]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFC: contrib/tzdata: import tzdata 2020f
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111
112 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113                     int pagerflags, int flags, boolean_t *clearobjflags,
114                     boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116                     boolean_t *clearobjflags);
117 static void     vm_object_qcollapse(vm_object_t object);
118 static void     vm_object_vndeallocate(vm_object_t object);
119
120 /*
121  *      Virtual memory objects maintain the actual data
122  *      associated with allocated virtual memory.  A given
123  *      page of memory exists within exactly one object.
124  *
125  *      An object is only deallocated when all "references"
126  *      are given up.  Only one "reference" to a given
127  *      region of an object should be writeable.
128  *
129  *      Associated with each object is a list of all resident
130  *      memory pages belonging to that object; this list is
131  *      maintained by the "vm_page" module, and locked by the object's
132  *      lock.
133  *
134  *      Each object also records a "pager" routine which is
135  *      used to retrieve (and store) pages to the proper backing
136  *      storage.  In addition, objects may be backed by other
137  *      objects from which they were virtual-copied.
138  *
139  *      The only items within the object structure which are
140  *      modified after time of creation are:
141  *              reference count         locked by object's lock
142  *              pager routine           locked by object's lock
143  *
144  */
145
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;  /* lock for object list and count */
148
149 struct vm_object kernel_object_store;
150
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163
164 static void
165 counter_startup(void)
166 {
167
168         object_collapses = counter_u64_alloc(M_WAITOK);
169         object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172
173 static uma_zone_t obj_zone;
174
175 static int vm_object_zinit(void *mem, int size, int flags);
176
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179
180 static void
181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183         vm_object_t object;
184
185         object = (vm_object_t)mem;
186         KASSERT(object->ref_count == 0,
187             ("object %p ref_count = %d", object, object->ref_count));
188         KASSERT(TAILQ_EMPTY(&object->memq),
189             ("object %p has resident pages in its memq", object));
190         KASSERT(vm_radix_is_empty(&object->rtree),
191             ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193         KASSERT(LIST_EMPTY(&object->rvq),
194             ("object %p has reservations",
195             object));
196 #endif
197         KASSERT(object->paging_in_progress == 0,
198             ("object %p paging_in_progress = %d",
199             object, object->paging_in_progress));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         object->ref_count = 0;
223         vm_radix_init(&object->rtree);
224         object->paging_in_progress = 0;
225         object->resident_page_count = 0;
226         object->shadow_count = 0;
227         object->flags = OBJ_DEAD;
228
229         mtx_lock(&vm_object_list_mtx);
230         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231         mtx_unlock(&vm_object_list_mtx);
232         return (0);
233 }
234
235 static void
236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         if (type == OBJT_SWAP)
244                 pctrie_init(&object->un_pager.swp.swp_blks);
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         switch (type) {
254         case OBJT_DEAD:
255                 panic("_vm_object_allocate: can't create OBJT_DEAD");
256         case OBJT_DEFAULT:
257         case OBJT_SWAP:
258                 object->flags = OBJ_ONEMAPPING;
259                 break;
260         case OBJT_DEVICE:
261         case OBJT_SG:
262                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263                 break;
264         case OBJT_MGTDEVICE:
265                 object->flags = OBJ_FICTITIOUS;
266                 break;
267         case OBJT_PHYS:
268                 object->flags = OBJ_UNMANAGED;
269                 break;
270         case OBJT_VNODE:
271                 object->flags = 0;
272                 break;
273         default:
274                 panic("_vm_object_allocate: type %d is undefined", type);
275         }
276         object->size = size;
277         object->domain.dr_policy = NULL;
278         object->generation = 1;
279         object->ref_count = 1;
280         object->memattr = VM_MEMATTR_DEFAULT;
281         object->cred = NULL;
282         object->charge = 0;
283         object->handle = NULL;
284         object->backing_object = NULL;
285         object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287         LIST_INIT(&object->rvq);
288 #endif
289         umtx_shm_object_init(object);
290 }
291
292 /*
293  *      vm_object_init:
294  *
295  *      Initialize the VM objects module.
296  */
297 void
298 vm_object_init(void)
299 {
300         TAILQ_INIT(&vm_object_list);
301         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302         
303         rw_init(&kernel_object->lock, "kernel vm object");
304         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305             VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307         kernel_object->flags |= OBJ_COLORED;
308         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310
311         /*
312          * The lock portion of struct vm_object must be type stable due
313          * to vm_pageout_fallback_object_lock locking a vm object
314          * without holding any references to it.
315          */
316         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
317 #ifdef INVARIANTS
318             vm_object_zdtor,
319 #else
320             NULL,
321 #endif
322             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323
324         vm_radix_zinit();
325 }
326
327 void
328 vm_object_clear_flag(vm_object_t object, u_short bits)
329 {
330
331         VM_OBJECT_ASSERT_WLOCKED(object);
332         object->flags &= ~bits;
333 }
334
335 /*
336  *      Sets the default memory attribute for the specified object.  Pages
337  *      that are allocated to this object are by default assigned this memory
338  *      attribute.
339  *
340  *      Presently, this function must be called before any pages are allocated
341  *      to the object.  In the future, this requirement may be relaxed for
342  *      "default" and "swap" objects.
343  */
344 int
345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
346 {
347
348         VM_OBJECT_ASSERT_WLOCKED(object);
349         switch (object->type) {
350         case OBJT_DEFAULT:
351         case OBJT_DEVICE:
352         case OBJT_MGTDEVICE:
353         case OBJT_PHYS:
354         case OBJT_SG:
355         case OBJT_SWAP:
356         case OBJT_VNODE:
357                 if (!TAILQ_EMPTY(&object->memq))
358                         return (KERN_FAILURE);
359                 break;
360         case OBJT_DEAD:
361                 return (KERN_INVALID_ARGUMENT);
362         default:
363                 panic("vm_object_set_memattr: object %p is of undefined type",
364                     object);
365         }
366         object->memattr = memattr;
367         return (KERN_SUCCESS);
368 }
369
370 void
371 vm_object_pip_add(vm_object_t object, short i)
372 {
373
374         VM_OBJECT_ASSERT_WLOCKED(object);
375         object->paging_in_progress += i;
376 }
377
378 void
379 vm_object_pip_subtract(vm_object_t object, short i)
380 {
381
382         VM_OBJECT_ASSERT_WLOCKED(object);
383         object->paging_in_progress -= i;
384 }
385
386 void
387 vm_object_pip_wakeup(vm_object_t object)
388 {
389
390         VM_OBJECT_ASSERT_WLOCKED(object);
391         object->paging_in_progress--;
392         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
393                 vm_object_clear_flag(object, OBJ_PIPWNT);
394                 wakeup(object);
395         }
396 }
397
398 void
399 vm_object_pip_wakeupn(vm_object_t object, short i)
400 {
401
402         VM_OBJECT_ASSERT_WLOCKED(object);
403         if (i)
404                 object->paging_in_progress -= i;
405         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
406                 vm_object_clear_flag(object, OBJ_PIPWNT);
407                 wakeup(object);
408         }
409 }
410
411 void
412 vm_object_pip_wait(vm_object_t object, char *waitid)
413 {
414
415         VM_OBJECT_ASSERT_WLOCKED(object);
416         while (object->paging_in_progress) {
417                 object->flags |= OBJ_PIPWNT;
418                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
419         }
420 }
421
422 /*
423  *      vm_object_allocate:
424  *
425  *      Returns a new object with the given size.
426  */
427 vm_object_t
428 vm_object_allocate(objtype_t type, vm_pindex_t size)
429 {
430         vm_object_t object;
431
432         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433         _vm_object_allocate(type, size, object);
434         return (object);
435 }
436
437
438 /*
439  *      vm_object_reference:
440  *
441  *      Gets another reference to the given object.  Note: OBJ_DEAD
442  *      objects can be referenced during final cleaning.
443  */
444 void
445 vm_object_reference(vm_object_t object)
446 {
447         if (object == NULL)
448                 return;
449         VM_OBJECT_WLOCK(object);
450         vm_object_reference_locked(object);
451         VM_OBJECT_WUNLOCK(object);
452 }
453
454 /*
455  *      vm_object_reference_locked:
456  *
457  *      Gets another reference to the given object.
458  *
459  *      The object must be locked.
460  */
461 void
462 vm_object_reference_locked(vm_object_t object)
463 {
464         struct vnode *vp;
465
466         VM_OBJECT_ASSERT_WLOCKED(object);
467         object->ref_count++;
468         if (object->type == OBJT_VNODE) {
469                 vp = object->handle;
470                 vref(vp);
471         }
472 }
473
474 /*
475  * Handle deallocating an object of type OBJT_VNODE.
476  */
477 static void
478 vm_object_vndeallocate(vm_object_t object)
479 {
480         struct vnode *vp = (struct vnode *) object->handle;
481
482         VM_OBJECT_ASSERT_WLOCKED(object);
483         KASSERT(object->type == OBJT_VNODE,
484             ("vm_object_vndeallocate: not a vnode object"));
485         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
486 #ifdef INVARIANTS
487         if (object->ref_count == 0) {
488                 vn_printf(vp, "vm_object_vndeallocate ");
489                 panic("vm_object_vndeallocate: bad object reference count");
490         }
491 #endif
492
493         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
494                 umtx_shm_object_terminated(object);
495
496         object->ref_count--;
497
498         /* vrele may need the vnode lock. */
499         VM_OBJECT_WUNLOCK(object);
500         vrele(vp);
501 }
502
503 /*
504  *      vm_object_deallocate:
505  *
506  *      Release a reference to the specified object,
507  *      gained either through a vm_object_allocate
508  *      or a vm_object_reference call.  When all references
509  *      are gone, storage associated with this object
510  *      may be relinquished.
511  *
512  *      No object may be locked.
513  */
514 void
515 vm_object_deallocate(vm_object_t object)
516 {
517         vm_object_t temp;
518
519         while (object != NULL) {
520                 VM_OBJECT_WLOCK(object);
521                 if (object->type == OBJT_VNODE) {
522                         vm_object_vndeallocate(object);
523                         return;
524                 }
525
526                 KASSERT(object->ref_count != 0,
527                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
528
529                 /*
530                  * If the reference count goes to 0 we start calling
531                  * vm_object_terminate() on the object chain.
532                  * A ref count of 1 may be a special case depending on the
533                  * shadow count being 0 or 1.
534                  */
535                 object->ref_count--;
536                 if (object->ref_count > 1) {
537                         VM_OBJECT_WUNLOCK(object);
538                         return;
539                 } else if (object->ref_count == 1) {
540                         if (object->shadow_count == 0 &&
541                             object->handle == NULL &&
542                             (object->type == OBJT_DEFAULT ||
543                             (object->type == OBJT_SWAP &&
544                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
545                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
546                         } else if ((object->shadow_count == 1) &&
547                             (object->handle == NULL) &&
548                             (object->type == OBJT_DEFAULT ||
549                              object->type == OBJT_SWAP)) {
550                                 vm_object_t robject;
551
552                                 robject = LIST_FIRST(&object->shadow_head);
553                                 KASSERT(robject != NULL,
554                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
555                                          object->ref_count,
556                                          object->shadow_count));
557                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
558                                     ("shadowed tmpfs v_object %p", object));
559                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
560                                         /*
561                                          * Avoid a potential deadlock.
562                                          */
563                                         object->ref_count++;
564                                         VM_OBJECT_WUNLOCK(object);
565                                         /*
566                                          * More likely than not the thread
567                                          * holding robject's lock has lower
568                                          * priority than the current thread.
569                                          * Let the lower priority thread run.
570                                          */
571                                         pause("vmo_de", 1);
572                                         continue;
573                                 }
574                                 /*
575                                  * Collapse object into its shadow unless its
576                                  * shadow is dead.  In that case, object will
577                                  * be deallocated by the thread that is
578                                  * deallocating its shadow.
579                                  */
580                                 if ((robject->flags & OBJ_DEAD) == 0 &&
581                                     (robject->handle == NULL) &&
582                                     (robject->type == OBJT_DEFAULT ||
583                                      robject->type == OBJT_SWAP)) {
584
585                                         robject->ref_count++;
586 retry:
587                                         if (robject->paging_in_progress) {
588                                                 VM_OBJECT_WUNLOCK(object);
589                                                 vm_object_pip_wait(robject,
590                                                     "objde1");
591                                                 temp = robject->backing_object;
592                                                 if (object == temp) {
593                                                         VM_OBJECT_WLOCK(object);
594                                                         goto retry;
595                                                 }
596                                         } else if (object->paging_in_progress) {
597                                                 VM_OBJECT_WUNLOCK(robject);
598                                                 object->flags |= OBJ_PIPWNT;
599                                                 VM_OBJECT_SLEEP(object, object,
600                                                     PDROP | PVM, "objde2", 0);
601                                                 VM_OBJECT_WLOCK(robject);
602                                                 temp = robject->backing_object;
603                                                 if (object == temp) {
604                                                         VM_OBJECT_WLOCK(object);
605                                                         goto retry;
606                                                 }
607                                         } else
608                                                 VM_OBJECT_WUNLOCK(object);
609
610                                         if (robject->ref_count == 1) {
611                                                 robject->ref_count--;
612                                                 object = robject;
613                                                 goto doterm;
614                                         }
615                                         object = robject;
616                                         vm_object_collapse(object);
617                                         VM_OBJECT_WUNLOCK(object);
618                                         continue;
619                                 }
620                                 VM_OBJECT_WUNLOCK(robject);
621                         }
622                         VM_OBJECT_WUNLOCK(object);
623                         return;
624                 }
625 doterm:
626                 umtx_shm_object_terminated(object);
627                 temp = object->backing_object;
628                 if (temp != NULL) {
629                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
630                             ("shadowed tmpfs v_object 2 %p", object));
631                         VM_OBJECT_WLOCK(temp);
632                         LIST_REMOVE(object, shadow_list);
633                         temp->shadow_count--;
634                         VM_OBJECT_WUNLOCK(temp);
635                         object->backing_object = NULL;
636                 }
637                 /*
638                  * Don't double-terminate, we could be in a termination
639                  * recursion due to the terminate having to sync data
640                  * to disk.
641                  */
642                 if ((object->flags & OBJ_DEAD) == 0)
643                         vm_object_terminate(object);
644                 else
645                         VM_OBJECT_WUNLOCK(object);
646                 object = temp;
647         }
648 }
649
650 /*
651  *      vm_object_destroy removes the object from the global object list
652  *      and frees the space for the object.
653  */
654 void
655 vm_object_destroy(vm_object_t object)
656 {
657
658         /*
659          * Release the allocation charge.
660          */
661         if (object->cred != NULL) {
662                 swap_release_by_cred(object->charge, object->cred);
663                 object->charge = 0;
664                 crfree(object->cred);
665                 object->cred = NULL;
666         }
667
668         /*
669          * Free the space for the object.
670          */
671         uma_zfree(obj_zone, object);
672 }
673
674 /*
675  *      vm_object_terminate_pages removes any remaining pageable pages
676  *      from the object and resets the object to an empty state.
677  */
678 static void
679 vm_object_terminate_pages(vm_object_t object)
680 {
681         vm_page_t p, p_next;
682         struct mtx *mtx;
683
684         VM_OBJECT_ASSERT_WLOCKED(object);
685
686         mtx = NULL;
687
688         /*
689          * Free any remaining pageable pages.  This also removes them from the
690          * paging queues.  However, don't free wired pages, just remove them
691          * from the object.  Rather than incrementally removing each page from
692          * the object, the page and object are reset to any empty state. 
693          */
694         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
695                 vm_page_assert_unbusied(p);
696                 if ((object->flags & OBJ_UNMANAGED) == 0)
697                         /*
698                          * vm_page_free_prep() only needs the page
699                          * lock for managed pages.
700                          */
701                         vm_page_change_lock(p, &mtx);
702                 p->object = NULL;
703                 if (vm_page_wired(p))
704                         continue;
705                 VM_CNT_INC(v_pfree);
706                 vm_page_free(p);
707         }
708         if (mtx != NULL)
709                 mtx_unlock(mtx);
710
711         /*
712          * If the object contained any pages, then reset it to an empty state.
713          * None of the object's fields, including "resident_page_count", were
714          * modified by the preceding loop.
715          */
716         if (object->resident_page_count != 0) {
717                 vm_radix_reclaim_allnodes(&object->rtree);
718                 TAILQ_INIT(&object->memq);
719                 object->resident_page_count = 0;
720                 if (object->type == OBJT_VNODE)
721                         vdrop(object->handle);
722         }
723 }
724
725 /*
726  *      vm_object_terminate actually destroys the specified object, freeing
727  *      up all previously used resources.
728  *
729  *      The object must be locked.
730  *      This routine may block.
731  */
732 void
733 vm_object_terminate(vm_object_t object)
734 {
735
736         VM_OBJECT_ASSERT_WLOCKED(object);
737
738         /*
739          * Make sure no one uses us.
740          */
741         vm_object_set_flag(object, OBJ_DEAD);
742
743         /*
744          * wait for the pageout daemon to be done with the object
745          */
746         vm_object_pip_wait(object, "objtrm");
747
748         KASSERT(!object->paging_in_progress,
749                 ("vm_object_terminate: pageout in progress"));
750
751         /*
752          * Clean and free the pages, as appropriate. All references to the
753          * object are gone, so we don't need to lock it.
754          */
755         if (object->type == OBJT_VNODE) {
756                 struct vnode *vp = (struct vnode *)object->handle;
757
758                 /*
759                  * Clean pages and flush buffers.
760                  */
761                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
762                 VM_OBJECT_WUNLOCK(object);
763
764                 vinvalbuf(vp, V_SAVE, 0, 0);
765
766                 BO_LOCK(&vp->v_bufobj);
767                 vp->v_bufobj.bo_flag |= BO_DEAD;
768                 BO_UNLOCK(&vp->v_bufobj);
769
770                 VM_OBJECT_WLOCK(object);
771         }
772
773         KASSERT(object->ref_count == 0, 
774                 ("vm_object_terminate: object with references, ref_count=%d",
775                 object->ref_count));
776
777         if ((object->flags & OBJ_PG_DTOR) == 0)
778                 vm_object_terminate_pages(object);
779
780 #if VM_NRESERVLEVEL > 0
781         if (__predict_false(!LIST_EMPTY(&object->rvq)))
782                 vm_reserv_break_all(object);
783 #endif
784
785         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
786             object->type == OBJT_SWAP,
787             ("%s: non-swap obj %p has cred", __func__, object));
788
789         /*
790          * Let the pager know object is dead.
791          */
792         vm_pager_deallocate(object);
793         VM_OBJECT_WUNLOCK(object);
794
795         vm_object_destroy(object);
796 }
797
798 /*
799  * Make the page read-only so that we can clear the object flags.  However, if
800  * this is a nosync mmap then the object is likely to stay dirty so do not
801  * mess with the page and do not clear the object flags.  Returns TRUE if the
802  * page should be flushed, and FALSE otherwise.
803  */
804 static boolean_t
805 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
806 {
807
808         /*
809          * If we have been asked to skip nosync pages and this is a
810          * nosync page, skip it.  Note that the object flags were not
811          * cleared in this case so we do not have to set them.
812          */
813         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
814                 *clearobjflags = FALSE;
815                 return (FALSE);
816         } else {
817                 pmap_remove_write(p);
818                 return (p->dirty != 0);
819         }
820 }
821
822 /*
823  *      vm_object_page_clean
824  *
825  *      Clean all dirty pages in the specified range of object.  Leaves page 
826  *      on whatever queue it is currently on.   If NOSYNC is set then do not
827  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
828  *      leaving the object dirty.
829  *
830  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
831  *      synchronous clustering mode implementation.
832  *
833  *      Odd semantics: if start == end, we clean everything.
834  *
835  *      The object must be locked.
836  *
837  *      Returns FALSE if some page from the range was not written, as
838  *      reported by the pager, and TRUE otherwise.
839  */
840 boolean_t
841 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
842     int flags)
843 {
844         vm_page_t np, p;
845         vm_pindex_t pi, tend, tstart;
846         int curgeneration, n, pagerflags;
847         boolean_t clearobjflags, eio, res;
848
849         VM_OBJECT_ASSERT_WLOCKED(object);
850
851         /*
852          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
853          * objects.  The check below prevents the function from
854          * operating on non-vnode objects.
855          */
856         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
857             object->resident_page_count == 0)
858                 return (TRUE);
859
860         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
861             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
862         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
863
864         tstart = OFF_TO_IDX(start);
865         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
866         clearobjflags = tstart == 0 && tend >= object->size;
867         res = TRUE;
868
869 rescan:
870         curgeneration = object->generation;
871
872         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
873                 pi = p->pindex;
874                 if (pi >= tend)
875                         break;
876                 np = TAILQ_NEXT(p, listq);
877                 if (p->valid == 0)
878                         continue;
879                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
880                         if (object->generation != curgeneration) {
881                                 if ((flags & OBJPC_SYNC) != 0)
882                                         goto rescan;
883                                 else
884                                         clearobjflags = FALSE;
885                         }
886                         np = vm_page_find_least(object, pi);
887                         continue;
888                 }
889                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
890                         continue;
891
892                 n = vm_object_page_collect_flush(object, p, pagerflags,
893                     flags, &clearobjflags, &eio);
894                 if (eio) {
895                         res = FALSE;
896                         clearobjflags = FALSE;
897                 }
898                 if (object->generation != curgeneration) {
899                         if ((flags & OBJPC_SYNC) != 0)
900                                 goto rescan;
901                         else
902                                 clearobjflags = FALSE;
903                 }
904
905                 /*
906                  * If the VOP_PUTPAGES() did a truncated write, so
907                  * that even the first page of the run is not fully
908                  * written, vm_pageout_flush() returns 0 as the run
909                  * length.  Since the condition that caused truncated
910                  * write may be permanent, e.g. exhausted free space,
911                  * accepting n == 0 would cause an infinite loop.
912                  *
913                  * Forwarding the iterator leaves the unwritten page
914                  * behind, but there is not much we can do there if
915                  * filesystem refuses to write it.
916                  */
917                 if (n == 0) {
918                         n = 1;
919                         clearobjflags = FALSE;
920                 }
921                 np = vm_page_find_least(object, pi + n);
922         }
923 #if 0
924         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
925 #endif
926
927         if (clearobjflags)
928                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
929         return (res);
930 }
931
932 static int
933 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
934     int flags, boolean_t *clearobjflags, boolean_t *eio)
935 {
936         vm_page_t ma[vm_pageout_page_count], p_first, tp;
937         int count, i, mreq, runlen;
938
939         vm_page_lock_assert(p, MA_NOTOWNED);
940         VM_OBJECT_ASSERT_WLOCKED(object);
941
942         count = 1;
943         mreq = 0;
944
945         for (tp = p; count < vm_pageout_page_count; count++) {
946                 tp = vm_page_next(tp);
947                 if (tp == NULL || vm_page_busied(tp))
948                         break;
949                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
950                         break;
951         }
952
953         for (p_first = p; count < vm_pageout_page_count; count++) {
954                 tp = vm_page_prev(p_first);
955                 if (tp == NULL || vm_page_busied(tp))
956                         break;
957                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
958                         break;
959                 p_first = tp;
960                 mreq++;
961         }
962
963         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
964                 ma[i] = tp;
965
966         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
967         return (runlen);
968 }
969
970 /*
971  * Note that there is absolutely no sense in writing out
972  * anonymous objects, so we track down the vnode object
973  * to write out.
974  * We invalidate (remove) all pages from the address space
975  * for semantic correctness.
976  *
977  * If the backing object is a device object with unmanaged pages, then any
978  * mappings to the specified range of pages must be removed before this
979  * function is called.
980  *
981  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
982  * may start out with a NULL object.
983  */
984 boolean_t
985 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
986     boolean_t syncio, boolean_t invalidate)
987 {
988         vm_object_t backing_object;
989         struct vnode *vp;
990         struct mount *mp;
991         int error, flags, fsync_after;
992         boolean_t res;
993
994         if (object == NULL)
995                 return (TRUE);
996         res = TRUE;
997         error = 0;
998         VM_OBJECT_WLOCK(object);
999         while ((backing_object = object->backing_object) != NULL) {
1000                 VM_OBJECT_WLOCK(backing_object);
1001                 offset += object->backing_object_offset;
1002                 VM_OBJECT_WUNLOCK(object);
1003                 object = backing_object;
1004                 if (object->size < OFF_TO_IDX(offset + size))
1005                         size = IDX_TO_OFF(object->size) - offset;
1006         }
1007         /*
1008          * Flush pages if writing is allowed, invalidate them
1009          * if invalidation requested.  Pages undergoing I/O
1010          * will be ignored by vm_object_page_remove().
1011          *
1012          * We cannot lock the vnode and then wait for paging
1013          * to complete without deadlocking against vm_fault.
1014          * Instead we simply call vm_object_page_remove() and
1015          * allow it to block internally on a page-by-page
1016          * basis when it encounters pages undergoing async
1017          * I/O.
1018          */
1019         if (object->type == OBJT_VNODE &&
1020             (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1021             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1022                 VM_OBJECT_WUNLOCK(object);
1023                 (void) vn_start_write(vp, &mp, V_WAIT);
1024                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1025                 if (syncio && !invalidate && offset == 0 &&
1026                     atop(size) == object->size) {
1027                         /*
1028                          * If syncing the whole mapping of the file,
1029                          * it is faster to schedule all the writes in
1030                          * async mode, also allowing the clustering,
1031                          * and then wait for i/o to complete.
1032                          */
1033                         flags = 0;
1034                         fsync_after = TRUE;
1035                 } else {
1036                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1037                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1038                         fsync_after = FALSE;
1039                 }
1040                 VM_OBJECT_WLOCK(object);
1041                 res = vm_object_page_clean(object, offset, offset + size,
1042                     flags);
1043                 VM_OBJECT_WUNLOCK(object);
1044                 if (fsync_after)
1045                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1046                 VOP_UNLOCK(vp, 0);
1047                 vn_finished_write(mp);
1048                 if (error != 0)
1049                         res = FALSE;
1050                 VM_OBJECT_WLOCK(object);
1051         }
1052         if ((object->type == OBJT_VNODE ||
1053              object->type == OBJT_DEVICE) && invalidate) {
1054                 if (object->type == OBJT_DEVICE)
1055                         /*
1056                          * The option OBJPR_NOTMAPPED must be passed here
1057                          * because vm_object_page_remove() cannot remove
1058                          * unmanaged mappings.
1059                          */
1060                         flags = OBJPR_NOTMAPPED;
1061                 else if (old_msync)
1062                         flags = 0;
1063                 else
1064                         flags = OBJPR_CLEANONLY;
1065                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1066                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1067         }
1068         VM_OBJECT_WUNLOCK(object);
1069         return (res);
1070 }
1071
1072 /*
1073  * Determine whether the given advice can be applied to the object.  Advice is
1074  * not applied to unmanaged pages since they never belong to page queues, and
1075  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1076  * have been mapped at most once.
1077  */
1078 static bool
1079 vm_object_advice_applies(vm_object_t object, int advice)
1080 {
1081
1082         if ((object->flags & OBJ_UNMANAGED) != 0)
1083                 return (false);
1084         if (advice != MADV_FREE)
1085                 return (true);
1086         return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1087             (object->flags & OBJ_ONEMAPPING) != 0);
1088 }
1089
1090 static void
1091 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1092     vm_size_t size)
1093 {
1094
1095         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1096                 swap_pager_freespace(object, pindex, size);
1097 }
1098
1099 /*
1100  *      vm_object_madvise:
1101  *
1102  *      Implements the madvise function at the object/page level.
1103  *
1104  *      MADV_WILLNEED   (any object)
1105  *
1106  *          Activate the specified pages if they are resident.
1107  *
1108  *      MADV_DONTNEED   (any object)
1109  *
1110  *          Deactivate the specified pages if they are resident.
1111  *
1112  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1113  *                       OBJ_ONEMAPPING only)
1114  *
1115  *          Deactivate and clean the specified pages if they are
1116  *          resident.  This permits the process to reuse the pages
1117  *          without faulting or the kernel to reclaim the pages
1118  *          without I/O.
1119  */
1120 void
1121 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1122     int advice)
1123 {
1124         vm_pindex_t tpindex;
1125         vm_object_t backing_object, tobject;
1126         vm_page_t m, tm;
1127
1128         if (object == NULL)
1129                 return;
1130
1131 relookup:
1132         VM_OBJECT_WLOCK(object);
1133         if (!vm_object_advice_applies(object, advice)) {
1134                 VM_OBJECT_WUNLOCK(object);
1135                 return;
1136         }
1137         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1138                 tobject = object;
1139
1140                 /*
1141                  * If the next page isn't resident in the top-level object, we
1142                  * need to search the shadow chain.  When applying MADV_FREE, we
1143                  * take care to release any swap space used to store
1144                  * non-resident pages.
1145                  */
1146                 if (m == NULL || pindex < m->pindex) {
1147                         /*
1148                          * Optimize a common case: if the top-level object has
1149                          * no backing object, we can skip over the non-resident
1150                          * range in constant time.
1151                          */
1152                         if (object->backing_object == NULL) {
1153                                 tpindex = (m != NULL && m->pindex < end) ?
1154                                     m->pindex : end;
1155                                 vm_object_madvise_freespace(object, advice,
1156                                     pindex, tpindex - pindex);
1157                                 if ((pindex = tpindex) == end)
1158                                         break;
1159                                 goto next_page;
1160                         }
1161
1162                         tpindex = pindex;
1163                         do {
1164                                 vm_object_madvise_freespace(tobject, advice,
1165                                     tpindex, 1);
1166                                 /*
1167                                  * Prepare to search the next object in the
1168                                  * chain.
1169                                  */
1170                                 backing_object = tobject->backing_object;
1171                                 if (backing_object == NULL)
1172                                         goto next_pindex;
1173                                 VM_OBJECT_WLOCK(backing_object);
1174                                 tpindex +=
1175                                     OFF_TO_IDX(tobject->backing_object_offset);
1176                                 if (tobject != object)
1177                                         VM_OBJECT_WUNLOCK(tobject);
1178                                 tobject = backing_object;
1179                                 if (!vm_object_advice_applies(tobject, advice))
1180                                         goto next_pindex;
1181                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1182                             NULL);
1183                 } else {
1184 next_page:
1185                         tm = m;
1186                         m = TAILQ_NEXT(m, listq);
1187                 }
1188
1189                 /*
1190                  * If the page is not in a normal state, skip it.
1191                  */
1192                 if (tm->valid != VM_PAGE_BITS_ALL)
1193                         goto next_pindex;
1194                 vm_page_lock(tm);
1195                 if (vm_page_held(tm)) {
1196                         vm_page_unlock(tm);
1197                         goto next_pindex;
1198                 }
1199                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1200                     ("vm_object_madvise: page %p is fictitious", tm));
1201                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1202                     ("vm_object_madvise: page %p is not managed", tm));
1203                 if (vm_page_busied(tm)) {
1204                         if (object != tobject)
1205                                 VM_OBJECT_WUNLOCK(tobject);
1206                         VM_OBJECT_WUNLOCK(object);
1207                         if (advice == MADV_WILLNEED) {
1208                                 /*
1209                                  * Reference the page before unlocking and
1210                                  * sleeping so that the page daemon is less
1211                                  * likely to reclaim it.
1212                                  */
1213                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1214                         }
1215                         vm_page_busy_sleep(tm, "madvpo", false);
1216                         goto relookup;
1217                 }
1218                 vm_page_advise(tm, advice);
1219                 vm_page_unlock(tm);
1220                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1221 next_pindex:
1222                 if (tobject != object)
1223                         VM_OBJECT_WUNLOCK(tobject);
1224         }
1225         VM_OBJECT_WUNLOCK(object);
1226 }
1227
1228 /*
1229  *      vm_object_shadow:
1230  *
1231  *      Create a new object which is backed by the
1232  *      specified existing object range.  The source
1233  *      object reference is deallocated.
1234  *
1235  *      The new object and offset into that object
1236  *      are returned in the source parameters.
1237  */
1238 void
1239 vm_object_shadow(
1240         vm_object_t *object,    /* IN/OUT */
1241         vm_ooffset_t *offset,   /* IN/OUT */
1242         vm_size_t length)
1243 {
1244         vm_object_t source;
1245         vm_object_t result;
1246
1247         source = *object;
1248
1249         /*
1250          * Don't create the new object if the old object isn't shared.
1251          */
1252         if (source != NULL) {
1253                 VM_OBJECT_WLOCK(source);
1254                 if (source->ref_count == 1 &&
1255                     source->handle == NULL &&
1256                     (source->type == OBJT_DEFAULT ||
1257                      source->type == OBJT_SWAP)) {
1258                         VM_OBJECT_WUNLOCK(source);
1259                         return;
1260                 }
1261                 VM_OBJECT_WUNLOCK(source);
1262         }
1263
1264         /*
1265          * Allocate a new object with the given length.
1266          */
1267         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1268
1269         /*
1270          * The new object shadows the source object, adding a reference to it.
1271          * Our caller changes his reference to point to the new object,
1272          * removing a reference to the source object.  Net result: no change
1273          * of reference count.
1274          *
1275          * Try to optimize the result object's page color when shadowing
1276          * in order to maintain page coloring consistency in the combined 
1277          * shadowed object.
1278          */
1279         result->backing_object = source;
1280         /*
1281          * Store the offset into the source object, and fix up the offset into
1282          * the new object.
1283          */
1284         result->backing_object_offset = *offset;
1285         if (source != NULL) {
1286                 VM_OBJECT_WLOCK(source);
1287                 result->domain = source->domain;
1288                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1289                 source->shadow_count++;
1290 #if VM_NRESERVLEVEL > 0
1291                 result->flags |= source->flags & OBJ_COLORED;
1292                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1293                     ((1 << (VM_NFREEORDER - 1)) - 1);
1294 #endif
1295                 VM_OBJECT_WUNLOCK(source);
1296         }
1297
1298
1299         /*
1300          * Return the new things
1301          */
1302         *offset = 0;
1303         *object = result;
1304 }
1305
1306 /*
1307  *      vm_object_split:
1308  *
1309  * Split the pages in a map entry into a new object.  This affords
1310  * easier removal of unused pages, and keeps object inheritance from
1311  * being a negative impact on memory usage.
1312  */
1313 void
1314 vm_object_split(vm_map_entry_t entry)
1315 {
1316         vm_page_t m, m_next;
1317         vm_object_t orig_object, new_object, source;
1318         vm_pindex_t idx, offidxstart;
1319         vm_size_t size;
1320
1321         orig_object = entry->object.vm_object;
1322         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1323                 return;
1324         if (orig_object->ref_count <= 1)
1325                 return;
1326         VM_OBJECT_WUNLOCK(orig_object);
1327
1328         offidxstart = OFF_TO_IDX(entry->offset);
1329         size = atop(entry->end - entry->start);
1330
1331         /*
1332          * If swap_pager_copy() is later called, it will convert new_object
1333          * into a swap object.
1334          */
1335         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1336
1337         /*
1338          * At this point, the new object is still private, so the order in
1339          * which the original and new objects are locked does not matter.
1340          */
1341         VM_OBJECT_WLOCK(new_object);
1342         VM_OBJECT_WLOCK(orig_object);
1343         new_object->domain = orig_object->domain;
1344         source = orig_object->backing_object;
1345         if (source != NULL) {
1346                 VM_OBJECT_WLOCK(source);
1347                 if ((source->flags & OBJ_DEAD) != 0) {
1348                         VM_OBJECT_WUNLOCK(source);
1349                         VM_OBJECT_WUNLOCK(orig_object);
1350                         VM_OBJECT_WUNLOCK(new_object);
1351                         vm_object_deallocate(new_object);
1352                         VM_OBJECT_WLOCK(orig_object);
1353                         return;
1354                 }
1355                 LIST_INSERT_HEAD(&source->shadow_head,
1356                                   new_object, shadow_list);
1357                 source->shadow_count++;
1358                 vm_object_reference_locked(source);     /* for new_object */
1359                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1360                 VM_OBJECT_WUNLOCK(source);
1361                 new_object->backing_object_offset = 
1362                         orig_object->backing_object_offset + entry->offset;
1363                 new_object->backing_object = source;
1364         }
1365         if (orig_object->cred != NULL) {
1366                 new_object->cred = orig_object->cred;
1367                 crhold(orig_object->cred);
1368                 new_object->charge = ptoa(size);
1369                 KASSERT(orig_object->charge >= ptoa(size),
1370                     ("orig_object->charge < 0"));
1371                 orig_object->charge -= ptoa(size);
1372         }
1373 retry:
1374         m = vm_page_find_least(orig_object, offidxstart);
1375         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1376             m = m_next) {
1377                 m_next = TAILQ_NEXT(m, listq);
1378
1379                 /*
1380                  * We must wait for pending I/O to complete before we can
1381                  * rename the page.
1382                  *
1383                  * We do not have to VM_PROT_NONE the page as mappings should
1384                  * not be changed by this operation.
1385                  */
1386                 if (vm_page_busied(m)) {
1387                         VM_OBJECT_WUNLOCK(new_object);
1388                         vm_page_lock(m);
1389                         VM_OBJECT_WUNLOCK(orig_object);
1390                         vm_page_busy_sleep(m, "spltwt", false);
1391                         VM_OBJECT_WLOCK(orig_object);
1392                         VM_OBJECT_WLOCK(new_object);
1393                         goto retry;
1394                 }
1395
1396                 /* vm_page_rename() will dirty the page. */
1397                 if (vm_page_rename(m, new_object, idx)) {
1398                         VM_OBJECT_WUNLOCK(new_object);
1399                         VM_OBJECT_WUNLOCK(orig_object);
1400                         vm_radix_wait();
1401                         VM_OBJECT_WLOCK(orig_object);
1402                         VM_OBJECT_WLOCK(new_object);
1403                         goto retry;
1404                 }
1405 #if VM_NRESERVLEVEL > 0
1406                 /*
1407                  * If some of the reservation's allocated pages remain with
1408                  * the original object, then transferring the reservation to
1409                  * the new object is neither particularly beneficial nor
1410                  * particularly harmful as compared to leaving the reservation
1411                  * with the original object.  If, however, all of the
1412                  * reservation's allocated pages are transferred to the new
1413                  * object, then transferring the reservation is typically
1414                  * beneficial.  Determining which of these two cases applies
1415                  * would be more costly than unconditionally renaming the
1416                  * reservation.
1417                  */
1418                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1419 #endif
1420                 if (orig_object->type == OBJT_SWAP)
1421                         vm_page_xbusy(m);
1422         }
1423         if (orig_object->type == OBJT_SWAP) {
1424                 /*
1425                  * swap_pager_copy() can sleep, in which case the orig_object's
1426                  * and new_object's locks are released and reacquired. 
1427                  */
1428                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1429                 TAILQ_FOREACH(m, &new_object->memq, listq)
1430                         vm_page_xunbusy(m);
1431         }
1432         VM_OBJECT_WUNLOCK(orig_object);
1433         VM_OBJECT_WUNLOCK(new_object);
1434         entry->object.vm_object = new_object;
1435         entry->offset = 0LL;
1436         vm_object_deallocate(orig_object);
1437         VM_OBJECT_WLOCK(new_object);
1438 }
1439
1440 #define OBSC_COLLAPSE_NOWAIT    0x0002
1441 #define OBSC_COLLAPSE_WAIT      0x0004
1442
1443 static vm_page_t
1444 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1445     int op)
1446 {
1447         vm_object_t backing_object;
1448
1449         VM_OBJECT_ASSERT_WLOCKED(object);
1450         backing_object = object->backing_object;
1451         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1452
1453         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1454         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1455             ("invalid ownership %p %p %p", p, object, backing_object));
1456         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1457                 return (next);
1458         if (p != NULL)
1459                 vm_page_lock(p);
1460         VM_OBJECT_WUNLOCK(object);
1461         VM_OBJECT_WUNLOCK(backing_object);
1462         /* The page is only NULL when rename fails. */
1463         if (p == NULL)
1464                 vm_radix_wait();
1465         else
1466                 vm_page_busy_sleep(p, "vmocol", false);
1467         VM_OBJECT_WLOCK(object);
1468         VM_OBJECT_WLOCK(backing_object);
1469         return (TAILQ_FIRST(&backing_object->memq));
1470 }
1471
1472 static bool
1473 vm_object_scan_all_shadowed(vm_object_t object)
1474 {
1475         vm_object_t backing_object;
1476         vm_page_t p, pp;
1477         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1478
1479         VM_OBJECT_ASSERT_WLOCKED(object);
1480         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1481
1482         backing_object = object->backing_object;
1483
1484         if (backing_object->type != OBJT_DEFAULT &&
1485             backing_object->type != OBJT_SWAP)
1486                 return (false);
1487
1488         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1489         p = vm_page_find_least(backing_object, pi);
1490         ps = swap_pager_find_least(backing_object, pi);
1491
1492         /*
1493          * Only check pages inside the parent object's range and
1494          * inside the parent object's mapping of the backing object.
1495          */
1496         for (;; pi++) {
1497                 if (p != NULL && p->pindex < pi)
1498                         p = TAILQ_NEXT(p, listq);
1499                 if (ps < pi)
1500                         ps = swap_pager_find_least(backing_object, pi);
1501                 if (p == NULL && ps >= backing_object->size)
1502                         break;
1503                 else if (p == NULL)
1504                         pi = ps;
1505                 else
1506                         pi = MIN(p->pindex, ps);
1507
1508                 new_pindex = pi - backing_offset_index;
1509                 if (new_pindex >= object->size)
1510                         break;
1511
1512                 /*
1513                  * See if the parent has the page or if the parent's object
1514                  * pager has the page.  If the parent has the page but the page
1515                  * is not valid, the parent's object pager must have the page.
1516                  *
1517                  * If this fails, the parent does not completely shadow the
1518                  * object and we might as well give up now.
1519                  */
1520                 pp = vm_page_lookup(object, new_pindex);
1521                 if ((pp == NULL || pp->valid == 0) &&
1522                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1523                         return (false);
1524         }
1525         return (true);
1526 }
1527
1528 static bool
1529 vm_object_collapse_scan(vm_object_t object, int op)
1530 {
1531         vm_object_t backing_object;
1532         vm_page_t next, p, pp;
1533         vm_pindex_t backing_offset_index, new_pindex;
1534
1535         VM_OBJECT_ASSERT_WLOCKED(object);
1536         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1537
1538         backing_object = object->backing_object;
1539         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1540
1541         /*
1542          * Initial conditions
1543          */
1544         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1545                 vm_object_set_flag(backing_object, OBJ_DEAD);
1546
1547         /*
1548          * Our scan
1549          */
1550         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1551                 next = TAILQ_NEXT(p, listq);
1552                 new_pindex = p->pindex - backing_offset_index;
1553
1554                 /*
1555                  * Check for busy page
1556                  */
1557                 if (vm_page_busied(p)) {
1558                         next = vm_object_collapse_scan_wait(object, p, next, op);
1559                         continue;
1560                 }
1561
1562                 KASSERT(p->object == backing_object,
1563                     ("vm_object_collapse_scan: object mismatch"));
1564
1565                 if (p->pindex < backing_offset_index ||
1566                     new_pindex >= object->size) {
1567                         if (backing_object->type == OBJT_SWAP)
1568                                 swap_pager_freespace(backing_object, p->pindex,
1569                                     1);
1570
1571                         /*
1572                          * Page is out of the parent object's range, we can
1573                          * simply destroy it.
1574                          */
1575                         vm_page_lock(p);
1576                         KASSERT(!pmap_page_is_mapped(p),
1577                             ("freeing mapped page %p", p));
1578                         if (vm_page_remove(p))
1579                                 vm_page_free(p);
1580                         vm_page_unlock(p);
1581                         continue;
1582                 }
1583
1584                 pp = vm_page_lookup(object, new_pindex);
1585                 if (pp != NULL && vm_page_busied(pp)) {
1586                         /*
1587                          * The page in the parent is busy and possibly not
1588                          * (yet) valid.  Until its state is finalized by the
1589                          * busy bit owner, we can't tell whether it shadows the
1590                          * original page.  Therefore, we must either skip it
1591                          * and the original (backing_object) page or wait for
1592                          * its state to be finalized.
1593                          *
1594                          * This is due to a race with vm_fault() where we must
1595                          * unbusy the original (backing_obj) page before we can
1596                          * (re)lock the parent.  Hence we can get here.
1597                          */
1598                         next = vm_object_collapse_scan_wait(object, pp, next,
1599                             op);
1600                         continue;
1601                 }
1602
1603                 KASSERT(pp == NULL || pp->valid != 0,
1604                     ("unbusy invalid page %p", pp));
1605
1606                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1607                         NULL)) {
1608                         /*
1609                          * The page already exists in the parent OR swap exists
1610                          * for this location in the parent.  Leave the parent's
1611                          * page alone.  Destroy the original page from the
1612                          * backing object.
1613                          */
1614                         if (backing_object->type == OBJT_SWAP)
1615                                 swap_pager_freespace(backing_object, p->pindex,
1616                                     1);
1617                         vm_page_lock(p);
1618                         KASSERT(!pmap_page_is_mapped(p),
1619                             ("freeing mapped page %p", p));
1620                         if (vm_page_remove(p))
1621                                 vm_page_free(p);
1622                         vm_page_unlock(p);
1623                         continue;
1624                 }
1625
1626                 /*
1627                  * Page does not exist in parent, rename the page from the
1628                  * backing object to the main object.
1629                  *
1630                  * If the page was mapped to a process, it can remain mapped
1631                  * through the rename.  vm_page_rename() will dirty the page.
1632                  */
1633                 if (vm_page_rename(p, object, new_pindex)) {
1634                         next = vm_object_collapse_scan_wait(object, NULL, next,
1635                             op);
1636                         continue;
1637                 }
1638
1639                 /* Use the old pindex to free the right page. */
1640                 if (backing_object->type == OBJT_SWAP)
1641                         swap_pager_freespace(backing_object,
1642                             new_pindex + backing_offset_index, 1);
1643
1644 #if VM_NRESERVLEVEL > 0
1645                 /*
1646                  * Rename the reservation.
1647                  */
1648                 vm_reserv_rename(p, object, backing_object,
1649                     backing_offset_index);
1650 #endif
1651         }
1652         return (true);
1653 }
1654
1655
1656 /*
1657  * this version of collapse allows the operation to occur earlier and
1658  * when paging_in_progress is true for an object...  This is not a complete
1659  * operation, but should plug 99.9% of the rest of the leaks.
1660  */
1661 static void
1662 vm_object_qcollapse(vm_object_t object)
1663 {
1664         vm_object_t backing_object = object->backing_object;
1665
1666         VM_OBJECT_ASSERT_WLOCKED(object);
1667         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1668
1669         if (backing_object->ref_count != 1)
1670                 return;
1671
1672         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1673 }
1674
1675 /*
1676  *      vm_object_collapse:
1677  *
1678  *      Collapse an object with the object backing it.
1679  *      Pages in the backing object are moved into the
1680  *      parent, and the backing object is deallocated.
1681  */
1682 void
1683 vm_object_collapse(vm_object_t object)
1684 {
1685         vm_object_t backing_object, new_backing_object;
1686
1687         VM_OBJECT_ASSERT_WLOCKED(object);
1688
1689         while (TRUE) {
1690                 /*
1691                  * Verify that the conditions are right for collapse:
1692                  *
1693                  * The object exists and the backing object exists.
1694                  */
1695                 if ((backing_object = object->backing_object) == NULL)
1696                         break;
1697
1698                 /*
1699                  * we check the backing object first, because it is most likely
1700                  * not collapsable.
1701                  */
1702                 VM_OBJECT_WLOCK(backing_object);
1703                 if (backing_object->handle != NULL ||
1704                     (backing_object->type != OBJT_DEFAULT &&
1705                     backing_object->type != OBJT_SWAP) ||
1706                     (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1707                     object->handle != NULL ||
1708                     (object->type != OBJT_DEFAULT &&
1709                      object->type != OBJT_SWAP) ||
1710                     (object->flags & OBJ_DEAD)) {
1711                         VM_OBJECT_WUNLOCK(backing_object);
1712                         break;
1713                 }
1714
1715                 if (object->paging_in_progress != 0 ||
1716                     backing_object->paging_in_progress != 0) {
1717                         vm_object_qcollapse(object);
1718                         VM_OBJECT_WUNLOCK(backing_object);
1719                         break;
1720                 }
1721
1722                 /*
1723                  * We know that we can either collapse the backing object (if
1724                  * the parent is the only reference to it) or (perhaps) have
1725                  * the parent bypass the object if the parent happens to shadow
1726                  * all the resident pages in the entire backing object.
1727                  *
1728                  * This is ignoring pager-backed pages such as swap pages.
1729                  * vm_object_collapse_scan fails the shadowing test in this
1730                  * case.
1731                  */
1732                 if (backing_object->ref_count == 1) {
1733                         vm_object_pip_add(object, 1);
1734                         vm_object_pip_add(backing_object, 1);
1735
1736                         /*
1737                          * If there is exactly one reference to the backing
1738                          * object, we can collapse it into the parent.
1739                          */
1740                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1741
1742 #if VM_NRESERVLEVEL > 0
1743                         /*
1744                          * Break any reservations from backing_object.
1745                          */
1746                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1747                                 vm_reserv_break_all(backing_object);
1748 #endif
1749
1750                         /*
1751                          * Move the pager from backing_object to object.
1752                          */
1753                         if (backing_object->type == OBJT_SWAP) {
1754                                 /*
1755                                  * swap_pager_copy() can sleep, in which case
1756                                  * the backing_object's and object's locks are
1757                                  * released and reacquired.
1758                                  * Since swap_pager_copy() is being asked to
1759                                  * destroy the source, it will change the
1760                                  * backing_object's type to OBJT_DEFAULT.
1761                                  */
1762                                 swap_pager_copy(
1763                                     backing_object,
1764                                     object,
1765                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1766                         }
1767                         /*
1768                          * Object now shadows whatever backing_object did.
1769                          * Note that the reference to 
1770                          * backing_object->backing_object moves from within 
1771                          * backing_object to within object.
1772                          */
1773                         LIST_REMOVE(object, shadow_list);
1774                         backing_object->shadow_count--;
1775                         if (backing_object->backing_object) {
1776                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1777                                 LIST_REMOVE(backing_object, shadow_list);
1778                                 LIST_INSERT_HEAD(
1779                                     &backing_object->backing_object->shadow_head,
1780                                     object, shadow_list);
1781                                 /*
1782                                  * The shadow_count has not changed.
1783                                  */
1784                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1785                         }
1786                         object->backing_object = backing_object->backing_object;
1787                         object->backing_object_offset +=
1788                             backing_object->backing_object_offset;
1789
1790                         /*
1791                          * Discard backing_object.
1792                          *
1793                          * Since the backing object has no pages, no pager left,
1794                          * and no object references within it, all that is
1795                          * necessary is to dispose of it.
1796                          */
1797                         KASSERT(backing_object->ref_count == 1, (
1798 "backing_object %p was somehow re-referenced during collapse!",
1799                             backing_object));
1800                         vm_object_pip_wakeup(backing_object);
1801                         backing_object->type = OBJT_DEAD;
1802                         backing_object->ref_count = 0;
1803                         VM_OBJECT_WUNLOCK(backing_object);
1804                         vm_object_destroy(backing_object);
1805
1806                         vm_object_pip_wakeup(object);
1807                         counter_u64_add(object_collapses, 1);
1808                 } else {
1809                         /*
1810                          * If we do not entirely shadow the backing object,
1811                          * there is nothing we can do so we give up.
1812                          */
1813                         if (object->resident_page_count != object->size &&
1814                             !vm_object_scan_all_shadowed(object)) {
1815                                 VM_OBJECT_WUNLOCK(backing_object);
1816                                 break;
1817                         }
1818
1819                         /*
1820                          * Make the parent shadow the next object in the
1821                          * chain.  Deallocating backing_object will not remove
1822                          * it, since its reference count is at least 2.
1823                          */
1824                         LIST_REMOVE(object, shadow_list);
1825                         backing_object->shadow_count--;
1826
1827                         new_backing_object = backing_object->backing_object;
1828                         if ((object->backing_object = new_backing_object) != NULL) {
1829                                 VM_OBJECT_WLOCK(new_backing_object);
1830                                 LIST_INSERT_HEAD(
1831                                     &new_backing_object->shadow_head,
1832                                     object,
1833                                     shadow_list
1834                                 );
1835                                 new_backing_object->shadow_count++;
1836                                 vm_object_reference_locked(new_backing_object);
1837                                 VM_OBJECT_WUNLOCK(new_backing_object);
1838                                 object->backing_object_offset +=
1839                                         backing_object->backing_object_offset;
1840                         }
1841
1842                         /*
1843                          * Drop the reference count on backing_object. Since
1844                          * its ref_count was at least 2, it will not vanish.
1845                          */
1846                         backing_object->ref_count--;
1847                         VM_OBJECT_WUNLOCK(backing_object);
1848                         counter_u64_add(object_bypasses, 1);
1849                 }
1850
1851                 /*
1852                  * Try again with this object's new backing object.
1853                  */
1854         }
1855 }
1856
1857 /*
1858  *      vm_object_page_remove:
1859  *
1860  *      For the given object, either frees or invalidates each of the
1861  *      specified pages.  In general, a page is freed.  However, if a page is
1862  *      wired for any reason other than the existence of a managed, wired
1863  *      mapping, then it may be invalidated but not removed from the object.
1864  *      Pages are specified by the given range ["start", "end") and the option
1865  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1866  *      extends from "start" to the end of the object.  If the option
1867  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1868  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1869  *      specified, then the pages within the specified range must have no
1870  *      mappings.  Otherwise, if this option is not specified, any mappings to
1871  *      the specified pages are removed before the pages are freed or
1872  *      invalidated.
1873  *
1874  *      In general, this operation should only be performed on objects that
1875  *      contain managed pages.  There are, however, two exceptions.  First, it
1876  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1877  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1878  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1879  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1880  *
1881  *      The object must be locked.
1882  */
1883 void
1884 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1885     int options)
1886 {
1887         vm_page_t p, next;
1888         struct mtx *mtx;
1889
1890         VM_OBJECT_ASSERT_WLOCKED(object);
1891         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1892             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1893             ("vm_object_page_remove: illegal options for object %p", object));
1894         if (object->resident_page_count == 0)
1895                 return;
1896         vm_object_pip_add(object, 1);
1897 again:
1898         p = vm_page_find_least(object, start);
1899         mtx = NULL;
1900
1901         /*
1902          * Here, the variable "p" is either (1) the page with the least pindex
1903          * greater than or equal to the parameter "start" or (2) NULL. 
1904          */
1905         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1906                 next = TAILQ_NEXT(p, listq);
1907
1908                 /*
1909                  * If the page is wired for any reason besides the existence
1910                  * of managed, wired mappings, then it cannot be freed.  For
1911                  * example, fictitious pages, which represent device memory,
1912                  * are inherently wired and cannot be freed.  They can,
1913                  * however, be invalidated if the option OBJPR_CLEANONLY is
1914                  * not specified.
1915                  */
1916                 vm_page_change_lock(p, &mtx);
1917                 if (vm_page_xbusied(p)) {
1918                         VM_OBJECT_WUNLOCK(object);
1919                         vm_page_busy_sleep(p, "vmopax", true);
1920                         VM_OBJECT_WLOCK(object);
1921                         goto again;
1922                 }
1923                 if (vm_page_wired(p)) {
1924                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1925                             object->ref_count != 0)
1926                                 pmap_remove_all(p);
1927                         if ((options & OBJPR_CLEANONLY) == 0) {
1928                                 p->valid = 0;
1929                                 vm_page_undirty(p);
1930                         }
1931                         continue;
1932                 }
1933                 if (vm_page_busied(p)) {
1934                         VM_OBJECT_WUNLOCK(object);
1935                         vm_page_busy_sleep(p, "vmopar", false);
1936                         VM_OBJECT_WLOCK(object);
1937                         goto again;
1938                 }
1939                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1940                     ("vm_object_page_remove: page %p is fictitious", p));
1941                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1942                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1943                             object->ref_count != 0)
1944                                 pmap_remove_write(p);
1945                         if (p->dirty != 0)
1946                                 continue;
1947                 }
1948                 if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1949                         pmap_remove_all(p);
1950                 vm_page_free(p);
1951         }
1952         if (mtx != NULL)
1953                 mtx_unlock(mtx);
1954         vm_object_pip_wakeup(object);
1955 }
1956
1957 /*
1958  *      vm_object_page_noreuse:
1959  *
1960  *      For the given object, attempt to move the specified pages to
1961  *      the head of the inactive queue.  This bypasses regular LRU
1962  *      operation and allows the pages to be reused quickly under memory
1963  *      pressure.  If a page is wired for any reason, then it will not
1964  *      be queued.  Pages are specified by the range ["start", "end").
1965  *      As a special case, if "end" is zero, then the range extends from
1966  *      "start" to the end of the object.
1967  *
1968  *      This operation should only be performed on objects that
1969  *      contain non-fictitious, managed pages.
1970  *
1971  *      The object must be locked.
1972  */
1973 void
1974 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1975 {
1976         struct mtx *mtx;
1977         vm_page_t p, next;
1978
1979         VM_OBJECT_ASSERT_LOCKED(object);
1980         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1981             ("vm_object_page_noreuse: illegal object %p", object));
1982         if (object->resident_page_count == 0)
1983                 return;
1984         p = vm_page_find_least(object, start);
1985
1986         /*
1987          * Here, the variable "p" is either (1) the page with the least pindex
1988          * greater than or equal to the parameter "start" or (2) NULL. 
1989          */
1990         mtx = NULL;
1991         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1992                 next = TAILQ_NEXT(p, listq);
1993                 vm_page_change_lock(p, &mtx);
1994                 vm_page_deactivate_noreuse(p);
1995         }
1996         if (mtx != NULL)
1997                 mtx_unlock(mtx);
1998 }
1999
2000 /*
2001  *      Populate the specified range of the object with valid pages.  Returns
2002  *      TRUE if the range is successfully populated and FALSE otherwise.
2003  *
2004  *      Note: This function should be optimized to pass a larger array of
2005  *      pages to vm_pager_get_pages() before it is applied to a non-
2006  *      OBJT_DEVICE object.
2007  *
2008  *      The object must be locked.
2009  */
2010 boolean_t
2011 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2012 {
2013         vm_page_t m;
2014         vm_pindex_t pindex;
2015         int rv;
2016
2017         VM_OBJECT_ASSERT_WLOCKED(object);
2018         for (pindex = start; pindex < end; pindex++) {
2019                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2020                 if (m->valid != VM_PAGE_BITS_ALL) {
2021                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2022                         if (rv != VM_PAGER_OK) {
2023                                 vm_page_lock(m);
2024                                 vm_page_free(m);
2025                                 vm_page_unlock(m);
2026                                 break;
2027                         }
2028                 }
2029                 /*
2030                  * Keep "m" busy because a subsequent iteration may unlock
2031                  * the object.
2032                  */
2033         }
2034         if (pindex > start) {
2035                 m = vm_page_lookup(object, start);
2036                 while (m != NULL && m->pindex < pindex) {
2037                         vm_page_xunbusy(m);
2038                         m = TAILQ_NEXT(m, listq);
2039                 }
2040         }
2041         return (pindex == end);
2042 }
2043
2044 /*
2045  *      Routine:        vm_object_coalesce
2046  *      Function:       Coalesces two objects backing up adjoining
2047  *                      regions of memory into a single object.
2048  *
2049  *      returns TRUE if objects were combined.
2050  *
2051  *      NOTE:   Only works at the moment if the second object is NULL -
2052  *              if it's not, which object do we lock first?
2053  *
2054  *      Parameters:
2055  *              prev_object     First object to coalesce
2056  *              prev_offset     Offset into prev_object
2057  *              prev_size       Size of reference to prev_object
2058  *              next_size       Size of reference to the second object
2059  *              reserved        Indicator that extension region has
2060  *                              swap accounted for
2061  *
2062  *      Conditions:
2063  *      The object must *not* be locked.
2064  */
2065 boolean_t
2066 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2067     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2068 {
2069         vm_pindex_t next_pindex;
2070
2071         if (prev_object == NULL)
2072                 return (TRUE);
2073         VM_OBJECT_WLOCK(prev_object);
2074         if ((prev_object->type != OBJT_DEFAULT &&
2075             prev_object->type != OBJT_SWAP) ||
2076             (prev_object->flags & OBJ_NOSPLIT) != 0) {
2077                 VM_OBJECT_WUNLOCK(prev_object);
2078                 return (FALSE);
2079         }
2080
2081         /*
2082          * Try to collapse the object first
2083          */
2084         vm_object_collapse(prev_object);
2085
2086         /*
2087          * Can't coalesce if: . more than one reference . paged out . shadows
2088          * another object . has a copy elsewhere (any of which mean that the
2089          * pages not mapped to prev_entry may be in use anyway)
2090          */
2091         if (prev_object->backing_object != NULL) {
2092                 VM_OBJECT_WUNLOCK(prev_object);
2093                 return (FALSE);
2094         }
2095
2096         prev_size >>= PAGE_SHIFT;
2097         next_size >>= PAGE_SHIFT;
2098         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2099
2100         if (prev_object->ref_count > 1 &&
2101             prev_object->size != next_pindex &&
2102             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2103                 VM_OBJECT_WUNLOCK(prev_object);
2104                 return (FALSE);
2105         }
2106
2107         /*
2108          * Account for the charge.
2109          */
2110         if (prev_object->cred != NULL) {
2111
2112                 /*
2113                  * If prev_object was charged, then this mapping,
2114                  * although not charged now, may become writable
2115                  * later. Non-NULL cred in the object would prevent
2116                  * swap reservation during enabling of the write
2117                  * access, so reserve swap now. Failed reservation
2118                  * cause allocation of the separate object for the map
2119                  * entry, and swap reservation for this entry is
2120                  * managed in appropriate time.
2121                  */
2122                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2123                     prev_object->cred)) {
2124                         VM_OBJECT_WUNLOCK(prev_object);
2125                         return (FALSE);
2126                 }
2127                 prev_object->charge += ptoa(next_size);
2128         }
2129
2130         /*
2131          * Remove any pages that may still be in the object from a previous
2132          * deallocation.
2133          */
2134         if (next_pindex < prev_object->size) {
2135                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2136                     next_size, 0);
2137                 if (prev_object->type == OBJT_SWAP)
2138                         swap_pager_freespace(prev_object,
2139                                              next_pindex, next_size);
2140 #if 0
2141                 if (prev_object->cred != NULL) {
2142                         KASSERT(prev_object->charge >=
2143                             ptoa(prev_object->size - next_pindex),
2144                             ("object %p overcharged 1 %jx %jx", prev_object,
2145                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2146                         prev_object->charge -= ptoa(prev_object->size -
2147                             next_pindex);
2148                 }
2149 #endif
2150         }
2151
2152         /*
2153          * Extend the object if necessary.
2154          */
2155         if (next_pindex + next_size > prev_object->size)
2156                 prev_object->size = next_pindex + next_size;
2157
2158         VM_OBJECT_WUNLOCK(prev_object);
2159         return (TRUE);
2160 }
2161
2162 void
2163 vm_object_set_writeable_dirty(vm_object_t object)
2164 {
2165
2166         VM_OBJECT_ASSERT_WLOCKED(object);
2167         if (object->type != OBJT_VNODE) {
2168                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2169                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2170                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2171                 }
2172                 return;
2173         }
2174         object->generation++;
2175         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2176                 return;
2177         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2178 }
2179
2180 /*
2181  *      vm_object_unwire:
2182  *
2183  *      For each page offset within the specified range of the given object,
2184  *      find the highest-level page in the shadow chain and unwire it.  A page
2185  *      must exist at every page offset, and the highest-level page must be
2186  *      wired.
2187  */
2188 void
2189 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2190     uint8_t queue)
2191 {
2192         vm_object_t tobject, t1object;
2193         vm_page_t m, tm;
2194         vm_pindex_t end_pindex, pindex, tpindex;
2195         int depth, locked_depth;
2196
2197         KASSERT((offset & PAGE_MASK) == 0,
2198             ("vm_object_unwire: offset is not page aligned"));
2199         KASSERT((length & PAGE_MASK) == 0,
2200             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2201         /* The wired count of a fictitious page never changes. */
2202         if ((object->flags & OBJ_FICTITIOUS) != 0)
2203                 return;
2204         pindex = OFF_TO_IDX(offset);
2205         end_pindex = pindex + atop(length);
2206 again:
2207         locked_depth = 1;
2208         VM_OBJECT_RLOCK(object);
2209         m = vm_page_find_least(object, pindex);
2210         while (pindex < end_pindex) {
2211                 if (m == NULL || pindex < m->pindex) {
2212                         /*
2213                          * The first object in the shadow chain doesn't
2214                          * contain a page at the current index.  Therefore,
2215                          * the page must exist in a backing object.
2216                          */
2217                         tobject = object;
2218                         tpindex = pindex;
2219                         depth = 0;
2220                         do {
2221                                 tpindex +=
2222                                     OFF_TO_IDX(tobject->backing_object_offset);
2223                                 tobject = tobject->backing_object;
2224                                 KASSERT(tobject != NULL,
2225                                     ("vm_object_unwire: missing page"));
2226                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2227                                         goto next_page;
2228                                 depth++;
2229                                 if (depth == locked_depth) {
2230                                         locked_depth++;
2231                                         VM_OBJECT_RLOCK(tobject);
2232                                 }
2233                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2234                             NULL);
2235                 } else {
2236                         tm = m;
2237                         m = TAILQ_NEXT(m, listq);
2238                 }
2239                 vm_page_lock(tm);
2240                 if (vm_page_xbusied(tm)) {
2241                         for (tobject = object; locked_depth >= 1;
2242                             locked_depth--) {
2243                                 t1object = tobject->backing_object;
2244                                 VM_OBJECT_RUNLOCK(tobject);
2245                                 tobject = t1object;
2246                         }
2247                         vm_page_busy_sleep(tm, "unwbo", true);
2248                         goto again;
2249                 }
2250                 vm_page_unwire(tm, queue);
2251                 vm_page_unlock(tm);
2252 next_page:
2253                 pindex++;
2254         }
2255         /* Release the accumulated object locks. */
2256         for (tobject = object; locked_depth >= 1; locked_depth--) {
2257                 t1object = tobject->backing_object;
2258                 VM_OBJECT_RUNLOCK(tobject);
2259                 tobject = t1object;
2260         }
2261 }
2262
2263 struct vnode *
2264 vm_object_vnode(vm_object_t object)
2265 {
2266
2267         VM_OBJECT_ASSERT_LOCKED(object);
2268         if (object->type == OBJT_VNODE)
2269                 return (object->handle);
2270         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2271                 return (object->un_pager.swp.swp_tmpfs);
2272         return (NULL);
2273 }
2274
2275 static int
2276 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2277 {
2278         struct kinfo_vmobject *kvo;
2279         char *fullpath, *freepath;
2280         struct vnode *vp;
2281         struct vattr va;
2282         vm_object_t obj;
2283         vm_page_t m;
2284         int count, error;
2285
2286         if (req->oldptr == NULL) {
2287                 /*
2288                  * If an old buffer has not been provided, generate an
2289                  * estimate of the space needed for a subsequent call.
2290                  */
2291                 mtx_lock(&vm_object_list_mtx);
2292                 count = 0;
2293                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2294                         if (obj->type == OBJT_DEAD)
2295                                 continue;
2296                         count++;
2297                 }
2298                 mtx_unlock(&vm_object_list_mtx);
2299                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2300                     count * 11 / 10));
2301         }
2302
2303         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2304         error = 0;
2305
2306         /*
2307          * VM objects are type stable and are never removed from the
2308          * list once added.  This allows us to safely read obj->object_list
2309          * after reacquiring the VM object lock.
2310          */
2311         mtx_lock(&vm_object_list_mtx);
2312         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2313                 if (obj->type == OBJT_DEAD)
2314                         continue;
2315                 VM_OBJECT_RLOCK(obj);
2316                 if (obj->type == OBJT_DEAD) {
2317                         VM_OBJECT_RUNLOCK(obj);
2318                         continue;
2319                 }
2320                 mtx_unlock(&vm_object_list_mtx);
2321                 kvo->kvo_size = ptoa(obj->size);
2322                 kvo->kvo_resident = obj->resident_page_count;
2323                 kvo->kvo_ref_count = obj->ref_count;
2324                 kvo->kvo_shadow_count = obj->shadow_count;
2325                 kvo->kvo_memattr = obj->memattr;
2326                 kvo->kvo_active = 0;
2327                 kvo->kvo_inactive = 0;
2328                 TAILQ_FOREACH(m, &obj->memq, listq) {
2329                         /*
2330                          * A page may belong to the object but be
2331                          * dequeued and set to PQ_NONE while the
2332                          * object lock is not held.  This makes the
2333                          * reads of m->queue below racy, and we do not
2334                          * count pages set to PQ_NONE.  However, this
2335                          * sysctl is only meant to give an
2336                          * approximation of the system anyway.
2337                          */
2338                         if (m->queue == PQ_ACTIVE)
2339                                 kvo->kvo_active++;
2340                         else if (m->queue == PQ_INACTIVE)
2341                                 kvo->kvo_inactive++;
2342                 }
2343
2344                 kvo->kvo_vn_fileid = 0;
2345                 kvo->kvo_vn_fsid = 0;
2346                 kvo->kvo_vn_fsid_freebsd11 = 0;
2347                 freepath = NULL;
2348                 fullpath = "";
2349                 vp = NULL;
2350                 switch (obj->type) {
2351                 case OBJT_DEFAULT:
2352                         kvo->kvo_type = KVME_TYPE_DEFAULT;
2353                         break;
2354                 case OBJT_VNODE:
2355                         kvo->kvo_type = KVME_TYPE_VNODE;
2356                         vp = obj->handle;
2357                         vref(vp);
2358                         break;
2359                 case OBJT_SWAP:
2360                         kvo->kvo_type = KVME_TYPE_SWAP;
2361                         break;
2362                 case OBJT_DEVICE:
2363                         kvo->kvo_type = KVME_TYPE_DEVICE;
2364                         break;
2365                 case OBJT_PHYS:
2366                         kvo->kvo_type = KVME_TYPE_PHYS;
2367                         break;
2368                 case OBJT_DEAD:
2369                         kvo->kvo_type = KVME_TYPE_DEAD;
2370                         break;
2371                 case OBJT_SG:
2372                         kvo->kvo_type = KVME_TYPE_SG;
2373                         break;
2374                 case OBJT_MGTDEVICE:
2375                         kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2376                         break;
2377                 default:
2378                         kvo->kvo_type = KVME_TYPE_UNKNOWN;
2379                         break;
2380                 }
2381                 VM_OBJECT_RUNLOCK(obj);
2382                 if (vp != NULL) {
2383                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2384                         vn_lock(vp, LK_SHARED | LK_RETRY);
2385                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2386                                 kvo->kvo_vn_fileid = va.va_fileid;
2387                                 kvo->kvo_vn_fsid = va.va_fsid;
2388                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2389                                                                 /* truncate */
2390                         }
2391                         vput(vp);
2392                 }
2393
2394                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2395                 if (freepath != NULL)
2396                         free(freepath, M_TEMP);
2397
2398                 /* Pack record size down */
2399                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2400                     + strlen(kvo->kvo_path) + 1;
2401                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2402                     sizeof(uint64_t));
2403                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2404                 mtx_lock(&vm_object_list_mtx);
2405                 if (error)
2406                         break;
2407         }
2408         mtx_unlock(&vm_object_list_mtx);
2409         free(kvo, M_TEMP);
2410         return (error);
2411 }
2412 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2413     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2414     "List of VM objects");
2415
2416 #include "opt_ddb.h"
2417 #ifdef DDB
2418 #include <sys/kernel.h>
2419
2420 #include <sys/cons.h>
2421
2422 #include <ddb/ddb.h>
2423
2424 static int
2425 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2426 {
2427         vm_map_t tmpm;
2428         vm_map_entry_t tmpe;
2429         vm_object_t obj;
2430         int entcount;
2431
2432         if (map == 0)
2433                 return 0;
2434
2435         if (entry == 0) {
2436                 tmpe = map->header.next;
2437                 entcount = map->nentries;
2438                 while (entcount-- && (tmpe != &map->header)) {
2439                         if (_vm_object_in_map(map, object, tmpe)) {
2440                                 return 1;
2441                         }
2442                         tmpe = tmpe->next;
2443                 }
2444         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2445                 tmpm = entry->object.sub_map;
2446                 tmpe = tmpm->header.next;
2447                 entcount = tmpm->nentries;
2448                 while (entcount-- && tmpe != &tmpm->header) {
2449                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2450                                 return 1;
2451                         }
2452                         tmpe = tmpe->next;
2453                 }
2454         } else if ((obj = entry->object.vm_object) != NULL) {
2455                 for (; obj; obj = obj->backing_object)
2456                         if (obj == object) {
2457                                 return 1;
2458                         }
2459         }
2460         return 0;
2461 }
2462
2463 static int
2464 vm_object_in_map(vm_object_t object)
2465 {
2466         struct proc *p;
2467
2468         /* sx_slock(&allproc_lock); */
2469         FOREACH_PROC_IN_SYSTEM(p) {
2470                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2471                         continue;
2472                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2473                         /* sx_sunlock(&allproc_lock); */
2474                         return 1;
2475                 }
2476         }
2477         /* sx_sunlock(&allproc_lock); */
2478         if (_vm_object_in_map(kernel_map, object, 0))
2479                 return 1;
2480         return 0;
2481 }
2482
2483 DB_SHOW_COMMAND(vmochk, vm_object_check)
2484 {
2485         vm_object_t object;
2486
2487         /*
2488          * make sure that internal objs are in a map somewhere
2489          * and none have zero ref counts.
2490          */
2491         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2492                 if (object->handle == NULL &&
2493                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2494                         if (object->ref_count == 0) {
2495                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2496                                         (long)object->size);
2497                         }
2498                         if (!vm_object_in_map(object)) {
2499                                 db_printf(
2500                         "vmochk: internal obj is not in a map: "
2501                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2502                                     object->ref_count, (u_long)object->size, 
2503                                     (u_long)object->size,
2504                                     (void *)object->backing_object);
2505                         }
2506                 }
2507         }
2508 }
2509
2510 /*
2511  *      vm_object_print:        [ debug ]
2512  */
2513 DB_SHOW_COMMAND(object, vm_object_print_static)
2514 {
2515         /* XXX convert args. */
2516         vm_object_t object = (vm_object_t)addr;
2517         boolean_t full = have_addr;
2518
2519         vm_page_t p;
2520
2521         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2522 #define count   was_count
2523
2524         int count;
2525
2526         if (object == NULL)
2527                 return;
2528
2529         db_iprintf(
2530             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2531             object, (int)object->type, (uintmax_t)object->size,
2532             object->resident_page_count, object->ref_count, object->flags,
2533             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2534         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2535             object->shadow_count, 
2536             object->backing_object ? object->backing_object->ref_count : 0,
2537             object->backing_object, (uintmax_t)object->backing_object_offset);
2538
2539         if (!full)
2540                 return;
2541
2542         db_indent += 2;
2543         count = 0;
2544         TAILQ_FOREACH(p, &object->memq, listq) {
2545                 if (count == 0)
2546                         db_iprintf("memory:=");
2547                 else if (count == 6) {
2548                         db_printf("\n");
2549                         db_iprintf(" ...");
2550                         count = 0;
2551                 } else
2552                         db_printf(",");
2553                 count++;
2554
2555                 db_printf("(off=0x%jx,page=0x%jx)",
2556                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2557         }
2558         if (count != 0)
2559                 db_printf("\n");
2560         db_indent -= 2;
2561 }
2562
2563 /* XXX. */
2564 #undef count
2565
2566 /* XXX need this non-static entry for calling from vm_map_print. */
2567 void
2568 vm_object_print(
2569         /* db_expr_t */ long addr,
2570         boolean_t have_addr,
2571         /* db_expr_t */ long count,
2572         char *modif)
2573 {
2574         vm_object_print_static(addr, have_addr, count, modif);
2575 }
2576
2577 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2578 {
2579         vm_object_t object;
2580         vm_pindex_t fidx;
2581         vm_paddr_t pa;
2582         vm_page_t m, prev_m;
2583         int rcount, nl, c;
2584
2585         nl = 0;
2586         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2587                 db_printf("new object: %p\n", (void *)object);
2588                 if (nl > 18) {
2589                         c = cngetc();
2590                         if (c != ' ')
2591                                 return;
2592                         nl = 0;
2593                 }
2594                 nl++;
2595                 rcount = 0;
2596                 fidx = 0;
2597                 pa = -1;
2598                 TAILQ_FOREACH(m, &object->memq, listq) {
2599                         if (m->pindex > 128)
2600                                 break;
2601                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2602                             prev_m->pindex + 1 != m->pindex) {
2603                                 if (rcount) {
2604                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2605                                                 (long)fidx, rcount, (long)pa);
2606                                         if (nl > 18) {
2607                                                 c = cngetc();
2608                                                 if (c != ' ')
2609                                                         return;
2610                                                 nl = 0;
2611                                         }
2612                                         nl++;
2613                                         rcount = 0;
2614                                 }
2615                         }                               
2616                         if (rcount &&
2617                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2618                                 ++rcount;
2619                                 continue;
2620                         }
2621                         if (rcount) {
2622                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2623                                         (long)fidx, rcount, (long)pa);
2624                                 if (nl > 18) {
2625                                         c = cngetc();
2626                                         if (c != ' ')
2627                                                 return;
2628                                         nl = 0;
2629                                 }
2630                                 nl++;
2631                         }
2632                         fidx = m->pindex;
2633                         pa = VM_PAGE_TO_PHYS(m);
2634                         rcount = 1;
2635                 }
2636                 if (rcount) {
2637                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2638                                 (long)fidx, rcount, (long)pa);
2639                         if (nl > 18) {
2640                                 c = cngetc();
2641                                 if (c != ' ')
2642                                         return;
2643                                 nl = 0;
2644                         }
2645                         nl++;
2646                 }
2647         }
2648 }
2649 #endif /* DDB */