]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
- Re-implement lock profiling in such a way that it no longer breaks
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/mman.h>
72 #include <sys/mount.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>           /* for curproc, pageproc */
77 #include <sys/socket.h>
78 #include <sys/vnode.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sx.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94
95 #define EASY_SCAN_FACTOR       8
96
97 #define MSYNC_FLUSH_HARDSEQ     0x01
98 #define MSYNC_FLUSH_SOFTSEQ     0x02
99
100 /*
101  * msync / VM object flushing optimizations
102  */
103 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
104 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
105         CTLFLAG_RW, &msync_flush_flags, 0, "");
106
107 static int old_msync;
108 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
109     "Use old (insecure) msync behavior");
110
111 static void     vm_object_qcollapse(vm_object_t object);
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
113 static void     vm_object_vndeallocate(vm_object_t object);
114
115 /*
116  *      Virtual memory objects maintain the actual data
117  *      associated with allocated virtual memory.  A given
118  *      page of memory exists within exactly one object.
119  *
120  *      An object is only deallocated when all "references"
121  *      are given up.  Only one "reference" to a given
122  *      region of an object should be writeable.
123  *
124  *      Associated with each object is a list of all resident
125  *      memory pages belonging to that object; this list is
126  *      maintained by the "vm_page" module, and locked by the object's
127  *      lock.
128  *
129  *      Each object also records a "pager" routine which is
130  *      used to retrieve (and store) pages to the proper backing
131  *      storage.  In addition, objects may be backed by other
132  *      objects from which they were virtual-copied.
133  *
134  *      The only items within the object structure which are
135  *      modified after time of creation are:
136  *              reference count         locked by object's lock
137  *              pager routine           locked by object's lock
138  *
139  */
140
141 struct object_q vm_object_list;
142 struct mtx vm_object_list_mtx;  /* lock for object list and count */
143
144 struct vm_object kernel_object_store;
145 struct vm_object kmem_object_store;
146
147 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(TAILQ_EMPTY(&object->memq),
171             ("object %p has resident pages",
172             object));
173         KASSERT(object->cache == NULL,
174             ("object %p has cached pages",
175             object));
176         KASSERT(object->paging_in_progress == 0,
177             ("object %p paging_in_progress = %d",
178             object, object->paging_in_progress));
179         KASSERT(object->resident_page_count == 0,
180             ("object %p resident_page_count = %d",
181             object, object->resident_page_count));
182         KASSERT(object->shadow_count == 0,
183             ("object %p shadow_count = %d",
184             object, object->shadow_count));
185 }
186 #endif
187
188 static int
189 vm_object_zinit(void *mem, int size, int flags)
190 {
191         vm_object_t object;
192
193         object = (vm_object_t)mem;
194         bzero(&object->mtx, sizeof(object->mtx));
195         VM_OBJECT_LOCK_INIT(object, "standard object");
196
197         /* These are true for any object that has been freed */
198         object->paging_in_progress = 0;
199         object->resident_page_count = 0;
200         object->shadow_count = 0;
201         return (0);
202 }
203
204 void
205 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
206 {
207
208         TAILQ_INIT(&object->memq);
209         LIST_INIT(&object->shadow_head);
210
211         object->root = NULL;
212         object->type = type;
213         object->size = size;
214         object->generation = 1;
215         object->ref_count = 1;
216         object->flags = 0;
217         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
218                 object->flags = OBJ_ONEMAPPING;
219         object->pg_color = 0;
220         object->handle = NULL;
221         object->backing_object = NULL;
222         object->backing_object_offset = (vm_ooffset_t) 0;
223         object->cache = NULL;
224
225         mtx_lock(&vm_object_list_mtx);
226         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
227         mtx_unlock(&vm_object_list_mtx);
228 }
229
230 /*
231  *      vm_object_init:
232  *
233  *      Initialize the VM objects module.
234  */
235 void
236 vm_object_init(void)
237 {
238         TAILQ_INIT(&vm_object_list);
239         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
240         
241         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
242         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
243             kernel_object);
244
245         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
246         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
247             kmem_object);
248
249         /*
250          * The lock portion of struct vm_object must be type stable due
251          * to vm_pageout_fallback_object_lock locking a vm object
252          * without holding any references to it.
253          */
254         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
255 #ifdef INVARIANTS
256             vm_object_zdtor,
257 #else
258             NULL,
259 #endif
260             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
261 }
262
263 void
264 vm_object_clear_flag(vm_object_t object, u_short bits)
265 {
266
267         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
268         object->flags &= ~bits;
269 }
270
271 void
272 vm_object_pip_add(vm_object_t object, short i)
273 {
274
275         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
276         object->paging_in_progress += i;
277 }
278
279 void
280 vm_object_pip_subtract(vm_object_t object, short i)
281 {
282
283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284         object->paging_in_progress -= i;
285 }
286
287 void
288 vm_object_pip_wakeup(vm_object_t object)
289 {
290
291         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
292         object->paging_in_progress--;
293         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
294                 vm_object_clear_flag(object, OBJ_PIPWNT);
295                 wakeup(object);
296         }
297 }
298
299 void
300 vm_object_pip_wakeupn(vm_object_t object, short i)
301 {
302
303         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304         if (i)
305                 object->paging_in_progress -= i;
306         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
307                 vm_object_clear_flag(object, OBJ_PIPWNT);
308                 wakeup(object);
309         }
310 }
311
312 void
313 vm_object_pip_wait(vm_object_t object, char *waitid)
314 {
315
316         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
317         while (object->paging_in_progress) {
318                 object->flags |= OBJ_PIPWNT;
319                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
320         }
321 }
322
323 /*
324  *      vm_object_allocate:
325  *
326  *      Returns a new object with the given size.
327  */
328 vm_object_t
329 vm_object_allocate(objtype_t type, vm_pindex_t size)
330 {
331         vm_object_t object;
332
333         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
334         _vm_object_allocate(type, size, object);
335         return (object);
336 }
337
338
339 /*
340  *      vm_object_reference:
341  *
342  *      Gets another reference to the given object.  Note: OBJ_DEAD
343  *      objects can be referenced during final cleaning.
344  */
345 void
346 vm_object_reference(vm_object_t object)
347 {
348         struct vnode *vp;
349
350         if (object == NULL)
351                 return;
352         VM_OBJECT_LOCK(object);
353         object->ref_count++;
354         if (object->type == OBJT_VNODE) {
355                 int vfslocked;
356
357                 vp = object->handle;
358                 VM_OBJECT_UNLOCK(object);
359                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
360                 vget(vp, LK_RETRY, curthread);
361                 VFS_UNLOCK_GIANT(vfslocked);
362         } else
363                 VM_OBJECT_UNLOCK(object);
364 }
365
366 /*
367  *      vm_object_reference_locked:
368  *
369  *      Gets another reference to the given object.
370  *
371  *      The object must be locked.
372  */
373 void
374 vm_object_reference_locked(vm_object_t object)
375 {
376         struct vnode *vp;
377
378         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
379         KASSERT((object->flags & OBJ_DEAD) == 0,
380             ("vm_object_reference_locked: dead object referenced"));
381         object->ref_count++;
382         if (object->type == OBJT_VNODE) {
383                 vp = object->handle;
384                 vref(vp);
385         }
386 }
387
388 /*
389  * Handle deallocating an object of type OBJT_VNODE.
390  */
391 static void
392 vm_object_vndeallocate(vm_object_t object)
393 {
394         struct vnode *vp = (struct vnode *) object->handle;
395
396         VFS_ASSERT_GIANT(vp->v_mount);
397         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
398         KASSERT(object->type == OBJT_VNODE,
399             ("vm_object_vndeallocate: not a vnode object"));
400         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
401 #ifdef INVARIANTS
402         if (object->ref_count == 0) {
403                 vprint("vm_object_vndeallocate", vp);
404                 panic("vm_object_vndeallocate: bad object reference count");
405         }
406 #endif
407
408         object->ref_count--;
409         if (object->ref_count == 0) {
410                 mp_fixme("Unlocked vflag access.");
411                 vp->v_vflag &= ~VV_TEXT;
412         }
413         VM_OBJECT_UNLOCK(object);
414         /*
415          * vrele may need a vop lock
416          */
417         vrele(vp);
418 }
419
420 /*
421  *      vm_object_deallocate:
422  *
423  *      Release a reference to the specified object,
424  *      gained either through a vm_object_allocate
425  *      or a vm_object_reference call.  When all references
426  *      are gone, storage associated with this object
427  *      may be relinquished.
428  *
429  *      No object may be locked.
430  */
431 void
432 vm_object_deallocate(vm_object_t object)
433 {
434         vm_object_t temp;
435
436         while (object != NULL) {
437                 int vfslocked;
438
439                 vfslocked = 0;
440         restart:
441                 VM_OBJECT_LOCK(object);
442                 if (object->type == OBJT_VNODE) {
443                         struct vnode *vp = (struct vnode *) object->handle;
444
445                         /*
446                          * Conditionally acquire Giant for a vnode-backed
447                          * object.  We have to be careful since the type of
448                          * a vnode object can change while the object is
449                          * unlocked.
450                          */
451                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
452                                 vfslocked = 1;
453                                 if (!mtx_trylock(&Giant)) {
454                                         VM_OBJECT_UNLOCK(object);
455                                         mtx_lock(&Giant);
456                                         goto restart;
457                                 }
458                         }
459                         vm_object_vndeallocate(object);
460                         VFS_UNLOCK_GIANT(vfslocked);
461                         return;
462                 } else
463                         /*
464                          * This is to handle the case that the object
465                          * changed type while we dropped its lock to
466                          * obtain Giant.
467                          */
468                         VFS_UNLOCK_GIANT(vfslocked);
469
470                 KASSERT(object->ref_count != 0,
471                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
472
473                 /*
474                  * If the reference count goes to 0 we start calling
475                  * vm_object_terminate() on the object chain.
476                  * A ref count of 1 may be a special case depending on the
477                  * shadow count being 0 or 1.
478                  */
479                 object->ref_count--;
480                 if (object->ref_count > 1) {
481                         VM_OBJECT_UNLOCK(object);
482                         return;
483                 } else if (object->ref_count == 1) {
484                         if (object->shadow_count == 0) {
485                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
486                         } else if ((object->shadow_count == 1) &&
487                             (object->handle == NULL) &&
488                             (object->type == OBJT_DEFAULT ||
489                              object->type == OBJT_SWAP)) {
490                                 vm_object_t robject;
491
492                                 robject = LIST_FIRST(&object->shadow_head);
493                                 KASSERT(robject != NULL,
494                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
495                                          object->ref_count,
496                                          object->shadow_count));
497                                 if (!VM_OBJECT_TRYLOCK(robject)) {
498                                         /*
499                                          * Avoid a potential deadlock.
500                                          */
501                                         object->ref_count++;
502                                         VM_OBJECT_UNLOCK(object);
503                                         /*
504                                          * More likely than not the thread
505                                          * holding robject's lock has lower
506                                          * priority than the current thread.
507                                          * Let the lower priority thread run.
508                                          */
509                                         pause("vmo_de", 1);
510                                         continue;
511                                 }
512                                 /*
513                                  * Collapse object into its shadow unless its
514                                  * shadow is dead.  In that case, object will
515                                  * be deallocated by the thread that is
516                                  * deallocating its shadow.
517                                  */
518                                 if ((robject->flags & OBJ_DEAD) == 0 &&
519                                     (robject->handle == NULL) &&
520                                     (robject->type == OBJT_DEFAULT ||
521                                      robject->type == OBJT_SWAP)) {
522
523                                         robject->ref_count++;
524 retry:
525                                         if (robject->paging_in_progress) {
526                                                 VM_OBJECT_UNLOCK(object);
527                                                 vm_object_pip_wait(robject,
528                                                     "objde1");
529                                                 temp = robject->backing_object;
530                                                 if (object == temp) {
531                                                         VM_OBJECT_LOCK(object);
532                                                         goto retry;
533                                                 }
534                                         } else if (object->paging_in_progress) {
535                                                 VM_OBJECT_UNLOCK(robject);
536                                                 object->flags |= OBJ_PIPWNT;
537                                                 msleep(object,
538                                                     VM_OBJECT_MTX(object),
539                                                     PDROP | PVM, "objde2", 0);
540                                                 VM_OBJECT_LOCK(robject);
541                                                 temp = robject->backing_object;
542                                                 if (object == temp) {
543                                                         VM_OBJECT_LOCK(object);
544                                                         goto retry;
545                                                 }
546                                         } else
547                                                 VM_OBJECT_UNLOCK(object);
548
549                                         if (robject->ref_count == 1) {
550                                                 robject->ref_count--;
551                                                 object = robject;
552                                                 goto doterm;
553                                         }
554                                         object = robject;
555                                         vm_object_collapse(object);
556                                         VM_OBJECT_UNLOCK(object);
557                                         continue;
558                                 }
559                                 VM_OBJECT_UNLOCK(robject);
560                         }
561                         VM_OBJECT_UNLOCK(object);
562                         return;
563                 }
564 doterm:
565                 temp = object->backing_object;
566                 if (temp != NULL) {
567                         VM_OBJECT_LOCK(temp);
568                         LIST_REMOVE(object, shadow_list);
569                         temp->shadow_count--;
570                         temp->generation++;
571                         VM_OBJECT_UNLOCK(temp);
572                         object->backing_object = NULL;
573                 }
574                 /*
575                  * Don't double-terminate, we could be in a termination
576                  * recursion due to the terminate having to sync data
577                  * to disk.
578                  */
579                 if ((object->flags & OBJ_DEAD) == 0)
580                         vm_object_terminate(object);
581                 else
582                         VM_OBJECT_UNLOCK(object);
583                 object = temp;
584         }
585 }
586
587 /*
588  *      vm_object_terminate actually destroys the specified object, freeing
589  *      up all previously used resources.
590  *
591  *      The object must be locked.
592  *      This routine may block.
593  */
594 void
595 vm_object_terminate(vm_object_t object)
596 {
597         vm_page_t p;
598
599         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
600
601         /*
602          * Make sure no one uses us.
603          */
604         vm_object_set_flag(object, OBJ_DEAD);
605
606         /*
607          * wait for the pageout daemon to be done with the object
608          */
609         vm_object_pip_wait(object, "objtrm");
610
611         KASSERT(!object->paging_in_progress,
612                 ("vm_object_terminate: pageout in progress"));
613
614         /*
615          * Clean and free the pages, as appropriate. All references to the
616          * object are gone, so we don't need to lock it.
617          */
618         if (object->type == OBJT_VNODE) {
619                 struct vnode *vp = (struct vnode *)object->handle;
620
621                 /*
622                  * Clean pages and flush buffers.
623                  */
624                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
625                 VM_OBJECT_UNLOCK(object);
626
627                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
628
629                 VM_OBJECT_LOCK(object);
630         }
631
632         KASSERT(object->ref_count == 0, 
633                 ("vm_object_terminate: object with references, ref_count=%d",
634                 object->ref_count));
635
636         /*
637          * Now free any remaining pages. For internal objects, this also
638          * removes them from paging queues. Don't free wired pages, just
639          * remove them from the object. 
640          */
641         vm_page_lock_queues();
642         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
643                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
644                         ("vm_object_terminate: freeing busy page %p "
645                         "p->busy = %d, p->flags %x\n", p, p->busy, p->flags));
646                 if (p->wire_count == 0) {
647                         vm_page_free(p);
648                         cnt.v_pfree++;
649                 } else {
650                         vm_page_remove(p);
651                 }
652         }
653         vm_page_unlock_queues();
654
655         if (__predict_false(object->cache != NULL))
656                 vm_page_cache_free(object, 0, 0);
657
658         /*
659          * Let the pager know object is dead.
660          */
661         vm_pager_deallocate(object);
662         VM_OBJECT_UNLOCK(object);
663
664         /*
665          * Remove the object from the global object list.
666          */
667         mtx_lock(&vm_object_list_mtx);
668         TAILQ_REMOVE(&vm_object_list, object, object_list);
669         mtx_unlock(&vm_object_list_mtx);
670
671         /*
672          * Free the space for the object.
673          */
674         uma_zfree(obj_zone, object);
675 }
676
677 /*
678  *      vm_object_page_clean
679  *
680  *      Clean all dirty pages in the specified range of object.  Leaves page 
681  *      on whatever queue it is currently on.   If NOSYNC is set then do not
682  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
683  *      leaving the object dirty.
684  *
685  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
686  *      synchronous clustering mode implementation.
687  *
688  *      Odd semantics: if start == end, we clean everything.
689  *
690  *      The object must be locked.
691  */
692 void
693 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
694 {
695         vm_page_t p, np;
696         vm_pindex_t tstart, tend;
697         vm_pindex_t pi;
698         int clearobjflags;
699         int pagerflags;
700         int curgeneration;
701
702         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
703         if (object->type != OBJT_VNODE ||
704                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
705                 return;
706
707         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
708         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
709
710         vm_object_set_flag(object, OBJ_CLEANING);
711
712         tstart = start;
713         if (end == 0) {
714                 tend = object->size;
715         } else {
716                 tend = end;
717         }
718
719         vm_page_lock_queues();
720         /*
721          * If the caller is smart and only msync()s a range he knows is
722          * dirty, we may be able to avoid an object scan.  This results in
723          * a phenominal improvement in performance.  We cannot do this
724          * as a matter of course because the object may be huge - e.g.
725          * the size might be in the gigabytes or terrabytes.
726          */
727         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
728                 vm_pindex_t tscan;
729                 int scanlimit;
730                 int scanreset;
731
732                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
733                 if (scanreset < 16)
734                         scanreset = 16;
735                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
736
737                 scanlimit = scanreset;
738                 tscan = tstart;
739                 while (tscan < tend) {
740                         curgeneration = object->generation;
741                         p = vm_page_lookup(object, tscan);
742                         if (p == NULL || p->valid == 0) {
743                                 if (--scanlimit == 0)
744                                         break;
745                                 ++tscan;
746                                 continue;
747                         }
748                         vm_page_test_dirty(p);
749                         if ((p->dirty & p->valid) == 0) {
750                                 if (--scanlimit == 0)
751                                         break;
752                                 ++tscan;
753                                 continue;
754                         }
755                         /*
756                          * If we have been asked to skip nosync pages and 
757                          * this is a nosync page, we can't continue.
758                          */
759                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
760                                 if (--scanlimit == 0)
761                                         break;
762                                 ++tscan;
763                                 continue;
764                         }
765                         scanlimit = scanreset;
766
767                         /*
768                          * This returns 0 if it was unable to busy the first
769                          * page (i.e. had to sleep).
770                          */
771                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
772                 }
773
774                 /*
775                  * If everything was dirty and we flushed it successfully,
776                  * and the requested range is not the entire object, we
777                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
778                  * return immediately.
779                  */
780                 if (tscan >= tend && (tstart || tend < object->size)) {
781                         vm_page_unlock_queues();
782                         vm_object_clear_flag(object, OBJ_CLEANING);
783                         return;
784                 }
785                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
786         }
787
788         /*
789          * Generally set CLEANCHK interlock and make the page read-only so
790          * we can then clear the object flags.
791          *
792          * However, if this is a nosync mmap then the object is likely to 
793          * stay dirty so do not mess with the page and do not clear the
794          * object flags.
795          */
796         clearobjflags = 1;
797         TAILQ_FOREACH(p, &object->memq, listq) {
798                 p->oflags |= VPO_CLEANCHK;
799                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
800                         clearobjflags = 0;
801                 else
802                         pmap_remove_write(p);
803         }
804
805         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
806                 struct vnode *vp;
807
808                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
809                 if (object->type == OBJT_VNODE &&
810                     (vp = (struct vnode *)object->handle) != NULL) {
811                         VI_LOCK(vp);
812                         if (vp->v_iflag & VI_OBJDIRTY)
813                                 vp->v_iflag &= ~VI_OBJDIRTY;
814                         VI_UNLOCK(vp);
815                 }
816         }
817
818 rescan:
819         curgeneration = object->generation;
820
821         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
822                 int n;
823
824                 np = TAILQ_NEXT(p, listq);
825
826 again:
827                 pi = p->pindex;
828                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
829                         (pi < tstart) || (pi >= tend) ||
830                     p->valid == 0) {
831                         p->oflags &= ~VPO_CLEANCHK;
832                         continue;
833                 }
834
835                 vm_page_test_dirty(p);
836                 if ((p->dirty & p->valid) == 0) {
837                         p->oflags &= ~VPO_CLEANCHK;
838                         continue;
839                 }
840
841                 /*
842                  * If we have been asked to skip nosync pages and this is a
843                  * nosync page, skip it.  Note that the object flags were
844                  * not cleared in this case so we do not have to set them.
845                  */
846                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
847                         p->oflags &= ~VPO_CLEANCHK;
848                         continue;
849                 }
850
851                 n = vm_object_page_collect_flush(object, p,
852                         curgeneration, pagerflags);
853                 if (n == 0)
854                         goto rescan;
855
856                 if (object->generation != curgeneration)
857                         goto rescan;
858
859                 /*
860                  * Try to optimize the next page.  If we can't we pick up
861                  * our (random) scan where we left off.
862                  */
863                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
864                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
865                                 goto again;
866                 }
867         }
868         vm_page_unlock_queues();
869 #if 0
870         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
871 #endif
872
873         vm_object_clear_flag(object, OBJ_CLEANING);
874         return;
875 }
876
877 static int
878 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
879 {
880         int runlen;
881         int maxf;
882         int chkb;
883         int maxb;
884         int i;
885         vm_pindex_t pi;
886         vm_page_t maf[vm_pageout_page_count];
887         vm_page_t mab[vm_pageout_page_count];
888         vm_page_t ma[vm_pageout_page_count];
889
890         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
891         pi = p->pindex;
892         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
893                 vm_page_lock_queues();
894                 if (object->generation != curgeneration) {
895                         return(0);
896                 }
897         }
898         maxf = 0;
899         for(i = 1; i < vm_pageout_page_count; i++) {
900                 vm_page_t tp;
901
902                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
903                         if ((tp->oflags & VPO_BUSY) ||
904                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
905                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
906                                 (tp->busy != 0))
907                                 break;
908                         vm_page_test_dirty(tp);
909                         if ((tp->dirty & tp->valid) == 0) {
910                                 tp->oflags &= ~VPO_CLEANCHK;
911                                 break;
912                         }
913                         maf[ i - 1 ] = tp;
914                         maxf++;
915                         continue;
916                 }
917                 break;
918         }
919
920         maxb = 0;
921         chkb = vm_pageout_page_count -  maxf;
922         if (chkb) {
923                 for(i = 1; i < chkb;i++) {
924                         vm_page_t tp;
925
926                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
927                                 if ((tp->oflags & VPO_BUSY) ||
928                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
929                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
930                                         (tp->busy != 0))
931                                         break;
932                                 vm_page_test_dirty(tp);
933                                 if ((tp->dirty & tp->valid) == 0) {
934                                         tp->oflags &= ~VPO_CLEANCHK;
935                                         break;
936                                 }
937                                 mab[ i - 1 ] = tp;
938                                 maxb++;
939                                 continue;
940                         }
941                         break;
942                 }
943         }
944
945         for(i = 0; i < maxb; i++) {
946                 int index = (maxb - i) - 1;
947                 ma[index] = mab[i];
948                 ma[index]->oflags &= ~VPO_CLEANCHK;
949         }
950         p->oflags &= ~VPO_CLEANCHK;
951         ma[maxb] = p;
952         for(i = 0; i < maxf; i++) {
953                 int index = (maxb + i) + 1;
954                 ma[index] = maf[i];
955                 ma[index]->oflags &= ~VPO_CLEANCHK;
956         }
957         runlen = maxb + maxf + 1;
958
959         vm_pageout_flush(ma, runlen, pagerflags);
960         for (i = 0; i < runlen; i++) {
961                 if (ma[i]->valid & ma[i]->dirty) {
962                         pmap_remove_write(ma[i]);
963                         ma[i]->oflags |= VPO_CLEANCHK;
964
965                         /*
966                          * maxf will end up being the actual number of pages
967                          * we wrote out contiguously, non-inclusive of the
968                          * first page.  We do not count look-behind pages.
969                          */
970                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
971                                 maxf = i - maxb - 1;
972                 }
973         }
974         return(maxf + 1);
975 }
976
977 /*
978  * Note that there is absolutely no sense in writing out
979  * anonymous objects, so we track down the vnode object
980  * to write out.
981  * We invalidate (remove) all pages from the address space
982  * for semantic correctness.
983  *
984  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
985  * may start out with a NULL object.
986  */
987 void
988 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
989     boolean_t syncio, boolean_t invalidate)
990 {
991         vm_object_t backing_object;
992         struct vnode *vp;
993         struct mount *mp;
994         int flags;
995
996         if (object == NULL)
997                 return;
998         VM_OBJECT_LOCK(object);
999         while ((backing_object = object->backing_object) != NULL) {
1000                 VM_OBJECT_LOCK(backing_object);
1001                 offset += object->backing_object_offset;
1002                 VM_OBJECT_UNLOCK(object);
1003                 object = backing_object;
1004                 if (object->size < OFF_TO_IDX(offset + size))
1005                         size = IDX_TO_OFF(object->size) - offset;
1006         }
1007         /*
1008          * Flush pages if writing is allowed, invalidate them
1009          * if invalidation requested.  Pages undergoing I/O
1010          * will be ignored by vm_object_page_remove().
1011          *
1012          * We cannot lock the vnode and then wait for paging
1013          * to complete without deadlocking against vm_fault.
1014          * Instead we simply call vm_object_page_remove() and
1015          * allow it to block internally on a page-by-page
1016          * basis when it encounters pages undergoing async
1017          * I/O.
1018          */
1019         if (object->type == OBJT_VNODE &&
1020             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1021                 int vfslocked;
1022                 vp = object->handle;
1023                 VM_OBJECT_UNLOCK(object);
1024                 (void) vn_start_write(vp, &mp, V_WAIT);
1025                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1026                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
1027                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1028                 flags |= invalidate ? OBJPC_INVAL : 0;
1029                 VM_OBJECT_LOCK(object);
1030                 vm_object_page_clean(object,
1031                     OFF_TO_IDX(offset),
1032                     OFF_TO_IDX(offset + size + PAGE_MASK),
1033                     flags);
1034                 VM_OBJECT_UNLOCK(object);
1035                 VOP_UNLOCK(vp, 0, curthread);
1036                 VFS_UNLOCK_GIANT(vfslocked);
1037                 vn_finished_write(mp);
1038                 VM_OBJECT_LOCK(object);
1039         }
1040         if ((object->type == OBJT_VNODE ||
1041              object->type == OBJT_DEVICE) && invalidate) {
1042                 boolean_t purge;
1043                 purge = old_msync || (object->type == OBJT_DEVICE);
1044                 vm_object_page_remove(object,
1045                     OFF_TO_IDX(offset),
1046                     OFF_TO_IDX(offset + size + PAGE_MASK),
1047                     purge ? FALSE : TRUE);
1048         }
1049         VM_OBJECT_UNLOCK(object);
1050 }
1051
1052 /*
1053  *      vm_object_madvise:
1054  *
1055  *      Implements the madvise function at the object/page level.
1056  *
1057  *      MADV_WILLNEED   (any object)
1058  *
1059  *          Activate the specified pages if they are resident.
1060  *
1061  *      MADV_DONTNEED   (any object)
1062  *
1063  *          Deactivate the specified pages if they are resident.
1064  *
1065  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1066  *                       OBJ_ONEMAPPING only)
1067  *
1068  *          Deactivate and clean the specified pages if they are
1069  *          resident.  This permits the process to reuse the pages
1070  *          without faulting or the kernel to reclaim the pages
1071  *          without I/O.
1072  */
1073 void
1074 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1075 {
1076         vm_pindex_t end, tpindex;
1077         vm_object_t backing_object, tobject;
1078         vm_page_t m;
1079
1080         if (object == NULL)
1081                 return;
1082         VM_OBJECT_LOCK(object);
1083         end = pindex + count;
1084         /*
1085          * Locate and adjust resident pages
1086          */
1087         for (; pindex < end; pindex += 1) {
1088 relookup:
1089                 tobject = object;
1090                 tpindex = pindex;
1091 shadowlookup:
1092                 /*
1093                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1094                  * and those pages must be OBJ_ONEMAPPING.
1095                  */
1096                 if (advise == MADV_FREE) {
1097                         if ((tobject->type != OBJT_DEFAULT &&
1098                              tobject->type != OBJT_SWAP) ||
1099                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1100                                 goto unlock_tobject;
1101                         }
1102                 }
1103                 m = vm_page_lookup(tobject, tpindex);
1104                 if (m == NULL && advise == MADV_WILLNEED) {
1105                         /*
1106                          * If the page is cached, reactivate it.
1107                          */
1108                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1109                             VM_ALLOC_NOBUSY);
1110                 }
1111                 if (m == NULL) {
1112                         /*
1113                          * There may be swap even if there is no backing page
1114                          */
1115                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1116                                 swap_pager_freespace(tobject, tpindex, 1);
1117                         /*
1118                          * next object
1119                          */
1120                         backing_object = tobject->backing_object;
1121                         if (backing_object == NULL)
1122                                 goto unlock_tobject;
1123                         VM_OBJECT_LOCK(backing_object);
1124                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1125                         if (tobject != object)
1126                                 VM_OBJECT_UNLOCK(tobject);
1127                         tobject = backing_object;
1128                         goto shadowlookup;
1129                 }
1130                 /*
1131                  * If the page is busy or not in a normal active state,
1132                  * we skip it.  If the page is not managed there are no
1133                  * page queues to mess with.  Things can break if we mess
1134                  * with pages in any of the below states.
1135                  */
1136                 vm_page_lock_queues();
1137                 if (m->hold_count ||
1138                     m->wire_count ||
1139                     (m->flags & PG_UNMANAGED) ||
1140                     m->valid != VM_PAGE_BITS_ALL) {
1141                         vm_page_unlock_queues();
1142                         goto unlock_tobject;
1143                 }
1144                 if ((m->oflags & VPO_BUSY) || m->busy) {
1145                         vm_page_flag_set(m, PG_REFERENCED);
1146                         vm_page_unlock_queues();
1147                         if (object != tobject)
1148                                 VM_OBJECT_UNLOCK(object);
1149                         m->oflags |= VPO_WANTED;
1150                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1151                         VM_OBJECT_LOCK(object);
1152                         goto relookup;
1153                 }
1154                 if (advise == MADV_WILLNEED) {
1155                         vm_page_activate(m);
1156                 } else if (advise == MADV_DONTNEED) {
1157                         vm_page_dontneed(m);
1158                 } else if (advise == MADV_FREE) {
1159                         /*
1160                          * Mark the page clean.  This will allow the page
1161                          * to be freed up by the system.  However, such pages
1162                          * are often reused quickly by malloc()/free()
1163                          * so we do not do anything that would cause
1164                          * a page fault if we can help it.
1165                          *
1166                          * Specifically, we do not try to actually free
1167                          * the page now nor do we try to put it in the
1168                          * cache (which would cause a page fault on reuse).
1169                          *
1170                          * But we do make the page is freeable as we
1171                          * can without actually taking the step of unmapping
1172                          * it.
1173                          */
1174                         pmap_clear_modify(m);
1175                         m->dirty = 0;
1176                         m->act_count = 0;
1177                         vm_page_dontneed(m);
1178                 }
1179                 vm_page_unlock_queues();
1180                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1181                         swap_pager_freespace(tobject, tpindex, 1);
1182 unlock_tobject:
1183                 if (tobject != object)
1184                         VM_OBJECT_UNLOCK(tobject);
1185         }       
1186         VM_OBJECT_UNLOCK(object);
1187 }
1188
1189 /*
1190  *      vm_object_shadow:
1191  *
1192  *      Create a new object which is backed by the
1193  *      specified existing object range.  The source
1194  *      object reference is deallocated.
1195  *
1196  *      The new object and offset into that object
1197  *      are returned in the source parameters.
1198  */
1199 void
1200 vm_object_shadow(
1201         vm_object_t *object,    /* IN/OUT */
1202         vm_ooffset_t *offset,   /* IN/OUT */
1203         vm_size_t length)
1204 {
1205         vm_object_t source;
1206         vm_object_t result;
1207
1208         source = *object;
1209
1210         /*
1211          * Don't create the new object if the old object isn't shared.
1212          */
1213         if (source != NULL) {
1214                 VM_OBJECT_LOCK(source);
1215                 if (source->ref_count == 1 &&
1216                     source->handle == NULL &&
1217                     (source->type == OBJT_DEFAULT ||
1218                      source->type == OBJT_SWAP)) {
1219                         VM_OBJECT_UNLOCK(source);
1220                         return;
1221                 }
1222                 VM_OBJECT_UNLOCK(source);
1223         }
1224
1225         /*
1226          * Allocate a new object with the given length.
1227          */
1228         result = vm_object_allocate(OBJT_DEFAULT, length);
1229
1230         /*
1231          * The new object shadows the source object, adding a reference to it.
1232          * Our caller changes his reference to point to the new object,
1233          * removing a reference to the source object.  Net result: no change
1234          * of reference count.
1235          *
1236          * Try to optimize the result object's page color when shadowing
1237          * in order to maintain page coloring consistency in the combined 
1238          * shadowed object.
1239          */
1240         result->backing_object = source;
1241         /*
1242          * Store the offset into the source object, and fix up the offset into
1243          * the new object.
1244          */
1245         result->backing_object_offset = *offset;
1246         if (source != NULL) {
1247                 VM_OBJECT_LOCK(source);
1248                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1249                 source->shadow_count++;
1250                 source->generation++;
1251                 result->flags |= source->flags & OBJ_NEEDGIANT;
1252                 VM_OBJECT_UNLOCK(source);
1253         }
1254
1255
1256         /*
1257          * Return the new things
1258          */
1259         *offset = 0;
1260         *object = result;
1261 }
1262
1263 /*
1264  *      vm_object_split:
1265  *
1266  * Split the pages in a map entry into a new object.  This affords
1267  * easier removal of unused pages, and keeps object inheritance from
1268  * being a negative impact on memory usage.
1269  */
1270 void
1271 vm_object_split(vm_map_entry_t entry)
1272 {
1273         vm_page_t m, m_next;
1274         vm_object_t orig_object, new_object, source;
1275         vm_pindex_t idx, offidxstart;
1276         vm_size_t size;
1277
1278         orig_object = entry->object.vm_object;
1279         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1280                 return;
1281         if (orig_object->ref_count <= 1)
1282                 return;
1283         VM_OBJECT_UNLOCK(orig_object);
1284
1285         offidxstart = OFF_TO_IDX(entry->offset);
1286         size = atop(entry->end - entry->start);
1287
1288         /*
1289          * If swap_pager_copy() is later called, it will convert new_object
1290          * into a swap object.
1291          */
1292         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1293
1294         /*
1295          * At this point, the new object is still private, so the order in
1296          * which the original and new objects are locked does not matter.
1297          */
1298         VM_OBJECT_LOCK(new_object);
1299         VM_OBJECT_LOCK(orig_object);
1300         source = orig_object->backing_object;
1301         if (source != NULL) {
1302                 VM_OBJECT_LOCK(source);
1303                 if ((source->flags & OBJ_DEAD) != 0) {
1304                         VM_OBJECT_UNLOCK(source);
1305                         VM_OBJECT_UNLOCK(orig_object);
1306                         VM_OBJECT_UNLOCK(new_object);
1307                         vm_object_deallocate(new_object);
1308                         VM_OBJECT_LOCK(orig_object);
1309                         return;
1310                 }
1311                 LIST_INSERT_HEAD(&source->shadow_head,
1312                                   new_object, shadow_list);
1313                 source->shadow_count++;
1314                 source->generation++;
1315                 vm_object_reference_locked(source);     /* for new_object */
1316                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1317                 VM_OBJECT_UNLOCK(source);
1318                 new_object->backing_object_offset = 
1319                         orig_object->backing_object_offset + entry->offset;
1320                 new_object->backing_object = source;
1321         }
1322         new_object->flags |= orig_object->flags & OBJ_NEEDGIANT;
1323 retry:
1324         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1325                 if (m->pindex < offidxstart) {
1326                         m = vm_page_splay(offidxstart, orig_object->root);
1327                         if ((orig_object->root = m)->pindex < offidxstart)
1328                                 m = TAILQ_NEXT(m, listq);
1329                 }
1330         }
1331         vm_page_lock_queues();
1332         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1333             m = m_next) {
1334                 m_next = TAILQ_NEXT(m, listq);
1335
1336                 /*
1337                  * We must wait for pending I/O to complete before we can
1338                  * rename the page.
1339                  *
1340                  * We do not have to VM_PROT_NONE the page as mappings should
1341                  * not be changed by this operation.
1342                  */
1343                 if ((m->oflags & VPO_BUSY) || m->busy) {
1344                         vm_page_flag_set(m, PG_REFERENCED);
1345                         vm_page_unlock_queues();
1346                         VM_OBJECT_UNLOCK(new_object);
1347                         m->oflags |= VPO_WANTED;
1348                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1349                         VM_OBJECT_LOCK(new_object);
1350                         goto retry;
1351                 }
1352                 vm_page_rename(m, new_object, idx);
1353                 /* page automatically made dirty by rename and cache handled */
1354                 vm_page_busy(m);
1355         }
1356         vm_page_unlock_queues();
1357         if (orig_object->type == OBJT_SWAP) {
1358                 /*
1359                  * swap_pager_copy() can sleep, in which case the orig_object's
1360                  * and new_object's locks are released and reacquired. 
1361                  */
1362                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1363
1364                 /*
1365                  * Transfer any cached pages from orig_object to new_object.
1366                  */
1367                 if (__predict_false(orig_object->cache != NULL))
1368                         vm_page_cache_transfer(orig_object, offidxstart,
1369                             new_object);
1370         }
1371         VM_OBJECT_UNLOCK(orig_object);
1372         TAILQ_FOREACH(m, &new_object->memq, listq)
1373                 vm_page_wakeup(m);
1374         VM_OBJECT_UNLOCK(new_object);
1375         entry->object.vm_object = new_object;
1376         entry->offset = 0LL;
1377         vm_object_deallocate(orig_object);
1378         VM_OBJECT_LOCK(new_object);
1379 }
1380
1381 #define OBSC_TEST_ALL_SHADOWED  0x0001
1382 #define OBSC_COLLAPSE_NOWAIT    0x0002
1383 #define OBSC_COLLAPSE_WAIT      0x0004
1384
1385 static int
1386 vm_object_backing_scan(vm_object_t object, int op)
1387 {
1388         int r = 1;
1389         vm_page_t p;
1390         vm_object_t backing_object;
1391         vm_pindex_t backing_offset_index;
1392
1393         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1394         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1395
1396         backing_object = object->backing_object;
1397         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1398
1399         /*
1400          * Initial conditions
1401          */
1402         if (op & OBSC_TEST_ALL_SHADOWED) {
1403                 /*
1404                  * We do not want to have to test for the existence of cache
1405                  * or swap pages in the backing object.  XXX but with the
1406                  * new swapper this would be pretty easy to do.
1407                  *
1408                  * XXX what about anonymous MAP_SHARED memory that hasn't
1409                  * been ZFOD faulted yet?  If we do not test for this, the
1410                  * shadow test may succeed! XXX
1411                  */
1412                 if (backing_object->type != OBJT_DEFAULT) {
1413                         return (0);
1414                 }
1415         }
1416         if (op & OBSC_COLLAPSE_WAIT) {
1417                 vm_object_set_flag(backing_object, OBJ_DEAD);
1418         }
1419
1420         /*
1421          * Our scan
1422          */
1423         p = TAILQ_FIRST(&backing_object->memq);
1424         while (p) {
1425                 vm_page_t next = TAILQ_NEXT(p, listq);
1426                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1427
1428                 if (op & OBSC_TEST_ALL_SHADOWED) {
1429                         vm_page_t pp;
1430
1431                         /*
1432                          * Ignore pages outside the parent object's range
1433                          * and outside the parent object's mapping of the 
1434                          * backing object.
1435                          *
1436                          * note that we do not busy the backing object's
1437                          * page.
1438                          */
1439                         if (
1440                             p->pindex < backing_offset_index ||
1441                             new_pindex >= object->size
1442                         ) {
1443                                 p = next;
1444                                 continue;
1445                         }
1446
1447                         /*
1448                          * See if the parent has the page or if the parent's
1449                          * object pager has the page.  If the parent has the
1450                          * page but the page is not valid, the parent's
1451                          * object pager must have the page.
1452                          *
1453                          * If this fails, the parent does not completely shadow
1454                          * the object and we might as well give up now.
1455                          */
1456
1457                         pp = vm_page_lookup(object, new_pindex);
1458                         if (
1459                             (pp == NULL || pp->valid == 0) &&
1460                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1461                         ) {
1462                                 r = 0;
1463                                 break;
1464                         }
1465                 }
1466
1467                 /*
1468                  * Check for busy page
1469                  */
1470                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1471                         vm_page_t pp;
1472
1473                         if (op & OBSC_COLLAPSE_NOWAIT) {
1474                                 if ((p->oflags & VPO_BUSY) ||
1475                                     !p->valid || 
1476                                     p->busy) {
1477                                         p = next;
1478                                         continue;
1479                                 }
1480                         } else if (op & OBSC_COLLAPSE_WAIT) {
1481                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1482                                         vm_page_lock_queues();
1483                                         vm_page_flag_set(p, PG_REFERENCED);
1484                                         vm_page_unlock_queues();
1485                                         VM_OBJECT_UNLOCK(object);
1486                                         p->oflags |= VPO_WANTED;
1487                                         msleep(p, VM_OBJECT_MTX(backing_object),
1488                                             PDROP | PVM, "vmocol", 0);
1489                                         VM_OBJECT_LOCK(object);
1490                                         VM_OBJECT_LOCK(backing_object);
1491                                         /*
1492                                          * If we slept, anything could have
1493                                          * happened.  Since the object is
1494                                          * marked dead, the backing offset
1495                                          * should not have changed so we
1496                                          * just restart our scan.
1497                                          */
1498                                         p = TAILQ_FIRST(&backing_object->memq);
1499                                         continue;
1500                                 }
1501                         }
1502
1503                         KASSERT(
1504                             p->object == backing_object,
1505                             ("vm_object_backing_scan: object mismatch")
1506                         );
1507
1508                         /*
1509                          * Destroy any associated swap
1510                          */
1511                         if (backing_object->type == OBJT_SWAP) {
1512                                 swap_pager_freespace(
1513                                     backing_object, 
1514                                     p->pindex,
1515                                     1
1516                                 );
1517                         }
1518
1519                         if (
1520                             p->pindex < backing_offset_index ||
1521                             new_pindex >= object->size
1522                         ) {
1523                                 /*
1524                                  * Page is out of the parent object's range, we 
1525                                  * can simply destroy it. 
1526                                  */
1527                                 vm_page_lock_queues();
1528                                 KASSERT(!pmap_page_is_mapped(p),
1529                                     ("freeing mapped page %p", p));
1530                                 if (p->wire_count == 0)
1531                                         vm_page_free(p);
1532                                 else
1533                                         vm_page_remove(p);
1534                                 vm_page_unlock_queues();
1535                                 p = next;
1536                                 continue;
1537                         }
1538
1539                         pp = vm_page_lookup(object, new_pindex);
1540                         if (
1541                             pp != NULL ||
1542                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1543                         ) {
1544                                 /*
1545                                  * page already exists in parent OR swap exists
1546                                  * for this location in the parent.  Destroy 
1547                                  * the original page from the backing object.
1548                                  *
1549                                  * Leave the parent's page alone
1550                                  */
1551                                 vm_page_lock_queues();
1552                                 KASSERT(!pmap_page_is_mapped(p),
1553                                     ("freeing mapped page %p", p));
1554                                 if (p->wire_count == 0)
1555                                         vm_page_free(p);
1556                                 else
1557                                         vm_page_remove(p);
1558                                 vm_page_unlock_queues();
1559                                 p = next;
1560                                 continue;
1561                         }
1562
1563                         /*
1564                          * Page does not exist in parent, rename the
1565                          * page from the backing object to the main object. 
1566                          *
1567                          * If the page was mapped to a process, it can remain 
1568                          * mapped through the rename.
1569                          */
1570                         vm_page_lock_queues();
1571                         vm_page_rename(p, object, new_pindex);
1572                         vm_page_unlock_queues();
1573                         /* page automatically made dirty by rename */
1574                 }
1575                 p = next;
1576         }
1577         return (r);
1578 }
1579
1580
1581 /*
1582  * this version of collapse allows the operation to occur earlier and
1583  * when paging_in_progress is true for an object...  This is not a complete
1584  * operation, but should plug 99.9% of the rest of the leaks.
1585  */
1586 static void
1587 vm_object_qcollapse(vm_object_t object)
1588 {
1589         vm_object_t backing_object = object->backing_object;
1590
1591         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1592         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1593
1594         if (backing_object->ref_count != 1)
1595                 return;
1596
1597         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1598 }
1599
1600 /*
1601  *      vm_object_collapse:
1602  *
1603  *      Collapse an object with the object backing it.
1604  *      Pages in the backing object are moved into the
1605  *      parent, and the backing object is deallocated.
1606  */
1607 void
1608 vm_object_collapse(vm_object_t object)
1609 {
1610         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1611         
1612         while (TRUE) {
1613                 vm_object_t backing_object;
1614
1615                 /*
1616                  * Verify that the conditions are right for collapse:
1617                  *
1618                  * The object exists and the backing object exists.
1619                  */
1620                 if ((backing_object = object->backing_object) == NULL)
1621                         break;
1622
1623                 /*
1624                  * we check the backing object first, because it is most likely
1625                  * not collapsable.
1626                  */
1627                 VM_OBJECT_LOCK(backing_object);
1628                 if (backing_object->handle != NULL ||
1629                     (backing_object->type != OBJT_DEFAULT &&
1630                      backing_object->type != OBJT_SWAP) ||
1631                     (backing_object->flags & OBJ_DEAD) ||
1632                     object->handle != NULL ||
1633                     (object->type != OBJT_DEFAULT &&
1634                      object->type != OBJT_SWAP) ||
1635                     (object->flags & OBJ_DEAD)) {
1636                         VM_OBJECT_UNLOCK(backing_object);
1637                         break;
1638                 }
1639
1640                 if (
1641                     object->paging_in_progress != 0 ||
1642                     backing_object->paging_in_progress != 0
1643                 ) {
1644                         vm_object_qcollapse(object);
1645                         VM_OBJECT_UNLOCK(backing_object);
1646                         break;
1647                 }
1648                 /*
1649                  * We know that we can either collapse the backing object (if
1650                  * the parent is the only reference to it) or (perhaps) have
1651                  * the parent bypass the object if the parent happens to shadow
1652                  * all the resident pages in the entire backing object.
1653                  *
1654                  * This is ignoring pager-backed pages such as swap pages.
1655                  * vm_object_backing_scan fails the shadowing test in this
1656                  * case.
1657                  */
1658                 if (backing_object->ref_count == 1) {
1659                         /*
1660                          * If there is exactly one reference to the backing
1661                          * object, we can collapse it into the parent.  
1662                          */
1663                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1664
1665                         /*
1666                          * Move the pager from backing_object to object.
1667                          */
1668                         if (backing_object->type == OBJT_SWAP) {
1669                                 /*
1670                                  * swap_pager_copy() can sleep, in which case
1671                                  * the backing_object's and object's locks are
1672                                  * released and reacquired.
1673                                  */
1674                                 swap_pager_copy(
1675                                     backing_object,
1676                                     object,
1677                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1678
1679                                 /*
1680                                  * Free any cached pages from backing_object.
1681                                  */
1682                                 if (__predict_false(backing_object->cache != NULL))
1683                                         vm_page_cache_free(backing_object, 0, 0);
1684                         }
1685                         /*
1686                          * Object now shadows whatever backing_object did.
1687                          * Note that the reference to 
1688                          * backing_object->backing_object moves from within 
1689                          * backing_object to within object.
1690                          */
1691                         LIST_REMOVE(object, shadow_list);
1692                         backing_object->shadow_count--;
1693                         backing_object->generation++;
1694                         if (backing_object->backing_object) {
1695                                 VM_OBJECT_LOCK(backing_object->backing_object);
1696                                 LIST_REMOVE(backing_object, shadow_list);
1697                                 LIST_INSERT_HEAD(
1698                                     &backing_object->backing_object->shadow_head,
1699                                     object, shadow_list);
1700                                 /*
1701                                  * The shadow_count has not changed.
1702                                  */
1703                                 backing_object->backing_object->generation++;
1704                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1705                         }
1706                         object->backing_object = backing_object->backing_object;
1707                         object->backing_object_offset +=
1708                             backing_object->backing_object_offset;
1709
1710                         /*
1711                          * Discard backing_object.
1712                          *
1713                          * Since the backing object has no pages, no pager left,
1714                          * and no object references within it, all that is
1715                          * necessary is to dispose of it.
1716                          */
1717                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1718                         VM_OBJECT_UNLOCK(backing_object);
1719
1720                         mtx_lock(&vm_object_list_mtx);
1721                         TAILQ_REMOVE(
1722                             &vm_object_list, 
1723                             backing_object,
1724                             object_list
1725                         );
1726                         mtx_unlock(&vm_object_list_mtx);
1727
1728                         uma_zfree(obj_zone, backing_object);
1729
1730                         object_collapses++;
1731                 } else {
1732                         vm_object_t new_backing_object;
1733
1734                         /*
1735                          * If we do not entirely shadow the backing object,
1736                          * there is nothing we can do so we give up.
1737                          */
1738                         if (object->resident_page_count != object->size &&
1739                             vm_object_backing_scan(object,
1740                             OBSC_TEST_ALL_SHADOWED) == 0) {
1741                                 VM_OBJECT_UNLOCK(backing_object);
1742                                 break;
1743                         }
1744
1745                         /*
1746                          * Make the parent shadow the next object in the
1747                          * chain.  Deallocating backing_object will not remove
1748                          * it, since its reference count is at least 2.
1749                          */
1750                         LIST_REMOVE(object, shadow_list);
1751                         backing_object->shadow_count--;
1752                         backing_object->generation++;
1753
1754                         new_backing_object = backing_object->backing_object;
1755                         if ((object->backing_object = new_backing_object) != NULL) {
1756                                 VM_OBJECT_LOCK(new_backing_object);
1757                                 LIST_INSERT_HEAD(
1758                                     &new_backing_object->shadow_head,
1759                                     object,
1760                                     shadow_list
1761                                 );
1762                                 new_backing_object->shadow_count++;
1763                                 new_backing_object->generation++;
1764                                 vm_object_reference_locked(new_backing_object);
1765                                 VM_OBJECT_UNLOCK(new_backing_object);
1766                                 object->backing_object_offset +=
1767                                         backing_object->backing_object_offset;
1768                         }
1769
1770                         /*
1771                          * Drop the reference count on backing_object. Since
1772                          * its ref_count was at least 2, it will not vanish.
1773                          */
1774                         backing_object->ref_count--;
1775                         VM_OBJECT_UNLOCK(backing_object);
1776                         object_bypasses++;
1777                 }
1778
1779                 /*
1780                  * Try again with this object's new backing object.
1781                  */
1782         }
1783 }
1784
1785 /*
1786  *      vm_object_page_remove:
1787  *
1788  *      Removes all physical pages in the given range from the
1789  *      object's list of pages.  If the range's end is zero, all
1790  *      physical pages from the range's start to the end of the object
1791  *      are deleted.
1792  *
1793  *      The object must be locked.
1794  */
1795 void
1796 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1797     boolean_t clean_only)
1798 {
1799         vm_page_t p, next;
1800         int wirings;
1801
1802         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1803         if (object->resident_page_count == 0)
1804                 goto skipmemq;
1805
1806         /*
1807          * Since physically-backed objects do not use managed pages, we can't
1808          * remove pages from the object (we must instead remove the page
1809          * references, and then destroy the object).
1810          */
1811         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1812             object == kmem_object,
1813             ("attempt to remove pages from a physical object"));
1814
1815         vm_object_pip_add(object, 1);
1816 again:
1817         vm_page_lock_queues();
1818         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1819                 if (p->pindex < start) {
1820                         p = vm_page_splay(start, object->root);
1821                         if ((object->root = p)->pindex < start)
1822                                 p = TAILQ_NEXT(p, listq);
1823                 }
1824         }
1825         /*
1826          * Assert: the variable p is either (1) the page with the
1827          * least pindex greater than or equal to the parameter pindex
1828          * or (2) NULL.
1829          */
1830         for (;
1831              p != NULL && (p->pindex < end || end == 0);
1832              p = next) {
1833                 next = TAILQ_NEXT(p, listq);
1834
1835                 /*
1836                  * If the page is wired for any reason besides the
1837                  * existence of managed, wired mappings, then it cannot
1838                  * be freed.  
1839                  */
1840                 if ((wirings = p->wire_count) != 0 &&
1841                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1842                         pmap_remove_all(p);
1843                         /* Account for removal of managed, wired mappings. */
1844                         p->wire_count -= wirings;
1845                         if (!clean_only)
1846                                 p->valid = 0;
1847                         continue;
1848                 }
1849                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1850                         goto again;
1851                 if (clean_only && p->valid) {
1852                         pmap_remove_write(p);
1853                         if (p->valid & p->dirty)
1854                                 continue;
1855                 }
1856                 pmap_remove_all(p);
1857                 /* Account for removal of managed, wired mappings. */
1858                 if (wirings != 0)
1859                         p->wire_count -= wirings;
1860                 vm_page_free(p);
1861         }
1862         vm_page_unlock_queues();
1863         vm_object_pip_wakeup(object);
1864 skipmemq:
1865         if (__predict_false(object->cache != NULL))
1866                 vm_page_cache_free(object, start, end);
1867 }
1868
1869 /*
1870  *      Routine:        vm_object_coalesce
1871  *      Function:       Coalesces two objects backing up adjoining
1872  *                      regions of memory into a single object.
1873  *
1874  *      returns TRUE if objects were combined.
1875  *
1876  *      NOTE:   Only works at the moment if the second object is NULL -
1877  *              if it's not, which object do we lock first?
1878  *
1879  *      Parameters:
1880  *              prev_object     First object to coalesce
1881  *              prev_offset     Offset into prev_object
1882  *              prev_size       Size of reference to prev_object
1883  *              next_size       Size of reference to the second object
1884  *
1885  *      Conditions:
1886  *      The object must *not* be locked.
1887  */
1888 boolean_t
1889 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1890         vm_size_t prev_size, vm_size_t next_size)
1891 {
1892         vm_pindex_t next_pindex;
1893
1894         if (prev_object == NULL)
1895                 return (TRUE);
1896         VM_OBJECT_LOCK(prev_object);
1897         if (prev_object->type != OBJT_DEFAULT &&
1898             prev_object->type != OBJT_SWAP) {
1899                 VM_OBJECT_UNLOCK(prev_object);
1900                 return (FALSE);
1901         }
1902
1903         /*
1904          * Try to collapse the object first
1905          */
1906         vm_object_collapse(prev_object);
1907
1908         /*
1909          * Can't coalesce if: . more than one reference . paged out . shadows
1910          * another object . has a copy elsewhere (any of which mean that the
1911          * pages not mapped to prev_entry may be in use anyway)
1912          */
1913         if (prev_object->backing_object != NULL) {
1914                 VM_OBJECT_UNLOCK(prev_object);
1915                 return (FALSE);
1916         }
1917
1918         prev_size >>= PAGE_SHIFT;
1919         next_size >>= PAGE_SHIFT;
1920         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1921
1922         if ((prev_object->ref_count > 1) &&
1923             (prev_object->size != next_pindex)) {
1924                 VM_OBJECT_UNLOCK(prev_object);
1925                 return (FALSE);
1926         }
1927
1928         /*
1929          * Remove any pages that may still be in the object from a previous
1930          * deallocation.
1931          */
1932         if (next_pindex < prev_object->size) {
1933                 vm_object_page_remove(prev_object,
1934                                       next_pindex,
1935                                       next_pindex + next_size, FALSE);
1936                 if (prev_object->type == OBJT_SWAP)
1937                         swap_pager_freespace(prev_object,
1938                                              next_pindex, next_size);
1939         }
1940
1941         /*
1942          * Extend the object if necessary.
1943          */
1944         if (next_pindex + next_size > prev_object->size)
1945                 prev_object->size = next_pindex + next_size;
1946
1947         VM_OBJECT_UNLOCK(prev_object);
1948         return (TRUE);
1949 }
1950
1951 void
1952 vm_object_set_writeable_dirty(vm_object_t object)
1953 {
1954         struct vnode *vp;
1955
1956         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1957         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
1958                 return;
1959         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1960         if (object->type == OBJT_VNODE &&
1961             (vp = (struct vnode *)object->handle) != NULL) {
1962                 VI_LOCK(vp);
1963                 vp->v_iflag |= VI_OBJDIRTY;
1964                 VI_UNLOCK(vp);
1965         }
1966 }
1967
1968 #include "opt_ddb.h"
1969 #ifdef DDB
1970 #include <sys/kernel.h>
1971
1972 #include <sys/cons.h>
1973
1974 #include <ddb/ddb.h>
1975
1976 static int
1977 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1978 {
1979         vm_map_t tmpm;
1980         vm_map_entry_t tmpe;
1981         vm_object_t obj;
1982         int entcount;
1983
1984         if (map == 0)
1985                 return 0;
1986
1987         if (entry == 0) {
1988                 tmpe = map->header.next;
1989                 entcount = map->nentries;
1990                 while (entcount-- && (tmpe != &map->header)) {
1991                         if (_vm_object_in_map(map, object, tmpe)) {
1992                                 return 1;
1993                         }
1994                         tmpe = tmpe->next;
1995                 }
1996         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1997                 tmpm = entry->object.sub_map;
1998                 tmpe = tmpm->header.next;
1999                 entcount = tmpm->nentries;
2000                 while (entcount-- && tmpe != &tmpm->header) {
2001                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2002                                 return 1;
2003                         }
2004                         tmpe = tmpe->next;
2005                 }
2006         } else if ((obj = entry->object.vm_object) != NULL) {
2007                 for (; obj; obj = obj->backing_object)
2008                         if (obj == object) {
2009                                 return 1;
2010                         }
2011         }
2012         return 0;
2013 }
2014
2015 static int
2016 vm_object_in_map(vm_object_t object)
2017 {
2018         struct proc *p;
2019
2020         /* sx_slock(&allproc_lock); */
2021         FOREACH_PROC_IN_SYSTEM(p) {
2022                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2023                         continue;
2024                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2025                         /* sx_sunlock(&allproc_lock); */
2026                         return 1;
2027                 }
2028         }
2029         /* sx_sunlock(&allproc_lock); */
2030         if (_vm_object_in_map(kernel_map, object, 0))
2031                 return 1;
2032         if (_vm_object_in_map(kmem_map, object, 0))
2033                 return 1;
2034         if (_vm_object_in_map(pager_map, object, 0))
2035                 return 1;
2036         if (_vm_object_in_map(buffer_map, object, 0))
2037                 return 1;
2038         return 0;
2039 }
2040
2041 DB_SHOW_COMMAND(vmochk, vm_object_check)
2042 {
2043         vm_object_t object;
2044
2045         /*
2046          * make sure that internal objs are in a map somewhere
2047          * and none have zero ref counts.
2048          */
2049         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2050                 if (object->handle == NULL &&
2051                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2052                         if (object->ref_count == 0) {
2053                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2054                                         (long)object->size);
2055                         }
2056                         if (!vm_object_in_map(object)) {
2057                                 db_printf(
2058                         "vmochk: internal obj is not in a map: "
2059                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2060                                     object->ref_count, (u_long)object->size, 
2061                                     (u_long)object->size,
2062                                     (void *)object->backing_object);
2063                         }
2064                 }
2065         }
2066 }
2067
2068 /*
2069  *      vm_object_print:        [ debug ]
2070  */
2071 DB_SHOW_COMMAND(object, vm_object_print_static)
2072 {
2073         /* XXX convert args. */
2074         vm_object_t object = (vm_object_t)addr;
2075         boolean_t full = have_addr;
2076
2077         vm_page_t p;
2078
2079         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2080 #define count   was_count
2081
2082         int count;
2083
2084         if (object == NULL)
2085                 return;
2086
2087         db_iprintf(
2088             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x\n",
2089             object, (int)object->type, (uintmax_t)object->size,
2090             object->resident_page_count, object->ref_count, object->flags);
2091         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2092             object->shadow_count, 
2093             object->backing_object ? object->backing_object->ref_count : 0,
2094             object->backing_object, (uintmax_t)object->backing_object_offset);
2095
2096         if (!full)
2097                 return;
2098
2099         db_indent += 2;
2100         count = 0;
2101         TAILQ_FOREACH(p, &object->memq, listq) {
2102                 if (count == 0)
2103                         db_iprintf("memory:=");
2104                 else if (count == 6) {
2105                         db_printf("\n");
2106                         db_iprintf(" ...");
2107                         count = 0;
2108                 } else
2109                         db_printf(",");
2110                 count++;
2111
2112                 db_printf("(off=0x%jx,page=0x%jx)",
2113                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2114         }
2115         if (count != 0)
2116                 db_printf("\n");
2117         db_indent -= 2;
2118 }
2119
2120 /* XXX. */
2121 #undef count
2122
2123 /* XXX need this non-static entry for calling from vm_map_print. */
2124 void
2125 vm_object_print(
2126         /* db_expr_t */ long addr,
2127         boolean_t have_addr,
2128         /* db_expr_t */ long count,
2129         char *modif)
2130 {
2131         vm_object_print_static(addr, have_addr, count, modif);
2132 }
2133
2134 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2135 {
2136         vm_object_t object;
2137         int nl = 0;
2138         int c;
2139
2140         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2141                 vm_pindex_t idx, fidx;
2142                 vm_pindex_t osize;
2143                 vm_paddr_t pa = -1;
2144                 int rcount;
2145                 vm_page_t m;
2146
2147                 db_printf("new object: %p\n", (void *)object);
2148                 if (nl > 18) {
2149                         c = cngetc();
2150                         if (c != ' ')
2151                                 return;
2152                         nl = 0;
2153                 }
2154                 nl++;
2155                 rcount = 0;
2156                 fidx = 0;
2157                 osize = object->size;
2158                 if (osize > 128)
2159                         osize = 128;
2160                 for (idx = 0; idx < osize; idx++) {
2161                         m = vm_page_lookup(object, idx);
2162                         if (m == NULL) {
2163                                 if (rcount) {
2164                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2165                                                 (long)fidx, rcount, (long)pa);
2166                                         if (nl > 18) {
2167                                                 c = cngetc();
2168                                                 if (c != ' ')
2169                                                         return;
2170                                                 nl = 0;
2171                                         }
2172                                         nl++;
2173                                         rcount = 0;
2174                                 }
2175                                 continue;
2176                         }
2177
2178                                 
2179                         if (rcount &&
2180                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2181                                 ++rcount;
2182                                 continue;
2183                         }
2184                         if (rcount) {
2185                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2186                                         (long)fidx, rcount, (long)pa);
2187                                 if (nl > 18) {
2188                                         c = cngetc();
2189                                         if (c != ' ')
2190                                                 return;
2191                                         nl = 0;
2192                                 }
2193                                 nl++;
2194                         }
2195                         fidx = idx;
2196                         pa = VM_PAGE_TO_PHYS(m);
2197                         rcount = 1;
2198                 }
2199                 if (rcount) {
2200                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2201                                 (long)fidx, rcount, (long)pa);
2202                         if (nl > 18) {
2203                                 c = cngetc();
2204                                 if (c != ' ')
2205                                         return;
2206                                 nl = 0;
2207                         }
2208                         nl++;
2209                 }
2210         }
2211 }
2212 #endif /* DDB */