]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
src.sys.obj.mk: Export OBJTOP
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include "opt_vm.h"
66
67 #include <sys/systm.h>
68 #include <sys/blockcount.h>
69 #include <sys/cpuset.h>
70 #include <sys/jail.h>
71 #include <sys/limits.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/mutex.h>
77 #include <sys/pctrie.h>
78 #include <sys/proc.h>
79 #include <sys/refcount.h>
80 #include <sys/sx.h>
81 #include <sys/sysctl.h>
82 #include <sys/resourcevar.h>
83 #include <sys/refcount.h>
84 #include <sys/rwlock.h>
85 #include <sys/user.h>
86 #include <sys/vnode.h>
87 #include <sys/vmmeter.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_phys.h>
98 #include <vm/vm_pagequeue.h>
99 #include <vm/swap_pager.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_extern.h>
102 #include <vm/vm_radix.h>
103 #include <vm/vm_reserv.h>
104 #include <vm/uma.h>
105
106 static int old_msync;
107 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
108     "Use old (insecure) msync behavior");
109
110 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
111                     int pagerflags, int flags, boolean_t *allclean,
112                     boolean_t *eio);
113 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
114                     boolean_t *allclean);
115 static void     vm_object_backing_remove(vm_object_t object);
116
117 /*
118  *      Virtual memory objects maintain the actual data
119  *      associated with allocated virtual memory.  A given
120  *      page of memory exists within exactly one object.
121  *
122  *      An object is only deallocated when all "references"
123  *      are given up.  Only one "reference" to a given
124  *      region of an object should be writeable.
125  *
126  *      Associated with each object is a list of all resident
127  *      memory pages belonging to that object; this list is
128  *      maintained by the "vm_page" module, and locked by the object's
129  *      lock.
130  *
131  *      Each object also records a "pager" routine which is
132  *      used to retrieve (and store) pages to the proper backing
133  *      storage.  In addition, objects may be backed by other
134  *      objects from which they were virtual-copied.
135  *
136  *      The only items within the object structure which are
137  *      modified after time of creation are:
138  *              reference count         locked by object's lock
139  *              pager routine           locked by object's lock
140  *
141  */
142
143 struct object_q vm_object_list;
144 struct mtx vm_object_list_mtx;  /* lock for object list and count */
145
146 struct vm_object kernel_object_store;
147
148 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
149     "VM object stats");
150
151 static COUNTER_U64_DEFINE_EARLY(object_collapses);
152 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
153     &object_collapses,
154     "VM object collapses");
155
156 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
158     &object_bypasses,
159     "VM object bypasses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
163     &object_collapse_waits,
164     "Number of sleeps for collapse");
165
166 static uma_zone_t obj_zone;
167
168 static int vm_object_zinit(void *mem, int size, int flags);
169
170 #ifdef INVARIANTS
171 static void vm_object_zdtor(void *mem, int size, void *arg);
172
173 static void
174 vm_object_zdtor(void *mem, int size, void *arg)
175 {
176         vm_object_t object;
177
178         object = (vm_object_t)mem;
179         KASSERT(object->ref_count == 0,
180             ("object %p ref_count = %d", object, object->ref_count));
181         KASSERT(TAILQ_EMPTY(&object->memq),
182             ("object %p has resident pages in its memq", object));
183         KASSERT(vm_radix_is_empty(&object->rtree),
184             ("object %p has resident pages in its trie", object));
185 #if VM_NRESERVLEVEL > 0
186         KASSERT(LIST_EMPTY(&object->rvq),
187             ("object %p has reservations",
188             object));
189 #endif
190         KASSERT(!vm_object_busied(object),
191             ("object %p busy = %d", object, blockcount_read(&object->busy)));
192         KASSERT(object->resident_page_count == 0,
193             ("object %p resident_page_count = %d",
194             object, object->resident_page_count));
195         KASSERT(atomic_load_int(&object->shadow_count) == 0,
196             ("object %p shadow_count = %d",
197             object, atomic_load_int(&object->shadow_count)));
198         KASSERT(object->type == OBJT_DEAD,
199             ("object %p has non-dead type %d",
200             object, object->type));
201         KASSERT(object->charge == 0 && object->cred == NULL,
202             ("object %p has non-zero charge %ju (%p)",
203             object, (uintmax_t)object->charge, object->cred));
204 }
205 #endif
206
207 static int
208 vm_object_zinit(void *mem, int size, int flags)
209 {
210         vm_object_t object;
211
212         object = (vm_object_t)mem;
213         rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW);
214
215         /* These are true for any object that has been freed */
216         object->type = OBJT_DEAD;
217         vm_radix_init(&object->rtree);
218         refcount_init(&object->ref_count, 0);
219         blockcount_init(&object->paging_in_progress);
220         blockcount_init(&object->busy);
221         object->resident_page_count = 0;
222         atomic_store_int(&object->shadow_count, 0);
223         object->flags = OBJ_DEAD;
224
225         mtx_lock(&vm_object_list_mtx);
226         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
227         mtx_unlock(&vm_object_list_mtx);
228         return (0);
229 }
230
231 static void
232 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
233     vm_object_t object, void *handle)
234 {
235
236         TAILQ_INIT(&object->memq);
237         LIST_INIT(&object->shadow_head);
238
239         object->type = type;
240         object->flags = flags;
241         if ((flags & OBJ_SWAP) != 0) {
242                 pctrie_init(&object->un_pager.swp.swp_blks);
243                 object->un_pager.swp.writemappings = 0;
244         }
245
246         /*
247          * Ensure that swap_pager_swapoff() iteration over object_list
248          * sees up to date type and pctrie head if it observed
249          * non-dead object.
250          */
251         atomic_thread_fence_rel();
252
253         object->pg_color = 0;
254         object->size = size;
255         object->domain.dr_policy = NULL;
256         object->generation = 1;
257         object->cleangeneration = 1;
258         refcount_init(&object->ref_count, 1);
259         object->memattr = VM_MEMATTR_DEFAULT;
260         object->cred = NULL;
261         object->charge = 0;
262         object->handle = handle;
263         object->backing_object = NULL;
264         object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266         LIST_INIT(&object->rvq);
267 #endif
268         umtx_shm_object_init(object);
269 }
270
271 /*
272  *      vm_object_init:
273  *
274  *      Initialize the VM objects module.
275  */
276 void
277 vm_object_init(void)
278 {
279         TAILQ_INIT(&vm_object_list);
280         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
281
282         rw_init(&kernel_object->lock, "kernel vm object");
283         vm_radix_init(&kernel_object->rtree);
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
286 #if VM_NRESERVLEVEL > 0
287         kernel_object->flags |= OBJ_COLORED;
288         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
291
292         /*
293          * The lock portion of struct vm_object must be type stable due
294          * to vm_pageout_fallback_object_lock locking a vm object
295          * without holding any references to it.
296          *
297          * paging_in_progress is valid always.  Lockless references to
298          * the objects may acquire pip and then check OBJ_DEAD.
299          */
300         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302             vm_object_zdtor,
303 #else
304             NULL,
305 #endif
306             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307
308         vm_radix_zinit();
309 }
310
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314
315         VM_OBJECT_ASSERT_WLOCKED(object);
316         object->flags &= ~bits;
317 }
318
319 /*
320  *      Sets the default memory attribute for the specified object.  Pages
321  *      that are allocated to this object are by default assigned this memory
322  *      attribute.
323  *
324  *      Presently, this function must be called before any pages are allocated
325  *      to the object.  In the future, this requirement may be relaxed for
326  *      "default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333
334         if (object->type == OBJT_DEAD)
335                 return (KERN_INVALID_ARGUMENT);
336         if (!TAILQ_EMPTY(&object->memq))
337                 return (KERN_FAILURE);
338
339         object->memattr = memattr;
340         return (KERN_SUCCESS);
341 }
342
343 void
344 vm_object_pip_add(vm_object_t object, short i)
345 {
346
347         if (i > 0)
348                 blockcount_acquire(&object->paging_in_progress, i);
349 }
350
351 void
352 vm_object_pip_wakeup(vm_object_t object)
353 {
354
355         vm_object_pip_wakeupn(object, 1);
356 }
357
358 void
359 vm_object_pip_wakeupn(vm_object_t object, short i)
360 {
361
362         if (i > 0)
363                 blockcount_release(&object->paging_in_progress, i);
364 }
365
366 /*
367  * Atomically drop the object lock and wait for pip to drain.  This protects
368  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
369  * on return.
370  */
371 static void
372 vm_object_pip_sleep(vm_object_t object, const char *waitid)
373 {
374
375         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
376             waitid, PVM | PDROP);
377 }
378
379 void
380 vm_object_pip_wait(vm_object_t object, const char *waitid)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384
385         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
386             PVM);
387 }
388
389 void
390 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_UNLOCKED(object);
394
395         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
396 }
397
398 /*
399  *      vm_object_allocate:
400  *
401  *      Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406         vm_object_t object;
407         u_short flags;
408
409         switch (type) {
410         case OBJT_DEAD:
411                 panic("vm_object_allocate: can't create OBJT_DEAD");
412         case OBJT_SWAP:
413                 flags = OBJ_COLORED | OBJ_SWAP;
414                 break;
415         case OBJT_DEVICE:
416         case OBJT_SG:
417                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
418                 break;
419         case OBJT_MGTDEVICE:
420                 flags = OBJ_FICTITIOUS;
421                 break;
422         case OBJT_PHYS:
423                 flags = OBJ_UNMANAGED;
424                 break;
425         case OBJT_VNODE:
426                 flags = 0;
427                 break;
428         default:
429                 panic("vm_object_allocate: type %d is undefined or dynamic",
430                     type);
431         }
432         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433         _vm_object_allocate(type, size, flags, object, NULL);
434
435         return (object);
436 }
437
438 vm_object_t
439 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
440 {
441         vm_object_t object;
442
443         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
444         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
445         _vm_object_allocate(dyntype, size, flags, object, NULL);
446
447         return (object);
448 }
449
450 /*
451  *      vm_object_allocate_anon:
452  *
453  *      Returns a new default object of the given size and marked as
454  *      anonymous memory for special split/collapse handling.  Color
455  *      to be initialized by the caller.
456  */
457 vm_object_t
458 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
459     struct ucred *cred, vm_size_t charge)
460 {
461         vm_object_t handle, object;
462
463         if (backing_object == NULL)
464                 handle = NULL;
465         else if ((backing_object->flags & OBJ_ANON) != 0)
466                 handle = backing_object->handle;
467         else
468                 handle = backing_object;
469         object = uma_zalloc(obj_zone, M_WAITOK);
470         _vm_object_allocate(OBJT_SWAP, size,
471             OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle);
472         object->cred = cred;
473         object->charge = cred != NULL ? charge : 0;
474         return (object);
475 }
476
477 static void
478 vm_object_reference_vnode(vm_object_t object)
479 {
480         u_int old;
481
482         /*
483          * vnode objects need the lock for the first reference
484          * to serialize with vnode_object_deallocate().
485          */
486         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
487                 VM_OBJECT_RLOCK(object);
488                 old = refcount_acquire(&object->ref_count);
489                 if (object->type == OBJT_VNODE && old == 0)
490                         vref(object->handle);
491                 VM_OBJECT_RUNLOCK(object);
492         }
493 }
494
495 /*
496  *      vm_object_reference:
497  *
498  *      Acquires a reference to the given object.
499  */
500 void
501 vm_object_reference(vm_object_t object)
502 {
503
504         if (object == NULL)
505                 return;
506
507         if (object->type == OBJT_VNODE)
508                 vm_object_reference_vnode(object);
509         else
510                 refcount_acquire(&object->ref_count);
511         KASSERT((object->flags & OBJ_DEAD) == 0,
512             ("vm_object_reference: Referenced dead object."));
513 }
514
515 /*
516  *      vm_object_reference_locked:
517  *
518  *      Gets another reference to the given object.
519  *
520  *      The object must be locked.
521  */
522 void
523 vm_object_reference_locked(vm_object_t object)
524 {
525         u_int old;
526
527         VM_OBJECT_ASSERT_LOCKED(object);
528         old = refcount_acquire(&object->ref_count);
529         if (object->type == OBJT_VNODE && old == 0)
530                 vref(object->handle);
531         KASSERT((object->flags & OBJ_DEAD) == 0,
532             ("vm_object_reference: Referenced dead object."));
533 }
534
535 /*
536  * Handle deallocating an object of type OBJT_VNODE.
537  */
538 static void
539 vm_object_deallocate_vnode(vm_object_t object)
540 {
541         struct vnode *vp = (struct vnode *) object->handle;
542         bool last;
543
544         KASSERT(object->type == OBJT_VNODE,
545             ("vm_object_deallocate_vnode: not a vnode object"));
546         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
547
548         /* Object lock to protect handle lookup. */
549         last = refcount_release(&object->ref_count);
550         VM_OBJECT_RUNLOCK(object);
551
552         if (!last)
553                 return;
554
555         if (!umtx_shm_vnobj_persistent)
556                 umtx_shm_object_terminated(object);
557
558         /* vrele may need the vnode lock. */
559         vrele(vp);
560 }
561
562 /*
563  * We dropped a reference on an object and discovered that it had a
564  * single remaining shadow.  This is a sibling of the reference we
565  * dropped.  Attempt to collapse the sibling and backing object.
566  */
567 static vm_object_t
568 vm_object_deallocate_anon(vm_object_t backing_object)
569 {
570         vm_object_t object;
571
572         /* Fetch the final shadow.  */
573         object = LIST_FIRST(&backing_object->shadow_head);
574         KASSERT(object != NULL &&
575             atomic_load_int(&backing_object->shadow_count) == 1,
576             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
577             backing_object->ref_count,
578             atomic_load_int(&backing_object->shadow_count)));
579         KASSERT((object->flags & OBJ_ANON) != 0,
580             ("invalid shadow object %p", object));
581
582         if (!VM_OBJECT_TRYWLOCK(object)) {
583                 /*
584                  * Prevent object from disappearing since we do not have a
585                  * reference.
586                  */
587                 vm_object_pip_add(object, 1);
588                 VM_OBJECT_WUNLOCK(backing_object);
589                 VM_OBJECT_WLOCK(object);
590                 vm_object_pip_wakeup(object);
591         } else
592                 VM_OBJECT_WUNLOCK(backing_object);
593
594         /*
595          * Check for a collapse/terminate race with the last reference holder.
596          */
597         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
598             !refcount_acquire_if_not_zero(&object->ref_count)) {
599                 VM_OBJECT_WUNLOCK(object);
600                 return (NULL);
601         }
602         backing_object = object->backing_object;
603         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
604                 vm_object_collapse(object);
605         VM_OBJECT_WUNLOCK(object);
606
607         return (object);
608 }
609
610 /*
611  *      vm_object_deallocate:
612  *
613  *      Release a reference to the specified object,
614  *      gained either through a vm_object_allocate
615  *      or a vm_object_reference call.  When all references
616  *      are gone, storage associated with this object
617  *      may be relinquished.
618  *
619  *      No object may be locked.
620  */
621 void
622 vm_object_deallocate(vm_object_t object)
623 {
624         vm_object_t temp;
625         bool released;
626
627         while (object != NULL) {
628                 /*
629                  * If the reference count goes to 0 we start calling
630                  * vm_object_terminate() on the object chain.  A ref count
631                  * of 1 may be a special case depending on the shadow count
632                  * being 0 or 1.  These cases require a write lock on the
633                  * object.
634                  */
635                 if ((object->flags & OBJ_ANON) == 0)
636                         released = refcount_release_if_gt(&object->ref_count, 1);
637                 else
638                         released = refcount_release_if_gt(&object->ref_count, 2);
639                 if (released)
640                         return;
641
642                 if (object->type == OBJT_VNODE) {
643                         VM_OBJECT_RLOCK(object);
644                         if (object->type == OBJT_VNODE) {
645                                 vm_object_deallocate_vnode(object);
646                                 return;
647                         }
648                         VM_OBJECT_RUNLOCK(object);
649                 }
650
651                 VM_OBJECT_WLOCK(object);
652                 KASSERT(object->ref_count > 0,
653                     ("vm_object_deallocate: object deallocated too many times: %d",
654                     object->type));
655
656                 /*
657                  * If this is not the final reference to an anonymous
658                  * object we may need to collapse the shadow chain.
659                  */
660                 if (!refcount_release(&object->ref_count)) {
661                         if (object->ref_count > 1 ||
662                             atomic_load_int(&object->shadow_count) == 0) {
663                                 if ((object->flags & OBJ_ANON) != 0 &&
664                                     object->ref_count == 1)
665                                         vm_object_set_flag(object,
666                                             OBJ_ONEMAPPING);
667                                 VM_OBJECT_WUNLOCK(object);
668                                 return;
669                         }
670
671                         /* Handle collapsing last ref on anonymous objects. */
672                         object = vm_object_deallocate_anon(object);
673                         continue;
674                 }
675
676                 /*
677                  * Handle the final reference to an object.  We restart
678                  * the loop with the backing object to avoid recursion.
679                  */
680                 umtx_shm_object_terminated(object);
681                 temp = object->backing_object;
682                 if (temp != NULL) {
683                         KASSERT(object->type == OBJT_SWAP,
684                             ("shadowed tmpfs v_object 2 %p", object));
685                         vm_object_backing_remove(object);
686                 }
687
688                 KASSERT((object->flags & OBJ_DEAD) == 0,
689                     ("vm_object_deallocate: Terminating dead object."));
690                 vm_object_set_flag(object, OBJ_DEAD);
691                 vm_object_terminate(object);
692                 object = temp;
693         }
694 }
695
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699         uma_zfree(obj_zone, object);
700 }
701
702 static void
703 vm_object_sub_shadow(vm_object_t object)
704 {
705         KASSERT(object->shadow_count >= 1,
706             ("object %p sub_shadow count zero", object));
707         atomic_subtract_int(&object->shadow_count, 1);
708 }
709
710 static void
711 vm_object_backing_remove_locked(vm_object_t object)
712 {
713         vm_object_t backing_object;
714
715         backing_object = object->backing_object;
716         VM_OBJECT_ASSERT_WLOCKED(object);
717         VM_OBJECT_ASSERT_WLOCKED(backing_object);
718
719         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
720             ("vm_object_backing_remove: Removing collapsing object."));
721
722         vm_object_sub_shadow(backing_object);
723         if ((object->flags & OBJ_SHADOWLIST) != 0) {
724                 LIST_REMOVE(object, shadow_list);
725                 vm_object_clear_flag(object, OBJ_SHADOWLIST);
726         }
727         object->backing_object = NULL;
728 }
729
730 static void
731 vm_object_backing_remove(vm_object_t object)
732 {
733         vm_object_t backing_object;
734
735         VM_OBJECT_ASSERT_WLOCKED(object);
736
737         backing_object = object->backing_object;
738         if ((object->flags & OBJ_SHADOWLIST) != 0) {
739                 VM_OBJECT_WLOCK(backing_object);
740                 vm_object_backing_remove_locked(object);
741                 VM_OBJECT_WUNLOCK(backing_object);
742         } else {
743                 object->backing_object = NULL;
744                 vm_object_sub_shadow(backing_object);
745         }
746 }
747
748 static void
749 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
750 {
751
752         VM_OBJECT_ASSERT_WLOCKED(object);
753
754         atomic_add_int(&backing_object->shadow_count, 1);
755         if ((backing_object->flags & OBJ_ANON) != 0) {
756                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
757                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
758                     shadow_list);
759                 vm_object_set_flag(object, OBJ_SHADOWLIST);
760         }
761         object->backing_object = backing_object;
762 }
763
764 static void
765 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
766 {
767
768         VM_OBJECT_ASSERT_WLOCKED(object);
769
770         if ((backing_object->flags & OBJ_ANON) != 0) {
771                 VM_OBJECT_WLOCK(backing_object);
772                 vm_object_backing_insert_locked(object, backing_object);
773                 VM_OBJECT_WUNLOCK(backing_object);
774         } else {
775                 object->backing_object = backing_object;
776                 atomic_add_int(&backing_object->shadow_count, 1);
777         }
778 }
779
780 /*
781  * Insert an object into a backing_object's shadow list with an additional
782  * reference to the backing_object added.
783  */
784 static void
785 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
786 {
787
788         VM_OBJECT_ASSERT_WLOCKED(object);
789
790         if ((backing_object->flags & OBJ_ANON) != 0) {
791                 VM_OBJECT_WLOCK(backing_object);
792                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
793                     ("shadowing dead anonymous object"));
794                 vm_object_reference_locked(backing_object);
795                 vm_object_backing_insert_locked(object, backing_object);
796                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
797                 VM_OBJECT_WUNLOCK(backing_object);
798         } else {
799                 vm_object_reference(backing_object);
800                 atomic_add_int(&backing_object->shadow_count, 1);
801                 object->backing_object = backing_object;
802         }
803 }
804
805 /*
806  * Transfer a backing reference from backing_object to object.
807  */
808 static void
809 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
810 {
811         vm_object_t new_backing_object;
812
813         /*
814          * Note that the reference to backing_object->backing_object
815          * moves from within backing_object to within object.
816          */
817         vm_object_backing_remove_locked(object);
818         new_backing_object = backing_object->backing_object;
819         if (new_backing_object == NULL)
820                 return;
821         if ((new_backing_object->flags & OBJ_ANON) != 0) {
822                 VM_OBJECT_WLOCK(new_backing_object);
823                 vm_object_backing_remove_locked(backing_object);
824                 vm_object_backing_insert_locked(object, new_backing_object);
825                 VM_OBJECT_WUNLOCK(new_backing_object);
826         } else {
827                 /*
828                  * shadow_count for new_backing_object is left
829                  * unchanged, its reference provided by backing_object
830                  * is replaced by object.
831                  */
832                 object->backing_object = new_backing_object;
833                 backing_object->backing_object = NULL;
834         }
835 }
836
837 /*
838  * Wait for a concurrent collapse to settle.
839  */
840 static void
841 vm_object_collapse_wait(vm_object_t object)
842 {
843
844         VM_OBJECT_ASSERT_WLOCKED(object);
845
846         while ((object->flags & OBJ_COLLAPSING) != 0) {
847                 vm_object_pip_wait(object, "vmcolwait");
848                 counter_u64_add(object_collapse_waits, 1);
849         }
850 }
851
852 /*
853  * Waits for a backing object to clear a pending collapse and returns
854  * it locked if it is an ANON object.
855  */
856 static vm_object_t
857 vm_object_backing_collapse_wait(vm_object_t object)
858 {
859         vm_object_t backing_object;
860
861         VM_OBJECT_ASSERT_WLOCKED(object);
862
863         for (;;) {
864                 backing_object = object->backing_object;
865                 if (backing_object == NULL ||
866                     (backing_object->flags & OBJ_ANON) == 0)
867                         return (NULL);
868                 VM_OBJECT_WLOCK(backing_object);
869                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
870                         break;
871                 VM_OBJECT_WUNLOCK(object);
872                 vm_object_pip_sleep(backing_object, "vmbckwait");
873                 counter_u64_add(object_collapse_waits, 1);
874                 VM_OBJECT_WLOCK(object);
875         }
876         return (backing_object);
877 }
878
879 /*
880  *      vm_object_terminate_pages removes any remaining pageable pages
881  *      from the object and resets the object to an empty state.
882  */
883 static void
884 vm_object_terminate_pages(vm_object_t object)
885 {
886         vm_page_t p, p_next;
887
888         VM_OBJECT_ASSERT_WLOCKED(object);
889
890         /*
891          * Free any remaining pageable pages.  This also removes them from the
892          * paging queues.  However, don't free wired pages, just remove them
893          * from the object.  Rather than incrementally removing each page from
894          * the object, the page and object are reset to any empty state. 
895          */
896         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
897                 vm_page_assert_unbusied(p);
898                 KASSERT(p->object == object &&
899                     (p->ref_count & VPRC_OBJREF) != 0,
900                     ("vm_object_terminate_pages: page %p is inconsistent", p));
901
902                 p->object = NULL;
903                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
904                         VM_CNT_INC(v_pfree);
905                         vm_page_free(p);
906                 }
907         }
908
909         /*
910          * If the object contained any pages, then reset it to an empty state.
911          * None of the object's fields, including "resident_page_count", were
912          * modified by the preceding loop.
913          */
914         if (object->resident_page_count != 0) {
915                 vm_radix_reclaim_allnodes(&object->rtree);
916                 TAILQ_INIT(&object->memq);
917                 object->resident_page_count = 0;
918                 if (object->type == OBJT_VNODE)
919                         vdrop(object->handle);
920         }
921 }
922
923 /*
924  *      vm_object_terminate actually destroys the specified object, freeing
925  *      up all previously used resources.
926  *
927  *      The object must be locked.
928  *      This routine may block.
929  */
930 void
931 vm_object_terminate(vm_object_t object)
932 {
933
934         VM_OBJECT_ASSERT_WLOCKED(object);
935         KASSERT((object->flags & OBJ_DEAD) != 0,
936             ("terminating non-dead obj %p", object));
937         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
938             ("terminating collapsing obj %p", object));
939         KASSERT(object->backing_object == NULL,
940             ("terminating shadow obj %p", object));
941
942         /*
943          * Wait for the pageout daemon and other current users to be
944          * done with the object.  Note that new paging_in_progress
945          * users can come after this wait, but they must check
946          * OBJ_DEAD flag set (without unlocking the object), and avoid
947          * the object being terminated.
948          */
949         vm_object_pip_wait(object, "objtrm");
950
951         KASSERT(object->ref_count == 0,
952             ("vm_object_terminate: object with references, ref_count=%d",
953             object->ref_count));
954
955         if ((object->flags & OBJ_PG_DTOR) == 0)
956                 vm_object_terminate_pages(object);
957
958 #if VM_NRESERVLEVEL > 0
959         if (__predict_false(!LIST_EMPTY(&object->rvq)))
960                 vm_reserv_break_all(object);
961 #endif
962
963         KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0,
964             ("%s: non-swap obj %p has cred", __func__, object));
965
966         /*
967          * Let the pager know object is dead.
968          */
969         vm_pager_deallocate(object);
970         VM_OBJECT_WUNLOCK(object);
971
972         vm_object_destroy(object);
973 }
974
975 /*
976  * Make the page read-only so that we can clear the object flags.  However, if
977  * this is a nosync mmap then the object is likely to stay dirty so do not
978  * mess with the page and do not clear the object flags.  Returns TRUE if the
979  * page should be flushed, and FALSE otherwise.
980  */
981 static boolean_t
982 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
983 {
984
985         vm_page_assert_busied(p);
986
987         /*
988          * If we have been asked to skip nosync pages and this is a
989          * nosync page, skip it.  Note that the object flags were not
990          * cleared in this case so we do not have to set them.
991          */
992         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
993                 *allclean = FALSE;
994                 return (FALSE);
995         } else {
996                 pmap_remove_write(p);
997                 return (p->dirty != 0);
998         }
999 }
1000
1001 /*
1002  *      vm_object_page_clean
1003  *
1004  *      Clean all dirty pages in the specified range of object.  Leaves page 
1005  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1006  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1007  *      leaving the object dirty.
1008  *
1009  *      For swap objects backing tmpfs regular files, do not flush anything,
1010  *      but remove write protection on the mapped pages to update mtime through
1011  *      mmaped writes.
1012  *
1013  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1014  *      synchronous clustering mode implementation.
1015  *
1016  *      Odd semantics: if start == end, we clean everything.
1017  *
1018  *      The object must be locked.
1019  *
1020  *      Returns FALSE if some page from the range was not written, as
1021  *      reported by the pager, and TRUE otherwise.
1022  */
1023 boolean_t
1024 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1025     int flags)
1026 {
1027         vm_page_t np, p;
1028         vm_pindex_t pi, tend, tstart;
1029         int curgeneration, n, pagerflags;
1030         boolean_t eio, res, allclean;
1031
1032         VM_OBJECT_ASSERT_WLOCKED(object);
1033
1034         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1035                 return (TRUE);
1036
1037         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1038             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1039         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1040
1041         tstart = OFF_TO_IDX(start);
1042         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1043         allclean = tstart == 0 && tend >= object->size;
1044         res = TRUE;
1045
1046 rescan:
1047         curgeneration = object->generation;
1048
1049         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1050                 pi = p->pindex;
1051                 if (pi >= tend)
1052                         break;
1053                 np = TAILQ_NEXT(p, listq);
1054                 if (vm_page_none_valid(p))
1055                         continue;
1056                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1057                         if (object->generation != curgeneration &&
1058                             (flags & OBJPC_SYNC) != 0)
1059                                 goto rescan;
1060                         np = vm_page_find_least(object, pi);
1061                         continue;
1062                 }
1063                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1064                         vm_page_xunbusy(p);
1065                         continue;
1066                 }
1067                 if (object->type == OBJT_VNODE) {
1068                         n = vm_object_page_collect_flush(object, p, pagerflags,
1069                             flags, &allclean, &eio);
1070                         if (eio) {
1071                                 res = FALSE;
1072                                 allclean = FALSE;
1073                         }
1074                         if (object->generation != curgeneration &&
1075                             (flags & OBJPC_SYNC) != 0)
1076                                 goto rescan;
1077
1078                         /*
1079                          * If the VOP_PUTPAGES() did a truncated write, so
1080                          * that even the first page of the run is not fully
1081                          * written, vm_pageout_flush() returns 0 as the run
1082                          * length.  Since the condition that caused truncated
1083                          * write may be permanent, e.g. exhausted free space,
1084                          * accepting n == 0 would cause an infinite loop.
1085                          *
1086                          * Forwarding the iterator leaves the unwritten page
1087                          * behind, but there is not much we can do there if
1088                          * filesystem refuses to write it.
1089                          */
1090                         if (n == 0) {
1091                                 n = 1;
1092                                 allclean = FALSE;
1093                         }
1094                 } else {
1095                         n = 1;
1096                         vm_page_xunbusy(p);
1097                 }
1098                 np = vm_page_find_least(object, pi + n);
1099         }
1100 #if 0
1101         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1102 #endif
1103
1104         /*
1105          * Leave updating cleangeneration for tmpfs objects to tmpfs
1106          * scan.  It needs to update mtime, which happens for other
1107          * filesystems during page writeouts.
1108          */
1109         if (allclean && object->type == OBJT_VNODE)
1110                 object->cleangeneration = curgeneration;
1111         return (res);
1112 }
1113
1114 static int
1115 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1116     int flags, boolean_t *allclean, boolean_t *eio)
1117 {
1118         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1119         int count, i, mreq, runlen;
1120
1121         vm_page_lock_assert(p, MA_NOTOWNED);
1122         vm_page_assert_xbusied(p);
1123         VM_OBJECT_ASSERT_WLOCKED(object);
1124
1125         count = 1;
1126         mreq = 0;
1127
1128         for (tp = p; count < vm_pageout_page_count; count++) {
1129                 tp = vm_page_next(tp);
1130                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1131                         break;
1132                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1133                         vm_page_xunbusy(tp);
1134                         break;
1135                 }
1136         }
1137
1138         for (p_first = p; count < vm_pageout_page_count; count++) {
1139                 tp = vm_page_prev(p_first);
1140                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1141                         break;
1142                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1143                         vm_page_xunbusy(tp);
1144                         break;
1145                 }
1146                 p_first = tp;
1147                 mreq++;
1148         }
1149
1150         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1151                 ma[i] = tp;
1152
1153         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1154         return (runlen);
1155 }
1156
1157 /*
1158  * Note that there is absolutely no sense in writing out
1159  * anonymous objects, so we track down the vnode object
1160  * to write out.
1161  * We invalidate (remove) all pages from the address space
1162  * for semantic correctness.
1163  *
1164  * If the backing object is a device object with unmanaged pages, then any
1165  * mappings to the specified range of pages must be removed before this
1166  * function is called.
1167  *
1168  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1169  * may start out with a NULL object.
1170  */
1171 boolean_t
1172 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1173     boolean_t syncio, boolean_t invalidate)
1174 {
1175         vm_object_t backing_object;
1176         struct vnode *vp;
1177         struct mount *mp;
1178         int error, flags, fsync_after;
1179         boolean_t res;
1180
1181         if (object == NULL)
1182                 return (TRUE);
1183         res = TRUE;
1184         error = 0;
1185         VM_OBJECT_WLOCK(object);
1186         while ((backing_object = object->backing_object) != NULL) {
1187                 VM_OBJECT_WLOCK(backing_object);
1188                 offset += object->backing_object_offset;
1189                 VM_OBJECT_WUNLOCK(object);
1190                 object = backing_object;
1191                 if (object->size < OFF_TO_IDX(offset + size))
1192                         size = IDX_TO_OFF(object->size) - offset;
1193         }
1194         /*
1195          * Flush pages if writing is allowed, invalidate them
1196          * if invalidation requested.  Pages undergoing I/O
1197          * will be ignored by vm_object_page_remove().
1198          *
1199          * We cannot lock the vnode and then wait for paging
1200          * to complete without deadlocking against vm_fault.
1201          * Instead we simply call vm_object_page_remove() and
1202          * allow it to block internally on a page-by-page
1203          * basis when it encounters pages undergoing async
1204          * I/O.
1205          */
1206         if (object->type == OBJT_VNODE &&
1207             vm_object_mightbedirty(object) != 0 &&
1208             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1209                 VM_OBJECT_WUNLOCK(object);
1210                 (void)vn_start_write(vp, &mp, V_WAIT);
1211                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1212                 if (syncio && !invalidate && offset == 0 &&
1213                     atop(size) == object->size) {
1214                         /*
1215                          * If syncing the whole mapping of the file,
1216                          * it is faster to schedule all the writes in
1217                          * async mode, also allowing the clustering,
1218                          * and then wait for i/o to complete.
1219                          */
1220                         flags = 0;
1221                         fsync_after = TRUE;
1222                 } else {
1223                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1224                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1225                         fsync_after = FALSE;
1226                 }
1227                 VM_OBJECT_WLOCK(object);
1228                 res = vm_object_page_clean(object, offset, offset + size,
1229                     flags);
1230                 VM_OBJECT_WUNLOCK(object);
1231                 if (fsync_after) {
1232                         for (;;) {
1233                                 error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1234                                 if (error != ERELOOKUP)
1235                                         break;
1236
1237                                 /*
1238                                  * Allow SU/bufdaemon to handle more
1239                                  * dependencies in the meantime.
1240                                  */
1241                                 VOP_UNLOCK(vp);
1242                                 vn_finished_write(mp);
1243
1244                                 (void)vn_start_write(vp, &mp, V_WAIT);
1245                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1246                         }
1247                 }
1248                 VOP_UNLOCK(vp);
1249                 vn_finished_write(mp);
1250                 if (error != 0)
1251                         res = FALSE;
1252                 VM_OBJECT_WLOCK(object);
1253         }
1254         if ((object->type == OBJT_VNODE ||
1255              object->type == OBJT_DEVICE) && invalidate) {
1256                 if (object->type == OBJT_DEVICE)
1257                         /*
1258                          * The option OBJPR_NOTMAPPED must be passed here
1259                          * because vm_object_page_remove() cannot remove
1260                          * unmanaged mappings.
1261                          */
1262                         flags = OBJPR_NOTMAPPED;
1263                 else if (old_msync)
1264                         flags = 0;
1265                 else
1266                         flags = OBJPR_CLEANONLY;
1267                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1268                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1269         }
1270         VM_OBJECT_WUNLOCK(object);
1271         return (res);
1272 }
1273
1274 /*
1275  * Determine whether the given advice can be applied to the object.  Advice is
1276  * not applied to unmanaged pages since they never belong to page queues, and
1277  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1278  * have been mapped at most once.
1279  */
1280 static bool
1281 vm_object_advice_applies(vm_object_t object, int advice)
1282 {
1283
1284         if ((object->flags & OBJ_UNMANAGED) != 0)
1285                 return (false);
1286         if (advice != MADV_FREE)
1287                 return (true);
1288         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1289             (OBJ_ONEMAPPING | OBJ_ANON));
1290 }
1291
1292 static void
1293 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1294     vm_size_t size)
1295 {
1296
1297         if (advice == MADV_FREE)
1298                 vm_pager_freespace(object, pindex, size);
1299 }
1300
1301 /*
1302  *      vm_object_madvise:
1303  *
1304  *      Implements the madvise function at the object/page level.
1305  *
1306  *      MADV_WILLNEED   (any object)
1307  *
1308  *          Activate the specified pages if they are resident.
1309  *
1310  *      MADV_DONTNEED   (any object)
1311  *
1312  *          Deactivate the specified pages if they are resident.
1313  *
1314  *      MADV_FREE       (OBJT_SWAP objects, OBJ_ONEMAPPING only)
1315  *
1316  *          Deactivate and clean the specified pages if they are
1317  *          resident.  This permits the process to reuse the pages
1318  *          without faulting or the kernel to reclaim the pages
1319  *          without I/O.
1320  */
1321 void
1322 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1323     int advice)
1324 {
1325         vm_pindex_t tpindex;
1326         vm_object_t backing_object, tobject;
1327         vm_page_t m, tm;
1328
1329         if (object == NULL)
1330                 return;
1331
1332 relookup:
1333         VM_OBJECT_WLOCK(object);
1334         if (!vm_object_advice_applies(object, advice)) {
1335                 VM_OBJECT_WUNLOCK(object);
1336                 return;
1337         }
1338         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1339                 tobject = object;
1340
1341                 /*
1342                  * If the next page isn't resident in the top-level object, we
1343                  * need to search the shadow chain.  When applying MADV_FREE, we
1344                  * take care to release any swap space used to store
1345                  * non-resident pages.
1346                  */
1347                 if (m == NULL || pindex < m->pindex) {
1348                         /*
1349                          * Optimize a common case: if the top-level object has
1350                          * no backing object, we can skip over the non-resident
1351                          * range in constant time.
1352                          */
1353                         if (object->backing_object == NULL) {
1354                                 tpindex = (m != NULL && m->pindex < end) ?
1355                                     m->pindex : end;
1356                                 vm_object_madvise_freespace(object, advice,
1357                                     pindex, tpindex - pindex);
1358                                 if ((pindex = tpindex) == end)
1359                                         break;
1360                                 goto next_page;
1361                         }
1362
1363                         tpindex = pindex;
1364                         do {
1365                                 vm_object_madvise_freespace(tobject, advice,
1366                                     tpindex, 1);
1367                                 /*
1368                                  * Prepare to search the next object in the
1369                                  * chain.
1370                                  */
1371                                 backing_object = tobject->backing_object;
1372                                 if (backing_object == NULL)
1373                                         goto next_pindex;
1374                                 VM_OBJECT_WLOCK(backing_object);
1375                                 tpindex +=
1376                                     OFF_TO_IDX(tobject->backing_object_offset);
1377                                 if (tobject != object)
1378                                         VM_OBJECT_WUNLOCK(tobject);
1379                                 tobject = backing_object;
1380                                 if (!vm_object_advice_applies(tobject, advice))
1381                                         goto next_pindex;
1382                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1383                             NULL);
1384                 } else {
1385 next_page:
1386                         tm = m;
1387                         m = TAILQ_NEXT(m, listq);
1388                 }
1389
1390                 /*
1391                  * If the page is not in a normal state, skip it.  The page
1392                  * can not be invalidated while the object lock is held.
1393                  */
1394                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1395                         goto next_pindex;
1396                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1397                     ("vm_object_madvise: page %p is fictitious", tm));
1398                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1399                     ("vm_object_madvise: page %p is not managed", tm));
1400                 if (vm_page_tryxbusy(tm) == 0) {
1401                         if (object != tobject)
1402                                 VM_OBJECT_WUNLOCK(object);
1403                         if (advice == MADV_WILLNEED) {
1404                                 /*
1405                                  * Reference the page before unlocking and
1406                                  * sleeping so that the page daemon is less
1407                                  * likely to reclaim it.
1408                                  */
1409                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1410                         }
1411                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1412                                 VM_OBJECT_WUNLOCK(tobject);
1413                         goto relookup;
1414                 }
1415                 vm_page_advise(tm, advice);
1416                 vm_page_xunbusy(tm);
1417                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1418 next_pindex:
1419                 if (tobject != object)
1420                         VM_OBJECT_WUNLOCK(tobject);
1421         }
1422         VM_OBJECT_WUNLOCK(object);
1423 }
1424
1425 /*
1426  *      vm_object_shadow:
1427  *
1428  *      Create a new object which is backed by the
1429  *      specified existing object range.  The source
1430  *      object reference is deallocated.
1431  *
1432  *      The new object and offset into that object
1433  *      are returned in the source parameters.
1434  */
1435 void
1436 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1437     struct ucred *cred, bool shared)
1438 {
1439         vm_object_t source;
1440         vm_object_t result;
1441
1442         source = *object;
1443
1444         /*
1445          * Don't create the new object if the old object isn't shared.
1446          *
1447          * If we hold the only reference we can guarantee that it won't
1448          * increase while we have the map locked.  Otherwise the race is
1449          * harmless and we will end up with an extra shadow object that
1450          * will be collapsed later.
1451          */
1452         if (source != NULL && source->ref_count == 1 &&
1453             (source->flags & OBJ_ANON) != 0)
1454                 return;
1455
1456         /*
1457          * Allocate a new object with the given length.
1458          */
1459         result = vm_object_allocate_anon(atop(length), source, cred, length);
1460
1461         /*
1462          * Store the offset into the source object, and fix up the offset into
1463          * the new object.
1464          */
1465         result->backing_object_offset = *offset;
1466
1467         if (shared || source != NULL) {
1468                 VM_OBJECT_WLOCK(result);
1469
1470                 /*
1471                  * The new object shadows the source object, adding a
1472                  * reference to it.  Our caller changes his reference
1473                  * to point to the new object, removing a reference to
1474                  * the source object.  Net result: no change of
1475                  * reference count, unless the caller needs to add one
1476                  * more reference due to forking a shared map entry.
1477                  */
1478                 if (shared) {
1479                         vm_object_reference_locked(result);
1480                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1481                 }
1482
1483                 /*
1484                  * Try to optimize the result object's page color when
1485                  * shadowing in order to maintain page coloring
1486                  * consistency in the combined shadowed object.
1487                  */
1488                 if (source != NULL) {
1489                         vm_object_backing_insert(result, source);
1490                         result->domain = source->domain;
1491 #if VM_NRESERVLEVEL > 0
1492                         vm_object_set_flag(result,
1493                             (source->flags & OBJ_COLORED));
1494                         result->pg_color = (source->pg_color +
1495                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1496                             1)) - 1);
1497 #endif
1498                 }
1499                 VM_OBJECT_WUNLOCK(result);
1500         }
1501
1502         /*
1503          * Return the new things
1504          */
1505         *offset = 0;
1506         *object = result;
1507 }
1508
1509 /*
1510  *      vm_object_split:
1511  *
1512  * Split the pages in a map entry into a new object.  This affords
1513  * easier removal of unused pages, and keeps object inheritance from
1514  * being a negative impact on memory usage.
1515  */
1516 void
1517 vm_object_split(vm_map_entry_t entry)
1518 {
1519         vm_page_t m, m_next;
1520         vm_object_t orig_object, new_object, backing_object;
1521         vm_pindex_t idx, offidxstart;
1522         vm_size_t size;
1523
1524         orig_object = entry->object.vm_object;
1525         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1526             ("vm_object_split:  Splitting object with multiple mappings."));
1527         if ((orig_object->flags & OBJ_ANON) == 0)
1528                 return;
1529         if (orig_object->ref_count <= 1)
1530                 return;
1531         VM_OBJECT_WUNLOCK(orig_object);
1532
1533         offidxstart = OFF_TO_IDX(entry->offset);
1534         size = atop(entry->end - entry->start);
1535
1536         new_object = vm_object_allocate_anon(size, orig_object,
1537             orig_object->cred, ptoa(size));
1538
1539         /*
1540          * We must wait for the orig_object to complete any in-progress
1541          * collapse so that the swap blocks are stable below.  The
1542          * additional reference on backing_object by new object will
1543          * prevent further collapse operations until split completes.
1544          */
1545         VM_OBJECT_WLOCK(orig_object);
1546         vm_object_collapse_wait(orig_object);
1547
1548         /*
1549          * At this point, the new object is still private, so the order in
1550          * which the original and new objects are locked does not matter.
1551          */
1552         VM_OBJECT_WLOCK(new_object);
1553         new_object->domain = orig_object->domain;
1554         backing_object = orig_object->backing_object;
1555         if (backing_object != NULL) {
1556                 vm_object_backing_insert_ref(new_object, backing_object);
1557                 new_object->backing_object_offset = 
1558                     orig_object->backing_object_offset + entry->offset;
1559         }
1560         if (orig_object->cred != NULL) {
1561                 crhold(orig_object->cred);
1562                 KASSERT(orig_object->charge >= ptoa(size),
1563                     ("orig_object->charge < 0"));
1564                 orig_object->charge -= ptoa(size);
1565         }
1566
1567         /*
1568          * Mark the split operation so that swap_pager_getpages() knows
1569          * that the object is in transition.
1570          */
1571         vm_object_set_flag(orig_object, OBJ_SPLIT);
1572 #ifdef INVARIANTS
1573         idx = 0;
1574 #endif
1575 retry:
1576         m = vm_page_find_least(orig_object, offidxstart);
1577         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1578             ("%s: object %p was repopulated", __func__, orig_object));
1579         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1580             m = m_next) {
1581                 m_next = TAILQ_NEXT(m, listq);
1582
1583                 /*
1584                  * We must wait for pending I/O to complete before we can
1585                  * rename the page.
1586                  *
1587                  * We do not have to VM_PROT_NONE the page as mappings should
1588                  * not be changed by this operation.
1589                  */
1590                 if (vm_page_tryxbusy(m) == 0) {
1591                         VM_OBJECT_WUNLOCK(new_object);
1592                         if (vm_page_busy_sleep(m, "spltwt", 0))
1593                                 VM_OBJECT_WLOCK(orig_object);
1594                         VM_OBJECT_WLOCK(new_object);
1595                         goto retry;
1596                 }
1597
1598                 /*
1599                  * The page was left invalid.  Likely placed there by
1600                  * an incomplete fault.  Just remove and ignore.
1601                  */
1602                 if (vm_page_none_valid(m)) {
1603                         if (vm_page_remove(m))
1604                                 vm_page_free(m);
1605                         continue;
1606                 }
1607
1608                 /* vm_page_rename() will dirty the page. */
1609                 if (vm_page_rename(m, new_object, idx)) {
1610                         vm_page_xunbusy(m);
1611                         VM_OBJECT_WUNLOCK(new_object);
1612                         VM_OBJECT_WUNLOCK(orig_object);
1613                         vm_radix_wait();
1614                         VM_OBJECT_WLOCK(orig_object);
1615                         VM_OBJECT_WLOCK(new_object);
1616                         goto retry;
1617                 }
1618
1619 #if VM_NRESERVLEVEL > 0
1620                 /*
1621                  * If some of the reservation's allocated pages remain with
1622                  * the original object, then transferring the reservation to
1623                  * the new object is neither particularly beneficial nor
1624                  * particularly harmful as compared to leaving the reservation
1625                  * with the original object.  If, however, all of the
1626                  * reservation's allocated pages are transferred to the new
1627                  * object, then transferring the reservation is typically
1628                  * beneficial.  Determining which of these two cases applies
1629                  * would be more costly than unconditionally renaming the
1630                  * reservation.
1631                  */
1632                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1633 #endif
1634         }
1635
1636         /*
1637          * swap_pager_copy() can sleep, in which case the orig_object's
1638          * and new_object's locks are released and reacquired.
1639          */
1640         swap_pager_copy(orig_object, new_object, offidxstart, 0);
1641
1642         TAILQ_FOREACH(m, &new_object->memq, listq)
1643                 vm_page_xunbusy(m);
1644
1645         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1646         VM_OBJECT_WUNLOCK(orig_object);
1647         VM_OBJECT_WUNLOCK(new_object);
1648         entry->object.vm_object = new_object;
1649         entry->offset = 0LL;
1650         vm_object_deallocate(orig_object);
1651         VM_OBJECT_WLOCK(new_object);
1652 }
1653
1654 static vm_page_t
1655 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1656 {
1657         vm_object_t backing_object;
1658
1659         VM_OBJECT_ASSERT_WLOCKED(object);
1660         backing_object = object->backing_object;
1661         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1662
1663         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1664             ("invalid ownership %p %p %p", p, object, backing_object));
1665         /* The page is only NULL when rename fails. */
1666         if (p == NULL) {
1667                 VM_OBJECT_WUNLOCK(object);
1668                 VM_OBJECT_WUNLOCK(backing_object);
1669                 vm_radix_wait();
1670                 VM_OBJECT_WLOCK(object);
1671         } else if (p->object == object) {
1672                 VM_OBJECT_WUNLOCK(backing_object);
1673                 if (vm_page_busy_sleep(p, "vmocol", 0))
1674                         VM_OBJECT_WLOCK(object);
1675         } else {
1676                 VM_OBJECT_WUNLOCK(object);
1677                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1678                         VM_OBJECT_WUNLOCK(backing_object);
1679                 VM_OBJECT_WLOCK(object);
1680         }
1681         VM_OBJECT_WLOCK(backing_object);
1682         return (TAILQ_FIRST(&backing_object->memq));
1683 }
1684
1685 static bool
1686 vm_object_scan_all_shadowed(vm_object_t object)
1687 {
1688         vm_object_t backing_object;
1689         vm_page_t p, pp;
1690         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1691
1692         VM_OBJECT_ASSERT_WLOCKED(object);
1693         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1694
1695         backing_object = object->backing_object;
1696
1697         if ((backing_object->flags & OBJ_ANON) == 0)
1698                 return (false);
1699
1700         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1701         p = vm_page_find_least(backing_object, pi);
1702         ps = swap_pager_find_least(backing_object, pi);
1703
1704         /*
1705          * Only check pages inside the parent object's range and
1706          * inside the parent object's mapping of the backing object.
1707          */
1708         for (;; pi++) {
1709                 if (p != NULL && p->pindex < pi)
1710                         p = TAILQ_NEXT(p, listq);
1711                 if (ps < pi)
1712                         ps = swap_pager_find_least(backing_object, pi);
1713                 if (p == NULL && ps >= backing_object->size)
1714                         break;
1715                 else if (p == NULL)
1716                         pi = ps;
1717                 else
1718                         pi = MIN(p->pindex, ps);
1719
1720                 new_pindex = pi - backing_offset_index;
1721                 if (new_pindex >= object->size)
1722                         break;
1723
1724                 if (p != NULL) {
1725                         /*
1726                          * If the backing object page is busy a
1727                          * grandparent or older page may still be
1728                          * undergoing CoW.  It is not safe to collapse
1729                          * the backing object until it is quiesced.
1730                          */
1731                         if (vm_page_tryxbusy(p) == 0)
1732                                 return (false);
1733
1734                         /*
1735                          * We raced with the fault handler that left
1736                          * newly allocated invalid page on the object
1737                          * queue and retried.
1738                          */
1739                         if (!vm_page_all_valid(p))
1740                                 goto unbusy_ret;
1741                 }
1742
1743                 /*
1744                  * See if the parent has the page or if the parent's object
1745                  * pager has the page.  If the parent has the page but the page
1746                  * is not valid, the parent's object pager must have the page.
1747                  *
1748                  * If this fails, the parent does not completely shadow the
1749                  * object and we might as well give up now.
1750                  */
1751                 pp = vm_page_lookup(object, new_pindex);
1752
1753                 /*
1754                  * The valid check here is stable due to object lock
1755                  * being required to clear valid and initiate paging.
1756                  * Busy of p disallows fault handler to validate pp.
1757                  */
1758                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1759                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1760                         goto unbusy_ret;
1761                 if (p != NULL)
1762                         vm_page_xunbusy(p);
1763         }
1764         return (true);
1765
1766 unbusy_ret:
1767         if (p != NULL)
1768                 vm_page_xunbusy(p);
1769         return (false);
1770 }
1771
1772 static void
1773 vm_object_collapse_scan(vm_object_t object)
1774 {
1775         vm_object_t backing_object;
1776         vm_page_t next, p, pp;
1777         vm_pindex_t backing_offset_index, new_pindex;
1778
1779         VM_OBJECT_ASSERT_WLOCKED(object);
1780         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1781
1782         backing_object = object->backing_object;
1783         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1784
1785         /*
1786          * Our scan
1787          */
1788         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1789                 next = TAILQ_NEXT(p, listq);
1790                 new_pindex = p->pindex - backing_offset_index;
1791
1792                 /*
1793                  * Check for busy page
1794                  */
1795                 if (vm_page_tryxbusy(p) == 0) {
1796                         next = vm_object_collapse_scan_wait(object, p);
1797                         continue;
1798                 }
1799
1800                 KASSERT(object->backing_object == backing_object,
1801                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1802                     object->backing_object, backing_object));
1803                 KASSERT(p->object == backing_object,
1804                     ("vm_object_collapse_scan: object mismatch %p != %p",
1805                     p->object, backing_object));
1806
1807                 if (p->pindex < backing_offset_index ||
1808                     new_pindex >= object->size) {
1809                         vm_pager_freespace(backing_object, p->pindex, 1);
1810
1811                         KASSERT(!pmap_page_is_mapped(p),
1812                             ("freeing mapped page %p", p));
1813                         if (vm_page_remove(p))
1814                                 vm_page_free(p);
1815                         continue;
1816                 }
1817
1818                 if (!vm_page_all_valid(p)) {
1819                         KASSERT(!pmap_page_is_mapped(p),
1820                             ("freeing mapped page %p", p));
1821                         if (vm_page_remove(p))
1822                                 vm_page_free(p);
1823                         continue;
1824                 }
1825
1826                 pp = vm_page_lookup(object, new_pindex);
1827                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1828                         vm_page_xunbusy(p);
1829                         /*
1830                          * The page in the parent is busy and possibly not
1831                          * (yet) valid.  Until its state is finalized by the
1832                          * busy bit owner, we can't tell whether it shadows the
1833                          * original page.
1834                          */
1835                         next = vm_object_collapse_scan_wait(object, pp);
1836                         continue;
1837                 }
1838
1839                 if (pp != NULL && vm_page_none_valid(pp)) {
1840                         /*
1841                          * The page was invalid in the parent.  Likely placed
1842                          * there by an incomplete fault.  Just remove and
1843                          * ignore.  p can replace it.
1844                          */
1845                         if (vm_page_remove(pp))
1846                                 vm_page_free(pp);
1847                         pp = NULL;
1848                 }
1849
1850                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1851                         NULL)) {
1852                         /*
1853                          * The page already exists in the parent OR swap exists
1854                          * for this location in the parent.  Leave the parent's
1855                          * page alone.  Destroy the original page from the
1856                          * backing object.
1857                          */
1858                         vm_pager_freespace(backing_object, p->pindex, 1);
1859                         KASSERT(!pmap_page_is_mapped(p),
1860                             ("freeing mapped page %p", p));
1861                         if (vm_page_remove(p))
1862                                 vm_page_free(p);
1863                         if (pp != NULL)
1864                                 vm_page_xunbusy(pp);
1865                         continue;
1866                 }
1867
1868                 /*
1869                  * Page does not exist in parent, rename the page from the
1870                  * backing object to the main object.
1871                  *
1872                  * If the page was mapped to a process, it can remain mapped
1873                  * through the rename.  vm_page_rename() will dirty the page.
1874                  */
1875                 if (vm_page_rename(p, object, new_pindex)) {
1876                         vm_page_xunbusy(p);
1877                         next = vm_object_collapse_scan_wait(object, NULL);
1878                         continue;
1879                 }
1880
1881                 /* Use the old pindex to free the right page. */
1882                 vm_pager_freespace(backing_object, new_pindex +
1883                     backing_offset_index, 1);
1884
1885 #if VM_NRESERVLEVEL > 0
1886                 /*
1887                  * Rename the reservation.
1888                  */
1889                 vm_reserv_rename(p, object, backing_object,
1890                     backing_offset_index);
1891 #endif
1892                 vm_page_xunbusy(p);
1893         }
1894         return;
1895 }
1896
1897 /*
1898  *      vm_object_collapse:
1899  *
1900  *      Collapse an object with the object backing it.
1901  *      Pages in the backing object are moved into the
1902  *      parent, and the backing object is deallocated.
1903  */
1904 void
1905 vm_object_collapse(vm_object_t object)
1906 {
1907         vm_object_t backing_object, new_backing_object;
1908
1909         VM_OBJECT_ASSERT_WLOCKED(object);
1910
1911         while (TRUE) {
1912                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1913                     ("collapsing invalid object"));
1914
1915                 /*
1916                  * Wait for the backing_object to finish any pending
1917                  * collapse so that the caller sees the shortest possible
1918                  * shadow chain.
1919                  */
1920                 backing_object = vm_object_backing_collapse_wait(object);
1921                 if (backing_object == NULL)
1922                         return;
1923
1924                 KASSERT(object->ref_count > 0 &&
1925                     object->ref_count > atomic_load_int(&object->shadow_count),
1926                     ("collapse with invalid ref %d or shadow %d count.",
1927                     object->ref_count, atomic_load_int(&object->shadow_count)));
1928                 KASSERT((backing_object->flags &
1929                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1930                     ("vm_object_collapse: Backing object already collapsing."));
1931                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1932                     ("vm_object_collapse: object is already collapsing."));
1933
1934                 /*
1935                  * We know that we can either collapse the backing object if
1936                  * the parent is the only reference to it, or (perhaps) have
1937                  * the parent bypass the object if the parent happens to shadow
1938                  * all the resident pages in the entire backing object.
1939                  */
1940                 if (backing_object->ref_count == 1) {
1941                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1942                             == 1,
1943                             ("vm_object_collapse: shadow_count: %d",
1944                             atomic_load_int(&backing_object->shadow_count)));
1945                         vm_object_pip_add(object, 1);
1946                         vm_object_set_flag(object, OBJ_COLLAPSING);
1947                         vm_object_pip_add(backing_object, 1);
1948                         vm_object_set_flag(backing_object, OBJ_DEAD);
1949
1950                         /*
1951                          * If there is exactly one reference to the backing
1952                          * object, we can collapse it into the parent.
1953                          */
1954                         vm_object_collapse_scan(object);
1955
1956 #if VM_NRESERVLEVEL > 0
1957                         /*
1958                          * Break any reservations from backing_object.
1959                          */
1960                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1961                                 vm_reserv_break_all(backing_object);
1962 #endif
1963
1964                         /*
1965                          * Move the pager from backing_object to object.
1966                          *
1967                          * swap_pager_copy() can sleep, in which case the
1968                          * backing_object's and object's locks are released and
1969                          * reacquired.
1970                          */
1971                         swap_pager_copy(backing_object, object,
1972                             OFF_TO_IDX(object->backing_object_offset), TRUE);
1973
1974                         /*
1975                          * Object now shadows whatever backing_object did.
1976                          */
1977                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1978                         vm_object_backing_transfer(object, backing_object);
1979                         object->backing_object_offset +=
1980                             backing_object->backing_object_offset;
1981                         VM_OBJECT_WUNLOCK(object);
1982                         vm_object_pip_wakeup(object);
1983
1984                         /*
1985                          * Discard backing_object.
1986                          *
1987                          * Since the backing object has no pages, no pager left,
1988                          * and no object references within it, all that is
1989                          * necessary is to dispose of it.
1990                          */
1991                         KASSERT(backing_object->ref_count == 1, (
1992 "backing_object %p was somehow re-referenced during collapse!",
1993                             backing_object));
1994                         vm_object_pip_wakeup(backing_object);
1995                         (void)refcount_release(&backing_object->ref_count);
1996                         umtx_shm_object_terminated(backing_object);
1997                         vm_object_terminate(backing_object);
1998                         counter_u64_add(object_collapses, 1);
1999                         VM_OBJECT_WLOCK(object);
2000                 } else {
2001                         /*
2002                          * If we do not entirely shadow the backing object,
2003                          * there is nothing we can do so we give up.
2004                          *
2005                          * The object lock and backing_object lock must not
2006                          * be dropped during this sequence.
2007                          */
2008                         if (!vm_object_scan_all_shadowed(object)) {
2009                                 VM_OBJECT_WUNLOCK(backing_object);
2010                                 break;
2011                         }
2012
2013                         /*
2014                          * Make the parent shadow the next object in the
2015                          * chain.  Deallocating backing_object will not remove
2016                          * it, since its reference count is at least 2.
2017                          */
2018                         vm_object_backing_remove_locked(object);
2019                         new_backing_object = backing_object->backing_object;
2020                         if (new_backing_object != NULL) {
2021                                 vm_object_backing_insert_ref(object,
2022                                     new_backing_object);
2023                                 object->backing_object_offset +=
2024                                     backing_object->backing_object_offset;
2025                         }
2026
2027                         /*
2028                          * Drop the reference count on backing_object. Since
2029                          * its ref_count was at least 2, it will not vanish.
2030                          */
2031                         (void)refcount_release(&backing_object->ref_count);
2032                         KASSERT(backing_object->ref_count >= 1, (
2033 "backing_object %p was somehow dereferenced during collapse!",
2034                             backing_object));
2035                         VM_OBJECT_WUNLOCK(backing_object);
2036                         counter_u64_add(object_bypasses, 1);
2037                 }
2038
2039                 /*
2040                  * Try again with this object's new backing object.
2041                  */
2042         }
2043 }
2044
2045 /*
2046  *      vm_object_page_remove:
2047  *
2048  *      For the given object, either frees or invalidates each of the
2049  *      specified pages.  In general, a page is freed.  However, if a page is
2050  *      wired for any reason other than the existence of a managed, wired
2051  *      mapping, then it may be invalidated but not removed from the object.
2052  *      Pages are specified by the given range ["start", "end") and the option
2053  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2054  *      extends from "start" to the end of the object.  If the option
2055  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2056  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2057  *      specified, then the pages within the specified range must have no
2058  *      mappings.  Otherwise, if this option is not specified, any mappings to
2059  *      the specified pages are removed before the pages are freed or
2060  *      invalidated.
2061  *
2062  *      In general, this operation should only be performed on objects that
2063  *      contain managed pages.  There are, however, two exceptions.  First, it
2064  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2065  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2066  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2067  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2068  *
2069  *      The object must be locked.
2070  */
2071 void
2072 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2073     int options)
2074 {
2075         vm_page_t p, next;
2076
2077         VM_OBJECT_ASSERT_WLOCKED(object);
2078         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2079             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2080             ("vm_object_page_remove: illegal options for object %p", object));
2081         if (object->resident_page_count == 0)
2082                 return;
2083         vm_object_pip_add(object, 1);
2084 again:
2085         p = vm_page_find_least(object, start);
2086
2087         /*
2088          * Here, the variable "p" is either (1) the page with the least pindex
2089          * greater than or equal to the parameter "start" or (2) NULL. 
2090          */
2091         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2092                 next = TAILQ_NEXT(p, listq);
2093
2094                 /*
2095                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2096                  * the busy lock, as some consumers rely on this to avoid
2097                  * deadlocks.
2098                  *
2099                  * A thread may concurrently transition the page from invalid to
2100                  * valid using only the busy lock, so the result of this check
2101                  * is immediately stale.  It is up to consumers to handle this,
2102                  * for instance by ensuring that all invalid->valid transitions
2103                  * happen with a mutex held, as may be possible for a
2104                  * filesystem.
2105                  */
2106                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2107                         continue;
2108
2109                 /*
2110                  * If the page is wired for any reason besides the existence
2111                  * of managed, wired mappings, then it cannot be freed.  For
2112                  * example, fictitious pages, which represent device memory,
2113                  * are inherently wired and cannot be freed.  They can,
2114                  * however, be invalidated if the option OBJPR_CLEANONLY is
2115                  * not specified.
2116                  */
2117                 if (vm_page_tryxbusy(p) == 0) {
2118                         if (vm_page_busy_sleep(p, "vmopar", 0))
2119                                 VM_OBJECT_WLOCK(object);
2120                         goto again;
2121                 }
2122                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2123                         vm_page_xunbusy(p);
2124                         continue;
2125                 }
2126                 if (vm_page_wired(p)) {
2127 wired:
2128                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2129                             object->ref_count != 0)
2130                                 pmap_remove_all(p);
2131                         if ((options & OBJPR_CLEANONLY) == 0) {
2132                                 vm_page_invalid(p);
2133                                 vm_page_undirty(p);
2134                         }
2135                         vm_page_xunbusy(p);
2136                         continue;
2137                 }
2138                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2139                     ("vm_object_page_remove: page %p is fictitious", p));
2140                 if ((options & OBJPR_CLEANONLY) != 0 &&
2141                     !vm_page_none_valid(p)) {
2142                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2143                             object->ref_count != 0 &&
2144                             !vm_page_try_remove_write(p))
2145                                 goto wired;
2146                         if (p->dirty != 0) {
2147                                 vm_page_xunbusy(p);
2148                                 continue;
2149                         }
2150                 }
2151                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2152                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2153                         goto wired;
2154                 vm_page_free(p);
2155         }
2156         vm_object_pip_wakeup(object);
2157
2158         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2159             start);
2160 }
2161
2162 /*
2163  *      vm_object_page_noreuse:
2164  *
2165  *      For the given object, attempt to move the specified pages to
2166  *      the head of the inactive queue.  This bypasses regular LRU
2167  *      operation and allows the pages to be reused quickly under memory
2168  *      pressure.  If a page is wired for any reason, then it will not
2169  *      be queued.  Pages are specified by the range ["start", "end").
2170  *      As a special case, if "end" is zero, then the range extends from
2171  *      "start" to the end of the object.
2172  *
2173  *      This operation should only be performed on objects that
2174  *      contain non-fictitious, managed pages.
2175  *
2176  *      The object must be locked.
2177  */
2178 void
2179 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2180 {
2181         vm_page_t p, next;
2182
2183         VM_OBJECT_ASSERT_LOCKED(object);
2184         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2185             ("vm_object_page_noreuse: illegal object %p", object));
2186         if (object->resident_page_count == 0)
2187                 return;
2188         p = vm_page_find_least(object, start);
2189
2190         /*
2191          * Here, the variable "p" is either (1) the page with the least pindex
2192          * greater than or equal to the parameter "start" or (2) NULL. 
2193          */
2194         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2195                 next = TAILQ_NEXT(p, listq);
2196                 vm_page_deactivate_noreuse(p);
2197         }
2198 }
2199
2200 /*
2201  *      Populate the specified range of the object with valid pages.  Returns
2202  *      TRUE if the range is successfully populated and FALSE otherwise.
2203  *
2204  *      Note: This function should be optimized to pass a larger array of
2205  *      pages to vm_pager_get_pages() before it is applied to a non-
2206  *      OBJT_DEVICE object.
2207  *
2208  *      The object must be locked.
2209  */
2210 boolean_t
2211 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2212 {
2213         vm_page_t m;
2214         vm_pindex_t pindex;
2215         int rv;
2216
2217         VM_OBJECT_ASSERT_WLOCKED(object);
2218         for (pindex = start; pindex < end; pindex++) {
2219                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2220                 if (rv != VM_PAGER_OK)
2221                         break;
2222
2223                 /*
2224                  * Keep "m" busy because a subsequent iteration may unlock
2225                  * the object.
2226                  */
2227         }
2228         if (pindex > start) {
2229                 m = vm_page_lookup(object, start);
2230                 while (m != NULL && m->pindex < pindex) {
2231                         vm_page_xunbusy(m);
2232                         m = TAILQ_NEXT(m, listq);
2233                 }
2234         }
2235         return (pindex == end);
2236 }
2237
2238 /*
2239  *      Routine:        vm_object_coalesce
2240  *      Function:       Coalesces two objects backing up adjoining
2241  *                      regions of memory into a single object.
2242  *
2243  *      returns TRUE if objects were combined.
2244  *
2245  *      NOTE:   Only works at the moment if the second object is NULL -
2246  *              if it's not, which object do we lock first?
2247  *
2248  *      Parameters:
2249  *              prev_object     First object to coalesce
2250  *              prev_offset     Offset into prev_object
2251  *              prev_size       Size of reference to prev_object
2252  *              next_size       Size of reference to the second object
2253  *              reserved        Indicator that extension region has
2254  *                              swap accounted for
2255  *
2256  *      Conditions:
2257  *      The object must *not* be locked.
2258  */
2259 boolean_t
2260 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2261     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2262 {
2263         vm_pindex_t next_pindex;
2264
2265         if (prev_object == NULL)
2266                 return (TRUE);
2267         if ((prev_object->flags & OBJ_ANON) == 0)
2268                 return (FALSE);
2269
2270         VM_OBJECT_WLOCK(prev_object);
2271         /*
2272          * Try to collapse the object first.
2273          */
2274         vm_object_collapse(prev_object);
2275
2276         /*
2277          * Can't coalesce if: . more than one reference . paged out . shadows
2278          * another object . has a copy elsewhere (any of which mean that the
2279          * pages not mapped to prev_entry may be in use anyway)
2280          */
2281         if (prev_object->backing_object != NULL) {
2282                 VM_OBJECT_WUNLOCK(prev_object);
2283                 return (FALSE);
2284         }
2285
2286         prev_size >>= PAGE_SHIFT;
2287         next_size >>= PAGE_SHIFT;
2288         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2289
2290         if (prev_object->ref_count > 1 &&
2291             prev_object->size != next_pindex &&
2292             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2293                 VM_OBJECT_WUNLOCK(prev_object);
2294                 return (FALSE);
2295         }
2296
2297         /*
2298          * Account for the charge.
2299          */
2300         if (prev_object->cred != NULL) {
2301                 /*
2302                  * If prev_object was charged, then this mapping,
2303                  * although not charged now, may become writable
2304                  * later. Non-NULL cred in the object would prevent
2305                  * swap reservation during enabling of the write
2306                  * access, so reserve swap now. Failed reservation
2307                  * cause allocation of the separate object for the map
2308                  * entry, and swap reservation for this entry is
2309                  * managed in appropriate time.
2310                  */
2311                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2312                     prev_object->cred)) {
2313                         VM_OBJECT_WUNLOCK(prev_object);
2314                         return (FALSE);
2315                 }
2316                 prev_object->charge += ptoa(next_size);
2317         }
2318
2319         /*
2320          * Remove any pages that may still be in the object from a previous
2321          * deallocation.
2322          */
2323         if (next_pindex < prev_object->size) {
2324                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2325                     next_size, 0);
2326 #if 0
2327                 if (prev_object->cred != NULL) {
2328                         KASSERT(prev_object->charge >=
2329                             ptoa(prev_object->size - next_pindex),
2330                             ("object %p overcharged 1 %jx %jx", prev_object,
2331                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2332                         prev_object->charge -= ptoa(prev_object->size -
2333                             next_pindex);
2334                 }
2335 #endif
2336         }
2337
2338         /*
2339          * Extend the object if necessary.
2340          */
2341         if (next_pindex + next_size > prev_object->size)
2342                 prev_object->size = next_pindex + next_size;
2343
2344         VM_OBJECT_WUNLOCK(prev_object);
2345         return (TRUE);
2346 }
2347
2348 void
2349 vm_object_set_writeable_dirty_(vm_object_t object)
2350 {
2351         atomic_add_int(&object->generation, 1);
2352 }
2353
2354 bool
2355 vm_object_mightbedirty_(vm_object_t object)
2356 {
2357         return (object->generation != object->cleangeneration);
2358 }
2359
2360 /*
2361  *      vm_object_unwire:
2362  *
2363  *      For each page offset within the specified range of the given object,
2364  *      find the highest-level page in the shadow chain and unwire it.  A page
2365  *      must exist at every page offset, and the highest-level page must be
2366  *      wired.
2367  */
2368 void
2369 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2370     uint8_t queue)
2371 {
2372         vm_object_t tobject, t1object;
2373         vm_page_t m, tm;
2374         vm_pindex_t end_pindex, pindex, tpindex;
2375         int depth, locked_depth;
2376
2377         KASSERT((offset & PAGE_MASK) == 0,
2378             ("vm_object_unwire: offset is not page aligned"));
2379         KASSERT((length & PAGE_MASK) == 0,
2380             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2381         /* The wired count of a fictitious page never changes. */
2382         if ((object->flags & OBJ_FICTITIOUS) != 0)
2383                 return;
2384         pindex = OFF_TO_IDX(offset);
2385         end_pindex = pindex + atop(length);
2386 again:
2387         locked_depth = 1;
2388         VM_OBJECT_RLOCK(object);
2389         m = vm_page_find_least(object, pindex);
2390         while (pindex < end_pindex) {
2391                 if (m == NULL || pindex < m->pindex) {
2392                         /*
2393                          * The first object in the shadow chain doesn't
2394                          * contain a page at the current index.  Therefore,
2395                          * the page must exist in a backing object.
2396                          */
2397                         tobject = object;
2398                         tpindex = pindex;
2399                         depth = 0;
2400                         do {
2401                                 tpindex +=
2402                                     OFF_TO_IDX(tobject->backing_object_offset);
2403                                 tobject = tobject->backing_object;
2404                                 KASSERT(tobject != NULL,
2405                                     ("vm_object_unwire: missing page"));
2406                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2407                                         goto next_page;
2408                                 depth++;
2409                                 if (depth == locked_depth) {
2410                                         locked_depth++;
2411                                         VM_OBJECT_RLOCK(tobject);
2412                                 }
2413                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2414                             NULL);
2415                 } else {
2416                         tm = m;
2417                         m = TAILQ_NEXT(m, listq);
2418                 }
2419                 if (vm_page_trysbusy(tm) == 0) {
2420                         for (tobject = object; locked_depth >= 1;
2421                             locked_depth--) {
2422                                 t1object = tobject->backing_object;
2423                                 if (tm->object != tobject)
2424                                         VM_OBJECT_RUNLOCK(tobject);
2425                                 tobject = t1object;
2426                         }
2427                         tobject = tm->object;
2428                         if (!vm_page_busy_sleep(tm, "unwbo",
2429                             VM_ALLOC_IGN_SBUSY))
2430                                 VM_OBJECT_RUNLOCK(tobject);
2431                         goto again;
2432                 }
2433                 vm_page_unwire(tm, queue);
2434                 vm_page_sunbusy(tm);
2435 next_page:
2436                 pindex++;
2437         }
2438         /* Release the accumulated object locks. */
2439         for (tobject = object; locked_depth >= 1; locked_depth--) {
2440                 t1object = tobject->backing_object;
2441                 VM_OBJECT_RUNLOCK(tobject);
2442                 tobject = t1object;
2443         }
2444 }
2445
2446 /*
2447  * Return the vnode for the given object, or NULL if none exists.
2448  * For tmpfs objects, the function may return NULL if there is
2449  * no vnode allocated at the time of the call.
2450  */
2451 struct vnode *
2452 vm_object_vnode(vm_object_t object)
2453 {
2454         struct vnode *vp;
2455
2456         VM_OBJECT_ASSERT_LOCKED(object);
2457         vm_pager_getvp(object, &vp, NULL);
2458         return (vp);
2459 }
2460
2461 /*
2462  * Busy the vm object.  This prevents new pages belonging to the object from
2463  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2464  * for checking page state before proceeding.
2465  */
2466 void
2467 vm_object_busy(vm_object_t obj)
2468 {
2469
2470         VM_OBJECT_ASSERT_LOCKED(obj);
2471
2472         blockcount_acquire(&obj->busy, 1);
2473         /* The fence is required to order loads of page busy. */
2474         atomic_thread_fence_acq_rel();
2475 }
2476
2477 void
2478 vm_object_unbusy(vm_object_t obj)
2479 {
2480
2481         blockcount_release(&obj->busy, 1);
2482 }
2483
2484 void
2485 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2486 {
2487
2488         VM_OBJECT_ASSERT_UNLOCKED(obj);
2489
2490         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2491 }
2492
2493 /*
2494  * This function aims to determine if the object is mapped,
2495  * specifically, if it is referenced by a vm_map_entry.  Because
2496  * objects occasionally acquire transient references that do not
2497  * represent a mapping, the method used here is inexact.  However, it
2498  * has very low overhead and is good enough for the advisory
2499  * vm.vmtotal sysctl.
2500  */
2501 bool
2502 vm_object_is_active(vm_object_t obj)
2503 {
2504
2505         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2506 }
2507
2508 static int
2509 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2510 {
2511         struct kinfo_vmobject *kvo;
2512         char *fullpath, *freepath;
2513         struct vnode *vp;
2514         struct vattr va;
2515         vm_object_t obj;
2516         vm_page_t m;
2517         u_long sp;
2518         int count, error;
2519         bool want_path;
2520
2521         if (req->oldptr == NULL) {
2522                 /*
2523                  * If an old buffer has not been provided, generate an
2524                  * estimate of the space needed for a subsequent call.
2525                  */
2526                 mtx_lock(&vm_object_list_mtx);
2527                 count = 0;
2528                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2529                         if (obj->type == OBJT_DEAD)
2530                                 continue;
2531                         count++;
2532                 }
2533                 mtx_unlock(&vm_object_list_mtx);
2534                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2535                     count * 11 / 10));
2536         }
2537
2538         want_path = !(swap_only || jailed(curthread->td_ucred));
2539         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO);
2540         error = 0;
2541
2542         /*
2543          * VM objects are type stable and are never removed from the
2544          * list once added.  This allows us to safely read obj->object_list
2545          * after reacquiring the VM object lock.
2546          */
2547         mtx_lock(&vm_object_list_mtx);
2548         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2549                 if (obj->type == OBJT_DEAD ||
2550                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2551                         continue;
2552                 VM_OBJECT_RLOCK(obj);
2553                 if (obj->type == OBJT_DEAD ||
2554                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2555                         VM_OBJECT_RUNLOCK(obj);
2556                         continue;
2557                 }
2558                 mtx_unlock(&vm_object_list_mtx);
2559                 kvo->kvo_size = ptoa(obj->size);
2560                 kvo->kvo_resident = obj->resident_page_count;
2561                 kvo->kvo_ref_count = obj->ref_count;
2562                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2563                 kvo->kvo_memattr = obj->memattr;
2564                 kvo->kvo_active = 0;
2565                 kvo->kvo_inactive = 0;
2566                 if (!swap_only) {
2567                         TAILQ_FOREACH(m, &obj->memq, listq) {
2568                                 /*
2569                                  * A page may belong to the object but be
2570                                  * dequeued and set to PQ_NONE while the
2571                                  * object lock is not held.  This makes the
2572                                  * reads of m->queue below racy, and we do not
2573                                  * count pages set to PQ_NONE.  However, this
2574                                  * sysctl is only meant to give an
2575                                  * approximation of the system anyway.
2576                                  */
2577                                 if (m->a.queue == PQ_ACTIVE)
2578                                         kvo->kvo_active++;
2579                                 else if (m->a.queue == PQ_INACTIVE)
2580                                         kvo->kvo_inactive++;
2581                         }
2582                 }
2583
2584                 kvo->kvo_vn_fileid = 0;
2585                 kvo->kvo_vn_fsid = 0;
2586                 kvo->kvo_vn_fsid_freebsd11 = 0;
2587                 freepath = NULL;
2588                 fullpath = "";
2589                 vp = NULL;
2590                 kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp :
2591                     NULL);
2592                 if (vp != NULL) {
2593                         vref(vp);
2594                 } else if ((obj->flags & OBJ_ANON) != 0) {
2595                         MPASS(kvo->kvo_type == KVME_TYPE_SWAP);
2596                         kvo->kvo_me = (uintptr_t)obj;
2597                         /* tmpfs objs are reported as vnodes */
2598                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2599                         sp = swap_pager_swapped_pages(obj);
2600                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2601                 }
2602                 VM_OBJECT_RUNLOCK(obj);
2603                 if (vp != NULL) {
2604                         vn_fullpath(vp, &fullpath, &freepath);
2605                         vn_lock(vp, LK_SHARED | LK_RETRY);
2606                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2607                                 kvo->kvo_vn_fileid = va.va_fileid;
2608                                 kvo->kvo_vn_fsid = va.va_fsid;
2609                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2610                                                                 /* truncate */
2611                         }
2612                         vput(vp);
2613                 }
2614
2615                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2616                 free(freepath, M_TEMP);
2617
2618                 /* Pack record size down */
2619                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2620                     + strlen(kvo->kvo_path) + 1;
2621                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2622                     sizeof(uint64_t));
2623                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2624                 maybe_yield();
2625                 mtx_lock(&vm_object_list_mtx);
2626                 if (error)
2627                         break;
2628         }
2629         mtx_unlock(&vm_object_list_mtx);
2630         free(kvo, M_TEMP);
2631         return (error);
2632 }
2633
2634 static int
2635 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2636 {
2637         return (vm_object_list_handler(req, false));
2638 }
2639
2640 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2641     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2642     "List of VM objects");
2643
2644 static int
2645 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2646 {
2647         return (vm_object_list_handler(req, true));
2648 }
2649
2650 /*
2651  * This sysctl returns list of the anonymous or swap objects. Intent
2652  * is to provide stripped optimized list useful to analyze swap use.
2653  * Since technically non-swap (default) objects participate in the
2654  * shadow chains, and are converted to swap type as needed by swap
2655  * pager, we must report them.
2656  */
2657 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2658     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2659     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2660     "List of swap VM objects");
2661
2662 #include "opt_ddb.h"
2663 #ifdef DDB
2664 #include <sys/kernel.h>
2665
2666 #include <sys/cons.h>
2667
2668 #include <ddb/ddb.h>
2669
2670 static int
2671 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2672 {
2673         vm_map_t tmpm;
2674         vm_map_entry_t tmpe;
2675         vm_object_t obj;
2676
2677         if (map == 0)
2678                 return 0;
2679
2680         if (entry == 0) {
2681                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2682                         if (_vm_object_in_map(map, object, tmpe)) {
2683                                 return 1;
2684                         }
2685                 }
2686         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2687                 tmpm = entry->object.sub_map;
2688                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2689                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2690                                 return 1;
2691                         }
2692                 }
2693         } else if ((obj = entry->object.vm_object) != NULL) {
2694                 for (; obj; obj = obj->backing_object)
2695                         if (obj == object) {
2696                                 return 1;
2697                         }
2698         }
2699         return 0;
2700 }
2701
2702 static int
2703 vm_object_in_map(vm_object_t object)
2704 {
2705         struct proc *p;
2706
2707         /* sx_slock(&allproc_lock); */
2708         FOREACH_PROC_IN_SYSTEM(p) {
2709                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2710                         continue;
2711                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2712                         /* sx_sunlock(&allproc_lock); */
2713                         return 1;
2714                 }
2715         }
2716         /* sx_sunlock(&allproc_lock); */
2717         if (_vm_object_in_map(kernel_map, object, 0))
2718                 return 1;
2719         return 0;
2720 }
2721
2722 DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE)
2723 {
2724         vm_object_t object;
2725
2726         /*
2727          * make sure that internal objs are in a map somewhere
2728          * and none have zero ref counts.
2729          */
2730         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2731                 if ((object->flags & OBJ_ANON) != 0) {
2732                         if (object->ref_count == 0) {
2733                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2734                                         (long)object->size);
2735                         }
2736                         if (!vm_object_in_map(object)) {
2737                                 db_printf(
2738                         "vmochk: internal obj is not in a map: "
2739                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2740                                     object->ref_count, (u_long)object->size, 
2741                                     (u_long)object->size,
2742                                     (void *)object->backing_object);
2743                         }
2744                 }
2745                 if (db_pager_quit)
2746                         return;
2747         }
2748 }
2749
2750 /*
2751  *      vm_object_print:        [ debug ]
2752  */
2753 DB_SHOW_COMMAND(object, vm_object_print_static)
2754 {
2755         /* XXX convert args. */
2756         vm_object_t object = (vm_object_t)addr;
2757         boolean_t full = have_addr;
2758
2759         vm_page_t p;
2760
2761         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2762 #define count   was_count
2763
2764         int count;
2765
2766         if (object == NULL)
2767                 return;
2768
2769         db_iprintf(
2770             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2771             object, (int)object->type, (uintmax_t)object->size,
2772             object->resident_page_count, object->ref_count, object->flags,
2773             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2774         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2775             atomic_load_int(&object->shadow_count),
2776             object->backing_object ? object->backing_object->ref_count : 0,
2777             object->backing_object, (uintmax_t)object->backing_object_offset);
2778
2779         if (!full)
2780                 return;
2781
2782         db_indent += 2;
2783         count = 0;
2784         TAILQ_FOREACH(p, &object->memq, listq) {
2785                 if (count == 0)
2786                         db_iprintf("memory:=");
2787                 else if (count == 6) {
2788                         db_printf("\n");
2789                         db_iprintf(" ...");
2790                         count = 0;
2791                 } else
2792                         db_printf(",");
2793                 count++;
2794
2795                 db_printf("(off=0x%jx,page=0x%jx)",
2796                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2797
2798                 if (db_pager_quit)
2799                         break;
2800         }
2801         if (count != 0)
2802                 db_printf("\n");
2803         db_indent -= 2;
2804 }
2805
2806 /* XXX. */
2807 #undef count
2808
2809 /* XXX need this non-static entry for calling from vm_map_print. */
2810 void
2811 vm_object_print(
2812         /* db_expr_t */ long addr,
2813         boolean_t have_addr,
2814         /* db_expr_t */ long count,
2815         char *modif)
2816 {
2817         vm_object_print_static(addr, have_addr, count, modif);
2818 }
2819
2820 DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE)
2821 {
2822         vm_object_t object;
2823         vm_pindex_t fidx;
2824         vm_paddr_t pa;
2825         vm_page_t m, prev_m;
2826         int rcount;
2827
2828         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2829                 db_printf("new object: %p\n", (void *)object);
2830                 if (db_pager_quit)
2831                         return;
2832
2833                 rcount = 0;
2834                 fidx = 0;
2835                 pa = -1;
2836                 TAILQ_FOREACH(m, &object->memq, listq) {
2837                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2838                             prev_m->pindex + 1 != m->pindex) {
2839                                 if (rcount) {
2840                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2841                                                 (long)fidx, rcount, (long)pa);
2842                                         if (db_pager_quit)
2843                                                 return;
2844                                         rcount = 0;
2845                                 }
2846                         }                               
2847                         if (rcount &&
2848                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2849                                 ++rcount;
2850                                 continue;
2851                         }
2852                         if (rcount) {
2853                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2854                                         (long)fidx, rcount, (long)pa);
2855                                 if (db_pager_quit)
2856                                         return;
2857                         }
2858                         fidx = m->pindex;
2859                         pa = VM_PAGE_TO_PHYS(m);
2860                         rcount = 1;
2861                 }
2862                 if (rcount) {
2863                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2864                                 (long)fidx, rcount, (long)pa);
2865                         if (db_pager_quit)
2866                                 return;
2867                 }
2868         }
2869 }
2870 #endif /* DDB */