]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Update comment describing struct vm_map
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(atomic_load_int(&object->shadow_count) == 0,
202             ("object %p shadow_count = %d",
203             object, atomic_load_int(&object->shadow_count)));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207         KASSERT(object->charge == 0 && object->cred == NULL,
208             ("object %p has non-zero charge %ju (%p)",
209             object, (uintmax_t)object->charge, object->cred));
210 }
211 #endif
212
213 static int
214 vm_object_zinit(void *mem, int size, int flags)
215 {
216         vm_object_t object;
217
218         object = (vm_object_t)mem;
219         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
220
221         /* These are true for any object that has been freed */
222         object->type = OBJT_DEAD;
223         vm_radix_init(&object->rtree);
224         refcount_init(&object->ref_count, 0);
225         blockcount_init(&object->paging_in_progress);
226         blockcount_init(&object->busy);
227         object->resident_page_count = 0;
228         atomic_store_int(&object->shadow_count, 0);
229         object->flags = OBJ_DEAD;
230
231         mtx_lock(&vm_object_list_mtx);
232         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
233         mtx_unlock(&vm_object_list_mtx);
234         return (0);
235 }
236
237 static void
238 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
239     vm_object_t object, void *handle)
240 {
241
242         TAILQ_INIT(&object->memq);
243         LIST_INIT(&object->shadow_head);
244
245         object->type = type;
246         object->flags = flags;
247         if ((flags & OBJ_SWAP) != 0)
248                 pctrie_init(&object->un_pager.swp.swp_blks);
249
250         /*
251          * Ensure that swap_pager_swapoff() iteration over object_list
252          * sees up to date type and pctrie head if it observed
253          * non-dead object.
254          */
255         atomic_thread_fence_rel();
256
257         object->pg_color = 0;
258         object->size = size;
259         object->domain.dr_policy = NULL;
260         object->generation = 1;
261         object->cleangeneration = 1;
262         refcount_init(&object->ref_count, 1);
263         object->memattr = VM_MEMATTR_DEFAULT;
264         object->cred = NULL;
265         object->charge = 0;
266         object->handle = handle;
267         object->backing_object = NULL;
268         object->backing_object_offset = (vm_ooffset_t) 0;
269 #if VM_NRESERVLEVEL > 0
270         LIST_INIT(&object->rvq);
271 #endif
272         umtx_shm_object_init(object);
273 }
274
275 /*
276  *      vm_object_init:
277  *
278  *      Initialize the VM objects module.
279  */
280 void
281 vm_object_init(void)
282 {
283         TAILQ_INIT(&vm_object_list);
284         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
285
286         rw_init(&kernel_object->lock, "kernel vm object");
287         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
288             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
289 #if VM_NRESERVLEVEL > 0
290         kernel_object->flags |= OBJ_COLORED;
291         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
292 #endif
293         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
294
295         /*
296          * The lock portion of struct vm_object must be type stable due
297          * to vm_pageout_fallback_object_lock locking a vm object
298          * without holding any references to it.
299          *
300          * paging_in_progress is valid always.  Lockless references to
301          * the objects may acquire pip and then check OBJ_DEAD.
302          */
303         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
304 #ifdef INVARIANTS
305             vm_object_zdtor,
306 #else
307             NULL,
308 #endif
309             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
310
311         vm_radix_zinit();
312 }
313
314 void
315 vm_object_clear_flag(vm_object_t object, u_short bits)
316 {
317
318         VM_OBJECT_ASSERT_WLOCKED(object);
319         object->flags &= ~bits;
320 }
321
322 /*
323  *      Sets the default memory attribute for the specified object.  Pages
324  *      that are allocated to this object are by default assigned this memory
325  *      attribute.
326  *
327  *      Presently, this function must be called before any pages are allocated
328  *      to the object.  In the future, this requirement may be relaxed for
329  *      "default" and "swap" objects.
330  */
331 int
332 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
333 {
334
335         VM_OBJECT_ASSERT_WLOCKED(object);
336
337         if (object->type == OBJT_DEAD)
338                 return (KERN_INVALID_ARGUMENT);
339         if (!TAILQ_EMPTY(&object->memq))
340                 return (KERN_FAILURE);
341
342         object->memattr = memattr;
343         return (KERN_SUCCESS);
344 }
345
346 void
347 vm_object_pip_add(vm_object_t object, short i)
348 {
349
350         if (i > 0)
351                 blockcount_acquire(&object->paging_in_progress, i);
352 }
353
354 void
355 vm_object_pip_wakeup(vm_object_t object)
356 {
357
358         vm_object_pip_wakeupn(object, 1);
359 }
360
361 void
362 vm_object_pip_wakeupn(vm_object_t object, short i)
363 {
364
365         if (i > 0)
366                 blockcount_release(&object->paging_in_progress, i);
367 }
368
369 /*
370  * Atomically drop the object lock and wait for pip to drain.  This protects
371  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
372  * on return.
373  */
374 static void
375 vm_object_pip_sleep(vm_object_t object, const char *waitid)
376 {
377
378         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
379             waitid, PVM | PDROP);
380 }
381
382 void
383 vm_object_pip_wait(vm_object_t object, const char *waitid)
384 {
385
386         VM_OBJECT_ASSERT_WLOCKED(object);
387
388         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
389             PVM);
390 }
391
392 void
393 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
394 {
395
396         VM_OBJECT_ASSERT_UNLOCKED(object);
397
398         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
399 }
400
401 /*
402  *      vm_object_allocate:
403  *
404  *      Returns a new object with the given size.
405  */
406 vm_object_t
407 vm_object_allocate(objtype_t type, vm_pindex_t size)
408 {
409         vm_object_t object;
410         u_short flags;
411
412         switch (type) {
413         case OBJT_DEAD:
414                 panic("vm_object_allocate: can't create OBJT_DEAD");
415         case OBJT_DEFAULT:
416                 flags = OBJ_COLORED;
417                 break;
418         case OBJT_SWAP:
419                 flags = OBJ_COLORED | OBJ_SWAP;
420                 break;
421         case OBJT_DEVICE:
422         case OBJT_SG:
423                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
424                 break;
425         case OBJT_MGTDEVICE:
426                 flags = OBJ_FICTITIOUS;
427                 break;
428         case OBJT_PHYS:
429                 flags = OBJ_UNMANAGED;
430                 break;
431         case OBJT_VNODE:
432                 flags = 0;
433                 break;
434         default:
435                 panic("vm_object_allocate: type %d is undefined or dynamic",
436                     type);
437         }
438         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
439         _vm_object_allocate(type, size, flags, object, NULL);
440
441         return (object);
442 }
443
444 vm_object_t
445 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
446 {
447         vm_object_t object;
448
449         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
450         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
451         _vm_object_allocate(dyntype, size, flags, object, NULL);
452
453         return (object);
454 }
455
456 /*
457  *      vm_object_allocate_anon:
458  *
459  *      Returns a new default object of the given size and marked as
460  *      anonymous memory for special split/collapse handling.  Color
461  *      to be initialized by the caller.
462  */
463 vm_object_t
464 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
465     struct ucred *cred, vm_size_t charge)
466 {
467         vm_object_t handle, object;
468
469         if (backing_object == NULL)
470                 handle = NULL;
471         else if ((backing_object->flags & OBJ_ANON) != 0)
472                 handle = backing_object->handle;
473         else
474                 handle = backing_object;
475         object = uma_zalloc(obj_zone, M_WAITOK);
476         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
477             object, handle);
478         object->cred = cred;
479         object->charge = cred != NULL ? charge : 0;
480         return (object);
481 }
482
483 static void
484 vm_object_reference_vnode(vm_object_t object)
485 {
486         u_int old;
487
488         /*
489          * vnode objects need the lock for the first reference
490          * to serialize with vnode_object_deallocate().
491          */
492         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
493                 VM_OBJECT_RLOCK(object);
494                 old = refcount_acquire(&object->ref_count);
495                 if (object->type == OBJT_VNODE && old == 0)
496                         vref(object->handle);
497                 VM_OBJECT_RUNLOCK(object);
498         }
499 }
500
501 /*
502  *      vm_object_reference:
503  *
504  *      Acquires a reference to the given object.
505  */
506 void
507 vm_object_reference(vm_object_t object)
508 {
509
510         if (object == NULL)
511                 return;
512
513         if (object->type == OBJT_VNODE)
514                 vm_object_reference_vnode(object);
515         else
516                 refcount_acquire(&object->ref_count);
517         KASSERT((object->flags & OBJ_DEAD) == 0,
518             ("vm_object_reference: Referenced dead object."));
519 }
520
521 /*
522  *      vm_object_reference_locked:
523  *
524  *      Gets another reference to the given object.
525  *
526  *      The object must be locked.
527  */
528 void
529 vm_object_reference_locked(vm_object_t object)
530 {
531         u_int old;
532
533         VM_OBJECT_ASSERT_LOCKED(object);
534         old = refcount_acquire(&object->ref_count);
535         if (object->type == OBJT_VNODE && old == 0)
536                 vref(object->handle);
537         KASSERT((object->flags & OBJ_DEAD) == 0,
538             ("vm_object_reference: Referenced dead object."));
539 }
540
541 /*
542  * Handle deallocating an object of type OBJT_VNODE.
543  */
544 static void
545 vm_object_deallocate_vnode(vm_object_t object)
546 {
547         struct vnode *vp = (struct vnode *) object->handle;
548         bool last;
549
550         KASSERT(object->type == OBJT_VNODE,
551             ("vm_object_deallocate_vnode: not a vnode object"));
552         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
553
554         /* Object lock to protect handle lookup. */
555         last = refcount_release(&object->ref_count);
556         VM_OBJECT_RUNLOCK(object);
557
558         if (!last)
559                 return;
560
561         if (!umtx_shm_vnobj_persistent)
562                 umtx_shm_object_terminated(object);
563
564         /* vrele may need the vnode lock. */
565         vrele(vp);
566 }
567
568 /*
569  * We dropped a reference on an object and discovered that it had a
570  * single remaining shadow.  This is a sibling of the reference we
571  * dropped.  Attempt to collapse the sibling and backing object.
572  */
573 static vm_object_t
574 vm_object_deallocate_anon(vm_object_t backing_object)
575 {
576         vm_object_t object;
577
578         /* Fetch the final shadow.  */
579         object = LIST_FIRST(&backing_object->shadow_head);
580         KASSERT(object != NULL &&
581             atomic_load_int(&backing_object->shadow_count) == 1,
582             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
583             backing_object->ref_count,
584             atomic_load_int(&backing_object->shadow_count)));
585         KASSERT((object->flags & OBJ_ANON) != 0,
586             ("invalid shadow object %p", object));
587
588         if (!VM_OBJECT_TRYWLOCK(object)) {
589                 /*
590                  * Prevent object from disappearing since we do not have a
591                  * reference.
592                  */
593                 vm_object_pip_add(object, 1);
594                 VM_OBJECT_WUNLOCK(backing_object);
595                 VM_OBJECT_WLOCK(object);
596                 vm_object_pip_wakeup(object);
597         } else
598                 VM_OBJECT_WUNLOCK(backing_object);
599
600         /*
601          * Check for a collapse/terminate race with the last reference holder.
602          */
603         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
604             !refcount_acquire_if_not_zero(&object->ref_count)) {
605                 VM_OBJECT_WUNLOCK(object);
606                 return (NULL);
607         }
608         backing_object = object->backing_object;
609         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
610                 vm_object_collapse(object);
611         VM_OBJECT_WUNLOCK(object);
612
613         return (object);
614 }
615
616 /*
617  *      vm_object_deallocate:
618  *
619  *      Release a reference to the specified object,
620  *      gained either through a vm_object_allocate
621  *      or a vm_object_reference call.  When all references
622  *      are gone, storage associated with this object
623  *      may be relinquished.
624  *
625  *      No object may be locked.
626  */
627 void
628 vm_object_deallocate(vm_object_t object)
629 {
630         vm_object_t temp;
631         bool released;
632
633         while (object != NULL) {
634                 /*
635                  * If the reference count goes to 0 we start calling
636                  * vm_object_terminate() on the object chain.  A ref count
637                  * of 1 may be a special case depending on the shadow count
638                  * being 0 or 1.  These cases require a write lock on the
639                  * object.
640                  */
641                 if ((object->flags & OBJ_ANON) == 0)
642                         released = refcount_release_if_gt(&object->ref_count, 1);
643                 else
644                         released = refcount_release_if_gt(&object->ref_count, 2);
645                 if (released)
646                         return;
647
648                 if (object->type == OBJT_VNODE) {
649                         VM_OBJECT_RLOCK(object);
650                         if (object->type == OBJT_VNODE) {
651                                 vm_object_deallocate_vnode(object);
652                                 return;
653                         }
654                         VM_OBJECT_RUNLOCK(object);
655                 }
656
657                 VM_OBJECT_WLOCK(object);
658                 KASSERT(object->ref_count > 0,
659                     ("vm_object_deallocate: object deallocated too many times: %d",
660                     object->type));
661
662                 /*
663                  * If this is not the final reference to an anonymous
664                  * object we may need to collapse the shadow chain.
665                  */
666                 if (!refcount_release(&object->ref_count)) {
667                         if (object->ref_count > 1 ||
668                             atomic_load_int(&object->shadow_count) == 0) {
669                                 if ((object->flags & OBJ_ANON) != 0 &&
670                                     object->ref_count == 1)
671                                         vm_object_set_flag(object,
672                                             OBJ_ONEMAPPING);
673                                 VM_OBJECT_WUNLOCK(object);
674                                 return;
675                         }
676
677                         /* Handle collapsing last ref on anonymous objects. */
678                         object = vm_object_deallocate_anon(object);
679                         continue;
680                 }
681
682                 /*
683                  * Handle the final reference to an object.  We restart
684                  * the loop with the backing object to avoid recursion.
685                  */
686                 umtx_shm_object_terminated(object);
687                 temp = object->backing_object;
688                 if (temp != NULL) {
689                         KASSERT(object->type == OBJT_DEFAULT ||
690                             object->type == OBJT_SWAP,
691                             ("shadowed tmpfs v_object 2 %p", object));
692                         vm_object_backing_remove(object);
693                 }
694
695                 KASSERT((object->flags & OBJ_DEAD) == 0,
696                     ("vm_object_deallocate: Terminating dead object."));
697                 vm_object_set_flag(object, OBJ_DEAD);
698                 vm_object_terminate(object);
699                 object = temp;
700         }
701 }
702
703 /*
704  *      vm_object_destroy removes the object from the global object list
705  *      and frees the space for the object.
706  */
707 void
708 vm_object_destroy(vm_object_t object)
709 {
710
711         /*
712          * Release the allocation charge.
713          */
714         if (object->cred != NULL) {
715                 swap_release_by_cred(object->charge, object->cred);
716                 object->charge = 0;
717                 crfree(object->cred);
718                 object->cred = NULL;
719         }
720
721         /*
722          * Free the space for the object.
723          */
724         uma_zfree(obj_zone, object);
725 }
726
727 static void
728 vm_object_sub_shadow(vm_object_t object)
729 {
730         KASSERT(object->shadow_count >= 1,
731             ("object %p sub_shadow count zero", object));
732         atomic_subtract_int(&object->shadow_count, 1);
733 }
734
735 static void
736 vm_object_backing_remove_locked(vm_object_t object)
737 {
738         vm_object_t backing_object;
739
740         backing_object = object->backing_object;
741         VM_OBJECT_ASSERT_WLOCKED(object);
742         VM_OBJECT_ASSERT_WLOCKED(backing_object);
743
744         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
745             ("vm_object_backing_remove: Removing collapsing object."));
746
747         vm_object_sub_shadow(backing_object);
748         if ((object->flags & OBJ_SHADOWLIST) != 0) {
749                 LIST_REMOVE(object, shadow_list);
750                 vm_object_clear_flag(object, OBJ_SHADOWLIST);
751         }
752         object->backing_object = NULL;
753 }
754
755 static void
756 vm_object_backing_remove(vm_object_t object)
757 {
758         vm_object_t backing_object;
759
760         VM_OBJECT_ASSERT_WLOCKED(object);
761
762         backing_object = object->backing_object;
763         if ((object->flags & OBJ_SHADOWLIST) != 0) {
764                 VM_OBJECT_WLOCK(backing_object);
765                 vm_object_backing_remove_locked(object);
766                 VM_OBJECT_WUNLOCK(backing_object);
767         } else {
768                 object->backing_object = NULL;
769                 vm_object_sub_shadow(backing_object);
770         }
771 }
772
773 static void
774 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
775 {
776
777         VM_OBJECT_ASSERT_WLOCKED(object);
778
779         atomic_add_int(&backing_object->shadow_count, 1);
780         if ((backing_object->flags & OBJ_ANON) != 0) {
781                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
782                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
783                     shadow_list);
784                 vm_object_set_flag(object, OBJ_SHADOWLIST);
785         }
786         object->backing_object = backing_object;
787 }
788
789 static void
790 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
791 {
792
793         VM_OBJECT_ASSERT_WLOCKED(object);
794
795         if ((backing_object->flags & OBJ_ANON) != 0) {
796                 VM_OBJECT_WLOCK(backing_object);
797                 vm_object_backing_insert_locked(object, backing_object);
798                 VM_OBJECT_WUNLOCK(backing_object);
799         } else {
800                 object->backing_object = backing_object;
801                 atomic_add_int(&backing_object->shadow_count, 1);
802         }
803 }
804
805 /*
806  * Insert an object into a backing_object's shadow list with an additional
807  * reference to the backing_object added.
808  */
809 static void
810 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
811 {
812
813         VM_OBJECT_ASSERT_WLOCKED(object);
814
815         if ((backing_object->flags & OBJ_ANON) != 0) {
816                 VM_OBJECT_WLOCK(backing_object);
817                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
818                     ("shadowing dead anonymous object"));
819                 vm_object_reference_locked(backing_object);
820                 vm_object_backing_insert_locked(object, backing_object);
821                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
822                 VM_OBJECT_WUNLOCK(backing_object);
823         } else {
824                 vm_object_reference(backing_object);
825                 atomic_add_int(&backing_object->shadow_count, 1);
826                 object->backing_object = backing_object;
827         }
828 }
829
830 /*
831  * Transfer a backing reference from backing_object to object.
832  */
833 static void
834 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
835 {
836         vm_object_t new_backing_object;
837
838         /*
839          * Note that the reference to backing_object->backing_object
840          * moves from within backing_object to within object.
841          */
842         vm_object_backing_remove_locked(object);
843         new_backing_object = backing_object->backing_object;
844         if (new_backing_object == NULL)
845                 return;
846         if ((new_backing_object->flags & OBJ_ANON) != 0) {
847                 VM_OBJECT_WLOCK(new_backing_object);
848                 vm_object_backing_remove_locked(backing_object);
849                 vm_object_backing_insert_locked(object, new_backing_object);
850                 VM_OBJECT_WUNLOCK(new_backing_object);
851         } else {
852                 /*
853                  * shadow_count for new_backing_object is left
854                  * unchanged, its reference provided by backing_object
855                  * is replaced by object.
856                  */
857                 object->backing_object = new_backing_object;
858                 backing_object->backing_object = NULL;
859         }
860 }
861
862 /*
863  * Wait for a concurrent collapse to settle.
864  */
865 static void
866 vm_object_collapse_wait(vm_object_t object)
867 {
868
869         VM_OBJECT_ASSERT_WLOCKED(object);
870
871         while ((object->flags & OBJ_COLLAPSING) != 0) {
872                 vm_object_pip_wait(object, "vmcolwait");
873                 counter_u64_add(object_collapse_waits, 1);
874         }
875 }
876
877 /*
878  * Waits for a backing object to clear a pending collapse and returns
879  * it locked if it is an ANON object.
880  */
881 static vm_object_t
882 vm_object_backing_collapse_wait(vm_object_t object)
883 {
884         vm_object_t backing_object;
885
886         VM_OBJECT_ASSERT_WLOCKED(object);
887
888         for (;;) {
889                 backing_object = object->backing_object;
890                 if (backing_object == NULL ||
891                     (backing_object->flags & OBJ_ANON) == 0)
892                         return (NULL);
893                 VM_OBJECT_WLOCK(backing_object);
894                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
895                         break;
896                 VM_OBJECT_WUNLOCK(object);
897                 vm_object_pip_sleep(backing_object, "vmbckwait");
898                 counter_u64_add(object_collapse_waits, 1);
899                 VM_OBJECT_WLOCK(object);
900         }
901         return (backing_object);
902 }
903
904 /*
905  *      vm_object_terminate_pages removes any remaining pageable pages
906  *      from the object and resets the object to an empty state.
907  */
908 static void
909 vm_object_terminate_pages(vm_object_t object)
910 {
911         vm_page_t p, p_next;
912
913         VM_OBJECT_ASSERT_WLOCKED(object);
914
915         /*
916          * Free any remaining pageable pages.  This also removes them from the
917          * paging queues.  However, don't free wired pages, just remove them
918          * from the object.  Rather than incrementally removing each page from
919          * the object, the page and object are reset to any empty state. 
920          */
921         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
922                 vm_page_assert_unbusied(p);
923                 KASSERT(p->object == object &&
924                     (p->ref_count & VPRC_OBJREF) != 0,
925                     ("vm_object_terminate_pages: page %p is inconsistent", p));
926
927                 p->object = NULL;
928                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
929                         VM_CNT_INC(v_pfree);
930                         vm_page_free(p);
931                 }
932         }
933
934         /*
935          * If the object contained any pages, then reset it to an empty state.
936          * None of the object's fields, including "resident_page_count", were
937          * modified by the preceding loop.
938          */
939         if (object->resident_page_count != 0) {
940                 vm_radix_reclaim_allnodes(&object->rtree);
941                 TAILQ_INIT(&object->memq);
942                 object->resident_page_count = 0;
943                 if (object->type == OBJT_VNODE)
944                         vdrop(object->handle);
945         }
946 }
947
948 /*
949  *      vm_object_terminate actually destroys the specified object, freeing
950  *      up all previously used resources.
951  *
952  *      The object must be locked.
953  *      This routine may block.
954  */
955 void
956 vm_object_terminate(vm_object_t object)
957 {
958
959         VM_OBJECT_ASSERT_WLOCKED(object);
960         KASSERT((object->flags & OBJ_DEAD) != 0,
961             ("terminating non-dead obj %p", object));
962         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
963             ("terminating collapsing obj %p", object));
964         KASSERT(object->backing_object == NULL,
965             ("terminating shadow obj %p", object));
966
967         /*
968          * Wait for the pageout daemon and other current users to be
969          * done with the object.  Note that new paging_in_progress
970          * users can come after this wait, but they must check
971          * OBJ_DEAD flag set (without unlocking the object), and avoid
972          * the object being terminated.
973          */
974         vm_object_pip_wait(object, "objtrm");
975
976         KASSERT(object->ref_count == 0,
977             ("vm_object_terminate: object with references, ref_count=%d",
978             object->ref_count));
979
980         if ((object->flags & OBJ_PG_DTOR) == 0)
981                 vm_object_terminate_pages(object);
982
983 #if VM_NRESERVLEVEL > 0
984         if (__predict_false(!LIST_EMPTY(&object->rvq)))
985                 vm_reserv_break_all(object);
986 #endif
987
988         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
989             (object->flags & OBJ_SWAP) != 0,
990             ("%s: non-swap obj %p has cred", __func__, object));
991
992         /*
993          * Let the pager know object is dead.
994          */
995         vm_pager_deallocate(object);
996         VM_OBJECT_WUNLOCK(object);
997
998         vm_object_destroy(object);
999 }
1000
1001 /*
1002  * Make the page read-only so that we can clear the object flags.  However, if
1003  * this is a nosync mmap then the object is likely to stay dirty so do not
1004  * mess with the page and do not clear the object flags.  Returns TRUE if the
1005  * page should be flushed, and FALSE otherwise.
1006  */
1007 static boolean_t
1008 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
1009 {
1010
1011         vm_page_assert_busied(p);
1012
1013         /*
1014          * If we have been asked to skip nosync pages and this is a
1015          * nosync page, skip it.  Note that the object flags were not
1016          * cleared in this case so we do not have to set them.
1017          */
1018         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
1019                 *allclean = FALSE;
1020                 return (FALSE);
1021         } else {
1022                 pmap_remove_write(p);
1023                 return (p->dirty != 0);
1024         }
1025 }
1026
1027 /*
1028  *      vm_object_page_clean
1029  *
1030  *      Clean all dirty pages in the specified range of object.  Leaves page 
1031  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1032  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1033  *      leaving the object dirty.
1034  *
1035  *      For swap objects backing tmpfs regular files, do not flush anything,
1036  *      but remove write protection on the mapped pages to update mtime through
1037  *      mmaped writes.
1038  *
1039  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1040  *      synchronous clustering mode implementation.
1041  *
1042  *      Odd semantics: if start == end, we clean everything.
1043  *
1044  *      The object must be locked.
1045  *
1046  *      Returns FALSE if some page from the range was not written, as
1047  *      reported by the pager, and TRUE otherwise.
1048  */
1049 boolean_t
1050 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1051     int flags)
1052 {
1053         vm_page_t np, p;
1054         vm_pindex_t pi, tend, tstart;
1055         int curgeneration, n, pagerflags;
1056         boolean_t eio, res, allclean;
1057
1058         VM_OBJECT_ASSERT_WLOCKED(object);
1059
1060         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1061                 return (TRUE);
1062
1063         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1064             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1065         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1066
1067         tstart = OFF_TO_IDX(start);
1068         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1069         allclean = tstart == 0 && tend >= object->size;
1070         res = TRUE;
1071
1072 rescan:
1073         curgeneration = object->generation;
1074
1075         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1076                 pi = p->pindex;
1077                 if (pi >= tend)
1078                         break;
1079                 np = TAILQ_NEXT(p, listq);
1080                 if (vm_page_none_valid(p))
1081                         continue;
1082                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1083                         if (object->generation != curgeneration &&
1084                             (flags & OBJPC_SYNC) != 0)
1085                                 goto rescan;
1086                         np = vm_page_find_least(object, pi);
1087                         continue;
1088                 }
1089                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1090                         vm_page_xunbusy(p);
1091                         continue;
1092                 }
1093                 if (object->type == OBJT_VNODE) {
1094                         n = vm_object_page_collect_flush(object, p, pagerflags,
1095                             flags, &allclean, &eio);
1096                         if (eio) {
1097                                 res = FALSE;
1098                                 allclean = FALSE;
1099                         }
1100                         if (object->generation != curgeneration &&
1101                             (flags & OBJPC_SYNC) != 0)
1102                                 goto rescan;
1103
1104                         /*
1105                          * If the VOP_PUTPAGES() did a truncated write, so
1106                          * that even the first page of the run is not fully
1107                          * written, vm_pageout_flush() returns 0 as the run
1108                          * length.  Since the condition that caused truncated
1109                          * write may be permanent, e.g. exhausted free space,
1110                          * accepting n == 0 would cause an infinite loop.
1111                          *
1112                          * Forwarding the iterator leaves the unwritten page
1113                          * behind, but there is not much we can do there if
1114                          * filesystem refuses to write it.
1115                          */
1116                         if (n == 0) {
1117                                 n = 1;
1118                                 allclean = FALSE;
1119                         }
1120                 } else {
1121                         n = 1;
1122                         vm_page_xunbusy(p);
1123                 }
1124                 np = vm_page_find_least(object, pi + n);
1125         }
1126 #if 0
1127         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1128 #endif
1129
1130         /*
1131          * Leave updating cleangeneration for tmpfs objects to tmpfs
1132          * scan.  It needs to update mtime, which happens for other
1133          * filesystems during page writeouts.
1134          */
1135         if (allclean && object->type == OBJT_VNODE)
1136                 object->cleangeneration = curgeneration;
1137         return (res);
1138 }
1139
1140 static int
1141 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1142     int flags, boolean_t *allclean, boolean_t *eio)
1143 {
1144         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1145         int count, i, mreq, runlen;
1146
1147         vm_page_lock_assert(p, MA_NOTOWNED);
1148         vm_page_assert_xbusied(p);
1149         VM_OBJECT_ASSERT_WLOCKED(object);
1150
1151         count = 1;
1152         mreq = 0;
1153
1154         for (tp = p; count < vm_pageout_page_count; count++) {
1155                 tp = vm_page_next(tp);
1156                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1157                         break;
1158                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1159                         vm_page_xunbusy(tp);
1160                         break;
1161                 }
1162         }
1163
1164         for (p_first = p; count < vm_pageout_page_count; count++) {
1165                 tp = vm_page_prev(p_first);
1166                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1167                         break;
1168                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1169                         vm_page_xunbusy(tp);
1170                         break;
1171                 }
1172                 p_first = tp;
1173                 mreq++;
1174         }
1175
1176         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1177                 ma[i] = tp;
1178
1179         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1180         return (runlen);
1181 }
1182
1183 /*
1184  * Note that there is absolutely no sense in writing out
1185  * anonymous objects, so we track down the vnode object
1186  * to write out.
1187  * We invalidate (remove) all pages from the address space
1188  * for semantic correctness.
1189  *
1190  * If the backing object is a device object with unmanaged pages, then any
1191  * mappings to the specified range of pages must be removed before this
1192  * function is called.
1193  *
1194  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1195  * may start out with a NULL object.
1196  */
1197 boolean_t
1198 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1199     boolean_t syncio, boolean_t invalidate)
1200 {
1201         vm_object_t backing_object;
1202         struct vnode *vp;
1203         struct mount *mp;
1204         int error, flags, fsync_after;
1205         boolean_t res;
1206
1207         if (object == NULL)
1208                 return (TRUE);
1209         res = TRUE;
1210         error = 0;
1211         VM_OBJECT_WLOCK(object);
1212         while ((backing_object = object->backing_object) != NULL) {
1213                 VM_OBJECT_WLOCK(backing_object);
1214                 offset += object->backing_object_offset;
1215                 VM_OBJECT_WUNLOCK(object);
1216                 object = backing_object;
1217                 if (object->size < OFF_TO_IDX(offset + size))
1218                         size = IDX_TO_OFF(object->size) - offset;
1219         }
1220         /*
1221          * Flush pages if writing is allowed, invalidate them
1222          * if invalidation requested.  Pages undergoing I/O
1223          * will be ignored by vm_object_page_remove().
1224          *
1225          * We cannot lock the vnode and then wait for paging
1226          * to complete without deadlocking against vm_fault.
1227          * Instead we simply call vm_object_page_remove() and
1228          * allow it to block internally on a page-by-page
1229          * basis when it encounters pages undergoing async
1230          * I/O.
1231          */
1232         if (object->type == OBJT_VNODE &&
1233             vm_object_mightbedirty(object) != 0 &&
1234             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1235                 VM_OBJECT_WUNLOCK(object);
1236                 (void)vn_start_write(vp, &mp, V_WAIT);
1237                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1238                 if (syncio && !invalidate && offset == 0 &&
1239                     atop(size) == object->size) {
1240                         /*
1241                          * If syncing the whole mapping of the file,
1242                          * it is faster to schedule all the writes in
1243                          * async mode, also allowing the clustering,
1244                          * and then wait for i/o to complete.
1245                          */
1246                         flags = 0;
1247                         fsync_after = TRUE;
1248                 } else {
1249                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1250                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1251                         fsync_after = FALSE;
1252                 }
1253                 VM_OBJECT_WLOCK(object);
1254                 res = vm_object_page_clean(object, offset, offset + size,
1255                     flags);
1256                 VM_OBJECT_WUNLOCK(object);
1257                 if (fsync_after) {
1258                         for (;;) {
1259                                 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1260                                 if (error != ERELOOKUP)
1261                                         break;
1262
1263                                 /*
1264                                  * Allow SU/bufdaemon to handle more
1265                                  * dependencies in the meantime.
1266                                  */
1267                                 VOP_UNLOCK(vp);
1268                                 vn_finished_write(mp);
1269
1270                                 (void)vn_start_write(vp, &mp, V_WAIT);
1271                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1272                         }
1273                 }
1274                 VOP_UNLOCK(vp);
1275                 vn_finished_write(mp);
1276                 if (error != 0)
1277                         res = FALSE;
1278                 VM_OBJECT_WLOCK(object);
1279         }
1280         if ((object->type == OBJT_VNODE ||
1281              object->type == OBJT_DEVICE) && invalidate) {
1282                 if (object->type == OBJT_DEVICE)
1283                         /*
1284                          * The option OBJPR_NOTMAPPED must be passed here
1285                          * because vm_object_page_remove() cannot remove
1286                          * unmanaged mappings.
1287                          */
1288                         flags = OBJPR_NOTMAPPED;
1289                 else if (old_msync)
1290                         flags = 0;
1291                 else
1292                         flags = OBJPR_CLEANONLY;
1293                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1294                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1295         }
1296         VM_OBJECT_WUNLOCK(object);
1297         return (res);
1298 }
1299
1300 /*
1301  * Determine whether the given advice can be applied to the object.  Advice is
1302  * not applied to unmanaged pages since they never belong to page queues, and
1303  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1304  * have been mapped at most once.
1305  */
1306 static bool
1307 vm_object_advice_applies(vm_object_t object, int advice)
1308 {
1309
1310         if ((object->flags & OBJ_UNMANAGED) != 0)
1311                 return (false);
1312         if (advice != MADV_FREE)
1313                 return (true);
1314         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1315             (OBJ_ONEMAPPING | OBJ_ANON));
1316 }
1317
1318 static void
1319 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1320     vm_size_t size)
1321 {
1322
1323         if (advice == MADV_FREE)
1324                 vm_pager_freespace(object, pindex, size);
1325 }
1326
1327 /*
1328  *      vm_object_madvise:
1329  *
1330  *      Implements the madvise function at the object/page level.
1331  *
1332  *      MADV_WILLNEED   (any object)
1333  *
1334  *          Activate the specified pages if they are resident.
1335  *
1336  *      MADV_DONTNEED   (any object)
1337  *
1338  *          Deactivate the specified pages if they are resident.
1339  *
1340  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1341  *                       OBJ_ONEMAPPING only)
1342  *
1343  *          Deactivate and clean the specified pages if they are
1344  *          resident.  This permits the process to reuse the pages
1345  *          without faulting or the kernel to reclaim the pages
1346  *          without I/O.
1347  */
1348 void
1349 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1350     int advice)
1351 {
1352         vm_pindex_t tpindex;
1353         vm_object_t backing_object, tobject;
1354         vm_page_t m, tm;
1355
1356         if (object == NULL)
1357                 return;
1358
1359 relookup:
1360         VM_OBJECT_WLOCK(object);
1361         if (!vm_object_advice_applies(object, advice)) {
1362                 VM_OBJECT_WUNLOCK(object);
1363                 return;
1364         }
1365         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1366                 tobject = object;
1367
1368                 /*
1369                  * If the next page isn't resident in the top-level object, we
1370                  * need to search the shadow chain.  When applying MADV_FREE, we
1371                  * take care to release any swap space used to store
1372                  * non-resident pages.
1373                  */
1374                 if (m == NULL || pindex < m->pindex) {
1375                         /*
1376                          * Optimize a common case: if the top-level object has
1377                          * no backing object, we can skip over the non-resident
1378                          * range in constant time.
1379                          */
1380                         if (object->backing_object == NULL) {
1381                                 tpindex = (m != NULL && m->pindex < end) ?
1382                                     m->pindex : end;
1383                                 vm_object_madvise_freespace(object, advice,
1384                                     pindex, tpindex - pindex);
1385                                 if ((pindex = tpindex) == end)
1386                                         break;
1387                                 goto next_page;
1388                         }
1389
1390                         tpindex = pindex;
1391                         do {
1392                                 vm_object_madvise_freespace(tobject, advice,
1393                                     tpindex, 1);
1394                                 /*
1395                                  * Prepare to search the next object in the
1396                                  * chain.
1397                                  */
1398                                 backing_object = tobject->backing_object;
1399                                 if (backing_object == NULL)
1400                                         goto next_pindex;
1401                                 VM_OBJECT_WLOCK(backing_object);
1402                                 tpindex +=
1403                                     OFF_TO_IDX(tobject->backing_object_offset);
1404                                 if (tobject != object)
1405                                         VM_OBJECT_WUNLOCK(tobject);
1406                                 tobject = backing_object;
1407                                 if (!vm_object_advice_applies(tobject, advice))
1408                                         goto next_pindex;
1409                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1410                             NULL);
1411                 } else {
1412 next_page:
1413                         tm = m;
1414                         m = TAILQ_NEXT(m, listq);
1415                 }
1416
1417                 /*
1418                  * If the page is not in a normal state, skip it.  The page
1419                  * can not be invalidated while the object lock is held.
1420                  */
1421                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1422                         goto next_pindex;
1423                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1424                     ("vm_object_madvise: page %p is fictitious", tm));
1425                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1426                     ("vm_object_madvise: page %p is not managed", tm));
1427                 if (vm_page_tryxbusy(tm) == 0) {
1428                         if (object != tobject)
1429                                 VM_OBJECT_WUNLOCK(object);
1430                         if (advice == MADV_WILLNEED) {
1431                                 /*
1432                                  * Reference the page before unlocking and
1433                                  * sleeping so that the page daemon is less
1434                                  * likely to reclaim it.
1435                                  */
1436                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1437                         }
1438                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1439                                 VM_OBJECT_WUNLOCK(tobject);
1440                         goto relookup;
1441                 }
1442                 vm_page_advise(tm, advice);
1443                 vm_page_xunbusy(tm);
1444                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1445 next_pindex:
1446                 if (tobject != object)
1447                         VM_OBJECT_WUNLOCK(tobject);
1448         }
1449         VM_OBJECT_WUNLOCK(object);
1450 }
1451
1452 /*
1453  *      vm_object_shadow:
1454  *
1455  *      Create a new object which is backed by the
1456  *      specified existing object range.  The source
1457  *      object reference is deallocated.
1458  *
1459  *      The new object and offset into that object
1460  *      are returned in the source parameters.
1461  */
1462 void
1463 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1464     struct ucred *cred, bool shared)
1465 {
1466         vm_object_t source;
1467         vm_object_t result;
1468
1469         source = *object;
1470
1471         /*
1472          * Don't create the new object if the old object isn't shared.
1473          *
1474          * If we hold the only reference we can guarantee that it won't
1475          * increase while we have the map locked.  Otherwise the race is
1476          * harmless and we will end up with an extra shadow object that
1477          * will be collapsed later.
1478          */
1479         if (source != NULL && source->ref_count == 1 &&
1480             (source->flags & OBJ_ANON) != 0)
1481                 return;
1482
1483         /*
1484          * Allocate a new object with the given length.
1485          */
1486         result = vm_object_allocate_anon(atop(length), source, cred, length);
1487
1488         /*
1489          * Store the offset into the source object, and fix up the offset into
1490          * the new object.
1491          */
1492         result->backing_object_offset = *offset;
1493
1494         if (shared || source != NULL) {
1495                 VM_OBJECT_WLOCK(result);
1496
1497                 /*
1498                  * The new object shadows the source object, adding a
1499                  * reference to it.  Our caller changes his reference
1500                  * to point to the new object, removing a reference to
1501                  * the source object.  Net result: no change of
1502                  * reference count, unless the caller needs to add one
1503                  * more reference due to forking a shared map entry.
1504                  */
1505                 if (shared) {
1506                         vm_object_reference_locked(result);
1507                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1508                 }
1509
1510                 /*
1511                  * Try to optimize the result object's page color when
1512                  * shadowing in order to maintain page coloring
1513                  * consistency in the combined shadowed object.
1514                  */
1515                 if (source != NULL) {
1516                         vm_object_backing_insert(result, source);
1517                         result->domain = source->domain;
1518 #if VM_NRESERVLEVEL > 0
1519                         vm_object_set_flag(result,
1520                             (source->flags & OBJ_COLORED));
1521                         result->pg_color = (source->pg_color +
1522                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1523                             1)) - 1);
1524 #endif
1525                 }
1526                 VM_OBJECT_WUNLOCK(result);
1527         }
1528
1529         /*
1530          * Return the new things
1531          */
1532         *offset = 0;
1533         *object = result;
1534 }
1535
1536 /*
1537  *      vm_object_split:
1538  *
1539  * Split the pages in a map entry into a new object.  This affords
1540  * easier removal of unused pages, and keeps object inheritance from
1541  * being a negative impact on memory usage.
1542  */
1543 void
1544 vm_object_split(vm_map_entry_t entry)
1545 {
1546         vm_page_t m, m_busy, m_next;
1547         vm_object_t orig_object, new_object, backing_object;
1548         vm_pindex_t idx, offidxstart;
1549         vm_size_t size;
1550
1551         orig_object = entry->object.vm_object;
1552         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1553             ("vm_object_split:  Splitting object with multiple mappings."));
1554         if ((orig_object->flags & OBJ_ANON) == 0)
1555                 return;
1556         if (orig_object->ref_count <= 1)
1557                 return;
1558         VM_OBJECT_WUNLOCK(orig_object);
1559
1560         offidxstart = OFF_TO_IDX(entry->offset);
1561         size = atop(entry->end - entry->start);
1562
1563         /*
1564          * If swap_pager_copy() is later called, it will convert new_object
1565          * into a swap object.
1566          */
1567         new_object = vm_object_allocate_anon(size, orig_object,
1568             orig_object->cred, ptoa(size));
1569
1570         /*
1571          * We must wait for the orig_object to complete any in-progress
1572          * collapse so that the swap blocks are stable below.  The
1573          * additional reference on backing_object by new object will
1574          * prevent further collapse operations until split completes.
1575          */
1576         VM_OBJECT_WLOCK(orig_object);
1577         vm_object_collapse_wait(orig_object);
1578
1579         /*
1580          * At this point, the new object is still private, so the order in
1581          * which the original and new objects are locked does not matter.
1582          */
1583         VM_OBJECT_WLOCK(new_object);
1584         new_object->domain = orig_object->domain;
1585         backing_object = orig_object->backing_object;
1586         if (backing_object != NULL) {
1587                 vm_object_backing_insert_ref(new_object, backing_object);
1588                 new_object->backing_object_offset = 
1589                     orig_object->backing_object_offset + entry->offset;
1590         }
1591         if (orig_object->cred != NULL) {
1592                 crhold(orig_object->cred);
1593                 KASSERT(orig_object->charge >= ptoa(size),
1594                     ("orig_object->charge < 0"));
1595                 orig_object->charge -= ptoa(size);
1596         }
1597
1598         /*
1599          * Mark the split operation so that swap_pager_getpages() knows
1600          * that the object is in transition.
1601          */
1602         vm_object_set_flag(orig_object, OBJ_SPLIT);
1603         m_busy = NULL;
1604 #ifdef INVARIANTS
1605         idx = 0;
1606 #endif
1607 retry:
1608         m = vm_page_find_least(orig_object, offidxstart);
1609         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1610             ("%s: object %p was repopulated", __func__, orig_object));
1611         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1612             m = m_next) {
1613                 m_next = TAILQ_NEXT(m, listq);
1614
1615                 /*
1616                  * We must wait for pending I/O to complete before we can
1617                  * rename the page.
1618                  *
1619                  * We do not have to VM_PROT_NONE the page as mappings should
1620                  * not be changed by this operation.
1621                  */
1622                 if (vm_page_tryxbusy(m) == 0) {
1623                         VM_OBJECT_WUNLOCK(new_object);
1624                         if (vm_page_busy_sleep(m, "spltwt", 0))
1625                                 VM_OBJECT_WLOCK(orig_object);
1626                         VM_OBJECT_WLOCK(new_object);
1627                         goto retry;
1628                 }
1629
1630                 /*
1631                  * The page was left invalid.  Likely placed there by
1632                  * an incomplete fault.  Just remove and ignore.
1633                  */
1634                 if (vm_page_none_valid(m)) {
1635                         if (vm_page_remove(m))
1636                                 vm_page_free(m);
1637                         continue;
1638                 }
1639
1640                 /* vm_page_rename() will dirty the page. */
1641                 if (vm_page_rename(m, new_object, idx)) {
1642                         vm_page_xunbusy(m);
1643                         VM_OBJECT_WUNLOCK(new_object);
1644                         VM_OBJECT_WUNLOCK(orig_object);
1645                         vm_radix_wait();
1646                         VM_OBJECT_WLOCK(orig_object);
1647                         VM_OBJECT_WLOCK(new_object);
1648                         goto retry;
1649                 }
1650
1651 #if VM_NRESERVLEVEL > 0
1652                 /*
1653                  * If some of the reservation's allocated pages remain with
1654                  * the original object, then transferring the reservation to
1655                  * the new object is neither particularly beneficial nor
1656                  * particularly harmful as compared to leaving the reservation
1657                  * with the original object.  If, however, all of the
1658                  * reservation's allocated pages are transferred to the new
1659                  * object, then transferring the reservation is typically
1660                  * beneficial.  Determining which of these two cases applies
1661                  * would be more costly than unconditionally renaming the
1662                  * reservation.
1663                  */
1664                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1665 #endif
1666
1667                 /*
1668                  * orig_object's type may change while sleeping, so keep track
1669                  * of the beginning of the busied range.
1670                  */
1671                 if (orig_object->type != OBJT_SWAP)
1672                         vm_page_xunbusy(m);
1673                 else if (m_busy == NULL)
1674                         m_busy = m;
1675         }
1676         if ((orig_object->flags & OBJ_SWAP) != 0) {
1677                 /*
1678                  * swap_pager_copy() can sleep, in which case the orig_object's
1679                  * and new_object's locks are released and reacquired. 
1680                  */
1681                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1682                 if (m_busy != NULL)
1683                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1684                                 vm_page_xunbusy(m_busy);
1685         }
1686         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1687         VM_OBJECT_WUNLOCK(orig_object);
1688         VM_OBJECT_WUNLOCK(new_object);
1689         entry->object.vm_object = new_object;
1690         entry->offset = 0LL;
1691         vm_object_deallocate(orig_object);
1692         VM_OBJECT_WLOCK(new_object);
1693 }
1694
1695 static vm_page_t
1696 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1697 {
1698         vm_object_t backing_object;
1699
1700         VM_OBJECT_ASSERT_WLOCKED(object);
1701         backing_object = object->backing_object;
1702         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1703
1704         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1705             ("invalid ownership %p %p %p", p, object, backing_object));
1706         /* The page is only NULL when rename fails. */
1707         if (p == NULL) {
1708                 VM_OBJECT_WUNLOCK(object);
1709                 VM_OBJECT_WUNLOCK(backing_object);
1710                 vm_radix_wait();
1711                 VM_OBJECT_WLOCK(object);
1712         } else if (p->object == object) {
1713                 VM_OBJECT_WUNLOCK(backing_object);
1714                 if (vm_page_busy_sleep(p, "vmocol", 0))
1715                         VM_OBJECT_WLOCK(object);
1716         } else {
1717                 VM_OBJECT_WUNLOCK(object);
1718                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1719                         VM_OBJECT_WUNLOCK(backing_object);
1720                 VM_OBJECT_WLOCK(object);
1721         }
1722         VM_OBJECT_WLOCK(backing_object);
1723         return (TAILQ_FIRST(&backing_object->memq));
1724 }
1725
1726 static bool
1727 vm_object_scan_all_shadowed(vm_object_t object)
1728 {
1729         vm_object_t backing_object;
1730         vm_page_t p, pp;
1731         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1732
1733         VM_OBJECT_ASSERT_WLOCKED(object);
1734         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1735
1736         backing_object = object->backing_object;
1737
1738         if ((backing_object->flags & OBJ_ANON) == 0)
1739                 return (false);
1740
1741         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1742         p = vm_page_find_least(backing_object, pi);
1743         ps = swap_pager_find_least(backing_object, pi);
1744
1745         /*
1746          * Only check pages inside the parent object's range and
1747          * inside the parent object's mapping of the backing object.
1748          */
1749         for (;; pi++) {
1750                 if (p != NULL && p->pindex < pi)
1751                         p = TAILQ_NEXT(p, listq);
1752                 if (ps < pi)
1753                         ps = swap_pager_find_least(backing_object, pi);
1754                 if (p == NULL && ps >= backing_object->size)
1755                         break;
1756                 else if (p == NULL)
1757                         pi = ps;
1758                 else
1759                         pi = MIN(p->pindex, ps);
1760
1761                 new_pindex = pi - backing_offset_index;
1762                 if (new_pindex >= object->size)
1763                         break;
1764
1765                 if (p != NULL) {
1766                         /*
1767                          * If the backing object page is busy a
1768                          * grandparent or older page may still be
1769                          * undergoing CoW.  It is not safe to collapse
1770                          * the backing object until it is quiesced.
1771                          */
1772                         if (vm_page_tryxbusy(p) == 0)
1773                                 return (false);
1774
1775                         /*
1776                          * We raced with the fault handler that left
1777                          * newly allocated invalid page on the object
1778                          * queue and retried.
1779                          */
1780                         if (!vm_page_all_valid(p))
1781                                 goto unbusy_ret;
1782                 }
1783
1784                 /*
1785                  * See if the parent has the page or if the parent's object
1786                  * pager has the page.  If the parent has the page but the page
1787                  * is not valid, the parent's object pager must have the page.
1788                  *
1789                  * If this fails, the parent does not completely shadow the
1790                  * object and we might as well give up now.
1791                  */
1792                 pp = vm_page_lookup(object, new_pindex);
1793
1794                 /*
1795                  * The valid check here is stable due to object lock
1796                  * being required to clear valid and initiate paging.
1797                  * Busy of p disallows fault handler to validate pp.
1798                  */
1799                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1800                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1801                         goto unbusy_ret;
1802                 if (p != NULL)
1803                         vm_page_xunbusy(p);
1804         }
1805         return (true);
1806
1807 unbusy_ret:
1808         if (p != NULL)
1809                 vm_page_xunbusy(p);
1810         return (false);
1811 }
1812
1813 static void
1814 vm_object_collapse_scan(vm_object_t object)
1815 {
1816         vm_object_t backing_object;
1817         vm_page_t next, p, pp;
1818         vm_pindex_t backing_offset_index, new_pindex;
1819
1820         VM_OBJECT_ASSERT_WLOCKED(object);
1821         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1822
1823         backing_object = object->backing_object;
1824         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1825
1826         /*
1827          * Our scan
1828          */
1829         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1830                 next = TAILQ_NEXT(p, listq);
1831                 new_pindex = p->pindex - backing_offset_index;
1832
1833                 /*
1834                  * Check for busy page
1835                  */
1836                 if (vm_page_tryxbusy(p) == 0) {
1837                         next = vm_object_collapse_scan_wait(object, p);
1838                         continue;
1839                 }
1840
1841                 KASSERT(object->backing_object == backing_object,
1842                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1843                     object->backing_object, backing_object));
1844                 KASSERT(p->object == backing_object,
1845                     ("vm_object_collapse_scan: object mismatch %p != %p",
1846                     p->object, backing_object));
1847
1848                 if (p->pindex < backing_offset_index ||
1849                     new_pindex >= object->size) {
1850                         vm_pager_freespace(backing_object, p->pindex, 1);
1851
1852                         KASSERT(!pmap_page_is_mapped(p),
1853                             ("freeing mapped page %p", p));
1854                         if (vm_page_remove(p))
1855                                 vm_page_free(p);
1856                         continue;
1857                 }
1858
1859                 if (!vm_page_all_valid(p)) {
1860                         KASSERT(!pmap_page_is_mapped(p),
1861                             ("freeing mapped page %p", p));
1862                         if (vm_page_remove(p))
1863                                 vm_page_free(p);
1864                         continue;
1865                 }
1866
1867                 pp = vm_page_lookup(object, new_pindex);
1868                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1869                         vm_page_xunbusy(p);
1870                         /*
1871                          * The page in the parent is busy and possibly not
1872                          * (yet) valid.  Until its state is finalized by the
1873                          * busy bit owner, we can't tell whether it shadows the
1874                          * original page.
1875                          */
1876                         next = vm_object_collapse_scan_wait(object, pp);
1877                         continue;
1878                 }
1879
1880                 if (pp != NULL && vm_page_none_valid(pp)) {
1881                         /*
1882                          * The page was invalid in the parent.  Likely placed
1883                          * there by an incomplete fault.  Just remove and
1884                          * ignore.  p can replace it.
1885                          */
1886                         if (vm_page_remove(pp))
1887                                 vm_page_free(pp);
1888                         pp = NULL;
1889                 }
1890
1891                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1892                         NULL)) {
1893                         /*
1894                          * The page already exists in the parent OR swap exists
1895                          * for this location in the parent.  Leave the parent's
1896                          * page alone.  Destroy the original page from the
1897                          * backing object.
1898                          */
1899                         vm_pager_freespace(backing_object, p->pindex, 1);
1900                         KASSERT(!pmap_page_is_mapped(p),
1901                             ("freeing mapped page %p", p));
1902                         if (vm_page_remove(p))
1903                                 vm_page_free(p);
1904                         if (pp != NULL)
1905                                 vm_page_xunbusy(pp);
1906                         continue;
1907                 }
1908
1909                 /*
1910                  * Page does not exist in parent, rename the page from the
1911                  * backing object to the main object.
1912                  *
1913                  * If the page was mapped to a process, it can remain mapped
1914                  * through the rename.  vm_page_rename() will dirty the page.
1915                  */
1916                 if (vm_page_rename(p, object, new_pindex)) {
1917                         vm_page_xunbusy(p);
1918                         next = vm_object_collapse_scan_wait(object, NULL);
1919                         continue;
1920                 }
1921
1922                 /* Use the old pindex to free the right page. */
1923                 vm_pager_freespace(backing_object, new_pindex +
1924                     backing_offset_index, 1);
1925
1926 #if VM_NRESERVLEVEL > 0
1927                 /*
1928                  * Rename the reservation.
1929                  */
1930                 vm_reserv_rename(p, object, backing_object,
1931                     backing_offset_index);
1932 #endif
1933                 vm_page_xunbusy(p);
1934         }
1935         return;
1936 }
1937
1938 /*
1939  *      vm_object_collapse:
1940  *
1941  *      Collapse an object with the object backing it.
1942  *      Pages in the backing object are moved into the
1943  *      parent, and the backing object is deallocated.
1944  */
1945 void
1946 vm_object_collapse(vm_object_t object)
1947 {
1948         vm_object_t backing_object, new_backing_object;
1949
1950         VM_OBJECT_ASSERT_WLOCKED(object);
1951
1952         while (TRUE) {
1953                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1954                     ("collapsing invalid object"));
1955
1956                 /*
1957                  * Wait for the backing_object to finish any pending
1958                  * collapse so that the caller sees the shortest possible
1959                  * shadow chain.
1960                  */
1961                 backing_object = vm_object_backing_collapse_wait(object);
1962                 if (backing_object == NULL)
1963                         return;
1964
1965                 KASSERT(object->ref_count > 0 &&
1966                     object->ref_count > atomic_load_int(&object->shadow_count),
1967                     ("collapse with invalid ref %d or shadow %d count.",
1968                     object->ref_count, atomic_load_int(&object->shadow_count)));
1969                 KASSERT((backing_object->flags &
1970                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1971                     ("vm_object_collapse: Backing object already collapsing."));
1972                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1973                     ("vm_object_collapse: object is already collapsing."));
1974
1975                 /*
1976                  * We know that we can either collapse the backing object if
1977                  * the parent is the only reference to it, or (perhaps) have
1978                  * the parent bypass the object if the parent happens to shadow
1979                  * all the resident pages in the entire backing object.
1980                  */
1981                 if (backing_object->ref_count == 1) {
1982                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1983                             == 1,
1984                             ("vm_object_collapse: shadow_count: %d",
1985                             atomic_load_int(&backing_object->shadow_count)));
1986                         vm_object_pip_add(object, 1);
1987                         vm_object_set_flag(object, OBJ_COLLAPSING);
1988                         vm_object_pip_add(backing_object, 1);
1989                         vm_object_set_flag(backing_object, OBJ_DEAD);
1990
1991                         /*
1992                          * If there is exactly one reference to the backing
1993                          * object, we can collapse it into the parent.
1994                          */
1995                         vm_object_collapse_scan(object);
1996
1997 #if VM_NRESERVLEVEL > 0
1998                         /*
1999                          * Break any reservations from backing_object.
2000                          */
2001                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
2002                                 vm_reserv_break_all(backing_object);
2003 #endif
2004
2005                         /*
2006                          * Move the pager from backing_object to object.
2007                          */
2008                         if ((backing_object->flags & OBJ_SWAP) != 0) {
2009                                 /*
2010                                  * swap_pager_copy() can sleep, in which case
2011                                  * the backing_object's and object's locks are
2012                                  * released and reacquired.
2013                                  * Since swap_pager_copy() is being asked to
2014                                  * destroy backing_object, it will change the
2015                                  * type to OBJT_DEFAULT.
2016                                  */
2017                                 swap_pager_copy(
2018                                     backing_object,
2019                                     object,
2020                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
2021                         }
2022
2023                         /*
2024                          * Object now shadows whatever backing_object did.
2025                          */
2026                         vm_object_clear_flag(object, OBJ_COLLAPSING);
2027                         vm_object_backing_transfer(object, backing_object);
2028                         object->backing_object_offset +=
2029                             backing_object->backing_object_offset;
2030                         VM_OBJECT_WUNLOCK(object);
2031                         vm_object_pip_wakeup(object);
2032
2033                         /*
2034                          * Discard backing_object.
2035                          *
2036                          * Since the backing object has no pages, no pager left,
2037                          * and no object references within it, all that is
2038                          * necessary is to dispose of it.
2039                          */
2040                         KASSERT(backing_object->ref_count == 1, (
2041 "backing_object %p was somehow re-referenced during collapse!",
2042                             backing_object));
2043                         vm_object_pip_wakeup(backing_object);
2044                         (void)refcount_release(&backing_object->ref_count);
2045                         vm_object_terminate(backing_object);
2046                         counter_u64_add(object_collapses, 1);
2047                         VM_OBJECT_WLOCK(object);
2048                 } else {
2049                         /*
2050                          * If we do not entirely shadow the backing object,
2051                          * there is nothing we can do so we give up.
2052                          *
2053                          * The object lock and backing_object lock must not
2054                          * be dropped during this sequence.
2055                          */
2056                         if (!vm_object_scan_all_shadowed(object)) {
2057                                 VM_OBJECT_WUNLOCK(backing_object);
2058                                 break;
2059                         }
2060
2061                         /*
2062                          * Make the parent shadow the next object in the
2063                          * chain.  Deallocating backing_object will not remove
2064                          * it, since its reference count is at least 2.
2065                          */
2066                         vm_object_backing_remove_locked(object);
2067                         new_backing_object = backing_object->backing_object;
2068                         if (new_backing_object != NULL) {
2069                                 vm_object_backing_insert_ref(object,
2070                                     new_backing_object);
2071                                 object->backing_object_offset +=
2072                                     backing_object->backing_object_offset;
2073                         }
2074
2075                         /*
2076                          * Drop the reference count on backing_object. Since
2077                          * its ref_count was at least 2, it will not vanish.
2078                          */
2079                         (void)refcount_release(&backing_object->ref_count);
2080                         KASSERT(backing_object->ref_count >= 1, (
2081 "backing_object %p was somehow dereferenced during collapse!",
2082                             backing_object));
2083                         VM_OBJECT_WUNLOCK(backing_object);
2084                         counter_u64_add(object_bypasses, 1);
2085                 }
2086
2087                 /*
2088                  * Try again with this object's new backing object.
2089                  */
2090         }
2091 }
2092
2093 /*
2094  *      vm_object_page_remove:
2095  *
2096  *      For the given object, either frees or invalidates each of the
2097  *      specified pages.  In general, a page is freed.  However, if a page is
2098  *      wired for any reason other than the existence of a managed, wired
2099  *      mapping, then it may be invalidated but not removed from the object.
2100  *      Pages are specified by the given range ["start", "end") and the option
2101  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2102  *      extends from "start" to the end of the object.  If the option
2103  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2104  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2105  *      specified, then the pages within the specified range must have no
2106  *      mappings.  Otherwise, if this option is not specified, any mappings to
2107  *      the specified pages are removed before the pages are freed or
2108  *      invalidated.
2109  *
2110  *      In general, this operation should only be performed on objects that
2111  *      contain managed pages.  There are, however, two exceptions.  First, it
2112  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2113  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2114  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2115  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2116  *
2117  *      The object must be locked.
2118  */
2119 void
2120 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2121     int options)
2122 {
2123         vm_page_t p, next;
2124
2125         VM_OBJECT_ASSERT_WLOCKED(object);
2126         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2127             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2128             ("vm_object_page_remove: illegal options for object %p", object));
2129         if (object->resident_page_count == 0)
2130                 return;
2131         vm_object_pip_add(object, 1);
2132 again:
2133         p = vm_page_find_least(object, start);
2134
2135         /*
2136          * Here, the variable "p" is either (1) the page with the least pindex
2137          * greater than or equal to the parameter "start" or (2) NULL. 
2138          */
2139         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2140                 next = TAILQ_NEXT(p, listq);
2141
2142                 /*
2143                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2144                  * the busy lock, as some consumers rely on this to avoid
2145                  * deadlocks.
2146                  *
2147                  * A thread may concurrently transition the page from invalid to
2148                  * valid using only the busy lock, so the result of this check
2149                  * is immediately stale.  It is up to consumers to handle this,
2150                  * for instance by ensuring that all invalid->valid transitions
2151                  * happen with a mutex held, as may be possible for a
2152                  * filesystem.
2153                  */
2154                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2155                         continue;
2156
2157                 /*
2158                  * If the page is wired for any reason besides the existence
2159                  * of managed, wired mappings, then it cannot be freed.  For
2160                  * example, fictitious pages, which represent device memory,
2161                  * are inherently wired and cannot be freed.  They can,
2162                  * however, be invalidated if the option OBJPR_CLEANONLY is
2163                  * not specified.
2164                  */
2165                 if (vm_page_tryxbusy(p) == 0) {
2166                         if (vm_page_busy_sleep(p, "vmopar", 0))
2167                                 VM_OBJECT_WLOCK(object);
2168                         goto again;
2169                 }
2170                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2171                         vm_page_xunbusy(p);
2172                         continue;
2173                 }
2174                 if (vm_page_wired(p)) {
2175 wired:
2176                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2177                             object->ref_count != 0)
2178                                 pmap_remove_all(p);
2179                         if ((options & OBJPR_CLEANONLY) == 0) {
2180                                 vm_page_invalid(p);
2181                                 vm_page_undirty(p);
2182                         }
2183                         vm_page_xunbusy(p);
2184                         continue;
2185                 }
2186                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2187                     ("vm_object_page_remove: page %p is fictitious", p));
2188                 if ((options & OBJPR_CLEANONLY) != 0 &&
2189                     !vm_page_none_valid(p)) {
2190                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2191                             object->ref_count != 0 &&
2192                             !vm_page_try_remove_write(p))
2193                                 goto wired;
2194                         if (p->dirty != 0) {
2195                                 vm_page_xunbusy(p);
2196                                 continue;
2197                         }
2198                 }
2199                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2200                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2201                         goto wired;
2202                 vm_page_free(p);
2203         }
2204         vm_object_pip_wakeup(object);
2205
2206         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2207             start);
2208 }
2209
2210 /*
2211  *      vm_object_page_noreuse:
2212  *
2213  *      For the given object, attempt to move the specified pages to
2214  *      the head of the inactive queue.  This bypasses regular LRU
2215  *      operation and allows the pages to be reused quickly under memory
2216  *      pressure.  If a page is wired for any reason, then it will not
2217  *      be queued.  Pages are specified by the range ["start", "end").
2218  *      As a special case, if "end" is zero, then the range extends from
2219  *      "start" to the end of the object.
2220  *
2221  *      This operation should only be performed on objects that
2222  *      contain non-fictitious, managed pages.
2223  *
2224  *      The object must be locked.
2225  */
2226 void
2227 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2228 {
2229         vm_page_t p, next;
2230
2231         VM_OBJECT_ASSERT_LOCKED(object);
2232         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2233             ("vm_object_page_noreuse: illegal object %p", object));
2234         if (object->resident_page_count == 0)
2235                 return;
2236         p = vm_page_find_least(object, start);
2237
2238         /*
2239          * Here, the variable "p" is either (1) the page with the least pindex
2240          * greater than or equal to the parameter "start" or (2) NULL. 
2241          */
2242         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2243                 next = TAILQ_NEXT(p, listq);
2244                 vm_page_deactivate_noreuse(p);
2245         }
2246 }
2247
2248 /*
2249  *      Populate the specified range of the object with valid pages.  Returns
2250  *      TRUE if the range is successfully populated and FALSE otherwise.
2251  *
2252  *      Note: This function should be optimized to pass a larger array of
2253  *      pages to vm_pager_get_pages() before it is applied to a non-
2254  *      OBJT_DEVICE object.
2255  *
2256  *      The object must be locked.
2257  */
2258 boolean_t
2259 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2260 {
2261         vm_page_t m;
2262         vm_pindex_t pindex;
2263         int rv;
2264
2265         VM_OBJECT_ASSERT_WLOCKED(object);
2266         for (pindex = start; pindex < end; pindex++) {
2267                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2268                 if (rv != VM_PAGER_OK)
2269                         break;
2270
2271                 /*
2272                  * Keep "m" busy because a subsequent iteration may unlock
2273                  * the object.
2274                  */
2275         }
2276         if (pindex > start) {
2277                 m = vm_page_lookup(object, start);
2278                 while (m != NULL && m->pindex < pindex) {
2279                         vm_page_xunbusy(m);
2280                         m = TAILQ_NEXT(m, listq);
2281                 }
2282         }
2283         return (pindex == end);
2284 }
2285
2286 /*
2287  *      Routine:        vm_object_coalesce
2288  *      Function:       Coalesces two objects backing up adjoining
2289  *                      regions of memory into a single object.
2290  *
2291  *      returns TRUE if objects were combined.
2292  *
2293  *      NOTE:   Only works at the moment if the second object is NULL -
2294  *              if it's not, which object do we lock first?
2295  *
2296  *      Parameters:
2297  *              prev_object     First object to coalesce
2298  *              prev_offset     Offset into prev_object
2299  *              prev_size       Size of reference to prev_object
2300  *              next_size       Size of reference to the second object
2301  *              reserved        Indicator that extension region has
2302  *                              swap accounted for
2303  *
2304  *      Conditions:
2305  *      The object must *not* be locked.
2306  */
2307 boolean_t
2308 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2309     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2310 {
2311         vm_pindex_t next_pindex;
2312
2313         if (prev_object == NULL)
2314                 return (TRUE);
2315         if ((prev_object->flags & OBJ_ANON) == 0)
2316                 return (FALSE);
2317
2318         VM_OBJECT_WLOCK(prev_object);
2319         /*
2320          * Try to collapse the object first.
2321          */
2322         vm_object_collapse(prev_object);
2323
2324         /*
2325          * Can't coalesce if: . more than one reference . paged out . shadows
2326          * another object . has a copy elsewhere (any of which mean that the
2327          * pages not mapped to prev_entry may be in use anyway)
2328          */
2329         if (prev_object->backing_object != NULL) {
2330                 VM_OBJECT_WUNLOCK(prev_object);
2331                 return (FALSE);
2332         }
2333
2334         prev_size >>= PAGE_SHIFT;
2335         next_size >>= PAGE_SHIFT;
2336         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2337
2338         if (prev_object->ref_count > 1 &&
2339             prev_object->size != next_pindex &&
2340             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2341                 VM_OBJECT_WUNLOCK(prev_object);
2342                 return (FALSE);
2343         }
2344
2345         /*
2346          * Account for the charge.
2347          */
2348         if (prev_object->cred != NULL) {
2349                 /*
2350                  * If prev_object was charged, then this mapping,
2351                  * although not charged now, may become writable
2352                  * later. Non-NULL cred in the object would prevent
2353                  * swap reservation during enabling of the write
2354                  * access, so reserve swap now. Failed reservation
2355                  * cause allocation of the separate object for the map
2356                  * entry, and swap reservation for this entry is
2357                  * managed in appropriate time.
2358                  */
2359                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2360                     prev_object->cred)) {
2361                         VM_OBJECT_WUNLOCK(prev_object);
2362                         return (FALSE);
2363                 }
2364                 prev_object->charge += ptoa(next_size);
2365         }
2366
2367         /*
2368          * Remove any pages that may still be in the object from a previous
2369          * deallocation.
2370          */
2371         if (next_pindex < prev_object->size) {
2372                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2373                     next_size, 0);
2374 #if 0
2375                 if (prev_object->cred != NULL) {
2376                         KASSERT(prev_object->charge >=
2377                             ptoa(prev_object->size - next_pindex),
2378                             ("object %p overcharged 1 %jx %jx", prev_object,
2379                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2380                         prev_object->charge -= ptoa(prev_object->size -
2381                             next_pindex);
2382                 }
2383 #endif
2384         }
2385
2386         /*
2387          * Extend the object if necessary.
2388          */
2389         if (next_pindex + next_size > prev_object->size)
2390                 prev_object->size = next_pindex + next_size;
2391
2392         VM_OBJECT_WUNLOCK(prev_object);
2393         return (TRUE);
2394 }
2395
2396 void
2397 vm_object_set_writeable_dirty_(vm_object_t object)
2398 {
2399         atomic_add_int(&object->generation, 1);
2400 }
2401
2402 bool
2403 vm_object_mightbedirty_(vm_object_t object)
2404 {
2405         return (object->generation != object->cleangeneration);
2406 }
2407
2408 /*
2409  *      vm_object_unwire:
2410  *
2411  *      For each page offset within the specified range of the given object,
2412  *      find the highest-level page in the shadow chain and unwire it.  A page
2413  *      must exist at every page offset, and the highest-level page must be
2414  *      wired.
2415  */
2416 void
2417 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2418     uint8_t queue)
2419 {
2420         vm_object_t tobject, t1object;
2421         vm_page_t m, tm;
2422         vm_pindex_t end_pindex, pindex, tpindex;
2423         int depth, locked_depth;
2424
2425         KASSERT((offset & PAGE_MASK) == 0,
2426             ("vm_object_unwire: offset is not page aligned"));
2427         KASSERT((length & PAGE_MASK) == 0,
2428             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2429         /* The wired count of a fictitious page never changes. */
2430         if ((object->flags & OBJ_FICTITIOUS) != 0)
2431                 return;
2432         pindex = OFF_TO_IDX(offset);
2433         end_pindex = pindex + atop(length);
2434 again:
2435         locked_depth = 1;
2436         VM_OBJECT_RLOCK(object);
2437         m = vm_page_find_least(object, pindex);
2438         while (pindex < end_pindex) {
2439                 if (m == NULL || pindex < m->pindex) {
2440                         /*
2441                          * The first object in the shadow chain doesn't
2442                          * contain a page at the current index.  Therefore,
2443                          * the page must exist in a backing object.
2444                          */
2445                         tobject = object;
2446                         tpindex = pindex;
2447                         depth = 0;
2448                         do {
2449                                 tpindex +=
2450                                     OFF_TO_IDX(tobject->backing_object_offset);
2451                                 tobject = tobject->backing_object;
2452                                 KASSERT(tobject != NULL,
2453                                     ("vm_object_unwire: missing page"));
2454                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2455                                         goto next_page;
2456                                 depth++;
2457                                 if (depth == locked_depth) {
2458                                         locked_depth++;
2459                                         VM_OBJECT_RLOCK(tobject);
2460                                 }
2461                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2462                             NULL);
2463                 } else {
2464                         tm = m;
2465                         m = TAILQ_NEXT(m, listq);
2466                 }
2467                 if (vm_page_trysbusy(tm) == 0) {
2468                         for (tobject = object; locked_depth >= 1;
2469                             locked_depth--) {
2470                                 t1object = tobject->backing_object;
2471                                 if (tm->object != tobject)
2472                                         VM_OBJECT_RUNLOCK(tobject);
2473                                 tobject = t1object;
2474                         }
2475                         tobject = tm->object;
2476                         if (!vm_page_busy_sleep(tm, "unwbo",
2477                             VM_ALLOC_IGN_SBUSY))
2478                                 VM_OBJECT_RUNLOCK(tobject);
2479                         goto again;
2480                 }
2481                 vm_page_unwire(tm, queue);
2482                 vm_page_sunbusy(tm);
2483 next_page:
2484                 pindex++;
2485         }
2486         /* Release the accumulated object locks. */
2487         for (tobject = object; locked_depth >= 1; locked_depth--) {
2488                 t1object = tobject->backing_object;
2489                 VM_OBJECT_RUNLOCK(tobject);
2490                 tobject = t1object;
2491         }
2492 }
2493
2494 /*
2495  * Return the vnode for the given object, or NULL if none exists.
2496  * For tmpfs objects, the function may return NULL if there is
2497  * no vnode allocated at the time of the call.
2498  */
2499 struct vnode *
2500 vm_object_vnode(vm_object_t object)
2501 {
2502         struct vnode *vp;
2503
2504         VM_OBJECT_ASSERT_LOCKED(object);
2505         vm_pager_getvp(object, &vp, NULL);
2506         return (vp);
2507 }
2508
2509 /*
2510  * Busy the vm object.  This prevents new pages belonging to the object from
2511  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2512  * for checking page state before proceeding.
2513  */
2514 void
2515 vm_object_busy(vm_object_t obj)
2516 {
2517
2518         VM_OBJECT_ASSERT_LOCKED(obj);
2519
2520         blockcount_acquire(&obj->busy, 1);
2521         /* The fence is required to order loads of page busy. */
2522         atomic_thread_fence_acq_rel();
2523 }
2524
2525 void
2526 vm_object_unbusy(vm_object_t obj)
2527 {
2528
2529         blockcount_release(&obj->busy, 1);
2530 }
2531
2532 void
2533 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2534 {
2535
2536         VM_OBJECT_ASSERT_UNLOCKED(obj);
2537
2538         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2539 }
2540
2541 /*
2542  * This function aims to determine if the object is mapped,
2543  * specifically, if it is referenced by a vm_map_entry.  Because
2544  * objects occasionally acquire transient references that do not
2545  * represent a mapping, the method used here is inexact.  However, it
2546  * has very low overhead and is good enough for the advisory
2547  * vm.vmtotal sysctl.
2548  */
2549 bool
2550 vm_object_is_active(vm_object_t obj)
2551 {
2552
2553         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2554 }
2555
2556 static int
2557 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2558 {
2559         struct kinfo_vmobject *kvo;
2560         char *fullpath, *freepath;
2561         struct vnode *vp;
2562         struct vattr va;
2563         vm_object_t obj;
2564         vm_page_t m;
2565         u_long sp;
2566         int count, error;
2567
2568         if (req->oldptr == NULL) {
2569                 /*
2570                  * If an old buffer has not been provided, generate an
2571                  * estimate of the space needed for a subsequent call.
2572                  */
2573                 mtx_lock(&vm_object_list_mtx);
2574                 count = 0;
2575                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2576                         if (obj->type == OBJT_DEAD)
2577                                 continue;
2578                         count++;
2579                 }
2580                 mtx_unlock(&vm_object_list_mtx);
2581                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2582                     count * 11 / 10));
2583         }
2584
2585         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2586         error = 0;
2587
2588         /*
2589          * VM objects are type stable and are never removed from the
2590          * list once added.  This allows us to safely read obj->object_list
2591          * after reacquiring the VM object lock.
2592          */
2593         mtx_lock(&vm_object_list_mtx);
2594         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2595                 if (obj->type == OBJT_DEAD ||
2596                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2597                         continue;
2598                 VM_OBJECT_RLOCK(obj);
2599                 if (obj->type == OBJT_DEAD ||
2600                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2601                         VM_OBJECT_RUNLOCK(obj);
2602                         continue;
2603                 }
2604                 mtx_unlock(&vm_object_list_mtx);
2605                 kvo->kvo_size = ptoa(obj->size);
2606                 kvo->kvo_resident = obj->resident_page_count;
2607                 kvo->kvo_ref_count = obj->ref_count;
2608                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2609                 kvo->kvo_memattr = obj->memattr;
2610                 kvo->kvo_active = 0;
2611                 kvo->kvo_inactive = 0;
2612                 if (!swap_only) {
2613                         TAILQ_FOREACH(m, &obj->memq, listq) {
2614                                 /*
2615                                  * A page may belong to the object but be
2616                                  * dequeued and set to PQ_NONE while the
2617                                  * object lock is not held.  This makes the
2618                                  * reads of m->queue below racy, and we do not
2619                                  * count pages set to PQ_NONE.  However, this
2620                                  * sysctl is only meant to give an
2621                                  * approximation of the system anyway.
2622                                  */
2623                                 if (m->a.queue == PQ_ACTIVE)
2624                                         kvo->kvo_active++;
2625                                 else if (m->a.queue == PQ_INACTIVE)
2626                                         kvo->kvo_inactive++;
2627                         }
2628                 }
2629
2630                 kvo->kvo_vn_fileid = 0;
2631                 kvo->kvo_vn_fsid = 0;
2632                 kvo->kvo_vn_fsid_freebsd11 = 0;
2633                 freepath = NULL;
2634                 fullpath = "";
2635                 vp = NULL;
2636                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2637                 if (vp != NULL) {
2638                         vref(vp);
2639                 } else if ((obj->flags & OBJ_ANON) != 0) {
2640                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2641                             kvo->kvo_type == KVME_TYPE_SWAP);
2642                         kvo->kvo_me = (uintptr_t)obj;
2643                         /* tmpfs objs are reported as vnodes */
2644                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2645                         sp = swap_pager_swapped_pages(obj);
2646                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2647                 }
2648                 VM_OBJECT_RUNLOCK(obj);
2649                 if (vp != NULL) {
2650                         vn_fullpath(vp, &fullpath, &freepath);
2651                         vn_lock(vp, LK_SHARED | LK_RETRY);
2652                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2653                                 kvo->kvo_vn_fileid = va.va_fileid;
2654                                 kvo->kvo_vn_fsid = va.va_fsid;
2655                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2656                                                                 /* truncate */
2657                         }
2658                         vput(vp);
2659                 }
2660
2661                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2662                 if (freepath != NULL)
2663                         free(freepath, M_TEMP);
2664
2665                 /* Pack record size down */
2666                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2667                     + strlen(kvo->kvo_path) + 1;
2668                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2669                     sizeof(uint64_t));
2670                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2671                 maybe_yield();
2672                 mtx_lock(&vm_object_list_mtx);
2673                 if (error)
2674                         break;
2675         }
2676         mtx_unlock(&vm_object_list_mtx);
2677         free(kvo, M_TEMP);
2678         return (error);
2679 }
2680
2681 static int
2682 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2683 {
2684         return (vm_object_list_handler(req, false));
2685 }
2686
2687 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2688     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2689     "List of VM objects");
2690
2691 static int
2692 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2693 {
2694         return (vm_object_list_handler(req, true));
2695 }
2696
2697 /*
2698  * This sysctl returns list of the anonymous or swap objects. Intent
2699  * is to provide stripped optimized list useful to analyze swap use.
2700  * Since technically non-swap (default) objects participate in the
2701  * shadow chains, and are converted to swap type as needed by swap
2702  * pager, we must report them.
2703  */
2704 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2705     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2706     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2707     "List of swap VM objects");
2708
2709 #include "opt_ddb.h"
2710 #ifdef DDB
2711 #include <sys/kernel.h>
2712
2713 #include <sys/cons.h>
2714
2715 #include <ddb/ddb.h>
2716
2717 static int
2718 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2719 {
2720         vm_map_t tmpm;
2721         vm_map_entry_t tmpe;
2722         vm_object_t obj;
2723
2724         if (map == 0)
2725                 return 0;
2726
2727         if (entry == 0) {
2728                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2729                         if (_vm_object_in_map(map, object, tmpe)) {
2730                                 return 1;
2731                         }
2732                 }
2733         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2734                 tmpm = entry->object.sub_map;
2735                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2736                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2737                                 return 1;
2738                         }
2739                 }
2740         } else if ((obj = entry->object.vm_object) != NULL) {
2741                 for (; obj; obj = obj->backing_object)
2742                         if (obj == object) {
2743                                 return 1;
2744                         }
2745         }
2746         return 0;
2747 }
2748
2749 static int
2750 vm_object_in_map(vm_object_t object)
2751 {
2752         struct proc *p;
2753
2754         /* sx_slock(&allproc_lock); */
2755         FOREACH_PROC_IN_SYSTEM(p) {
2756                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2757                         continue;
2758                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2759                         /* sx_sunlock(&allproc_lock); */
2760                         return 1;
2761                 }
2762         }
2763         /* sx_sunlock(&allproc_lock); */
2764         if (_vm_object_in_map(kernel_map, object, 0))
2765                 return 1;
2766         return 0;
2767 }
2768
2769 DB_SHOW_COMMAND(vmochk, vm_object_check)
2770 {
2771         vm_object_t object;
2772
2773         /*
2774          * make sure that internal objs are in a map somewhere
2775          * and none have zero ref counts.
2776          */
2777         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2778                 if ((object->flags & OBJ_ANON) != 0) {
2779                         if (object->ref_count == 0) {
2780                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2781                                         (long)object->size);
2782                         }
2783                         if (!vm_object_in_map(object)) {
2784                                 db_printf(
2785                         "vmochk: internal obj is not in a map: "
2786                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2787                                     object->ref_count, (u_long)object->size, 
2788                                     (u_long)object->size,
2789                                     (void *)object->backing_object);
2790                         }
2791                 }
2792                 if (db_pager_quit)
2793                         return;
2794         }
2795 }
2796
2797 /*
2798  *      vm_object_print:        [ debug ]
2799  */
2800 DB_SHOW_COMMAND(object, vm_object_print_static)
2801 {
2802         /* XXX convert args. */
2803         vm_object_t object = (vm_object_t)addr;
2804         boolean_t full = have_addr;
2805
2806         vm_page_t p;
2807
2808         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2809 #define count   was_count
2810
2811         int count;
2812
2813         if (object == NULL)
2814                 return;
2815
2816         db_iprintf(
2817             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2818             object, (int)object->type, (uintmax_t)object->size,
2819             object->resident_page_count, object->ref_count, object->flags,
2820             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2821         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2822             atomic_load_int(&object->shadow_count),
2823             object->backing_object ? object->backing_object->ref_count : 0,
2824             object->backing_object, (uintmax_t)object->backing_object_offset);
2825
2826         if (!full)
2827                 return;
2828
2829         db_indent += 2;
2830         count = 0;
2831         TAILQ_FOREACH(p, &object->memq, listq) {
2832                 if (count == 0)
2833                         db_iprintf("memory:=");
2834                 else if (count == 6) {
2835                         db_printf("\n");
2836                         db_iprintf(" ...");
2837                         count = 0;
2838                 } else
2839                         db_printf(",");
2840                 count++;
2841
2842                 db_printf("(off=0x%jx,page=0x%jx)",
2843                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2844
2845                 if (db_pager_quit)
2846                         break;
2847         }
2848         if (count != 0)
2849                 db_printf("\n");
2850         db_indent -= 2;
2851 }
2852
2853 /* XXX. */
2854 #undef count
2855
2856 /* XXX need this non-static entry for calling from vm_map_print. */
2857 void
2858 vm_object_print(
2859         /* db_expr_t */ long addr,
2860         boolean_t have_addr,
2861         /* db_expr_t */ long count,
2862         char *modif)
2863 {
2864         vm_object_print_static(addr, have_addr, count, modif);
2865 }
2866
2867 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2868 {
2869         vm_object_t object;
2870         vm_pindex_t fidx;
2871         vm_paddr_t pa;
2872         vm_page_t m, prev_m;
2873         int rcount;
2874
2875         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2876                 db_printf("new object: %p\n", (void *)object);
2877                 if (db_pager_quit)
2878                         return;
2879
2880                 rcount = 0;
2881                 fidx = 0;
2882                 pa = -1;
2883                 TAILQ_FOREACH(m, &object->memq, listq) {
2884                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2885                             prev_m->pindex + 1 != m->pindex) {
2886                                 if (rcount) {
2887                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2888                                                 (long)fidx, rcount, (long)pa);
2889                                         if (db_pager_quit)
2890                                                 return;
2891                                         rcount = 0;
2892                                 }
2893                         }                               
2894                         if (rcount &&
2895                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2896                                 ++rcount;
2897                                 continue;
2898                         }
2899                         if (rcount) {
2900                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2901                                         (long)fidx, rcount, (long)pa);
2902                                 if (db_pager_quit)
2903                                         return;
2904                         }
2905                         fidx = m->pindex;
2906                         pa = VM_PAGE_TO_PHYS(m);
2907                         rcount = 1;
2908                 }
2909                 if (rcount) {
2910                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2911                                 (long)fidx, rcount, (long)pa);
2912                         if (db_pager_quit)
2913                                 return;
2914                 }
2915         }
2916 }
2917 #endif /* DDB */