]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge from projects/counters: UMA_ZONE_PCPU zones.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/vnode.h>
83 #include <sys/vmmeter.h>
84 #include <sys/sx.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_radix.h>
98 #include <vm/vm_reserv.h>
99 #include <vm/uma.h>
100
101 static int old_msync;
102 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103     "Use old (insecure) msync behavior");
104
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106                     int pagerflags, int flags, boolean_t *clearobjflags,
107                     boolean_t *eio);
108 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109                     boolean_t *clearobjflags);
110 static void     vm_object_qcollapse(vm_object_t object);
111 static void     vm_object_vndeallocate(vm_object_t object);
112
113 /*
114  *      Virtual memory objects maintain the actual data
115  *      associated with allocated virtual memory.  A given
116  *      page of memory exists within exactly one object.
117  *
118  *      An object is only deallocated when all "references"
119  *      are given up.  Only one "reference" to a given
120  *      region of an object should be writeable.
121  *
122  *      Associated with each object is a list of all resident
123  *      memory pages belonging to that object; this list is
124  *      maintained by the "vm_page" module, and locked by the object's
125  *      lock.
126  *
127  *      Each object also records a "pager" routine which is
128  *      used to retrieve (and store) pages to the proper backing
129  *      storage.  In addition, objects may be backed by other
130  *      objects from which they were virtual-copied.
131  *
132  *      The only items within the object structure which are
133  *      modified after time of creation are:
134  *              reference count         locked by object's lock
135  *              pager routine           locked by object's lock
136  *
137  */
138
139 struct object_q vm_object_list;
140 struct mtx vm_object_list_mtx;  /* lock for object list and count */
141
142 struct vm_object kernel_object_store;
143 struct vm_object kmem_object_store;
144
145 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146     "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages in its memq", object));
171         KASSERT(vm_radix_is_empty(&object->rtree),
172             ("object %p has resident pages in its trie", object));
173 #if VM_NRESERVLEVEL > 0
174         KASSERT(LIST_EMPTY(&object->rvq),
175             ("object %p has reservations",
176             object));
177 #endif
178         KASSERT(vm_object_cache_is_empty(object),
179             ("object %p has cached pages",
180             object));
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190 }
191 #endif
192
193 static int
194 vm_object_zinit(void *mem, int size, int flags)
195 {
196         vm_object_t object;
197
198         object = (vm_object_t)mem;
199         bzero(&object->lock, sizeof(object->lock));
200         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202         /* These are true for any object that has been freed */
203         object->rtree.rt_root = 0;
204         object->paging_in_progress = 0;
205         object->resident_page_count = 0;
206         object->shadow_count = 0;
207         object->cache.rt_root = 0;
208         return (0);
209 }
210
211 static void
212 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
213 {
214
215         TAILQ_INIT(&object->memq);
216         LIST_INIT(&object->shadow_head);
217
218         object->type = type;
219         switch (type) {
220         case OBJT_DEAD:
221                 panic("_vm_object_allocate: can't create OBJT_DEAD");
222         case OBJT_DEFAULT:
223         case OBJT_SWAP:
224                 object->flags = OBJ_ONEMAPPING;
225                 break;
226         case OBJT_DEVICE:
227         case OBJT_SG:
228                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
229                 break;
230         case OBJT_MGTDEVICE:
231                 object->flags = OBJ_FICTITIOUS;
232                 break;
233         case OBJT_PHYS:
234                 object->flags = OBJ_UNMANAGED;
235                 break;
236         case OBJT_VNODE:
237                 object->flags = 0;
238                 break;
239         default:
240                 panic("_vm_object_allocate: type %d is undefined", type);
241         }
242         object->size = size;
243         object->generation = 1;
244         object->ref_count = 1;
245         object->memattr = VM_MEMATTR_DEFAULT;
246         object->cred = NULL;
247         object->charge = 0;
248         object->handle = NULL;
249         object->backing_object = NULL;
250         object->backing_object_offset = (vm_ooffset_t) 0;
251 #if VM_NRESERVLEVEL > 0
252         LIST_INIT(&object->rvq);
253 #endif
254
255         mtx_lock(&vm_object_list_mtx);
256         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
257         mtx_unlock(&vm_object_list_mtx);
258 }
259
260 /*
261  *      vm_object_init:
262  *
263  *      Initialize the VM objects module.
264  */
265 void
266 vm_object_init(void)
267 {
268         TAILQ_INIT(&vm_object_list);
269         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
270         
271         rw_init(&kernel_object->lock, "kernel vm object");
272         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
273             kernel_object);
274 #if VM_NRESERVLEVEL > 0
275         kernel_object->flags |= OBJ_COLORED;
276         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
277 #endif
278
279         rw_init(&kmem_object->lock, "kmem vm object");
280         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
281             kmem_object);
282 #if VM_NRESERVLEVEL > 0
283         kmem_object->flags |= OBJ_COLORED;
284         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
285 #endif
286
287         /*
288          * The lock portion of struct vm_object must be type stable due
289          * to vm_pageout_fallback_object_lock locking a vm object
290          * without holding any references to it.
291          */
292         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
293 #ifdef INVARIANTS
294             vm_object_zdtor,
295 #else
296             NULL,
297 #endif
298             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
299
300         vm_radix_init();
301 }
302
303 void
304 vm_object_clear_flag(vm_object_t object, u_short bits)
305 {
306
307         VM_OBJECT_ASSERT_WLOCKED(object);
308         object->flags &= ~bits;
309 }
310
311 /*
312  *      Sets the default memory attribute for the specified object.  Pages
313  *      that are allocated to this object are by default assigned this memory
314  *      attribute.
315  *
316  *      Presently, this function must be called before any pages are allocated
317  *      to the object.  In the future, this requirement may be relaxed for
318  *      "default" and "swap" objects.
319  */
320 int
321 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
322 {
323
324         VM_OBJECT_ASSERT_WLOCKED(object);
325         switch (object->type) {
326         case OBJT_DEFAULT:
327         case OBJT_DEVICE:
328         case OBJT_MGTDEVICE:
329         case OBJT_PHYS:
330         case OBJT_SG:
331         case OBJT_SWAP:
332         case OBJT_VNODE:
333                 if (!TAILQ_EMPTY(&object->memq))
334                         return (KERN_FAILURE);
335                 break;
336         case OBJT_DEAD:
337                 return (KERN_INVALID_ARGUMENT);
338         default:
339                 panic("vm_object_set_memattr: object %p is of undefined type",
340                     object);
341         }
342         object->memattr = memattr;
343         return (KERN_SUCCESS);
344 }
345
346 void
347 vm_object_pip_add(vm_object_t object, short i)
348 {
349
350         VM_OBJECT_ASSERT_WLOCKED(object);
351         object->paging_in_progress += i;
352 }
353
354 void
355 vm_object_pip_subtract(vm_object_t object, short i)
356 {
357
358         VM_OBJECT_ASSERT_WLOCKED(object);
359         object->paging_in_progress -= i;
360 }
361
362 void
363 vm_object_pip_wakeup(vm_object_t object)
364 {
365
366         VM_OBJECT_ASSERT_WLOCKED(object);
367         object->paging_in_progress--;
368         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
369                 vm_object_clear_flag(object, OBJ_PIPWNT);
370                 wakeup(object);
371         }
372 }
373
374 void
375 vm_object_pip_wakeupn(vm_object_t object, short i)
376 {
377
378         VM_OBJECT_ASSERT_WLOCKED(object);
379         if (i)
380                 object->paging_in_progress -= i;
381         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
382                 vm_object_clear_flag(object, OBJ_PIPWNT);
383                 wakeup(object);
384         }
385 }
386
387 void
388 vm_object_pip_wait(vm_object_t object, char *waitid)
389 {
390
391         VM_OBJECT_ASSERT_WLOCKED(object);
392         while (object->paging_in_progress) {
393                 object->flags |= OBJ_PIPWNT;
394                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
395         }
396 }
397
398 /*
399  *      vm_object_allocate:
400  *
401  *      Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406         vm_object_t object;
407
408         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
409         _vm_object_allocate(type, size, object);
410         return (object);
411 }
412
413
414 /*
415  *      vm_object_reference:
416  *
417  *      Gets another reference to the given object.  Note: OBJ_DEAD
418  *      objects can be referenced during final cleaning.
419  */
420 void
421 vm_object_reference(vm_object_t object)
422 {
423         if (object == NULL)
424                 return;
425         VM_OBJECT_WLOCK(object);
426         vm_object_reference_locked(object);
427         VM_OBJECT_WUNLOCK(object);
428 }
429
430 /*
431  *      vm_object_reference_locked:
432  *
433  *      Gets another reference to the given object.
434  *
435  *      The object must be locked.
436  */
437 void
438 vm_object_reference_locked(vm_object_t object)
439 {
440         struct vnode *vp;
441
442         VM_OBJECT_ASSERT_WLOCKED(object);
443         object->ref_count++;
444         if (object->type == OBJT_VNODE) {
445                 vp = object->handle;
446                 vref(vp);
447         }
448 }
449
450 /*
451  * Handle deallocating an object of type OBJT_VNODE.
452  */
453 static void
454 vm_object_vndeallocate(vm_object_t object)
455 {
456         struct vnode *vp = (struct vnode *) object->handle;
457
458         VM_OBJECT_ASSERT_WLOCKED(object);
459         KASSERT(object->type == OBJT_VNODE,
460             ("vm_object_vndeallocate: not a vnode object"));
461         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
462 #ifdef INVARIANTS
463         if (object->ref_count == 0) {
464                 vprint("vm_object_vndeallocate", vp);
465                 panic("vm_object_vndeallocate: bad object reference count");
466         }
467 #endif
468
469         if (object->ref_count > 1) {
470                 object->ref_count--;
471                 VM_OBJECT_WUNLOCK(object);
472                 /* vrele may need the vnode lock. */
473                 vrele(vp);
474         } else {
475                 vhold(vp);
476                 VM_OBJECT_WUNLOCK(object);
477                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478                 vdrop(vp);
479                 VM_OBJECT_WLOCK(object);
480                 object->ref_count--;
481                 if (object->type == OBJT_DEAD) {
482                         VM_OBJECT_WUNLOCK(object);
483                         VOP_UNLOCK(vp, 0);
484                 } else {
485                         if (object->ref_count == 0)
486                                 VOP_UNSET_TEXT(vp);
487                         VM_OBJECT_WUNLOCK(object);
488                         vput(vp);
489                 }
490         }
491 }
492
493 /*
494  *      vm_object_deallocate:
495  *
496  *      Release a reference to the specified object,
497  *      gained either through a vm_object_allocate
498  *      or a vm_object_reference call.  When all references
499  *      are gone, storage associated with this object
500  *      may be relinquished.
501  *
502  *      No object may be locked.
503  */
504 void
505 vm_object_deallocate(vm_object_t object)
506 {
507         vm_object_t temp;
508
509         while (object != NULL) {
510                 VM_OBJECT_WLOCK(object);
511                 if (object->type == OBJT_VNODE) {
512                         vm_object_vndeallocate(object);
513                         return;
514                 }
515
516                 KASSERT(object->ref_count != 0,
517                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
518
519                 /*
520                  * If the reference count goes to 0 we start calling
521                  * vm_object_terminate() on the object chain.
522                  * A ref count of 1 may be a special case depending on the
523                  * shadow count being 0 or 1.
524                  */
525                 object->ref_count--;
526                 if (object->ref_count > 1) {
527                         VM_OBJECT_WUNLOCK(object);
528                         return;
529                 } else if (object->ref_count == 1) {
530                         if (object->shadow_count == 0 &&
531                             object->handle == NULL &&
532                             (object->type == OBJT_DEFAULT ||
533                              object->type == OBJT_SWAP)) {
534                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
535                         } else if ((object->shadow_count == 1) &&
536                             (object->handle == NULL) &&
537                             (object->type == OBJT_DEFAULT ||
538                              object->type == OBJT_SWAP)) {
539                                 vm_object_t robject;
540
541                                 robject = LIST_FIRST(&object->shadow_head);
542                                 KASSERT(robject != NULL,
543                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
544                                          object->ref_count,
545                                          object->shadow_count));
546                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
547                                         /*
548                                          * Avoid a potential deadlock.
549                                          */
550                                         object->ref_count++;
551                                         VM_OBJECT_WUNLOCK(object);
552                                         /*
553                                          * More likely than not the thread
554                                          * holding robject's lock has lower
555                                          * priority than the current thread.
556                                          * Let the lower priority thread run.
557                                          */
558                                         pause("vmo_de", 1);
559                                         continue;
560                                 }
561                                 /*
562                                  * Collapse object into its shadow unless its
563                                  * shadow is dead.  In that case, object will
564                                  * be deallocated by the thread that is
565                                  * deallocating its shadow.
566                                  */
567                                 if ((robject->flags & OBJ_DEAD) == 0 &&
568                                     (robject->handle == NULL) &&
569                                     (robject->type == OBJT_DEFAULT ||
570                                      robject->type == OBJT_SWAP)) {
571
572                                         robject->ref_count++;
573 retry:
574                                         if (robject->paging_in_progress) {
575                                                 VM_OBJECT_WUNLOCK(object);
576                                                 vm_object_pip_wait(robject,
577                                                     "objde1");
578                                                 temp = robject->backing_object;
579                                                 if (object == temp) {
580                                                         VM_OBJECT_WLOCK(object);
581                                                         goto retry;
582                                                 }
583                                         } else if (object->paging_in_progress) {
584                                                 VM_OBJECT_WUNLOCK(robject);
585                                                 object->flags |= OBJ_PIPWNT;
586                                                 VM_OBJECT_SLEEP(object, object,
587                                                     PDROP | PVM, "objde2", 0);
588                                                 VM_OBJECT_WLOCK(robject);
589                                                 temp = robject->backing_object;
590                                                 if (object == temp) {
591                                                         VM_OBJECT_WLOCK(object);
592                                                         goto retry;
593                                                 }
594                                         } else
595                                                 VM_OBJECT_WUNLOCK(object);
596
597                                         if (robject->ref_count == 1) {
598                                                 robject->ref_count--;
599                                                 object = robject;
600                                                 goto doterm;
601                                         }
602                                         object = robject;
603                                         vm_object_collapse(object);
604                                         VM_OBJECT_WUNLOCK(object);
605                                         continue;
606                                 }
607                                 VM_OBJECT_WUNLOCK(robject);
608                         }
609                         VM_OBJECT_WUNLOCK(object);
610                         return;
611                 }
612 doterm:
613                 temp = object->backing_object;
614                 if (temp != NULL) {
615                         VM_OBJECT_WLOCK(temp);
616                         LIST_REMOVE(object, shadow_list);
617                         temp->shadow_count--;
618                         VM_OBJECT_WUNLOCK(temp);
619                         object->backing_object = NULL;
620                 }
621                 /*
622                  * Don't double-terminate, we could be in a termination
623                  * recursion due to the terminate having to sync data
624                  * to disk.
625                  */
626                 if ((object->flags & OBJ_DEAD) == 0)
627                         vm_object_terminate(object);
628                 else
629                         VM_OBJECT_WUNLOCK(object);
630                 object = temp;
631         }
632 }
633
634 /*
635  *      vm_object_destroy removes the object from the global object list
636  *      and frees the space for the object.
637  */
638 void
639 vm_object_destroy(vm_object_t object)
640 {
641
642         /*
643          * Remove the object from the global object list.
644          */
645         mtx_lock(&vm_object_list_mtx);
646         TAILQ_REMOVE(&vm_object_list, object, object_list);
647         mtx_unlock(&vm_object_list_mtx);
648
649         /*
650          * Release the allocation charge.
651          */
652         if (object->cred != NULL) {
653                 KASSERT(object->type == OBJT_DEFAULT ||
654                     object->type == OBJT_SWAP,
655                     ("vm_object_terminate: non-swap obj %p has cred",
656                      object));
657                 swap_release_by_cred(object->charge, object->cred);
658                 object->charge = 0;
659                 crfree(object->cred);
660                 object->cred = NULL;
661         }
662
663         /*
664          * Free the space for the object.
665          */
666         uma_zfree(obj_zone, object);
667 }
668
669 /*
670  *      vm_object_terminate actually destroys the specified object, freeing
671  *      up all previously used resources.
672  *
673  *      The object must be locked.
674  *      This routine may block.
675  */
676 void
677 vm_object_terminate(vm_object_t object)
678 {
679         vm_page_t p, p_next;
680
681         VM_OBJECT_ASSERT_WLOCKED(object);
682
683         /*
684          * Make sure no one uses us.
685          */
686         vm_object_set_flag(object, OBJ_DEAD);
687
688         /*
689          * wait for the pageout daemon to be done with the object
690          */
691         vm_object_pip_wait(object, "objtrm");
692
693         KASSERT(!object->paging_in_progress,
694                 ("vm_object_terminate: pageout in progress"));
695
696         /*
697          * Clean and free the pages, as appropriate. All references to the
698          * object are gone, so we don't need to lock it.
699          */
700         if (object->type == OBJT_VNODE) {
701                 struct vnode *vp = (struct vnode *)object->handle;
702
703                 /*
704                  * Clean pages and flush buffers.
705                  */
706                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
707                 VM_OBJECT_WUNLOCK(object);
708
709                 vinvalbuf(vp, V_SAVE, 0, 0);
710
711                 VM_OBJECT_WLOCK(object);
712         }
713
714         KASSERT(object->ref_count == 0, 
715                 ("vm_object_terminate: object with references, ref_count=%d",
716                 object->ref_count));
717
718         /*
719          * Free any remaining pageable pages.  This also removes them from the
720          * paging queues.  However, don't free wired pages, just remove them
721          * from the object.  Rather than incrementally removing each page from
722          * the object, the page and object are reset to any empty state. 
723          */
724         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
725                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
726                     ("vm_object_terminate: freeing busy page %p", p));
727                 vm_page_lock(p);
728                 /*
729                  * Optimize the page's removal from the object by resetting
730                  * its "object" field.  Specifically, if the page is not
731                  * wired, then the effect of this assignment is that
732                  * vm_page_free()'s call to vm_page_remove() will return
733                  * immediately without modifying the page or the object.
734                  */ 
735                 p->object = NULL;
736                 if (p->wire_count == 0) {
737                         vm_page_free(p);
738                         PCPU_INC(cnt.v_pfree);
739                 }
740                 vm_page_unlock(p);
741         }
742         /*
743          * If the object contained any pages, then reset it to an empty state.
744          * None of the object's fields, including "resident_page_count", were
745          * modified by the preceding loop.
746          */
747         if (object->resident_page_count != 0) {
748                 vm_radix_reclaim_allnodes(&object->rtree);
749                 TAILQ_INIT(&object->memq);
750                 object->resident_page_count = 0;
751                 if (object->type == OBJT_VNODE)
752                         vdrop(object->handle);
753         }
754
755 #if VM_NRESERVLEVEL > 0
756         if (__predict_false(!LIST_EMPTY(&object->rvq)))
757                 vm_reserv_break_all(object);
758 #endif
759         if (__predict_false(!vm_object_cache_is_empty(object)))
760                 vm_page_cache_free(object, 0, 0);
761
762         /*
763          * Let the pager know object is dead.
764          */
765         vm_pager_deallocate(object);
766         VM_OBJECT_WUNLOCK(object);
767
768         vm_object_destroy(object);
769 }
770
771 /*
772  * Make the page read-only so that we can clear the object flags.  However, if
773  * this is a nosync mmap then the object is likely to stay dirty so do not
774  * mess with the page and do not clear the object flags.  Returns TRUE if the
775  * page should be flushed, and FALSE otherwise.
776  */
777 static boolean_t
778 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
779 {
780
781         /*
782          * If we have been asked to skip nosync pages and this is a
783          * nosync page, skip it.  Note that the object flags were not
784          * cleared in this case so we do not have to set them.
785          */
786         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
787                 *clearobjflags = FALSE;
788                 return (FALSE);
789         } else {
790                 pmap_remove_write(p);
791                 return (p->dirty != 0);
792         }
793 }
794
795 /*
796  *      vm_object_page_clean
797  *
798  *      Clean all dirty pages in the specified range of object.  Leaves page 
799  *      on whatever queue it is currently on.   If NOSYNC is set then do not
800  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
801  *      leaving the object dirty.
802  *
803  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
804  *      synchronous clustering mode implementation.
805  *
806  *      Odd semantics: if start == end, we clean everything.
807  *
808  *      The object must be locked.
809  *
810  *      Returns FALSE if some page from the range was not written, as
811  *      reported by the pager, and TRUE otherwise.
812  */
813 boolean_t
814 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
815     int flags)
816 {
817         vm_page_t np, p;
818         vm_pindex_t pi, tend, tstart;
819         int curgeneration, n, pagerflags;
820         boolean_t clearobjflags, eio, res;
821
822         VM_OBJECT_ASSERT_WLOCKED(object);
823         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
824         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
825             object->resident_page_count == 0)
826                 return (TRUE);
827
828         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
829             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
830         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
831
832         tstart = OFF_TO_IDX(start);
833         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
834         clearobjflags = tstart == 0 && tend >= object->size;
835         res = TRUE;
836
837 rescan:
838         curgeneration = object->generation;
839
840         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
841                 pi = p->pindex;
842                 if (pi >= tend)
843                         break;
844                 np = TAILQ_NEXT(p, listq);
845                 if (p->valid == 0)
846                         continue;
847                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
848                         if (object->generation != curgeneration) {
849                                 if ((flags & OBJPC_SYNC) != 0)
850                                         goto rescan;
851                                 else
852                                         clearobjflags = FALSE;
853                         }
854                         np = vm_page_find_least(object, pi);
855                         continue;
856                 }
857                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
858                         continue;
859
860                 n = vm_object_page_collect_flush(object, p, pagerflags,
861                     flags, &clearobjflags, &eio);
862                 if (eio) {
863                         res = FALSE;
864                         clearobjflags = FALSE;
865                 }
866                 if (object->generation != curgeneration) {
867                         if ((flags & OBJPC_SYNC) != 0)
868                                 goto rescan;
869                         else
870                                 clearobjflags = FALSE;
871                 }
872
873                 /*
874                  * If the VOP_PUTPAGES() did a truncated write, so
875                  * that even the first page of the run is not fully
876                  * written, vm_pageout_flush() returns 0 as the run
877                  * length.  Since the condition that caused truncated
878                  * write may be permanent, e.g. exhausted free space,
879                  * accepting n == 0 would cause an infinite loop.
880                  *
881                  * Forwarding the iterator leaves the unwritten page
882                  * behind, but there is not much we can do there if
883                  * filesystem refuses to write it.
884                  */
885                 if (n == 0) {
886                         n = 1;
887                         clearobjflags = FALSE;
888                 }
889                 np = vm_page_find_least(object, pi + n);
890         }
891 #if 0
892         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
893 #endif
894
895         if (clearobjflags)
896                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
897         return (res);
898 }
899
900 static int
901 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
902     int flags, boolean_t *clearobjflags, boolean_t *eio)
903 {
904         vm_page_t ma[vm_pageout_page_count], p_first, tp;
905         int count, i, mreq, runlen;
906
907         vm_page_lock_assert(p, MA_NOTOWNED);
908         VM_OBJECT_ASSERT_WLOCKED(object);
909
910         count = 1;
911         mreq = 0;
912
913         for (tp = p; count < vm_pageout_page_count; count++) {
914                 tp = vm_page_next(tp);
915                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
916                         break;
917                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
918                         break;
919         }
920
921         for (p_first = p; count < vm_pageout_page_count; count++) {
922                 tp = vm_page_prev(p_first);
923                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
924                         break;
925                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
926                         break;
927                 p_first = tp;
928                 mreq++;
929         }
930
931         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
932                 ma[i] = tp;
933
934         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
935         return (runlen);
936 }
937
938 /*
939  * Note that there is absolutely no sense in writing out
940  * anonymous objects, so we track down the vnode object
941  * to write out.
942  * We invalidate (remove) all pages from the address space
943  * for semantic correctness.
944  *
945  * If the backing object is a device object with unmanaged pages, then any
946  * mappings to the specified range of pages must be removed before this
947  * function is called.
948  *
949  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
950  * may start out with a NULL object.
951  */
952 boolean_t
953 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
954     boolean_t syncio, boolean_t invalidate)
955 {
956         vm_object_t backing_object;
957         struct vnode *vp;
958         struct mount *mp;
959         int error, flags, fsync_after;
960         boolean_t res;
961
962         if (object == NULL)
963                 return (TRUE);
964         res = TRUE;
965         error = 0;
966         VM_OBJECT_WLOCK(object);
967         while ((backing_object = object->backing_object) != NULL) {
968                 VM_OBJECT_WLOCK(backing_object);
969                 offset += object->backing_object_offset;
970                 VM_OBJECT_WUNLOCK(object);
971                 object = backing_object;
972                 if (object->size < OFF_TO_IDX(offset + size))
973                         size = IDX_TO_OFF(object->size) - offset;
974         }
975         /*
976          * Flush pages if writing is allowed, invalidate them
977          * if invalidation requested.  Pages undergoing I/O
978          * will be ignored by vm_object_page_remove().
979          *
980          * We cannot lock the vnode and then wait for paging
981          * to complete without deadlocking against vm_fault.
982          * Instead we simply call vm_object_page_remove() and
983          * allow it to block internally on a page-by-page
984          * basis when it encounters pages undergoing async
985          * I/O.
986          */
987         if (object->type == OBJT_VNODE &&
988             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
989                 vp = object->handle;
990                 VM_OBJECT_WUNLOCK(object);
991                 (void) vn_start_write(vp, &mp, V_WAIT);
992                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
993                 if (syncio && !invalidate && offset == 0 &&
994                     OFF_TO_IDX(size) == object->size) {
995                         /*
996                          * If syncing the whole mapping of the file,
997                          * it is faster to schedule all the writes in
998                          * async mode, also allowing the clustering,
999                          * and then wait for i/o to complete.
1000                          */
1001                         flags = 0;
1002                         fsync_after = TRUE;
1003                 } else {
1004                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1005                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1006                         fsync_after = FALSE;
1007                 }
1008                 VM_OBJECT_WLOCK(object);
1009                 res = vm_object_page_clean(object, offset, offset + size,
1010                     flags);
1011                 VM_OBJECT_WUNLOCK(object);
1012                 if (fsync_after)
1013                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1014                 VOP_UNLOCK(vp, 0);
1015                 vn_finished_write(mp);
1016                 if (error != 0)
1017                         res = FALSE;
1018                 VM_OBJECT_WLOCK(object);
1019         }
1020         if ((object->type == OBJT_VNODE ||
1021              object->type == OBJT_DEVICE) && invalidate) {
1022                 if (object->type == OBJT_DEVICE)
1023                         /*
1024                          * The option OBJPR_NOTMAPPED must be passed here
1025                          * because vm_object_page_remove() cannot remove
1026                          * unmanaged mappings.
1027                          */
1028                         flags = OBJPR_NOTMAPPED;
1029                 else if (old_msync)
1030                         flags = 0;
1031                 else
1032                         flags = OBJPR_CLEANONLY;
1033                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1034                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1035         }
1036         VM_OBJECT_WUNLOCK(object);
1037         return (res);
1038 }
1039
1040 /*
1041  *      vm_object_madvise:
1042  *
1043  *      Implements the madvise function at the object/page level.
1044  *
1045  *      MADV_WILLNEED   (any object)
1046  *
1047  *          Activate the specified pages if they are resident.
1048  *
1049  *      MADV_DONTNEED   (any object)
1050  *
1051  *          Deactivate the specified pages if they are resident.
1052  *
1053  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1054  *                       OBJ_ONEMAPPING only)
1055  *
1056  *          Deactivate and clean the specified pages if they are
1057  *          resident.  This permits the process to reuse the pages
1058  *          without faulting or the kernel to reclaim the pages
1059  *          without I/O.
1060  */
1061 void
1062 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1063     int advise)
1064 {
1065         vm_pindex_t tpindex;
1066         vm_object_t backing_object, tobject;
1067         vm_page_t m;
1068
1069         if (object == NULL)
1070                 return;
1071         VM_OBJECT_WLOCK(object);
1072         /*
1073          * Locate and adjust resident pages
1074          */
1075         for (; pindex < end; pindex += 1) {
1076 relookup:
1077                 tobject = object;
1078                 tpindex = pindex;
1079 shadowlookup:
1080                 /*
1081                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1082                  * and those pages must be OBJ_ONEMAPPING.
1083                  */
1084                 if (advise == MADV_FREE) {
1085                         if ((tobject->type != OBJT_DEFAULT &&
1086                              tobject->type != OBJT_SWAP) ||
1087                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1088                                 goto unlock_tobject;
1089                         }
1090                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1091                         goto unlock_tobject;
1092                 m = vm_page_lookup(tobject, tpindex);
1093                 if (m == NULL && advise == MADV_WILLNEED) {
1094                         /*
1095                          * If the page is cached, reactivate it.
1096                          */
1097                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1098                             VM_ALLOC_NOBUSY);
1099                 }
1100                 if (m == NULL) {
1101                         /*
1102                          * There may be swap even if there is no backing page
1103                          */
1104                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1105                                 swap_pager_freespace(tobject, tpindex, 1);
1106                         /*
1107                          * next object
1108                          */
1109                         backing_object = tobject->backing_object;
1110                         if (backing_object == NULL)
1111                                 goto unlock_tobject;
1112                         VM_OBJECT_WLOCK(backing_object);
1113                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1114                         if (tobject != object)
1115                                 VM_OBJECT_WUNLOCK(tobject);
1116                         tobject = backing_object;
1117                         goto shadowlookup;
1118                 } else if (m->valid != VM_PAGE_BITS_ALL)
1119                         goto unlock_tobject;
1120                 /*
1121                  * If the page is not in a normal state, skip it.
1122                  */
1123                 vm_page_lock(m);
1124                 if (m->hold_count != 0 || m->wire_count != 0) {
1125                         vm_page_unlock(m);
1126                         goto unlock_tobject;
1127                 }
1128                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1129                     ("vm_object_madvise: page %p is fictitious", m));
1130                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1131                     ("vm_object_madvise: page %p is not managed", m));
1132                 if ((m->oflags & VPO_BUSY) || m->busy) {
1133                         if (advise == MADV_WILLNEED) {
1134                                 /*
1135                                  * Reference the page before unlocking and
1136                                  * sleeping so that the page daemon is less
1137                                  * likely to reclaim it. 
1138                                  */
1139                                 vm_page_aflag_set(m, PGA_REFERENCED);
1140                         }
1141                         vm_page_unlock(m);
1142                         if (object != tobject)
1143                                 VM_OBJECT_WUNLOCK(object);
1144                         m->oflags |= VPO_WANTED;
1145                         VM_OBJECT_SLEEP(tobject, m, PDROP | PVM, "madvpo", 0);
1146                         VM_OBJECT_WLOCK(object);
1147                         goto relookup;
1148                 }
1149                 if (advise == MADV_WILLNEED) {
1150                         vm_page_activate(m);
1151                 } else if (advise == MADV_DONTNEED) {
1152                         vm_page_dontneed(m);
1153                 } else if (advise == MADV_FREE) {
1154                         /*
1155                          * Mark the page clean.  This will allow the page
1156                          * to be freed up by the system.  However, such pages
1157                          * are often reused quickly by malloc()/free()
1158                          * so we do not do anything that would cause
1159                          * a page fault if we can help it.
1160                          *
1161                          * Specifically, we do not try to actually free
1162                          * the page now nor do we try to put it in the
1163                          * cache (which would cause a page fault on reuse).
1164                          *
1165                          * But we do make the page is freeable as we
1166                          * can without actually taking the step of unmapping
1167                          * it.
1168                          */
1169                         pmap_clear_modify(m);
1170                         m->dirty = 0;
1171                         m->act_count = 0;
1172                         vm_page_dontneed(m);
1173                 }
1174                 vm_page_unlock(m);
1175                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1176                         swap_pager_freespace(tobject, tpindex, 1);
1177 unlock_tobject:
1178                 if (tobject != object)
1179                         VM_OBJECT_WUNLOCK(tobject);
1180         }       
1181         VM_OBJECT_WUNLOCK(object);
1182 }
1183
1184 /*
1185  *      vm_object_shadow:
1186  *
1187  *      Create a new object which is backed by the
1188  *      specified existing object range.  The source
1189  *      object reference is deallocated.
1190  *
1191  *      The new object and offset into that object
1192  *      are returned in the source parameters.
1193  */
1194 void
1195 vm_object_shadow(
1196         vm_object_t *object,    /* IN/OUT */
1197         vm_ooffset_t *offset,   /* IN/OUT */
1198         vm_size_t length)
1199 {
1200         vm_object_t source;
1201         vm_object_t result;
1202
1203         source = *object;
1204
1205         /*
1206          * Don't create the new object if the old object isn't shared.
1207          */
1208         if (source != NULL) {
1209                 VM_OBJECT_WLOCK(source);
1210                 if (source->ref_count == 1 &&
1211                     source->handle == NULL &&
1212                     (source->type == OBJT_DEFAULT ||
1213                      source->type == OBJT_SWAP)) {
1214                         VM_OBJECT_WUNLOCK(source);
1215                         return;
1216                 }
1217                 VM_OBJECT_WUNLOCK(source);
1218         }
1219
1220         /*
1221          * Allocate a new object with the given length.
1222          */
1223         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1224
1225         /*
1226          * The new object shadows the source object, adding a reference to it.
1227          * Our caller changes his reference to point to the new object,
1228          * removing a reference to the source object.  Net result: no change
1229          * of reference count.
1230          *
1231          * Try to optimize the result object's page color when shadowing
1232          * in order to maintain page coloring consistency in the combined 
1233          * shadowed object.
1234          */
1235         result->backing_object = source;
1236         /*
1237          * Store the offset into the source object, and fix up the offset into
1238          * the new object.
1239          */
1240         result->backing_object_offset = *offset;
1241         if (source != NULL) {
1242                 VM_OBJECT_WLOCK(source);
1243                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1244                 source->shadow_count++;
1245 #if VM_NRESERVLEVEL > 0
1246                 result->flags |= source->flags & OBJ_COLORED;
1247                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1248                     ((1 << (VM_NFREEORDER - 1)) - 1);
1249 #endif
1250                 VM_OBJECT_WUNLOCK(source);
1251         }
1252
1253
1254         /*
1255          * Return the new things
1256          */
1257         *offset = 0;
1258         *object = result;
1259 }
1260
1261 /*
1262  *      vm_object_split:
1263  *
1264  * Split the pages in a map entry into a new object.  This affords
1265  * easier removal of unused pages, and keeps object inheritance from
1266  * being a negative impact on memory usage.
1267  */
1268 void
1269 vm_object_split(vm_map_entry_t entry)
1270 {
1271         vm_page_t m, m_next;
1272         vm_object_t orig_object, new_object, source;
1273         vm_pindex_t idx, offidxstart;
1274         vm_size_t size;
1275
1276         orig_object = entry->object.vm_object;
1277         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1278                 return;
1279         if (orig_object->ref_count <= 1)
1280                 return;
1281         VM_OBJECT_WUNLOCK(orig_object);
1282
1283         offidxstart = OFF_TO_IDX(entry->offset);
1284         size = atop(entry->end - entry->start);
1285
1286         /*
1287          * If swap_pager_copy() is later called, it will convert new_object
1288          * into a swap object.
1289          */
1290         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1291
1292         /*
1293          * At this point, the new object is still private, so the order in
1294          * which the original and new objects are locked does not matter.
1295          */
1296         VM_OBJECT_WLOCK(new_object);
1297         VM_OBJECT_WLOCK(orig_object);
1298         source = orig_object->backing_object;
1299         if (source != NULL) {
1300                 VM_OBJECT_WLOCK(source);
1301                 if ((source->flags & OBJ_DEAD) != 0) {
1302                         VM_OBJECT_WUNLOCK(source);
1303                         VM_OBJECT_WUNLOCK(orig_object);
1304                         VM_OBJECT_WUNLOCK(new_object);
1305                         vm_object_deallocate(new_object);
1306                         VM_OBJECT_WLOCK(orig_object);
1307                         return;
1308                 }
1309                 LIST_INSERT_HEAD(&source->shadow_head,
1310                                   new_object, shadow_list);
1311                 source->shadow_count++;
1312                 vm_object_reference_locked(source);     /* for new_object */
1313                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1314                 VM_OBJECT_WUNLOCK(source);
1315                 new_object->backing_object_offset = 
1316                         orig_object->backing_object_offset + entry->offset;
1317                 new_object->backing_object = source;
1318         }
1319         if (orig_object->cred != NULL) {
1320                 new_object->cred = orig_object->cred;
1321                 crhold(orig_object->cred);
1322                 new_object->charge = ptoa(size);
1323                 KASSERT(orig_object->charge >= ptoa(size),
1324                     ("orig_object->charge < 0"));
1325                 orig_object->charge -= ptoa(size);
1326         }
1327 retry:
1328         m = vm_page_find_least(orig_object, offidxstart);
1329         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1330             m = m_next) {
1331                 m_next = TAILQ_NEXT(m, listq);
1332
1333                 /*
1334                  * We must wait for pending I/O to complete before we can
1335                  * rename the page.
1336                  *
1337                  * We do not have to VM_PROT_NONE the page as mappings should
1338                  * not be changed by this operation.
1339                  */
1340                 if ((m->oflags & VPO_BUSY) || m->busy) {
1341                         VM_OBJECT_WUNLOCK(new_object);
1342                         m->oflags |= VPO_WANTED;
1343                         VM_OBJECT_SLEEP(orig_object, m, PVM, "spltwt", 0);
1344                         VM_OBJECT_WLOCK(new_object);
1345                         goto retry;
1346                 }
1347 #if VM_NRESERVLEVEL > 0
1348                 /*
1349                  * If some of the reservation's allocated pages remain with
1350                  * the original object, then transferring the reservation to
1351                  * the new object is neither particularly beneficial nor
1352                  * particularly harmful as compared to leaving the reservation
1353                  * with the original object.  If, however, all of the
1354                  * reservation's allocated pages are transferred to the new
1355                  * object, then transferring the reservation is typically
1356                  * beneficial.  Determining which of these two cases applies
1357                  * would be more costly than unconditionally renaming the
1358                  * reservation.
1359                  */
1360                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1361 #endif
1362                 vm_page_lock(m);
1363                 vm_page_rename(m, new_object, idx);
1364                 vm_page_unlock(m);
1365                 /* page automatically made dirty by rename and cache handled */
1366                 vm_page_busy(m);
1367         }
1368         if (orig_object->type == OBJT_SWAP) {
1369                 /*
1370                  * swap_pager_copy() can sleep, in which case the orig_object's
1371                  * and new_object's locks are released and reacquired. 
1372                  */
1373                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1374
1375                 /*
1376                  * Transfer any cached pages from orig_object to new_object.
1377                  * If swap_pager_copy() found swapped out pages within the
1378                  * specified range of orig_object, then it changed
1379                  * new_object's type to OBJT_SWAP when it transferred those
1380                  * pages to new_object.  Otherwise, new_object's type
1381                  * should still be OBJT_DEFAULT and orig_object should not
1382                  * contain any cached pages within the specified range.
1383                  */
1384                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1385                         vm_page_cache_transfer(orig_object, offidxstart,
1386                             new_object);
1387         }
1388         VM_OBJECT_WUNLOCK(orig_object);
1389         TAILQ_FOREACH(m, &new_object->memq, listq)
1390                 vm_page_wakeup(m);
1391         VM_OBJECT_WUNLOCK(new_object);
1392         entry->object.vm_object = new_object;
1393         entry->offset = 0LL;
1394         vm_object_deallocate(orig_object);
1395         VM_OBJECT_WLOCK(new_object);
1396 }
1397
1398 #define OBSC_TEST_ALL_SHADOWED  0x0001
1399 #define OBSC_COLLAPSE_NOWAIT    0x0002
1400 #define OBSC_COLLAPSE_WAIT      0x0004
1401
1402 static int
1403 vm_object_backing_scan(vm_object_t object, int op)
1404 {
1405         int r = 1;
1406         vm_page_t p;
1407         vm_object_t backing_object;
1408         vm_pindex_t backing_offset_index;
1409
1410         VM_OBJECT_ASSERT_WLOCKED(object);
1411         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1412
1413         backing_object = object->backing_object;
1414         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1415
1416         /*
1417          * Initial conditions
1418          */
1419         if (op & OBSC_TEST_ALL_SHADOWED) {
1420                 /*
1421                  * We do not want to have to test for the existence of cache
1422                  * or swap pages in the backing object.  XXX but with the
1423                  * new swapper this would be pretty easy to do.
1424                  *
1425                  * XXX what about anonymous MAP_SHARED memory that hasn't
1426                  * been ZFOD faulted yet?  If we do not test for this, the
1427                  * shadow test may succeed! XXX
1428                  */
1429                 if (backing_object->type != OBJT_DEFAULT) {
1430                         return (0);
1431                 }
1432         }
1433         if (op & OBSC_COLLAPSE_WAIT) {
1434                 vm_object_set_flag(backing_object, OBJ_DEAD);
1435         }
1436
1437         /*
1438          * Our scan
1439          */
1440         p = TAILQ_FIRST(&backing_object->memq);
1441         while (p) {
1442                 vm_page_t next = TAILQ_NEXT(p, listq);
1443                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1444
1445                 if (op & OBSC_TEST_ALL_SHADOWED) {
1446                         vm_page_t pp;
1447
1448                         /*
1449                          * Ignore pages outside the parent object's range
1450                          * and outside the parent object's mapping of the 
1451                          * backing object.
1452                          *
1453                          * note that we do not busy the backing object's
1454                          * page.
1455                          */
1456                         if (
1457                             p->pindex < backing_offset_index ||
1458                             new_pindex >= object->size
1459                         ) {
1460                                 p = next;
1461                                 continue;
1462                         }
1463
1464                         /*
1465                          * See if the parent has the page or if the parent's
1466                          * object pager has the page.  If the parent has the
1467                          * page but the page is not valid, the parent's
1468                          * object pager must have the page.
1469                          *
1470                          * If this fails, the parent does not completely shadow
1471                          * the object and we might as well give up now.
1472                          */
1473
1474                         pp = vm_page_lookup(object, new_pindex);
1475                         if (
1476                             (pp == NULL || pp->valid == 0) &&
1477                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1478                         ) {
1479                                 r = 0;
1480                                 break;
1481                         }
1482                 }
1483
1484                 /*
1485                  * Check for busy page
1486                  */
1487                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1488                         vm_page_t pp;
1489
1490                         if (op & OBSC_COLLAPSE_NOWAIT) {
1491                                 if ((p->oflags & VPO_BUSY) ||
1492                                     !p->valid || 
1493                                     p->busy) {
1494                                         p = next;
1495                                         continue;
1496                                 }
1497                         } else if (op & OBSC_COLLAPSE_WAIT) {
1498                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1499                                         VM_OBJECT_WUNLOCK(object);
1500                                         p->oflags |= VPO_WANTED;
1501                                         VM_OBJECT_SLEEP(backing_object, p,
1502                                             PDROP | PVM, "vmocol", 0);
1503                                         VM_OBJECT_WLOCK(object);
1504                                         VM_OBJECT_WLOCK(backing_object);
1505                                         /*
1506                                          * If we slept, anything could have
1507                                          * happened.  Since the object is
1508                                          * marked dead, the backing offset
1509                                          * should not have changed so we
1510                                          * just restart our scan.
1511                                          */
1512                                         p = TAILQ_FIRST(&backing_object->memq);
1513                                         continue;
1514                                 }
1515                         }
1516
1517                         KASSERT(
1518                             p->object == backing_object,
1519                             ("vm_object_backing_scan: object mismatch")
1520                         );
1521
1522                         /*
1523                          * Destroy any associated swap
1524                          */
1525                         if (backing_object->type == OBJT_SWAP) {
1526                                 swap_pager_freespace(
1527                                     backing_object, 
1528                                     p->pindex,
1529                                     1
1530                                 );
1531                         }
1532
1533                         if (
1534                             p->pindex < backing_offset_index ||
1535                             new_pindex >= object->size
1536                         ) {
1537                                 /*
1538                                  * Page is out of the parent object's range, we 
1539                                  * can simply destroy it. 
1540                                  */
1541                                 vm_page_lock(p);
1542                                 KASSERT(!pmap_page_is_mapped(p),
1543                                     ("freeing mapped page %p", p));
1544                                 if (p->wire_count == 0)
1545                                         vm_page_free(p);
1546                                 else
1547                                         vm_page_remove(p);
1548                                 vm_page_unlock(p);
1549                                 p = next;
1550                                 continue;
1551                         }
1552
1553                         pp = vm_page_lookup(object, new_pindex);
1554                         if (
1555                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1556                             (pp != NULL && pp->valid == 0)
1557                         ) {
1558                                 /*
1559                                  * The page in the parent is not (yet) valid.
1560                                  * We don't know anything about the state of
1561                                  * the original page.  It might be mapped,
1562                                  * so we must avoid the next if here.
1563                                  *
1564                                  * This is due to a race in vm_fault() where
1565                                  * we must unbusy the original (backing_obj)
1566                                  * page before we can (re)lock the parent.
1567                                  * Hence we can get here.
1568                                  */
1569                                 p = next;
1570                                 continue;
1571                         }
1572                         if (
1573                             pp != NULL ||
1574                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1575                         ) {
1576                                 /*
1577                                  * page already exists in parent OR swap exists
1578                                  * for this location in the parent.  Destroy 
1579                                  * the original page from the backing object.
1580                                  *
1581                                  * Leave the parent's page alone
1582                                  */
1583                                 vm_page_lock(p);
1584                                 KASSERT(!pmap_page_is_mapped(p),
1585                                     ("freeing mapped page %p", p));
1586                                 if (p->wire_count == 0)
1587                                         vm_page_free(p);
1588                                 else
1589                                         vm_page_remove(p);
1590                                 vm_page_unlock(p);
1591                                 p = next;
1592                                 continue;
1593                         }
1594
1595 #if VM_NRESERVLEVEL > 0
1596                         /*
1597                          * Rename the reservation.
1598                          */
1599                         vm_reserv_rename(p, object, backing_object,
1600                             backing_offset_index);
1601 #endif
1602
1603                         /*
1604                          * Page does not exist in parent, rename the
1605                          * page from the backing object to the main object. 
1606                          *
1607                          * If the page was mapped to a process, it can remain 
1608                          * mapped through the rename.
1609                          */
1610                         vm_page_lock(p);
1611                         vm_page_rename(p, object, new_pindex);
1612                         vm_page_unlock(p);
1613                         /* page automatically made dirty by rename */
1614                 }
1615                 p = next;
1616         }
1617         return (r);
1618 }
1619
1620
1621 /*
1622  * this version of collapse allows the operation to occur earlier and
1623  * when paging_in_progress is true for an object...  This is not a complete
1624  * operation, but should plug 99.9% of the rest of the leaks.
1625  */
1626 static void
1627 vm_object_qcollapse(vm_object_t object)
1628 {
1629         vm_object_t backing_object = object->backing_object;
1630
1631         VM_OBJECT_ASSERT_WLOCKED(object);
1632         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1633
1634         if (backing_object->ref_count != 1)
1635                 return;
1636
1637         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1638 }
1639
1640 /*
1641  *      vm_object_collapse:
1642  *
1643  *      Collapse an object with the object backing it.
1644  *      Pages in the backing object are moved into the
1645  *      parent, and the backing object is deallocated.
1646  */
1647 void
1648 vm_object_collapse(vm_object_t object)
1649 {
1650         VM_OBJECT_ASSERT_WLOCKED(object);
1651         
1652         while (TRUE) {
1653                 vm_object_t backing_object;
1654
1655                 /*
1656                  * Verify that the conditions are right for collapse:
1657                  *
1658                  * The object exists and the backing object exists.
1659                  */
1660                 if ((backing_object = object->backing_object) == NULL)
1661                         break;
1662
1663                 /*
1664                  * we check the backing object first, because it is most likely
1665                  * not collapsable.
1666                  */
1667                 VM_OBJECT_WLOCK(backing_object);
1668                 if (backing_object->handle != NULL ||
1669                     (backing_object->type != OBJT_DEFAULT &&
1670                      backing_object->type != OBJT_SWAP) ||
1671                     (backing_object->flags & OBJ_DEAD) ||
1672                     object->handle != NULL ||
1673                     (object->type != OBJT_DEFAULT &&
1674                      object->type != OBJT_SWAP) ||
1675                     (object->flags & OBJ_DEAD)) {
1676                         VM_OBJECT_WUNLOCK(backing_object);
1677                         break;
1678                 }
1679
1680                 if (
1681                     object->paging_in_progress != 0 ||
1682                     backing_object->paging_in_progress != 0
1683                 ) {
1684                         vm_object_qcollapse(object);
1685                         VM_OBJECT_WUNLOCK(backing_object);
1686                         break;
1687                 }
1688                 /*
1689                  * We know that we can either collapse the backing object (if
1690                  * the parent is the only reference to it) or (perhaps) have
1691                  * the parent bypass the object if the parent happens to shadow
1692                  * all the resident pages in the entire backing object.
1693                  *
1694                  * This is ignoring pager-backed pages such as swap pages.
1695                  * vm_object_backing_scan fails the shadowing test in this
1696                  * case.
1697                  */
1698                 if (backing_object->ref_count == 1) {
1699                         /*
1700                          * If there is exactly one reference to the backing
1701                          * object, we can collapse it into the parent.  
1702                          */
1703                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1704
1705 #if VM_NRESERVLEVEL > 0
1706                         /*
1707                          * Break any reservations from backing_object.
1708                          */
1709                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1710                                 vm_reserv_break_all(backing_object);
1711 #endif
1712
1713                         /*
1714                          * Move the pager from backing_object to object.
1715                          */
1716                         if (backing_object->type == OBJT_SWAP) {
1717                                 /*
1718                                  * swap_pager_copy() can sleep, in which case
1719                                  * the backing_object's and object's locks are
1720                                  * released and reacquired.
1721                                  * Since swap_pager_copy() is being asked to
1722                                  * destroy the source, it will change the
1723                                  * backing_object's type to OBJT_DEFAULT.
1724                                  */
1725                                 swap_pager_copy(
1726                                     backing_object,
1727                                     object,
1728                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1729
1730                                 /*
1731                                  * Free any cached pages from backing_object.
1732                                  */
1733                                 if (__predict_false(
1734                                     !vm_object_cache_is_empty(backing_object)))
1735                                         vm_page_cache_free(backing_object, 0, 0);
1736                         }
1737                         /*
1738                          * Object now shadows whatever backing_object did.
1739                          * Note that the reference to 
1740                          * backing_object->backing_object moves from within 
1741                          * backing_object to within object.
1742                          */
1743                         LIST_REMOVE(object, shadow_list);
1744                         backing_object->shadow_count--;
1745                         if (backing_object->backing_object) {
1746                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1747                                 LIST_REMOVE(backing_object, shadow_list);
1748                                 LIST_INSERT_HEAD(
1749                                     &backing_object->backing_object->shadow_head,
1750                                     object, shadow_list);
1751                                 /*
1752                                  * The shadow_count has not changed.
1753                                  */
1754                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1755                         }
1756                         object->backing_object = backing_object->backing_object;
1757                         object->backing_object_offset +=
1758                             backing_object->backing_object_offset;
1759
1760                         /*
1761                          * Discard backing_object.
1762                          *
1763                          * Since the backing object has no pages, no pager left,
1764                          * and no object references within it, all that is
1765                          * necessary is to dispose of it.
1766                          */
1767                         KASSERT(backing_object->ref_count == 1, (
1768 "backing_object %p was somehow re-referenced during collapse!",
1769                             backing_object));
1770                         VM_OBJECT_WUNLOCK(backing_object);
1771                         vm_object_destroy(backing_object);
1772
1773                         object_collapses++;
1774                 } else {
1775                         vm_object_t new_backing_object;
1776
1777                         /*
1778                          * If we do not entirely shadow the backing object,
1779                          * there is nothing we can do so we give up.
1780                          */
1781                         if (object->resident_page_count != object->size &&
1782                             vm_object_backing_scan(object,
1783                             OBSC_TEST_ALL_SHADOWED) == 0) {
1784                                 VM_OBJECT_WUNLOCK(backing_object);
1785                                 break;
1786                         }
1787
1788                         /*
1789                          * Make the parent shadow the next object in the
1790                          * chain.  Deallocating backing_object will not remove
1791                          * it, since its reference count is at least 2.
1792                          */
1793                         LIST_REMOVE(object, shadow_list);
1794                         backing_object->shadow_count--;
1795
1796                         new_backing_object = backing_object->backing_object;
1797                         if ((object->backing_object = new_backing_object) != NULL) {
1798                                 VM_OBJECT_WLOCK(new_backing_object);
1799                                 LIST_INSERT_HEAD(
1800                                     &new_backing_object->shadow_head,
1801                                     object,
1802                                     shadow_list
1803                                 );
1804                                 new_backing_object->shadow_count++;
1805                                 vm_object_reference_locked(new_backing_object);
1806                                 VM_OBJECT_WUNLOCK(new_backing_object);
1807                                 object->backing_object_offset +=
1808                                         backing_object->backing_object_offset;
1809                         }
1810
1811                         /*
1812                          * Drop the reference count on backing_object. Since
1813                          * its ref_count was at least 2, it will not vanish.
1814                          */
1815                         backing_object->ref_count--;
1816                         VM_OBJECT_WUNLOCK(backing_object);
1817                         object_bypasses++;
1818                 }
1819
1820                 /*
1821                  * Try again with this object's new backing object.
1822                  */
1823         }
1824 }
1825
1826 /*
1827  *      vm_object_page_remove:
1828  *
1829  *      For the given object, either frees or invalidates each of the
1830  *      specified pages.  In general, a page is freed.  However, if a page is
1831  *      wired for any reason other than the existence of a managed, wired
1832  *      mapping, then it may be invalidated but not removed from the object.
1833  *      Pages are specified by the given range ["start", "end") and the option
1834  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1835  *      extends from "start" to the end of the object.  If the option
1836  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1837  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1838  *      specified, then the pages within the specified range must have no
1839  *      mappings.  Otherwise, if this option is not specified, any mappings to
1840  *      the specified pages are removed before the pages are freed or
1841  *      invalidated.
1842  *
1843  *      In general, this operation should only be performed on objects that
1844  *      contain managed pages.  There are, however, two exceptions.  First, it
1845  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1846  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1847  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1848  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1849  *
1850  *      The object must be locked.
1851  */
1852 void
1853 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1854     int options)
1855 {
1856         vm_page_t p, next;
1857         int wirings;
1858
1859         VM_OBJECT_ASSERT_WLOCKED(object);
1860         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1861             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1862             ("vm_object_page_remove: illegal options for object %p", object));
1863         if (object->resident_page_count == 0)
1864                 goto skipmemq;
1865         vm_object_pip_add(object, 1);
1866 again:
1867         p = vm_page_find_least(object, start);
1868
1869         /*
1870          * Here, the variable "p" is either (1) the page with the least pindex
1871          * greater than or equal to the parameter "start" or (2) NULL. 
1872          */
1873         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1874                 next = TAILQ_NEXT(p, listq);
1875
1876                 /*
1877                  * If the page is wired for any reason besides the existence
1878                  * of managed, wired mappings, then it cannot be freed.  For
1879                  * example, fictitious pages, which represent device memory,
1880                  * are inherently wired and cannot be freed.  They can,
1881                  * however, be invalidated if the option OBJPR_CLEANONLY is
1882                  * not specified.
1883                  */
1884                 vm_page_lock(p);
1885                 if ((wirings = p->wire_count) != 0 &&
1886                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1887                         if ((options & OBJPR_NOTMAPPED) == 0) {
1888                                 pmap_remove_all(p);
1889                                 /* Account for removal of wired mappings. */
1890                                 if (wirings != 0)
1891                                         p->wire_count -= wirings;
1892                         }
1893                         if ((options & OBJPR_CLEANONLY) == 0) {
1894                                 p->valid = 0;
1895                                 vm_page_undirty(p);
1896                         }
1897                         vm_page_unlock(p);
1898                         continue;
1899                 }
1900                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1901                         goto again;
1902                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1903                     ("vm_object_page_remove: page %p is fictitious", p));
1904                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1905                         if ((options & OBJPR_NOTMAPPED) == 0)
1906                                 pmap_remove_write(p);
1907                         if (p->dirty) {
1908                                 vm_page_unlock(p);
1909                                 continue;
1910                         }
1911                 }
1912                 if ((options & OBJPR_NOTMAPPED) == 0) {
1913                         pmap_remove_all(p);
1914                         /* Account for removal of wired mappings. */
1915                         if (wirings != 0) {
1916                                 KASSERT(p->wire_count == wirings,
1917                                     ("inconsistent wire count %d %d %p",
1918                                     p->wire_count, wirings, p));
1919                                 p->wire_count = 0;
1920                                 atomic_subtract_int(&cnt.v_wire_count, 1);
1921                         }
1922                 }
1923                 vm_page_free(p);
1924                 vm_page_unlock(p);
1925         }
1926         vm_object_pip_wakeup(object);
1927 skipmemq:
1928         if (__predict_false(!vm_object_cache_is_empty(object)))
1929                 vm_page_cache_free(object, start, end);
1930 }
1931
1932 /*
1933  *      vm_object_page_cache:
1934  *
1935  *      For the given object, attempt to move the specified clean
1936  *      pages to the cache queue.  If a page is wired for any reason,
1937  *      then it will not be changed.  Pages are specified by the given
1938  *      range ["start", "end").  As a special case, if "end" is zero,
1939  *      then the range extends from "start" to the end of the object.
1940  *      Any mappings to the specified pages are removed before the
1941  *      pages are moved to the cache queue.
1942  *
1943  *      This operation should only be performed on objects that
1944  *      contain non-fictitious, managed pages.
1945  *
1946  *      The object must be locked.
1947  */
1948 void
1949 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1950 {
1951         struct mtx *mtx, *new_mtx;
1952         vm_page_t p, next;
1953
1954         VM_OBJECT_ASSERT_WLOCKED(object);
1955         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1956             ("vm_object_page_cache: illegal object %p", object));
1957         if (object->resident_page_count == 0)
1958                 return;
1959         p = vm_page_find_least(object, start);
1960
1961         /*
1962          * Here, the variable "p" is either (1) the page with the least pindex
1963          * greater than or equal to the parameter "start" or (2) NULL. 
1964          */
1965         mtx = NULL;
1966         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1967                 next = TAILQ_NEXT(p, listq);
1968
1969                 /*
1970                  * Avoid releasing and reacquiring the same page lock.
1971                  */
1972                 new_mtx = vm_page_lockptr(p);
1973                 if (mtx != new_mtx) {
1974                         if (mtx != NULL)
1975                                 mtx_unlock(mtx);
1976                         mtx = new_mtx;
1977                         mtx_lock(mtx);
1978                 }
1979                 vm_page_try_to_cache(p);
1980         }
1981         if (mtx != NULL)
1982                 mtx_unlock(mtx);
1983 }
1984
1985 /*
1986  *      Populate the specified range of the object with valid pages.  Returns
1987  *      TRUE if the range is successfully populated and FALSE otherwise.
1988  *
1989  *      Note: This function should be optimized to pass a larger array of
1990  *      pages to vm_pager_get_pages() before it is applied to a non-
1991  *      OBJT_DEVICE object.
1992  *
1993  *      The object must be locked.
1994  */
1995 boolean_t
1996 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1997 {
1998         vm_page_t m, ma[1];
1999         vm_pindex_t pindex;
2000         int rv;
2001
2002         VM_OBJECT_ASSERT_WLOCKED(object);
2003         for (pindex = start; pindex < end; pindex++) {
2004                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
2005                     VM_ALLOC_RETRY);
2006                 if (m->valid != VM_PAGE_BITS_ALL) {
2007                         ma[0] = m;
2008                         rv = vm_pager_get_pages(object, ma, 1, 0);
2009                         m = vm_page_lookup(object, pindex);
2010                         if (m == NULL)
2011                                 break;
2012                         if (rv != VM_PAGER_OK) {
2013                                 vm_page_lock(m);
2014                                 vm_page_free(m);
2015                                 vm_page_unlock(m);
2016                                 break;
2017                         }
2018                 }
2019                 /*
2020                  * Keep "m" busy because a subsequent iteration may unlock
2021                  * the object.
2022                  */
2023         }
2024         if (pindex > start) {
2025                 m = vm_page_lookup(object, start);
2026                 while (m != NULL && m->pindex < pindex) {
2027                         vm_page_wakeup(m);
2028                         m = TAILQ_NEXT(m, listq);
2029                 }
2030         }
2031         return (pindex == end);
2032 }
2033
2034 /*
2035  *      Routine:        vm_object_coalesce
2036  *      Function:       Coalesces two objects backing up adjoining
2037  *                      regions of memory into a single object.
2038  *
2039  *      returns TRUE if objects were combined.
2040  *
2041  *      NOTE:   Only works at the moment if the second object is NULL -
2042  *              if it's not, which object do we lock first?
2043  *
2044  *      Parameters:
2045  *              prev_object     First object to coalesce
2046  *              prev_offset     Offset into prev_object
2047  *              prev_size       Size of reference to prev_object
2048  *              next_size       Size of reference to the second object
2049  *              reserved        Indicator that extension region has
2050  *                              swap accounted for
2051  *
2052  *      Conditions:
2053  *      The object must *not* be locked.
2054  */
2055 boolean_t
2056 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2057     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2058 {
2059         vm_pindex_t next_pindex;
2060
2061         if (prev_object == NULL)
2062                 return (TRUE);
2063         VM_OBJECT_WLOCK(prev_object);
2064         if (prev_object->type != OBJT_DEFAULT &&
2065             prev_object->type != OBJT_SWAP) {
2066                 VM_OBJECT_WUNLOCK(prev_object);
2067                 return (FALSE);
2068         }
2069
2070         /*
2071          * Try to collapse the object first
2072          */
2073         vm_object_collapse(prev_object);
2074
2075         /*
2076          * Can't coalesce if: . more than one reference . paged out . shadows
2077          * another object . has a copy elsewhere (any of which mean that the
2078          * pages not mapped to prev_entry may be in use anyway)
2079          */
2080         if (prev_object->backing_object != NULL) {
2081                 VM_OBJECT_WUNLOCK(prev_object);
2082                 return (FALSE);
2083         }
2084
2085         prev_size >>= PAGE_SHIFT;
2086         next_size >>= PAGE_SHIFT;
2087         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2088
2089         if ((prev_object->ref_count > 1) &&
2090             (prev_object->size != next_pindex)) {
2091                 VM_OBJECT_WUNLOCK(prev_object);
2092                 return (FALSE);
2093         }
2094
2095         /*
2096          * Account for the charge.
2097          */
2098         if (prev_object->cred != NULL) {
2099
2100                 /*
2101                  * If prev_object was charged, then this mapping,
2102                  * althought not charged now, may become writable
2103                  * later. Non-NULL cred in the object would prevent
2104                  * swap reservation during enabling of the write
2105                  * access, so reserve swap now. Failed reservation
2106                  * cause allocation of the separate object for the map
2107                  * entry, and swap reservation for this entry is
2108                  * managed in appropriate time.
2109                  */
2110                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2111                     prev_object->cred)) {
2112                         return (FALSE);
2113                 }
2114                 prev_object->charge += ptoa(next_size);
2115         }
2116
2117         /*
2118          * Remove any pages that may still be in the object from a previous
2119          * deallocation.
2120          */
2121         if (next_pindex < prev_object->size) {
2122                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2123                     next_size, 0);
2124                 if (prev_object->type == OBJT_SWAP)
2125                         swap_pager_freespace(prev_object,
2126                                              next_pindex, next_size);
2127 #if 0
2128                 if (prev_object->cred != NULL) {
2129                         KASSERT(prev_object->charge >=
2130                             ptoa(prev_object->size - next_pindex),
2131                             ("object %p overcharged 1 %jx %jx", prev_object,
2132                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2133                         prev_object->charge -= ptoa(prev_object->size -
2134                             next_pindex);
2135                 }
2136 #endif
2137         }
2138
2139         /*
2140          * Extend the object if necessary.
2141          */
2142         if (next_pindex + next_size > prev_object->size)
2143                 prev_object->size = next_pindex + next_size;
2144
2145         VM_OBJECT_WUNLOCK(prev_object);
2146         return (TRUE);
2147 }
2148
2149 void
2150 vm_object_set_writeable_dirty(vm_object_t object)
2151 {
2152
2153         VM_OBJECT_ASSERT_WLOCKED(object);
2154         if (object->type != OBJT_VNODE)
2155                 return;
2156         object->generation++;
2157         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2158                 return;
2159         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2160 }
2161
2162 #include "opt_ddb.h"
2163 #ifdef DDB
2164 #include <sys/kernel.h>
2165
2166 #include <sys/cons.h>
2167
2168 #include <ddb/ddb.h>
2169
2170 static int
2171 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2172 {
2173         vm_map_t tmpm;
2174         vm_map_entry_t tmpe;
2175         vm_object_t obj;
2176         int entcount;
2177
2178         if (map == 0)
2179                 return 0;
2180
2181         if (entry == 0) {
2182                 tmpe = map->header.next;
2183                 entcount = map->nentries;
2184                 while (entcount-- && (tmpe != &map->header)) {
2185                         if (_vm_object_in_map(map, object, tmpe)) {
2186                                 return 1;
2187                         }
2188                         tmpe = tmpe->next;
2189                 }
2190         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2191                 tmpm = entry->object.sub_map;
2192                 tmpe = tmpm->header.next;
2193                 entcount = tmpm->nentries;
2194                 while (entcount-- && tmpe != &tmpm->header) {
2195                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2196                                 return 1;
2197                         }
2198                         tmpe = tmpe->next;
2199                 }
2200         } else if ((obj = entry->object.vm_object) != NULL) {
2201                 for (; obj; obj = obj->backing_object)
2202                         if (obj == object) {
2203                                 return 1;
2204                         }
2205         }
2206         return 0;
2207 }
2208
2209 static int
2210 vm_object_in_map(vm_object_t object)
2211 {
2212         struct proc *p;
2213
2214         /* sx_slock(&allproc_lock); */
2215         FOREACH_PROC_IN_SYSTEM(p) {
2216                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2217                         continue;
2218                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2219                         /* sx_sunlock(&allproc_lock); */
2220                         return 1;
2221                 }
2222         }
2223         /* sx_sunlock(&allproc_lock); */
2224         if (_vm_object_in_map(kernel_map, object, 0))
2225                 return 1;
2226         if (_vm_object_in_map(kmem_map, object, 0))
2227                 return 1;
2228         if (_vm_object_in_map(pager_map, object, 0))
2229                 return 1;
2230         if (_vm_object_in_map(buffer_map, object, 0))
2231                 return 1;
2232         return 0;
2233 }
2234
2235 DB_SHOW_COMMAND(vmochk, vm_object_check)
2236 {
2237         vm_object_t object;
2238
2239         /*
2240          * make sure that internal objs are in a map somewhere
2241          * and none have zero ref counts.
2242          */
2243         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2244                 if (object->handle == NULL &&
2245                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2246                         if (object->ref_count == 0) {
2247                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2248                                         (long)object->size);
2249                         }
2250                         if (!vm_object_in_map(object)) {
2251                                 db_printf(
2252                         "vmochk: internal obj is not in a map: "
2253                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2254                                     object->ref_count, (u_long)object->size, 
2255                                     (u_long)object->size,
2256                                     (void *)object->backing_object);
2257                         }
2258                 }
2259         }
2260 }
2261
2262 /*
2263  *      vm_object_print:        [ debug ]
2264  */
2265 DB_SHOW_COMMAND(object, vm_object_print_static)
2266 {
2267         /* XXX convert args. */
2268         vm_object_t object = (vm_object_t)addr;
2269         boolean_t full = have_addr;
2270
2271         vm_page_t p;
2272
2273         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2274 #define count   was_count
2275
2276         int count;
2277
2278         if (object == NULL)
2279                 return;
2280
2281         db_iprintf(
2282             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2283             object, (int)object->type, (uintmax_t)object->size,
2284             object->resident_page_count, object->ref_count, object->flags,
2285             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2286         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2287             object->shadow_count, 
2288             object->backing_object ? object->backing_object->ref_count : 0,
2289             object->backing_object, (uintmax_t)object->backing_object_offset);
2290
2291         if (!full)
2292                 return;
2293
2294         db_indent += 2;
2295         count = 0;
2296         TAILQ_FOREACH(p, &object->memq, listq) {
2297                 if (count == 0)
2298                         db_iprintf("memory:=");
2299                 else if (count == 6) {
2300                         db_printf("\n");
2301                         db_iprintf(" ...");
2302                         count = 0;
2303                 } else
2304                         db_printf(",");
2305                 count++;
2306
2307                 db_printf("(off=0x%jx,page=0x%jx)",
2308                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2309         }
2310         if (count != 0)
2311                 db_printf("\n");
2312         db_indent -= 2;
2313 }
2314
2315 /* XXX. */
2316 #undef count
2317
2318 /* XXX need this non-static entry for calling from vm_map_print. */
2319 void
2320 vm_object_print(
2321         /* db_expr_t */ long addr,
2322         boolean_t have_addr,
2323         /* db_expr_t */ long count,
2324         char *modif)
2325 {
2326         vm_object_print_static(addr, have_addr, count, modif);
2327 }
2328
2329 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2330 {
2331         vm_object_t object;
2332         vm_pindex_t fidx;
2333         vm_paddr_t pa;
2334         vm_page_t m, prev_m;
2335         int rcount, nl, c;
2336
2337         nl = 0;
2338         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2339                 db_printf("new object: %p\n", (void *)object);
2340                 if (nl > 18) {
2341                         c = cngetc();
2342                         if (c != ' ')
2343                                 return;
2344                         nl = 0;
2345                 }
2346                 nl++;
2347                 rcount = 0;
2348                 fidx = 0;
2349                 pa = -1;
2350                 TAILQ_FOREACH(m, &object->memq, listq) {
2351                         if (m->pindex > 128)
2352                                 break;
2353                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2354                             prev_m->pindex + 1 != m->pindex) {
2355                                 if (rcount) {
2356                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2357                                                 (long)fidx, rcount, (long)pa);
2358                                         if (nl > 18) {
2359                                                 c = cngetc();
2360                                                 if (c != ' ')
2361                                                         return;
2362                                                 nl = 0;
2363                                         }
2364                                         nl++;
2365                                         rcount = 0;
2366                                 }
2367                         }                               
2368                         if (rcount &&
2369                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2370                                 ++rcount;
2371                                 continue;
2372                         }
2373                         if (rcount) {
2374                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2375                                         (long)fidx, rcount, (long)pa);
2376                                 if (nl > 18) {
2377                                         c = cngetc();
2378                                         if (c != ' ')
2379                                                 return;
2380                                         nl = 0;
2381                                 }
2382                                 nl++;
2383                         }
2384                         fidx = m->pindex;
2385                         pa = VM_PAGE_TO_PHYS(m);
2386                         rcount = 1;
2387                 }
2388                 if (rcount) {
2389                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2390                                 (long)fidx, rcount, (long)pa);
2391                         if (nl > 18) {
2392                                 c = cngetc();
2393                                 if (c != ' ')
2394                                         return;
2395                                 nl = 0;
2396                         }
2397                         nl++;
2398                 }
2399         }
2400 }
2401 #endif /* DDB */