]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Support the NOCREAT flag for grab_valid_unlocked.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/lock.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/pctrie.h>
81 #include <sys/sysctl.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>           /* for curproc, pageproc */
84 #include <sys/refcount.h>
85 #include <sys/socket.h>
86 #include <sys/resourcevar.h>
87 #include <sys/refcount.h>
88 #include <sys/rwlock.h>
89 #include <sys/user.h>
90 #include <sys/vnode.h>
91 #include <sys/vmmeter.h>
92 #include <sys/sx.h>
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_radix.h>
108 #include <vm/vm_reserv.h>
109 #include <vm/uma.h>
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
116                     int pagerflags, int flags, boolean_t *allclean,
117                     boolean_t *eio);
118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
119                     boolean_t *allclean);
120 static void     vm_object_backing_remove(vm_object_t object);
121
122 /*
123  *      Virtual memory objects maintain the actual data
124  *      associated with allocated virtual memory.  A given
125  *      page of memory exists within exactly one object.
126  *
127  *      An object is only deallocated when all "references"
128  *      are given up.  Only one "reference" to a given
129  *      region of an object should be writeable.
130  *
131  *      Associated with each object is a list of all resident
132  *      memory pages belonging to that object; this list is
133  *      maintained by the "vm_page" module, and locked by the object's
134  *      lock.
135  *
136  *      Each object also records a "pager" routine which is
137  *      used to retrieve (and store) pages to the proper backing
138  *      storage.  In addition, objects may be backed by other
139  *      objects from which they were virtual-copied.
140  *
141  *      The only items within the object structure which are
142  *      modified after time of creation are:
143  *              reference count         locked by object's lock
144  *              pager routine           locked by object's lock
145  *
146  */
147
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;  /* lock for object list and count */
150
151 struct vm_object kernel_object_store;
152
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "VM object stats");
155
156 static counter_u64_t object_collapses = EARLY_COUNTER;
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160
161 static counter_u64_t object_bypasses = EARLY_COUNTER;
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165
166 static counter_u64_t object_collapse_waits = EARLY_COUNTER;
167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
168     &object_collapse_waits,
169     "Number of sleeps for collapse");
170
171 static void
172 counter_startup(void)
173 {
174
175         object_collapses = counter_u64_alloc(M_WAITOK);
176         object_bypasses = counter_u64_alloc(M_WAITOK);
177         object_collapse_waits = counter_u64_alloc(M_WAITOK);
178 }
179 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
180
181 static uma_zone_t obj_zone;
182
183 static int vm_object_zinit(void *mem, int size, int flags);
184
185 #ifdef INVARIANTS
186 static void vm_object_zdtor(void *mem, int size, void *arg);
187
188 static void
189 vm_object_zdtor(void *mem, int size, void *arg)
190 {
191         vm_object_t object;
192
193         object = (vm_object_t)mem;
194         KASSERT(object->ref_count == 0,
195             ("object %p ref_count = %d", object, object->ref_count));
196         KASSERT(TAILQ_EMPTY(&object->memq),
197             ("object %p has resident pages in its memq", object));
198         KASSERT(vm_radix_is_empty(&object->rtree),
199             ("object %p has resident pages in its trie", object));
200 #if VM_NRESERVLEVEL > 0
201         KASSERT(LIST_EMPTY(&object->rvq),
202             ("object %p has reservations",
203             object));
204 #endif
205         KASSERT(blockcount_read(&object->paging_in_progress) == 0,
206             ("object %p paging_in_progress = %d",
207             object, blockcount_read(&object->paging_in_progress)));
208         KASSERT(!vm_object_busied(object),
209             ("object %p busy = %d", object, blockcount_read(&object->busy)));
210         KASSERT(object->resident_page_count == 0,
211             ("object %p resident_page_count = %d",
212             object, object->resident_page_count));
213         KASSERT(object->shadow_count == 0,
214             ("object %p shadow_count = %d",
215             object, object->shadow_count));
216         KASSERT(object->type == OBJT_DEAD,
217             ("object %p has non-dead type %d",
218             object, object->type));
219 }
220 #endif
221
222 static int
223 vm_object_zinit(void *mem, int size, int flags)
224 {
225         vm_object_t object;
226
227         object = (vm_object_t)mem;
228         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
229
230         /* These are true for any object that has been freed */
231         object->type = OBJT_DEAD;
232         vm_radix_init(&object->rtree);
233         refcount_init(&object->ref_count, 0);
234         blockcount_init(&object->paging_in_progress);
235         blockcount_init(&object->busy);
236         object->resident_page_count = 0;
237         object->shadow_count = 0;
238         object->flags = OBJ_DEAD;
239
240         mtx_lock(&vm_object_list_mtx);
241         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242         mtx_unlock(&vm_object_list_mtx);
243         return (0);
244 }
245
246 static void
247 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
248     vm_object_t object, void *handle)
249 {
250
251         TAILQ_INIT(&object->memq);
252         LIST_INIT(&object->shadow_head);
253
254         object->type = type;
255         if (type == OBJT_SWAP)
256                 pctrie_init(&object->un_pager.swp.swp_blks);
257
258         /*
259          * Ensure that swap_pager_swapoff() iteration over object_list
260          * sees up to date type and pctrie head if it observed
261          * non-dead object.
262          */
263         atomic_thread_fence_rel();
264
265         object->pg_color = 0;
266         object->flags = flags;
267         object->size = size;
268         object->domain.dr_policy = NULL;
269         object->generation = 1;
270         object->cleangeneration = 1;
271         refcount_init(&object->ref_count, 1);
272         object->memattr = VM_MEMATTR_DEFAULT;
273         object->cred = NULL;
274         object->charge = 0;
275         object->handle = handle;
276         object->backing_object = NULL;
277         object->backing_object_offset = (vm_ooffset_t) 0;
278 #if VM_NRESERVLEVEL > 0
279         LIST_INIT(&object->rvq);
280 #endif
281         umtx_shm_object_init(object);
282 }
283
284 /*
285  *      vm_object_init:
286  *
287  *      Initialize the VM objects module.
288  */
289 void
290 vm_object_init(void)
291 {
292         TAILQ_INIT(&vm_object_list);
293         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
294         
295         rw_init(&kernel_object->lock, "kernel vm object");
296         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
297             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
298 #if VM_NRESERVLEVEL > 0
299         kernel_object->flags |= OBJ_COLORED;
300         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
301 #endif
302
303         /*
304          * The lock portion of struct vm_object must be type stable due
305          * to vm_pageout_fallback_object_lock locking a vm object
306          * without holding any references to it.
307          */
308         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
309 #ifdef INVARIANTS
310             vm_object_zdtor,
311 #else
312             NULL,
313 #endif
314             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315
316         vm_radix_zinit();
317 }
318
319 void
320 vm_object_clear_flag(vm_object_t object, u_short bits)
321 {
322
323         VM_OBJECT_ASSERT_WLOCKED(object);
324         object->flags &= ~bits;
325 }
326
327 /*
328  *      Sets the default memory attribute for the specified object.  Pages
329  *      that are allocated to this object are by default assigned this memory
330  *      attribute.
331  *
332  *      Presently, this function must be called before any pages are allocated
333  *      to the object.  In the future, this requirement may be relaxed for
334  *      "default" and "swap" objects.
335  */
336 int
337 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
338 {
339
340         VM_OBJECT_ASSERT_WLOCKED(object);
341         switch (object->type) {
342         case OBJT_DEFAULT:
343         case OBJT_DEVICE:
344         case OBJT_MGTDEVICE:
345         case OBJT_PHYS:
346         case OBJT_SG:
347         case OBJT_SWAP:
348         case OBJT_VNODE:
349                 if (!TAILQ_EMPTY(&object->memq))
350                         return (KERN_FAILURE);
351                 break;
352         case OBJT_DEAD:
353                 return (KERN_INVALID_ARGUMENT);
354         default:
355                 panic("vm_object_set_memattr: object %p is of undefined type",
356                     object);
357         }
358         object->memattr = memattr;
359         return (KERN_SUCCESS);
360 }
361
362 void
363 vm_object_pip_add(vm_object_t object, short i)
364 {
365
366         if (i > 0)
367                 blockcount_acquire(&object->paging_in_progress, i);
368 }
369
370 void
371 vm_object_pip_wakeup(vm_object_t object)
372 {
373
374         vm_object_pip_wakeupn(object, 1);
375 }
376
377 void
378 vm_object_pip_wakeupn(vm_object_t object, short i)
379 {
380
381         if (i > 0)
382                 blockcount_release(&object->paging_in_progress, i);
383 }
384
385 /*
386  * Atomically drop the object lock and wait for pip to drain.  This protects
387  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
388  * on return.
389  */
390 static void
391 vm_object_pip_sleep(vm_object_t object, const char *waitid)
392 {
393
394         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
395             waitid, PVM | PDROP);
396 }
397
398 void
399 vm_object_pip_wait(vm_object_t object, const char *waitid)
400 {
401
402         VM_OBJECT_ASSERT_WLOCKED(object);
403
404         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
405             PVM);
406 }
407
408 void
409 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
410 {
411
412         VM_OBJECT_ASSERT_UNLOCKED(object);
413
414         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
415 }
416
417 /*
418  *      vm_object_allocate:
419  *
420  *      Returns a new object with the given size.
421  */
422 vm_object_t
423 vm_object_allocate(objtype_t type, vm_pindex_t size)
424 {
425         vm_object_t object;
426         u_short flags;
427
428         switch (type) {
429         case OBJT_DEAD:
430                 panic("vm_object_allocate: can't create OBJT_DEAD");
431         case OBJT_DEFAULT:
432         case OBJT_SWAP:
433                 flags = OBJ_COLORED;
434                 break;
435         case OBJT_DEVICE:
436         case OBJT_SG:
437                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
438                 break;
439         case OBJT_MGTDEVICE:
440                 flags = OBJ_FICTITIOUS;
441                 break;
442         case OBJT_PHYS:
443                 flags = OBJ_UNMANAGED;
444                 break;
445         case OBJT_VNODE:
446                 flags = 0;
447                 break;
448         default:
449                 panic("vm_object_allocate: type %d is undefined", type);
450         }
451         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
452         _vm_object_allocate(type, size, flags, object, NULL);
453
454         return (object);
455 }
456
457 /*
458  *      vm_object_allocate_anon:
459  *
460  *      Returns a new default object of the given size and marked as
461  *      anonymous memory for special split/collapse handling.  Color
462  *      to be initialized by the caller.
463  */
464 vm_object_t
465 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
466     struct ucred *cred, vm_size_t charge)
467 {
468         vm_object_t handle, object;
469
470         if (backing_object == NULL)
471                 handle = NULL;
472         else if ((backing_object->flags & OBJ_ANON) != 0)
473                 handle = backing_object->handle;
474         else
475                 handle = backing_object;
476         object = uma_zalloc(obj_zone, M_WAITOK);
477         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
478             object, handle);
479         object->cred = cred;
480         object->charge = cred != NULL ? charge : 0;
481         return (object);
482 }
483
484 static void
485 vm_object_reference_vnode(vm_object_t object)
486 {
487         u_int old;
488
489         /*
490          * vnode objects need the lock for the first reference
491          * to serialize with vnode_object_deallocate().
492          */
493         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
494                 VM_OBJECT_RLOCK(object);
495                 old = refcount_acquire(&object->ref_count);
496                 if (object->type == OBJT_VNODE && old == 0)
497                         vref(object->handle);
498                 VM_OBJECT_RUNLOCK(object);
499         }
500 }
501
502 /*
503  *      vm_object_reference:
504  *
505  *      Acquires a reference to the given object.
506  */
507 void
508 vm_object_reference(vm_object_t object)
509 {
510
511         if (object == NULL)
512                 return;
513
514         if (object->type == OBJT_VNODE)
515                 vm_object_reference_vnode(object);
516         else
517                 refcount_acquire(&object->ref_count);
518         KASSERT((object->flags & OBJ_DEAD) == 0,
519             ("vm_object_reference: Referenced dead object."));
520 }
521
522 /*
523  *      vm_object_reference_locked:
524  *
525  *      Gets another reference to the given object.
526  *
527  *      The object must be locked.
528  */
529 void
530 vm_object_reference_locked(vm_object_t object)
531 {
532         u_int old;
533
534         VM_OBJECT_ASSERT_LOCKED(object);
535         old = refcount_acquire(&object->ref_count);
536         if (object->type == OBJT_VNODE && old == 0)
537                 vref(object->handle);
538         KASSERT((object->flags & OBJ_DEAD) == 0,
539             ("vm_object_reference: Referenced dead object."));
540 }
541
542 /*
543  * Handle deallocating an object of type OBJT_VNODE.
544  */
545 static void
546 vm_object_deallocate_vnode(vm_object_t object)
547 {
548         struct vnode *vp = (struct vnode *) object->handle;
549         bool last;
550
551         KASSERT(object->type == OBJT_VNODE,
552             ("vm_object_deallocate_vnode: not a vnode object"));
553         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
554
555         /* Object lock to protect handle lookup. */
556         last = refcount_release(&object->ref_count);
557         VM_OBJECT_RUNLOCK(object);
558
559         if (!last)
560                 return;
561
562         if (!umtx_shm_vnobj_persistent)
563                 umtx_shm_object_terminated(object);
564
565         /* vrele may need the vnode lock. */
566         vrele(vp);
567 }
568
569
570 /*
571  * We dropped a reference on an object and discovered that it had a
572  * single remaining shadow.  This is a sibling of the reference we
573  * dropped.  Attempt to collapse the sibling and backing object.
574  */
575 static vm_object_t
576 vm_object_deallocate_anon(vm_object_t backing_object)
577 {
578         vm_object_t object;
579
580         /* Fetch the final shadow.  */
581         object = LIST_FIRST(&backing_object->shadow_head);
582         KASSERT(object != NULL && backing_object->shadow_count == 1,
583             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
584             backing_object->ref_count, backing_object->shadow_count));
585         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
586             ("invalid shadow object %p", object));
587
588         if (!VM_OBJECT_TRYWLOCK(object)) {
589                 /*
590                  * Prevent object from disappearing since we do not have a
591                  * reference.
592                  */
593                 vm_object_pip_add(object, 1);
594                 VM_OBJECT_WUNLOCK(backing_object);
595                 VM_OBJECT_WLOCK(object);
596                 vm_object_pip_wakeup(object);
597         } else
598                 VM_OBJECT_WUNLOCK(backing_object);
599
600         /*
601          * Check for a collapse/terminate race with the last reference holder.
602          */
603         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
604             !refcount_acquire_if_not_zero(&object->ref_count)) {
605                 VM_OBJECT_WUNLOCK(object);
606                 return (NULL);
607         }
608         backing_object = object->backing_object;
609         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
610                 vm_object_collapse(object);
611         VM_OBJECT_WUNLOCK(object);
612
613         return (object);
614 }
615
616 /*
617  *      vm_object_deallocate:
618  *
619  *      Release a reference to the specified object,
620  *      gained either through a vm_object_allocate
621  *      or a vm_object_reference call.  When all references
622  *      are gone, storage associated with this object
623  *      may be relinquished.
624  *
625  *      No object may be locked.
626  */
627 void
628 vm_object_deallocate(vm_object_t object)
629 {
630         vm_object_t temp;
631         bool released;
632
633         while (object != NULL) {
634                 /*
635                  * If the reference count goes to 0 we start calling
636                  * vm_object_terminate() on the object chain.  A ref count
637                  * of 1 may be a special case depending on the shadow count
638                  * being 0 or 1.  These cases require a write lock on the
639                  * object.
640                  */
641                 if ((object->flags & OBJ_ANON) == 0)
642                         released = refcount_release_if_gt(&object->ref_count, 1);
643                 else
644                         released = refcount_release_if_gt(&object->ref_count, 2);
645                 if (released)
646                         return;
647
648                 if (object->type == OBJT_VNODE) {
649                         VM_OBJECT_RLOCK(object);
650                         if (object->type == OBJT_VNODE) {
651                                 vm_object_deallocate_vnode(object);
652                                 return;
653                         }
654                         VM_OBJECT_RUNLOCK(object);
655                 }
656
657                 VM_OBJECT_WLOCK(object);
658                 KASSERT(object->ref_count > 0,
659                     ("vm_object_deallocate: object deallocated too many times: %d",
660                     object->type));
661
662                 /*
663                  * If this is not the final reference to an anonymous
664                  * object we may need to collapse the shadow chain.
665                  */
666                 if (!refcount_release(&object->ref_count)) {
667                         if (object->ref_count > 1 ||
668                             object->shadow_count == 0) {
669                                 if ((object->flags & OBJ_ANON) != 0 &&
670                                     object->ref_count == 1)
671                                         vm_object_set_flag(object,
672                                             OBJ_ONEMAPPING);
673                                 VM_OBJECT_WUNLOCK(object);
674                                 return;
675                         }
676
677                         /* Handle collapsing last ref on anonymous objects. */
678                         object = vm_object_deallocate_anon(object);
679                         continue;
680                 }
681
682                 /*
683                  * Handle the final reference to an object.  We restart
684                  * the loop with the backing object to avoid recursion.
685                  */
686                 umtx_shm_object_terminated(object);
687                 temp = object->backing_object;
688                 if (temp != NULL) {
689                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
690                             ("shadowed tmpfs v_object 2 %p", object));
691                         vm_object_backing_remove(object);
692                 }
693
694                 KASSERT((object->flags & OBJ_DEAD) == 0,
695                     ("vm_object_deallocate: Terminating dead object."));
696                 vm_object_set_flag(object, OBJ_DEAD);
697                 vm_object_terminate(object);
698                 object = temp;
699         }
700 }
701
702 /*
703  *      vm_object_destroy removes the object from the global object list
704  *      and frees the space for the object.
705  */
706 void
707 vm_object_destroy(vm_object_t object)
708 {
709
710         /*
711          * Release the allocation charge.
712          */
713         if (object->cred != NULL) {
714                 swap_release_by_cred(object->charge, object->cred);
715                 object->charge = 0;
716                 crfree(object->cred);
717                 object->cred = NULL;
718         }
719
720         /*
721          * Free the space for the object.
722          */
723         uma_zfree(obj_zone, object);
724 }
725
726 static void
727 vm_object_backing_remove_locked(vm_object_t object)
728 {
729         vm_object_t backing_object;
730
731         backing_object = object->backing_object;
732         VM_OBJECT_ASSERT_WLOCKED(object);
733         VM_OBJECT_ASSERT_WLOCKED(backing_object);
734
735         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
736             ("vm_object_backing_remove: Removing collapsing object."));
737
738         if ((object->flags & OBJ_SHADOWLIST) != 0) {
739                 LIST_REMOVE(object, shadow_list);
740                 backing_object->shadow_count--;
741                 object->flags &= ~OBJ_SHADOWLIST;
742         }
743         object->backing_object = NULL;
744 }
745
746 static void
747 vm_object_backing_remove(vm_object_t object)
748 {
749         vm_object_t backing_object;
750
751         VM_OBJECT_ASSERT_WLOCKED(object);
752
753         if ((object->flags & OBJ_SHADOWLIST) != 0) {
754                 backing_object = object->backing_object;
755                 VM_OBJECT_WLOCK(backing_object);
756                 vm_object_backing_remove_locked(object);
757                 VM_OBJECT_WUNLOCK(backing_object);
758         } else
759                 object->backing_object = NULL;
760 }
761
762 static void
763 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
764 {
765
766         VM_OBJECT_ASSERT_WLOCKED(object);
767
768         if ((backing_object->flags & OBJ_ANON) != 0) {
769                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
770                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
771                     shadow_list);
772                 backing_object->shadow_count++;
773                 object->flags |= OBJ_SHADOWLIST;
774         }
775         object->backing_object = backing_object;
776 }
777
778 static void
779 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
780 {
781
782         VM_OBJECT_ASSERT_WLOCKED(object);
783
784         if ((backing_object->flags & OBJ_ANON) != 0) {
785                 VM_OBJECT_WLOCK(backing_object);
786                 vm_object_backing_insert_locked(object, backing_object);
787                 VM_OBJECT_WUNLOCK(backing_object);
788         } else
789                 object->backing_object = backing_object;
790 }
791
792 /*
793  * Insert an object into a backing_object's shadow list with an additional
794  * reference to the backing_object added.
795  */
796 static void
797 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
798 {
799
800         VM_OBJECT_ASSERT_WLOCKED(object);
801
802         if ((backing_object->flags & OBJ_ANON) != 0) {
803                 VM_OBJECT_WLOCK(backing_object);
804                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
805                     ("shadowing dead anonymous object"));
806                 vm_object_reference_locked(backing_object);
807                 vm_object_backing_insert_locked(object, backing_object);
808                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
809                 VM_OBJECT_WUNLOCK(backing_object);
810         } else {
811                 vm_object_reference(backing_object);
812                 object->backing_object = backing_object;
813         }
814 }
815
816 /*
817  * Transfer a backing reference from backing_object to object.
818  */
819 static void
820 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
821 {
822         vm_object_t new_backing_object;
823
824         /*
825          * Note that the reference to backing_object->backing_object
826          * moves from within backing_object to within object.
827          */
828         vm_object_backing_remove_locked(object);
829         new_backing_object = backing_object->backing_object;
830         if (new_backing_object == NULL)
831                 return;
832         if ((new_backing_object->flags & OBJ_ANON) != 0) {
833                 VM_OBJECT_WLOCK(new_backing_object);
834                 vm_object_backing_remove_locked(backing_object);
835                 vm_object_backing_insert_locked(object, new_backing_object);
836                 VM_OBJECT_WUNLOCK(new_backing_object);
837         } else {
838                 object->backing_object = new_backing_object;
839                 backing_object->backing_object = NULL;
840         }
841 }
842
843 /*
844  * Wait for a concurrent collapse to settle.
845  */
846 static void
847 vm_object_collapse_wait(vm_object_t object)
848 {
849
850         VM_OBJECT_ASSERT_WLOCKED(object);
851
852         while ((object->flags & OBJ_COLLAPSING) != 0) {
853                 vm_object_pip_wait(object, "vmcolwait");
854                 counter_u64_add(object_collapse_waits, 1);
855         }
856 }
857
858 /*
859  * Waits for a backing object to clear a pending collapse and returns
860  * it locked if it is an ANON object.
861  */
862 static vm_object_t
863 vm_object_backing_collapse_wait(vm_object_t object)
864 {
865         vm_object_t backing_object;
866
867         VM_OBJECT_ASSERT_WLOCKED(object);
868
869         for (;;) {
870                 backing_object = object->backing_object;
871                 if (backing_object == NULL ||
872                     (backing_object->flags & OBJ_ANON) == 0)
873                         return (NULL);
874                 VM_OBJECT_WLOCK(backing_object);
875                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
876                         break;
877                 VM_OBJECT_WUNLOCK(object);
878                 vm_object_pip_sleep(backing_object, "vmbckwait");
879                 counter_u64_add(object_collapse_waits, 1);
880                 VM_OBJECT_WLOCK(object);
881         }
882         return (backing_object);
883 }
884
885 /*
886  *      vm_object_terminate_pages removes any remaining pageable pages
887  *      from the object and resets the object to an empty state.
888  */
889 static void
890 vm_object_terminate_pages(vm_object_t object)
891 {
892         vm_page_t p, p_next;
893
894         VM_OBJECT_ASSERT_WLOCKED(object);
895
896         /*
897          * Free any remaining pageable pages.  This also removes them from the
898          * paging queues.  However, don't free wired pages, just remove them
899          * from the object.  Rather than incrementally removing each page from
900          * the object, the page and object are reset to any empty state. 
901          */
902         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
903                 vm_page_assert_unbusied(p);
904                 KASSERT(p->object == object &&
905                     (p->ref_count & VPRC_OBJREF) != 0,
906                     ("vm_object_terminate_pages: page %p is inconsistent", p));
907
908                 p->object = NULL;
909                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
910                         VM_CNT_INC(v_pfree);
911                         vm_page_free(p);
912                 }
913         }
914
915         /*
916          * If the object contained any pages, then reset it to an empty state.
917          * None of the object's fields, including "resident_page_count", were
918          * modified by the preceding loop.
919          */
920         if (object->resident_page_count != 0) {
921                 vm_radix_reclaim_allnodes(&object->rtree);
922                 TAILQ_INIT(&object->memq);
923                 object->resident_page_count = 0;
924                 if (object->type == OBJT_VNODE)
925                         vdrop(object->handle);
926         }
927 }
928
929 /*
930  *      vm_object_terminate actually destroys the specified object, freeing
931  *      up all previously used resources.
932  *
933  *      The object must be locked.
934  *      This routine may block.
935  */
936 void
937 vm_object_terminate(vm_object_t object)
938 {
939
940         VM_OBJECT_ASSERT_WLOCKED(object);
941         KASSERT((object->flags & OBJ_DEAD) != 0,
942             ("terminating non-dead obj %p", object));
943         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
944             ("terminating collapsing obj %p", object));
945         KASSERT(object->backing_object == NULL,
946             ("terminating shadow obj %p", object));
947
948         /*
949          * wait for the pageout daemon to be done with the object
950          */
951         vm_object_pip_wait(object, "objtrm");
952
953         KASSERT(!blockcount_read(&object->paging_in_progress),
954             ("vm_object_terminate: pageout in progress"));
955
956         KASSERT(object->ref_count == 0,
957             ("vm_object_terminate: object with references, ref_count=%d",
958             object->ref_count));
959
960         if ((object->flags & OBJ_PG_DTOR) == 0)
961                 vm_object_terminate_pages(object);
962
963 #if VM_NRESERVLEVEL > 0
964         if (__predict_false(!LIST_EMPTY(&object->rvq)))
965                 vm_reserv_break_all(object);
966 #endif
967
968         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
969             object->type == OBJT_SWAP,
970             ("%s: non-swap obj %p has cred", __func__, object));
971
972         /*
973          * Let the pager know object is dead.
974          */
975         vm_pager_deallocate(object);
976         VM_OBJECT_WUNLOCK(object);
977
978         vm_object_destroy(object);
979 }
980
981 /*
982  * Make the page read-only so that we can clear the object flags.  However, if
983  * this is a nosync mmap then the object is likely to stay dirty so do not
984  * mess with the page and do not clear the object flags.  Returns TRUE if the
985  * page should be flushed, and FALSE otherwise.
986  */
987 static boolean_t
988 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
989 {
990
991         vm_page_assert_busied(p);
992
993         /*
994          * If we have been asked to skip nosync pages and this is a
995          * nosync page, skip it.  Note that the object flags were not
996          * cleared in this case so we do not have to set them.
997          */
998         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
999                 *allclean = FALSE;
1000                 return (FALSE);
1001         } else {
1002                 pmap_remove_write(p);
1003                 return (p->dirty != 0);
1004         }
1005 }
1006
1007 /*
1008  *      vm_object_page_clean
1009  *
1010  *      Clean all dirty pages in the specified range of object.  Leaves page 
1011  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1012  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1013  *      leaving the object dirty.
1014  *
1015  *      For swap objects backing tmpfs regular files, do not flush anything,
1016  *      but remove write protection on the mapped pages to update mtime through
1017  *      mmaped writes.
1018  *
1019  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1020  *      synchronous clustering mode implementation.
1021  *
1022  *      Odd semantics: if start == end, we clean everything.
1023  *
1024  *      The object must be locked.
1025  *
1026  *      Returns FALSE if some page from the range was not written, as
1027  *      reported by the pager, and TRUE otherwise.
1028  */
1029 boolean_t
1030 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1031     int flags)
1032 {
1033         vm_page_t np, p;
1034         vm_pindex_t pi, tend, tstart;
1035         int curgeneration, n, pagerflags;
1036         boolean_t eio, res, allclean;
1037
1038         VM_OBJECT_ASSERT_WLOCKED(object);
1039
1040         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1041                 return (TRUE);
1042
1043         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1044             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1045         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1046
1047         tstart = OFF_TO_IDX(start);
1048         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1049         allclean = tstart == 0 && tend >= object->size;
1050         res = TRUE;
1051
1052 rescan:
1053         curgeneration = object->generation;
1054
1055         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1056                 pi = p->pindex;
1057                 if (pi >= tend)
1058                         break;
1059                 np = TAILQ_NEXT(p, listq);
1060                 if (vm_page_none_valid(p))
1061                         continue;
1062                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1063                         if (object->generation != curgeneration &&
1064                             (flags & OBJPC_SYNC) != 0)
1065                                 goto rescan;
1066                         np = vm_page_find_least(object, pi);
1067                         continue;
1068                 }
1069                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1070                         vm_page_xunbusy(p);
1071                         continue;
1072                 }
1073                 if (object->type == OBJT_VNODE) {
1074                         n = vm_object_page_collect_flush(object, p, pagerflags,
1075                             flags, &allclean, &eio);
1076                         if (eio) {
1077                                 res = FALSE;
1078                                 allclean = FALSE;
1079                         }
1080                         if (object->generation != curgeneration &&
1081                             (flags & OBJPC_SYNC) != 0)
1082                                 goto rescan;
1083
1084                         /*
1085                          * If the VOP_PUTPAGES() did a truncated write, so
1086                          * that even the first page of the run is not fully
1087                          * written, vm_pageout_flush() returns 0 as the run
1088                          * length.  Since the condition that caused truncated
1089                          * write may be permanent, e.g. exhausted free space,
1090                          * accepting n == 0 would cause an infinite loop.
1091                          *
1092                          * Forwarding the iterator leaves the unwritten page
1093                          * behind, but there is not much we can do there if
1094                          * filesystem refuses to write it.
1095                          */
1096                         if (n == 0) {
1097                                 n = 1;
1098                                 allclean = FALSE;
1099                         }
1100                 } else {
1101                         n = 1;
1102                         vm_page_xunbusy(p);
1103                 }
1104                 np = vm_page_find_least(object, pi + n);
1105         }
1106 #if 0
1107         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1108 #endif
1109
1110         /*
1111          * Leave updating cleangeneration for tmpfs objects to tmpfs
1112          * scan.  It needs to update mtime, which happens for other
1113          * filesystems during page writeouts.
1114          */
1115         if (allclean && object->type == OBJT_VNODE)
1116                 object->cleangeneration = curgeneration;
1117         return (res);
1118 }
1119
1120 static int
1121 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1122     int flags, boolean_t *allclean, boolean_t *eio)
1123 {
1124         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1125         int count, i, mreq, runlen;
1126
1127         vm_page_lock_assert(p, MA_NOTOWNED);
1128         vm_page_assert_xbusied(p);
1129         VM_OBJECT_ASSERT_WLOCKED(object);
1130
1131         count = 1;
1132         mreq = 0;
1133
1134         for (tp = p; count < vm_pageout_page_count; count++) {
1135                 tp = vm_page_next(tp);
1136                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1137                         break;
1138                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1139                         vm_page_xunbusy(tp);
1140                         break;
1141                 }
1142         }
1143
1144         for (p_first = p; count < vm_pageout_page_count; count++) {
1145                 tp = vm_page_prev(p_first);
1146                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1147                         break;
1148                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1149                         vm_page_xunbusy(tp);
1150                         break;
1151                 }
1152                 p_first = tp;
1153                 mreq++;
1154         }
1155
1156         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1157                 ma[i] = tp;
1158
1159         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1160         return (runlen);
1161 }
1162
1163 /*
1164  * Note that there is absolutely no sense in writing out
1165  * anonymous objects, so we track down the vnode object
1166  * to write out.
1167  * We invalidate (remove) all pages from the address space
1168  * for semantic correctness.
1169  *
1170  * If the backing object is a device object with unmanaged pages, then any
1171  * mappings to the specified range of pages must be removed before this
1172  * function is called.
1173  *
1174  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1175  * may start out with a NULL object.
1176  */
1177 boolean_t
1178 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1179     boolean_t syncio, boolean_t invalidate)
1180 {
1181         vm_object_t backing_object;
1182         struct vnode *vp;
1183         struct mount *mp;
1184         int error, flags, fsync_after;
1185         boolean_t res;
1186
1187         if (object == NULL)
1188                 return (TRUE);
1189         res = TRUE;
1190         error = 0;
1191         VM_OBJECT_WLOCK(object);
1192         while ((backing_object = object->backing_object) != NULL) {
1193                 VM_OBJECT_WLOCK(backing_object);
1194                 offset += object->backing_object_offset;
1195                 VM_OBJECT_WUNLOCK(object);
1196                 object = backing_object;
1197                 if (object->size < OFF_TO_IDX(offset + size))
1198                         size = IDX_TO_OFF(object->size) - offset;
1199         }
1200         /*
1201          * Flush pages if writing is allowed, invalidate them
1202          * if invalidation requested.  Pages undergoing I/O
1203          * will be ignored by vm_object_page_remove().
1204          *
1205          * We cannot lock the vnode and then wait for paging
1206          * to complete without deadlocking against vm_fault.
1207          * Instead we simply call vm_object_page_remove() and
1208          * allow it to block internally on a page-by-page
1209          * basis when it encounters pages undergoing async
1210          * I/O.
1211          */
1212         if (object->type == OBJT_VNODE &&
1213             vm_object_mightbedirty(object) != 0 &&
1214             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1215                 VM_OBJECT_WUNLOCK(object);
1216                 (void) vn_start_write(vp, &mp, V_WAIT);
1217                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1218                 if (syncio && !invalidate && offset == 0 &&
1219                     atop(size) == object->size) {
1220                         /*
1221                          * If syncing the whole mapping of the file,
1222                          * it is faster to schedule all the writes in
1223                          * async mode, also allowing the clustering,
1224                          * and then wait for i/o to complete.
1225                          */
1226                         flags = 0;
1227                         fsync_after = TRUE;
1228                 } else {
1229                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1230                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1231                         fsync_after = FALSE;
1232                 }
1233                 VM_OBJECT_WLOCK(object);
1234                 res = vm_object_page_clean(object, offset, offset + size,
1235                     flags);
1236                 VM_OBJECT_WUNLOCK(object);
1237                 if (fsync_after)
1238                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1239                 VOP_UNLOCK(vp);
1240                 vn_finished_write(mp);
1241                 if (error != 0)
1242                         res = FALSE;
1243                 VM_OBJECT_WLOCK(object);
1244         }
1245         if ((object->type == OBJT_VNODE ||
1246              object->type == OBJT_DEVICE) && invalidate) {
1247                 if (object->type == OBJT_DEVICE)
1248                         /*
1249                          * The option OBJPR_NOTMAPPED must be passed here
1250                          * because vm_object_page_remove() cannot remove
1251                          * unmanaged mappings.
1252                          */
1253                         flags = OBJPR_NOTMAPPED;
1254                 else if (old_msync)
1255                         flags = 0;
1256                 else
1257                         flags = OBJPR_CLEANONLY;
1258                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1259                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1260         }
1261         VM_OBJECT_WUNLOCK(object);
1262         return (res);
1263 }
1264
1265 /*
1266  * Determine whether the given advice can be applied to the object.  Advice is
1267  * not applied to unmanaged pages since they never belong to page queues, and
1268  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1269  * have been mapped at most once.
1270  */
1271 static bool
1272 vm_object_advice_applies(vm_object_t object, int advice)
1273 {
1274
1275         if ((object->flags & OBJ_UNMANAGED) != 0)
1276                 return (false);
1277         if (advice != MADV_FREE)
1278                 return (true);
1279         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1280             (OBJ_ONEMAPPING | OBJ_ANON));
1281 }
1282
1283 static void
1284 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1285     vm_size_t size)
1286 {
1287
1288         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1289                 swap_pager_freespace(object, pindex, size);
1290 }
1291
1292 /*
1293  *      vm_object_madvise:
1294  *
1295  *      Implements the madvise function at the object/page level.
1296  *
1297  *      MADV_WILLNEED   (any object)
1298  *
1299  *          Activate the specified pages if they are resident.
1300  *
1301  *      MADV_DONTNEED   (any object)
1302  *
1303  *          Deactivate the specified pages if they are resident.
1304  *
1305  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1306  *                       OBJ_ONEMAPPING only)
1307  *
1308  *          Deactivate and clean the specified pages if they are
1309  *          resident.  This permits the process to reuse the pages
1310  *          without faulting or the kernel to reclaim the pages
1311  *          without I/O.
1312  */
1313 void
1314 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1315     int advice)
1316 {
1317         vm_pindex_t tpindex;
1318         vm_object_t backing_object, tobject;
1319         vm_page_t m, tm;
1320
1321         if (object == NULL)
1322                 return;
1323
1324 relookup:
1325         VM_OBJECT_WLOCK(object);
1326         if (!vm_object_advice_applies(object, advice)) {
1327                 VM_OBJECT_WUNLOCK(object);
1328                 return;
1329         }
1330         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1331                 tobject = object;
1332
1333                 /*
1334                  * If the next page isn't resident in the top-level object, we
1335                  * need to search the shadow chain.  When applying MADV_FREE, we
1336                  * take care to release any swap space used to store
1337                  * non-resident pages.
1338                  */
1339                 if (m == NULL || pindex < m->pindex) {
1340                         /*
1341                          * Optimize a common case: if the top-level object has
1342                          * no backing object, we can skip over the non-resident
1343                          * range in constant time.
1344                          */
1345                         if (object->backing_object == NULL) {
1346                                 tpindex = (m != NULL && m->pindex < end) ?
1347                                     m->pindex : end;
1348                                 vm_object_madvise_freespace(object, advice,
1349                                     pindex, tpindex - pindex);
1350                                 if ((pindex = tpindex) == end)
1351                                         break;
1352                                 goto next_page;
1353                         }
1354
1355                         tpindex = pindex;
1356                         do {
1357                                 vm_object_madvise_freespace(tobject, advice,
1358                                     tpindex, 1);
1359                                 /*
1360                                  * Prepare to search the next object in the
1361                                  * chain.
1362                                  */
1363                                 backing_object = tobject->backing_object;
1364                                 if (backing_object == NULL)
1365                                         goto next_pindex;
1366                                 VM_OBJECT_WLOCK(backing_object);
1367                                 tpindex +=
1368                                     OFF_TO_IDX(tobject->backing_object_offset);
1369                                 if (tobject != object)
1370                                         VM_OBJECT_WUNLOCK(tobject);
1371                                 tobject = backing_object;
1372                                 if (!vm_object_advice_applies(tobject, advice))
1373                                         goto next_pindex;
1374                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1375                             NULL);
1376                 } else {
1377 next_page:
1378                         tm = m;
1379                         m = TAILQ_NEXT(m, listq);
1380                 }
1381
1382                 /*
1383                  * If the page is not in a normal state, skip it.  The page
1384                  * can not be invalidated while the object lock is held.
1385                  */
1386                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1387                         goto next_pindex;
1388                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1389                     ("vm_object_madvise: page %p is fictitious", tm));
1390                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1391                     ("vm_object_madvise: page %p is not managed", tm));
1392                 if (vm_page_tryxbusy(tm) == 0) {
1393                         if (object != tobject)
1394                                 VM_OBJECT_WUNLOCK(object);
1395                         if (advice == MADV_WILLNEED) {
1396                                 /*
1397                                  * Reference the page before unlocking and
1398                                  * sleeping so that the page daemon is less
1399                                  * likely to reclaim it.
1400                                  */
1401                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1402                         }
1403                         vm_page_busy_sleep(tm, "madvpo", false);
1404                         goto relookup;
1405                 }
1406                 vm_page_advise(tm, advice);
1407                 vm_page_xunbusy(tm);
1408                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1409 next_pindex:
1410                 if (tobject != object)
1411                         VM_OBJECT_WUNLOCK(tobject);
1412         }
1413         VM_OBJECT_WUNLOCK(object);
1414 }
1415
1416 /*
1417  *      vm_object_shadow:
1418  *
1419  *      Create a new object which is backed by the
1420  *      specified existing object range.  The source
1421  *      object reference is deallocated.
1422  *
1423  *      The new object and offset into that object
1424  *      are returned in the source parameters.
1425  */
1426 void
1427 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1428     struct ucred *cred, bool shared)
1429 {
1430         vm_object_t source;
1431         vm_object_t result;
1432
1433         source = *object;
1434
1435         /*
1436          * Don't create the new object if the old object isn't shared.
1437          *
1438          * If we hold the only reference we can guarantee that it won't
1439          * increase while we have the map locked.  Otherwise the race is
1440          * harmless and we will end up with an extra shadow object that
1441          * will be collapsed later.
1442          */
1443         if (source != NULL && source->ref_count == 1 &&
1444             (source->flags & OBJ_ANON) != 0)
1445                 return;
1446
1447         /*
1448          * Allocate a new object with the given length.
1449          */
1450         result = vm_object_allocate_anon(atop(length), source, cred, length);
1451
1452         /*
1453          * Store the offset into the source object, and fix up the offset into
1454          * the new object.
1455          */
1456         result->backing_object_offset = *offset;
1457
1458         if (shared || source != NULL) {
1459                 VM_OBJECT_WLOCK(result);
1460
1461                 /*
1462                  * The new object shadows the source object, adding a
1463                  * reference to it.  Our caller changes his reference
1464                  * to point to the new object, removing a reference to
1465                  * the source object.  Net result: no change of
1466                  * reference count, unless the caller needs to add one
1467                  * more reference due to forking a shared map entry.
1468                  */
1469                 if (shared) {
1470                         vm_object_reference_locked(result);
1471                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1472                 }
1473
1474                 /*
1475                  * Try to optimize the result object's page color when
1476                  * shadowing in order to maintain page coloring
1477                  * consistency in the combined shadowed object.
1478                  */
1479                 if (source != NULL) {
1480                         vm_object_backing_insert(result, source);
1481                         result->domain = source->domain;
1482 #if VM_NRESERVLEVEL > 0
1483                         result->flags |= source->flags & OBJ_COLORED;
1484                         result->pg_color = (source->pg_color +
1485                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1486                             1)) - 1);
1487 #endif
1488                 }
1489                 VM_OBJECT_WUNLOCK(result);
1490         }
1491
1492         /*
1493          * Return the new things
1494          */
1495         *offset = 0;
1496         *object = result;
1497 }
1498
1499 /*
1500  *      vm_object_split:
1501  *
1502  * Split the pages in a map entry into a new object.  This affords
1503  * easier removal of unused pages, and keeps object inheritance from
1504  * being a negative impact on memory usage.
1505  */
1506 void
1507 vm_object_split(vm_map_entry_t entry)
1508 {
1509         vm_page_t m, m_next;
1510         vm_object_t orig_object, new_object, backing_object;
1511         vm_pindex_t idx, offidxstart;
1512         vm_size_t size;
1513
1514         orig_object = entry->object.vm_object;
1515         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1516             ("vm_object_split:  Splitting object with multiple mappings."));
1517         if ((orig_object->flags & OBJ_ANON) == 0)
1518                 return;
1519         if (orig_object->ref_count <= 1)
1520                 return;
1521         VM_OBJECT_WUNLOCK(orig_object);
1522
1523         offidxstart = OFF_TO_IDX(entry->offset);
1524         size = atop(entry->end - entry->start);
1525
1526         /*
1527          * If swap_pager_copy() is later called, it will convert new_object
1528          * into a swap object.
1529          */
1530         new_object = vm_object_allocate_anon(size, orig_object,
1531             orig_object->cred, ptoa(size));
1532
1533         /*
1534          * We must wait for the orig_object to complete any in-progress
1535          * collapse so that the swap blocks are stable below.  The
1536          * additional reference on backing_object by new object will
1537          * prevent further collapse operations until split completes.
1538          */
1539         VM_OBJECT_WLOCK(orig_object);
1540         vm_object_collapse_wait(orig_object);
1541
1542         /*
1543          * At this point, the new object is still private, so the order in
1544          * which the original and new objects are locked does not matter.
1545          */
1546         VM_OBJECT_WLOCK(new_object);
1547         new_object->domain = orig_object->domain;
1548         backing_object = orig_object->backing_object;
1549         if (backing_object != NULL) {
1550                 vm_object_backing_insert_ref(new_object, backing_object);
1551                 new_object->backing_object_offset = 
1552                     orig_object->backing_object_offset + entry->offset;
1553         }
1554         if (orig_object->cred != NULL) {
1555                 crhold(orig_object->cred);
1556                 KASSERT(orig_object->charge >= ptoa(size),
1557                     ("orig_object->charge < 0"));
1558                 orig_object->charge -= ptoa(size);
1559         }
1560
1561         /*
1562          * Mark the split operation so that swap_pager_getpages() knows
1563          * that the object is in transition.
1564          */
1565         vm_object_set_flag(orig_object, OBJ_SPLIT);
1566 retry:
1567         m = vm_page_find_least(orig_object, offidxstart);
1568         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1569             m = m_next) {
1570                 m_next = TAILQ_NEXT(m, listq);
1571
1572                 /*
1573                  * We must wait for pending I/O to complete before we can
1574                  * rename the page.
1575                  *
1576                  * We do not have to VM_PROT_NONE the page as mappings should
1577                  * not be changed by this operation.
1578                  */
1579                 if (vm_page_tryxbusy(m) == 0) {
1580                         VM_OBJECT_WUNLOCK(new_object);
1581                         vm_page_sleep_if_busy(m, "spltwt");
1582                         VM_OBJECT_WLOCK(new_object);
1583                         goto retry;
1584                 }
1585
1586                 /*
1587                  * The page was left invalid.  Likely placed there by
1588                  * an incomplete fault.  Just remove and ignore.
1589                  */
1590                 if (vm_page_none_valid(m)) {
1591                         if (vm_page_remove(m))
1592                                 vm_page_free(m);
1593                         continue;
1594                 }
1595
1596                 /* vm_page_rename() will dirty the page. */
1597                 if (vm_page_rename(m, new_object, idx)) {
1598                         vm_page_xunbusy(m);
1599                         VM_OBJECT_WUNLOCK(new_object);
1600                         VM_OBJECT_WUNLOCK(orig_object);
1601                         vm_radix_wait();
1602                         VM_OBJECT_WLOCK(orig_object);
1603                         VM_OBJECT_WLOCK(new_object);
1604                         goto retry;
1605                 }
1606
1607 #if VM_NRESERVLEVEL > 0
1608                 /*
1609                  * If some of the reservation's allocated pages remain with
1610                  * the original object, then transferring the reservation to
1611                  * the new object is neither particularly beneficial nor
1612                  * particularly harmful as compared to leaving the reservation
1613                  * with the original object.  If, however, all of the
1614                  * reservation's allocated pages are transferred to the new
1615                  * object, then transferring the reservation is typically
1616                  * beneficial.  Determining which of these two cases applies
1617                  * would be more costly than unconditionally renaming the
1618                  * reservation.
1619                  */
1620                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1621 #endif
1622                 if (orig_object->type != OBJT_SWAP)
1623                         vm_page_xunbusy(m);
1624         }
1625         if (orig_object->type == OBJT_SWAP) {
1626                 /*
1627                  * swap_pager_copy() can sleep, in which case the orig_object's
1628                  * and new_object's locks are released and reacquired. 
1629                  */
1630                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1631                 TAILQ_FOREACH(m, &new_object->memq, listq)
1632                         vm_page_xunbusy(m);
1633         }
1634         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1635         VM_OBJECT_WUNLOCK(orig_object);
1636         VM_OBJECT_WUNLOCK(new_object);
1637         entry->object.vm_object = new_object;
1638         entry->offset = 0LL;
1639         vm_object_deallocate(orig_object);
1640         VM_OBJECT_WLOCK(new_object);
1641 }
1642
1643 static vm_page_t
1644 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1645 {
1646         vm_object_t backing_object;
1647
1648         VM_OBJECT_ASSERT_WLOCKED(object);
1649         backing_object = object->backing_object;
1650         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1651
1652         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1653             ("invalid ownership %p %p %p", p, object, backing_object));
1654         /* The page is only NULL when rename fails. */
1655         if (p == NULL) {
1656                 VM_OBJECT_WUNLOCK(object);
1657                 VM_OBJECT_WUNLOCK(backing_object);
1658                 vm_radix_wait();
1659         } else {
1660                 if (p->object == object)
1661                         VM_OBJECT_WUNLOCK(backing_object);
1662                 else
1663                         VM_OBJECT_WUNLOCK(object);
1664                 vm_page_busy_sleep(p, "vmocol", false);
1665         }
1666         VM_OBJECT_WLOCK(object);
1667         VM_OBJECT_WLOCK(backing_object);
1668         return (TAILQ_FIRST(&backing_object->memq));
1669 }
1670
1671 static bool
1672 vm_object_scan_all_shadowed(vm_object_t object)
1673 {
1674         vm_object_t backing_object;
1675         vm_page_t p, pp;
1676         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1677
1678         VM_OBJECT_ASSERT_WLOCKED(object);
1679         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1680
1681         backing_object = object->backing_object;
1682
1683         if ((backing_object->flags & OBJ_ANON) == 0)
1684                 return (false);
1685
1686         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1687         p = vm_page_find_least(backing_object, pi);
1688         ps = swap_pager_find_least(backing_object, pi);
1689
1690         /*
1691          * Only check pages inside the parent object's range and
1692          * inside the parent object's mapping of the backing object.
1693          */
1694         for (;; pi++) {
1695                 if (p != NULL && p->pindex < pi)
1696                         p = TAILQ_NEXT(p, listq);
1697                 if (ps < pi)
1698                         ps = swap_pager_find_least(backing_object, pi);
1699                 if (p == NULL && ps >= backing_object->size)
1700                         break;
1701                 else if (p == NULL)
1702                         pi = ps;
1703                 else
1704                         pi = MIN(p->pindex, ps);
1705
1706                 new_pindex = pi - backing_offset_index;
1707                 if (new_pindex >= object->size)
1708                         break;
1709
1710                 if (p != NULL) {
1711                         /*
1712                          * If the backing object page is busy a
1713                          * grandparent or older page may still be
1714                          * undergoing CoW.  It is not safe to collapse
1715                          * the backing object until it is quiesced.
1716                          */
1717                         if (vm_page_tryxbusy(p) == 0)
1718                                 return (false);
1719
1720                         /*
1721                          * We raced with the fault handler that left
1722                          * newly allocated invalid page on the object
1723                          * queue and retried.
1724                          */
1725                         if (!vm_page_all_valid(p))
1726                                 goto unbusy_ret;
1727                 }
1728
1729                 /*
1730                  * See if the parent has the page or if the parent's object
1731                  * pager has the page.  If the parent has the page but the page
1732                  * is not valid, the parent's object pager must have the page.
1733                  *
1734                  * If this fails, the parent does not completely shadow the
1735                  * object and we might as well give up now.
1736                  */
1737                 pp = vm_page_lookup(object, new_pindex);
1738
1739                 /*
1740                  * The valid check here is stable due to object lock
1741                  * being required to clear valid and initiate paging.
1742                  * Busy of p disallows fault handler to validate pp.
1743                  */
1744                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1745                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1746                         goto unbusy_ret;
1747                 if (p != NULL)
1748                         vm_page_xunbusy(p);
1749         }
1750         return (true);
1751
1752 unbusy_ret:
1753         if (p != NULL)
1754                 vm_page_xunbusy(p);
1755         return (false);
1756 }
1757
1758 static void
1759 vm_object_collapse_scan(vm_object_t object)
1760 {
1761         vm_object_t backing_object;
1762         vm_page_t next, p, pp;
1763         vm_pindex_t backing_offset_index, new_pindex;
1764
1765         VM_OBJECT_ASSERT_WLOCKED(object);
1766         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1767
1768         backing_object = object->backing_object;
1769         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1770
1771         /*
1772          * Our scan
1773          */
1774         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1775                 next = TAILQ_NEXT(p, listq);
1776                 new_pindex = p->pindex - backing_offset_index;
1777
1778                 /*
1779                  * Check for busy page
1780                  */
1781                 if (vm_page_tryxbusy(p) == 0) {
1782                         next = vm_object_collapse_scan_wait(object, p);
1783                         continue;
1784                 }
1785
1786                 KASSERT(object->backing_object == backing_object,
1787                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1788                     object->backing_object, backing_object));
1789                 KASSERT(p->object == backing_object,
1790                     ("vm_object_collapse_scan: object mismatch %p != %p",
1791                     p->object, backing_object));
1792
1793                 if (p->pindex < backing_offset_index ||
1794                     new_pindex >= object->size) {
1795                         if (backing_object->type == OBJT_SWAP)
1796                                 swap_pager_freespace(backing_object, p->pindex,
1797                                     1);
1798
1799                         KASSERT(!pmap_page_is_mapped(p),
1800                             ("freeing mapped page %p", p));
1801                         if (vm_page_remove(p))
1802                                 vm_page_free(p);
1803                         continue;
1804                 }
1805
1806                 if (!vm_page_all_valid(p)) {
1807                         KASSERT(!pmap_page_is_mapped(p),
1808                             ("freeing mapped page %p", p));
1809                         if (vm_page_remove(p))
1810                                 vm_page_free(p);
1811                         continue;
1812                 }
1813
1814                 pp = vm_page_lookup(object, new_pindex);
1815                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1816                         vm_page_xunbusy(p);
1817                         /*
1818                          * The page in the parent is busy and possibly not
1819                          * (yet) valid.  Until its state is finalized by the
1820                          * busy bit owner, we can't tell whether it shadows the
1821                          * original page.
1822                          */
1823                         next = vm_object_collapse_scan_wait(object, pp);
1824                         continue;
1825                 }
1826
1827                 if (pp != NULL && vm_page_none_valid(pp)) {
1828                         /*
1829                          * The page was invalid in the parent.  Likely placed
1830                          * there by an incomplete fault.  Just remove and
1831                          * ignore.  p can replace it.
1832                          */
1833                         if (vm_page_remove(pp))
1834                                 vm_page_free(pp);
1835                         pp = NULL;
1836                 }
1837
1838                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1839                         NULL)) {
1840                         /*
1841                          * The page already exists in the parent OR swap exists
1842                          * for this location in the parent.  Leave the parent's
1843                          * page alone.  Destroy the original page from the
1844                          * backing object.
1845                          */
1846                         if (backing_object->type == OBJT_SWAP)
1847                                 swap_pager_freespace(backing_object, p->pindex,
1848                                     1);
1849                         KASSERT(!pmap_page_is_mapped(p),
1850                             ("freeing mapped page %p", p));
1851                         if (vm_page_remove(p))
1852                                 vm_page_free(p);
1853                         if (pp != NULL)
1854                                 vm_page_xunbusy(pp);
1855                         continue;
1856                 }
1857
1858                 /*
1859                  * Page does not exist in parent, rename the page from the
1860                  * backing object to the main object.
1861                  *
1862                  * If the page was mapped to a process, it can remain mapped
1863                  * through the rename.  vm_page_rename() will dirty the page.
1864                  */
1865                 if (vm_page_rename(p, object, new_pindex)) {
1866                         vm_page_xunbusy(p);
1867                         next = vm_object_collapse_scan_wait(object, NULL);
1868                         continue;
1869                 }
1870
1871                 /* Use the old pindex to free the right page. */
1872                 if (backing_object->type == OBJT_SWAP)
1873                         swap_pager_freespace(backing_object,
1874                             new_pindex + backing_offset_index, 1);
1875
1876 #if VM_NRESERVLEVEL > 0
1877                 /*
1878                  * Rename the reservation.
1879                  */
1880                 vm_reserv_rename(p, object, backing_object,
1881                     backing_offset_index);
1882 #endif
1883                 vm_page_xunbusy(p);
1884         }
1885         return;
1886 }
1887
1888 /*
1889  *      vm_object_collapse:
1890  *
1891  *      Collapse an object with the object backing it.
1892  *      Pages in the backing object are moved into the
1893  *      parent, and the backing object is deallocated.
1894  */
1895 void
1896 vm_object_collapse(vm_object_t object)
1897 {
1898         vm_object_t backing_object, new_backing_object;
1899
1900         VM_OBJECT_ASSERT_WLOCKED(object);
1901
1902         while (TRUE) {
1903                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1904                     ("collapsing invalid object"));
1905
1906                 /*
1907                  * Wait for the backing_object to finish any pending
1908                  * collapse so that the caller sees the shortest possible
1909                  * shadow chain.
1910                  */
1911                 backing_object = vm_object_backing_collapse_wait(object);
1912                 if (backing_object == NULL)
1913                         return;
1914
1915                 KASSERT(object->ref_count > 0 &&
1916                     object->ref_count > object->shadow_count,
1917                     ("collapse with invalid ref %d or shadow %d count.",
1918                     object->ref_count, object->shadow_count));
1919                 KASSERT((backing_object->flags &
1920                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1921                     ("vm_object_collapse: Backing object already collapsing."));
1922                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1923                     ("vm_object_collapse: object is already collapsing."));
1924
1925                 /*
1926                  * We know that we can either collapse the backing object if
1927                  * the parent is the only reference to it, or (perhaps) have
1928                  * the parent bypass the object if the parent happens to shadow
1929                  * all the resident pages in the entire backing object.
1930                  */
1931                 if (backing_object->ref_count == 1) {
1932                         KASSERT(backing_object->shadow_count == 1,
1933                             ("vm_object_collapse: shadow_count: %d",
1934                             backing_object->shadow_count));
1935                         vm_object_pip_add(object, 1);
1936                         vm_object_set_flag(object, OBJ_COLLAPSING);
1937                         vm_object_pip_add(backing_object, 1);
1938                         vm_object_set_flag(backing_object, OBJ_DEAD);
1939
1940                         /*
1941                          * If there is exactly one reference to the backing
1942                          * object, we can collapse it into the parent.
1943                          */
1944                         vm_object_collapse_scan(object);
1945
1946 #if VM_NRESERVLEVEL > 0
1947                         /*
1948                          * Break any reservations from backing_object.
1949                          */
1950                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1951                                 vm_reserv_break_all(backing_object);
1952 #endif
1953
1954                         /*
1955                          * Move the pager from backing_object to object.
1956                          */
1957                         if (backing_object->type == OBJT_SWAP) {
1958                                 /*
1959                                  * swap_pager_copy() can sleep, in which case
1960                                  * the backing_object's and object's locks are
1961                                  * released and reacquired.
1962                                  * Since swap_pager_copy() is being asked to
1963                                  * destroy backing_object, it will change the
1964                                  * type to OBJT_DEFAULT.
1965                                  */
1966                                 swap_pager_copy(
1967                                     backing_object,
1968                                     object,
1969                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1970                         }
1971
1972                         /*
1973                          * Object now shadows whatever backing_object did.
1974                          */
1975                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1976                         vm_object_backing_transfer(object, backing_object);
1977                         object->backing_object_offset +=
1978                             backing_object->backing_object_offset;
1979                         VM_OBJECT_WUNLOCK(object);
1980                         vm_object_pip_wakeup(object);
1981
1982                         /*
1983                          * Discard backing_object.
1984                          *
1985                          * Since the backing object has no pages, no pager left,
1986                          * and no object references within it, all that is
1987                          * necessary is to dispose of it.
1988                          */
1989                         KASSERT(backing_object->ref_count == 1, (
1990 "backing_object %p was somehow re-referenced during collapse!",
1991                             backing_object));
1992                         vm_object_pip_wakeup(backing_object);
1993                         (void)refcount_release(&backing_object->ref_count);
1994                         vm_object_terminate(backing_object);
1995                         counter_u64_add(object_collapses, 1);
1996                         VM_OBJECT_WLOCK(object);
1997                 } else {
1998                         /*
1999                          * If we do not entirely shadow the backing object,
2000                          * there is nothing we can do so we give up.
2001                          *
2002                          * The object lock and backing_object lock must not
2003                          * be dropped during this sequence.
2004                          */
2005                         if (!vm_object_scan_all_shadowed(object)) {
2006                                 VM_OBJECT_WUNLOCK(backing_object);
2007                                 break;
2008                         }
2009
2010                         /*
2011                          * Make the parent shadow the next object in the
2012                          * chain.  Deallocating backing_object will not remove
2013                          * it, since its reference count is at least 2.
2014                          */
2015                         vm_object_backing_remove_locked(object);
2016                         new_backing_object = backing_object->backing_object;
2017                         if (new_backing_object != NULL) {
2018                                 vm_object_backing_insert_ref(object,
2019                                     new_backing_object);
2020                                 object->backing_object_offset +=
2021                                     backing_object->backing_object_offset;
2022                         }
2023
2024                         /*
2025                          * Drop the reference count on backing_object. Since
2026                          * its ref_count was at least 2, it will not vanish.
2027                          */
2028                         (void)refcount_release(&backing_object->ref_count);
2029                         KASSERT(backing_object->ref_count >= 1, (
2030 "backing_object %p was somehow dereferenced during collapse!",
2031                             backing_object));
2032                         VM_OBJECT_WUNLOCK(backing_object);
2033                         counter_u64_add(object_bypasses, 1);
2034                 }
2035
2036                 /*
2037                  * Try again with this object's new backing object.
2038                  */
2039         }
2040 }
2041
2042 /*
2043  *      vm_object_page_remove:
2044  *
2045  *      For the given object, either frees or invalidates each of the
2046  *      specified pages.  In general, a page is freed.  However, if a page is
2047  *      wired for any reason other than the existence of a managed, wired
2048  *      mapping, then it may be invalidated but not removed from the object.
2049  *      Pages are specified by the given range ["start", "end") and the option
2050  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2051  *      extends from "start" to the end of the object.  If the option
2052  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2053  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2054  *      specified, then the pages within the specified range must have no
2055  *      mappings.  Otherwise, if this option is not specified, any mappings to
2056  *      the specified pages are removed before the pages are freed or
2057  *      invalidated.
2058  *
2059  *      In general, this operation should only be performed on objects that
2060  *      contain managed pages.  There are, however, two exceptions.  First, it
2061  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2062  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2063  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2064  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2065  *
2066  *      The object must be locked.
2067  */
2068 void
2069 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2070     int options)
2071 {
2072         vm_page_t p, next;
2073
2074         VM_OBJECT_ASSERT_WLOCKED(object);
2075         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2076             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2077             ("vm_object_page_remove: illegal options for object %p", object));
2078         if (object->resident_page_count == 0)
2079                 return;
2080         vm_object_pip_add(object, 1);
2081 again:
2082         p = vm_page_find_least(object, start);
2083
2084         /*
2085          * Here, the variable "p" is either (1) the page with the least pindex
2086          * greater than or equal to the parameter "start" or (2) NULL. 
2087          */
2088         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2089                 next = TAILQ_NEXT(p, listq);
2090
2091                 /*
2092                  * If the page is wired for any reason besides the existence
2093                  * of managed, wired mappings, then it cannot be freed.  For
2094                  * example, fictitious pages, which represent device memory,
2095                  * are inherently wired and cannot be freed.  They can,
2096                  * however, be invalidated if the option OBJPR_CLEANONLY is
2097                  * not specified.
2098                  */
2099                 if (vm_page_tryxbusy(p) == 0) {
2100                         vm_page_sleep_if_busy(p, "vmopar");
2101                         goto again;
2102                 }
2103                 if (vm_page_wired(p)) {
2104 wired:
2105                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2106                             object->ref_count != 0)
2107                                 pmap_remove_all(p);
2108                         if ((options & OBJPR_CLEANONLY) == 0) {
2109                                 vm_page_invalid(p);
2110                                 vm_page_undirty(p);
2111                         }
2112                         vm_page_xunbusy(p);
2113                         continue;
2114                 }
2115                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2116                     ("vm_object_page_remove: page %p is fictitious", p));
2117                 if ((options & OBJPR_CLEANONLY) != 0 &&
2118                     !vm_page_none_valid(p)) {
2119                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2120                             object->ref_count != 0 &&
2121                             !vm_page_try_remove_write(p))
2122                                 goto wired;
2123                         if (p->dirty != 0) {
2124                                 vm_page_xunbusy(p);
2125                                 continue;
2126                         }
2127                 }
2128                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2129                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2130                         goto wired;
2131                 vm_page_free(p);
2132         }
2133         vm_object_pip_wakeup(object);
2134 }
2135
2136 /*
2137  *      vm_object_page_noreuse:
2138  *
2139  *      For the given object, attempt to move the specified pages to
2140  *      the head of the inactive queue.  This bypasses regular LRU
2141  *      operation and allows the pages to be reused quickly under memory
2142  *      pressure.  If a page is wired for any reason, then it will not
2143  *      be queued.  Pages are specified by the range ["start", "end").
2144  *      As a special case, if "end" is zero, then the range extends from
2145  *      "start" to the end of the object.
2146  *
2147  *      This operation should only be performed on objects that
2148  *      contain non-fictitious, managed pages.
2149  *
2150  *      The object must be locked.
2151  */
2152 void
2153 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2154 {
2155         vm_page_t p, next;
2156
2157         VM_OBJECT_ASSERT_LOCKED(object);
2158         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2159             ("vm_object_page_noreuse: illegal object %p", object));
2160         if (object->resident_page_count == 0)
2161                 return;
2162         p = vm_page_find_least(object, start);
2163
2164         /*
2165          * Here, the variable "p" is either (1) the page with the least pindex
2166          * greater than or equal to the parameter "start" or (2) NULL. 
2167          */
2168         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2169                 next = TAILQ_NEXT(p, listq);
2170                 vm_page_deactivate_noreuse(p);
2171         }
2172 }
2173
2174 /*
2175  *      Populate the specified range of the object with valid pages.  Returns
2176  *      TRUE if the range is successfully populated and FALSE otherwise.
2177  *
2178  *      Note: This function should be optimized to pass a larger array of
2179  *      pages to vm_pager_get_pages() before it is applied to a non-
2180  *      OBJT_DEVICE object.
2181  *
2182  *      The object must be locked.
2183  */
2184 boolean_t
2185 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2186 {
2187         vm_page_t m;
2188         vm_pindex_t pindex;
2189         int rv;
2190
2191         VM_OBJECT_ASSERT_WLOCKED(object);
2192         for (pindex = start; pindex < end; pindex++) {
2193                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2194                 if (rv != VM_PAGER_OK)
2195                         break;
2196
2197                 /*
2198                  * Keep "m" busy because a subsequent iteration may unlock
2199                  * the object.
2200                  */
2201         }
2202         if (pindex > start) {
2203                 m = vm_page_lookup(object, start);
2204                 while (m != NULL && m->pindex < pindex) {
2205                         vm_page_xunbusy(m);
2206                         m = TAILQ_NEXT(m, listq);
2207                 }
2208         }
2209         return (pindex == end);
2210 }
2211
2212 /*
2213  *      Routine:        vm_object_coalesce
2214  *      Function:       Coalesces two objects backing up adjoining
2215  *                      regions of memory into a single object.
2216  *
2217  *      returns TRUE if objects were combined.
2218  *
2219  *      NOTE:   Only works at the moment if the second object is NULL -
2220  *              if it's not, which object do we lock first?
2221  *
2222  *      Parameters:
2223  *              prev_object     First object to coalesce
2224  *              prev_offset     Offset into prev_object
2225  *              prev_size       Size of reference to prev_object
2226  *              next_size       Size of reference to the second object
2227  *              reserved        Indicator that extension region has
2228  *                              swap accounted for
2229  *
2230  *      Conditions:
2231  *      The object must *not* be locked.
2232  */
2233 boolean_t
2234 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2235     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2236 {
2237         vm_pindex_t next_pindex;
2238
2239         if (prev_object == NULL)
2240                 return (TRUE);
2241         if ((prev_object->flags & OBJ_ANON) == 0)
2242                 return (FALSE);
2243
2244         VM_OBJECT_WLOCK(prev_object);
2245         /*
2246          * Try to collapse the object first.
2247          */
2248         vm_object_collapse(prev_object);
2249
2250         /*
2251          * Can't coalesce if: . more than one reference . paged out . shadows
2252          * another object . has a copy elsewhere (any of which mean that the
2253          * pages not mapped to prev_entry may be in use anyway)
2254          */
2255         if (prev_object->backing_object != NULL) {
2256                 VM_OBJECT_WUNLOCK(prev_object);
2257                 return (FALSE);
2258         }
2259
2260         prev_size >>= PAGE_SHIFT;
2261         next_size >>= PAGE_SHIFT;
2262         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2263
2264         if (prev_object->ref_count > 1 &&
2265             prev_object->size != next_pindex &&
2266             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2267                 VM_OBJECT_WUNLOCK(prev_object);
2268                 return (FALSE);
2269         }
2270
2271         /*
2272          * Account for the charge.
2273          */
2274         if (prev_object->cred != NULL) {
2275
2276                 /*
2277                  * If prev_object was charged, then this mapping,
2278                  * although not charged now, may become writable
2279                  * later. Non-NULL cred in the object would prevent
2280                  * swap reservation during enabling of the write
2281                  * access, so reserve swap now. Failed reservation
2282                  * cause allocation of the separate object for the map
2283                  * entry, and swap reservation for this entry is
2284                  * managed in appropriate time.
2285                  */
2286                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2287                     prev_object->cred)) {
2288                         VM_OBJECT_WUNLOCK(prev_object);
2289                         return (FALSE);
2290                 }
2291                 prev_object->charge += ptoa(next_size);
2292         }
2293
2294         /*
2295          * Remove any pages that may still be in the object from a previous
2296          * deallocation.
2297          */
2298         if (next_pindex < prev_object->size) {
2299                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2300                     next_size, 0);
2301                 if (prev_object->type == OBJT_SWAP)
2302                         swap_pager_freespace(prev_object,
2303                                              next_pindex, next_size);
2304 #if 0
2305                 if (prev_object->cred != NULL) {
2306                         KASSERT(prev_object->charge >=
2307                             ptoa(prev_object->size - next_pindex),
2308                             ("object %p overcharged 1 %jx %jx", prev_object,
2309                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2310                         prev_object->charge -= ptoa(prev_object->size -
2311                             next_pindex);
2312                 }
2313 #endif
2314         }
2315
2316         /*
2317          * Extend the object if necessary.
2318          */
2319         if (next_pindex + next_size > prev_object->size)
2320                 prev_object->size = next_pindex + next_size;
2321
2322         VM_OBJECT_WUNLOCK(prev_object);
2323         return (TRUE);
2324 }
2325
2326 void
2327 vm_object_set_writeable_dirty(vm_object_t object)
2328 {
2329
2330         /* Only set for vnodes & tmpfs */
2331         if (object->type != OBJT_VNODE &&
2332             (object->flags & OBJ_TMPFS_NODE) == 0)
2333                 return;
2334         atomic_add_int(&object->generation, 1);
2335 }
2336
2337 /*
2338  *      vm_object_unwire:
2339  *
2340  *      For each page offset within the specified range of the given object,
2341  *      find the highest-level page in the shadow chain and unwire it.  A page
2342  *      must exist at every page offset, and the highest-level page must be
2343  *      wired.
2344  */
2345 void
2346 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2347     uint8_t queue)
2348 {
2349         vm_object_t tobject, t1object;
2350         vm_page_t m, tm;
2351         vm_pindex_t end_pindex, pindex, tpindex;
2352         int depth, locked_depth;
2353
2354         KASSERT((offset & PAGE_MASK) == 0,
2355             ("vm_object_unwire: offset is not page aligned"));
2356         KASSERT((length & PAGE_MASK) == 0,
2357             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2358         /* The wired count of a fictitious page never changes. */
2359         if ((object->flags & OBJ_FICTITIOUS) != 0)
2360                 return;
2361         pindex = OFF_TO_IDX(offset);
2362         end_pindex = pindex + atop(length);
2363 again:
2364         locked_depth = 1;
2365         VM_OBJECT_RLOCK(object);
2366         m = vm_page_find_least(object, pindex);
2367         while (pindex < end_pindex) {
2368                 if (m == NULL || pindex < m->pindex) {
2369                         /*
2370                          * The first object in the shadow chain doesn't
2371                          * contain a page at the current index.  Therefore,
2372                          * the page must exist in a backing object.
2373                          */
2374                         tobject = object;
2375                         tpindex = pindex;
2376                         depth = 0;
2377                         do {
2378                                 tpindex +=
2379                                     OFF_TO_IDX(tobject->backing_object_offset);
2380                                 tobject = tobject->backing_object;
2381                                 KASSERT(tobject != NULL,
2382                                     ("vm_object_unwire: missing page"));
2383                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2384                                         goto next_page;
2385                                 depth++;
2386                                 if (depth == locked_depth) {
2387                                         locked_depth++;
2388                                         VM_OBJECT_RLOCK(tobject);
2389                                 }
2390                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2391                             NULL);
2392                 } else {
2393                         tm = m;
2394                         m = TAILQ_NEXT(m, listq);
2395                 }
2396                 if (vm_page_trysbusy(tm) == 0) {
2397                         for (tobject = object; locked_depth >= 1;
2398                             locked_depth--) {
2399                                 t1object = tobject->backing_object;
2400                                 if (tm->object != tobject)
2401                                         VM_OBJECT_RUNLOCK(tobject);
2402                                 tobject = t1object;
2403                         }
2404                         vm_page_busy_sleep(tm, "unwbo", true);
2405                         goto again;
2406                 }
2407                 vm_page_unwire(tm, queue);
2408                 vm_page_sunbusy(tm);
2409 next_page:
2410                 pindex++;
2411         }
2412         /* Release the accumulated object locks. */
2413         for (tobject = object; locked_depth >= 1; locked_depth--) {
2414                 t1object = tobject->backing_object;
2415                 VM_OBJECT_RUNLOCK(tobject);
2416                 tobject = t1object;
2417         }
2418 }
2419
2420 /*
2421  * Return the vnode for the given object, or NULL if none exists.
2422  * For tmpfs objects, the function may return NULL if there is
2423  * no vnode allocated at the time of the call.
2424  */
2425 struct vnode *
2426 vm_object_vnode(vm_object_t object)
2427 {
2428         struct vnode *vp;
2429
2430         VM_OBJECT_ASSERT_LOCKED(object);
2431         if (object->type == OBJT_VNODE) {
2432                 vp = object->handle;
2433                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2434         } else if (object->type == OBJT_SWAP &&
2435             (object->flags & OBJ_TMPFS) != 0) {
2436                 vp = object->un_pager.swp.swp_tmpfs;
2437                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2438         } else {
2439                 vp = NULL;
2440         }
2441         return (vp);
2442 }
2443
2444
2445 /*
2446  * Busy the vm object.  This prevents new pages belonging to the object from
2447  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2448  * for checking page state before proceeding.
2449  */
2450 void
2451 vm_object_busy(vm_object_t obj)
2452 {
2453
2454         VM_OBJECT_ASSERT_LOCKED(obj);
2455
2456         blockcount_acquire(&obj->busy, 1);
2457         /* The fence is required to order loads of page busy. */
2458         atomic_thread_fence_acq_rel();
2459 }
2460
2461 void
2462 vm_object_unbusy(vm_object_t obj)
2463 {
2464
2465         blockcount_release(&obj->busy, 1);
2466 }
2467
2468 void
2469 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2470 {
2471
2472         VM_OBJECT_ASSERT_UNLOCKED(obj);
2473
2474         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2475 }
2476
2477 /*
2478  * Return the kvme type of the given object.
2479  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2480  */
2481 int
2482 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2483 {
2484
2485         VM_OBJECT_ASSERT_LOCKED(object);
2486         if (vpp != NULL)
2487                 *vpp = vm_object_vnode(object);
2488         switch (object->type) {
2489         case OBJT_DEFAULT:
2490                 return (KVME_TYPE_DEFAULT);
2491         case OBJT_VNODE:
2492                 return (KVME_TYPE_VNODE);
2493         case OBJT_SWAP:
2494                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2495                         return (KVME_TYPE_VNODE);
2496                 return (KVME_TYPE_SWAP);
2497         case OBJT_DEVICE:
2498                 return (KVME_TYPE_DEVICE);
2499         case OBJT_PHYS:
2500                 return (KVME_TYPE_PHYS);
2501         case OBJT_DEAD:
2502                 return (KVME_TYPE_DEAD);
2503         case OBJT_SG:
2504                 return (KVME_TYPE_SG);
2505         case OBJT_MGTDEVICE:
2506                 return (KVME_TYPE_MGTDEVICE);
2507         default:
2508                 return (KVME_TYPE_UNKNOWN);
2509         }
2510 }
2511
2512 static int
2513 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2514 {
2515         struct kinfo_vmobject *kvo;
2516         char *fullpath, *freepath;
2517         struct vnode *vp;
2518         struct vattr va;
2519         vm_object_t obj;
2520         vm_page_t m;
2521         int count, error;
2522
2523         if (req->oldptr == NULL) {
2524                 /*
2525                  * If an old buffer has not been provided, generate an
2526                  * estimate of the space needed for a subsequent call.
2527                  */
2528                 mtx_lock(&vm_object_list_mtx);
2529                 count = 0;
2530                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2531                         if (obj->type == OBJT_DEAD)
2532                                 continue;
2533                         count++;
2534                 }
2535                 mtx_unlock(&vm_object_list_mtx);
2536                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2537                     count * 11 / 10));
2538         }
2539
2540         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2541         error = 0;
2542
2543         /*
2544          * VM objects are type stable and are never removed from the
2545          * list once added.  This allows us to safely read obj->object_list
2546          * after reacquiring the VM object lock.
2547          */
2548         mtx_lock(&vm_object_list_mtx);
2549         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2550                 if (obj->type == OBJT_DEAD)
2551                         continue;
2552                 VM_OBJECT_RLOCK(obj);
2553                 if (obj->type == OBJT_DEAD) {
2554                         VM_OBJECT_RUNLOCK(obj);
2555                         continue;
2556                 }
2557                 mtx_unlock(&vm_object_list_mtx);
2558                 kvo->kvo_size = ptoa(obj->size);
2559                 kvo->kvo_resident = obj->resident_page_count;
2560                 kvo->kvo_ref_count = obj->ref_count;
2561                 kvo->kvo_shadow_count = obj->shadow_count;
2562                 kvo->kvo_memattr = obj->memattr;
2563                 kvo->kvo_active = 0;
2564                 kvo->kvo_inactive = 0;
2565                 TAILQ_FOREACH(m, &obj->memq, listq) {
2566                         /*
2567                          * A page may belong to the object but be
2568                          * dequeued and set to PQ_NONE while the
2569                          * object lock is not held.  This makes the
2570                          * reads of m->queue below racy, and we do not
2571                          * count pages set to PQ_NONE.  However, this
2572                          * sysctl is only meant to give an
2573                          * approximation of the system anyway.
2574                          */
2575                         if (m->a.queue == PQ_ACTIVE)
2576                                 kvo->kvo_active++;
2577                         else if (m->a.queue == PQ_INACTIVE)
2578                                 kvo->kvo_inactive++;
2579                 }
2580
2581                 kvo->kvo_vn_fileid = 0;
2582                 kvo->kvo_vn_fsid = 0;
2583                 kvo->kvo_vn_fsid_freebsd11 = 0;
2584                 freepath = NULL;
2585                 fullpath = "";
2586                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2587                 if (vp != NULL)
2588                         vref(vp);
2589                 VM_OBJECT_RUNLOCK(obj);
2590                 if (vp != NULL) {
2591                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2592                         vn_lock(vp, LK_SHARED | LK_RETRY);
2593                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2594                                 kvo->kvo_vn_fileid = va.va_fileid;
2595                                 kvo->kvo_vn_fsid = va.va_fsid;
2596                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2597                                                                 /* truncate */
2598                         }
2599                         vput(vp);
2600                 }
2601
2602                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2603                 if (freepath != NULL)
2604                         free(freepath, M_TEMP);
2605
2606                 /* Pack record size down */
2607                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2608                     + strlen(kvo->kvo_path) + 1;
2609                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2610                     sizeof(uint64_t));
2611                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2612                 mtx_lock(&vm_object_list_mtx);
2613                 if (error)
2614                         break;
2615         }
2616         mtx_unlock(&vm_object_list_mtx);
2617         free(kvo, M_TEMP);
2618         return (error);
2619 }
2620 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2621     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2622     "List of VM objects");
2623
2624 #include "opt_ddb.h"
2625 #ifdef DDB
2626 #include <sys/kernel.h>
2627
2628 #include <sys/cons.h>
2629
2630 #include <ddb/ddb.h>
2631
2632 static int
2633 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2634 {
2635         vm_map_t tmpm;
2636         vm_map_entry_t tmpe;
2637         vm_object_t obj;
2638
2639         if (map == 0)
2640                 return 0;
2641
2642         if (entry == 0) {
2643                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2644                         if (_vm_object_in_map(map, object, tmpe)) {
2645                                 return 1;
2646                         }
2647                 }
2648         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2649                 tmpm = entry->object.sub_map;
2650                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2651                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2652                                 return 1;
2653                         }
2654                 }
2655         } else if ((obj = entry->object.vm_object) != NULL) {
2656                 for (; obj; obj = obj->backing_object)
2657                         if (obj == object) {
2658                                 return 1;
2659                         }
2660         }
2661         return 0;
2662 }
2663
2664 static int
2665 vm_object_in_map(vm_object_t object)
2666 {
2667         struct proc *p;
2668
2669         /* sx_slock(&allproc_lock); */
2670         FOREACH_PROC_IN_SYSTEM(p) {
2671                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2672                         continue;
2673                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2674                         /* sx_sunlock(&allproc_lock); */
2675                         return 1;
2676                 }
2677         }
2678         /* sx_sunlock(&allproc_lock); */
2679         if (_vm_object_in_map(kernel_map, object, 0))
2680                 return 1;
2681         return 0;
2682 }
2683
2684 DB_SHOW_COMMAND(vmochk, vm_object_check)
2685 {
2686         vm_object_t object;
2687
2688         /*
2689          * make sure that internal objs are in a map somewhere
2690          * and none have zero ref counts.
2691          */
2692         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2693                 if ((object->flags & OBJ_ANON) != 0) {
2694                         if (object->ref_count == 0) {
2695                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2696                                         (long)object->size);
2697                         }
2698                         if (!vm_object_in_map(object)) {
2699                                 db_printf(
2700                         "vmochk: internal obj is not in a map: "
2701                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2702                                     object->ref_count, (u_long)object->size, 
2703                                     (u_long)object->size,
2704                                     (void *)object->backing_object);
2705                         }
2706                 }
2707         }
2708 }
2709
2710 /*
2711  *      vm_object_print:        [ debug ]
2712  */
2713 DB_SHOW_COMMAND(object, vm_object_print_static)
2714 {
2715         /* XXX convert args. */
2716         vm_object_t object = (vm_object_t)addr;
2717         boolean_t full = have_addr;
2718
2719         vm_page_t p;
2720
2721         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2722 #define count   was_count
2723
2724         int count;
2725
2726         if (object == NULL)
2727                 return;
2728
2729         db_iprintf(
2730             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2731             object, (int)object->type, (uintmax_t)object->size,
2732             object->resident_page_count, object->ref_count, object->flags,
2733             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2734         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2735             object->shadow_count, 
2736             object->backing_object ? object->backing_object->ref_count : 0,
2737             object->backing_object, (uintmax_t)object->backing_object_offset);
2738
2739         if (!full)
2740                 return;
2741
2742         db_indent += 2;
2743         count = 0;
2744         TAILQ_FOREACH(p, &object->memq, listq) {
2745                 if (count == 0)
2746                         db_iprintf("memory:=");
2747                 else if (count == 6) {
2748                         db_printf("\n");
2749                         db_iprintf(" ...");
2750                         count = 0;
2751                 } else
2752                         db_printf(",");
2753                 count++;
2754
2755                 db_printf("(off=0x%jx,page=0x%jx)",
2756                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2757         }
2758         if (count != 0)
2759                 db_printf("\n");
2760         db_indent -= 2;
2761 }
2762
2763 /* XXX. */
2764 #undef count
2765
2766 /* XXX need this non-static entry for calling from vm_map_print. */
2767 void
2768 vm_object_print(
2769         /* db_expr_t */ long addr,
2770         boolean_t have_addr,
2771         /* db_expr_t */ long count,
2772         char *modif)
2773 {
2774         vm_object_print_static(addr, have_addr, count, modif);
2775 }
2776
2777 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2778 {
2779         vm_object_t object;
2780         vm_pindex_t fidx;
2781         vm_paddr_t pa;
2782         vm_page_t m, prev_m;
2783         int rcount, nl, c;
2784
2785         nl = 0;
2786         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2787                 db_printf("new object: %p\n", (void *)object);
2788                 if (nl > 18) {
2789                         c = cngetc();
2790                         if (c != ' ')
2791                                 return;
2792                         nl = 0;
2793                 }
2794                 nl++;
2795                 rcount = 0;
2796                 fidx = 0;
2797                 pa = -1;
2798                 TAILQ_FOREACH(m, &object->memq, listq) {
2799                         if (m->pindex > 128)
2800                                 break;
2801                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2802                             prev_m->pindex + 1 != m->pindex) {
2803                                 if (rcount) {
2804                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2805                                                 (long)fidx, rcount, (long)pa);
2806                                         if (nl > 18) {
2807                                                 c = cngetc();
2808                                                 if (c != ' ')
2809                                                         return;
2810                                                 nl = 0;
2811                                         }
2812                                         nl++;
2813                                         rcount = 0;
2814                                 }
2815                         }                               
2816                         if (rcount &&
2817                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2818                                 ++rcount;
2819                                 continue;
2820                         }
2821                         if (rcount) {
2822                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2823                                         (long)fidx, rcount, (long)pa);
2824                                 if (nl > 18) {
2825                                         c = cngetc();
2826                                         if (c != ' ')
2827                                                 return;
2828                                         nl = 0;
2829                                 }
2830                                 nl++;
2831                         }
2832                         fidx = m->pindex;
2833                         pa = VM_PAGE_TO_PHYS(m);
2834                         rcount = 1;
2835                 }
2836                 if (rcount) {
2837                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2838                                 (long)fidx, rcount, (long)pa);
2839                         if (nl > 18) {
2840                                 c = cngetc();
2841                                 if (c != ' ')
2842                                         return;
2843                                 nl = 0;
2844                         }
2845                         nl++;
2846                 }
2847         }
2848 }
2849 #endif /* DDB */