
983
984         /*
985          * If we have been asked to skip nosync pages and this is a
986          * nosync page, skip it.  Note that the object flags were not
987          * cleared in this case so we do not have to set them.
988          */
989         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
990                 *allclean = FALSE;
991                 return (FALSE);
992         } else {
993                 pmap_remove_write(p);
994                 return (p->dirty != 0);
995         }
996 }
997
998 /*
999  *      vm_object_page_clean
1000  *
1001  *      Clean all dirty pages in the specified range of object.  Leaves page 
1002  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1003  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1004  *      leaving the object dirty.
1005  *
1006  *      For swap objects backing tmpfs regular files, do not flush anything,
1007  *      but remove write protection on the mapped pages to update mtime through
1008  *      mmaped writes.
1009  *
1010  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1011  *      synchronous clustering mode implementation.
1012  *
1013  *      Odd semantics: if start == end, we clean everything.
1014  *
1015  *      The object must be locked.
1016  *
1017  *      Returns FALSE if some page from the range was not written, as
1018  *      reported by the pager, and TRUE otherwise.
1019  */
1020 boolean_t
1021 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1022     int flags)
1023 {
1024         vm_page_t np, p;
1025         vm_pindex_t pi, tend, tstart;
1026         int curgeneration, n, pagerflags;
1027         boolean_t eio, res, allclean;
1028
1029         VM_OBJECT_ASSERT_WLOCKED(object);
1030
1031         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1032                 return (TRUE);
1033
1034         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1035             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1036         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1037
1038         tstart = OFF_TO_IDX(start);
1039         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1040         allclean = tstart == 0 && tend >= object->size;
1041         res = TRUE;
1042
1043 rescan:
1044         curgeneration = object->generation;
1045
1046         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1047                 pi = p->pindex;
1048                 if (pi >= tend)
1049                         break;
1050                 np = TAILQ_NEXT(p, listq);
1051                 if (vm_page_none_valid(p))
1052                         continue;
1053                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1054                         if (object->generation != curgeneration &&
1055                             (flags & OBJPC_SYNC) != 0)
1056                                 goto rescan;
1057                         np = vm_page_find_least(object, pi);
1058                         continue;
1059                 }
1060                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1061                         vm_page_xunbusy(p);
1062                         continue;
1063                 }
1064                 if (object->type == OBJT_VNODE) {
1065                         n = vm_object_page_collect_flush(object, p, pagerflags,
1066                             flags, &allclean, &eio);
1067                         if (eio) {
1068                                 res = FALSE;
1069                                 allclean = FALSE;
1070                         }
1071                         if (object->generation != curgeneration &&
1072                             (flags & OBJPC_SYNC) != 0)
1073                                 goto rescan;
1074
1075                         /*
1076                          * If the VOP_PUTPAGES() did a truncated write, so
1077                          * that even the first page of the run is not fully
1078                          * written, vm_pageout_flush() returns 0 as the run
1079                          * length.  Since the condition that caused truncated
1080                          * write may be permanent, e.g. exhausted free space,
1081                          * accepting n == 0 would cause an infinite loop.
1082                          *
1083                          * Forwarding the iterator leaves the unwritten page
1084                          * behind, but there is not much we can do there if
1085                          * filesystem refuses to write it.
1086                          */
1087                         if (n == 0) {
1088                                 n = 1;
1089                                 allclean = FALSE;
1090                         }
1091                 } else {
1092                         n = 1;
1093                         vm_page_xunbusy(p);
1094                 }
1095                 np = vm_page_find_least(object, pi + n);
1096         }
1097 #if 0
1098         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1099 #endif
1100
1101         /*
1102          * Leave updating cleangeneration for tmpfs objects to tmpfs
1103          * scan.  It needs to update mtime, which happens for other
1104          * filesystems during page writeouts.
1105          */
1106         if (allclean && object->type == OBJT_VNODE)
1107                 object->cleangeneration = curgeneration;
1108         return (res);
1109 }
1110
1111 static int
1112 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1113     int flags, boolean_t *allclean, boolean_t *eio)
1114 {
1115         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1116         int count, i, mreq, runlen;
1117
1118         vm_page_lock_assert(p, MA_NOTOWNED);
1119         vm_page_assert_xbusied(p);
1120         VM_OBJECT_ASSERT_WLOCKED(object);
1121
1122         count = 1;
1123         mreq = 0;
1124
1125         for (tp = p; count < vm_pageout_page_count; count++) {
1126                 tp = vm_page_next(tp);
1127                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1128                         break;
1129                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1130                         vm_page_xunbusy(tp);
1131                         break;
1132                 }
1133         }
1134
1135         for (p_first = p; count < vm_pageout_page_count; count++) {
1136                 tp = vm_page_prev(p_first);
1137                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1138                         break;
1139                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1140                         vm_page_xunbusy(tp);
1141                         break;
1142                 }
1143                 p_first = tp;
1144                 mreq++;
1145         }
1146
1147         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1148                 ma[i] = tp;
1149
1150         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1151         return (runlen);
1152 }
1153
1154 /*
1155  * Note that there is absolutely no sense in writing out
1156  * anonymous objects, so we track down the vnode object
1157  * to write out.
1158  * We invalidate (remove) all pages from the address space
1159  * for semantic correctness.
1160  *
1161  * If the backing object is a device object with unmanaged pages, then any
1162  * mappings to the specified range of pages must be removed before this
1163  * function is called.
1164  *
1165  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1166  * may start out with a NULL object.
1167  */
1168 boolean_t
1169 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1170     boolean_t syncio, boolean_t invalidate)
1171 {
1172         vm_object_t backing_object;
1173         struct vnode *vp;
1174         struct mount *mp;
1175         int error, flags, fsync_after;
1176         boolean_t res;
1177
1178         if (object == NULL)
1179                 return (TRUE);
1180         res = TRUE;
1181         error = 0;
1182         VM_OBJECT_WLOCK(object);
1183         while ((backing_object = object->backing_object) != NULL) {
1184                 VM_OBJECT_WLOCK(backing_object);
1185                 offset += object->backing_object_offset;
1186                 VM_OBJECT_WUNLOCK(object);
1187                 object = backing_object;
1188                 if (object->size < OFF_TO_IDX(offset + size))
1189                         size = IDX_TO_OFF(object->size) - offset;
1190         }
1191         /*
1192          * Flush pages if writing is allowed, invalidate them
1193          * if invalidation requested.  Pages undergoing I/O
1194          * will be ignored by vm_object_page_remove().
1195          *
1196          * We cannot lock the vnode and then wait for paging
1197          * to complete without deadlocking against vm_fault.
1198          * Instead we simply call vm_object_page_remove() and
1199          * allow it to block internally on a page-by-page
1200          * basis when it encounters pages undergoing async
1201          * I/O.
1202          */
1203         if (object->type == OBJT_VNODE &&
1204             vm_object_mightbedirty(object) != 0 &&
1205             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1206                 VM_OBJECT_WUNLOCK(object);
1207                 (void) vn_start_write(vp, &mp, V_WAIT);
1208                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1209                 if (syncio && !invalidate && offset == 0 &&
1210                     atop(size) == object->size) {
1211                         /*
1212                          * If syncing the whole mapping of the file,
1213                          * it is faster to schedule all the writes in
1214                          * async mode, also allowing the clustering,
1215                          * and then wait for i/o to complete.
1216                          */
1217                         flags = 0;
1218                         fsync_after = TRUE;
1219                 } else {
1220                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1221                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1222                         fsync_after = FALSE;
1223                 }
1224                 VM_OBJECT_WLOCK(object);
1225                 res = vm_object_page_clean(object, offset, offset + size,
1226                     flags);
1227                 VM_OBJECT_WUNLOCK(object);
1228                 if (fsync_after)
1229                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1230                 VOP_UNLOCK(vp);
1231                 vn_finished_write(mp);
1232                 if (error != 0)
1233                         res = FALSE;
1234                 VM_OBJECT_WLOCK(object);
1235         }
1236         if ((object->type == OBJT_VNODE ||
1237              object->type == OBJT_DEVICE) && invalidate) {
1238                 if (object->type == OBJT_DEVICE)
1239                         /*
1240                          * The option OBJPR_NOTMAPPED must be passed here
1241                          * because vm_object_page_remove() cannot remove
1242                          * unmanaged mappings.
1243                          */
1244                         flags = OBJPR_NOTMAPPED;
1245                 else if (old_msync)
1246                         flags = 0;
1247                 else
1248                         flags = OBJPR_CLEANONLY;
1249                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1250                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1251         }
1252         VM_OBJECT_WUNLOCK(object);
1253         return (res);
1254 }
1255
1256 /*
1257  * Determine whether the given advice can be applied to the object.  Advice is
1258  * not applied to unmanaged pages since they never belong to page queues, and
1259  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1260  * have been mapped at most once.
1261  */
1262 static bool
1263 vm_object_advice_applies(vm_object_t object, int advice)
1264 {
1265
1266         if ((object->flags & OBJ_UNMANAGED) != 0)
1267                 return (false);
1268         if (advice != MADV_FREE)
1269                 return (true);
1270         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1271             (OBJ_ONEMAPPING | OBJ_ANON));
1272 }
1273
1274 static void
1275 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1276     vm_size_t size)
1277 {
1278
1279         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1280                 swap_pager_freespace(object, pindex, size);
1281 }
1282
1283 /*
1284  *      vm_object_madvise:
1285  *
1286  *      Implements the madvise function at the object/page level.
1287  *
1288  *      MADV_WILLNEED   (any object)
1289  *
1290  *          Activate the specified pages if they are resident.
1291  *
1292  *      MADV_DONTNEED   (any object)
1293  *
1294  *          Deactivate the specified pages if they are resident.
1295  *
1296  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1297  *                       OBJ_ONEMAPPING only)
1298  *
1299  *          Deactivate and clean the specified pages if they are
1300  *          resident.  This permits the process to reuse the pages
1301  *          without faulting or the kernel to reclaim the pages
1302  *          without I/O.
1303  */
1304 void
1305 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1306     int advice)
1307 {
1308         vm_pindex_t tpindex;
1309         vm_object_t backing_object, tobject;
1310         vm_page_t m, tm;
1311
1312         if (object == NULL)
1313                 return;
1314
1315 relookup:
1316         VM_OBJECT_WLOCK(object);
1317         if (!vm_object_advice_applies(object, advice)) {
1318                 VM_OBJECT_WUNLOCK(object);
1319                 return;
1320         }
1321         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1322                 tobject = object;
1323
1324                 /*
1325                  * If the next page isn't resident in the top-level object, we
1326                  * need to search the shadow chain.  When applying MADV_FREE, we
1327                  * take care to release any swap space used to store
1328                  * non-resident pages.
1329                  */
1330                 if (m == NULL || pindex < m->pindex) {
1331                         /*
1332                          * Optimize a common case: if the top-level object has
1333                          * no backing object, we can skip over the non-resident
1334                          * range in constant time.
1335                          */
1336                         if (object->backing_object == NULL) {
1337                                 tpindex = (m != NULL && m->pindex < end) ?
1338                                     m->pindex : end;
1339                                 vm_object_madvise_freespace(object, advice,
1340                                     pindex, tpindex - pindex);
1341                                 if ((pindex = tpindex) == end)
1342                                         break;
1343                                 goto next_page;
1344                         }
1345
1346                         tpindex = pindex;
1347                         do {
1348                                 vm_object_madvise_freespace(tobject, advice,
1349                                     tpindex, 1);
1350                                 /*
1351                                  * Prepare to search the next object in the
1352                                  * chain.
1353                                  */
1354                                 backing_object = tobject->backing_object;
1355                                 if (backing_object == NULL)
1356                                         goto next_pindex;
1357                                 VM_OBJECT_WLOCK(backing_object);
1358                                 tpindex +=
1359                                     OFF_TO_IDX(tobject->backing_object_offset);
1360                                 if (tobject != object)
1361                                         VM_OBJECT_WUNLOCK(tobject);
1362                                 tobject = backing_object;
1363                                 if (!vm_object_advice_applies(tobject, advice))
1364                                         goto next_pindex;
1365                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1366                             NULL);
1367                 } else {
1368 next_page:
1369                         tm = m;
1370                         m = TAILQ_NEXT(m, listq);
1371                 }
1372
1373                 /*
1374                  * If the page is not in a normal state, skip it.  The page
1375                  * can not be invalidated while the object lock is held.
1376                  */
1377                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1378                         goto next_pindex;
1379                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1380                     ("vm_object_madvise: page %p is fictitious", tm));
1381                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1382                     ("vm_object_madvise: page %p is not managed", tm));
1383                 if (vm_page_tryxbusy(tm) == 0) {
1384                         if (object != tobject)
1385                                 VM_OBJECT_WUNLOCK(object);
1386                         if (advice == MADV_WILLNEED) {
1387                                 /*
1388                                  * Reference the page before unlocking and
1389                                  * sleeping so that the page daemon is less
1390                                  * likely to reclaim it.
1391                                  */
1392                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1393                         }
1394                         vm_page_busy_sleep(tm, "madvpo", false);
1395                         goto relookup;
1396                 }
1397                 vm_page_advise(tm, advice);
1398                 vm_page_xunbusy(tm);
1399                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1400 next_pindex:
1401                 if (tobject != object)
1402                         VM_OBJECT_WUNLOCK(tobject);
1403         }
1404         VM_OBJECT_WUNLOCK(object);
1405 }
1406
1407 /*
1408  *      vm_object_shadow:
1409  *
1410  *      Create a new object which is backed by the
1411  *      specified existing object range.  The source
1412  *      object reference is deallocated.
1413  *
1414  *      The new object and offset into that object
1415  *      are returned in the source parameters.
1416  */
1417 void
1418 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1419     struct ucred *cred, bool shared)
1420 {
1421         vm_object_t source;
1422         vm_object_t result;
1423
1424         source = *object;
1425
1426         /*
1427          * Don't create the new object if the old object isn't shared.
1428          *
1429          * If we hold the only reference we can guarantee that it won't
1430          * increase while we have the map locked.  Otherwise the race is
1431          * harmless and we will end up with an extra shadow object that
1432          * will be collapsed later.
1433          */
1434         if (source != NULL && source->ref_count == 1 &&
1435             (source->flags & OBJ_ANON) != 0)
1436                 return;
1437
1438         /*
1439          * Allocate a new object with the given length.
1440          */
1441         result = vm_object_allocate_anon(atop(length), source, cred, length);
1442
1443         /*
1444          * Store the offset into the source object, and fix up the offset into
1445          * the new object.
1446          */
1447         result->backing_object_offset = *offset;
1448
1449         if (shared || source != NULL) {
1450                 VM_OBJECT_WLOCK(result);
1451
1452                 /*
1453                  * The new object shadows the source object, adding a
1454                  * reference to it.  Our caller changes his reference
1455                  * to point to the new object, removing a reference to
1456                  * the source object.  Net result: no change of
1457                  * reference count, unless the caller needs to add one
1458                  * more reference due to forking a shared map entry.
1459                  */
1460                 if (shared) {
1461                         vm_object_reference_locked(result);
1462                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1463                 }
1464
1465                 /*
1466                  * Try to optimize the result object's page color when
1467                  * shadowing in order to maintain page coloring
1468                  * consistency in the combined shadowed object.
1469                  */
1470                 if (source != NULL) {
1471                         vm_object_backing_insert(result, source);
1472                         result->domain = source->domain;
1473 #if VM_NRESERVLEVEL > 0
1474                         result->flags |= source->flags & OBJ_COLORED;
1475                         result->pg_color = (source->pg_color +
1476                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1477                             1)) - 1);
1478 #endif
1479                 }
1480                 VM_OBJECT_WUNLOCK(result);
1481         }
1482
1483         /*
1484          * Return the new things
1485          */
1486         *offset = 0;
1487         *object = result;
1488 }
1489
1490 /*
1491  *      vm_object_split:
1492  *
1493  * Split the pages in a map entry into a new object.  This affords
1494  * easier removal of unused pages, and keeps object inheritance from
1495  * being a negative impact on memory usage.
1496  */
1497 void
1498 vm_object_split(vm_map_entry_t entry)
1499 {
1500         vm_page_t m, m_busy, m_next;
1501         vm_object_t orig_object, new_object, backing_object;
1502         vm_pindex_t idx, offidxstart;
1503         vm_size_t size;
1504
1505         orig_object = entry->object.vm_object;
1506         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1507             ("vm_object_split:  Splitting object with multiple mappings."));
1508         if ((orig_object->flags & OBJ_ANON) == 0)
1509                 return;
1510         if (orig_object->ref_count <= 1)
1511                 return;
1512         VM_OBJECT_WUNLOCK(orig_object);
1513
1514         offidxstart = OFF_TO_IDX(entry->offset);
1515         size = atop(entry->end - entry->start);
1516
1517         /*
1518          * If swap_pager_copy() is later called, it will convert new_object
1519          * into a swap object.
1520          */
1521         new_object = vm_object_allocate_anon(size, orig_object,
1522             orig_object->cred, ptoa(size));
1523
1524         /*
1525          * We must wait for the orig_object to complete any in-progress
1526          * collapse so that the swap blocks are stable below.  The
1527          * additional reference on backing_object by new object will
1528          * prevent further collapse operations until split completes.
1529          */
1530         VM_OBJECT_WLOCK(orig_object);
1531         vm_object_collapse_wait(orig_object);
1532
1533         /*
1534          * At this point, the new object is still private, so the order in
1535          * which the original and new objects are locked does not matter.
1536          */
1537         VM_OBJECT_WLOCK(new_object);
1538         new_object->domain = orig_object->domain;
1539         backing_object = orig_object->backing_object;
1540         if (backing_object != NULL) {
1541                 vm_object_backing_insert_ref(new_object, backing_object);
1542                 new_object->backing_object_offset = 
1543                     orig_object->backing_object_offset + entry->offset;
1544         }
1545         if (orig_object->cred != NULL) {
1546                 crhold(orig_object->cred);
1547                 KASSERT(orig_object->charge >= ptoa(size),
1548                     ("orig_object->charge < 0"));
1549                 orig_object->charge -= ptoa(size);
1550         }
1551
1552         /*
1553          * Mark the split operation so that swap_pager_getpages() knows
1554          * that the object is in transition.
1555          */
1556         vm_object_set_flag(orig_object, OBJ_SPLIT);
1557         m_busy = NULL;
1558 #ifdef INVARIANTS
1559         idx = 0;
1560 #endif
1561 retry:
1562         m = vm_page_find_least(orig_object, offidxstart);
1563         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1564             ("%s: object %p was repopulated", __func__, orig_object));
1565         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1566             m = m_next) {
1567                 m_next = TAILQ_NEXT(m, listq);
1568
1569                 /*
1570                  * We must wait for pending I/O to complete before we can
1571                  * rename the page.
1572                  *
1573                  * We do not have to VM_PROT_NONE the page as mappings should
1574                  * not be changed by this operation.
1575                  */
1576                 if (vm_page_tryxbusy(m) == 0) {
1577                         VM_OBJECT_WUNLOCK(new_object);
1578                         vm_page_sleep_if_busy(m, "spltwt");
1579                         VM_OBJECT_WLOCK(new_object);
1580                         goto retry;
1581                 }
1582
1583                 /*
1584                  * The page was left invalid.  Likely placed there by
1585                  * an incomplete fault.  Just remove and ignore.
1586                  */
1587                 if (vm_page_none_valid(m)) {
1588                         if (vm_page_remove(m))
1589                                 vm_page_free(m);
1590                         continue;
1591                 }
1592
1593                 /* vm_page_rename() will dirty the page. */
1594                 if (vm_page_rename(m, new_object, idx)) {
1595                         vm_page_xunbusy(m);
1596                         VM_OBJECT_WUNLOCK(new_object);
1597                         VM_OBJECT_WUNLOCK(orig_object);
1598                         vm_radix_wait();
1599                         VM_OBJECT_WLOCK(orig_object);
1600                         VM_OBJECT_WLOCK(new_object);
1601                         goto retry;
1602                 }
1603
1604 #if VM_NRESERVLEVEL > 0
1605                 /*
1606                  * If some of the reservation's allocated pages remain with
1607                  * the original object, then transferring the reservation to
1608                  * the new object is neither particularly beneficial nor
1609                  * particularly harmful as compared to leaving the reservation
1610                  * with the original object.  If, however, all of the
1611                  * reservation's allocated pages are transferred to the new
1612                  * object, then transferring the reservation is typically
1613                  * beneficial.  Determining which of these two cases applies
1614                  * would be more costly than unconditionally renaming the
1615                  * reservation.
1616                  */
1617                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1618 #endif
1619
1620                 /*
1621                  * orig_object's type may change while sleeping, so keep track
1622                  * of the beginning of the busied range.
1623                  */
1624                 if (orig_object->type != OBJT_SWAP)
1625                         vm_page_xunbusy(m);
1626                 else if (m_busy == NULL)
1627                         m_busy = m;
1628         }
1629         if (orig_object->type == OBJT_SWAP) {
1630                 /*
1631                  * swap_pager_copy() can sleep, in which case the orig_object's
1632                  * and new_object's locks are released and reacquired. 
1633                  */
1634                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1635                 if (m_busy != NULL)
1636                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1637                                 vm_page_xunbusy(m_busy);
1638         }
1639         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1640         VM_OBJECT_WUNLOCK(orig_object);
1641         VM_OBJECT_WUNLOCK(new_object);
1642         entry->object.vm_object = new_object;
1643         entry->offset = 0LL;
1644         vm_object_deallocate(orig_object);
1645         VM_OBJECT_WLOCK(new_object);
1646 }
1647
1648 static vm_page_t
1649 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1650 {
1651         vm_object_t backing_object;
1652
1653         VM_OBJECT_ASSERT_WLOCKED(object);
1654         backing_object = object->backing_object;
1655         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1656
1657         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1658             ("invalid ownership %p %p %p", p, object, backing_object));
1659         /* The page is only NULL when rename fails. */
1660         if (p == NULL) {
1661                 VM_OBJECT_WUNLOCK(object);
1662                 VM_OBJECT_WUNLOCK(backing_object);
1663                 vm_radix_wait();
1664         } else {
1665                 if (p->object == object)
1666                         VM_OBJECT_WUNLOCK(backing_object);
1667                 else
1668                         VM_OBJECT_WUNLOCK(object);
1669                 vm_page_busy_sleep(p, "vmocol", false);
1670         }
1671         VM_OBJECT_WLOCK(object);
1672         VM_OBJECT_WLOCK(backing_object);
1673         return (TAILQ_FIRST(&backing_object->memq));
1674 }
1675
1676 static bool
1677 vm_object_scan_all_shadowed(vm_object_t object)
1678 {
1679         vm_object_t backing_object;
1680         vm_page_t p, pp;
1681         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1682
1683         VM_OBJECT_ASSERT_WLOCKED(object);
1684         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1685
1686         backing_object = object->backing_object;
1687
1688         if ((backing_object->flags & OBJ_ANON) == 0)
1689                 return (false);
1690
1691         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1692         p = vm_page_find_least(backing_object, pi);
1693         ps = swap_pager_find_least(backing_object, pi);
1694
1695         /*
1696          * Only check pages inside the parent object's range and
1697          * inside the parent object's mapping of the backing object.
1698          */
1699         for (;; pi++) {
1700                 if (p != NULL && p->pindex < pi)
1701                         p = TAILQ_NEXT(p, listq);
1702                 if (ps < pi)
1703                         ps = swap_pager_find_least(backing_object, pi);
1704                 if (p == NULL && ps >= backing_object->size)
1705                         break;
1706                 else if (p == NULL)
1707                         pi = ps;
1708                 else
1709                         pi = MIN(p->pindex, ps);
1710
1711                 new_pindex = pi - backing_offset_index;
1712                 if (new_pindex >= object->size)
1713                         break;
1714
1715                 if (p != NULL) {
1716                         /*
1717                          * If the backing object page is busy a
1718                          * grandparent or older page may still be
1719                          * undergoing CoW.  It is not safe to collapse
1720                          * the backing object until it is quiesced.
1721                          */
1722                         if (vm_page_tryxbusy(p) == 0)
1723                                 return (false);
1724
1725                         /*
1726                          * We raced with the fault handler that left
1727                          * newly allocated invalid page on the object
1728                          * queue and retried.
1729                          */
1730                         if (!vm_page_all_valid(p))
1731                                 goto unbusy_ret;
1732                 }
1733
1734                 /*
1735                  * See if the parent has the page or if the parent's object
1736                  * pager has the page.  If the parent has the page but the page
1737                  * is not valid, the parent's object pager must have the page.
1738                  *
1739                  * If this fails, the parent does not completely shadow the
1740                  * object and we might as well give up now.
1741                  */
1742                 pp = vm_page_lookup(object, new_pindex);
1743
1744                 /*
1745                  * The valid check here is stable due to object lock
1746                  * being required to clear valid and initiate paging.
1747                  * Busy of p disallows fault handler to validate pp.
1748                  */
1749                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1750                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1751                         goto unbusy_ret;
1752                 if (p != NULL)
1753                         vm_page_xunbusy(p);
1754         }
1755         return (true);
1756
1757 unbusy_ret:
1758         if (p != NULL)
1759                 vm_page_xunbusy(p);
1760         return (false);
1761 }
1762
1763 static void
1764 vm_object_collapse_scan(vm_object_t object)
1765 {
1766         vm_object_t backing_object;
1767         vm_page_t next, p, pp;
1768         vm_pindex_t backing_offset_index, new_pindex;
1769
1770         VM_OBJECT_ASSERT_WLOCKED(object);
1771         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1772
1773         backing_object = object->backing_object;
1774         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1775
1776         /*
1777          * Our scan
1778          */
1779         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1780                 next = TAILQ_NEXT(p, listq);
1781                 new_pindex = p->pindex - backing_offset_index;
1782
1783                 /*
1784                  * Check for busy page
1785                  */
1786                 if (vm_page_tryxbusy(p) == 0) {
1787                         next = vm_object_collapse_scan_wait(object, p);
1788                         continue;
1789                 }
1790
1791                 KASSERT(object->backing_object == backing_object,
1792                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1793                     object->backing_object, backing_object));
1794                 KASSERT(p->object == backing_object,
1795                     ("vm_object_collapse_scan: object mismatch %p != %p",
1796                     p->object, backing_object));
1797
1798                 if (p->pindex < backing_offset_index ||
1799                     new_pindex >= object->size) {
1800                         if (backing_object->type == OBJT_SWAP)
1801                                 swap_pager_freespace(backing_object, p->pindex,
1802                                     1);
1803
1804                         KASSERT(!pmap_page_is_mapped(p),
1805                             ("freeing mapped page %p", p));
1806                         if (vm_page_remove(p))
1807                                 vm_page_free(p);
1808                         continue;
1809                 }
1810
1811                 if (!vm_page_all_valid(p)) {
1812                         KASSERT(!pmap_page_is_mapped(p),
1813                             ("freeing mapped page %p", p));
1814                         if (vm_page_remove(p))
1815                                 vm_page_free(p);
1816                         continue;
1817                 }
1818
1819                 pp = vm_page_lookup(object, new_pindex);
1820                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1821                         vm_page_xunbusy(p);
1822                         /*
1823                          * The page in the parent is busy and possibly not
1824                          * (yet) valid.  Until its state is finalized by the
1825                          * busy bit owner, we can't tell whether it shadows the
1826                          * original page.
1827                          */
1828                         next = vm_object_collapse_scan_wait(object, pp);
1829                         continue;
1830                 }
1831
1832                 if (pp != NULL && vm_page_none_valid(pp)) {
1833                         /*
1834                          * The page was invalid in the parent.  Likely placed
1835                          * there by an incomplete fault.  Just remove and
1836                          * ignore.  p can replace it.
1837                          */
1838                         if (vm_page_remove(pp))
1839                                 vm_page_free(pp);
1840                         pp = NULL;
1841                 }
1842
1843                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1844                         NULL)) {
1845                         /*
1846                          * The page already exists in the parent OR swap exists
1847                          * for this location in the parent.  Leave the parent's
1848                          * page alone.  Destroy the original page from the
1849                          * backing object.
1850                          */
1851                         if (backing_object->type == OBJT_SWAP)
1852                                 swap_pager_freespace(backing_object, p->pindex,
1853                                     1);
1854                         KASSERT(!pmap_page_is_mapped(p),
1855                             ("freeing mapped page %p", p));
1856                         if (vm_page_remove(p))
1857                                 vm_page_free(p);
1858                         if (pp != NULL)
1859                                 vm_page_xunbusy(pp);
1860                         continue;
1861                 }
1862
1863                 /*
1864                  * Page does not exist in parent, rename the page from the
1865                  * backing object to the main object.
1866                  *
1867                  * If the page was mapped to a process, it can remain mapped
1868                  * through the rename.  vm_page_rename() will dirty the page.
1869                  */
1870                 if (vm_page_rename(p, object, new_pindex)) {
1871                         vm_page_xunbusy(p);
1872                         next = vm_object_collapse_scan_wait(object, NULL);
1873                         continue;
1874                 }
1875
1876                 /* Use the old pindex to free the right page. */
1877                 if (backing_object->type == OBJT_SWAP)
1878                         swap_pager_freespace(backing_object,
1879                             new_pindex + backing_offset_index, 1);
1880
1881 #if VM_NRESERVLEVEL > 0
1882                 /*
1883                  * Rename the reservation.
1884                  */
1885                 vm_reserv_rename(p, object, backing_object,
1886                     backing_offset_index);
1887 #endif
1888                 vm_page_xunbusy(p);
1889         }
1890         return;
1891 }
1892
1893 /*
1894  *      vm_object_collapse:
1895  *
1896  *      Collapse an object with the object backing it.
1897  *      Pages in the backing object are moved into the
1898  *      parent, and the backing object is deallocated.
1899  */
1900 void
1901 vm_object_collapse(vm_object_t object)
1902 {
1903         vm_object_t backing_object, new_backing_object;
1904
1905         VM_OBJECT_ASSERT_WLOCKED(object);
1906
1907         while (TRUE) {
1908                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1909                     ("collapsing invalid object"));
1910
1911                 /*
1912                  * Wait for the backing_object to finish any pending
1913                  * collapse so that the caller sees the shortest possible
1914                  * shadow chain.
1915                  */
1916                 backing_object = vm_object_backing_collapse_wait(object);
1917                 if (backing_object == NULL)
1918                         return;
1919
1920                 KASSERT(object->ref_count > 0 &&
1921                     object->ref_count > object->shadow_count,
1922                     ("collapse with invalid ref %d or shadow %d count.",
1923                     object->ref_count, object->shadow_count));
1924                 KASSERT((backing_object->flags &
1925                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1926                     ("vm_object_collapse: Backing object already collapsing."));
1927                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1928                     ("vm_object_collapse: object is already collapsing."));
1929
1930                 /*
1931                  * We know that we can either collapse the backing object if
1932                  * the parent is the only reference to it, or (perhaps) have
1933                  * the parent bypass the object if the parent happens to shadow
1934                  * all the resident pages in the entire backing object.
1935                  */
1936                 if (backing_object->ref_count == 1) {
1937                         KASSERT(backing_object->shadow_count == 1,
1938                             ("vm_object_collapse: shadow_count: %d",
1939                             backing_object->shadow_count));
1940                         vm_object_pip_add(object, 1);
1941                         vm_object_set_flag(object, OBJ_COLLAPSING);
1942                         vm_object_pip_add(backing_object, 1);
1943                         vm_object_set_flag(backing_object, OBJ_DEAD);
1944
1945                         /*
1946                          * If there is exactly one reference to the backing
1947                          * object, we can collapse it into the parent.
1948                          */
1949                         vm_object_collapse_scan(object);
1950
1951 #if VM_NRESERVLEVEL > 0
1952                         /*
1953                          * Break any reservations from backing_object.
1954                          */
1955                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1956                                 vm_reserv_break_all(backing_object);
1957 #endif
1958
1959                         /*
1960                          * Move the pager from backing_object to object.
1961                          */
1962                         if (backing_object->type == OBJT_SWAP) {
1963                                 /*
1964                                  * swap_pager_copy() can sleep, in which case
1965                                  * the backing_object's and object's locks are
1966                                  * released and reacquired.
1967                                  * Since swap_pager_copy() is being asked to
1968                                  * destroy backing_object, it will change the
1969                                  * type to OBJT_DEFAULT.
1970                                  */
1971                                 swap_pager_copy(
1972                                     backing_object,
1973                                     object,
1974                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1975                         }
1976
1977                         /*
1978                          * Object now shadows whatever backing_object did.
1979                          */
1980                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1981                         vm_object_backing_transfer(object, backing_object);
1982                         object->backing_object_offset +=
1983                             backing_object->backing_object_offset;
1984                         VM_OBJECT_WUNLOCK(object);
1985                         vm_object_pip_wakeup(object);
1986
1987                         /*
1988                          * Discard backing_object.
1989                          *
1990                          * Since the backing object has no pages, no pager left,
1991                          * and no object references within it, all that is
1992                          * necessary is to dispose of it.
1993                          */
1994                         KASSERT(backing_object->ref_count == 1, (
1995 "backing_object %p was somehow re-referenced during collapse!",
1996                             backing_object));
1997                         vm_object_pip_wakeup(backing_object);
1998                         (void)refcount_release(&backing_object->ref_count);
1999                         vm_object_terminate(backing_object);
2000                         counter_u64_add(object_collapses, 1);
2001                         VM_OBJECT_WLOCK(object);
2002                 } else {
2003                         /*
2004                          * If we do not entirely shadow the backing object,
2005                          * there is nothing we can do so we give up.
2006                          *
2007                          * The object lock and backing_object lock must not
2008                          * be dropped during this sequence.
2009                          */
2010                         if (!vm_object_scan_all_shadowed(object)) {
2011                                 VM_OBJECT_WUNLOCK(backing_object);
2012                                 break;
2013                         }
2014
2015                         /*
2016                          * Make the parent shadow the next object in the
2017                          * chain.  Deallocating backing_object will not remove
2018                          * it, since its reference count is at least 2.
2019                          */
2020                         vm_object_backing_remove_locked(object);
2021                         new_backing_object = backing_object->backing_object;
2022                         if (new_backing_object != NULL) {
2023                                 vm_object_backing_insert_ref(object,
2024                                     new_backing_object);
2025                                 object->backing_object_offset +=
2026                                     backing_object->backing_object_offset;
2027                         }
2028
2029                         /*
2030                          * Drop the reference count on backing_object. Since
2031                          * its ref_count was at least 2, it will not vanish.
2032                          */
2033                         (void)refcount_release(&backing_object->ref_count);
2034                         KASSERT(backing_object->ref_count >= 1, (
2035 "backing_object %p was somehow dereferenced during collapse!",
2036                             backing_object));
2037                         VM_OBJECT_WUNLOCK(backing_object);
2038                         counter_u64_add(object_bypasses, 1);
2039                 }
2040
2041                 /*
2042                  * Try again with this object's new backing object.
2043                  */
2044         }
2045 }
2046
2047 /*
2048  *      vm_object_page_remove:
2049  *
2050  *      For the given object, either frees or invalidates each of the
2051  *      specified pages.  In general, a page is freed.  However, if a page is
2052  *      wired for any reason other than the existence of a managed, wired
2053  *      mapping, then it may be invalidated but not removed from the object.
2054  *      Pages are specified by the given range ["start", "end") and the option
2055  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2056  *      extends from "start" to the end of the object.  If the option
2057  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2058  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2059  *      specified, then the pages within the specified range must have no
2060  *      mappings.  Otherwise, if this option is not specified, any mappings to
2061  *      the specified pages are removed before the pages are freed or
2062  *      invalidated.
2063  *
2064  *      In general, this operation should only be performed on objects that
2065  *      contain managed pages.  There are, however, two exceptions.  First, it
2066  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2067  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2068  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2069  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2070  *
2071  *      The object must be locked.
2072  */
2073 void
2074 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2075     int options)
2076 {
2077         vm_page_t p, next;
2078
2079         VM_OBJECT_ASSERT_WLOCKED(object);
2080         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2081             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2082             ("vm_object_page_remove: illegal options for object %p", object));
2083         if (object->resident_page_count == 0)
2084                 return;
2085         vm_object_pip_add(object, 1);
2086 again:
2087         p = vm_page_find_least(object, start);
2088
2089         /*
2090          * Here, the variable "p" is either (1) the page with the least pindex
2091          * greater than or equal to the parameter "start" or (2) NULL. 
2092          */
2093         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2094                 next = TAILQ_NEXT(p, listq);
2095
2096                 /*
2097                  * If the page is wired for any reason besides the existence
2098                  * of managed, wired mappings, then it cannot be freed.  For
2099                  * example, fictitious pages, which represent device memory,
2100                  * are inherently wired and cannot be freed.  They can,
2101                  * however, be invalidated if the option OBJPR_CLEANONLY is
2102                  * not specified.
2103                  */
2104                 if (vm_page_tryxbusy(p) == 0) {
2105                         vm_page_sleep_if_busy(p, "vmopar");
2106                         goto again;
2107                 }
2108                 if (vm_page_wired(p)) {
2109 wired:
2110                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2111                             object->ref_count != 0)
2112                                 pmap_remove_all(p);
2113                         if ((options & OBJPR_CLEANONLY) == 0) {
2114                                 vm_page_invalid(p);
2115                                 vm_page_undirty(p);
2116                         }
2117                         vm_page_xunbusy(p);
2118                         continue;
2119                 }
2120                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2121                     ("vm_object_page_remove: page %p is fictitious", p));
2122                 if ((options & OBJPR_CLEANONLY) != 0 &&
2123                     !vm_page_none_valid(p)) {
2124                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2125                             object->ref_count != 0 &&
2126                             !vm_page_try_remove_write(p))
2127                                 goto wired;
2128                         if (p->dirty != 0) {
2129                                 vm_page_xunbusy(p);
2130                                 continue;
2131                         }
2132                 }
2133                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2134                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2135                         goto wired;
2136                 vm_page_free(p);
2137         }
2138         vm_object_pip_wakeup(object);
2139
2140         if (object->type == OBJT_SWAP) {
2141                 if (end == 0)
2142                         end = object->size;
2143                 swap_pager_freespace(object, start, end - start);
2144         }
2145 }
2146
2147 /*
2148  *      vm_object_page_noreuse:
2149  *
2150  *      For the given object, attempt to move the specified pages to
2151  *      the head of the inactive queue.  This bypasses regular LRU
2152  *      operation and allows the pages to be reused quickly under memory
2153  *      pressure.  If a page is wired for any reason, then it will not
2154  *      be queued.  Pages are specified by the range ["start", "end").
2155  *      As a special case, if "end" is zero, then the range extends from
2156  *      "start" to the end of the object.
2157  *
2158  *      This operation should only be performed on objects that
2159  *      contain non-fictitious, managed pages.
2160  *
2161  *      The object must be locked.
2162  */
2163 void
2164 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2165 {
2166         vm_page_t p, next;
2167
2168         VM_OBJECT_ASSERT_LOCKED(object);
2169         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2170             ("vm_object_page_noreuse: illegal object %p", object));
2171         if (object->resident_page_count == 0)
2172                 return;
2173         p = vm_page_find_least(object, start);
2174
2175         /*
2176          * Here, the variable "p" is either (1) the page with the least pindex
2177          * greater than or equal to the parameter "start" or (2) NULL. 
2178          */
2179         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2180                 next = TAILQ_NEXT(p, listq);
2181                 vm_page_deactivate_noreuse(p);
2182         }
2183 }
2184
2185 /*
2186  *      Populate the specified range of the object with valid pages.  Returns
2187  *      TRUE if the range is successfully populated and FALSE otherwise.
2188  *
2189  *      Note: This function should be optimized to pass a larger array of
2190  *      pages to vm_pager_get_pages() before it is applied to a non-
2191  *      OBJT_DEVICE object.
2192  *
2193  *      The object must be locked.
2194  */
2195 boolean_t
2196 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2197 {
2198         vm_page_t m;
2199         vm_pindex_t pindex;
2200         int rv;
2201
2202         VM_OBJECT_ASSERT_WLOCKED(object);
2203         for (pindex = start; pindex < end; pindex++) {
2204                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2205                 if (rv != VM_PAGER_OK)
2206                         break;
2207
2208                 /*
2209                  * Keep "m" busy because a subsequent iteration may unlock
2210                  * the object.
2211                  */
2212         }
2213         if (pindex > start) {
2214                 m = vm_page_lookup(object, start);
2215                 while (m != NULL && m->pindex < pindex) {
2216                         vm_page_xunbusy(m);
2217                         m = TAILQ_NEXT(m, listq);
2218                 }
2219         }
2220         return (pindex == end);
2221 }
2222
2223 /*
2224  *      Routine:        vm_object_coalesce
2225  *      Function:       Coalesces two objects backing up adjoining
2226  *                      regions of memory into a single object.
2227  *
2228  *      returns TRUE if objects were combined.
2229  *
2230  *      NOTE:   Only works at the moment if the second object is NULL -
2231  *              if it's not, which object do we lock first?
2232  *
2233  *      Parameters:
2234  *              prev_object     First object to coalesce
2235  *              prev_offset     Offset into prev_object
2236  *              prev_size       Size of reference to prev_object
2237  *              next_size       Size of reference to the second object
2238  *              reserved        Indicator that extension region has
2239  *                              swap accounted for
2240  *
2241  *      Conditions:
2242  *      The object must *not* be locked.
2243  */
2244 boolean_t
2245 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2246     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2247 {
2248         vm_pindex_t next_pindex;
2249
2250         if (prev_object == NULL)
2251                 return (TRUE);
2252         if ((prev_object->flags & OBJ_ANON) == 0)
2253                 return (FALSE);
2254
2255         VM_OBJECT_WLOCK(prev_object);
2256         /*
2257          * Try to collapse the object first.
2258          */
2259         vm_object_collapse(prev_object);
2260
2261         /*
2262          * Can't coalesce if: . more than one reference . paged out . shadows
2263          * another object . has a copy elsewhere (any of which mean that the
2264          * pages not mapped to prev_entry may be in use anyway)
2265          */
2266         if (prev_object->backing_object != NULL) {
2267                 VM_OBJECT_WUNLOCK(prev_object);
2268                 return (FALSE);
2269         }
2270
2271         prev_size >>= PAGE_SHIFT;
2272         next_size >>= PAGE_SHIFT;
2273         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2274
2275         if (prev_object->ref_count > 1 &&
2276             prev_object->size != next_pindex &&
2277             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2278                 VM_OBJECT_WUNLOCK(prev_object);
2279                 return (FALSE);
2280         }
2281
2282         /*
2283          * Account for the charge.
2284          */
2285         if (prev_object->cred != NULL) {
2286                 /*
2287                  * If prev_object was charged, then this mapping,
2288                  * although not charged now, may become writable
2289                  * later. Non-NULL cred in the object would prevent
2290                  * swap reservation during enabling of the write
2291                  * access, so reserve swap now. Failed reservation
2292                  * cause allocation of the separate object for the map
2293                  * entry, and swap reservation for this entry is
2294                  * managed in appropriate time.
2295                  */
2296                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2297                     prev_object->cred)) {
2298                         VM_OBJECT_WUNLOCK(prev_object);
2299                         return (FALSE);
2300                 }
2301                 prev_object->charge += ptoa(next_size);
2302         }
2303
2304         /*
2305          * Remove any pages that may still be in the object from a previous
2306          * deallocation.
2307          */
2308         if (next_pindex < prev_object->size) {
2309                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2310                     next_size, 0);
2311 #if 0
2312                 if (prev_object->cred != NULL) {
2313                         KASSERT(prev_object->charge >=
2314                             ptoa(prev_object->size - next_pindex),
2315                             ("object %p overcharged 1 %jx %jx", prev_object,
2316                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2317                         prev_object->charge -= ptoa(prev_object->size -
2318                             next_pindex);
2319                 }
2320 #endif
2321         }
2322
2323         /*
2324          * Extend the object if necessary.
2325          */
2326         if (next_pindex + next_size > prev_object->size)
2327                 prev_object->size = next_pindex + next_size;
2328
2329         VM_OBJECT_WUNLOCK(prev_object);
2330         return (TRUE);
2331 }
2332
2333 void
2334 vm_object_set_writeable_dirty(vm_object_t object)
2335 {
2336
2337         /* Only set for vnodes & tmpfs */
2338         if (object->type != OBJT_VNODE &&
2339             (object->flags & OBJ_TMPFS_NODE) == 0)
2340                 return;
2341         atomic_add_int(&object->generation, 1);
2342 }
2343
2344 /*
2345  *      vm_object_unwire:
2346  *
2347  *      For each page offset within the specified range of the given object,
2348  *      find the highest-level page in the shadow chain and unwire it.  A page
2349  *      must exist at every page offset, and the highest-level page must be
2350  *      wired.
2351  */
2352 void
2353 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2354     uint8_t queue)
2355 {
2356         vm_object_t tobject, t1object;
2357         vm_page_t m, tm;
2358         vm_pindex_t end_pindex, pindex, tpindex;
2359         int depth, locked_depth;
2360
2361         KASSERT((offset & PAGE_MASK) == 0,
2362             ("vm_object_unwire: offset is not page aligned"));
2363         KASSERT((length & PAGE_MASK) == 0,
2364             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2365         /* The wired count of a fictitious page never changes. */
2366         if ((object->flags & OBJ_FICTITIOUS) != 0)
2367                 return;
2368         pindex = OFF_TO_IDX(offset);
2369         end_pindex = pindex + atop(length);
2370 again:
2371         locked_depth = 1;
2372         VM_OBJECT_RLOCK(object);
2373         m = vm_page_find_least(object, pindex);
2374         while (pindex < end_pindex) {
2375                 if (m == NULL || pindex < m->pindex) {
2376                         /*
2377                          * The first object in the shadow chain doesn't
2378                          * contain a page at the current index.  Therefore,
2379                          * the page must exist in a backing object.
2380                          */
2381                         tobject = object;
2382                         tpindex = pindex;
2383                         depth = 0;
2384                         do {
2385                                 tpindex +=
2386                                     OFF_TO_IDX(tobject->backing_object_offset);
2387                                 tobject = tobject->backing_object;
2388                                 KASSERT(tobject != NULL,
2389                                     ("vm_object_unwire: missing page"));
2390                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2391                                         goto next_page;
2392                                 depth++;
2393                                 if (depth == locked_depth) {
2394                                         locked_depth++;
2395                                         VM_OBJECT_RLOCK(tobject);
2396                                 }
2397                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2398                             NULL);
2399                 } else {
2400                         tm = m;
2401                         m = TAILQ_NEXT(m, listq);
2402                 }
2403                 if (vm_page_trysbusy(tm) == 0) {
2404                         for (tobject = object; locked_depth >= 1;
2405                             locked_depth--) {
2406                                 t1object = tobject->backing_object;
2407                                 if (tm->object != tobject)
2408                                         VM_OBJECT_RUNLOCK(tobject);
2409                                 tobject = t1object;
2410                         }
2411                         vm_page_busy_sleep(tm, "unwbo", true);
2412                         goto again;
2413                 }
2414                 vm_page_unwire(tm, queue);
2415                 vm_page_sunbusy(tm);
2416 next_page:
2417                 pindex++;
2418         }
2419         /* Release the accumulated object locks. */
2420         for (tobject = object; locked_depth >= 1; locked_depth--) {
2421                 t1object = tobject->backing_object;
2422                 VM_OBJECT_RUNLOCK(tobject);
2423                 tobject = t1object;
2424         }
2425 }
2426
2427 /*
2428  * Return the vnode for the given object, or NULL if none exists.
2429  * For tmpfs objects, the function may return NULL if there is
2430  * no vnode allocated at the time of the call.
2431  */
2432 struct vnode *
2433 vm_object_vnode(vm_object_t object)
2434 {
2435         struct vnode *vp;
2436
2437         VM_OBJECT_ASSERT_LOCKED(object);
2438         if (object->type == OBJT_VNODE) {
2439                 vp = object->handle;
2440                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2441         } else if (object->type == OBJT_SWAP &&
2442             (object->flags & OBJ_TMPFS) != 0) {
2443                 vp = object->un_pager.swp.swp_tmpfs;
2444                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2445         } else {
2446                 vp = NULL;
2447         }
2448         return (vp);
2449 }
2450
2451 /*
2452  * Busy the vm object.  This prevents new pages belonging to the object from
2453  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2454  * for checking page state before proceeding.
2455  */
2456 void
2457 vm_object_busy(vm_object_t obj)
2458 {
2459
2460         VM_OBJECT_ASSERT_LOCKED(obj);
2461
2462         blockcount_acquire(&obj->busy, 1);
2463         /* The fence is required to order loads of page busy. */
2464         atomic_thread_fence_acq_rel();
2465 }
2466
2467 void
2468 vm_object_unbusy(vm_object_t obj)
2469 {
2470
2471         blockcount_release(&obj->busy, 1);
2472 }
2473
2474 void
2475 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2476 {
2477
2478         VM_OBJECT_ASSERT_UNLOCKED(obj);
2479
2480         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2481 }
2482
2483 /*
2484  * Return the kvme type of the given object.
2485  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2486  */
2487 int
2488 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2489 {
2490
2491         VM_OBJECT_ASSERT_LOCKED(object);
2492         if (vpp != NULL)
2493                 *vpp = vm_object_vnode(object);
2494         switch (object->type) {
2495         case OBJT_DEFAULT:
2496                 return (KVME_TYPE_DEFAULT);
2497         case OBJT_VNODE:
2498                 return (KVME_TYPE_VNODE);
2499         case OBJT_SWAP:
2500                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2501                         return (KVME_TYPE_VNODE);
2502                 return (KVME_TYPE_SWAP);
2503         case OBJT_DEVICE:
2504                 return (KVME_TYPE_DEVICE);
2505         case OBJT_PHYS:
2506                 return (KVME_TYPE_PHYS);
2507         case OBJT_DEAD:
2508                 return (KVME_TYPE_DEAD);
2509         case OBJT_SG:
2510                 return (KVME_TYPE_SG);
2511         case OBJT_MGTDEVICE:
2512                 return (KVME_TYPE_MGTDEVICE);
2513         default:
2514                 return (KVME_TYPE_UNKNOWN);
2515         }
2516 }
2517
2518 static int
2519 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2520 {
2521         struct kinfo_vmobject *kvo;
2522         char *fullpath, *freepath;
2523         struct vnode *vp;
2524         struct vattr va;
2525         vm_object_t obj;
2526         vm_page_t m;
2527         int count, error;
2528
2529         if (req->oldptr == NULL) {
2530                 /*
2531                  * If an old buffer has not been provided, generate an
2532                  * estimate of the space needed for a subsequent call.
2533                  */
2534                 mtx_lock(&vm_object_list_mtx);
2535                 count = 0;
2536                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2537                         if (obj->type == OBJT_DEAD)
2538                                 continue;
2539                         count++;
2540                 }
2541                 mtx_unlock(&vm_object_list_mtx);
2542                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2543                     count * 11 / 10));
2544         }
2545
2546         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2547         error = 0;
2548
2549         /*
2550          * VM objects are type stable and are never removed from the
2551          * list once added.  This allows us to safely read obj->object_list
2552          * after reacquiring the VM object lock.
2553          */
2554         mtx_lock(&vm_object_list_mtx);
2555         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2556                 if (obj->type == OBJT_DEAD)
2557                         continue;
2558                 VM_OBJECT_RLOCK(obj);
2559                 if (obj->type == OBJT_DEAD) {
2560                         VM_OBJECT_RUNLOCK(obj);
2561                         continue;
2562                 }
2563                 mtx_unlock(&vm_object_list_mtx);
2564                 kvo->kvo_size = ptoa(obj->size);
2565                 kvo->kvo_resident = obj->resident_page_count;
2566                 kvo->kvo_ref_count = obj->ref_count;
2567                 kvo->kvo_shadow_count = obj->shadow_count;
2568                 kvo->kvo_memattr = obj->memattr;
2569                 kvo->kvo_active = 0;
2570                 kvo->kvo_inactive = 0;
2571                 TAILQ_FOREACH(m, &obj->memq, listq) {
2572                         /*
2573                          * A page may belong to the object but be
2574                          * dequeued and set to PQ_NONE while the
2575                          * object lock is not held.  This makes the
2576                          * reads of m->queue below racy, and we do not
2577                          * count pages set to PQ_NONE.  However, this
2578                          * sysctl is only meant to give an
2579                          * approximation of the system anyway.
2580                          */
2581                         if (m->a.queue == PQ_ACTIVE)
2582                                 kvo->kvo_active++;
2583                         else if (m->a.queue == PQ_INACTIVE)
2584                                 kvo->kvo_inactive++;
2585                 }
2586
2587                 kvo->kvo_vn_fileid = 0;
2588                 kvo->kvo_vn_fsid = 0;
2589                 kvo->kvo_vn_fsid_freebsd11 = 0;
2590                 freepath = NULL;
2591                 fullpath = "";
2592                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2593                 if (vp != NULL)
2594                         vref(vp);
2595                 VM_OBJECT_RUNLOCK(obj);
2596                 if (vp != NULL) {
2597                         vn_fullpath(vp, &fullpath, &freepath);
2598                         vn_lock(vp, LK_SHARED | LK_RETRY);
2599                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2600                                 kvo->kvo_vn_fileid = va.va_fileid;
2601                                 kvo->kvo_vn_fsid = va.va_fsid;
2602                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2603                                                                 /* truncate */
2604                         }
2605                         vput(vp);
2606                 }
2607
2608                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2609                 if (freepath != NULL)
2610                         free(freepath, M_TEMP);
2611
2612                 /* Pack record size down */
2613                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2614                     + strlen(kvo->kvo_path) + 1;
2615                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2616                     sizeof(uint64_t));
2617                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2618                 mtx_lock(&vm_object_list_mtx);
2619                 if (error)
2620                         break;
2621         }
2622         mtx_unlock(&vm_object_list_mtx);
2623         free(kvo, M_TEMP);
2624         return (error);
2625 }
2626 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2627     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2628     "List of VM objects");
2629
2630 #include "opt_ddb.h"
2631 #ifdef DDB
2632 #include <sys/kernel.h>
2633
2634 #include <sys/cons.h>
2635
2636 #include <ddb/ddb.h>
2637
2638 static int
2639 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2640 {
2641         vm_map_t tmpm;
2642         vm_map_entry_t tmpe;
2643         vm_object_t obj;
2644
2645         if (map == 0)
2646                 return 0;
2647
2648         if (entry == 0) {
2649                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2650                         if (_vm_object_in_map(map, object, tmpe)) {
2651                                 return 1;
2652                         }
2653                 }
2654         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2655                 tmpm = entry->object.sub_map;
2656                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2657                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2658                                 return 1;
2659                         }
2660                 }
2661         } else if ((obj = entry->object.vm_object) != NULL) {
2662                 for (; obj; obj = obj->backing_object)
2663                         if (obj == object) {
2664                                 return 1;
2665                         }
2666         }
2667         return 0;
2668 }
2669
2670 static int
2671 vm_object_in_map(vm_object_t object)
2672 {
2673         struct proc *p;
2674
2675         /* sx_slock(&allproc_lock); */
2676         FOREACH_PROC_IN_SYSTEM(p) {
2677                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2678                         continue;
2679                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2680                         /* sx_sunlock(&allproc_lock); */
2681                         return 1;
2682                 }
2683         }
2684         /* sx_sunlock(&allproc_lock); */
2685         if (_vm_object_in_map(kernel_map, object, 0))
2686                 return 1;
2687         return 0;
2688 }
2689
2690 DB_SHOW_COMMAND(vmochk, vm_object_check)
2691 {
2692         vm_object_t object;
2693
2694         /*
2695          * make sure that internal objs are in a map somewhere
2696          * and none have zero ref counts.
2697          */
2698         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2699                 if ((object->flags & OBJ_ANON) != 0) {
2700                         if (object->ref_count == 0) {
2701                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2702                                         (long)object->size);
2703                         }
2704                         if (!vm_object_in_map(object)) {
2705                                 db_printf(
2706                         "vmochk: internal obj is not in a map: "
2707                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2708                                     object->ref_count, (u_long)object->size, 
2709                                     (u_long)object->size,
2710                                     (void *)object->backing_object);
2711                         }
2712                 }
2713                 if (db_pager_quit)
2714                         return;
2715         }
2716 }
2717
2718 /*
2719  *      vm_object_print:        [ debug ]
2720  */
2721 DB_SHOW_COMMAND(object, vm_object_print_static)
2722 {
2723         /* XXX convert args. */
2724         vm_object_t object = (vm_object_t)addr;
2725         boolean_t full = have_addr;
2726
2727         vm_page_t p;
2728
2729         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2730 #define count   was_count
2731
2732         int count;
2733
2734         if (object == NULL)
2735                 return;
2736
2737         db_iprintf(
2738             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2739             object, (int)object->type, (uintmax_t)object->size,
2740             object->resident_page_count, object->ref_count, object->flags,
2741             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2742         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2743             object->shadow_count, 
2744             object->backing_object ? object->backing_object->ref_count : 0,
2745             object->backing_object, (uintmax_t)object->backing_object_offset);
2746
2747         if (!full)
2748                 return;
2749
2750         db_indent += 2;
2751         count = 0;
2752         TAILQ_FOREACH(p, &object->memq, listq) {
2753                 if (count == 0)
2754                         db_iprintf("memory:=");
2755                 else if (count == 6) {
2756                         db_printf("\n");
2757                         db_iprintf(" ...");
2758                         count = 0;
2759                 } else
2760                         db_printf(",");
2761                 count++;
2762
2763                 db_printf("(off=0x%jx,page=0x%jx)",
2764                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2765
2766                 if (db_pager_quit)
2767                         break;
2768         }
2769         if (count != 0)
2770                 db_printf("\n");
2771         db_indent -= 2;
2772 }
2773
2774 /* XXX. */
2775 #undef count
2776
2777 /* XXX need this non-static entry for calling from vm_map_print. */
2778 void
2779 vm_object_print(
2780         /* db_expr_t */ long addr,
2781         boolean_t have_addr,
2782         /* db_expr_t */ long count,
2783         char *modif)
2784 {
2785         vm_object_print_static(addr, have_addr, count, modif);
2786 }
2787
2788 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2789 {
2790         vm_object_t object;
2791         vm_pindex_t fidx;
2792         vm_paddr_t pa;
2793         vm_page_t m, prev_m;
2794         int rcount, nl, c;
2795
2796         nl = 0;
2797         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2798                 db_printf("new object: %p\n", (void *)object);
2799                 if (nl > 18) {
2800                         c = cngetc();
2801                         if (c != ' ')
2802                                 return;
2803                         nl = 0;
2804                 }
2805                 nl++;
2806                 rcount = 0;
2807                 fidx = 0;
2808                 pa = -1;
2809                 TAILQ_FOREACH(m, &object->memq, listq) {
2810                         if (m->pindex > 128)
2811                                 break;
2812                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2813                             prev_m->pindex + 1 != m->pindex) {
2814                                 if (rcount) {
2815                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2816                                                 (long)fidx, rcount, (long)pa);
2817                                         if (nl > 18) {
2818                                                 c = cngetc();
2819                                                 if (c != ' ')
2820                                                         return;
2821                                                 nl = 0;
2822                                         }
2823                                         nl++;
2824                                         rcount = 0;
2825                                 }
2826                         }                               
2827                         if (rcount &&
2828                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2829                                 ++rcount;
2830                                 continue;
2831                         }
2832                         if (rcount) {
2833                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2834                                         (long)fidx, rcount, (long)pa);
2835                                 if (nl > 18) {
2836                                         c = cngetc();
2837                                         if (c != ' ')
2838                                                 return;
2839                                         nl = 0;
2840                                 }
2841                                 nl++;
2842                         }
2843                         fidx = m->pindex;
2844                         pa = VM_PAGE_TO_PHYS(m);
2845                         rcount = 1;
2846                 }
2847                 if (rcount) {
2848                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2849                                 (long)fidx, rcount, (long)pa);
2850                         if (nl > 18) {
2851                                 c = cngetc();
2852                                 if (c != ' ')
2853                                         return;
2854                                 nl = 0;
2855                         }
2856                         nl++;
2857                 }
2858         }
2859 }
2860 #endif /* DDB */