]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Remove most of the code for implementing PG_CACHED pages. (This change does
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(object->paging_in_progress == 0,
182             ("object %p paging_in_progress = %d",
183             object, object->paging_in_progress));
184         KASSERT(object->resident_page_count == 0,
185             ("object %p resident_page_count = %d",
186             object, object->resident_page_count));
187         KASSERT(object->shadow_count == 0,
188             ("object %p shadow_count = %d",
189             object, object->shadow_count));
190         KASSERT(object->type == OBJT_DEAD,
191             ("object %p has non-dead type %d",
192             object, object->type));
193 }
194 #endif
195
196 static int
197 vm_object_zinit(void *mem, int size, int flags)
198 {
199         vm_object_t object;
200
201         object = (vm_object_t)mem;
202         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
203
204         /* These are true for any object that has been freed */
205         object->type = OBJT_DEAD;
206         object->ref_count = 0;
207         object->rtree.rt_root = 0;
208         object->rtree.rt_flags = 0;
209         object->paging_in_progress = 0;
210         object->resident_page_count = 0;
211         object->shadow_count = 0;
212
213         mtx_lock(&vm_object_list_mtx);
214         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
215         mtx_unlock(&vm_object_list_mtx);
216         return (0);
217 }
218
219 static void
220 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
221 {
222
223         TAILQ_INIT(&object->memq);
224         LIST_INIT(&object->shadow_head);
225
226         object->type = type;
227         switch (type) {
228         case OBJT_DEAD:
229                 panic("_vm_object_allocate: can't create OBJT_DEAD");
230         case OBJT_DEFAULT:
231         case OBJT_SWAP:
232                 object->flags = OBJ_ONEMAPPING;
233                 break;
234         case OBJT_DEVICE:
235         case OBJT_SG:
236                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
237                 break;
238         case OBJT_MGTDEVICE:
239                 object->flags = OBJ_FICTITIOUS;
240                 break;
241         case OBJT_PHYS:
242                 object->flags = OBJ_UNMANAGED;
243                 break;
244         case OBJT_VNODE:
245                 object->flags = 0;
246                 break;
247         default:
248                 panic("_vm_object_allocate: type %d is undefined", type);
249         }
250         object->size = size;
251         object->generation = 1;
252         object->ref_count = 1;
253         object->memattr = VM_MEMATTR_DEFAULT;
254         object->cred = NULL;
255         object->charge = 0;
256         object->handle = NULL;
257         object->backing_object = NULL;
258         object->backing_object_offset = (vm_ooffset_t) 0;
259 #if VM_NRESERVLEVEL > 0
260         LIST_INIT(&object->rvq);
261 #endif
262         umtx_shm_object_init(object);
263 }
264
265 /*
266  *      vm_object_init:
267  *
268  *      Initialize the VM objects module.
269  */
270 void
271 vm_object_init(void)
272 {
273         TAILQ_INIT(&vm_object_list);
274         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
275         
276         rw_init(&kernel_object->lock, "kernel vm object");
277         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
278             kernel_object);
279 #if VM_NRESERVLEVEL > 0
280         kernel_object->flags |= OBJ_COLORED;
281         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
282 #endif
283
284         rw_init(&kmem_object->lock, "kmem vm object");
285         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
286             kmem_object);
287 #if VM_NRESERVLEVEL > 0
288         kmem_object->flags |= OBJ_COLORED;
289         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
290 #endif
291
292         /*
293          * The lock portion of struct vm_object must be type stable due
294          * to vm_pageout_fallback_object_lock locking a vm object
295          * without holding any references to it.
296          */
297         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
298 #ifdef INVARIANTS
299             vm_object_zdtor,
300 #else
301             NULL,
302 #endif
303             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
304
305         vm_radix_init();
306 }
307
308 void
309 vm_object_clear_flag(vm_object_t object, u_short bits)
310 {
311
312         VM_OBJECT_ASSERT_WLOCKED(object);
313         object->flags &= ~bits;
314 }
315
316 /*
317  *      Sets the default memory attribute for the specified object.  Pages
318  *      that are allocated to this object are by default assigned this memory
319  *      attribute.
320  *
321  *      Presently, this function must be called before any pages are allocated
322  *      to the object.  In the future, this requirement may be relaxed for
323  *      "default" and "swap" objects.
324  */
325 int
326 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
327 {
328
329         VM_OBJECT_ASSERT_WLOCKED(object);
330         switch (object->type) {
331         case OBJT_DEFAULT:
332         case OBJT_DEVICE:
333         case OBJT_MGTDEVICE:
334         case OBJT_PHYS:
335         case OBJT_SG:
336         case OBJT_SWAP:
337         case OBJT_VNODE:
338                 if (!TAILQ_EMPTY(&object->memq))
339                         return (KERN_FAILURE);
340                 break;
341         case OBJT_DEAD:
342                 return (KERN_INVALID_ARGUMENT);
343         default:
344                 panic("vm_object_set_memattr: object %p is of undefined type",
345                     object);
346         }
347         object->memattr = memattr;
348         return (KERN_SUCCESS);
349 }
350
351 void
352 vm_object_pip_add(vm_object_t object, short i)
353 {
354
355         VM_OBJECT_ASSERT_WLOCKED(object);
356         object->paging_in_progress += i;
357 }
358
359 void
360 vm_object_pip_subtract(vm_object_t object, short i)
361 {
362
363         VM_OBJECT_ASSERT_WLOCKED(object);
364         object->paging_in_progress -= i;
365 }
366
367 void
368 vm_object_pip_wakeup(vm_object_t object)
369 {
370
371         VM_OBJECT_ASSERT_WLOCKED(object);
372         object->paging_in_progress--;
373         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
374                 vm_object_clear_flag(object, OBJ_PIPWNT);
375                 wakeup(object);
376         }
377 }
378
379 void
380 vm_object_pip_wakeupn(vm_object_t object, short i)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384         if (i)
385                 object->paging_in_progress -= i;
386         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
387                 vm_object_clear_flag(object, OBJ_PIPWNT);
388                 wakeup(object);
389         }
390 }
391
392 void
393 vm_object_pip_wait(vm_object_t object, char *waitid)
394 {
395
396         VM_OBJECT_ASSERT_WLOCKED(object);
397         while (object->paging_in_progress) {
398                 object->flags |= OBJ_PIPWNT;
399                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
400         }
401 }
402
403 /*
404  *      vm_object_allocate:
405  *
406  *      Returns a new object with the given size.
407  */
408 vm_object_t
409 vm_object_allocate(objtype_t type, vm_pindex_t size)
410 {
411         vm_object_t object;
412
413         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
414         _vm_object_allocate(type, size, object);
415         return (object);
416 }
417
418
419 /*
420  *      vm_object_reference:
421  *
422  *      Gets another reference to the given object.  Note: OBJ_DEAD
423  *      objects can be referenced during final cleaning.
424  */
425 void
426 vm_object_reference(vm_object_t object)
427 {
428         if (object == NULL)
429                 return;
430         VM_OBJECT_WLOCK(object);
431         vm_object_reference_locked(object);
432         VM_OBJECT_WUNLOCK(object);
433 }
434
435 /*
436  *      vm_object_reference_locked:
437  *
438  *      Gets another reference to the given object.
439  *
440  *      The object must be locked.
441  */
442 void
443 vm_object_reference_locked(vm_object_t object)
444 {
445         struct vnode *vp;
446
447         VM_OBJECT_ASSERT_WLOCKED(object);
448         object->ref_count++;
449         if (object->type == OBJT_VNODE) {
450                 vp = object->handle;
451                 vref(vp);
452         }
453 }
454
455 /*
456  * Handle deallocating an object of type OBJT_VNODE.
457  */
458 static void
459 vm_object_vndeallocate(vm_object_t object)
460 {
461         struct vnode *vp = (struct vnode *) object->handle;
462
463         VM_OBJECT_ASSERT_WLOCKED(object);
464         KASSERT(object->type == OBJT_VNODE,
465             ("vm_object_vndeallocate: not a vnode object"));
466         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
467 #ifdef INVARIANTS
468         if (object->ref_count == 0) {
469                 vn_printf(vp, "vm_object_vndeallocate ");
470                 panic("vm_object_vndeallocate: bad object reference count");
471         }
472 #endif
473
474         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
475                 umtx_shm_object_terminated(object);
476
477         /*
478          * The test for text of vp vnode does not need a bypass to
479          * reach right VV_TEXT there, since it is obtained from
480          * object->handle.
481          */
482         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
483                 object->ref_count--;
484                 VM_OBJECT_WUNLOCK(object);
485                 /* vrele may need the vnode lock. */
486                 vrele(vp);
487         } else {
488                 vhold(vp);
489                 VM_OBJECT_WUNLOCK(object);
490                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
491                 vdrop(vp);
492                 VM_OBJECT_WLOCK(object);
493                 object->ref_count--;
494                 if (object->type == OBJT_DEAD) {
495                         VM_OBJECT_WUNLOCK(object);
496                         VOP_UNLOCK(vp, 0);
497                 } else {
498                         if (object->ref_count == 0)
499                                 VOP_UNSET_TEXT(vp);
500                         VM_OBJECT_WUNLOCK(object);
501                         vput(vp);
502                 }
503         }
504 }
505
506 /*
507  *      vm_object_deallocate:
508  *
509  *      Release a reference to the specified object,
510  *      gained either through a vm_object_allocate
511  *      or a vm_object_reference call.  When all references
512  *      are gone, storage associated with this object
513  *      may be relinquished.
514  *
515  *      No object may be locked.
516  */
517 void
518 vm_object_deallocate(vm_object_t object)
519 {
520         vm_object_t temp;
521         struct vnode *vp;
522
523         while (object != NULL) {
524                 VM_OBJECT_WLOCK(object);
525                 if (object->type == OBJT_VNODE) {
526                         vm_object_vndeallocate(object);
527                         return;
528                 }
529
530                 KASSERT(object->ref_count != 0,
531                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
532
533                 /*
534                  * If the reference count goes to 0 we start calling
535                  * vm_object_terminate() on the object chain.
536                  * A ref count of 1 may be a special case depending on the
537                  * shadow count being 0 or 1.
538                  */
539                 object->ref_count--;
540                 if (object->ref_count > 1) {
541                         VM_OBJECT_WUNLOCK(object);
542                         return;
543                 } else if (object->ref_count == 1) {
544                         if (object->type == OBJT_SWAP &&
545                             (object->flags & OBJ_TMPFS) != 0) {
546                                 vp = object->un_pager.swp.swp_tmpfs;
547                                 vhold(vp);
548                                 VM_OBJECT_WUNLOCK(object);
549                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
550                                 VM_OBJECT_WLOCK(object);
551                                 if (object->type == OBJT_DEAD ||
552                                     object->ref_count != 1) {
553                                         VM_OBJECT_WUNLOCK(object);
554                                         VOP_UNLOCK(vp, 0);
555                                         vdrop(vp);
556                                         return;
557                                 }
558                                 if ((object->flags & OBJ_TMPFS) != 0)
559                                         VOP_UNSET_TEXT(vp);
560                                 VOP_UNLOCK(vp, 0);
561                                 vdrop(vp);
562                         }
563                         if (object->shadow_count == 0 &&
564                             object->handle == NULL &&
565                             (object->type == OBJT_DEFAULT ||
566                             (object->type == OBJT_SWAP &&
567                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
568                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
569                         } else if ((object->shadow_count == 1) &&
570                             (object->handle == NULL) &&
571                             (object->type == OBJT_DEFAULT ||
572                              object->type == OBJT_SWAP)) {
573                                 vm_object_t robject;
574
575                                 robject = LIST_FIRST(&object->shadow_head);
576                                 KASSERT(robject != NULL,
577                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
578                                          object->ref_count,
579                                          object->shadow_count));
580                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
581                                     ("shadowed tmpfs v_object %p", object));
582                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
583                                         /*
584                                          * Avoid a potential deadlock.
585                                          */
586                                         object->ref_count++;
587                                         VM_OBJECT_WUNLOCK(object);
588                                         /*
589                                          * More likely than not the thread
590                                          * holding robject's lock has lower
591                                          * priority than the current thread.
592                                          * Let the lower priority thread run.
593                                          */
594                                         pause("vmo_de", 1);
595                                         continue;
596                                 }
597                                 /*
598                                  * Collapse object into its shadow unless its
599                                  * shadow is dead.  In that case, object will
600                                  * be deallocated by the thread that is
601                                  * deallocating its shadow.
602                                  */
603                                 if ((robject->flags & OBJ_DEAD) == 0 &&
604                                     (robject->handle == NULL) &&
605                                     (robject->type == OBJT_DEFAULT ||
606                                      robject->type == OBJT_SWAP)) {
607
608                                         robject->ref_count++;
609 retry:
610                                         if (robject->paging_in_progress) {
611                                                 VM_OBJECT_WUNLOCK(object);
612                                                 vm_object_pip_wait(robject,
613                                                     "objde1");
614                                                 temp = robject->backing_object;
615                                                 if (object == temp) {
616                                                         VM_OBJECT_WLOCK(object);
617                                                         goto retry;
618                                                 }
619                                         } else if (object->paging_in_progress) {
620                                                 VM_OBJECT_WUNLOCK(robject);
621                                                 object->flags |= OBJ_PIPWNT;
622                                                 VM_OBJECT_SLEEP(object, object,
623                                                     PDROP | PVM, "objde2", 0);
624                                                 VM_OBJECT_WLOCK(robject);
625                                                 temp = robject->backing_object;
626                                                 if (object == temp) {
627                                                         VM_OBJECT_WLOCK(object);
628                                                         goto retry;
629                                                 }
630                                         } else
631                                                 VM_OBJECT_WUNLOCK(object);
632
633                                         if (robject->ref_count == 1) {
634                                                 robject->ref_count--;
635                                                 object = robject;
636                                                 goto doterm;
637                                         }
638                                         object = robject;
639                                         vm_object_collapse(object);
640                                         VM_OBJECT_WUNLOCK(object);
641                                         continue;
642                                 }
643                                 VM_OBJECT_WUNLOCK(robject);
644                         }
645                         VM_OBJECT_WUNLOCK(object);
646                         return;
647                 }
648 doterm:
649                 umtx_shm_object_terminated(object);
650                 temp = object->backing_object;
651                 if (temp != NULL) {
652                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
653                             ("shadowed tmpfs v_object 2 %p", object));
654                         VM_OBJECT_WLOCK(temp);
655                         LIST_REMOVE(object, shadow_list);
656                         temp->shadow_count--;
657                         VM_OBJECT_WUNLOCK(temp);
658                         object->backing_object = NULL;
659                 }
660                 /*
661                  * Don't double-terminate, we could be in a termination
662                  * recursion due to the terminate having to sync data
663                  * to disk.
664                  */
665                 if ((object->flags & OBJ_DEAD) == 0)
666                         vm_object_terminate(object);
667                 else
668                         VM_OBJECT_WUNLOCK(object);
669                 object = temp;
670         }
671 }
672
673 /*
674  *      vm_object_destroy removes the object from the global object list
675  *      and frees the space for the object.
676  */
677 void
678 vm_object_destroy(vm_object_t object)
679 {
680
681         /*
682          * Release the allocation charge.
683          */
684         if (object->cred != NULL) {
685                 swap_release_by_cred(object->charge, object->cred);
686                 object->charge = 0;
687                 crfree(object->cred);
688                 object->cred = NULL;
689         }
690
691         /*
692          * Free the space for the object.
693          */
694         uma_zfree(obj_zone, object);
695 }
696
697 /*
698  *      vm_object_terminate actually destroys the specified object, freeing
699  *      up all previously used resources.
700  *
701  *      The object must be locked.
702  *      This routine may block.
703  */
704 void
705 vm_object_terminate(vm_object_t object)
706 {
707         vm_page_t p, p_next;
708
709         VM_OBJECT_ASSERT_WLOCKED(object);
710
711         /*
712          * Make sure no one uses us.
713          */
714         vm_object_set_flag(object, OBJ_DEAD);
715
716         /*
717          * wait for the pageout daemon to be done with the object
718          */
719         vm_object_pip_wait(object, "objtrm");
720
721         KASSERT(!object->paging_in_progress,
722                 ("vm_object_terminate: pageout in progress"));
723
724         /*
725          * Clean and free the pages, as appropriate. All references to the
726          * object are gone, so we don't need to lock it.
727          */
728         if (object->type == OBJT_VNODE) {
729                 struct vnode *vp = (struct vnode *)object->handle;
730
731                 /*
732                  * Clean pages and flush buffers.
733                  */
734                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
735                 VM_OBJECT_WUNLOCK(object);
736
737                 vinvalbuf(vp, V_SAVE, 0, 0);
738
739                 BO_LOCK(&vp->v_bufobj);
740                 vp->v_bufobj.bo_flag |= BO_DEAD;
741                 BO_UNLOCK(&vp->v_bufobj);
742
743                 VM_OBJECT_WLOCK(object);
744         }
745
746         KASSERT(object->ref_count == 0, 
747                 ("vm_object_terminate: object with references, ref_count=%d",
748                 object->ref_count));
749
750         /*
751          * Free any remaining pageable pages.  This also removes them from the
752          * paging queues.  However, don't free wired pages, just remove them
753          * from the object.  Rather than incrementally removing each page from
754          * the object, the page and object are reset to any empty state. 
755          */
756         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
757                 vm_page_assert_unbusied(p);
758                 vm_page_lock(p);
759                 /*
760                  * Optimize the page's removal from the object by resetting
761                  * its "object" field.  Specifically, if the page is not
762                  * wired, then the effect of this assignment is that
763                  * vm_page_free()'s call to vm_page_remove() will return
764                  * immediately without modifying the page or the object.
765                  */ 
766                 p->object = NULL;
767                 if (p->wire_count == 0) {
768                         vm_page_free(p);
769                         PCPU_INC(cnt.v_pfree);
770                 }
771                 vm_page_unlock(p);
772         }
773         /*
774          * If the object contained any pages, then reset it to an empty state.
775          * None of the object's fields, including "resident_page_count", were
776          * modified by the preceding loop.
777          */
778         if (object->resident_page_count != 0) {
779                 vm_radix_reclaim_allnodes(&object->rtree);
780                 TAILQ_INIT(&object->memq);
781                 object->resident_page_count = 0;
782                 if (object->type == OBJT_VNODE)
783                         vdrop(object->handle);
784         }
785
786 #if VM_NRESERVLEVEL > 0
787         if (__predict_false(!LIST_EMPTY(&object->rvq)))
788                 vm_reserv_break_all(object);
789 #endif
790
791         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
792             object->type == OBJT_SWAP,
793             ("%s: non-swap obj %p has cred", __func__, object));
794
795         /*
796          * Let the pager know object is dead.
797          */
798         vm_pager_deallocate(object);
799         VM_OBJECT_WUNLOCK(object);
800
801         vm_object_destroy(object);
802 }
803
804 /*
805  * Make the page read-only so that we can clear the object flags.  However, if
806  * this is a nosync mmap then the object is likely to stay dirty so do not
807  * mess with the page and do not clear the object flags.  Returns TRUE if the
808  * page should be flushed, and FALSE otherwise.
809  */
810 static boolean_t
811 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
812 {
813
814         /*
815          * If we have been asked to skip nosync pages and this is a
816          * nosync page, skip it.  Note that the object flags were not
817          * cleared in this case so we do not have to set them.
818          */
819         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
820                 *clearobjflags = FALSE;
821                 return (FALSE);
822         } else {
823                 pmap_remove_write(p);
824                 return (p->dirty != 0);
825         }
826 }
827
828 /*
829  *      vm_object_page_clean
830  *
831  *      Clean all dirty pages in the specified range of object.  Leaves page 
832  *      on whatever queue it is currently on.   If NOSYNC is set then do not
833  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
834  *      leaving the object dirty.
835  *
836  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
837  *      synchronous clustering mode implementation.
838  *
839  *      Odd semantics: if start == end, we clean everything.
840  *
841  *      The object must be locked.
842  *
843  *      Returns FALSE if some page from the range was not written, as
844  *      reported by the pager, and TRUE otherwise.
845  */
846 boolean_t
847 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
848     int flags)
849 {
850         vm_page_t np, p;
851         vm_pindex_t pi, tend, tstart;
852         int curgeneration, n, pagerflags;
853         boolean_t clearobjflags, eio, res;
854
855         VM_OBJECT_ASSERT_WLOCKED(object);
856
857         /*
858          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
859          * objects.  The check below prevents the function from
860          * operating on non-vnode objects.
861          */
862         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
863             object->resident_page_count == 0)
864                 return (TRUE);
865
866         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
867             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
868         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
869
870         tstart = OFF_TO_IDX(start);
871         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
872         clearobjflags = tstart == 0 && tend >= object->size;
873         res = TRUE;
874
875 rescan:
876         curgeneration = object->generation;
877
878         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
879                 pi = p->pindex;
880                 if (pi >= tend)
881                         break;
882                 np = TAILQ_NEXT(p, listq);
883                 if (p->valid == 0)
884                         continue;
885                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
886                         if (object->generation != curgeneration) {
887                                 if ((flags & OBJPC_SYNC) != 0)
888                                         goto rescan;
889                                 else
890                                         clearobjflags = FALSE;
891                         }
892                         np = vm_page_find_least(object, pi);
893                         continue;
894                 }
895                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
896                         continue;
897
898                 n = vm_object_page_collect_flush(object, p, pagerflags,
899                     flags, &clearobjflags, &eio);
900                 if (eio) {
901                         res = FALSE;
902                         clearobjflags = FALSE;
903                 }
904                 if (object->generation != curgeneration) {
905                         if ((flags & OBJPC_SYNC) != 0)
906                                 goto rescan;
907                         else
908                                 clearobjflags = FALSE;
909                 }
910
911                 /*
912                  * If the VOP_PUTPAGES() did a truncated write, so
913                  * that even the first page of the run is not fully
914                  * written, vm_pageout_flush() returns 0 as the run
915                  * length.  Since the condition that caused truncated
916                  * write may be permanent, e.g. exhausted free space,
917                  * accepting n == 0 would cause an infinite loop.
918                  *
919                  * Forwarding the iterator leaves the unwritten page
920                  * behind, but there is not much we can do there if
921                  * filesystem refuses to write it.
922                  */
923                 if (n == 0) {
924                         n = 1;
925                         clearobjflags = FALSE;
926                 }
927                 np = vm_page_find_least(object, pi + n);
928         }
929 #if 0
930         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
931 #endif
932
933         if (clearobjflags)
934                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
935         return (res);
936 }
937
938 static int
939 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
940     int flags, boolean_t *clearobjflags, boolean_t *eio)
941 {
942         vm_page_t ma[vm_pageout_page_count], p_first, tp;
943         int count, i, mreq, runlen;
944
945         vm_page_lock_assert(p, MA_NOTOWNED);
946         VM_OBJECT_ASSERT_WLOCKED(object);
947
948         count = 1;
949         mreq = 0;
950
951         for (tp = p; count < vm_pageout_page_count; count++) {
952                 tp = vm_page_next(tp);
953                 if (tp == NULL || vm_page_busied(tp))
954                         break;
955                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
956                         break;
957         }
958
959         for (p_first = p; count < vm_pageout_page_count; count++) {
960                 tp = vm_page_prev(p_first);
961                 if (tp == NULL || vm_page_busied(tp))
962                         break;
963                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
964                         break;
965                 p_first = tp;
966                 mreq++;
967         }
968
969         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
970                 ma[i] = tp;
971
972         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
973         return (runlen);
974 }
975
976 /*
977  * Note that there is absolutely no sense in writing out
978  * anonymous objects, so we track down the vnode object
979  * to write out.
980  * We invalidate (remove) all pages from the address space
981  * for semantic correctness.
982  *
983  * If the backing object is a device object with unmanaged pages, then any
984  * mappings to the specified range of pages must be removed before this
985  * function is called.
986  *
987  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
988  * may start out with a NULL object.
989  */
990 boolean_t
991 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
992     boolean_t syncio, boolean_t invalidate)
993 {
994         vm_object_t backing_object;
995         struct vnode *vp;
996         struct mount *mp;
997         int error, flags, fsync_after;
998         boolean_t res;
999
1000         if (object == NULL)
1001                 return (TRUE);
1002         res = TRUE;
1003         error = 0;
1004         VM_OBJECT_WLOCK(object);
1005         while ((backing_object = object->backing_object) != NULL) {
1006                 VM_OBJECT_WLOCK(backing_object);
1007                 offset += object->backing_object_offset;
1008                 VM_OBJECT_WUNLOCK(object);
1009                 object = backing_object;
1010                 if (object->size < OFF_TO_IDX(offset + size))
1011                         size = IDX_TO_OFF(object->size) - offset;
1012         }
1013         /*
1014          * Flush pages if writing is allowed, invalidate them
1015          * if invalidation requested.  Pages undergoing I/O
1016          * will be ignored by vm_object_page_remove().
1017          *
1018          * We cannot lock the vnode and then wait for paging
1019          * to complete without deadlocking against vm_fault.
1020          * Instead we simply call vm_object_page_remove() and
1021          * allow it to block internally on a page-by-page
1022          * basis when it encounters pages undergoing async
1023          * I/O.
1024          */
1025         if (object->type == OBJT_VNODE &&
1026             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1027                 vp = object->handle;
1028                 VM_OBJECT_WUNLOCK(object);
1029                 (void) vn_start_write(vp, &mp, V_WAIT);
1030                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1031                 if (syncio && !invalidate && offset == 0 &&
1032                     OFF_TO_IDX(size) == object->size) {
1033                         /*
1034                          * If syncing the whole mapping of the file,
1035                          * it is faster to schedule all the writes in
1036                          * async mode, also allowing the clustering,
1037                          * and then wait for i/o to complete.
1038                          */
1039                         flags = 0;
1040                         fsync_after = TRUE;
1041                 } else {
1042                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1043                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1044                         fsync_after = FALSE;
1045                 }
1046                 VM_OBJECT_WLOCK(object);
1047                 res = vm_object_page_clean(object, offset, offset + size,
1048                     flags);
1049                 VM_OBJECT_WUNLOCK(object);
1050                 if (fsync_after)
1051                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1052                 VOP_UNLOCK(vp, 0);
1053                 vn_finished_write(mp);
1054                 if (error != 0)
1055                         res = FALSE;
1056                 VM_OBJECT_WLOCK(object);
1057         }
1058         if ((object->type == OBJT_VNODE ||
1059              object->type == OBJT_DEVICE) && invalidate) {
1060                 if (object->type == OBJT_DEVICE)
1061                         /*
1062                          * The option OBJPR_NOTMAPPED must be passed here
1063                          * because vm_object_page_remove() cannot remove
1064                          * unmanaged mappings.
1065                          */
1066                         flags = OBJPR_NOTMAPPED;
1067                 else if (old_msync)
1068                         flags = 0;
1069                 else
1070                         flags = OBJPR_CLEANONLY;
1071                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1072                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1073         }
1074         VM_OBJECT_WUNLOCK(object);
1075         return (res);
1076 }
1077
1078 /*
1079  *      vm_object_madvise:
1080  *
1081  *      Implements the madvise function at the object/page level.
1082  *
1083  *      MADV_WILLNEED   (any object)
1084  *
1085  *          Activate the specified pages if they are resident.
1086  *
1087  *      MADV_DONTNEED   (any object)
1088  *
1089  *          Deactivate the specified pages if they are resident.
1090  *
1091  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1092  *                       OBJ_ONEMAPPING only)
1093  *
1094  *          Deactivate and clean the specified pages if they are
1095  *          resident.  This permits the process to reuse the pages
1096  *          without faulting or the kernel to reclaim the pages
1097  *          without I/O.
1098  */
1099 void
1100 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1101     int advise)
1102 {
1103         vm_pindex_t tpindex;
1104         vm_object_t backing_object, tobject;
1105         vm_page_t m;
1106
1107         if (object == NULL)
1108                 return;
1109         VM_OBJECT_WLOCK(object);
1110         /*
1111          * Locate and adjust resident pages
1112          */
1113         for (; pindex < end; pindex += 1) {
1114 relookup:
1115                 tobject = object;
1116                 tpindex = pindex;
1117 shadowlookup:
1118                 /*
1119                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1120                  * and those pages must be OBJ_ONEMAPPING.
1121                  */
1122                 if (advise == MADV_FREE) {
1123                         if ((tobject->type != OBJT_DEFAULT &&
1124                              tobject->type != OBJT_SWAP) ||
1125                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1126                                 goto unlock_tobject;
1127                         }
1128                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1129                         goto unlock_tobject;
1130                 m = vm_page_lookup(tobject, tpindex);
1131                 if (m == NULL) {
1132                         /*
1133                          * There may be swap even if there is no backing page
1134                          */
1135                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1136                                 swap_pager_freespace(tobject, tpindex, 1);
1137                         /*
1138                          * next object
1139                          */
1140                         backing_object = tobject->backing_object;
1141                         if (backing_object == NULL)
1142                                 goto unlock_tobject;
1143                         VM_OBJECT_WLOCK(backing_object);
1144                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1145                         if (tobject != object)
1146                                 VM_OBJECT_WUNLOCK(tobject);
1147                         tobject = backing_object;
1148                         goto shadowlookup;
1149                 } else if (m->valid != VM_PAGE_BITS_ALL)
1150                         goto unlock_tobject;
1151                 /*
1152                  * If the page is not in a normal state, skip it.
1153                  */
1154                 vm_page_lock(m);
1155                 if (m->hold_count != 0 || m->wire_count != 0) {
1156                         vm_page_unlock(m);
1157                         goto unlock_tobject;
1158                 }
1159                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1160                     ("vm_object_madvise: page %p is fictitious", m));
1161                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1162                     ("vm_object_madvise: page %p is not managed", m));
1163                 if (vm_page_busied(m)) {
1164                         if (advise == MADV_WILLNEED) {
1165                                 /*
1166                                  * Reference the page before unlocking and
1167                                  * sleeping so that the page daemon is less
1168                                  * likely to reclaim it. 
1169                                  */
1170                                 vm_page_aflag_set(m, PGA_REFERENCED);
1171                         }
1172                         if (object != tobject)
1173                                 VM_OBJECT_WUNLOCK(object);
1174                         VM_OBJECT_WUNLOCK(tobject);
1175                         vm_page_busy_sleep(m, "madvpo", false);
1176                         VM_OBJECT_WLOCK(object);
1177                         goto relookup;
1178                 }
1179                 if (advise == MADV_WILLNEED) {
1180                         vm_page_activate(m);
1181                 } else {
1182                         vm_page_advise(m, advise);
1183                 }
1184                 vm_page_unlock(m);
1185                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1186                         swap_pager_freespace(tobject, tpindex, 1);
1187 unlock_tobject:
1188                 if (tobject != object)
1189                         VM_OBJECT_WUNLOCK(tobject);
1190         }       
1191         VM_OBJECT_WUNLOCK(object);
1192 }
1193
1194 /*
1195  *      vm_object_shadow:
1196  *
1197  *      Create a new object which is backed by the
1198  *      specified existing object range.  The source
1199  *      object reference is deallocated.
1200  *
1201  *      The new object and offset into that object
1202  *      are returned in the source parameters.
1203  */
1204 void
1205 vm_object_shadow(
1206         vm_object_t *object,    /* IN/OUT */
1207         vm_ooffset_t *offset,   /* IN/OUT */
1208         vm_size_t length)
1209 {
1210         vm_object_t source;
1211         vm_object_t result;
1212
1213         source = *object;
1214
1215         /*
1216          * Don't create the new object if the old object isn't shared.
1217          */
1218         if (source != NULL) {
1219                 VM_OBJECT_WLOCK(source);
1220                 if (source->ref_count == 1 &&
1221                     source->handle == NULL &&
1222                     (source->type == OBJT_DEFAULT ||
1223                      source->type == OBJT_SWAP)) {
1224                         VM_OBJECT_WUNLOCK(source);
1225                         return;
1226                 }
1227                 VM_OBJECT_WUNLOCK(source);
1228         }
1229
1230         /*
1231          * Allocate a new object with the given length.
1232          */
1233         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1234
1235         /*
1236          * The new object shadows the source object, adding a reference to it.
1237          * Our caller changes his reference to point to the new object,
1238          * removing a reference to the source object.  Net result: no change
1239          * of reference count.
1240          *
1241          * Try to optimize the result object's page color when shadowing
1242          * in order to maintain page coloring consistency in the combined 
1243          * shadowed object.
1244          */
1245         result->backing_object = source;
1246         /*
1247          * Store the offset into the source object, and fix up the offset into
1248          * the new object.
1249          */
1250         result->backing_object_offset = *offset;
1251         if (source != NULL) {
1252                 VM_OBJECT_WLOCK(source);
1253                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1254                 source->shadow_count++;
1255 #if VM_NRESERVLEVEL > 0
1256                 result->flags |= source->flags & OBJ_COLORED;
1257                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1258                     ((1 << (VM_NFREEORDER - 1)) - 1);
1259 #endif
1260                 VM_OBJECT_WUNLOCK(source);
1261         }
1262
1263
1264         /*
1265          * Return the new things
1266          */
1267         *offset = 0;
1268         *object = result;
1269 }
1270
1271 /*
1272  *      vm_object_split:
1273  *
1274  * Split the pages in a map entry into a new object.  This affords
1275  * easier removal of unused pages, and keeps object inheritance from
1276  * being a negative impact on memory usage.
1277  */
1278 void
1279 vm_object_split(vm_map_entry_t entry)
1280 {
1281         vm_page_t m, m_next;
1282         vm_object_t orig_object, new_object, source;
1283         vm_pindex_t idx, offidxstart;
1284         vm_size_t size;
1285
1286         orig_object = entry->object.vm_object;
1287         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1288                 return;
1289         if (orig_object->ref_count <= 1)
1290                 return;
1291         VM_OBJECT_WUNLOCK(orig_object);
1292
1293         offidxstart = OFF_TO_IDX(entry->offset);
1294         size = atop(entry->end - entry->start);
1295
1296         /*
1297          * If swap_pager_copy() is later called, it will convert new_object
1298          * into a swap object.
1299          */
1300         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1301
1302         /*
1303          * At this point, the new object is still private, so the order in
1304          * which the original and new objects are locked does not matter.
1305          */
1306         VM_OBJECT_WLOCK(new_object);
1307         VM_OBJECT_WLOCK(orig_object);
1308         source = orig_object->backing_object;
1309         if (source != NULL) {
1310                 VM_OBJECT_WLOCK(source);
1311                 if ((source->flags & OBJ_DEAD) != 0) {
1312                         VM_OBJECT_WUNLOCK(source);
1313                         VM_OBJECT_WUNLOCK(orig_object);
1314                         VM_OBJECT_WUNLOCK(new_object);
1315                         vm_object_deallocate(new_object);
1316                         VM_OBJECT_WLOCK(orig_object);
1317                         return;
1318                 }
1319                 LIST_INSERT_HEAD(&source->shadow_head,
1320                                   new_object, shadow_list);
1321                 source->shadow_count++;
1322                 vm_object_reference_locked(source);     /* for new_object */
1323                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1324                 VM_OBJECT_WUNLOCK(source);
1325                 new_object->backing_object_offset = 
1326                         orig_object->backing_object_offset + entry->offset;
1327                 new_object->backing_object = source;
1328         }
1329         if (orig_object->cred != NULL) {
1330                 new_object->cred = orig_object->cred;
1331                 crhold(orig_object->cred);
1332                 new_object->charge = ptoa(size);
1333                 KASSERT(orig_object->charge >= ptoa(size),
1334                     ("orig_object->charge < 0"));
1335                 orig_object->charge -= ptoa(size);
1336         }
1337 retry:
1338         m = vm_page_find_least(orig_object, offidxstart);
1339         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1340             m = m_next) {
1341                 m_next = TAILQ_NEXT(m, listq);
1342
1343                 /*
1344                  * We must wait for pending I/O to complete before we can
1345                  * rename the page.
1346                  *
1347                  * We do not have to VM_PROT_NONE the page as mappings should
1348                  * not be changed by this operation.
1349                  */
1350                 if (vm_page_busied(m)) {
1351                         VM_OBJECT_WUNLOCK(new_object);
1352                         vm_page_lock(m);
1353                         VM_OBJECT_WUNLOCK(orig_object);
1354                         vm_page_busy_sleep(m, "spltwt", false);
1355                         VM_OBJECT_WLOCK(orig_object);
1356                         VM_OBJECT_WLOCK(new_object);
1357                         goto retry;
1358                 }
1359
1360                 /* vm_page_rename() will handle dirty and cache. */
1361                 if (vm_page_rename(m, new_object, idx)) {
1362                         VM_OBJECT_WUNLOCK(new_object);
1363                         VM_OBJECT_WUNLOCK(orig_object);
1364                         VM_WAIT;
1365                         VM_OBJECT_WLOCK(orig_object);
1366                         VM_OBJECT_WLOCK(new_object);
1367                         goto retry;
1368                 }
1369 #if VM_NRESERVLEVEL > 0
1370                 /*
1371                  * If some of the reservation's allocated pages remain with
1372                  * the original object, then transferring the reservation to
1373                  * the new object is neither particularly beneficial nor
1374                  * particularly harmful as compared to leaving the reservation
1375                  * with the original object.  If, however, all of the
1376                  * reservation's allocated pages are transferred to the new
1377                  * object, then transferring the reservation is typically
1378                  * beneficial.  Determining which of these two cases applies
1379                  * would be more costly than unconditionally renaming the
1380                  * reservation.
1381                  */
1382                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1383 #endif
1384                 if (orig_object->type == OBJT_SWAP)
1385                         vm_page_xbusy(m);
1386         }
1387         if (orig_object->type == OBJT_SWAP) {
1388                 /*
1389                  * swap_pager_copy() can sleep, in which case the orig_object's
1390                  * and new_object's locks are released and reacquired. 
1391                  */
1392                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1393                 TAILQ_FOREACH(m, &new_object->memq, listq)
1394                         vm_page_xunbusy(m);
1395         }
1396         VM_OBJECT_WUNLOCK(orig_object);
1397         VM_OBJECT_WUNLOCK(new_object);
1398         entry->object.vm_object = new_object;
1399         entry->offset = 0LL;
1400         vm_object_deallocate(orig_object);
1401         VM_OBJECT_WLOCK(new_object);
1402 }
1403
1404 #define OBSC_COLLAPSE_NOWAIT    0x0002
1405 #define OBSC_COLLAPSE_WAIT      0x0004
1406
1407 static vm_page_t
1408 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1409     int op)
1410 {
1411         vm_object_t backing_object;
1412
1413         VM_OBJECT_ASSERT_WLOCKED(object);
1414         backing_object = object->backing_object;
1415         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1416
1417         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1418         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1419             ("invalid ownership %p %p %p", p, object, backing_object));
1420         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1421                 return (next);
1422         if (p != NULL)
1423                 vm_page_lock(p);
1424         VM_OBJECT_WUNLOCK(object);
1425         VM_OBJECT_WUNLOCK(backing_object);
1426         if (p == NULL)
1427                 VM_WAIT;
1428         else
1429                 vm_page_busy_sleep(p, "vmocol", false);
1430         VM_OBJECT_WLOCK(object);
1431         VM_OBJECT_WLOCK(backing_object);
1432         return (TAILQ_FIRST(&backing_object->memq));
1433 }
1434
1435 static bool
1436 vm_object_scan_all_shadowed(vm_object_t object)
1437 {
1438         vm_object_t backing_object;
1439         vm_page_t p, pp;
1440         vm_pindex_t backing_offset_index, new_pindex;
1441
1442         VM_OBJECT_ASSERT_WLOCKED(object);
1443         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1444
1445         backing_object = object->backing_object;
1446
1447         /*
1448          * Initial conditions:
1449          *
1450          * We do not want to have to test for the existence of cache or swap
1451          * pages in the backing object.  XXX but with the new swapper this
1452          * would be pretty easy to do.
1453          */
1454         if (backing_object->type != OBJT_DEFAULT)
1455                 return (false);
1456
1457         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1458
1459         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1460             p = TAILQ_NEXT(p, listq)) {
1461                 new_pindex = p->pindex - backing_offset_index;
1462
1463                 /*
1464                  * Ignore pages outside the parent object's range and outside
1465                  * the parent object's mapping of the backing object.
1466                  */
1467                 if (p->pindex < backing_offset_index ||
1468                     new_pindex >= object->size)
1469                         continue;
1470
1471                 /*
1472                  * See if the parent has the page or if the parent's object
1473                  * pager has the page.  If the parent has the page but the page
1474                  * is not valid, the parent's object pager must have the page.
1475                  *
1476                  * If this fails, the parent does not completely shadow the
1477                  * object and we might as well give up now.
1478                  */
1479                 pp = vm_page_lookup(object, new_pindex);
1480                 if ((pp == NULL || pp->valid == 0) &&
1481                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1482                         return (false);
1483         }
1484         return (true);
1485 }
1486
1487 static bool
1488 vm_object_collapse_scan(vm_object_t object, int op)
1489 {
1490         vm_object_t backing_object;
1491         vm_page_t next, p, pp;
1492         vm_pindex_t backing_offset_index, new_pindex;
1493
1494         VM_OBJECT_ASSERT_WLOCKED(object);
1495         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1496
1497         backing_object = object->backing_object;
1498         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1499
1500         /*
1501          * Initial conditions
1502          */
1503         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1504                 vm_object_set_flag(backing_object, OBJ_DEAD);
1505
1506         /*
1507          * Our scan
1508          */
1509         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1510                 next = TAILQ_NEXT(p, listq);
1511                 new_pindex = p->pindex - backing_offset_index;
1512
1513                 /*
1514                  * Check for busy page
1515                  */
1516                 if (vm_page_busied(p)) {
1517                         next = vm_object_collapse_scan_wait(object, p, next, op);
1518                         continue;
1519                 }
1520
1521                 KASSERT(p->object == backing_object,
1522                     ("vm_object_collapse_scan: object mismatch"));
1523
1524                 if (p->pindex < backing_offset_index ||
1525                     new_pindex >= object->size) {
1526                         if (backing_object->type == OBJT_SWAP)
1527                                 swap_pager_freespace(backing_object, p->pindex,
1528                                     1);
1529
1530                         /*
1531                          * Page is out of the parent object's range, we can
1532                          * simply destroy it.
1533                          */
1534                         vm_page_lock(p);
1535                         KASSERT(!pmap_page_is_mapped(p),
1536                             ("freeing mapped page %p", p));
1537                         if (p->wire_count == 0)
1538                                 vm_page_free(p);
1539                         else
1540                                 vm_page_remove(p);
1541                         vm_page_unlock(p);
1542                         continue;
1543                 }
1544
1545                 pp = vm_page_lookup(object, new_pindex);
1546                 if (pp != NULL && vm_page_busied(pp)) {
1547                         /*
1548                          * The page in the parent is busy and possibly not
1549                          * (yet) valid.  Until its state is finalized by the
1550                          * busy bit owner, we can't tell whether it shadows the
1551                          * original page.  Therefore, we must either skip it
1552                          * and the original (backing_object) page or wait for
1553                          * its state to be finalized.
1554                          *
1555                          * This is due to a race with vm_fault() where we must
1556                          * unbusy the original (backing_obj) page before we can
1557                          * (re)lock the parent.  Hence we can get here.
1558                          */
1559                         next = vm_object_collapse_scan_wait(object, pp, next,
1560                             op);
1561                         continue;
1562                 }
1563
1564                 KASSERT(pp == NULL || pp->valid != 0,
1565                     ("unbusy invalid page %p", pp));
1566
1567                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1568                         NULL)) {
1569                         /*
1570                          * The page already exists in the parent OR swap exists
1571                          * for this location in the parent.  Leave the parent's
1572                          * page alone.  Destroy the original page from the
1573                          * backing object.
1574                          */
1575                         if (backing_object->type == OBJT_SWAP)
1576                                 swap_pager_freespace(backing_object, p->pindex,
1577                                     1);
1578                         vm_page_lock(p);
1579                         KASSERT(!pmap_page_is_mapped(p),
1580                             ("freeing mapped page %p", p));
1581                         if (p->wire_count == 0)
1582                                 vm_page_free(p);
1583                         else
1584                                 vm_page_remove(p);
1585                         vm_page_unlock(p);
1586                         continue;
1587                 }
1588
1589                 /*
1590                  * Page does not exist in parent, rename the page from the
1591                  * backing object to the main object.
1592                  *
1593                  * If the page was mapped to a process, it can remain mapped
1594                  * through the rename.  vm_page_rename() will handle dirty and
1595                  * cache.
1596                  */
1597                 if (vm_page_rename(p, object, new_pindex)) {
1598                         next = vm_object_collapse_scan_wait(object, NULL, next,
1599                             op);
1600                         continue;
1601                 }
1602
1603                 /* Use the old pindex to free the right page. */
1604                 if (backing_object->type == OBJT_SWAP)
1605                         swap_pager_freespace(backing_object,
1606                             new_pindex + backing_offset_index, 1);
1607
1608 #if VM_NRESERVLEVEL > 0
1609                 /*
1610                  * Rename the reservation.
1611                  */
1612                 vm_reserv_rename(p, object, backing_object,
1613                     backing_offset_index);
1614 #endif
1615         }
1616         return (true);
1617 }
1618
1619
1620 /*
1621  * this version of collapse allows the operation to occur earlier and
1622  * when paging_in_progress is true for an object...  This is not a complete
1623  * operation, but should plug 99.9% of the rest of the leaks.
1624  */
1625 static void
1626 vm_object_qcollapse(vm_object_t object)
1627 {
1628         vm_object_t backing_object = object->backing_object;
1629
1630         VM_OBJECT_ASSERT_WLOCKED(object);
1631         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1632
1633         if (backing_object->ref_count != 1)
1634                 return;
1635
1636         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1637 }
1638
1639 /*
1640  *      vm_object_collapse:
1641  *
1642  *      Collapse an object with the object backing it.
1643  *      Pages in the backing object are moved into the
1644  *      parent, and the backing object is deallocated.
1645  */
1646 void
1647 vm_object_collapse(vm_object_t object)
1648 {
1649         vm_object_t backing_object, new_backing_object;
1650
1651         VM_OBJECT_ASSERT_WLOCKED(object);
1652
1653         while (TRUE) {
1654                 /*
1655                  * Verify that the conditions are right for collapse:
1656                  *
1657                  * The object exists and the backing object exists.
1658                  */
1659                 if ((backing_object = object->backing_object) == NULL)
1660                         break;
1661
1662                 /*
1663                  * we check the backing object first, because it is most likely
1664                  * not collapsable.
1665                  */
1666                 VM_OBJECT_WLOCK(backing_object);
1667                 if (backing_object->handle != NULL ||
1668                     (backing_object->type != OBJT_DEFAULT &&
1669                      backing_object->type != OBJT_SWAP) ||
1670                     (backing_object->flags & OBJ_DEAD) ||
1671                     object->handle != NULL ||
1672                     (object->type != OBJT_DEFAULT &&
1673                      object->type != OBJT_SWAP) ||
1674                     (object->flags & OBJ_DEAD)) {
1675                         VM_OBJECT_WUNLOCK(backing_object);
1676                         break;
1677                 }
1678
1679                 if (object->paging_in_progress != 0 ||
1680                     backing_object->paging_in_progress != 0) {
1681                         vm_object_qcollapse(object);
1682                         VM_OBJECT_WUNLOCK(backing_object);
1683                         break;
1684                 }
1685
1686                 /*
1687                  * We know that we can either collapse the backing object (if
1688                  * the parent is the only reference to it) or (perhaps) have
1689                  * the parent bypass the object if the parent happens to shadow
1690                  * all the resident pages in the entire backing object.
1691                  *
1692                  * This is ignoring pager-backed pages such as swap pages.
1693                  * vm_object_collapse_scan fails the shadowing test in this
1694                  * case.
1695                  */
1696                 if (backing_object->ref_count == 1) {
1697                         vm_object_pip_add(object, 1);
1698                         vm_object_pip_add(backing_object, 1);
1699
1700                         /*
1701                          * If there is exactly one reference to the backing
1702                          * object, we can collapse it into the parent.
1703                          */
1704                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1705
1706 #if VM_NRESERVLEVEL > 0
1707                         /*
1708                          * Break any reservations from backing_object.
1709                          */
1710                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1711                                 vm_reserv_break_all(backing_object);
1712 #endif
1713
1714                         /*
1715                          * Move the pager from backing_object to object.
1716                          */
1717                         if (backing_object->type == OBJT_SWAP) {
1718                                 /*
1719                                  * swap_pager_copy() can sleep, in which case
1720                                  * the backing_object's and object's locks are
1721                                  * released and reacquired.
1722                                  * Since swap_pager_copy() is being asked to
1723                                  * destroy the source, it will change the
1724                                  * backing_object's type to OBJT_DEFAULT.
1725                                  */
1726                                 swap_pager_copy(
1727                                     backing_object,
1728                                     object,
1729                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1730                         }
1731                         /*
1732                          * Object now shadows whatever backing_object did.
1733                          * Note that the reference to 
1734                          * backing_object->backing_object moves from within 
1735                          * backing_object to within object.
1736                          */
1737                         LIST_REMOVE(object, shadow_list);
1738                         backing_object->shadow_count--;
1739                         if (backing_object->backing_object) {
1740                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1741                                 LIST_REMOVE(backing_object, shadow_list);
1742                                 LIST_INSERT_HEAD(
1743                                     &backing_object->backing_object->shadow_head,
1744                                     object, shadow_list);
1745                                 /*
1746                                  * The shadow_count has not changed.
1747                                  */
1748                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1749                         }
1750                         object->backing_object = backing_object->backing_object;
1751                         object->backing_object_offset +=
1752                             backing_object->backing_object_offset;
1753
1754                         /*
1755                          * Discard backing_object.
1756                          *
1757                          * Since the backing object has no pages, no pager left,
1758                          * and no object references within it, all that is
1759                          * necessary is to dispose of it.
1760                          */
1761                         KASSERT(backing_object->ref_count == 1, (
1762 "backing_object %p was somehow re-referenced during collapse!",
1763                             backing_object));
1764                         vm_object_pip_wakeup(backing_object);
1765                         backing_object->type = OBJT_DEAD;
1766                         backing_object->ref_count = 0;
1767                         VM_OBJECT_WUNLOCK(backing_object);
1768                         vm_object_destroy(backing_object);
1769
1770                         vm_object_pip_wakeup(object);
1771                         object_collapses++;
1772                 } else {
1773                         /*
1774                          * If we do not entirely shadow the backing object,
1775                          * there is nothing we can do so we give up.
1776                          */
1777                         if (object->resident_page_count != object->size &&
1778                             !vm_object_scan_all_shadowed(object)) {
1779                                 VM_OBJECT_WUNLOCK(backing_object);
1780                                 break;
1781                         }
1782
1783                         /*
1784                          * Make the parent shadow the next object in the
1785                          * chain.  Deallocating backing_object will not remove
1786                          * it, since its reference count is at least 2.
1787                          */
1788                         LIST_REMOVE(object, shadow_list);
1789                         backing_object->shadow_count--;
1790
1791                         new_backing_object = backing_object->backing_object;
1792                         if ((object->backing_object = new_backing_object) != NULL) {
1793                                 VM_OBJECT_WLOCK(new_backing_object);
1794                                 LIST_INSERT_HEAD(
1795                                     &new_backing_object->shadow_head,
1796                                     object,
1797                                     shadow_list
1798                                 );
1799                                 new_backing_object->shadow_count++;
1800                                 vm_object_reference_locked(new_backing_object);
1801                                 VM_OBJECT_WUNLOCK(new_backing_object);
1802                                 object->backing_object_offset +=
1803                                         backing_object->backing_object_offset;
1804                         }
1805
1806                         /*
1807                          * Drop the reference count on backing_object. Since
1808                          * its ref_count was at least 2, it will not vanish.
1809                          */
1810                         backing_object->ref_count--;
1811                         VM_OBJECT_WUNLOCK(backing_object);
1812                         object_bypasses++;
1813                 }
1814
1815                 /*
1816                  * Try again with this object's new backing object.
1817                  */
1818         }
1819 }
1820
1821 /*
1822  *      vm_object_page_remove:
1823  *
1824  *      For the given object, either frees or invalidates each of the
1825  *      specified pages.  In general, a page is freed.  However, if a page is
1826  *      wired for any reason other than the existence of a managed, wired
1827  *      mapping, then it may be invalidated but not removed from the object.
1828  *      Pages are specified by the given range ["start", "end") and the option
1829  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1830  *      extends from "start" to the end of the object.  If the option
1831  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1832  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1833  *      specified, then the pages within the specified range must have no
1834  *      mappings.  Otherwise, if this option is not specified, any mappings to
1835  *      the specified pages are removed before the pages are freed or
1836  *      invalidated.
1837  *
1838  *      In general, this operation should only be performed on objects that
1839  *      contain managed pages.  There are, however, two exceptions.  First, it
1840  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1841  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1842  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1843  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1844  *
1845  *      The object must be locked.
1846  */
1847 void
1848 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1849     int options)
1850 {
1851         vm_page_t p, next;
1852
1853         VM_OBJECT_ASSERT_WLOCKED(object);
1854         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1855             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1856             ("vm_object_page_remove: illegal options for object %p", object));
1857         if (object->resident_page_count == 0)
1858                 return;
1859         vm_object_pip_add(object, 1);
1860 again:
1861         p = vm_page_find_least(object, start);
1862
1863         /*
1864          * Here, the variable "p" is either (1) the page with the least pindex
1865          * greater than or equal to the parameter "start" or (2) NULL. 
1866          */
1867         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1868                 next = TAILQ_NEXT(p, listq);
1869
1870                 /*
1871                  * If the page is wired for any reason besides the existence
1872                  * of managed, wired mappings, then it cannot be freed.  For
1873                  * example, fictitious pages, which represent device memory,
1874                  * are inherently wired and cannot be freed.  They can,
1875                  * however, be invalidated if the option OBJPR_CLEANONLY is
1876                  * not specified.
1877                  */
1878                 vm_page_lock(p);
1879                 if (vm_page_xbusied(p)) {
1880                         VM_OBJECT_WUNLOCK(object);
1881                         vm_page_busy_sleep(p, "vmopax", true);
1882                         VM_OBJECT_WLOCK(object);
1883                         goto again;
1884                 }
1885                 if (p->wire_count != 0) {
1886                         if ((options & OBJPR_NOTMAPPED) == 0)
1887                                 pmap_remove_all(p);
1888                         if ((options & OBJPR_CLEANONLY) == 0) {
1889                                 p->valid = 0;
1890                                 vm_page_undirty(p);
1891                         }
1892                         goto next;
1893                 }
1894                 if (vm_page_busied(p)) {
1895                         VM_OBJECT_WUNLOCK(object);
1896                         vm_page_busy_sleep(p, "vmopar", false);
1897                         VM_OBJECT_WLOCK(object);
1898                         goto again;
1899                 }
1900                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1901                     ("vm_object_page_remove: page %p is fictitious", p));
1902                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1903                         if ((options & OBJPR_NOTMAPPED) == 0)
1904                                 pmap_remove_write(p);
1905                         if (p->dirty)
1906                                 goto next;
1907                 }
1908                 if ((options & OBJPR_NOTMAPPED) == 0)
1909                         pmap_remove_all(p);
1910                 vm_page_free(p);
1911 next:
1912                 vm_page_unlock(p);
1913         }
1914         vm_object_pip_wakeup(object);
1915 }
1916
1917 /*
1918  *      vm_object_page_noreuse:
1919  *
1920  *      For the given object, attempt to move the specified pages to
1921  *      the head of the inactive queue.  This bypasses regular LRU
1922  *      operation and allows the pages to be reused quickly under memory
1923  *      pressure.  If a page is wired for any reason, then it will not
1924  *      be queued.  Pages are specified by the range ["start", "end").
1925  *      As a special case, if "end" is zero, then the range extends from
1926  *      "start" to the end of the object.
1927  *
1928  *      This operation should only be performed on objects that
1929  *      contain non-fictitious, managed pages.
1930  *
1931  *      The object must be locked.
1932  */
1933 void
1934 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1935 {
1936         struct mtx *mtx, *new_mtx;
1937         vm_page_t p, next;
1938
1939         VM_OBJECT_ASSERT_WLOCKED(object);
1940         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1941             ("vm_object_page_noreuse: illegal object %p", object));
1942         if (object->resident_page_count == 0)
1943                 return;
1944         p = vm_page_find_least(object, start);
1945
1946         /*
1947          * Here, the variable "p" is either (1) the page with the least pindex
1948          * greater than or equal to the parameter "start" or (2) NULL. 
1949          */
1950         mtx = NULL;
1951         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1952                 next = TAILQ_NEXT(p, listq);
1953
1954                 /*
1955                  * Avoid releasing and reacquiring the same page lock.
1956                  */
1957                 new_mtx = vm_page_lockptr(p);
1958                 if (mtx != new_mtx) {
1959                         if (mtx != NULL)
1960                                 mtx_unlock(mtx);
1961                         mtx = new_mtx;
1962                         mtx_lock(mtx);
1963                 }
1964                 vm_page_deactivate_noreuse(p);
1965         }
1966         if (mtx != NULL)
1967                 mtx_unlock(mtx);
1968 }
1969
1970 /*
1971  *      Populate the specified range of the object with valid pages.  Returns
1972  *      TRUE if the range is successfully populated and FALSE otherwise.
1973  *
1974  *      Note: This function should be optimized to pass a larger array of
1975  *      pages to vm_pager_get_pages() before it is applied to a non-
1976  *      OBJT_DEVICE object.
1977  *
1978  *      The object must be locked.
1979  */
1980 boolean_t
1981 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1982 {
1983         vm_page_t m;
1984         vm_pindex_t pindex;
1985         int rv;
1986
1987         VM_OBJECT_ASSERT_WLOCKED(object);
1988         for (pindex = start; pindex < end; pindex++) {
1989                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1990                 if (m->valid != VM_PAGE_BITS_ALL) {
1991                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
1992                         if (rv != VM_PAGER_OK) {
1993                                 vm_page_lock(m);
1994                                 vm_page_free(m);
1995                                 vm_page_unlock(m);
1996                                 break;
1997                         }
1998                 }
1999                 /*
2000                  * Keep "m" busy because a subsequent iteration may unlock
2001                  * the object.
2002                  */
2003         }
2004         if (pindex > start) {
2005                 m = vm_page_lookup(object, start);
2006                 while (m != NULL && m->pindex < pindex) {
2007                         vm_page_xunbusy(m);
2008                         m = TAILQ_NEXT(m, listq);
2009                 }
2010         }
2011         return (pindex == end);
2012 }
2013
2014 /*
2015  *      Routine:        vm_object_coalesce
2016  *      Function:       Coalesces two objects backing up adjoining
2017  *                      regions of memory into a single object.
2018  *
2019  *      returns TRUE if objects were combined.
2020  *
2021  *      NOTE:   Only works at the moment if the second object is NULL -
2022  *              if it's not, which object do we lock first?
2023  *
2024  *      Parameters:
2025  *              prev_object     First object to coalesce
2026  *              prev_offset     Offset into prev_object
2027  *              prev_size       Size of reference to prev_object
2028  *              next_size       Size of reference to the second object
2029  *              reserved        Indicator that extension region has
2030  *                              swap accounted for
2031  *
2032  *      Conditions:
2033  *      The object must *not* be locked.
2034  */
2035 boolean_t
2036 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2037     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2038 {
2039         vm_pindex_t next_pindex;
2040
2041         if (prev_object == NULL)
2042                 return (TRUE);
2043         VM_OBJECT_WLOCK(prev_object);
2044         if ((prev_object->type != OBJT_DEFAULT &&
2045             prev_object->type != OBJT_SWAP) ||
2046             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2047                 VM_OBJECT_WUNLOCK(prev_object);
2048                 return (FALSE);
2049         }
2050
2051         /*
2052          * Try to collapse the object first
2053          */
2054         vm_object_collapse(prev_object);
2055
2056         /*
2057          * Can't coalesce if: . more than one reference . paged out . shadows
2058          * another object . has a copy elsewhere (any of which mean that the
2059          * pages not mapped to prev_entry may be in use anyway)
2060          */
2061         if (prev_object->backing_object != NULL) {
2062                 VM_OBJECT_WUNLOCK(prev_object);
2063                 return (FALSE);
2064         }
2065
2066         prev_size >>= PAGE_SHIFT;
2067         next_size >>= PAGE_SHIFT;
2068         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2069
2070         if ((prev_object->ref_count > 1) &&
2071             (prev_object->size != next_pindex)) {
2072                 VM_OBJECT_WUNLOCK(prev_object);
2073                 return (FALSE);
2074         }
2075
2076         /*
2077          * Account for the charge.
2078          */
2079         if (prev_object->cred != NULL) {
2080
2081                 /*
2082                  * If prev_object was charged, then this mapping,
2083                  * although not charged now, may become writable
2084                  * later. Non-NULL cred in the object would prevent
2085                  * swap reservation during enabling of the write
2086                  * access, so reserve swap now. Failed reservation
2087                  * cause allocation of the separate object for the map
2088                  * entry, and swap reservation for this entry is
2089                  * managed in appropriate time.
2090                  */
2091                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2092                     prev_object->cred)) {
2093                         VM_OBJECT_WUNLOCK(prev_object);
2094                         return (FALSE);
2095                 }
2096                 prev_object->charge += ptoa(next_size);
2097         }
2098
2099         /*
2100          * Remove any pages that may still be in the object from a previous
2101          * deallocation.
2102          */
2103         if (next_pindex < prev_object->size) {
2104                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2105                     next_size, 0);
2106                 if (prev_object->type == OBJT_SWAP)
2107                         swap_pager_freespace(prev_object,
2108                                              next_pindex, next_size);
2109 #if 0
2110                 if (prev_object->cred != NULL) {
2111                         KASSERT(prev_object->charge >=
2112                             ptoa(prev_object->size - next_pindex),
2113                             ("object %p overcharged 1 %jx %jx", prev_object,
2114                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2115                         prev_object->charge -= ptoa(prev_object->size -
2116                             next_pindex);
2117                 }
2118 #endif
2119         }
2120
2121         /*
2122          * Extend the object if necessary.
2123          */
2124         if (next_pindex + next_size > prev_object->size)
2125                 prev_object->size = next_pindex + next_size;
2126
2127         VM_OBJECT_WUNLOCK(prev_object);
2128         return (TRUE);
2129 }
2130
2131 void
2132 vm_object_set_writeable_dirty(vm_object_t object)
2133 {
2134
2135         VM_OBJECT_ASSERT_WLOCKED(object);
2136         if (object->type != OBJT_VNODE) {
2137                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2138                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2139                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2140                 }
2141                 return;
2142         }
2143         object->generation++;
2144         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2145                 return;
2146         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2147 }
2148
2149 /*
2150  *      vm_object_unwire:
2151  *
2152  *      For each page offset within the specified range of the given object,
2153  *      find the highest-level page in the shadow chain and unwire it.  A page
2154  *      must exist at every page offset, and the highest-level page must be
2155  *      wired.
2156  */
2157 void
2158 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2159     uint8_t queue)
2160 {
2161         vm_object_t tobject;
2162         vm_page_t m, tm;
2163         vm_pindex_t end_pindex, pindex, tpindex;
2164         int depth, locked_depth;
2165
2166         KASSERT((offset & PAGE_MASK) == 0,
2167             ("vm_object_unwire: offset is not page aligned"));
2168         KASSERT((length & PAGE_MASK) == 0,
2169             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2170         /* The wired count of a fictitious page never changes. */
2171         if ((object->flags & OBJ_FICTITIOUS) != 0)
2172                 return;
2173         pindex = OFF_TO_IDX(offset);
2174         end_pindex = pindex + atop(length);
2175         locked_depth = 1;
2176         VM_OBJECT_RLOCK(object);
2177         m = vm_page_find_least(object, pindex);
2178         while (pindex < end_pindex) {
2179                 if (m == NULL || pindex < m->pindex) {
2180                         /*
2181                          * The first object in the shadow chain doesn't
2182                          * contain a page at the current index.  Therefore,
2183                          * the page must exist in a backing object.
2184                          */
2185                         tobject = object;
2186                         tpindex = pindex;
2187                         depth = 0;
2188                         do {
2189                                 tpindex +=
2190                                     OFF_TO_IDX(tobject->backing_object_offset);
2191                                 tobject = tobject->backing_object;
2192                                 KASSERT(tobject != NULL,
2193                                     ("vm_object_unwire: missing page"));
2194                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2195                                         goto next_page;
2196                                 depth++;
2197                                 if (depth == locked_depth) {
2198                                         locked_depth++;
2199                                         VM_OBJECT_RLOCK(tobject);
2200                                 }
2201                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2202                             NULL);
2203                 } else {
2204                         tm = m;
2205                         m = TAILQ_NEXT(m, listq);
2206                 }
2207                 vm_page_lock(tm);
2208                 vm_page_unwire(tm, queue);
2209                 vm_page_unlock(tm);
2210 next_page:
2211                 pindex++;
2212         }
2213         /* Release the accumulated object locks. */
2214         for (depth = 0; depth < locked_depth; depth++) {
2215                 tobject = object->backing_object;
2216                 VM_OBJECT_RUNLOCK(object);
2217                 object = tobject;
2218         }
2219 }
2220
2221 struct vnode *
2222 vm_object_vnode(vm_object_t object)
2223 {
2224
2225         VM_OBJECT_ASSERT_LOCKED(object);
2226         if (object->type == OBJT_VNODE)
2227                 return (object->handle);
2228         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2229                 return (object->un_pager.swp.swp_tmpfs);
2230         return (NULL);
2231 }
2232
2233 static int
2234 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2235 {
2236         struct kinfo_vmobject kvo;
2237         char *fullpath, *freepath;
2238         struct vnode *vp;
2239         struct vattr va;
2240         vm_object_t obj;
2241         vm_page_t m;
2242         int count, error;
2243
2244         if (req->oldptr == NULL) {
2245                 /*
2246                  * If an old buffer has not been provided, generate an
2247                  * estimate of the space needed for a subsequent call.
2248                  */
2249                 mtx_lock(&vm_object_list_mtx);
2250                 count = 0;
2251                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2252                         if (obj->type == OBJT_DEAD)
2253                                 continue;
2254                         count++;
2255                 }
2256                 mtx_unlock(&vm_object_list_mtx);
2257                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2258                     count * 11 / 10));
2259         }
2260
2261         error = 0;
2262
2263         /*
2264          * VM objects are type stable and are never removed from the
2265          * list once added.  This allows us to safely read obj->object_list
2266          * after reacquiring the VM object lock.
2267          */
2268         mtx_lock(&vm_object_list_mtx);
2269         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2270                 if (obj->type == OBJT_DEAD)
2271                         continue;
2272                 VM_OBJECT_RLOCK(obj);
2273                 if (obj->type == OBJT_DEAD) {
2274                         VM_OBJECT_RUNLOCK(obj);
2275                         continue;
2276                 }
2277                 mtx_unlock(&vm_object_list_mtx);
2278                 kvo.kvo_size = ptoa(obj->size);
2279                 kvo.kvo_resident = obj->resident_page_count;
2280                 kvo.kvo_ref_count = obj->ref_count;
2281                 kvo.kvo_shadow_count = obj->shadow_count;
2282                 kvo.kvo_memattr = obj->memattr;
2283                 kvo.kvo_active = 0;
2284                 kvo.kvo_inactive = 0;
2285                 TAILQ_FOREACH(m, &obj->memq, listq) {
2286                         /*
2287                          * A page may belong to the object but be
2288                          * dequeued and set to PQ_NONE while the
2289                          * object lock is not held.  This makes the
2290                          * reads of m->queue below racy, and we do not
2291                          * count pages set to PQ_NONE.  However, this
2292                          * sysctl is only meant to give an
2293                          * approximation of the system anyway.
2294                          */
2295                         if (vm_page_active(m))
2296                                 kvo.kvo_active++;
2297                         else if (vm_page_inactive(m))
2298                                 kvo.kvo_inactive++;
2299                 }
2300
2301                 kvo.kvo_vn_fileid = 0;
2302                 kvo.kvo_vn_fsid = 0;
2303                 freepath = NULL;
2304                 fullpath = "";
2305                 vp = NULL;
2306                 switch (obj->type) {
2307                 case OBJT_DEFAULT:
2308                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2309                         break;
2310                 case OBJT_VNODE:
2311                         kvo.kvo_type = KVME_TYPE_VNODE;
2312                         vp = obj->handle;
2313                         vref(vp);
2314                         break;
2315                 case OBJT_SWAP:
2316                         kvo.kvo_type = KVME_TYPE_SWAP;
2317                         break;
2318                 case OBJT_DEVICE:
2319                         kvo.kvo_type = KVME_TYPE_DEVICE;
2320                         break;
2321                 case OBJT_PHYS:
2322                         kvo.kvo_type = KVME_TYPE_PHYS;
2323                         break;
2324                 case OBJT_DEAD:
2325                         kvo.kvo_type = KVME_TYPE_DEAD;
2326                         break;
2327                 case OBJT_SG:
2328                         kvo.kvo_type = KVME_TYPE_SG;
2329                         break;
2330                 case OBJT_MGTDEVICE:
2331                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2332                         break;
2333                 default:
2334                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2335                         break;
2336                 }
2337                 VM_OBJECT_RUNLOCK(obj);
2338                 if (vp != NULL) {
2339                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2340                         vn_lock(vp, LK_SHARED | LK_RETRY);
2341                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2342                                 kvo.kvo_vn_fileid = va.va_fileid;
2343                                 kvo.kvo_vn_fsid = va.va_fsid;
2344                         }
2345                         vput(vp);
2346                 }
2347
2348                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2349                 if (freepath != NULL)
2350                         free(freepath, M_TEMP);
2351
2352                 /* Pack record size down */
2353                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2354                     strlen(kvo.kvo_path) + 1;
2355                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2356                     sizeof(uint64_t));
2357                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2358                 mtx_lock(&vm_object_list_mtx);
2359                 if (error)
2360                         break;
2361         }
2362         mtx_unlock(&vm_object_list_mtx);
2363         return (error);
2364 }
2365 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2366     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2367     "List of VM objects");
2368
2369 #include "opt_ddb.h"
2370 #ifdef DDB
2371 #include <sys/kernel.h>
2372
2373 #include <sys/cons.h>
2374
2375 #include <ddb/ddb.h>
2376
2377 static int
2378 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2379 {
2380         vm_map_t tmpm;
2381         vm_map_entry_t tmpe;
2382         vm_object_t obj;
2383         int entcount;
2384
2385         if (map == 0)
2386                 return 0;
2387
2388         if (entry == 0) {
2389                 tmpe = map->header.next;
2390                 entcount = map->nentries;
2391                 while (entcount-- && (tmpe != &map->header)) {
2392                         if (_vm_object_in_map(map, object, tmpe)) {
2393                                 return 1;
2394                         }
2395                         tmpe = tmpe->next;
2396                 }
2397         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2398                 tmpm = entry->object.sub_map;
2399                 tmpe = tmpm->header.next;
2400                 entcount = tmpm->nentries;
2401                 while (entcount-- && tmpe != &tmpm->header) {
2402                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2403                                 return 1;
2404                         }
2405                         tmpe = tmpe->next;
2406                 }
2407         } else if ((obj = entry->object.vm_object) != NULL) {
2408                 for (; obj; obj = obj->backing_object)
2409                         if (obj == object) {
2410                                 return 1;
2411                         }
2412         }
2413         return 0;
2414 }
2415
2416 static int
2417 vm_object_in_map(vm_object_t object)
2418 {
2419         struct proc *p;
2420
2421         /* sx_slock(&allproc_lock); */
2422         FOREACH_PROC_IN_SYSTEM(p) {
2423                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2424                         continue;
2425                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2426                         /* sx_sunlock(&allproc_lock); */
2427                         return 1;
2428                 }
2429         }
2430         /* sx_sunlock(&allproc_lock); */
2431         if (_vm_object_in_map(kernel_map, object, 0))
2432                 return 1;
2433         return 0;
2434 }
2435
2436 DB_SHOW_COMMAND(vmochk, vm_object_check)
2437 {
2438         vm_object_t object;
2439
2440         /*
2441          * make sure that internal objs are in a map somewhere
2442          * and none have zero ref counts.
2443          */
2444         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2445                 if (object->handle == NULL &&
2446                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2447                         if (object->ref_count == 0) {
2448                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2449                                         (long)object->size);
2450                         }
2451                         if (!vm_object_in_map(object)) {
2452                                 db_printf(
2453                         "vmochk: internal obj is not in a map: "
2454                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2455                                     object->ref_count, (u_long)object->size, 
2456                                     (u_long)object->size,
2457                                     (void *)object->backing_object);
2458                         }
2459                 }
2460         }
2461 }
2462
2463 /*
2464  *      vm_object_print:        [ debug ]
2465  */
2466 DB_SHOW_COMMAND(object, vm_object_print_static)
2467 {
2468         /* XXX convert args. */
2469         vm_object_t object = (vm_object_t)addr;
2470         boolean_t full = have_addr;
2471
2472         vm_page_t p;
2473
2474         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2475 #define count   was_count
2476
2477         int count;
2478
2479         if (object == NULL)
2480                 return;
2481
2482         db_iprintf(
2483             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2484             object, (int)object->type, (uintmax_t)object->size,
2485             object->resident_page_count, object->ref_count, object->flags,
2486             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2487         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2488             object->shadow_count, 
2489             object->backing_object ? object->backing_object->ref_count : 0,
2490             object->backing_object, (uintmax_t)object->backing_object_offset);
2491
2492         if (!full)
2493                 return;
2494
2495         db_indent += 2;
2496         count = 0;
2497         TAILQ_FOREACH(p, &object->memq, listq) {
2498                 if (count == 0)
2499                         db_iprintf("memory:=");
2500                 else if (count == 6) {
2501                         db_printf("\n");
2502                         db_iprintf(" ...");
2503                         count = 0;
2504                 } else
2505                         db_printf(",");
2506                 count++;
2507
2508                 db_printf("(off=0x%jx,page=0x%jx)",
2509                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2510         }
2511         if (count != 0)
2512                 db_printf("\n");
2513         db_indent -= 2;
2514 }
2515
2516 /* XXX. */
2517 #undef count
2518
2519 /* XXX need this non-static entry for calling from vm_map_print. */
2520 void
2521 vm_object_print(
2522         /* db_expr_t */ long addr,
2523         boolean_t have_addr,
2524         /* db_expr_t */ long count,
2525         char *modif)
2526 {
2527         vm_object_print_static(addr, have_addr, count, modif);
2528 }
2529
2530 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2531 {
2532         vm_object_t object;
2533         vm_pindex_t fidx;
2534         vm_paddr_t pa;
2535         vm_page_t m, prev_m;
2536         int rcount, nl, c;
2537
2538         nl = 0;
2539         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2540                 db_printf("new object: %p\n", (void *)object);
2541                 if (nl > 18) {
2542                         c = cngetc();
2543                         if (c != ' ')
2544                                 return;
2545                         nl = 0;
2546                 }
2547                 nl++;
2548                 rcount = 0;
2549                 fidx = 0;
2550                 pa = -1;
2551                 TAILQ_FOREACH(m, &object->memq, listq) {
2552                         if (m->pindex > 128)
2553                                 break;
2554                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2555                             prev_m->pindex + 1 != m->pindex) {
2556                                 if (rcount) {
2557                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2558                                                 (long)fidx, rcount, (long)pa);
2559                                         if (nl > 18) {
2560                                                 c = cngetc();
2561                                                 if (c != ' ')
2562                                                         return;
2563                                                 nl = 0;
2564                                         }
2565                                         nl++;
2566                                         rcount = 0;
2567                                 }
2568                         }                               
2569                         if (rcount &&
2570                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2571                                 ++rcount;
2572                                 continue;
2573                         }
2574                         if (rcount) {
2575                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2576                                         (long)fidx, rcount, (long)pa);
2577                                 if (nl > 18) {
2578                                         c = cngetc();
2579                                         if (c != ' ')
2580                                                 return;
2581                                         nl = 0;
2582                                 }
2583                                 nl++;
2584                         }
2585                         fidx = m->pindex;
2586                         pa = VM_PAGE_TO_PHYS(m);
2587                         rcount = 1;
2588                 }
2589                 if (rcount) {
2590                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2591                                 (long)fidx, rcount, (long)pa);
2592                         if (nl > 18) {
2593                                 c = cngetc();
2594                                 if (c != ' ')
2595                                         return;
2596                                 nl = 0;
2597                         }
2598                         nl++;
2599                 }
2600         }
2601 }
2602 #endif /* DDB */