]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
contrib/tzdata: import tzdata 2022f
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113                     int pagerflags, int flags, boolean_t *clearobjflags,
114                     boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116                     boolean_t *clearobjflags);
117 static void     vm_object_qcollapse(vm_object_t object);
118 static void     vm_object_vndeallocate(vm_object_t object);
119
120 /*
121  *      Virtual memory objects maintain the actual data
122  *      associated with allocated virtual memory.  A given
123  *      page of memory exists within exactly one object.
124  *
125  *      An object is only deallocated when all "references"
126  *      are given up.  Only one "reference" to a given
127  *      region of an object should be writeable.
128  *
129  *      Associated with each object is a list of all resident
130  *      memory pages belonging to that object; this list is
131  *      maintained by the "vm_page" module, and locked by the object's
132  *      lock.
133  *
134  *      Each object also records a "pager" routine which is
135  *      used to retrieve (and store) pages to the proper backing
136  *      storage.  In addition, objects may be backed by other
137  *      objects from which they were virtual-copied.
138  *
139  *      The only items within the object structure which are
140  *      modified after time of creation are:
141  *              reference count         locked by object's lock
142  *              pager routine           locked by object's lock
143  *
144  */
145
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
148
149 struct vm_object kernel_object_store;
150
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163
164 static void
165 counter_startup(void)
166 {
167
168         object_collapses = counter_u64_alloc(M_WAITOK);
169         object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172
173 static uma_zone_t obj_zone;
174
175 static int vm_object_zinit(void *mem, int size, int flags);
176
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183         vm_object_t object;
184
185         object = (vm_object_t)mem;
186         KASSERT(object->ref_count == 0,
187             ("object %p ref_count = %d", object, object->ref_count));
188         KASSERT(TAILQ_EMPTY(&object->memq),
189             ("object %p has resident pages in its memq", object));
190         KASSERT(vm_radix_is_empty(&object->rtree),
191             ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193         KASSERT(LIST_EMPTY(&object->rvq),
194             ("object %p has reservations",
195             object));
196 #endif
197         KASSERT(object->paging_in_progress == 0,
198             ("object %p paging_in_progress = %d",
199             object, object->paging_in_progress));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         object->ref_count = 0;
223         vm_radix_init(&object->rtree);
224         object->paging_in_progress = 0;
225         object->resident_page_count = 0;
226         object->shadow_count = 0;
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         switch (type) {
254         case OBJT_DEAD:
255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
256         case OBJT_DEFAULT:
257         case OBJT_SWAP:
258                 object->flags = OBJ_ONEMAPPING;
259                 break;
260         case OBJT_DEVICE:
261         case OBJT_SG:
262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263                 break;
264         case OBJT_MGTDEVICE:
265                 object->flags = OBJ_FICTITIOUS;
266                 break;
267         case OBJT_PHYS:
268                 object->flags = OBJ_UNMANAGED;
269                 break;
270         case OBJT_VNODE:
271                 object->flags = 0;
272                 break;
273         default:
274                 panic("_vm_object_allocate: type %d is undefined", type);
275         }
276         object->size = size;
277         object->domain.dr_policy = NULL;
278         object->generation = 1;
279         object->ref_count = 1;
280         object->memattr = VM_MEMATTR_DEFAULT;
281         object->cred = NULL;
282         object->charge = 0;
283         object->handle = NULL;
284         object->backing_object = NULL;
285         object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287         LIST_INIT(&object->rvq);
288 #endif
289         umtx_shm_object_init(object);
290 }
291
292 /*
293  *      vm_object_init:
294  *
295  *      Initialize the VM objects module.
296  */
297 void
298 vm_object_init(void)
299 {
300         TAILQ_INIT(&vm_object_list);
301         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302         
303         rw_init(&kernel_object->lock, "kernel vm object");
304         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305             VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307         kernel_object->flags |= OBJ_COLORED;
308         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
311
312         /*
313          * The lock portion of struct vm_object must be type stable due
314          * to vm_pageout_fallback_object_lock locking a vm object
315          * without holding any references to it.
316          */
317         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
318 #ifdef INVARIANTS
319             vm_object_zdtor,
320 #else
321             NULL,
322 #endif
323             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324
325         vm_radix_zinit();
326 }
327
328 void
329 vm_object_clear_flag(vm_object_t object, u_short bits)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333         object->flags &= ~bits;
334 }
335
336 /*
337  *      Sets the default memory attribute for the specified object.  Pages
338  *      that are allocated to this object are by default assigned this memory
339  *      attribute.
340  *
341  *      Presently, this function must be called before any pages are allocated
342  *      to the object.  In the future, this requirement may be relaxed for
343  *      "default" and "swap" objects.
344  */
345 int
346 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
347 {
348
349         VM_OBJECT_ASSERT_WLOCKED(object);
350         switch (object->type) {
351         case OBJT_DEFAULT:
352         case OBJT_DEVICE:
353         case OBJT_MGTDEVICE:
354         case OBJT_PHYS:
355         case OBJT_SG:
356         case OBJT_SWAP:
357         case OBJT_VNODE:
358                 if (!TAILQ_EMPTY(&object->memq))
359                         return (KERN_FAILURE);
360                 break;
361         case OBJT_DEAD:
362                 return (KERN_INVALID_ARGUMENT);
363         default:
364                 panic("vm_object_set_memattr: object %p is of undefined type",
365                     object);
366         }
367         object->memattr = memattr;
368         return (KERN_SUCCESS);
369 }
370
371 void
372 vm_object_pip_add(vm_object_t object, short i)
373 {
374
375         VM_OBJECT_ASSERT_WLOCKED(object);
376         object->paging_in_progress += i;
377 }
378
379 void
380 vm_object_pip_subtract(vm_object_t object, short i)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384         object->paging_in_progress -= i;
385 }
386
387 void
388 vm_object_pip_wakeup(vm_object_t object)
389 {
390
391         VM_OBJECT_ASSERT_WLOCKED(object);
392         object->paging_in_progress--;
393         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
394                 vm_object_clear_flag(object, OBJ_PIPWNT);
395                 wakeup(object);
396         }
397 }
398
399 void
400 vm_object_pip_wakeupn(vm_object_t object, short i)
401 {
402
403         VM_OBJECT_ASSERT_WLOCKED(object);
404         if (i)
405                 object->paging_in_progress -= i;
406         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
407                 vm_object_clear_flag(object, OBJ_PIPWNT);
408                 wakeup(object);
409         }
410 }
411
412 void
413 vm_object_pip_wait(vm_object_t object, char *waitid)
414 {
415
416         VM_OBJECT_ASSERT_WLOCKED(object);
417         while (object->paging_in_progress) {
418                 object->flags |= OBJ_PIPWNT;
419                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
420         }
421 }
422
423 /*
424  *      vm_object_allocate:
425  *
426  *      Returns a new object with the given size.
427  */
428 vm_object_t
429 vm_object_allocate(objtype_t type, vm_pindex_t size)
430 {
431         vm_object_t object;
432
433         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
434         _vm_object_allocate(type, size, object);
435         return (object);
436 }
437
438
439 /*
440  *      vm_object_reference:
441  *
442  *      Gets another reference to the given object.  Note: OBJ_DEAD
443  *      objects can be referenced during final cleaning.
444  */
445 void
446 vm_object_reference(vm_object_t object)
447 {
448         if (object == NULL)
449                 return;
450         VM_OBJECT_WLOCK(object);
451         vm_object_reference_locked(object);
452         VM_OBJECT_WUNLOCK(object);
453 }
454
455 /*
456  *      vm_object_reference_locked:
457  *
458  *      Gets another reference to the given object.
459  *
460  *      The object must be locked.
461  */
462 void
463 vm_object_reference_locked(vm_object_t object)
464 {
465         struct vnode *vp;
466
467         VM_OBJECT_ASSERT_WLOCKED(object);
468         object->ref_count++;
469         if (object->type == OBJT_VNODE) {
470                 vp = object->handle;
471                 vref(vp);
472         }
473 }
474
475 /*
476  * Handle deallocating an object of type OBJT_VNODE.
477  */
478 static void
479 vm_object_vndeallocate(vm_object_t object)
480 {
481         struct vnode *vp = (struct vnode *) object->handle;
482
483         VM_OBJECT_ASSERT_WLOCKED(object);
484         KASSERT(object->type == OBJT_VNODE,
485             ("vm_object_vndeallocate: not a vnode object"));
486         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
487 #ifdef INVARIANTS
488         if (object->ref_count == 0) {
489                 vn_printf(vp, "vm_object_vndeallocate ");
490                 panic("vm_object_vndeallocate: bad object reference count");
491         }
492 #endif
493
494         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
495                 umtx_shm_object_terminated(object);
496
497         object->ref_count--;
498
499         /* vrele may need the vnode lock. */
500         VM_OBJECT_WUNLOCK(object);
501         vrele(vp);
502 }
503
504 /*
505  *      vm_object_deallocate:
506  *
507  *      Release a reference to the specified object,
508  *      gained either through a vm_object_allocate
509  *      or a vm_object_reference call.  When all references
510  *      are gone, storage associated with this object
511  *      may be relinquished.
512  *
513  *      No object may be locked.
514  */
515 void
516 vm_object_deallocate(vm_object_t object)
517 {
518         vm_object_t temp;
519
520         while (object != NULL) {
521                 VM_OBJECT_WLOCK(object);
522                 if (object->type == OBJT_VNODE) {
523                         vm_object_vndeallocate(object);
524                         return;
525                 }
526
527                 KASSERT(object->ref_count != 0,
528                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
529
530                 /*
531                  * If the reference count goes to 0 we start calling
532                  * vm_object_terminate() on the object chain.
533                  * A ref count of 1 may be a special case depending on the
534                  * shadow count being 0 or 1.
535                  */
536                 object->ref_count--;
537                 if (object->ref_count > 1) {
538                         VM_OBJECT_WUNLOCK(object);
539                         return;
540                 } else if (object->ref_count == 1) {
541                         if (object->shadow_count == 0 &&
542                             object->handle == NULL &&
543                             (object->type == OBJT_DEFAULT ||
544                             (object->type == OBJT_SWAP &&
545                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
546                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
547                         } else if ((object->shadow_count == 1) &&
548                             (object->handle == NULL) &&
549                             (object->type == OBJT_DEFAULT ||
550                              object->type == OBJT_SWAP)) {
551                                 vm_object_t robject;
552
553                                 robject = LIST_FIRST(&object->shadow_head);
554                                 KASSERT(robject != NULL,
555                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
556                                          object->ref_count,
557                                          object->shadow_count));
558                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
559                                     ("shadowed tmpfs v_object %p", object));
560                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
561                                         /*
562                                          * Avoid a potential deadlock.
563                                          */
564                                         object->ref_count++;
565                                         VM_OBJECT_WUNLOCK(object);
566                                         /*
567                                          * More likely than not the thread
568                                          * holding robject's lock has lower
569                                          * priority than the current thread.
570                                          * Let the lower priority thread run.
571                                          */
572                                         pause("vmo_de", 1);
573                                         continue;
574                                 }
575                                 /*
576                                  * Collapse object into its shadow unless its
577                                  * shadow is dead.  In that case, object will
578                                  * be deallocated by the thread that is
579                                  * deallocating its shadow.
580                                  */
581                                 if ((robject->flags & OBJ_DEAD) == 0 &&
582                                     (robject->handle == NULL) &&
583                                     (robject->type == OBJT_DEFAULT ||
584                                      robject->type == OBJT_SWAP)) {
585
586                                         robject->ref_count++;
587 retry:
588                                         if (robject->paging_in_progress) {
589                                                 VM_OBJECT_WUNLOCK(object);
590                                                 vm_object_pip_wait(robject,
591                                                     "objde1");
592                                                 temp = robject->backing_object;
593                                                 if (object == temp) {
594                                                         VM_OBJECT_WLOCK(object);
595                                                         goto retry;
596                                                 }
597                                         } else if (object->paging_in_progress) {
598                                                 VM_OBJECT_WUNLOCK(robject);
599                                                 object->flags |= OBJ_PIPWNT;
600                                                 VM_OBJECT_SLEEP(object, object,
601                                                     PDROP | PVM, "objde2", 0);
602                                                 VM_OBJECT_WLOCK(robject);
603                                                 temp = robject->backing_object;
604                                                 if (object == temp) {
605                                                         VM_OBJECT_WLOCK(object);
606                                                         goto retry;
607                                                 }
608                                         } else
609                                                 VM_OBJECT_WUNLOCK(object);
610
611                                         if (robject->ref_count == 1) {
612                                                 robject->ref_count--;
613                                                 object = robject;
614                                                 goto doterm;
615                                         }
616                                         object = robject;
617                                         vm_object_collapse(object);
618                                         VM_OBJECT_WUNLOCK(object);
619                                         continue;
620                                 }
621                                 VM_OBJECT_WUNLOCK(robject);
622                         }
623                         VM_OBJECT_WUNLOCK(object);
624                         return;
625                 }
626 doterm:
627                 umtx_shm_object_terminated(object);
628                 temp = object->backing_object;
629                 if (temp != NULL) {
630                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
631                             ("shadowed tmpfs v_object 2 %p", object));
632                         VM_OBJECT_WLOCK(temp);
633                         LIST_REMOVE(object, shadow_list);
634                         temp->shadow_count--;
635                         VM_OBJECT_WUNLOCK(temp);
636                         object->backing_object = NULL;
637                 }
638                 /*
639                  * Don't double-terminate, we could be in a termination
640                  * recursion due to the terminate having to sync data
641                  * to disk.
642                  */
643                 if ((object->flags & OBJ_DEAD) == 0)
644                         vm_object_terminate(object);
645                 else
646                         VM_OBJECT_WUNLOCK(object);
647                 object = temp;
648         }
649 }
650
651 /*
652  *      vm_object_destroy removes the object from the global object list
653  *      and frees the space for the object.
654  */
655 void
656 vm_object_destroy(vm_object_t object)
657 {
658
659         /*
660          * Release the allocation charge.
661          */
662         if (object->cred != NULL) {
663                 swap_release_by_cred(object->charge, object->cred);
664                 object->charge = 0;
665                 crfree(object->cred);
666                 object->cred = NULL;
667         }
668
669         /*
670          * Free the space for the object.
671          */
672         uma_zfree(obj_zone, object);
673 }
674
675 /*
676  *      vm_object_terminate_pages removes any remaining pageable pages
677  *      from the object and resets the object to an empty state.
678  */
679 static void
680 vm_object_terminate_pages(vm_object_t object)
681 {
682         vm_page_t p, p_next;
683         struct mtx *mtx;
684
685         VM_OBJECT_ASSERT_WLOCKED(object);
686
687         mtx = NULL;
688
689         /*
690          * Free any remaining pageable pages.  This also removes them from the
691          * paging queues.  However, don't free wired pages, just remove them
692          * from the object.  Rather than incrementally removing each page from
693          * the object, the page and object are reset to any empty state. 
694          */
695         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
696                 vm_page_assert_unbusied(p);
697                 if ((object->flags & OBJ_UNMANAGED) == 0)
698                         /*
699                          * vm_page_free_prep() only needs the page
700                          * lock for managed pages.
701                          */
702                         vm_page_change_lock(p, &mtx);
703                 p->object = NULL;
704                 if (vm_page_wired(p))
705                         continue;
706                 VM_CNT_INC(v_pfree);
707                 vm_page_free(p);
708         }
709         if (mtx != NULL)
710                 mtx_unlock(mtx);
711
712         /*
713          * If the object contained any pages, then reset it to an empty state.
714          * None of the object's fields, including "resident_page_count", were
715          * modified by the preceding loop.
716          */
717         if (object->resident_page_count != 0) {
718                 vm_radix_reclaim_allnodes(&object->rtree);
719                 TAILQ_INIT(&object->memq);
720                 object->resident_page_count = 0;
721                 if (object->type == OBJT_VNODE)
722                         vdrop(object->handle);
723         }
724 }
725
726 /*
727  *      vm_object_terminate actually destroys the specified object, freeing
728  *      up all previously used resources.
729  *
730  *      The object must be locked.
731  *      This routine may block.
732  */
733 void
734 vm_object_terminate(vm_object_t object)
735 {
736
737         VM_OBJECT_ASSERT_WLOCKED(object);
738
739         /*
740          * Make sure no one uses us.
741          */
742         vm_object_set_flag(object, OBJ_DEAD);
743
744         /*
745          * wait for the pageout daemon to be done with the object
746          */
747         vm_object_pip_wait(object, "objtrm");
748
749         KASSERT(!object->paging_in_progress,
750                 ("vm_object_terminate: pageout in progress"));
751
752         /*
753          * Clean and free the pages, as appropriate. All references to the
754          * object are gone, so we don't need to lock it.
755          */
756         if (object->type == OBJT_VNODE) {
757                 struct vnode *vp = (struct vnode *)object->handle;
758
759                 /*
760                  * Clean pages and flush buffers.
761                  */
762                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
763                 VM_OBJECT_WUNLOCK(object);
764
765                 vinvalbuf(vp, V_SAVE, 0, 0);
766
767                 BO_LOCK(&vp->v_bufobj);
768                 vp->v_bufobj.bo_flag |= BO_DEAD;
769                 BO_UNLOCK(&vp->v_bufobj);
770
771                 VM_OBJECT_WLOCK(object);
772         }
773
774         KASSERT(object->ref_count == 0, 
775                 ("vm_object_terminate: object with references, ref_count=%d",
776                 object->ref_count));
777
778         if ((object->flags & OBJ_PG_DTOR) == 0)
779                 vm_object_terminate_pages(object);
780
781 #if VM_NRESERVLEVEL > 0
782         if (__predict_false(!LIST_EMPTY(&object->rvq)))
783                 vm_reserv_break_all(object);
784 #endif
785
786         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
787             object->type == OBJT_SWAP,
788             ("%s: non-swap obj %p has cred", __func__, object));
789
790         /*
791          * Let the pager know object is dead.
792          */
793         vm_pager_deallocate(object);
794         VM_OBJECT_WUNLOCK(object);
795
796         vm_object_destroy(object);
797 }
798
799 /*
800  * Make the page read-only so that we can clear the object flags.  However, if
801  * this is a nosync mmap then the object is likely to stay dirty so do not
802  * mess with the page and do not clear the object flags.  Returns TRUE if the
803  * page should be flushed, and FALSE otherwise.
804  */
805 static boolean_t
806 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
807 {
808
809         /*
810          * If we have been asked to skip nosync pages and this is a
811          * nosync page, skip it.  Note that the object flags were not
812          * cleared in this case so we do not have to set them.
813          */
814         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
815                 *clearobjflags = FALSE;
816                 return (FALSE);
817         } else {
818                 pmap_remove_write(p);
819                 return (p->dirty != 0);
820         }
821 }
822
823 /*
824  *      vm_object_page_clean
825  *
826  *      Clean all dirty pages in the specified range of object.  Leaves page 
827  *      on whatever queue it is currently on.   If NOSYNC is set then do not
828  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
829  *      leaving the object dirty.
830  *
831  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
832  *      synchronous clustering mode implementation.
833  *
834  *      Odd semantics: if start == end, we clean everything.
835  *
836  *      The object must be locked.
837  *
838  *      Returns FALSE if some page from the range was not written, as
839  *      reported by the pager, and TRUE otherwise.
840  */
841 boolean_t
842 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
843     int flags)
844 {
845         vm_page_t np, p;
846         vm_pindex_t pi, tend, tstart;
847         int curgeneration, n, pagerflags;
848         boolean_t clearobjflags, eio, res;
849
850         VM_OBJECT_ASSERT_WLOCKED(object);
851
852         /*
853          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
854          * objects.  The check below prevents the function from
855          * operating on non-vnode objects.
856          */
857         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
858             object->resident_page_count == 0)
859                 return (TRUE);
860
861         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
862             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
863         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
864
865         tstart = OFF_TO_IDX(start);
866         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
867         clearobjflags = tstart == 0 && tend >= object->size;
868         res = TRUE;
869
870 rescan:
871         curgeneration = object->generation;
872
873         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
874                 pi = p->pindex;
875                 if (pi >= tend)
876                         break;
877                 np = TAILQ_NEXT(p, listq);
878                 if (p->valid == 0)
879                         continue;
880                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
881                         if (object->generation != curgeneration) {
882                                 if ((flags & OBJPC_SYNC) != 0)
883                                         goto rescan;
884                                 else
885                                         clearobjflags = FALSE;
886                         }
887                         np = vm_page_find_least(object, pi);
888                         continue;
889                 }
890                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
891                         continue;
892
893                 n = vm_object_page_collect_flush(object, p, pagerflags,
894                     flags, &clearobjflags, &eio);
895                 if (eio) {
896                         res = FALSE;
897                         clearobjflags = FALSE;
898                 }
899                 if (object->generation != curgeneration) {
900                         if ((flags & OBJPC_SYNC) != 0)
901                                 goto rescan;
902                         else
903                                 clearobjflags = FALSE;
904                 }
905
906                 /*
907                  * If the VOP_PUTPAGES() did a truncated write, so
908                  * that even the first page of the run is not fully
909                  * written, vm_pageout_flush() returns 0 as the run
910                  * length.  Since the condition that caused truncated
911                  * write may be permanent, e.g. exhausted free space,
912                  * accepting n == 0 would cause an infinite loop.
913                  *
914                  * Forwarding the iterator leaves the unwritten page
915                  * behind, but there is not much we can do there if
916                  * filesystem refuses to write it.
917                  */
918                 if (n == 0) {
919                         n = 1;
920                         clearobjflags = FALSE;
921                 }
922                 np = vm_page_find_least(object, pi + n);
923         }
924 #if 0
925         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
926 #endif
927
928         if (clearobjflags)
929                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
930         return (res);
931 }
932
933 static int
934 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
935     int flags, boolean_t *clearobjflags, boolean_t *eio)
936 {
937         vm_page_t ma[vm_pageout_page_count], p_first, tp;
938         int count, i, mreq, runlen;
939
940         vm_page_lock_assert(p, MA_NOTOWNED);
941         VM_OBJECT_ASSERT_WLOCKED(object);
942
943         count = 1;
944         mreq = 0;
945
946         for (tp = p; count < vm_pageout_page_count; count++) {
947                 tp = vm_page_next(tp);
948                 if (tp == NULL || vm_page_busied(tp))
949                         break;
950                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
951                         break;
952         }
953
954         for (p_first = p; count < vm_pageout_page_count; count++) {
955                 tp = vm_page_prev(p_first);
956                 if (tp == NULL || vm_page_busied(tp))
957                         break;
958                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
959                         break;
960                 p_first = tp;
961                 mreq++;
962         }
963
964         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
965                 ma[i] = tp;
966
967         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
968         return (runlen);
969 }
970
971 /*
972  * Note that there is absolutely no sense in writing out
973  * anonymous objects, so we track down the vnode object
974  * to write out.
975  * We invalidate (remove) all pages from the address space
976  * for semantic correctness.
977  *
978  * If the backing object is a device object with unmanaged pages, then any
979  * mappings to the specified range of pages must be removed before this
980  * function is called.
981  *
982  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
983  * may start out with a NULL object.
984  */
985 boolean_t
986 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
987     boolean_t syncio, boolean_t invalidate)
988 {
989         vm_object_t backing_object;
990         struct vnode *vp;
991         struct mount *mp;
992         int error, flags, fsync_after;
993         boolean_t res;
994
995         if (object == NULL)
996                 return (TRUE);
997         res = TRUE;
998         error = 0;
999         VM_OBJECT_WLOCK(object);
1000         while ((backing_object = object->backing_object) != NULL) {
1001                 VM_OBJECT_WLOCK(backing_object);
1002                 offset += object->backing_object_offset;
1003                 VM_OBJECT_WUNLOCK(object);
1004                 object = backing_object;
1005                 if (object->size < OFF_TO_IDX(offset + size))
1006                         size = IDX_TO_OFF(object->size) - offset;
1007         }
1008         /*
1009          * Flush pages if writing is allowed, invalidate them
1010          * if invalidation requested.  Pages undergoing I/O
1011          * will be ignored by vm_object_page_remove().
1012          *
1013          * We cannot lock the vnode and then wait for paging
1014          * to complete without deadlocking against vm_fault.
1015          * Instead we simply call vm_object_page_remove() and
1016          * allow it to block internally on a page-by-page
1017          * basis when it encounters pages undergoing async
1018          * I/O.
1019          */
1020         if (object->type == OBJT_VNODE &&
1021             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1022             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1023                 VM_OBJECT_WUNLOCK(object);
1024                 (void) vn_start_write(vp, &mp, V_WAIT);
1025                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1026                 if (syncio && !invalidate && offset == 0 &&
1027                     atop(size) == object->size) {
1028                         /*
1029                          * If syncing the whole mapping of the file,
1030                          * it is faster to schedule all the writes in
1031                          * async mode, also allowing the clustering,
1032                          * and then wait for i/o to complete.
1033                          */
1034                         flags = 0;
1035                         fsync_after = TRUE;
1036                 } else {
1037                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1038                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1039                         fsync_after = FALSE;
1040                 }
1041                 VM_OBJECT_WLOCK(object);
1042                 res = vm_object_page_clean(object, offset, offset + size,
1043                     flags);
1044                 VM_OBJECT_WUNLOCK(object);
1045                 if (fsync_after)
1046                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1047                 VOP_UNLOCK(vp, 0);
1048                 vn_finished_write(mp);
1049                 if (error != 0)
1050                         res = FALSE;
1051                 VM_OBJECT_WLOCK(object);
1052         }
1053         if ((object->type == OBJT_VNODE ||
1054              object->type == OBJT_DEVICE) && invalidate) {
1055                 if (object->type == OBJT_DEVICE)
1056                         /*
1057                          * The option OBJPR_NOTMAPPED must be passed here
1058                          * because vm_object_page_remove() cannot remove
1059                          * unmanaged mappings.
1060                          */
1061                         flags = OBJPR_NOTMAPPED;
1062                 else if (old_msync)
1063                         flags = 0;
1064                 else
1065                         flags = OBJPR_CLEANONLY;
1066                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1067                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1068         }
1069         VM_OBJECT_WUNLOCK(object);
1070         return (res);
1071 }
1072
1073 /*
1074  * Determine whether the given advice can be applied to the object.  Advice is
1075  * not applied to unmanaged pages since they never belong to page queues, and
1076  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1077  * have been mapped at most once.
1078  */
1079 static bool
1080 vm_object_advice_applies(vm_object_t object, int advice)
1081 {
1082
1083         if ((object->flags & OBJ_UNMANAGED) != 0)
1084                 return (false);
1085         if (advice != MADV_FREE)
1086                 return (true);
1087         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1088             (object->flags & OBJ_ONEMAPPING) != 0);
1089 }
1090
1091 static void
1092 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1093     vm_size_t size)
1094 {
1095
1096         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1097                 swap_pager_freespace(object, pindex, size);
1098 }
1099
1100 /*
1101  *      vm_object_madvise:
1102  *
1103  *      Implements the madvise function at the object/page level.
1104  *
1105  *      MADV_WILLNEED   (any object)
1106  *
1107  *          Activate the specified pages if they are resident.
1108  *
1109  *      MADV_DONTNEED   (any object)
1110  *
1111  *          Deactivate the specified pages if they are resident.
1112  *
1113  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1114  *                       OBJ_ONEMAPPING only)
1115  *
1116  *          Deactivate and clean the specified pages if they are
1117  *          resident.  This permits the process to reuse the pages
1118  *          without faulting or the kernel to reclaim the pages
1119  *          without I/O.
1120  */
1121 void
1122 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1123     int advice)
1124 {
1125         vm_pindex_t tpindex;
1126         vm_object_t backing_object, tobject;
1127         vm_page_t m, tm;
1128
1129         if (object == NULL)
1130                 return;
1131
1132 relookup:
1133         VM_OBJECT_WLOCK(object);
1134         if (!vm_object_advice_applies(object, advice)) {
1135                 VM_OBJECT_WUNLOCK(object);
1136                 return;
1137         }
1138         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1139                 tobject = object;
1140
1141                 /*
1142                  * If the next page isn't resident in the top-level object, we
1143                  * need to search the shadow chain.  When applying MADV_FREE, we
1144                  * take care to release any swap space used to store
1145                  * non-resident pages.
1146                  */
1147                 if (m == NULL || pindex < m->pindex) {
1148                         /*
1149                          * Optimize a common case: if the top-level object has
1150                          * no backing object, we can skip over the non-resident
1151                          * range in constant time.
1152                          */
1153                         if (object->backing_object == NULL) {
1154                                 tpindex = (m != NULL && m->pindex < end) ?
1155                                     m->pindex : end;
1156                                 vm_object_madvise_freespace(object, advice,
1157                                     pindex, tpindex - pindex);
1158                                 if ((pindex = tpindex) == end)
1159                                         break;
1160                                 goto next_page;
1161                         }
1162
1163                         tpindex = pindex;
1164                         do {
1165                                 vm_object_madvise_freespace(tobject, advice,
1166                                     tpindex, 1);
1167                                 /*
1168                                  * Prepare to search the next object in the
1169                                  * chain.
1170                                  */
1171                                 backing_object = tobject->backing_object;
1172                                 if (backing_object == NULL)
1173                                         goto next_pindex;
1174                                 VM_OBJECT_WLOCK(backing_object);
1175                                 tpindex +=
1176                                     OFF_TO_IDX(tobject->backing_object_offset);
1177                                 if (tobject != object)
1178                                         VM_OBJECT_WUNLOCK(tobject);
1179                                 tobject = backing_object;
1180                                 if (!vm_object_advice_applies(tobject, advice))
1181                                         goto next_pindex;
1182                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1183                             NULL);
1184                 } else {
1185 next_page:
1186                         tm = m;
1187                         m = TAILQ_NEXT(m, listq);
1188                 }
1189
1190                 /*
1191                  * If the page is not in a normal state, skip it.
1192                  */
1193                 if (tm->valid != VM_PAGE_BITS_ALL)
1194                         goto next_pindex;
1195                 vm_page_lock(tm);
1196                 if (vm_page_held(tm)) {
1197                         vm_page_unlock(tm);
1198                         goto next_pindex;
1199                 }
1200                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1201                     ("vm_object_madvise: page %p is fictitious", tm));
1202                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1203                     ("vm_object_madvise: page %p is not managed", tm));
1204                 if (vm_page_busied(tm)) {
1205                         if (object != tobject)
1206                                 VM_OBJECT_WUNLOCK(tobject);
1207                         VM_OBJECT_WUNLOCK(object);
1208                         if (advice == MADV_WILLNEED) {
1209                                 /*
1210                                  * Reference the page before unlocking and
1211                                  * sleeping so that the page daemon is less
1212                                  * likely to reclaim it.
1213                                  */
1214                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1215                         }
1216                         vm_page_busy_sleep(tm, "madvpo", false);
1217                         goto relookup;
1218                 }
1219                 vm_page_advise(tm, advice);
1220                 vm_page_unlock(tm);
1221                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1222 next_pindex:
1223                 if (tobject != object)
1224                         VM_OBJECT_WUNLOCK(tobject);
1225         }
1226         VM_OBJECT_WUNLOCK(object);
1227 }
1228
1229 /*
1230  *      vm_object_shadow:
1231  *
1232  *      Create a new object which is backed by the
1233  *      specified existing object range.  The source
1234  *      object reference is deallocated.
1235  *
1236  *      The new object and offset into that object
1237  *      are returned in the source parameters.
1238  */
1239 void
1240 vm_object_shadow(
1241         vm_object_t *object,    /* IN/OUT */
1242         vm_ooffset_t *offset,   /* IN/OUT */
1243         vm_size_t length)
1244 {
1245         vm_object_t source;
1246         vm_object_t result;
1247
1248         source = *object;
1249
1250         /*
1251          * Don't create the new object if the old object isn't shared.
1252          */
1253         if (source != NULL) {
1254                 VM_OBJECT_WLOCK(source);
1255                 if (source->ref_count == 1 &&
1256                     source->handle == NULL &&
1257                     (source->type == OBJT_DEFAULT ||
1258                      source->type == OBJT_SWAP)) {
1259                         VM_OBJECT_WUNLOCK(source);
1260                         return;
1261                 }
1262                 VM_OBJECT_WUNLOCK(source);
1263         }
1264
1265         /*
1266          * Allocate a new object with the given length.
1267          */
1268         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1269
1270         /*
1271          * The new object shadows the source object, adding a reference to it.
1272          * Our caller changes his reference to point to the new object,
1273          * removing a reference to the source object.  Net result: no change
1274          * of reference count.
1275          *
1276          * Try to optimize the result object's page color when shadowing
1277          * in order to maintain page coloring consistency in the combined 
1278          * shadowed object.
1279          */
1280         result->backing_object = source;
1281         /*
1282          * Store the offset into the source object, and fix up the offset into
1283          * the new object.
1284          */
1285         result->backing_object_offset = *offset;
1286         if (source != NULL) {
1287                 VM_OBJECT_WLOCK(source);
1288                 result->domain = source->domain;
1289                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1290                 source->shadow_count++;
1291 #if VM_NRESERVLEVEL > 0
1292                 result->flags |= source->flags & OBJ_COLORED;
1293                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1294                     ((1 << (VM_NFREEORDER - 1)) - 1);
1295 #endif
1296                 VM_OBJECT_WUNLOCK(source);
1297         }
1298
1299
1300         /*
1301          * Return the new things
1302          */
1303         *offset = 0;
1304         *object = result;
1305 }
1306
1307 /*
1308  *      vm_object_split:
1309  *
1310  * Split the pages in a map entry into a new object.  This affords
1311  * easier removal of unused pages, and keeps object inheritance from
1312  * being a negative impact on memory usage.
1313  */
1314 void
1315 vm_object_split(vm_map_entry_t entry)
1316 {
1317         vm_page_t m, m_busy, m_next;
1318         vm_object_t orig_object, new_object, source;
1319         vm_pindex_t idx, offidxstart;
1320         vm_size_t size;
1321
1322         orig_object = entry->object.vm_object;
1323         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1324                 return;
1325         if (orig_object->ref_count <= 1)
1326                 return;
1327         VM_OBJECT_WUNLOCK(orig_object);
1328
1329         offidxstart = OFF_TO_IDX(entry->offset);
1330         size = atop(entry->end - entry->start);
1331
1332         /*
1333          * If swap_pager_copy() is later called, it will convert new_object
1334          * into a swap object.
1335          */
1336         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1337
1338         /*
1339          * At this point, the new object is still private, so the order in
1340          * which the original and new objects are locked does not matter.
1341          */
1342         VM_OBJECT_WLOCK(new_object);
1343         VM_OBJECT_WLOCK(orig_object);
1344         new_object->domain = orig_object->domain;
1345         source = orig_object->backing_object;
1346         if (source != NULL) {
1347                 VM_OBJECT_WLOCK(source);
1348                 if ((source->flags & OBJ_DEAD) != 0) {
1349                         VM_OBJECT_WUNLOCK(source);
1350                         VM_OBJECT_WUNLOCK(orig_object);
1351                         VM_OBJECT_WUNLOCK(new_object);
1352                         vm_object_deallocate(new_object);
1353                         VM_OBJECT_WLOCK(orig_object);
1354                         return;
1355                 }
1356                 LIST_INSERT_HEAD(&source->shadow_head,
1357                                   new_object, shadow_list);
1358                 source->shadow_count++;
1359                 vm_object_reference_locked(source);     /* for new_object */
1360                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1361                 VM_OBJECT_WUNLOCK(source);
1362                 new_object->backing_object_offset = 
1363                         orig_object->backing_object_offset + entry->offset;
1364                 new_object->backing_object = source;
1365         }
1366         if (orig_object->cred != NULL) {
1367                 new_object->cred = orig_object->cred;
1368                 crhold(orig_object->cred);
1369                 new_object->charge = ptoa(size);
1370                 KASSERT(orig_object->charge >= ptoa(size),
1371                     ("orig_object->charge < 0"));
1372                 orig_object->charge -= ptoa(size);
1373         }
1374         m_busy = NULL;
1375 #ifdef INVARIANTS
1376         idx = 0;
1377 #endif
1378 retry:
1379         m = vm_page_find_least(orig_object, offidxstart);
1380         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1381             ("%s: object %p was repopulated", __func__, orig_object));
1382         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1383             m = m_next) {
1384                 m_next = TAILQ_NEXT(m, listq);
1385
1386                 /*
1387                  * We must wait for pending I/O to complete before we can
1388                  * rename the page.
1389                  *
1390                  * We do not have to VM_PROT_NONE the page as mappings should
1391                  * not be changed by this operation.
1392                  */
1393                 if (vm_page_busied(m)) {
1394                         VM_OBJECT_WUNLOCK(new_object);
1395                         vm_page_lock(m);
1396                         VM_OBJECT_WUNLOCK(orig_object);
1397                         vm_page_busy_sleep(m, "spltwt", false);
1398                         VM_OBJECT_WLOCK(orig_object);
1399                         VM_OBJECT_WLOCK(new_object);
1400                         goto retry;
1401                 }
1402
1403                 /* vm_page_rename() will dirty the page. */
1404                 if (vm_page_rename(m, new_object, idx)) {
1405                         VM_OBJECT_WUNLOCK(new_object);
1406                         VM_OBJECT_WUNLOCK(orig_object);
1407                         vm_radix_wait();
1408                         VM_OBJECT_WLOCK(orig_object);
1409                         VM_OBJECT_WLOCK(new_object);
1410                         goto retry;
1411                 }
1412 #if VM_NRESERVLEVEL > 0
1413                 /*
1414                  * If some of the reservation's allocated pages remain with
1415                  * the original object, then transferring the reservation to
1416                  * the new object is neither particularly beneficial nor
1417                  * particularly harmful as compared to leaving the reservation
1418                  * with the original object.  If, however, all of the
1419                  * reservation's allocated pages are transferred to the new
1420                  * object, then transferring the reservation is typically
1421                  * beneficial.  Determining which of these two cases applies
1422                  * would be more costly than unconditionally renaming the
1423                  * reservation.
1424                  */
1425                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1426 #endif
1427
1428                 /*
1429                  * orig_object's type may change while sleeping, so keep track
1430                  * of the beginning of the busied range.
1431                  */
1432                 if (orig_object->type == OBJT_SWAP) {
1433                         vm_page_xbusy(m);
1434                         if (m_busy == NULL)
1435                                 m_busy = m;
1436                 }
1437         }
1438         if (orig_object->type == OBJT_SWAP) {
1439                 /*
1440                  * swap_pager_copy() can sleep, in which case the orig_object's
1441                  * and new_object's locks are released and reacquired. 
1442                  */
1443                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1444                 if (m_busy != NULL)
1445                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1446                                 vm_page_xunbusy(m_busy);
1447         }
1448         VM_OBJECT_WUNLOCK(orig_object);
1449         VM_OBJECT_WUNLOCK(new_object);
1450         entry->object.vm_object = new_object;
1451         entry->offset = 0LL;
1452         vm_object_deallocate(orig_object);
1453         VM_OBJECT_WLOCK(new_object);
1454 }
1455
1456 #define OBSC_COLLAPSE_NOWAIT    0x0002
1457 #define OBSC_COLLAPSE_WAIT      0x0004
1458
1459 static vm_page_t
1460 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1461     int op)
1462 {
1463         vm_object_t backing_object;
1464
1465         VM_OBJECT_ASSERT_WLOCKED(object);
1466         backing_object = object->backing_object;
1467         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1468
1469         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1470         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1471             ("invalid ownership %p %p %p", p, object, backing_object));
1472         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1473                 return (next);
1474         if (p != NULL)
1475                 vm_page_lock(p);
1476         VM_OBJECT_WUNLOCK(object);
1477         VM_OBJECT_WUNLOCK(backing_object);
1478         /* The page is only NULL when rename fails. */
1479         if (p == NULL)
1480                 vm_radix_wait();
1481         else
1482                 vm_page_busy_sleep(p, "vmocol", false);
1483         VM_OBJECT_WLOCK(object);
1484         VM_OBJECT_WLOCK(backing_object);
1485         return (TAILQ_FIRST(&backing_object->memq));
1486 }
1487
1488 static bool
1489 vm_object_scan_all_shadowed(vm_object_t object)
1490 {
1491         vm_object_t backing_object;
1492         vm_page_t p, pp;
1493         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1494
1495         VM_OBJECT_ASSERT_WLOCKED(object);
1496         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1497
1498         backing_object = object->backing_object;
1499
1500         if (backing_object->type != OBJT_DEFAULT &&
1501             backing_object->type != OBJT_SWAP)
1502                 return (false);
1503
1504         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1505         p = vm_page_find_least(backing_object, pi);
1506         ps = swap_pager_find_least(backing_object, pi);
1507
1508         /*
1509          * Only check pages inside the parent object's range and
1510          * inside the parent object's mapping of the backing object.
1511          */
1512         for (;; pi++) {
1513                 if (p != NULL && p->pindex < pi)
1514                         p = TAILQ_NEXT(p, listq);
1515                 if (ps < pi)
1516                         ps = swap_pager_find_least(backing_object, pi);
1517                 if (p == NULL && ps >= backing_object->size)
1518                         break;
1519                 else if (p == NULL)
1520                         pi = ps;
1521                 else
1522                         pi = MIN(p->pindex, ps);
1523
1524                 new_pindex = pi - backing_offset_index;
1525                 if (new_pindex >= object->size)
1526                         break;
1527
1528                 /*
1529                  * See if the parent has the page or if the parent's object
1530                  * pager has the page.  If the parent has the page but the page
1531                  * is not valid, the parent's object pager must have the page.
1532                  *
1533                  * If this fails, the parent does not completely shadow the
1534                  * object and we might as well give up now.
1535                  */
1536                 pp = vm_page_lookup(object, new_pindex);
1537                 if ((pp == NULL || pp->valid == 0) &&
1538                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1539                         return (false);
1540         }
1541         return (true);
1542 }
1543
1544 static bool
1545 vm_object_collapse_scan(vm_object_t object, int op)
1546 {
1547         vm_object_t backing_object;
1548         vm_page_t next, p, pp;
1549         vm_pindex_t backing_offset_index, new_pindex;
1550
1551         VM_OBJECT_ASSERT_WLOCKED(object);
1552         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1553
1554         backing_object = object->backing_object;
1555         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1556
1557         /*
1558          * Initial conditions
1559          */
1560         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1561                 vm_object_set_flag(backing_object, OBJ_DEAD);
1562
1563         /*
1564          * Our scan
1565          */
1566         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1567                 next = TAILQ_NEXT(p, listq);
1568                 new_pindex = p->pindex - backing_offset_index;
1569
1570                 /*
1571                  * Check for busy page
1572                  */
1573                 if (vm_page_busied(p)) {
1574                         next = vm_object_collapse_scan_wait(object, p, next, op);
1575                         continue;
1576                 }
1577
1578                 KASSERT(p->object == backing_object,
1579                     ("vm_object_collapse_scan: object mismatch"));
1580
1581                 if (p->pindex < backing_offset_index ||
1582                     new_pindex >= object->size) {
1583                         if (backing_object->type == OBJT_SWAP)
1584                                 swap_pager_freespace(backing_object, p->pindex,
1585                                     1);
1586
1587                         /*
1588                          * Page is out of the parent object's range, we can
1589                          * simply destroy it.
1590                          */
1591                         vm_page_lock(p);
1592                         KASSERT(!pmap_page_is_mapped(p),
1593                             ("freeing mapped page %p", p));
1594                         if (vm_page_remove(p))
1595                                 vm_page_free(p);
1596                         vm_page_unlock(p);
1597                         continue;
1598                 }
1599
1600                 pp = vm_page_lookup(object, new_pindex);
1601                 if (pp != NULL && vm_page_busied(pp)) {
1602                         /*
1603                          * The page in the parent is busy and possibly not
1604                          * (yet) valid.  Until its state is finalized by the
1605                          * busy bit owner, we can't tell whether it shadows the
1606                          * original page.  Therefore, we must either skip it
1607                          * and the original (backing_object) page or wait for
1608                          * its state to be finalized.
1609                          *
1610                          * This is due to a race with vm_fault() where we must
1611                          * unbusy the original (backing_obj) page before we can
1612                          * (re)lock the parent.  Hence we can get here.
1613                          */
1614                         next = vm_object_collapse_scan_wait(object, pp, next,
1615                             op);
1616                         continue;
1617                 }
1618
1619                 KASSERT(pp == NULL || pp->valid != 0,
1620                     ("unbusy invalid page %p", pp));
1621
1622                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1623                         NULL)) {
1624                         /*
1625                          * The page already exists in the parent OR swap exists
1626                          * for this location in the parent.  Leave the parent's
1627                          * page alone.  Destroy the original page from the
1628                          * backing object.
1629                          */
1630                         if (backing_object->type == OBJT_SWAP)
1631                                 swap_pager_freespace(backing_object, p->pindex,
1632                                     1);
1633                         vm_page_lock(p);
1634                         KASSERT(!pmap_page_is_mapped(p),
1635                             ("freeing mapped page %p", p));
1636                         if (vm_page_remove(p))
1637                                 vm_page_free(p);
1638                         vm_page_unlock(p);
1639                         continue;
1640                 }
1641
1642                 /*
1643                  * Page does not exist in parent, rename the page from the
1644                  * backing object to the main object.
1645                  *
1646                  * If the page was mapped to a process, it can remain mapped
1647                  * through the rename.  vm_page_rename() will dirty the page.
1648                  */
1649                 if (vm_page_rename(p, object, new_pindex)) {
1650                         next = vm_object_collapse_scan_wait(object, NULL, next,
1651                             op);
1652                         continue;
1653                 }
1654
1655                 /* Use the old pindex to free the right page. */
1656                 if (backing_object->type == OBJT_SWAP)
1657                         swap_pager_freespace(backing_object,
1658                             new_pindex + backing_offset_index, 1);
1659
1660 #if VM_NRESERVLEVEL > 0
1661                 /*
1662                  * Rename the reservation.
1663                  */
1664                 vm_reserv_rename(p, object, backing_object,
1665                     backing_offset_index);
1666 #endif
1667         }
1668         return (true);
1669 }
1670
1671
1672 /*
1673  * this version of collapse allows the operation to occur earlier and
1674  * when paging_in_progress is true for an object...  This is not a complete
1675  * operation, but should plug 99.9% of the rest of the leaks.
1676  */
1677 static void
1678 vm_object_qcollapse(vm_object_t object)
1679 {
1680         vm_object_t backing_object = object->backing_object;
1681
1682         VM_OBJECT_ASSERT_WLOCKED(object);
1683         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1684
1685         if (backing_object->ref_count != 1)
1686                 return;
1687
1688         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1689 }
1690
1691 /*
1692  *      vm_object_collapse:
1693  *
1694  *      Collapse an object with the object backing it.
1695  *      Pages in the backing object are moved into the
1696  *      parent, and the backing object is deallocated.
1697  */
1698 void
1699 vm_object_collapse(vm_object_t object)
1700 {
1701         vm_object_t backing_object, new_backing_object;
1702
1703         VM_OBJECT_ASSERT_WLOCKED(object);
1704
1705         while (TRUE) {
1706                 /*
1707                  * Verify that the conditions are right for collapse:
1708                  *
1709                  * The object exists and the backing object exists.
1710                  */
1711                 if ((backing_object = object->backing_object) == NULL)
1712                         break;
1713
1714                 /*
1715                  * we check the backing object first, because it is most likely
1716                  * not collapsable.
1717                  */
1718                 VM_OBJECT_WLOCK(backing_object);
1719                 if (backing_object->handle != NULL ||
1720                     (backing_object->type != OBJT_DEFAULT &&
1721                     backing_object->type != OBJT_SWAP) ||
1722                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1723                     object->handle != NULL ||
1724                     (object->type != OBJT_DEFAULT &&
1725                      object->type != OBJT_SWAP) ||
1726                     (object->flags & OBJ_DEAD)) {
1727                         VM_OBJECT_WUNLOCK(backing_object);
1728                         break;
1729                 }
1730
1731                 if (object->paging_in_progress != 0 ||
1732                     backing_object->paging_in_progress != 0) {
1733                         vm_object_qcollapse(object);
1734                         VM_OBJECT_WUNLOCK(backing_object);
1735                         break;
1736                 }
1737
1738                 /*
1739                  * We know that we can either collapse the backing object (if
1740                  * the parent is the only reference to it) or (perhaps) have
1741                  * the parent bypass the object if the parent happens to shadow
1742                  * all the resident pages in the entire backing object.
1743                  *
1744                  * This is ignoring pager-backed pages such as swap pages.
1745                  * vm_object_collapse_scan fails the shadowing test in this
1746                  * case.
1747                  */
1748                 if (backing_object->ref_count == 1) {
1749                         vm_object_pip_add(object, 1);
1750                         vm_object_pip_add(backing_object, 1);
1751
1752                         /*
1753                          * If there is exactly one reference to the backing
1754                          * object, we can collapse it into the parent.
1755                          */
1756                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1757
1758 #if VM_NRESERVLEVEL > 0
1759                         /*
1760                          * Break any reservations from backing_object.
1761                          */
1762                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1763                                 vm_reserv_break_all(backing_object);
1764 #endif
1765
1766                         /*
1767                          * Move the pager from backing_object to object.
1768                          */
1769                         if (backing_object->type == OBJT_SWAP) {
1770                                 /*
1771                                  * swap_pager_copy() can sleep, in which case
1772                                  * the backing_object's and object's locks are
1773                                  * released and reacquired.
1774                                  * Since swap_pager_copy() is being asked to
1775                                  * destroy the source, it will change the
1776                                  * backing_object's type to OBJT_DEFAULT.
1777                                  */
1778                                 swap_pager_copy(
1779                                     backing_object,
1780                                     object,
1781                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1782                         }
1783                         /*
1784                          * Object now shadows whatever backing_object did.
1785                          * Note that the reference to 
1786                          * backing_object->backing_object moves from within 
1787                          * backing_object to within object.
1788                          */
1789                         LIST_REMOVE(object, shadow_list);
1790                         backing_object->shadow_count--;
1791                         if (backing_object->backing_object) {
1792                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1793                                 LIST_REMOVE(backing_object, shadow_list);
1794                                 LIST_INSERT_HEAD(
1795                                     &backing_object->backing_object->shadow_head,
1796                                     object, shadow_list);
1797                                 /*
1798                                  * The shadow_count has not changed.
1799                                  */
1800                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1801                         }
1802                         object->backing_object = backing_object->backing_object;
1803                         object->backing_object_offset +=
1804                             backing_object->backing_object_offset;
1805
1806                         /*
1807                          * Discard backing_object.
1808                          *
1809                          * Since the backing object has no pages, no pager left,
1810                          * and no object references within it, all that is
1811                          * necessary is to dispose of it.
1812                          */
1813                         KASSERT(backing_object->ref_count == 1, (
1814 "backing_object %p was somehow re-referenced during collapse!",
1815                             backing_object));
1816                         vm_object_pip_wakeup(backing_object);
1817                         backing_object->type = OBJT_DEAD;
1818                         backing_object->ref_count = 0;
1819                         VM_OBJECT_WUNLOCK(backing_object);
1820                         vm_object_destroy(backing_object);
1821
1822                         vm_object_pip_wakeup(object);
1823                         counter_u64_add(object_collapses, 1);
1824                 } else {
1825                         /*
1826                          * If we do not entirely shadow the backing object,
1827                          * there is nothing we can do so we give up.
1828                          */
1829                         if (object->resident_page_count != object->size &&
1830                             !vm_object_scan_all_shadowed(object)) {
1831                                 VM_OBJECT_WUNLOCK(backing_object);
1832                                 break;
1833                         }
1834
1835                         /*
1836                          * Make the parent shadow the next object in the
1837                          * chain.  Deallocating backing_object will not remove
1838                          * it, since its reference count is at least 2.
1839                          */
1840                         LIST_REMOVE(object, shadow_list);
1841                         backing_object->shadow_count--;
1842
1843                         new_backing_object = backing_object->backing_object;
1844                         if ((object->backing_object = new_backing_object) != NULL) {
1845                                 VM_OBJECT_WLOCK(new_backing_object);
1846                                 LIST_INSERT_HEAD(
1847                                     &new_backing_object->shadow_head,
1848                                     object,
1849                                     shadow_list
1850                                 );
1851                                 new_backing_object->shadow_count++;
1852                                 vm_object_reference_locked(new_backing_object);
1853                                 VM_OBJECT_WUNLOCK(new_backing_object);
1854                                 object->backing_object_offset +=
1855                                         backing_object->backing_object_offset;
1856                         }
1857
1858                         /*
1859                          * Drop the reference count on backing_object. Since
1860                          * its ref_count was at least 2, it will not vanish.
1861                          */
1862                         backing_object->ref_count--;
1863                         VM_OBJECT_WUNLOCK(backing_object);
1864                         counter_u64_add(object_bypasses, 1);
1865                 }
1866
1867                 /*
1868                  * Try again with this object's new backing object.
1869                  */
1870         }
1871 }
1872
1873 /*
1874  *      vm_object_page_remove:
1875  *
1876  *      For the given object, either frees or invalidates each of the
1877  *      specified pages.  In general, a page is freed.  However, if a page is
1878  *      wired for any reason other than the existence of a managed, wired
1879  *      mapping, then it may be invalidated but not removed from the object.
1880  *      Pages are specified by the given range ["start", "end") and the option
1881  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1882  *      extends from "start" to the end of the object.  If the option
1883  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1884  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1885  *      specified, then the pages within the specified range must have no
1886  *      mappings.  Otherwise, if this option is not specified, any mappings to
1887  *      the specified pages are removed before the pages are freed or
1888  *      invalidated.
1889  *
1890  *      In general, this operation should only be performed on objects that
1891  *      contain managed pages.  There are, however, two exceptions.  First, it
1892  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1893  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1894  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1895  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1896  *
1897  *      The object must be locked.
1898  */
1899 void
1900 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1901     int options)
1902 {
1903         vm_page_t p, next;
1904         struct mtx *mtx;
1905
1906         VM_OBJECT_ASSERT_WLOCKED(object);
1907         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1908             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1909             ("vm_object_page_remove: illegal options for object %p", object));
1910         if (object->resident_page_count == 0)
1911                 return;
1912         vm_object_pip_add(object, 1);
1913 again:
1914         p = vm_page_find_least(object, start);
1915         mtx = NULL;
1916
1917         /*
1918          * Here, the variable "p" is either (1) the page with the least pindex
1919          * greater than or equal to the parameter "start" or (2) NULL. 
1920          */
1921         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1922                 next = TAILQ_NEXT(p, listq);
1923
1924                 /*
1925                  * If the page is wired for any reason besides the existence
1926                  * of managed, wired mappings, then it cannot be freed.  For
1927                  * example, fictitious pages, which represent device memory,
1928                  * are inherently wired and cannot be freed.  They can,
1929                  * however, be invalidated if the option OBJPR_CLEANONLY is
1930                  * not specified.
1931                  */
1932                 vm_page_change_lock(p, &mtx);
1933                 if (vm_page_xbusied(p)) {
1934                         VM_OBJECT_WUNLOCK(object);
1935                         vm_page_busy_sleep(p, "vmopax", true);
1936                         VM_OBJECT_WLOCK(object);
1937                         goto again;
1938                 }
1939                 if (vm_page_wired(p)) {
1940                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1941                             object->ref_count != 0)
1942                                 pmap_remove_all(p);
1943                         if ((options & OBJPR_CLEANONLY) == 0) {
1944                                 p->valid = 0;
1945                                 vm_page_undirty(p);
1946                         }
1947                         continue;
1948                 }
1949                 if (vm_page_busied(p)) {
1950                         VM_OBJECT_WUNLOCK(object);
1951                         vm_page_busy_sleep(p, "vmopar", false);
1952                         VM_OBJECT_WLOCK(object);
1953                         goto again;
1954                 }
1955                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1956                     ("vm_object_page_remove: page %p is fictitious", p));
1957                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1958                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1959                             object->ref_count != 0)
1960                                 pmap_remove_write(p);
1961                         if (p->dirty != 0)
1962                                 continue;
1963                 }
1964                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1965                         pmap_remove_all(p);
1966                 vm_page_free(p);
1967         }
1968         if (mtx != NULL)
1969                 mtx_unlock(mtx);
1970         vm_object_pip_wakeup(object);
1971 }
1972
1973 /*
1974  *      vm_object_page_noreuse:
1975  *
1976  *      For the given object, attempt to move the specified pages to
1977  *      the head of the inactive queue.  This bypasses regular LRU
1978  *      operation and allows the pages to be reused quickly under memory
1979  *      pressure.  If a page is wired for any reason, then it will not
1980  *      be queued.  Pages are specified by the range ["start", "end").
1981  *      As a special case, if "end" is zero, then the range extends from
1982  *      "start" to the end of the object.
1983  *
1984  *      This operation should only be performed on objects that
1985  *      contain non-fictitious, managed pages.
1986  *
1987  *      The object must be locked.
1988  */
1989 void
1990 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1991 {
1992         struct mtx *mtx;
1993         vm_page_t p, next;
1994
1995         VM_OBJECT_ASSERT_LOCKED(object);
1996         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1997             ("vm_object_page_noreuse: illegal object %p", object));
1998         if (object->resident_page_count == 0)
1999                 return;
2000         p = vm_page_find_least(object, start);
2001
2002         /*
2003          * Here, the variable "p" is either (1) the page with the least pindex
2004          * greater than or equal to the parameter "start" or (2) NULL. 
2005          */
2006         mtx = NULL;
2007         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2008                 next = TAILQ_NEXT(p, listq);
2009                 vm_page_change_lock(p, &mtx);
2010                 vm_page_deactivate_noreuse(p);
2011         }
2012         if (mtx != NULL)
2013                 mtx_unlock(mtx);
2014 }
2015
2016 /*
2017  *      Populate the specified range of the object with valid pages.  Returns
2018  *      TRUE if the range is successfully populated and FALSE otherwise.
2019  *
2020  *      Note: This function should be optimized to pass a larger array of
2021  *      pages to vm_pager_get_pages() before it is applied to a non-
2022  *      OBJT_DEVICE object.
2023  *
2024  *      The object must be locked.
2025  */
2026 boolean_t
2027 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2028 {
2029         vm_page_t m;
2030         vm_pindex_t pindex;
2031         int rv;
2032
2033         VM_OBJECT_ASSERT_WLOCKED(object);
2034         for (pindex = start; pindex < end; pindex++) {
2035                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2036                 if (m->valid != VM_PAGE_BITS_ALL) {
2037                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2038                         if (rv != VM_PAGER_OK) {
2039                                 vm_page_lock(m);
2040                                 vm_page_free(m);
2041                                 vm_page_unlock(m);
2042                                 break;
2043                         }
2044                 }
2045                 /*
2046                  * Keep "m" busy because a subsequent iteration may unlock
2047                  * the object.
2048                  */
2049         }
2050         if (pindex > start) {
2051                 m = vm_page_lookup(object, start);
2052                 while (m != NULL && m->pindex < pindex) {
2053                         vm_page_xunbusy(m);
2054                         m = TAILQ_NEXT(m, listq);
2055                 }
2056         }
2057         return (pindex == end);
2058 }
2059
2060 /*
2061  *      Routine:        vm_object_coalesce
2062  *      Function:       Coalesces two objects backing up adjoining
2063  *                      regions of memory into a single object.
2064  *
2065  *      returns TRUE if objects were combined.
2066  *
2067  *      NOTE:   Only works at the moment if the second object is NULL -
2068  *              if it's not, which object do we lock first?
2069  *
2070  *      Parameters:
2071  *              prev_object     First object to coalesce
2072  *              prev_offset     Offset into prev_object
2073  *              prev_size       Size of reference to prev_object
2074  *              next_size       Size of reference to the second object
2075  *              reserved        Indicator that extension region has
2076  *                              swap accounted for
2077  *
2078  *      Conditions:
2079  *      The object must *not* be locked.
2080  */
2081 boolean_t
2082 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2083     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2084 {
2085         vm_pindex_t next_pindex;
2086
2087         if (prev_object == NULL)
2088                 return (TRUE);
2089         VM_OBJECT_WLOCK(prev_object);
2090         if ((prev_object->type != OBJT_DEFAULT &&
2091             prev_object->type != OBJT_SWAP) ||
2092             (prev_object->flags & OBJ_NOSPLIT) != 0) {
2093                 VM_OBJECT_WUNLOCK(prev_object);
2094                 return (FALSE);
2095         }
2096
2097         /*
2098          * Try to collapse the object first
2099          */
2100         vm_object_collapse(prev_object);
2101
2102         /*
2103          * Can't coalesce if: . more than one reference . paged out . shadows
2104          * another object . has a copy elsewhere (any of which mean that the
2105          * pages not mapped to prev_entry may be in use anyway)
2106          */
2107         if (prev_object->backing_object != NULL) {
2108                 VM_OBJECT_WUNLOCK(prev_object);
2109                 return (FALSE);
2110         }
2111
2112         prev_size >>= PAGE_SHIFT;
2113         next_size >>= PAGE_SHIFT;
2114         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2115
2116         if (prev_object->ref_count > 1 &&
2117             prev_object->size != next_pindex &&
2118             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2119                 VM_OBJECT_WUNLOCK(prev_object);
2120                 return (FALSE);
2121         }
2122
2123         /*
2124          * Account for the charge.
2125          */
2126         if (prev_object->cred != NULL) {
2127
2128                 /*
2129                  * If prev_object was charged, then this mapping,
2130                  * although not charged now, may become writable
2131                  * later. Non-NULL cred in the object would prevent
2132                  * swap reservation during enabling of the write
2133                  * access, so reserve swap now. Failed reservation
2134                  * cause allocation of the separate object for the map
2135                  * entry, and swap reservation for this entry is
2136                  * managed in appropriate time.
2137                  */
2138                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2139                     prev_object->cred)) {
2140                         VM_OBJECT_WUNLOCK(prev_object);
2141                         return (FALSE);
2142                 }
2143                 prev_object->charge += ptoa(next_size);
2144         }
2145
2146         /*
2147          * Remove any pages that may still be in the object from a previous
2148          * deallocation.
2149          */
2150         if (next_pindex < prev_object->size) {
2151                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2152                     next_size, 0);
2153                 if (prev_object->type == OBJT_SWAP)
2154                         swap_pager_freespace(prev_object,
2155                                              next_pindex, next_size);
2156 #if 0
2157                 if (prev_object->cred != NULL) {
2158                         KASSERT(prev_object->charge >=
2159                             ptoa(prev_object->size - next_pindex),
2160                             ("object %p overcharged 1 %jx %jx", prev_object,
2161                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2162                         prev_object->charge -= ptoa(prev_object->size -
2163                             next_pindex);
2164                 }
2165 #endif
2166         }
2167
2168         /*
2169          * Extend the object if necessary.
2170          */
2171         if (next_pindex + next_size > prev_object->size)
2172                 prev_object->size = next_pindex + next_size;
2173
2174         VM_OBJECT_WUNLOCK(prev_object);
2175         return (TRUE);
2176 }
2177
2178 void
2179 vm_object_set_writeable_dirty(vm_object_t object)
2180 {
2181
2182         VM_OBJECT_ASSERT_WLOCKED(object);
2183         if (object->type != OBJT_VNODE) {
2184                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2185                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2186                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2187                 }
2188                 return;
2189         }
2190         object->generation++;
2191         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2192                 return;
2193         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2194 }
2195
2196 /*
2197  *      vm_object_unwire:
2198  *
2199  *      For each page offset within the specified range of the given object,
2200  *      find the highest-level page in the shadow chain and unwire it.  A page
2201  *      must exist at every page offset, and the highest-level page must be
2202  *      wired.
2203  */
2204 void
2205 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2206     uint8_t queue)
2207 {
2208         vm_object_t tobject, t1object;
2209         vm_page_t m, tm;
2210         vm_pindex_t end_pindex, pindex, tpindex;
2211         int depth, locked_depth;
2212
2213         KASSERT((offset & PAGE_MASK) == 0,
2214             ("vm_object_unwire: offset is not page aligned"));
2215         KASSERT((length & PAGE_MASK) == 0,
2216             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2217         /* The wired count of a fictitious page never changes. */
2218         if ((object->flags & OBJ_FICTITIOUS) != 0)
2219                 return;
2220         pindex = OFF_TO_IDX(offset);
2221         end_pindex = pindex + atop(length);
2222 again:
2223         locked_depth = 1;
2224         VM_OBJECT_RLOCK(object);
2225         m = vm_page_find_least(object, pindex);
2226         while (pindex < end_pindex) {
2227                 if (m == NULL || pindex < m->pindex) {
2228                         /*
2229                          * The first object in the shadow chain doesn't
2230                          * contain a page at the current index.  Therefore,
2231                          * the page must exist in a backing object.
2232                          */
2233                         tobject = object;
2234                         tpindex = pindex;
2235                         depth = 0;
2236                         do {
2237                                 tpindex +=
2238                                     OFF_TO_IDX(tobject->backing_object_offset);
2239                                 tobject = tobject->backing_object;
2240                                 KASSERT(tobject != NULL,
2241                                     ("vm_object_unwire: missing page"));
2242                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2243                                         goto next_page;
2244                                 depth++;
2245                                 if (depth == locked_depth) {
2246                                         locked_depth++;
2247                                         VM_OBJECT_RLOCK(tobject);
2248                                 }
2249                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2250                             NULL);
2251                 } else {
2252                         tm = m;
2253                         m = TAILQ_NEXT(m, listq);
2254                 }
2255                 vm_page_lock(tm);
2256                 if (vm_page_xbusied(tm)) {
2257                         for (tobject = object; locked_depth >= 1;
2258                             locked_depth--) {
2259                                 t1object = tobject->backing_object;
2260                                 VM_OBJECT_RUNLOCK(tobject);
2261                                 tobject = t1object;
2262                         }
2263                         vm_page_busy_sleep(tm, "unwbo", true);
2264                         goto again;
2265                 }
2266                 vm_page_unwire(tm, queue);
2267                 vm_page_unlock(tm);
2268 next_page:
2269                 pindex++;
2270         }
2271         /* Release the accumulated object locks. */
2272         for (tobject = object; locked_depth >= 1; locked_depth--) {
2273                 t1object = tobject->backing_object;
2274                 VM_OBJECT_RUNLOCK(tobject);
2275                 tobject = t1object;
2276         }
2277 }
2278
2279 struct vnode *
2280 vm_object_vnode(vm_object_t object)
2281 {
2282
2283         VM_OBJECT_ASSERT_LOCKED(object);
2284         if (object->type == OBJT_VNODE)
2285                 return (object->handle);
2286         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2287                 return (object->un_pager.swp.swp_tmpfs);
2288         return (NULL);
2289 }
2290
2291 static int
2292 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2293 {
2294         struct kinfo_vmobject *kvo;
2295         char *fullpath, *freepath;
2296         struct vnode *vp;
2297         struct vattr va;
2298         vm_object_t obj;
2299         vm_page_t m;
2300         int count, error;
2301
2302         if (req->oldptr == NULL) {
2303                 /*
2304                  * If an old buffer has not been provided, generate an
2305                  * estimate of the space needed for a subsequent call.
2306                  */
2307                 mtx_lock(&vm_object_list_mtx);
2308                 count = 0;
2309                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2310                         if (obj->type == OBJT_DEAD)
2311                                 continue;
2312                         count++;
2313                 }
2314                 mtx_unlock(&vm_object_list_mtx);
2315                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2316                     count * 11 / 10));
2317         }
2318
2319         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2320         error = 0;
2321
2322         /*
2323          * VM objects are type stable and are never removed from the
2324          * list once added.  This allows us to safely read obj->object_list
2325          * after reacquiring the VM object lock.
2326          */
2327         mtx_lock(&vm_object_list_mtx);
2328         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2329                 if (obj->type == OBJT_DEAD)
2330                         continue;
2331                 VM_OBJECT_RLOCK(obj);
2332                 if (obj->type == OBJT_DEAD) {
2333                         VM_OBJECT_RUNLOCK(obj);
2334                         continue;
2335                 }
2336                 mtx_unlock(&vm_object_list_mtx);
2337                 kvo->kvo_size = ptoa(obj->size);
2338                 kvo->kvo_resident = obj->resident_page_count;
2339                 kvo->kvo_ref_count = obj->ref_count;
2340                 kvo->kvo_shadow_count = obj->shadow_count;
2341                 kvo->kvo_memattr = obj->memattr;
2342                 kvo->kvo_active = 0;
2343                 kvo->kvo_inactive = 0;
2344                 TAILQ_FOREACH(m, &obj->memq, listq) {
2345                         /*
2346                          * A page may belong to the object but be
2347                          * dequeued and set to PQ_NONE while the
2348                          * object lock is not held.  This makes the
2349                          * reads of m->queue below racy, and we do not
2350                          * count pages set to PQ_NONE.  However, this
2351                          * sysctl is only meant to give an
2352                          * approximation of the system anyway.
2353                          */
2354                         if (m->queue == PQ_ACTIVE)
2355                                 kvo->kvo_active++;
2356                         else if (m->queue == PQ_INACTIVE)
2357                                 kvo->kvo_inactive++;
2358                 }
2359
2360                 kvo->kvo_vn_fileid = 0;
2361                 kvo->kvo_vn_fsid = 0;
2362                 kvo->kvo_vn_fsid_freebsd11 = 0;
2363                 freepath = NULL;
2364                 fullpath = "";
2365                 vp = NULL;
2366                 switch (obj->type) {
2367                 case OBJT_DEFAULT:
2368                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2369                         break;
2370                 case OBJT_VNODE:
2371                         kvo->kvo_type = KVME_TYPE_VNODE;
2372                         vp = obj->handle;
2373                         vref(vp);
2374                         break;
2375                 case OBJT_SWAP:
2376                         kvo->kvo_type = KVME_TYPE_SWAP;
2377                         break;
2378                 case OBJT_DEVICE:
2379                         kvo->kvo_type = KVME_TYPE_DEVICE;
2380                         break;
2381                 case OBJT_PHYS:
2382                         kvo->kvo_type = KVME_TYPE_PHYS;
2383                         break;
2384                 case OBJT_DEAD:
2385                         kvo->kvo_type = KVME_TYPE_DEAD;
2386                         break;
2387                 case OBJT_SG:
2388                         kvo->kvo_type = KVME_TYPE_SG;
2389                         break;
2390                 case OBJT_MGTDEVICE:
2391                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2392                         break;
2393                 default:
2394                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2395                         break;
2396                 }
2397                 VM_OBJECT_RUNLOCK(obj);
2398                 if (vp != NULL) {
2399                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2400                         vn_lock(vp, LK_SHARED | LK_RETRY);
2401                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2402                                 kvo->kvo_vn_fileid = va.va_fileid;
2403                                 kvo->kvo_vn_fsid = va.va_fsid;
2404                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2405                                                                 /* truncate */
2406                         }
2407                         vput(vp);
2408                 }
2409
2410                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2411                 if (freepath != NULL)
2412                         free(freepath, M_TEMP);
2413
2414                 /* Pack record size down */
2415                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2416                     + strlen(kvo->kvo_path) + 1;
2417                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2418                     sizeof(uint64_t));
2419                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2420                 mtx_lock(&vm_object_list_mtx);
2421                 if (error)
2422                         break;
2423         }
2424         mtx_unlock(&vm_object_list_mtx);
2425         free(kvo, M_TEMP);
2426         return (error);
2427 }
2428 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2429     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2430     "List of VM objects");
2431
2432 #include "opt_ddb.h"
2433 #ifdef DDB
2434 #include <sys/kernel.h>
2435
2436 #include <sys/cons.h>
2437
2438 #include <ddb/ddb.h>
2439
2440 static int
2441 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2442 {
2443         vm_map_t tmpm;
2444         vm_map_entry_t tmpe;
2445         vm_object_t obj;
2446         int entcount;
2447
2448         if (map == 0)
2449                 return 0;
2450
2451         if (entry == 0) {
2452                 tmpe = map->header.next;
2453                 entcount = map->nentries;
2454                 while (entcount-- && (tmpe != &map->header)) {
2455                         if (_vm_object_in_map(map, object, tmpe)) {
2456                                 return 1;
2457                         }
2458                         tmpe = tmpe->next;
2459                 }
2460         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2461                 tmpm = entry->object.sub_map;
2462                 tmpe = tmpm->header.next;
2463                 entcount = tmpm->nentries;
2464                 while (entcount-- && tmpe != &tmpm->header) {
2465                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2466                                 return 1;
2467                         }
2468                         tmpe = tmpe->next;
2469                 }
2470         } else if ((obj = entry->object.vm_object) != NULL) {
2471                 for (; obj; obj = obj->backing_object)
2472                         if (obj == object) {
2473                                 return 1;
2474                         }
2475         }
2476         return 0;
2477 }
2478
2479 static int
2480 vm_object_in_map(vm_object_t object)
2481 {
2482         struct proc *p;
2483
2484         /* sx_slock(&allproc_lock); */
2485         FOREACH_PROC_IN_SYSTEM(p) {
2486                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2487                         continue;
2488                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2489                         /* sx_sunlock(&allproc_lock); */
2490                         return 1;
2491                 }
2492         }
2493         /* sx_sunlock(&allproc_lock); */
2494         if (_vm_object_in_map(kernel_map, object, 0))
2495                 return 1;
2496         return 0;
2497 }
2498
2499 DB_SHOW_COMMAND(vmochk, vm_object_check)
2500 {
2501         vm_object_t object;
2502
2503         /*
2504          * make sure that internal objs are in a map somewhere
2505          * and none have zero ref counts.
2506          */
2507         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2508                 if (object->handle == NULL &&
2509                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2510                         if (object->ref_count == 0) {
2511                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2512                                         (long)object->size);
2513                         }
2514                         if (!vm_object_in_map(object)) {
2515                                 db_printf(
2516                         "vmochk: internal obj is not in a map: "
2517                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2518                                     object->ref_count, (u_long)object->size, 
2519                                     (u_long)object->size,
2520                                     (void *)object->backing_object);
2521                         }
2522                 }
2523         }
2524 }
2525
2526 /*
2527  *      vm_object_print:        [ debug ]
2528  */
2529 DB_SHOW_COMMAND(object, vm_object_print_static)
2530 {
2531         /* XXX convert args. */
2532         vm_object_t object = (vm_object_t)addr;
2533         boolean_t full = have_addr;
2534
2535         vm_page_t p;
2536
2537         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2538 #define count   was_count
2539
2540         int count;
2541
2542         if (object == NULL)
2543                 return;
2544
2545         db_iprintf(
2546             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2547             object, (int)object->type, (uintmax_t)object->size,
2548             object->resident_page_count, object->ref_count, object->flags,
2549             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2550         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2551             object->shadow_count, 
2552             object->backing_object ? object->backing_object->ref_count : 0,
2553             object->backing_object, (uintmax_t)object->backing_object_offset);
2554
2555         if (!full)
2556                 return;
2557
2558         db_indent += 2;
2559         count = 0;
2560         TAILQ_FOREACH(p, &object->memq, listq) {
2561                 if (count == 0)
2562                         db_iprintf("memory:=");
2563                 else if (count == 6) {
2564                         db_printf("\n");
2565                         db_iprintf(" ...");
2566                         count = 0;
2567                 } else
2568                         db_printf(",");
2569                 count++;
2570
2571                 db_printf("(off=0x%jx,page=0x%jx)",
2572                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2573         }
2574         if (count != 0)
2575                 db_printf("\n");
2576         db_indent -= 2;
2577 }
2578
2579 /* XXX. */
2580 #undef count
2581
2582 /* XXX need this non-static entry for calling from vm_map_print. */
2583 void
2584 vm_object_print(
2585         /* db_expr_t */ long addr,
2586         boolean_t have_addr,
2587         /* db_expr_t */ long count,
2588         char *modif)
2589 {
2590         vm_object_print_static(addr, have_addr, count, modif);
2591 }
2592
2593 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2594 {
2595         vm_object_t object;
2596         vm_pindex_t fidx;
2597         vm_paddr_t pa;
2598         vm_page_t m, prev_m;
2599         int rcount, nl, c;
2600
2601         nl = 0;
2602         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2603                 db_printf("new object: %p\n", (void *)object);
2604                 if (nl > 18) {
2605                         c = cngetc();
2606                         if (c != ' ')
2607                                 return;
2608                         nl = 0;
2609                 }
2610                 nl++;
2611                 rcount = 0;
2612                 fidx = 0;
2613                 pa = -1;
2614                 TAILQ_FOREACH(m, &object->memq, listq) {
2615                         if (m->pindex > 128)
2616                                 break;
2617                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2618                             prev_m->pindex + 1 != m->pindex) {
2619                                 if (rcount) {
2620                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2621                                                 (long)fidx, rcount, (long)pa);
2622                                         if (nl > 18) {
2623                                                 c = cngetc();
2624                                                 if (c != ' ')
2625                                                         return;
2626                                                 nl = 0;
2627                                         }
2628                                         nl++;
2629                                         rcount = 0;
2630                                 }
2631                         }                               
2632                         if (rcount &&
2633                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2634                                 ++rcount;
2635                                 continue;
2636                         }
2637                         if (rcount) {
2638                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2639                                         (long)fidx, rcount, (long)pa);
2640                                 if (nl > 18) {
2641                                         c = cngetc();
2642                                         if (c != ' ')
2643                                                 return;
2644                                         nl = 0;
2645                                 }
2646                                 nl++;
2647                         }
2648                         fidx = m->pindex;
2649                         pa = VM_PAGE_TO_PHYS(m);
2650                         rcount = 1;
2651                 }
2652                 if (rcount) {
2653                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2654                                 (long)fidx, rcount, (long)pa);
2655                         if (nl > 18) {
2656                                 c = cngetc();
2657                                 if (c != ' ')
2658                                         return;
2659                                 nl = 0;
2660                         }
2661                         nl++;
2662                 }
2663         }
2664 }
2665 #endif /* DDB */