]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
ocs_fc: IO timeout handling and error reporting fix.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/blockcount.h>
73 #include <sys/cpuset.h>
74 #include <sys/limits.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115                     int pagerflags, int flags, boolean_t *allclean,
116                     boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118                     boolean_t *allclean);
119 static void     vm_object_backing_remove(vm_object_t object);
120
121 /*
122  *      Virtual memory objects maintain the actual data
123  *      associated with allocated virtual memory.  A given
124  *      page of memory exists within exactly one object.
125  *
126  *      An object is only deallocated when all "references"
127  *      are given up.  Only one "reference" to a given
128  *      region of an object should be writeable.
129  *
130  *      Associated with each object is a list of all resident
131  *      memory pages belonging to that object; this list is
132  *      maintained by the "vm_page" module, and locked by the object's
133  *      lock.
134  *
135  *      Each object also records a "pager" routine which is
136  *      used to retrieve (and store) pages to the proper backing
137  *      storage.  In addition, objects may be backed by other
138  *      objects from which they were virtual-copied.
139  *
140  *      The only items within the object structure which are
141  *      modified after time of creation are:
142  *              reference count         locked by object's lock
143  *              pager routine           locked by object's lock
144  *
145  */
146
147 struct object_q vm_object_list;
148 struct mtx vm_object_list_mtx;  /* lock for object list and count */
149
150 struct vm_object kernel_object_store;
151
152 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
153     "VM object stats");
154
155 static COUNTER_U64_DEFINE_EARLY(object_collapses);
156 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
157     &object_collapses,
158     "VM object collapses");
159
160 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
161 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
162     &object_bypasses,
163     "VM object bypasses");
164
165 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
166 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
167     &object_collapse_waits,
168     "Number of sleeps for collapse");
169
170 static uma_zone_t obj_zone;
171
172 static int vm_object_zinit(void *mem, int size, int flags);
173
174 #ifdef INVARIANTS
175 static void vm_object_zdtor(void *mem, int size, void *arg);
176
177 static void
178 vm_object_zdtor(void *mem, int size, void *arg)
179 {
180         vm_object_t object;
181
182         object = (vm_object_t)mem;
183         KASSERT(object->ref_count == 0,
184             ("object %p ref_count = %d", object, object->ref_count));
185         KASSERT(TAILQ_EMPTY(&object->memq),
186             ("object %p has resident pages in its memq", object));
187         KASSERT(vm_radix_is_empty(&object->rtree),
188             ("object %p has resident pages in its trie", object));
189 #if VM_NRESERVLEVEL > 0
190         KASSERT(LIST_EMPTY(&object->rvq),
191             ("object %p has reservations",
192             object));
193 #endif
194         KASSERT(!vm_object_busied(object),
195             ("object %p busy = %d", object, blockcount_read(&object->busy)));
196         KASSERT(object->resident_page_count == 0,
197             ("object %p resident_page_count = %d",
198             object, object->resident_page_count));
199         KASSERT(atomic_load_int(&object->shadow_count) == 0,
200             ("object %p shadow_count = %d",
201             object, atomic_load_int(&object->shadow_count)));
202         KASSERT(object->type == OBJT_DEAD,
203             ("object %p has non-dead type %d",
204             object, object->type));
205         KASSERT(object->charge == 0 && object->cred == NULL,
206             ("object %p has non-zero charge %ju (%p)",
207             object, (uintmax_t)object->charge, object->cred));
208 }
209 #endif
210
211 static int
212 vm_object_zinit(void *mem, int size, int flags)
213 {
214         vm_object_t object;
215
216         object = (vm_object_t)mem;
217         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
218
219         /* These are true for any object that has been freed */
220         object->type = OBJT_DEAD;
221         vm_radix_init(&object->rtree);
222         refcount_init(&object->ref_count, 0);
223         blockcount_init(&object->paging_in_progress);
224         blockcount_init(&object->busy);
225         object->resident_page_count = 0;
226         atomic_store_int(&object->shadow_count, 0);
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
237     vm_object_t object, void *handle)
238 {
239
240         TAILQ_INIT(&object->memq);
241         LIST_INIT(&object->shadow_head);
242
243         object->type = type;
244         object->flags = flags;
245         if ((flags & OBJ_SWAP) != 0)
246                 pctrie_init(&object->un_pager.swp.swp_blks);
247
248         /*
249          * Ensure that swap_pager_swapoff() iteration over object_list
250          * sees up to date type and pctrie head if it observed
251          * non-dead object.
252          */
253         atomic_thread_fence_rel();
254
255         object->pg_color = 0;
256         object->size = size;
257         object->domain.dr_policy = NULL;
258         object->generation = 1;
259         object->cleangeneration = 1;
260         refcount_init(&object->ref_count, 1);
261         object->memattr = VM_MEMATTR_DEFAULT;
262         object->cred = NULL;
263         object->charge = 0;
264         object->handle = handle;
265         object->backing_object = NULL;
266         object->backing_object_offset = (vm_ooffset_t) 0;
267 #if VM_NRESERVLEVEL > 0
268         LIST_INIT(&object->rvq);
269 #endif
270         umtx_shm_object_init(object);
271 }
272
273 /*
274  *      vm_object_init:
275  *
276  *      Initialize the VM objects module.
277  */
278 void
279 vm_object_init(void)
280 {
281         TAILQ_INIT(&vm_object_list);
282         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
283
284         rw_init(&kernel_object->lock, "kernel vm object");
285         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
286             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
287 #if VM_NRESERVLEVEL > 0
288         kernel_object->flags |= OBJ_COLORED;
289         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
290 #endif
291         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
292
293         /*
294          * The lock portion of struct vm_object must be type stable due
295          * to vm_pageout_fallback_object_lock locking a vm object
296          * without holding any references to it.
297          *
298          * paging_in_progress is valid always.  Lockless references to
299          * the objects may acquire pip and then check OBJ_DEAD.
300          */
301         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
302 #ifdef INVARIANTS
303             vm_object_zdtor,
304 #else
305             NULL,
306 #endif
307             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
308
309         vm_radix_zinit();
310 }
311
312 void
313 vm_object_clear_flag(vm_object_t object, u_short bits)
314 {
315
316         VM_OBJECT_ASSERT_WLOCKED(object);
317         object->flags &= ~bits;
318 }
319
320 /*
321  *      Sets the default memory attribute for the specified object.  Pages
322  *      that are allocated to this object are by default assigned this memory
323  *      attribute.
324  *
325  *      Presently, this function must be called before any pages are allocated
326  *      to the object.  In the future, this requirement may be relaxed for
327  *      "default" and "swap" objects.
328  */
329 int
330 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
331 {
332
333         VM_OBJECT_ASSERT_WLOCKED(object);
334
335         if (object->type == OBJT_DEAD)
336                 return (KERN_INVALID_ARGUMENT);
337         if (!TAILQ_EMPTY(&object->memq))
338                 return (KERN_FAILURE);
339
340         object->memattr = memattr;
341         return (KERN_SUCCESS);
342 }
343
344 void
345 vm_object_pip_add(vm_object_t object, short i)
346 {
347
348         if (i > 0)
349                 blockcount_acquire(&object->paging_in_progress, i);
350 }
351
352 void
353 vm_object_pip_wakeup(vm_object_t object)
354 {
355
356         vm_object_pip_wakeupn(object, 1);
357 }
358
359 void
360 vm_object_pip_wakeupn(vm_object_t object, short i)
361 {
362
363         if (i > 0)
364                 blockcount_release(&object->paging_in_progress, i);
365 }
366
367 /*
368  * Atomically drop the object lock and wait for pip to drain.  This protects
369  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
370  * on return.
371  */
372 static void
373 vm_object_pip_sleep(vm_object_t object, const char *waitid)
374 {
375
376         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
377             waitid, PVM | PDROP);
378 }
379
380 void
381 vm_object_pip_wait(vm_object_t object, const char *waitid)
382 {
383
384         VM_OBJECT_ASSERT_WLOCKED(object);
385
386         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
387             PVM);
388 }
389
390 void
391 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
392 {
393
394         VM_OBJECT_ASSERT_UNLOCKED(object);
395
396         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
397 }
398
399 /*
400  *      vm_object_allocate:
401  *
402  *      Returns a new object with the given size.
403  */
404 vm_object_t
405 vm_object_allocate(objtype_t type, vm_pindex_t size)
406 {
407         vm_object_t object;
408         u_short flags;
409
410         switch (type) {
411         case OBJT_DEAD:
412                 panic("vm_object_allocate: can't create OBJT_DEAD");
413         case OBJT_DEFAULT:
414                 flags = OBJ_COLORED;
415                 break;
416         case OBJT_SWAP:
417                 flags = OBJ_COLORED | OBJ_SWAP;
418                 break;
419         case OBJT_DEVICE:
420         case OBJT_SG:
421                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
422                 break;
423         case OBJT_MGTDEVICE:
424                 flags = OBJ_FICTITIOUS;
425                 break;
426         case OBJT_PHYS:
427                 flags = OBJ_UNMANAGED;
428                 break;
429         case OBJT_VNODE:
430                 flags = 0;
431                 break;
432         default:
433                 panic("vm_object_allocate: type %d is undefined or dynamic",
434                     type);
435         }
436         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
437         _vm_object_allocate(type, size, flags, object, NULL);
438
439         return (object);
440 }
441
442 vm_object_t
443 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
444 {
445         vm_object_t object;
446
447         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
448         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
449         _vm_object_allocate(dyntype, size, flags, object, NULL);
450
451         return (object);
452 }
453
454 /*
455  *      vm_object_allocate_anon:
456  *
457  *      Returns a new default object of the given size and marked as
458  *      anonymous memory for special split/collapse handling.  Color
459  *      to be initialized by the caller.
460  */
461 vm_object_t
462 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
463     struct ucred *cred, vm_size_t charge)
464 {
465         vm_object_t handle, object;
466
467         if (backing_object == NULL)
468                 handle = NULL;
469         else if ((backing_object->flags & OBJ_ANON) != 0)
470                 handle = backing_object->handle;
471         else
472                 handle = backing_object;
473         object = uma_zalloc(obj_zone, M_WAITOK);
474         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
475             object, handle);
476         object->cred = cred;
477         object->charge = cred != NULL ? charge : 0;
478         return (object);
479 }
480
481 static void
482 vm_object_reference_vnode(vm_object_t object)
483 {
484         u_int old;
485
486         /*
487          * vnode objects need the lock for the first reference
488          * to serialize with vnode_object_deallocate().
489          */
490         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
491                 VM_OBJECT_RLOCK(object);
492                 old = refcount_acquire(&object->ref_count);
493                 if (object->type == OBJT_VNODE && old == 0)
494                         vref(object->handle);
495                 VM_OBJECT_RUNLOCK(object);
496         }
497 }
498
499 /*
500  *      vm_object_reference:
501  *
502  *      Acquires a reference to the given object.
503  */
504 void
505 vm_object_reference(vm_object_t object)
506 {
507
508         if (object == NULL)
509                 return;
510
511         if (object->type == OBJT_VNODE)
512                 vm_object_reference_vnode(object);
513         else
514                 refcount_acquire(&object->ref_count);
515         KASSERT((object->flags & OBJ_DEAD) == 0,
516             ("vm_object_reference: Referenced dead object."));
517 }
518
519 /*
520  *      vm_object_reference_locked:
521  *
522  *      Gets another reference to the given object.
523  *
524  *      The object must be locked.
525  */
526 void
527 vm_object_reference_locked(vm_object_t object)
528 {
529         u_int old;
530
531         VM_OBJECT_ASSERT_LOCKED(object);
532         old = refcount_acquire(&object->ref_count);
533         if (object->type == OBJT_VNODE && old == 0)
534                 vref(object->handle);
535         KASSERT((object->flags & OBJ_DEAD) == 0,
536             ("vm_object_reference: Referenced dead object."));
537 }
538
539 /*
540  * Handle deallocating an object of type OBJT_VNODE.
541  */
542 static void
543 vm_object_deallocate_vnode(vm_object_t object)
544 {
545         struct vnode *vp = (struct vnode *) object->handle;
546         bool last;
547
548         KASSERT(object->type == OBJT_VNODE,
549             ("vm_object_deallocate_vnode: not a vnode object"));
550         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
551
552         /* Object lock to protect handle lookup. */
553         last = refcount_release(&object->ref_count);
554         VM_OBJECT_RUNLOCK(object);
555
556         if (!last)
557                 return;
558
559         if (!umtx_shm_vnobj_persistent)
560                 umtx_shm_object_terminated(object);
561
562         /* vrele may need the vnode lock. */
563         vrele(vp);
564 }
565
566 /*
567  * We dropped a reference on an object and discovered that it had a
568  * single remaining shadow.  This is a sibling of the reference we
569  * dropped.  Attempt to collapse the sibling and backing object.
570  */
571 static vm_object_t
572 vm_object_deallocate_anon(vm_object_t backing_object)
573 {
574         vm_object_t object;
575
576         /* Fetch the final shadow.  */
577         object = LIST_FIRST(&backing_object->shadow_head);
578         KASSERT(object != NULL &&
579             atomic_load_int(&backing_object->shadow_count) == 1,
580             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
581             backing_object->ref_count,
582             atomic_load_int(&backing_object->shadow_count)));
583         KASSERT((object->flags & OBJ_ANON) != 0,
584             ("invalid shadow object %p", object));
585
586         if (!VM_OBJECT_TRYWLOCK(object)) {
587                 /*
588                  * Prevent object from disappearing since we do not have a
589                  * reference.
590                  */
591                 vm_object_pip_add(object, 1);
592                 VM_OBJECT_WUNLOCK(backing_object);
593                 VM_OBJECT_WLOCK(object);
594                 vm_object_pip_wakeup(object);
595         } else
596                 VM_OBJECT_WUNLOCK(backing_object);
597
598         /*
599          * Check for a collapse/terminate race with the last reference holder.
600          */
601         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
602             !refcount_acquire_if_not_zero(&object->ref_count)) {
603                 VM_OBJECT_WUNLOCK(object);
604                 return (NULL);
605         }
606         backing_object = object->backing_object;
607         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
608                 vm_object_collapse(object);
609         VM_OBJECT_WUNLOCK(object);
610
611         return (object);
612 }
613
614 /*
615  *      vm_object_deallocate:
616  *
617  *      Release a reference to the specified object,
618  *      gained either through a vm_object_allocate
619  *      or a vm_object_reference call.  When all references
620  *      are gone, storage associated with this object
621  *      may be relinquished.
622  *
623  *      No object may be locked.
624  */
625 void
626 vm_object_deallocate(vm_object_t object)
627 {
628         vm_object_t temp;
629         bool released;
630
631         while (object != NULL) {
632                 /*
633                  * If the reference count goes to 0 we start calling
634                  * vm_object_terminate() on the object chain.  A ref count
635                  * of 1 may be a special case depending on the shadow count
636                  * being 0 or 1.  These cases require a write lock on the
637                  * object.
638                  */
639                 if ((object->flags & OBJ_ANON) == 0)
640                         released = refcount_release_if_gt(&object->ref_count, 1);
641                 else
642                         released = refcount_release_if_gt(&object->ref_count, 2);
643                 if (released)
644                         return;
645
646                 if (object->type == OBJT_VNODE) {
647                         VM_OBJECT_RLOCK(object);
648                         if (object->type == OBJT_VNODE) {
649                                 vm_object_deallocate_vnode(object);
650                                 return;
651                         }
652                         VM_OBJECT_RUNLOCK(object);
653                 }
654
655                 VM_OBJECT_WLOCK(object);
656                 KASSERT(object->ref_count > 0,
657                     ("vm_object_deallocate: object deallocated too many times: %d",
658                     object->type));
659
660                 /*
661                  * If this is not the final reference to an anonymous
662                  * object we may need to collapse the shadow chain.
663                  */
664                 if (!refcount_release(&object->ref_count)) {
665                         if (object->ref_count > 1 ||
666                             atomic_load_int(&object->shadow_count) == 0) {
667                                 if ((object->flags & OBJ_ANON) != 0 &&
668                                     object->ref_count == 1)
669                                         vm_object_set_flag(object,
670                                             OBJ_ONEMAPPING);
671                                 VM_OBJECT_WUNLOCK(object);
672                                 return;
673                         }
674
675                         /* Handle collapsing last ref on anonymous objects. */
676                         object = vm_object_deallocate_anon(object);
677                         continue;
678                 }
679
680                 /*
681                  * Handle the final reference to an object.  We restart
682                  * the loop with the backing object to avoid recursion.
683                  */
684                 umtx_shm_object_terminated(object);
685                 temp = object->backing_object;
686                 if (temp != NULL) {
687                         KASSERT(object->type == OBJT_DEFAULT ||
688                             object->type == OBJT_SWAP,
689                             ("shadowed tmpfs v_object 2 %p", object));
690                         vm_object_backing_remove(object);
691                 }
692
693                 KASSERT((object->flags & OBJ_DEAD) == 0,
694                     ("vm_object_deallocate: Terminating dead object."));
695                 vm_object_set_flag(object, OBJ_DEAD);
696                 vm_object_terminate(object);
697                 object = temp;
698         }
699 }
700
701 /*
702  *      vm_object_destroy removes the object from the global object list
703  *      and frees the space for the object.
704  */
705 void
706 vm_object_destroy(vm_object_t object)
707 {
708
709         /*
710          * Release the allocation charge.
711          */
712         if (object->cred != NULL) {
713                 swap_release_by_cred(object->charge, object->cred);
714                 object->charge = 0;
715                 crfree(object->cred);
716                 object->cred = NULL;
717         }
718
719         /*
720          * Free the space for the object.
721          */
722         uma_zfree(obj_zone, object);
723 }
724
725 static void
726 vm_object_sub_shadow(vm_object_t object)
727 {
728         KASSERT(object->shadow_count >= 1,
729             ("object %p sub_shadow count zero", object));
730         atomic_subtract_int(&object->shadow_count, 1);
731 }
732
733 static void
734 vm_object_backing_remove_locked(vm_object_t object)
735 {
736         vm_object_t backing_object;
737
738         backing_object = object->backing_object;
739         VM_OBJECT_ASSERT_WLOCKED(object);
740         VM_OBJECT_ASSERT_WLOCKED(backing_object);
741
742         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
743             ("vm_object_backing_remove: Removing collapsing object."));
744
745         vm_object_sub_shadow(backing_object);
746         if ((object->flags & OBJ_SHADOWLIST) != 0) {
747                 LIST_REMOVE(object, shadow_list);
748                 vm_object_clear_flag(object, OBJ_SHADOWLIST);
749         }
750         object->backing_object = NULL;
751 }
752
753 static void
754 vm_object_backing_remove(vm_object_t object)
755 {
756         vm_object_t backing_object;
757
758         VM_OBJECT_ASSERT_WLOCKED(object);
759
760         backing_object = object->backing_object;
761         if ((object->flags & OBJ_SHADOWLIST) != 0) {
762                 VM_OBJECT_WLOCK(backing_object);
763                 vm_object_backing_remove_locked(object);
764                 VM_OBJECT_WUNLOCK(backing_object);
765         } else {
766                 object->backing_object = NULL;
767                 vm_object_sub_shadow(backing_object);
768         }
769 }
770
771 static void
772 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
773 {
774
775         VM_OBJECT_ASSERT_WLOCKED(object);
776
777         atomic_add_int(&backing_object->shadow_count, 1);
778         if ((backing_object->flags & OBJ_ANON) != 0) {
779                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
780                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
781                     shadow_list);
782                 vm_object_set_flag(object, OBJ_SHADOWLIST);
783         }
784         object->backing_object = backing_object;
785 }
786
787 static void
788 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
789 {
790
791         VM_OBJECT_ASSERT_WLOCKED(object);
792
793         if ((backing_object->flags & OBJ_ANON) != 0) {
794                 VM_OBJECT_WLOCK(backing_object);
795                 vm_object_backing_insert_locked(object, backing_object);
796                 VM_OBJECT_WUNLOCK(backing_object);
797         } else {
798                 object->backing_object = backing_object;
799                 atomic_add_int(&backing_object->shadow_count, 1);
800         }
801 }
802
803 /*
804  * Insert an object into a backing_object's shadow list with an additional
805  * reference to the backing_object added.
806  */
807 static void
808 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
809 {
810
811         VM_OBJECT_ASSERT_WLOCKED(object);
812
813         if ((backing_object->flags & OBJ_ANON) != 0) {
814                 VM_OBJECT_WLOCK(backing_object);
815                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
816                     ("shadowing dead anonymous object"));
817                 vm_object_reference_locked(backing_object);
818                 vm_object_backing_insert_locked(object, backing_object);
819                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
820                 VM_OBJECT_WUNLOCK(backing_object);
821         } else {
822                 vm_object_reference(backing_object);
823                 atomic_add_int(&backing_object->shadow_count, 1);
824                 object->backing_object = backing_object;
825         }
826 }
827
828 /*
829  * Transfer a backing reference from backing_object to object.
830  */
831 static void
832 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
833 {
834         vm_object_t new_backing_object;
835
836         /*
837          * Note that the reference to backing_object->backing_object
838          * moves from within backing_object to within object.
839          */
840         vm_object_backing_remove_locked(object);
841         new_backing_object = backing_object->backing_object;
842         if (new_backing_object == NULL)
843                 return;
844         if ((new_backing_object->flags & OBJ_ANON) != 0) {
845                 VM_OBJECT_WLOCK(new_backing_object);
846                 vm_object_backing_remove_locked(backing_object);
847                 vm_object_backing_insert_locked(object, new_backing_object);
848                 VM_OBJECT_WUNLOCK(new_backing_object);
849         } else {
850                 /*
851                  * shadow_count for new_backing_object is left
852                  * unchanged, its reference provided by backing_object
853                  * is replaced by object.
854                  */
855                 object->backing_object = new_backing_object;
856                 backing_object->backing_object = NULL;
857         }
858 }
859
860 /*
861  * Wait for a concurrent collapse to settle.
862  */
863 static void
864 vm_object_collapse_wait(vm_object_t object)
865 {
866
867         VM_OBJECT_ASSERT_WLOCKED(object);
868
869         while ((object->flags & OBJ_COLLAPSING) != 0) {
870                 vm_object_pip_wait(object, "vmcolwait");
871                 counter_u64_add(object_collapse_waits, 1);
872         }
873 }
874
875 /*
876  * Waits for a backing object to clear a pending collapse and returns
877  * it locked if it is an ANON object.
878  */
879 static vm_object_t
880 vm_object_backing_collapse_wait(vm_object_t object)
881 {
882         vm_object_t backing_object;
883
884         VM_OBJECT_ASSERT_WLOCKED(object);
885
886         for (;;) {
887                 backing_object = object->backing_object;
888                 if (backing_object == NULL ||
889                     (backing_object->flags & OBJ_ANON) == 0)
890                         return (NULL);
891                 VM_OBJECT_WLOCK(backing_object);
892                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
893                         break;
894                 VM_OBJECT_WUNLOCK(object);
895                 vm_object_pip_sleep(backing_object, "vmbckwait");
896                 counter_u64_add(object_collapse_waits, 1);
897                 VM_OBJECT_WLOCK(object);
898         }
899         return (backing_object);
900 }
901
902 /*
903  *      vm_object_terminate_pages removes any remaining pageable pages
904  *      from the object and resets the object to an empty state.
905  */
906 static void
907 vm_object_terminate_pages(vm_object_t object)
908 {
909         vm_page_t p, p_next;
910
911         VM_OBJECT_ASSERT_WLOCKED(object);
912
913         /*
914          * Free any remaining pageable pages.  This also removes them from the
915          * paging queues.  However, don't free wired pages, just remove them
916          * from the object.  Rather than incrementally removing each page from
917          * the object, the page and object are reset to any empty state. 
918          */
919         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
920                 vm_page_assert_unbusied(p);
921                 KASSERT(p->object == object &&
922                     (p->ref_count & VPRC_OBJREF) != 0,
923                     ("vm_object_terminate_pages: page %p is inconsistent", p));
924
925                 p->object = NULL;
926                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
927                         VM_CNT_INC(v_pfree);
928                         vm_page_free(p);
929                 }
930         }
931
932         /*
933          * If the object contained any pages, then reset it to an empty state.
934          * None of the object's fields, including "resident_page_count", were
935          * modified by the preceding loop.
936          */
937         if (object->resident_page_count != 0) {
938                 vm_radix_reclaim_allnodes(&object->rtree);
939                 TAILQ_INIT(&object->memq);
940                 object->resident_page_count = 0;
941                 if (object->type == OBJT_VNODE)
942                         vdrop(object->handle);
943         }
944 }
945
946 /*
947  *      vm_object_terminate actually destroys the specified object, freeing
948  *      up all previously used resources.
949  *
950  *      The object must be locked.
951  *      This routine may block.
952  */
953 void
954 vm_object_terminate(vm_object_t object)
955 {
956
957         VM_OBJECT_ASSERT_WLOCKED(object);
958         KASSERT((object->flags & OBJ_DEAD) != 0,
959             ("terminating non-dead obj %p", object));
960         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
961             ("terminating collapsing obj %p", object));
962         KASSERT(object->backing_object == NULL,
963             ("terminating shadow obj %p", object));
964
965         /*
966          * Wait for the pageout daemon and other current users to be
967          * done with the object.  Note that new paging_in_progress
968          * users can come after this wait, but they must check
969          * OBJ_DEAD flag set (without unlocking the object), and avoid
970          * the object being terminated.
971          */
972         vm_object_pip_wait(object, "objtrm");
973
974         KASSERT(object->ref_count == 0,
975             ("vm_object_terminate: object with references, ref_count=%d",
976             object->ref_count));
977
978         if ((object->flags & OBJ_PG_DTOR) == 0)
979                 vm_object_terminate_pages(object);
980
981 #if VM_NRESERVLEVEL > 0
982         if (__predict_false(!LIST_EMPTY(&object->rvq)))
983                 vm_reserv_break_all(object);
984 #endif
985
986         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
987             (object->flags & OBJ_SWAP) != 0,
988             ("%s: non-swap obj %p has cred", __func__, object));
989
990         /*
991          * Let the pager know object is dead.
992          */
993         vm_pager_deallocate(object);
994         VM_OBJECT_WUNLOCK(object);
995
996         vm_object_destroy(object);
997 }
998
999 /*
1000  * Make the page read-only so that we can clear the object flags.  However, if
1001  * this is a nosync mmap then the object is likely to stay dirty so do not
1002  * mess with the page and do not clear the object flags.  Returns TRUE if the
1003  * page should be flushed, and FALSE otherwise.
1004  */
1005 static boolean_t
1006 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
1007 {
1008
1009         vm_page_assert_busied(p);
1010
1011         /*
1012          * If we have been asked to skip nosync pages and this is a
1013          * nosync page, skip it.  Note that the object flags were not
1014          * cleared in this case so we do not have to set them.
1015          */
1016         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
1017                 *allclean = FALSE;
1018                 return (FALSE);
1019         } else {
1020                 pmap_remove_write(p);
1021                 return (p->dirty != 0);
1022         }
1023 }
1024
1025 /*
1026  *      vm_object_page_clean
1027  *
1028  *      Clean all dirty pages in the specified range of object.  Leaves page 
1029  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1030  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1031  *      leaving the object dirty.
1032  *
1033  *      For swap objects backing tmpfs regular files, do not flush anything,
1034  *      but remove write protection on the mapped pages to update mtime through
1035  *      mmaped writes.
1036  *
1037  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1038  *      synchronous clustering mode implementation.
1039  *
1040  *      Odd semantics: if start == end, we clean everything.
1041  *
1042  *      The object must be locked.
1043  *
1044  *      Returns FALSE if some page from the range was not written, as
1045  *      reported by the pager, and TRUE otherwise.
1046  */
1047 boolean_t
1048 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1049     int flags)
1050 {
1051         vm_page_t np, p;
1052         vm_pindex_t pi, tend, tstart;
1053         int curgeneration, n, pagerflags;
1054         boolean_t eio, res, allclean;
1055
1056         VM_OBJECT_ASSERT_WLOCKED(object);
1057
1058         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1059                 return (TRUE);
1060
1061         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1062             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1063         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1064
1065         tstart = OFF_TO_IDX(start);
1066         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1067         allclean = tstart == 0 && tend >= object->size;
1068         res = TRUE;
1069
1070 rescan:
1071         curgeneration = object->generation;
1072
1073         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1074                 pi = p->pindex;
1075                 if (pi >= tend)
1076                         break;
1077                 np = TAILQ_NEXT(p, listq);
1078                 if (vm_page_none_valid(p))
1079                         continue;
1080                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1081                         if (object->generation != curgeneration &&
1082                             (flags & OBJPC_SYNC) != 0)
1083                                 goto rescan;
1084                         np = vm_page_find_least(object, pi);
1085                         continue;
1086                 }
1087                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1088                         vm_page_xunbusy(p);
1089                         continue;
1090                 }
1091                 if (object->type == OBJT_VNODE) {
1092                         n = vm_object_page_collect_flush(object, p, pagerflags,
1093                             flags, &allclean, &eio);
1094                         if (eio) {
1095                                 res = FALSE;
1096                                 allclean = FALSE;
1097                         }
1098                         if (object->generation != curgeneration &&
1099                             (flags & OBJPC_SYNC) != 0)
1100                                 goto rescan;
1101
1102                         /*
1103                          * If the VOP_PUTPAGES() did a truncated write, so
1104                          * that even the first page of the run is not fully
1105                          * written, vm_pageout_flush() returns 0 as the run
1106                          * length.  Since the condition that caused truncated
1107                          * write may be permanent, e.g. exhausted free space,
1108                          * accepting n == 0 would cause an infinite loop.
1109                          *
1110                          * Forwarding the iterator leaves the unwritten page
1111                          * behind, but there is not much we can do there if
1112                          * filesystem refuses to write it.
1113                          */
1114                         if (n == 0) {
1115                                 n = 1;
1116                                 allclean = FALSE;
1117                         }
1118                 } else {
1119                         n = 1;
1120                         vm_page_xunbusy(p);
1121                 }
1122                 np = vm_page_find_least(object, pi + n);
1123         }
1124 #if 0
1125         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1126 #endif
1127
1128         /*
1129          * Leave updating cleangeneration for tmpfs objects to tmpfs
1130          * scan.  It needs to update mtime, which happens for other
1131          * filesystems during page writeouts.
1132          */
1133         if (allclean && object->type == OBJT_VNODE)
1134                 object->cleangeneration = curgeneration;
1135         return (res);
1136 }
1137
1138 static int
1139 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1140     int flags, boolean_t *allclean, boolean_t *eio)
1141 {
1142         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1143         int count, i, mreq, runlen;
1144
1145         vm_page_lock_assert(p, MA_NOTOWNED);
1146         vm_page_assert_xbusied(p);
1147         VM_OBJECT_ASSERT_WLOCKED(object);
1148
1149         count = 1;
1150         mreq = 0;
1151
1152         for (tp = p; count < vm_pageout_page_count; count++) {
1153                 tp = vm_page_next(tp);
1154                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1155                         break;
1156                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1157                         vm_page_xunbusy(tp);
1158                         break;
1159                 }
1160         }
1161
1162         for (p_first = p; count < vm_pageout_page_count; count++) {
1163                 tp = vm_page_prev(p_first);
1164                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1165                         break;
1166                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1167                         vm_page_xunbusy(tp);
1168                         break;
1169                 }
1170                 p_first = tp;
1171                 mreq++;
1172         }
1173
1174         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1175                 ma[i] = tp;
1176
1177         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1178         return (runlen);
1179 }
1180
1181 /*
1182  * Note that there is absolutely no sense in writing out
1183  * anonymous objects, so we track down the vnode object
1184  * to write out.
1185  * We invalidate (remove) all pages from the address space
1186  * for semantic correctness.
1187  *
1188  * If the backing object is a device object with unmanaged pages, then any
1189  * mappings to the specified range of pages must be removed before this
1190  * function is called.
1191  *
1192  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1193  * may start out with a NULL object.
1194  */
1195 boolean_t
1196 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1197     boolean_t syncio, boolean_t invalidate)
1198 {
1199         vm_object_t backing_object;
1200         struct vnode *vp;
1201         struct mount *mp;
1202         int error, flags, fsync_after;
1203         boolean_t res;
1204
1205         if (object == NULL)
1206                 return (TRUE);
1207         res = TRUE;
1208         error = 0;
1209         VM_OBJECT_WLOCK(object);
1210         while ((backing_object = object->backing_object) != NULL) {
1211                 VM_OBJECT_WLOCK(backing_object);
1212                 offset += object->backing_object_offset;
1213                 VM_OBJECT_WUNLOCK(object);
1214                 object = backing_object;
1215                 if (object->size < OFF_TO_IDX(offset + size))
1216                         size = IDX_TO_OFF(object->size) - offset;
1217         }
1218         /*
1219          * Flush pages if writing is allowed, invalidate them
1220          * if invalidation requested.  Pages undergoing I/O
1221          * will be ignored by vm_object_page_remove().
1222          *
1223          * We cannot lock the vnode and then wait for paging
1224          * to complete without deadlocking against vm_fault.
1225          * Instead we simply call vm_object_page_remove() and
1226          * allow it to block internally on a page-by-page
1227          * basis when it encounters pages undergoing async
1228          * I/O.
1229          */
1230         if (object->type == OBJT_VNODE &&
1231             vm_object_mightbedirty(object) != 0 &&
1232             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1233                 VM_OBJECT_WUNLOCK(object);
1234                 (void)vn_start_write(vp, &mp, V_WAIT);
1235                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1236                 if (syncio && !invalidate && offset == 0 &&
1237                     atop(size) == object->size) {
1238                         /*
1239                          * If syncing the whole mapping of the file,
1240                          * it is faster to schedule all the writes in
1241                          * async mode, also allowing the clustering,
1242                          * and then wait for i/o to complete.
1243                          */
1244                         flags = 0;
1245                         fsync_after = TRUE;
1246                 } else {
1247                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1248                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1249                         fsync_after = FALSE;
1250                 }
1251                 VM_OBJECT_WLOCK(object);
1252                 res = vm_object_page_clean(object, offset, offset + size,
1253                     flags);
1254                 VM_OBJECT_WUNLOCK(object);
1255                 if (fsync_after) {
1256                         for (;;) {
1257                                 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1258                                 if (error != ERELOOKUP)
1259                                         break;
1260
1261                                 /*
1262                                  * Allow SU/bufdaemon to handle more
1263                                  * dependencies in the meantime.
1264                                  */
1265                                 VOP_UNLOCK(vp);
1266                                 vn_finished_write(mp);
1267
1268                                 (void)vn_start_write(vp, &mp, V_WAIT);
1269                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1270                         }
1271                 }
1272                 VOP_UNLOCK(vp);
1273                 vn_finished_write(mp);
1274                 if (error != 0)
1275                         res = FALSE;
1276                 VM_OBJECT_WLOCK(object);
1277         }
1278         if ((object->type == OBJT_VNODE ||
1279              object->type == OBJT_DEVICE) && invalidate) {
1280                 if (object->type == OBJT_DEVICE)
1281                         /*
1282                          * The option OBJPR_NOTMAPPED must be passed here
1283                          * because vm_object_page_remove() cannot remove
1284                          * unmanaged mappings.
1285                          */
1286                         flags = OBJPR_NOTMAPPED;
1287                 else if (old_msync)
1288                         flags = 0;
1289                 else
1290                         flags = OBJPR_CLEANONLY;
1291                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1292                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1293         }
1294         VM_OBJECT_WUNLOCK(object);
1295         return (res);
1296 }
1297
1298 /*
1299  * Determine whether the given advice can be applied to the object.  Advice is
1300  * not applied to unmanaged pages since they never belong to page queues, and
1301  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1302  * have been mapped at most once.
1303  */
1304 static bool
1305 vm_object_advice_applies(vm_object_t object, int advice)
1306 {
1307
1308         if ((object->flags & OBJ_UNMANAGED) != 0)
1309                 return (false);
1310         if (advice != MADV_FREE)
1311                 return (true);
1312         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1313             (OBJ_ONEMAPPING | OBJ_ANON));
1314 }
1315
1316 static void
1317 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1318     vm_size_t size)
1319 {
1320
1321         if (advice == MADV_FREE)
1322                 vm_pager_freespace(object, pindex, size);
1323 }
1324
1325 /*
1326  *      vm_object_madvise:
1327  *
1328  *      Implements the madvise function at the object/page level.
1329  *
1330  *      MADV_WILLNEED   (any object)
1331  *
1332  *          Activate the specified pages if they are resident.
1333  *
1334  *      MADV_DONTNEED   (any object)
1335  *
1336  *          Deactivate the specified pages if they are resident.
1337  *
1338  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1339  *                       OBJ_ONEMAPPING only)
1340  *
1341  *          Deactivate and clean the specified pages if they are
1342  *          resident.  This permits the process to reuse the pages
1343  *          without faulting or the kernel to reclaim the pages
1344  *          without I/O.
1345  */
1346 void
1347 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1348     int advice)
1349 {
1350         vm_pindex_t tpindex;
1351         vm_object_t backing_object, tobject;
1352         vm_page_t m, tm;
1353
1354         if (object == NULL)
1355                 return;
1356
1357 relookup:
1358         VM_OBJECT_WLOCK(object);
1359         if (!vm_object_advice_applies(object, advice)) {
1360                 VM_OBJECT_WUNLOCK(object);
1361                 return;
1362         }
1363         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1364                 tobject = object;
1365
1366                 /*
1367                  * If the next page isn't resident in the top-level object, we
1368                  * need to search the shadow chain.  When applying MADV_FREE, we
1369                  * take care to release any swap space used to store
1370                  * non-resident pages.
1371                  */
1372                 if (m == NULL || pindex < m->pindex) {
1373                         /*
1374                          * Optimize a common case: if the top-level object has
1375                          * no backing object, we can skip over the non-resident
1376                          * range in constant time.
1377                          */
1378                         if (object->backing_object == NULL) {
1379                                 tpindex = (m != NULL && m->pindex < end) ?
1380                                     m->pindex : end;
1381                                 vm_object_madvise_freespace(object, advice,
1382                                     pindex, tpindex - pindex);
1383                                 if ((pindex = tpindex) == end)
1384                                         break;
1385                                 goto next_page;
1386                         }
1387
1388                         tpindex = pindex;
1389                         do {
1390                                 vm_object_madvise_freespace(tobject, advice,
1391                                     tpindex, 1);
1392                                 /*
1393                                  * Prepare to search the next object in the
1394                                  * chain.
1395                                  */
1396                                 backing_object = tobject->backing_object;
1397                                 if (backing_object == NULL)
1398                                         goto next_pindex;
1399                                 VM_OBJECT_WLOCK(backing_object);
1400                                 tpindex +=
1401                                     OFF_TO_IDX(tobject->backing_object_offset);
1402                                 if (tobject != object)
1403                                         VM_OBJECT_WUNLOCK(tobject);
1404                                 tobject = backing_object;
1405                                 if (!vm_object_advice_applies(tobject, advice))
1406                                         goto next_pindex;
1407                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1408                             NULL);
1409                 } else {
1410 next_page:
1411                         tm = m;
1412                         m = TAILQ_NEXT(m, listq);
1413                 }
1414
1415                 /*
1416                  * If the page is not in a normal state, skip it.  The page
1417                  * can not be invalidated while the object lock is held.
1418                  */
1419                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1420                         goto next_pindex;
1421                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1422                     ("vm_object_madvise: page %p is fictitious", tm));
1423                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1424                     ("vm_object_madvise: page %p is not managed", tm));
1425                 if (vm_page_tryxbusy(tm) == 0) {
1426                         if (object != tobject)
1427                                 VM_OBJECT_WUNLOCK(object);
1428                         if (advice == MADV_WILLNEED) {
1429                                 /*
1430                                  * Reference the page before unlocking and
1431                                  * sleeping so that the page daemon is less
1432                                  * likely to reclaim it.
1433                                  */
1434                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1435                         }
1436                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1437                                 VM_OBJECT_WUNLOCK(tobject);
1438                         goto relookup;
1439                 }
1440                 vm_page_advise(tm, advice);
1441                 vm_page_xunbusy(tm);
1442                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1443 next_pindex:
1444                 if (tobject != object)
1445                         VM_OBJECT_WUNLOCK(tobject);
1446         }
1447         VM_OBJECT_WUNLOCK(object);
1448 }
1449
1450 /*
1451  *      vm_object_shadow:
1452  *
1453  *      Create a new object which is backed by the
1454  *      specified existing object range.  The source
1455  *      object reference is deallocated.
1456  *
1457  *      The new object and offset into that object
1458  *      are returned in the source parameters.
1459  */
1460 void
1461 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1462     struct ucred *cred, bool shared)
1463 {
1464         vm_object_t source;
1465         vm_object_t result;
1466
1467         source = *object;
1468
1469         /*
1470          * Don't create the new object if the old object isn't shared.
1471          *
1472          * If we hold the only reference we can guarantee that it won't
1473          * increase while we have the map locked.  Otherwise the race is
1474          * harmless and we will end up with an extra shadow object that
1475          * will be collapsed later.
1476          */
1477         if (source != NULL && source->ref_count == 1 &&
1478             (source->flags & OBJ_ANON) != 0)
1479                 return;
1480
1481         /*
1482          * Allocate a new object with the given length.
1483          */
1484         result = vm_object_allocate_anon(atop(length), source, cred, length);
1485
1486         /*
1487          * Store the offset into the source object, and fix up the offset into
1488          * the new object.
1489          */
1490         result->backing_object_offset = *offset;
1491
1492         if (shared || source != NULL) {
1493                 VM_OBJECT_WLOCK(result);
1494
1495                 /*
1496                  * The new object shadows the source object, adding a
1497                  * reference to it.  Our caller changes his reference
1498                  * to point to the new object, removing a reference to
1499                  * the source object.  Net result: no change of
1500                  * reference count, unless the caller needs to add one
1501                  * more reference due to forking a shared map entry.
1502                  */
1503                 if (shared) {
1504                         vm_object_reference_locked(result);
1505                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1506                 }
1507
1508                 /*
1509                  * Try to optimize the result object's page color when
1510                  * shadowing in order to maintain page coloring
1511                  * consistency in the combined shadowed object.
1512                  */
1513                 if (source != NULL) {
1514                         vm_object_backing_insert(result, source);
1515                         result->domain = source->domain;
1516 #if VM_NRESERVLEVEL > 0
1517                         vm_object_set_flag(result,
1518                             (source->flags & OBJ_COLORED));
1519                         result->pg_color = (source->pg_color +
1520                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1521                             1)) - 1);
1522 #endif
1523                 }
1524                 VM_OBJECT_WUNLOCK(result);
1525         }
1526
1527         /*
1528          * Return the new things
1529          */
1530         *offset = 0;
1531         *object = result;
1532 }
1533
1534 /*
1535  *      vm_object_split:
1536  *
1537  * Split the pages in a map entry into a new object.  This affords
1538  * easier removal of unused pages, and keeps object inheritance from
1539  * being a negative impact on memory usage.
1540  */
1541 void
1542 vm_object_split(vm_map_entry_t entry)
1543 {
1544         vm_page_t m, m_busy, m_next;
1545         vm_object_t orig_object, new_object, backing_object;
1546         vm_pindex_t idx, offidxstart;
1547         vm_size_t size;
1548
1549         orig_object = entry->object.vm_object;
1550         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1551             ("vm_object_split:  Splitting object with multiple mappings."));
1552         if ((orig_object->flags & OBJ_ANON) == 0)
1553                 return;
1554         if (orig_object->ref_count <= 1)
1555                 return;
1556         VM_OBJECT_WUNLOCK(orig_object);
1557
1558         offidxstart = OFF_TO_IDX(entry->offset);
1559         size = atop(entry->end - entry->start);
1560
1561         /*
1562          * If swap_pager_copy() is later called, it will convert new_object
1563          * into a swap object.
1564          */
1565         new_object = vm_object_allocate_anon(size, orig_object,
1566             orig_object->cred, ptoa(size));
1567
1568         /*
1569          * We must wait for the orig_object to complete any in-progress
1570          * collapse so that the swap blocks are stable below.  The
1571          * additional reference on backing_object by new object will
1572          * prevent further collapse operations until split completes.
1573          */
1574         VM_OBJECT_WLOCK(orig_object);
1575         vm_object_collapse_wait(orig_object);
1576
1577         /*
1578          * At this point, the new object is still private, so the order in
1579          * which the original and new objects are locked does not matter.
1580          */
1581         VM_OBJECT_WLOCK(new_object);
1582         new_object->domain = orig_object->domain;
1583         backing_object = orig_object->backing_object;
1584         if (backing_object != NULL) {
1585                 vm_object_backing_insert_ref(new_object, backing_object);
1586                 new_object->backing_object_offset = 
1587                     orig_object->backing_object_offset + entry->offset;
1588         }
1589         if (orig_object->cred != NULL) {
1590                 crhold(orig_object->cred);
1591                 KASSERT(orig_object->charge >= ptoa(size),
1592                     ("orig_object->charge < 0"));
1593                 orig_object->charge -= ptoa(size);
1594         }
1595
1596         /*
1597          * Mark the split operation so that swap_pager_getpages() knows
1598          * that the object is in transition.
1599          */
1600         vm_object_set_flag(orig_object, OBJ_SPLIT);
1601         m_busy = NULL;
1602 #ifdef INVARIANTS
1603         idx = 0;
1604 #endif
1605 retry:
1606         m = vm_page_find_least(orig_object, offidxstart);
1607         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1608             ("%s: object %p was repopulated", __func__, orig_object));
1609         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1610             m = m_next) {
1611                 m_next = TAILQ_NEXT(m, listq);
1612
1613                 /*
1614                  * We must wait for pending I/O to complete before we can
1615                  * rename the page.
1616                  *
1617                  * We do not have to VM_PROT_NONE the page as mappings should
1618                  * not be changed by this operation.
1619                  */
1620                 if (vm_page_tryxbusy(m) == 0) {
1621                         VM_OBJECT_WUNLOCK(new_object);
1622                         if (vm_page_busy_sleep(m, "spltwt", 0))
1623                                 VM_OBJECT_WLOCK(orig_object);
1624                         VM_OBJECT_WLOCK(new_object);
1625                         goto retry;
1626                 }
1627
1628                 /*
1629                  * The page was left invalid.  Likely placed there by
1630                  * an incomplete fault.  Just remove and ignore.
1631                  */
1632                 if (vm_page_none_valid(m)) {
1633                         if (vm_page_remove(m))
1634                                 vm_page_free(m);
1635                         continue;
1636                 }
1637
1638                 /* vm_page_rename() will dirty the page. */
1639                 if (vm_page_rename(m, new_object, idx)) {
1640                         vm_page_xunbusy(m);
1641                         VM_OBJECT_WUNLOCK(new_object);
1642                         VM_OBJECT_WUNLOCK(orig_object);
1643                         vm_radix_wait();
1644                         VM_OBJECT_WLOCK(orig_object);
1645                         VM_OBJECT_WLOCK(new_object);
1646                         goto retry;
1647                 }
1648
1649 #if VM_NRESERVLEVEL > 0
1650                 /*
1651                  * If some of the reservation's allocated pages remain with
1652                  * the original object, then transferring the reservation to
1653                  * the new object is neither particularly beneficial nor
1654                  * particularly harmful as compared to leaving the reservation
1655                  * with the original object.  If, however, all of the
1656                  * reservation's allocated pages are transferred to the new
1657                  * object, then transferring the reservation is typically
1658                  * beneficial.  Determining which of these two cases applies
1659                  * would be more costly than unconditionally renaming the
1660                  * reservation.
1661                  */
1662                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1663 #endif
1664
1665                 /*
1666                  * orig_object's type may change while sleeping, so keep track
1667                  * of the beginning of the busied range.
1668                  */
1669                 if (orig_object->type != OBJT_SWAP)
1670                         vm_page_xunbusy(m);
1671                 else if (m_busy == NULL)
1672                         m_busy = m;
1673         }
1674         if ((orig_object->flags & OBJ_SWAP) != 0) {
1675                 /*
1676                  * swap_pager_copy() can sleep, in which case the orig_object's
1677                  * and new_object's locks are released and reacquired. 
1678                  */
1679                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1680                 if (m_busy != NULL)
1681                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1682                                 vm_page_xunbusy(m_busy);
1683         }
1684         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1685         VM_OBJECT_WUNLOCK(orig_object);
1686         VM_OBJECT_WUNLOCK(new_object);
1687         entry->object.vm_object = new_object;
1688         entry->offset = 0LL;
1689         vm_object_deallocate(orig_object);
1690         VM_OBJECT_WLOCK(new_object);
1691 }
1692
1693 static vm_page_t
1694 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1695 {
1696         vm_object_t backing_object;
1697
1698         VM_OBJECT_ASSERT_WLOCKED(object);
1699         backing_object = object->backing_object;
1700         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1701
1702         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1703             ("invalid ownership %p %p %p", p, object, backing_object));
1704         /* The page is only NULL when rename fails. */
1705         if (p == NULL) {
1706                 VM_OBJECT_WUNLOCK(object);
1707                 VM_OBJECT_WUNLOCK(backing_object);
1708                 vm_radix_wait();
1709                 VM_OBJECT_WLOCK(object);
1710         } else if (p->object == object) {
1711                 VM_OBJECT_WUNLOCK(backing_object);
1712                 if (vm_page_busy_sleep(p, "vmocol", 0))
1713                         VM_OBJECT_WLOCK(object);
1714         } else {
1715                 VM_OBJECT_WUNLOCK(object);
1716                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1717                         VM_OBJECT_WUNLOCK(backing_object);
1718                 VM_OBJECT_WLOCK(object);
1719         }
1720         VM_OBJECT_WLOCK(backing_object);
1721         return (TAILQ_FIRST(&backing_object->memq));
1722 }
1723
1724 static bool
1725 vm_object_scan_all_shadowed(vm_object_t object)
1726 {
1727         vm_object_t backing_object;
1728         vm_page_t p, pp;
1729         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1730
1731         VM_OBJECT_ASSERT_WLOCKED(object);
1732         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1733
1734         backing_object = object->backing_object;
1735
1736         if ((backing_object->flags & OBJ_ANON) == 0)
1737                 return (false);
1738
1739         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1740         p = vm_page_find_least(backing_object, pi);
1741         ps = swap_pager_find_least(backing_object, pi);
1742
1743         /*
1744          * Only check pages inside the parent object's range and
1745          * inside the parent object's mapping of the backing object.
1746          */
1747         for (;; pi++) {
1748                 if (p != NULL && p->pindex < pi)
1749                         p = TAILQ_NEXT(p, listq);
1750                 if (ps < pi)
1751                         ps = swap_pager_find_least(backing_object, pi);
1752                 if (p == NULL && ps >= backing_object->size)
1753                         break;
1754                 else if (p == NULL)
1755                         pi = ps;
1756                 else
1757                         pi = MIN(p->pindex, ps);
1758
1759                 new_pindex = pi - backing_offset_index;
1760                 if (new_pindex >= object->size)
1761                         break;
1762
1763                 if (p != NULL) {
1764                         /*
1765                          * If the backing object page is busy a
1766                          * grandparent or older page may still be
1767                          * undergoing CoW.  It is not safe to collapse
1768                          * the backing object until it is quiesced.
1769                          */
1770                         if (vm_page_tryxbusy(p) == 0)
1771                                 return (false);
1772
1773                         /*
1774                          * We raced with the fault handler that left
1775                          * newly allocated invalid page on the object
1776                          * queue and retried.
1777                          */
1778                         if (!vm_page_all_valid(p))
1779                                 goto unbusy_ret;
1780                 }
1781
1782                 /*
1783                  * See if the parent has the page or if the parent's object
1784                  * pager has the page.  If the parent has the page but the page
1785                  * is not valid, the parent's object pager must have the page.
1786                  *
1787                  * If this fails, the parent does not completely shadow the
1788                  * object and we might as well give up now.
1789                  */
1790                 pp = vm_page_lookup(object, new_pindex);
1791
1792                 /*
1793                  * The valid check here is stable due to object lock
1794                  * being required to clear valid and initiate paging.
1795                  * Busy of p disallows fault handler to validate pp.
1796                  */
1797                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1798                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1799                         goto unbusy_ret;
1800                 if (p != NULL)
1801                         vm_page_xunbusy(p);
1802         }
1803         return (true);
1804
1805 unbusy_ret:
1806         if (p != NULL)
1807                 vm_page_xunbusy(p);
1808         return (false);
1809 }
1810
1811 static void
1812 vm_object_collapse_scan(vm_object_t object)
1813 {
1814         vm_object_t backing_object;
1815         vm_page_t next, p, pp;
1816         vm_pindex_t backing_offset_index, new_pindex;
1817
1818         VM_OBJECT_ASSERT_WLOCKED(object);
1819         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1820
1821         backing_object = object->backing_object;
1822         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1823
1824         /*
1825          * Our scan
1826          */
1827         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1828                 next = TAILQ_NEXT(p, listq);
1829                 new_pindex = p->pindex - backing_offset_index;
1830
1831                 /*
1832                  * Check for busy page
1833                  */
1834                 if (vm_page_tryxbusy(p) == 0) {
1835                         next = vm_object_collapse_scan_wait(object, p);
1836                         continue;
1837                 }
1838
1839                 KASSERT(object->backing_object == backing_object,
1840                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1841                     object->backing_object, backing_object));
1842                 KASSERT(p->object == backing_object,
1843                     ("vm_object_collapse_scan: object mismatch %p != %p",
1844                     p->object, backing_object));
1845
1846                 if (p->pindex < backing_offset_index ||
1847                     new_pindex >= object->size) {
1848                         vm_pager_freespace(backing_object, p->pindex, 1);
1849
1850                         KASSERT(!pmap_page_is_mapped(p),
1851                             ("freeing mapped page %p", p));
1852                         if (vm_page_remove(p))
1853                                 vm_page_free(p);
1854                         continue;
1855                 }
1856
1857                 if (!vm_page_all_valid(p)) {
1858                         KASSERT(!pmap_page_is_mapped(p),
1859                             ("freeing mapped page %p", p));
1860                         if (vm_page_remove(p))
1861                                 vm_page_free(p);
1862                         continue;
1863                 }
1864
1865                 pp = vm_page_lookup(object, new_pindex);
1866                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1867                         vm_page_xunbusy(p);
1868                         /*
1869                          * The page in the parent is busy and possibly not
1870                          * (yet) valid.  Until its state is finalized by the
1871                          * busy bit owner, we can't tell whether it shadows the
1872                          * original page.
1873                          */
1874                         next = vm_object_collapse_scan_wait(object, pp);
1875                         continue;
1876                 }
1877
1878                 if (pp != NULL && vm_page_none_valid(pp)) {
1879                         /*
1880                          * The page was invalid in the parent.  Likely placed
1881                          * there by an incomplete fault.  Just remove and
1882                          * ignore.  p can replace it.
1883                          */
1884                         if (vm_page_remove(pp))
1885                                 vm_page_free(pp);
1886                         pp = NULL;
1887                 }
1888
1889                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1890                         NULL)) {
1891                         /*
1892                          * The page already exists in the parent OR swap exists
1893                          * for this location in the parent.  Leave the parent's
1894                          * page alone.  Destroy the original page from the
1895                          * backing object.
1896                          */
1897                         vm_pager_freespace(backing_object, p->pindex, 1);
1898                         KASSERT(!pmap_page_is_mapped(p),
1899                             ("freeing mapped page %p", p));
1900                         if (vm_page_remove(p))
1901                                 vm_page_free(p);
1902                         if (pp != NULL)
1903                                 vm_page_xunbusy(pp);
1904                         continue;
1905                 }
1906
1907                 /*
1908                  * Page does not exist in parent, rename the page from the
1909                  * backing object to the main object.
1910                  *
1911                  * If the page was mapped to a process, it can remain mapped
1912                  * through the rename.  vm_page_rename() will dirty the page.
1913                  */
1914                 if (vm_page_rename(p, object, new_pindex)) {
1915                         vm_page_xunbusy(p);
1916                         next = vm_object_collapse_scan_wait(object, NULL);
1917                         continue;
1918                 }
1919
1920                 /* Use the old pindex to free the right page. */
1921                 vm_pager_freespace(backing_object, new_pindex +
1922                     backing_offset_index, 1);
1923
1924 #if VM_NRESERVLEVEL > 0
1925                 /*
1926                  * Rename the reservation.
1927                  */
1928                 vm_reserv_rename(p, object, backing_object,
1929                     backing_offset_index);
1930 #endif
1931                 vm_page_xunbusy(p);
1932         }
1933         return;
1934 }
1935
1936 /*
1937  *      vm_object_collapse:
1938  *
1939  *      Collapse an object with the object backing it.
1940  *      Pages in the backing object are moved into the
1941  *      parent, and the backing object is deallocated.
1942  */
1943 void
1944 vm_object_collapse(vm_object_t object)
1945 {
1946         vm_object_t backing_object, new_backing_object;
1947
1948         VM_OBJECT_ASSERT_WLOCKED(object);
1949
1950         while (TRUE) {
1951                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1952                     ("collapsing invalid object"));
1953
1954                 /*
1955                  * Wait for the backing_object to finish any pending
1956                  * collapse so that the caller sees the shortest possible
1957                  * shadow chain.
1958                  */
1959                 backing_object = vm_object_backing_collapse_wait(object);
1960                 if (backing_object == NULL)
1961                         return;
1962
1963                 KASSERT(object->ref_count > 0 &&
1964                     object->ref_count > atomic_load_int(&object->shadow_count),
1965                     ("collapse with invalid ref %d or shadow %d count.",
1966                     object->ref_count, atomic_load_int(&object->shadow_count)));
1967                 KASSERT((backing_object->flags &
1968                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1969                     ("vm_object_collapse: Backing object already collapsing."));
1970                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1971                     ("vm_object_collapse: object is already collapsing."));
1972
1973                 /*
1974                  * We know that we can either collapse the backing object if
1975                  * the parent is the only reference to it, or (perhaps) have
1976                  * the parent bypass the object if the parent happens to shadow
1977                  * all the resident pages in the entire backing object.
1978                  */
1979                 if (backing_object->ref_count == 1) {
1980                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1981                             == 1,
1982                             ("vm_object_collapse: shadow_count: %d",
1983                             atomic_load_int(&backing_object->shadow_count)));
1984                         vm_object_pip_add(object, 1);
1985                         vm_object_set_flag(object, OBJ_COLLAPSING);
1986                         vm_object_pip_add(backing_object, 1);
1987                         vm_object_set_flag(backing_object, OBJ_DEAD);
1988
1989                         /*
1990                          * If there is exactly one reference to the backing
1991                          * object, we can collapse it into the parent.
1992                          */
1993                         vm_object_collapse_scan(object);
1994
1995 #if VM_NRESERVLEVEL > 0
1996                         /*
1997                          * Break any reservations from backing_object.
1998                          */
1999                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
2000                                 vm_reserv_break_all(backing_object);
2001 #endif
2002
2003                         /*
2004                          * Move the pager from backing_object to object.
2005                          */
2006                         if ((backing_object->flags & OBJ_SWAP) != 0) {
2007                                 /*
2008                                  * swap_pager_copy() can sleep, in which case
2009                                  * the backing_object's and object's locks are
2010                                  * released and reacquired.
2011                                  * Since swap_pager_copy() is being asked to
2012                                  * destroy backing_object, it will change the
2013                                  * type to OBJT_DEFAULT.
2014                                  */
2015                                 swap_pager_copy(
2016                                     backing_object,
2017                                     object,
2018                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
2019                         }
2020
2021                         /*
2022                          * Object now shadows whatever backing_object did.
2023                          */
2024                         vm_object_clear_flag(object, OBJ_COLLAPSING);
2025                         vm_object_backing_transfer(object, backing_object);
2026                         object->backing_object_offset +=
2027                             backing_object->backing_object_offset;
2028                         VM_OBJECT_WUNLOCK(object);
2029                         vm_object_pip_wakeup(object);
2030
2031                         /*
2032                          * Discard backing_object.
2033                          *
2034                          * Since the backing object has no pages, no pager left,
2035                          * and no object references within it, all that is
2036                          * necessary is to dispose of it.
2037                          */
2038                         KASSERT(backing_object->ref_count == 1, (
2039 "backing_object %p was somehow re-referenced during collapse!",
2040                             backing_object));
2041                         vm_object_pip_wakeup(backing_object);
2042                         (void)refcount_release(&backing_object->ref_count);
2043                         vm_object_terminate(backing_object);
2044                         counter_u64_add(object_collapses, 1);
2045                         VM_OBJECT_WLOCK(object);
2046                 } else {
2047                         /*
2048                          * If we do not entirely shadow the backing object,
2049                          * there is nothing we can do so we give up.
2050                          *
2051                          * The object lock and backing_object lock must not
2052                          * be dropped during this sequence.
2053                          */
2054                         if (!vm_object_scan_all_shadowed(object)) {
2055                                 VM_OBJECT_WUNLOCK(backing_object);
2056                                 break;
2057                         }
2058
2059                         /*
2060                          * Make the parent shadow the next object in the
2061                          * chain.  Deallocating backing_object will not remove
2062                          * it, since its reference count is at least 2.
2063                          */
2064                         vm_object_backing_remove_locked(object);
2065                         new_backing_object = backing_object->backing_object;
2066                         if (new_backing_object != NULL) {
2067                                 vm_object_backing_insert_ref(object,
2068                                     new_backing_object);
2069                                 object->backing_object_offset +=
2070                                     backing_object->backing_object_offset;
2071                         }
2072
2073                         /*
2074                          * Drop the reference count on backing_object. Since
2075                          * its ref_count was at least 2, it will not vanish.
2076                          */
2077                         (void)refcount_release(&backing_object->ref_count);
2078                         KASSERT(backing_object->ref_count >= 1, (
2079 "backing_object %p was somehow dereferenced during collapse!",
2080                             backing_object));
2081                         VM_OBJECT_WUNLOCK(backing_object);
2082                         counter_u64_add(object_bypasses, 1);
2083                 }
2084
2085                 /*
2086                  * Try again with this object's new backing object.
2087                  */
2088         }
2089 }
2090
2091 /*
2092  *      vm_object_page_remove:
2093  *
2094  *      For the given object, either frees or invalidates each of the
2095  *      specified pages.  In general, a page is freed.  However, if a page is
2096  *      wired for any reason other than the existence of a managed, wired
2097  *      mapping, then it may be invalidated but not removed from the object.
2098  *      Pages are specified by the given range ["start", "end") and the option
2099  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2100  *      extends from "start" to the end of the object.  If the option
2101  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2102  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2103  *      specified, then the pages within the specified range must have no
2104  *      mappings.  Otherwise, if this option is not specified, any mappings to
2105  *      the specified pages are removed before the pages are freed or
2106  *      invalidated.
2107  *
2108  *      In general, this operation should only be performed on objects that
2109  *      contain managed pages.  There are, however, two exceptions.  First, it
2110  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2111  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2112  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2113  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2114  *
2115  *      The object must be locked.
2116  */
2117 void
2118 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2119     int options)
2120 {
2121         vm_page_t p, next;
2122
2123         VM_OBJECT_ASSERT_WLOCKED(object);
2124         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2125             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2126             ("vm_object_page_remove: illegal options for object %p", object));
2127         if (object->resident_page_count == 0)
2128                 return;
2129         vm_object_pip_add(object, 1);
2130 again:
2131         p = vm_page_find_least(object, start);
2132
2133         /*
2134          * Here, the variable "p" is either (1) the page with the least pindex
2135          * greater than or equal to the parameter "start" or (2) NULL. 
2136          */
2137         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2138                 next = TAILQ_NEXT(p, listq);
2139
2140                 /*
2141                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2142                  * the busy lock, as some consumers rely on this to avoid
2143                  * deadlocks.
2144                  *
2145                  * A thread may concurrently transition the page from invalid to
2146                  * valid using only the busy lock, so the result of this check
2147                  * is immediately stale.  It is up to consumers to handle this,
2148                  * for instance by ensuring that all invalid->valid transitions
2149                  * happen with a mutex held, as may be possible for a
2150                  * filesystem.
2151                  */
2152                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2153                         continue;
2154
2155                 /*
2156                  * If the page is wired for any reason besides the existence
2157                  * of managed, wired mappings, then it cannot be freed.  For
2158                  * example, fictitious pages, which represent device memory,
2159                  * are inherently wired and cannot be freed.  They can,
2160                  * however, be invalidated if the option OBJPR_CLEANONLY is
2161                  * not specified.
2162                  */
2163                 if (vm_page_tryxbusy(p) == 0) {
2164                         if (vm_page_busy_sleep(p, "vmopar", 0))
2165                                 VM_OBJECT_WLOCK(object);
2166                         goto again;
2167                 }
2168                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2169                         vm_page_xunbusy(p);
2170                         continue;
2171                 }
2172                 if (vm_page_wired(p)) {
2173 wired:
2174                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2175                             object->ref_count != 0)
2176                                 pmap_remove_all(p);
2177                         if ((options & OBJPR_CLEANONLY) == 0) {
2178                                 vm_page_invalid(p);
2179                                 vm_page_undirty(p);
2180                         }
2181                         vm_page_xunbusy(p);
2182                         continue;
2183                 }
2184                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2185                     ("vm_object_page_remove: page %p is fictitious", p));
2186                 if ((options & OBJPR_CLEANONLY) != 0 &&
2187                     !vm_page_none_valid(p)) {
2188                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2189                             object->ref_count != 0 &&
2190                             !vm_page_try_remove_write(p))
2191                                 goto wired;
2192                         if (p->dirty != 0) {
2193                                 vm_page_xunbusy(p);
2194                                 continue;
2195                         }
2196                 }
2197                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2198                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2199                         goto wired;
2200                 vm_page_free(p);
2201         }
2202         vm_object_pip_wakeup(object);
2203
2204         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2205             start);
2206 }
2207
2208 /*
2209  *      vm_object_page_noreuse:
2210  *
2211  *      For the given object, attempt to move the specified pages to
2212  *      the head of the inactive queue.  This bypasses regular LRU
2213  *      operation and allows the pages to be reused quickly under memory
2214  *      pressure.  If a page is wired for any reason, then it will not
2215  *      be queued.  Pages are specified by the range ["start", "end").
2216  *      As a special case, if "end" is zero, then the range extends from
2217  *      "start" to the end of the object.
2218  *
2219  *      This operation should only be performed on objects that
2220  *      contain non-fictitious, managed pages.
2221  *
2222  *      The object must be locked.
2223  */
2224 void
2225 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2226 {
2227         vm_page_t p, next;
2228
2229         VM_OBJECT_ASSERT_LOCKED(object);
2230         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2231             ("vm_object_page_noreuse: illegal object %p", object));
2232         if (object->resident_page_count == 0)
2233                 return;
2234         p = vm_page_find_least(object, start);
2235
2236         /*
2237          * Here, the variable "p" is either (1) the page with the least pindex
2238          * greater than or equal to the parameter "start" or (2) NULL. 
2239          */
2240         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2241                 next = TAILQ_NEXT(p, listq);
2242                 vm_page_deactivate_noreuse(p);
2243         }
2244 }
2245
2246 /*
2247  *      Populate the specified range of the object with valid pages.  Returns
2248  *      TRUE if the range is successfully populated and FALSE otherwise.
2249  *
2250  *      Note: This function should be optimized to pass a larger array of
2251  *      pages to vm_pager_get_pages() before it is applied to a non-
2252  *      OBJT_DEVICE object.
2253  *
2254  *      The object must be locked.
2255  */
2256 boolean_t
2257 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2258 {
2259         vm_page_t m;
2260         vm_pindex_t pindex;
2261         int rv;
2262
2263         VM_OBJECT_ASSERT_WLOCKED(object);
2264         for (pindex = start; pindex < end; pindex++) {
2265                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2266                 if (rv != VM_PAGER_OK)
2267                         break;
2268
2269                 /*
2270                  * Keep "m" busy because a subsequent iteration may unlock
2271                  * the object.
2272                  */
2273         }
2274         if (pindex > start) {
2275                 m = vm_page_lookup(object, start);
2276                 while (m != NULL && m->pindex < pindex) {
2277                         vm_page_xunbusy(m);
2278                         m = TAILQ_NEXT(m, listq);
2279                 }
2280         }
2281         return (pindex == end);
2282 }
2283
2284 /*
2285  *      Routine:        vm_object_coalesce
2286  *      Function:       Coalesces two objects backing up adjoining
2287  *                      regions of memory into a single object.
2288  *
2289  *      returns TRUE if objects were combined.
2290  *
2291  *      NOTE:   Only works at the moment if the second object is NULL -
2292  *              if it's not, which object do we lock first?
2293  *
2294  *      Parameters:
2295  *              prev_object     First object to coalesce
2296  *              prev_offset     Offset into prev_object
2297  *              prev_size       Size of reference to prev_object
2298  *              next_size       Size of reference to the second object
2299  *              reserved        Indicator that extension region has
2300  *                              swap accounted for
2301  *
2302  *      Conditions:
2303  *      The object must *not* be locked.
2304  */
2305 boolean_t
2306 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2307     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2308 {
2309         vm_pindex_t next_pindex;
2310
2311         if (prev_object == NULL)
2312                 return (TRUE);
2313         if ((prev_object->flags & OBJ_ANON) == 0)
2314                 return (FALSE);
2315
2316         VM_OBJECT_WLOCK(prev_object);
2317         /*
2318          * Try to collapse the object first.
2319          */
2320         vm_object_collapse(prev_object);
2321
2322         /*
2323          * Can't coalesce if: . more than one reference . paged out . shadows
2324          * another object . has a copy elsewhere (any of which mean that the
2325          * pages not mapped to prev_entry may be in use anyway)
2326          */
2327         if (prev_object->backing_object != NULL) {
2328                 VM_OBJECT_WUNLOCK(prev_object);
2329                 return (FALSE);
2330         }
2331
2332         prev_size >>= PAGE_SHIFT;
2333         next_size >>= PAGE_SHIFT;
2334         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2335
2336         if (prev_object->ref_count > 1 &&
2337             prev_object->size != next_pindex &&
2338             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2339                 VM_OBJECT_WUNLOCK(prev_object);
2340                 return (FALSE);
2341         }
2342
2343         /*
2344          * Account for the charge.
2345          */
2346         if (prev_object->cred != NULL) {
2347                 /*
2348                  * If prev_object was charged, then this mapping,
2349                  * although not charged now, may become writable
2350                  * later. Non-NULL cred in the object would prevent
2351                  * swap reservation during enabling of the write
2352                  * access, so reserve swap now. Failed reservation
2353                  * cause allocation of the separate object for the map
2354                  * entry, and swap reservation for this entry is
2355                  * managed in appropriate time.
2356                  */
2357                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2358                     prev_object->cred)) {
2359                         VM_OBJECT_WUNLOCK(prev_object);
2360                         return (FALSE);
2361                 }
2362                 prev_object->charge += ptoa(next_size);
2363         }
2364
2365         /*
2366          * Remove any pages that may still be in the object from a previous
2367          * deallocation.
2368          */
2369         if (next_pindex < prev_object->size) {
2370                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2371                     next_size, 0);
2372 #if 0
2373                 if (prev_object->cred != NULL) {
2374                         KASSERT(prev_object->charge >=
2375                             ptoa(prev_object->size - next_pindex),
2376                             ("object %p overcharged 1 %jx %jx", prev_object,
2377                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2378                         prev_object->charge -= ptoa(prev_object->size -
2379                             next_pindex);
2380                 }
2381 #endif
2382         }
2383
2384         /*
2385          * Extend the object if necessary.
2386          */
2387         if (next_pindex + next_size > prev_object->size)
2388                 prev_object->size = next_pindex + next_size;
2389
2390         VM_OBJECT_WUNLOCK(prev_object);
2391         return (TRUE);
2392 }
2393
2394 void
2395 vm_object_set_writeable_dirty_(vm_object_t object)
2396 {
2397         atomic_add_int(&object->generation, 1);
2398 }
2399
2400 bool
2401 vm_object_mightbedirty_(vm_object_t object)
2402 {
2403         return (object->generation != object->cleangeneration);
2404 }
2405
2406 /*
2407  *      vm_object_unwire:
2408  *
2409  *      For each page offset within the specified range of the given object,
2410  *      find the highest-level page in the shadow chain and unwire it.  A page
2411  *      must exist at every page offset, and the highest-level page must be
2412  *      wired.
2413  */
2414 void
2415 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2416     uint8_t queue)
2417 {
2418         vm_object_t tobject, t1object;
2419         vm_page_t m, tm;
2420         vm_pindex_t end_pindex, pindex, tpindex;
2421         int depth, locked_depth;
2422
2423         KASSERT((offset & PAGE_MASK) == 0,
2424             ("vm_object_unwire: offset is not page aligned"));
2425         KASSERT((length & PAGE_MASK) == 0,
2426             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2427         /* The wired count of a fictitious page never changes. */
2428         if ((object->flags & OBJ_FICTITIOUS) != 0)
2429                 return;
2430         pindex = OFF_TO_IDX(offset);
2431         end_pindex = pindex + atop(length);
2432 again:
2433         locked_depth = 1;
2434         VM_OBJECT_RLOCK(object);
2435         m = vm_page_find_least(object, pindex);
2436         while (pindex < end_pindex) {
2437                 if (m == NULL || pindex < m->pindex) {
2438                         /*
2439                          * The first object in the shadow chain doesn't
2440                          * contain a page at the current index.  Therefore,
2441                          * the page must exist in a backing object.
2442                          */
2443                         tobject = object;
2444                         tpindex = pindex;
2445                         depth = 0;
2446                         do {
2447                                 tpindex +=
2448                                     OFF_TO_IDX(tobject->backing_object_offset);
2449                                 tobject = tobject->backing_object;
2450                                 KASSERT(tobject != NULL,
2451                                     ("vm_object_unwire: missing page"));
2452                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2453                                         goto next_page;
2454                                 depth++;
2455                                 if (depth == locked_depth) {
2456                                         locked_depth++;
2457                                         VM_OBJECT_RLOCK(tobject);
2458                                 }
2459                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2460                             NULL);
2461                 } else {
2462                         tm = m;
2463                         m = TAILQ_NEXT(m, listq);
2464                 }
2465                 if (vm_page_trysbusy(tm) == 0) {
2466                         for (tobject = object; locked_depth >= 1;
2467                             locked_depth--) {
2468                                 t1object = tobject->backing_object;
2469                                 if (tm->object != tobject)
2470                                         VM_OBJECT_RUNLOCK(tobject);
2471                                 tobject = t1object;
2472                         }
2473                         tobject = tm->object;
2474                         if (!vm_page_busy_sleep(tm, "unwbo",
2475                             VM_ALLOC_IGN_SBUSY))
2476                                 VM_OBJECT_RUNLOCK(tobject);
2477                         goto again;
2478                 }
2479                 vm_page_unwire(tm, queue);
2480                 vm_page_sunbusy(tm);
2481 next_page:
2482                 pindex++;
2483         }
2484         /* Release the accumulated object locks. */
2485         for (tobject = object; locked_depth >= 1; locked_depth--) {
2486                 t1object = tobject->backing_object;
2487                 VM_OBJECT_RUNLOCK(tobject);
2488                 tobject = t1object;
2489         }
2490 }
2491
2492 /*
2493  * Return the vnode for the given object, or NULL if none exists.
2494  * For tmpfs objects, the function may return NULL if there is
2495  * no vnode allocated at the time of the call.
2496  */
2497 struct vnode *
2498 vm_object_vnode(vm_object_t object)
2499 {
2500         struct vnode *vp;
2501
2502         VM_OBJECT_ASSERT_LOCKED(object);
2503         vm_pager_getvp(object, &vp, NULL);
2504         return (vp);
2505 }
2506
2507 /*
2508  * Busy the vm object.  This prevents new pages belonging to the object from
2509  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2510  * for checking page state before proceeding.
2511  */
2512 void
2513 vm_object_busy(vm_object_t obj)
2514 {
2515
2516         VM_OBJECT_ASSERT_LOCKED(obj);
2517
2518         blockcount_acquire(&obj->busy, 1);
2519         /* The fence is required to order loads of page busy. */
2520         atomic_thread_fence_acq_rel();
2521 }
2522
2523 void
2524 vm_object_unbusy(vm_object_t obj)
2525 {
2526
2527         blockcount_release(&obj->busy, 1);
2528 }
2529
2530 void
2531 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2532 {
2533
2534         VM_OBJECT_ASSERT_UNLOCKED(obj);
2535
2536         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2537 }
2538
2539 /*
2540  * This function aims to determine if the object is mapped,
2541  * specifically, if it is referenced by a vm_map_entry.  Because
2542  * objects occasionally acquire transient references that do not
2543  * represent a mapping, the method used here is inexact.  However, it
2544  * has very low overhead and is good enough for the advisory
2545  * vm.vmtotal sysctl.
2546  */
2547 bool
2548 vm_object_is_active(vm_object_t obj)
2549 {
2550
2551         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2552 }
2553
2554 static int
2555 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2556 {
2557         struct kinfo_vmobject *kvo;
2558         char *fullpath, *freepath;
2559         struct vnode *vp;
2560         struct vattr va;
2561         vm_object_t obj;
2562         vm_page_t m;
2563         u_long sp;
2564         int count, error;
2565
2566         if (req->oldptr == NULL) {
2567                 /*
2568                  * If an old buffer has not been provided, generate an
2569                  * estimate of the space needed for a subsequent call.
2570                  */
2571                 mtx_lock(&vm_object_list_mtx);
2572                 count = 0;
2573                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2574                         if (obj->type == OBJT_DEAD)
2575                                 continue;
2576                         count++;
2577                 }
2578                 mtx_unlock(&vm_object_list_mtx);
2579                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2580                     count * 11 / 10));
2581         }
2582
2583         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2584         error = 0;
2585
2586         /*
2587          * VM objects are type stable and are never removed from the
2588          * list once added.  This allows us to safely read obj->object_list
2589          * after reacquiring the VM object lock.
2590          */
2591         mtx_lock(&vm_object_list_mtx);
2592         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2593                 if (obj->type == OBJT_DEAD ||
2594                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2595                         continue;
2596                 VM_OBJECT_RLOCK(obj);
2597                 if (obj->type == OBJT_DEAD ||
2598                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2599                         VM_OBJECT_RUNLOCK(obj);
2600                         continue;
2601                 }
2602                 mtx_unlock(&vm_object_list_mtx);
2603                 kvo->kvo_size = ptoa(obj->size);
2604                 kvo->kvo_resident = obj->resident_page_count;
2605                 kvo->kvo_ref_count = obj->ref_count;
2606                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2607                 kvo->kvo_memattr = obj->memattr;
2608                 kvo->kvo_active = 0;
2609                 kvo->kvo_inactive = 0;
2610                 if (!swap_only) {
2611                         TAILQ_FOREACH(m, &obj->memq, listq) {
2612                                 /*
2613                                  * A page may belong to the object but be
2614                                  * dequeued and set to PQ_NONE while the
2615                                  * object lock is not held.  This makes the
2616                                  * reads of m->queue below racy, and we do not
2617                                  * count pages set to PQ_NONE.  However, this
2618                                  * sysctl is only meant to give an
2619                                  * approximation of the system anyway.
2620                                  */
2621                                 if (m->a.queue == PQ_ACTIVE)
2622                                         kvo->kvo_active++;
2623                                 else if (m->a.queue == PQ_INACTIVE)
2624                                         kvo->kvo_inactive++;
2625                         }
2626                 }
2627
2628                 kvo->kvo_vn_fileid = 0;
2629                 kvo->kvo_vn_fsid = 0;
2630                 kvo->kvo_vn_fsid_freebsd11 = 0;
2631                 freepath = NULL;
2632                 fullpath = "";
2633                 vp = NULL;
2634                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2635                 if (vp != NULL) {
2636                         vref(vp);
2637                 } else if ((obj->flags & OBJ_ANON) != 0) {
2638                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2639                             kvo->kvo_type == KVME_TYPE_SWAP);
2640                         kvo->kvo_me = (uintptr_t)obj;
2641                         /* tmpfs objs are reported as vnodes */
2642                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2643                         sp = swap_pager_swapped_pages(obj);
2644                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2645                 }
2646                 VM_OBJECT_RUNLOCK(obj);
2647                 if (vp != NULL) {
2648                         vn_fullpath(vp, &fullpath, &freepath);
2649                         vn_lock(vp, LK_SHARED | LK_RETRY);
2650                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2651                                 kvo->kvo_vn_fileid = va.va_fileid;
2652                                 kvo->kvo_vn_fsid = va.va_fsid;
2653                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2654                                                                 /* truncate */
2655                         }
2656                         vput(vp);
2657                 }
2658
2659                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2660                 if (freepath != NULL)
2661                         free(freepath, M_TEMP);
2662
2663                 /* Pack record size down */
2664                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2665                     + strlen(kvo->kvo_path) + 1;
2666                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2667                     sizeof(uint64_t));
2668                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2669                 maybe_yield();
2670                 mtx_lock(&vm_object_list_mtx);
2671                 if (error)
2672                         break;
2673         }
2674         mtx_unlock(&vm_object_list_mtx);
2675         free(kvo, M_TEMP);
2676         return (error);
2677 }
2678
2679 static int
2680 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2681 {
2682         return (vm_object_list_handler(req, false));
2683 }
2684
2685 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2686     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2687     "List of VM objects");
2688
2689 static int
2690 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2691 {
2692         return (vm_object_list_handler(req, true));
2693 }
2694
2695 /*
2696  * This sysctl returns list of the anonymous or swap objects. Intent
2697  * is to provide stripped optimized list useful to analyze swap use.
2698  * Since technically non-swap (default) objects participate in the
2699  * shadow chains, and are converted to swap type as needed by swap
2700  * pager, we must report them.
2701  */
2702 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2703     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2704     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2705     "List of swap VM objects");
2706
2707 #include "opt_ddb.h"
2708 #ifdef DDB
2709 #include <sys/kernel.h>
2710
2711 #include <sys/cons.h>
2712
2713 #include <ddb/ddb.h>
2714
2715 static int
2716 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2717 {
2718         vm_map_t tmpm;
2719         vm_map_entry_t tmpe;
2720         vm_object_t obj;
2721
2722         if (map == 0)
2723                 return 0;
2724
2725         if (entry == 0) {
2726                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2727                         if (_vm_object_in_map(map, object, tmpe)) {
2728                                 return 1;
2729                         }
2730                 }
2731         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2732                 tmpm = entry->object.sub_map;
2733                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2734                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2735                                 return 1;
2736                         }
2737                 }
2738         } else if ((obj = entry->object.vm_object) != NULL) {
2739                 for (; obj; obj = obj->backing_object)
2740                         if (obj == object) {
2741                                 return 1;
2742                         }
2743         }
2744         return 0;
2745 }
2746
2747 static int
2748 vm_object_in_map(vm_object_t object)
2749 {
2750         struct proc *p;
2751
2752         /* sx_slock(&allproc_lock); */
2753         FOREACH_PROC_IN_SYSTEM(p) {
2754                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2755                         continue;
2756                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2757                         /* sx_sunlock(&allproc_lock); */
2758                         return 1;
2759                 }
2760         }
2761         /* sx_sunlock(&allproc_lock); */
2762         if (_vm_object_in_map(kernel_map, object, 0))
2763                 return 1;
2764         return 0;
2765 }
2766
2767 DB_SHOW_COMMAND(vmochk, vm_object_check)
2768 {
2769         vm_object_t object;
2770
2771         /*
2772          * make sure that internal objs are in a map somewhere
2773          * and none have zero ref counts.
2774          */
2775         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2776                 if ((object->flags & OBJ_ANON) != 0) {
2777                         if (object->ref_count == 0) {
2778                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2779                                         (long)object->size);
2780                         }
2781                         if (!vm_object_in_map(object)) {
2782                                 db_printf(
2783                         "vmochk: internal obj is not in a map: "
2784                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2785                                     object->ref_count, (u_long)object->size, 
2786                                     (u_long)object->size,
2787                                     (void *)object->backing_object);
2788                         }
2789                 }
2790                 if (db_pager_quit)
2791                         return;
2792         }
2793 }
2794
2795 /*
2796  *      vm_object_print:        [ debug ]
2797  */
2798 DB_SHOW_COMMAND(object, vm_object_print_static)
2799 {
2800         /* XXX convert args. */
2801         vm_object_t object = (vm_object_t)addr;
2802         boolean_t full = have_addr;
2803
2804         vm_page_t p;
2805
2806         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2807 #define count   was_count
2808
2809         int count;
2810
2811         if (object == NULL)
2812                 return;
2813
2814         db_iprintf(
2815             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2816             object, (int)object->type, (uintmax_t)object->size,
2817             object->resident_page_count, object->ref_count, object->flags,
2818             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2819         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2820             atomic_load_int(&object->shadow_count),
2821             object->backing_object ? object->backing_object->ref_count : 0,
2822             object->backing_object, (uintmax_t)object->backing_object_offset);
2823
2824         if (!full)
2825                 return;
2826
2827         db_indent += 2;
2828         count = 0;
2829         TAILQ_FOREACH(p, &object->memq, listq) {
2830                 if (count == 0)
2831                         db_iprintf("memory:=");
2832                 else if (count == 6) {
2833                         db_printf("\n");
2834                         db_iprintf(" ...");
2835                         count = 0;
2836                 } else
2837                         db_printf(",");
2838                 count++;
2839
2840                 db_printf("(off=0x%jx,page=0x%jx)",
2841                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2842
2843                 if (db_pager_quit)
2844                         break;
2845         }
2846         if (count != 0)
2847                 db_printf("\n");
2848         db_indent -= 2;
2849 }
2850
2851 /* XXX. */
2852 #undef count
2853
2854 /* XXX need this non-static entry for calling from vm_map_print. */
2855 void
2856 vm_object_print(
2857         /* db_expr_t */ long addr,
2858         boolean_t have_addr,
2859         /* db_expr_t */ long count,
2860         char *modif)
2861 {
2862         vm_object_print_static(addr, have_addr, count, modif);
2863 }
2864
2865 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2866 {
2867         vm_object_t object;
2868         vm_pindex_t fidx;
2869         vm_paddr_t pa;
2870         vm_page_t m, prev_m;
2871         int rcount;
2872
2873         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2874                 db_printf("new object: %p\n", (void *)object);
2875                 if (db_pager_quit)
2876                         return;
2877
2878                 rcount = 0;
2879                 fidx = 0;
2880                 pa = -1;
2881                 TAILQ_FOREACH(m, &object->memq, listq) {
2882                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2883                             prev_m->pindex + 1 != m->pindex) {
2884                                 if (rcount) {
2885                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2886                                                 (long)fidx, rcount, (long)pa);
2887                                         if (db_pager_quit)
2888                                                 return;
2889                                         rcount = 0;
2890                                 }
2891                         }                               
2892                         if (rcount &&
2893                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2894                                 ++rcount;
2895                                 continue;
2896                         }
2897                         if (rcount) {
2898                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2899                                         (long)fidx, rcount, (long)pa);
2900                                 if (db_pager_quit)
2901                                         return;
2902                         }
2903                         fidx = m->pindex;
2904                         pa = VM_PAGE_TO_PHYS(m);
2905                         rcount = 1;
2906                 }
2907                 if (rcount) {
2908                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2909                                 (long)fidx, rcount, (long)pa);
2910                         if (db_pager_quit)
2911                                 return;
2912                 }
2913         }
2914 }
2915 #endif /* DDB */