]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
vm/vm_extern.h, vm/vm_page.h: use sys/kassert.h
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(object->shadow_count == 0,
202             ("object %p shadow_count = %d",
203             object, object->shadow_count));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207 }
208 #endif
209
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213         vm_object_t object;
214
215         object = (vm_object_t)mem;
216         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217
218         /* These are true for any object that has been freed */
219         object->type = OBJT_DEAD;
220         vm_radix_init(&object->rtree);
221         refcount_init(&object->ref_count, 0);
222         blockcount_init(&object->paging_in_progress);
223         blockcount_init(&object->busy);
224         object->resident_page_count = 0;
225         object->shadow_count = 0;
226         object->flags = OBJ_DEAD;
227
228         mtx_lock(&vm_object_list_mtx);
229         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230         mtx_unlock(&vm_object_list_mtx);
231         return (0);
232 }
233
234 static void
235 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
236     vm_object_t object, void *handle)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         object->flags = flags;
244         if ((flags & OBJ_SWAP) != 0)
245                 pctrie_init(&object->un_pager.swp.swp_blks);
246
247         /*
248          * Ensure that swap_pager_swapoff() iteration over object_list
249          * sees up to date type and pctrie head if it observed
250          * non-dead object.
251          */
252         atomic_thread_fence_rel();
253
254         object->pg_color = 0;
255         object->size = size;
256         object->domain.dr_policy = NULL;
257         object->generation = 1;
258         object->cleangeneration = 1;
259         refcount_init(&object->ref_count, 1);
260         object->memattr = VM_MEMATTR_DEFAULT;
261         object->cred = NULL;
262         object->charge = 0;
263         object->handle = handle;
264         object->backing_object = NULL;
265         object->backing_object_offset = (vm_ooffset_t) 0;
266 #if VM_NRESERVLEVEL > 0
267         LIST_INIT(&object->rvq);
268 #endif
269         umtx_shm_object_init(object);
270 }
271
272 /*
273  *      vm_object_init:
274  *
275  *      Initialize the VM objects module.
276  */
277 void
278 vm_object_init(void)
279 {
280         TAILQ_INIT(&vm_object_list);
281         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
282
283         rw_init(&kernel_object->lock, "kernel vm object");
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
286 #if VM_NRESERVLEVEL > 0
287         kernel_object->flags |= OBJ_COLORED;
288         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
291
292         /*
293          * The lock portion of struct vm_object must be type stable due
294          * to vm_pageout_fallback_object_lock locking a vm object
295          * without holding any references to it.
296          *
297          * paging_in_progress is valid always.  Lockless references to
298          * the objects may acquire pip and then check OBJ_DEAD.
299          */
300         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302             vm_object_zdtor,
303 #else
304             NULL,
305 #endif
306             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307
308         vm_radix_zinit();
309 }
310
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314
315         VM_OBJECT_ASSERT_WLOCKED(object);
316         object->flags &= ~bits;
317 }
318
319 /*
320  *      Sets the default memory attribute for the specified object.  Pages
321  *      that are allocated to this object are by default assigned this memory
322  *      attribute.
323  *
324  *      Presently, this function must be called before any pages are allocated
325  *      to the object.  In the future, this requirement may be relaxed for
326  *      "default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333
334         if (object->type == OBJT_DEAD)
335                 return (KERN_INVALID_ARGUMENT);
336         if (!TAILQ_EMPTY(&object->memq))
337                 return (KERN_FAILURE);
338
339         object->memattr = memattr;
340         return (KERN_SUCCESS);
341 }
342
343 void
344 vm_object_pip_add(vm_object_t object, short i)
345 {
346
347         if (i > 0)
348                 blockcount_acquire(&object->paging_in_progress, i);
349 }
350
351 void
352 vm_object_pip_wakeup(vm_object_t object)
353 {
354
355         vm_object_pip_wakeupn(object, 1);
356 }
357
358 void
359 vm_object_pip_wakeupn(vm_object_t object, short i)
360 {
361
362         if (i > 0)
363                 blockcount_release(&object->paging_in_progress, i);
364 }
365
366 /*
367  * Atomically drop the object lock and wait for pip to drain.  This protects
368  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
369  * on return.
370  */
371 static void
372 vm_object_pip_sleep(vm_object_t object, const char *waitid)
373 {
374
375         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
376             waitid, PVM | PDROP);
377 }
378
379 void
380 vm_object_pip_wait(vm_object_t object, const char *waitid)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384
385         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
386             PVM);
387 }
388
389 void
390 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_UNLOCKED(object);
394
395         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
396 }
397
398 /*
399  *      vm_object_allocate:
400  *
401  *      Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406         vm_object_t object;
407         u_short flags;
408
409         switch (type) {
410         case OBJT_DEAD:
411                 panic("vm_object_allocate: can't create OBJT_DEAD");
412         case OBJT_DEFAULT:
413                 flags = OBJ_COLORED;
414                 break;
415         case OBJT_SWAP:
416                 flags = OBJ_COLORED | OBJ_SWAP;
417                 break;
418         case OBJT_DEVICE:
419         case OBJT_SG:
420                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
421                 break;
422         case OBJT_MGTDEVICE:
423                 flags = OBJ_FICTITIOUS;
424                 break;
425         case OBJT_PHYS:
426                 flags = OBJ_UNMANAGED;
427                 break;
428         case OBJT_VNODE:
429                 flags = 0;
430                 break;
431         default:
432                 panic("vm_object_allocate: type %d is undefined or dynamic",
433                     type);
434         }
435         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
436         _vm_object_allocate(type, size, flags, object, NULL);
437
438         return (object);
439 }
440
441 vm_object_t
442 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
443 {
444         vm_object_t object;
445
446         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
447         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
448         _vm_object_allocate(dyntype, size, flags, object, NULL);
449
450         return (object);
451 }
452
453 /*
454  *      vm_object_allocate_anon:
455  *
456  *      Returns a new default object of the given size and marked as
457  *      anonymous memory for special split/collapse handling.  Color
458  *      to be initialized by the caller.
459  */
460 vm_object_t
461 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
462     struct ucred *cred, vm_size_t charge)
463 {
464         vm_object_t handle, object;
465
466         if (backing_object == NULL)
467                 handle = NULL;
468         else if ((backing_object->flags & OBJ_ANON) != 0)
469                 handle = backing_object->handle;
470         else
471                 handle = backing_object;
472         object = uma_zalloc(obj_zone, M_WAITOK);
473         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
474             object, handle);
475         object->cred = cred;
476         object->charge = cred != NULL ? charge : 0;
477         return (object);
478 }
479
480 static void
481 vm_object_reference_vnode(vm_object_t object)
482 {
483         u_int old;
484
485         /*
486          * vnode objects need the lock for the first reference
487          * to serialize with vnode_object_deallocate().
488          */
489         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
490                 VM_OBJECT_RLOCK(object);
491                 old = refcount_acquire(&object->ref_count);
492                 if (object->type == OBJT_VNODE && old == 0)
493                         vref(object->handle);
494                 VM_OBJECT_RUNLOCK(object);
495         }
496 }
497
498 /*
499  *      vm_object_reference:
500  *
501  *      Acquires a reference to the given object.
502  */
503 void
504 vm_object_reference(vm_object_t object)
505 {
506
507         if (object == NULL)
508                 return;
509
510         if (object->type == OBJT_VNODE)
511                 vm_object_reference_vnode(object);
512         else
513                 refcount_acquire(&object->ref_count);
514         KASSERT((object->flags & OBJ_DEAD) == 0,
515             ("vm_object_reference: Referenced dead object."));
516 }
517
518 /*
519  *      vm_object_reference_locked:
520  *
521  *      Gets another reference to the given object.
522  *
523  *      The object must be locked.
524  */
525 void
526 vm_object_reference_locked(vm_object_t object)
527 {
528         u_int old;
529
530         VM_OBJECT_ASSERT_LOCKED(object);
531         old = refcount_acquire(&object->ref_count);
532         if (object->type == OBJT_VNODE && old == 0)
533                 vref(object->handle);
534         KASSERT((object->flags & OBJ_DEAD) == 0,
535             ("vm_object_reference: Referenced dead object."));
536 }
537
538 /*
539  * Handle deallocating an object of type OBJT_VNODE.
540  */
541 static void
542 vm_object_deallocate_vnode(vm_object_t object)
543 {
544         struct vnode *vp = (struct vnode *) object->handle;
545         bool last;
546
547         KASSERT(object->type == OBJT_VNODE,
548             ("vm_object_deallocate_vnode: not a vnode object"));
549         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
550
551         /* Object lock to protect handle lookup. */
552         last = refcount_release(&object->ref_count);
553         VM_OBJECT_RUNLOCK(object);
554
555         if (!last)
556                 return;
557
558         if (!umtx_shm_vnobj_persistent)
559                 umtx_shm_object_terminated(object);
560
561         /* vrele may need the vnode lock. */
562         vrele(vp);
563 }
564
565 /*
566  * We dropped a reference on an object and discovered that it had a
567  * single remaining shadow.  This is a sibling of the reference we
568  * dropped.  Attempt to collapse the sibling and backing object.
569  */
570 static vm_object_t
571 vm_object_deallocate_anon(vm_object_t backing_object)
572 {
573         vm_object_t object;
574
575         /* Fetch the final shadow.  */
576         object = LIST_FIRST(&backing_object->shadow_head);
577         KASSERT(object != NULL && backing_object->shadow_count == 1,
578             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
579             backing_object->ref_count, backing_object->shadow_count));
580         KASSERT((object->flags & OBJ_ANON) != 0,
581             ("invalid shadow object %p", object));
582
583         if (!VM_OBJECT_TRYWLOCK(object)) {
584                 /*
585                  * Prevent object from disappearing since we do not have a
586                  * reference.
587                  */
588                 vm_object_pip_add(object, 1);
589                 VM_OBJECT_WUNLOCK(backing_object);
590                 VM_OBJECT_WLOCK(object);
591                 vm_object_pip_wakeup(object);
592         } else
593                 VM_OBJECT_WUNLOCK(backing_object);
594
595         /*
596          * Check for a collapse/terminate race with the last reference holder.
597          */
598         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
599             !refcount_acquire_if_not_zero(&object->ref_count)) {
600                 VM_OBJECT_WUNLOCK(object);
601                 return (NULL);
602         }
603         backing_object = object->backing_object;
604         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
605                 vm_object_collapse(object);
606         VM_OBJECT_WUNLOCK(object);
607
608         return (object);
609 }
610
611 /*
612  *      vm_object_deallocate:
613  *
614  *      Release a reference to the specified object,
615  *      gained either through a vm_object_allocate
616  *      or a vm_object_reference call.  When all references
617  *      are gone, storage associated with this object
618  *      may be relinquished.
619  *
620  *      No object may be locked.
621  */
622 void
623 vm_object_deallocate(vm_object_t object)
624 {
625         vm_object_t temp;
626         bool released;
627
628         while (object != NULL) {
629                 /*
630                  * If the reference count goes to 0 we start calling
631                  * vm_object_terminate() on the object chain.  A ref count
632                  * of 1 may be a special case depending on the shadow count
633                  * being 0 or 1.  These cases require a write lock on the
634                  * object.
635                  */
636                 if ((object->flags & OBJ_ANON) == 0)
637                         released = refcount_release_if_gt(&object->ref_count, 1);
638                 else
639                         released = refcount_release_if_gt(&object->ref_count, 2);
640                 if (released)
641                         return;
642
643                 if (object->type == OBJT_VNODE) {
644                         VM_OBJECT_RLOCK(object);
645                         if (object->type == OBJT_VNODE) {
646                                 vm_object_deallocate_vnode(object);
647                                 return;
648                         }
649                         VM_OBJECT_RUNLOCK(object);
650                 }
651
652                 VM_OBJECT_WLOCK(object);
653                 KASSERT(object->ref_count > 0,
654                     ("vm_object_deallocate: object deallocated too many times: %d",
655                     object->type));
656
657                 /*
658                  * If this is not the final reference to an anonymous
659                  * object we may need to collapse the shadow chain.
660                  */
661                 if (!refcount_release(&object->ref_count)) {
662                         if (object->ref_count > 1 ||
663                             object->shadow_count == 0) {
664                                 if ((object->flags & OBJ_ANON) != 0 &&
665                                     object->ref_count == 1)
666                                         vm_object_set_flag(object,
667                                             OBJ_ONEMAPPING);
668                                 VM_OBJECT_WUNLOCK(object);
669                                 return;
670                         }
671
672                         /* Handle collapsing last ref on anonymous objects. */
673                         object = vm_object_deallocate_anon(object);
674                         continue;
675                 }
676
677                 /*
678                  * Handle the final reference to an object.  We restart
679                  * the loop with the backing object to avoid recursion.
680                  */
681                 umtx_shm_object_terminated(object);
682                 temp = object->backing_object;
683                 if (temp != NULL) {
684                         KASSERT(object->type == OBJT_DEFAULT ||
685                             object->type == OBJT_SWAP,
686                             ("shadowed tmpfs v_object 2 %p", object));
687                         vm_object_backing_remove(object);
688                 }
689
690                 KASSERT((object->flags & OBJ_DEAD) == 0,
691                     ("vm_object_deallocate: Terminating dead object."));
692                 vm_object_set_flag(object, OBJ_DEAD);
693                 vm_object_terminate(object);
694                 object = temp;
695         }
696 }
697
698 /*
699  *      vm_object_destroy removes the object from the global object list
700  *      and frees the space for the object.
701  */
702 void
703 vm_object_destroy(vm_object_t object)
704 {
705
706         /*
707          * Release the allocation charge.
708          */
709         if (object->cred != NULL) {
710                 swap_release_by_cred(object->charge, object->cred);
711                 object->charge = 0;
712                 crfree(object->cred);
713                 object->cred = NULL;
714         }
715
716         /*
717          * Free the space for the object.
718          */
719         uma_zfree(obj_zone, object);
720 }
721
722 static void
723 vm_object_backing_remove_locked(vm_object_t object)
724 {
725         vm_object_t backing_object;
726
727         backing_object = object->backing_object;
728         VM_OBJECT_ASSERT_WLOCKED(object);
729         VM_OBJECT_ASSERT_WLOCKED(backing_object);
730
731         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
732             ("vm_object_backing_remove: Removing collapsing object."));
733
734         if ((object->flags & OBJ_SHADOWLIST) != 0) {
735                 LIST_REMOVE(object, shadow_list);
736                 backing_object->shadow_count--;
737                 object->flags &= ~OBJ_SHADOWLIST;
738         }
739         object->backing_object = NULL;
740 }
741
742 static void
743 vm_object_backing_remove(vm_object_t object)
744 {
745         vm_object_t backing_object;
746
747         VM_OBJECT_ASSERT_WLOCKED(object);
748
749         if ((object->flags & OBJ_SHADOWLIST) != 0) {
750                 backing_object = object->backing_object;
751                 VM_OBJECT_WLOCK(backing_object);
752                 vm_object_backing_remove_locked(object);
753                 VM_OBJECT_WUNLOCK(backing_object);
754         } else
755                 object->backing_object = NULL;
756 }
757
758 static void
759 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
760 {
761
762         VM_OBJECT_ASSERT_WLOCKED(object);
763
764         if ((backing_object->flags & OBJ_ANON) != 0) {
765                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
766                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
767                     shadow_list);
768                 backing_object->shadow_count++;
769                 object->flags |= OBJ_SHADOWLIST;
770         }
771         object->backing_object = backing_object;
772 }
773
774 static void
775 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
776 {
777
778         VM_OBJECT_ASSERT_WLOCKED(object);
779
780         if ((backing_object->flags & OBJ_ANON) != 0) {
781                 VM_OBJECT_WLOCK(backing_object);
782                 vm_object_backing_insert_locked(object, backing_object);
783                 VM_OBJECT_WUNLOCK(backing_object);
784         } else
785                 object->backing_object = backing_object;
786 }
787
788 /*
789  * Insert an object into a backing_object's shadow list with an additional
790  * reference to the backing_object added.
791  */
792 static void
793 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
794 {
795
796         VM_OBJECT_ASSERT_WLOCKED(object);
797
798         if ((backing_object->flags & OBJ_ANON) != 0) {
799                 VM_OBJECT_WLOCK(backing_object);
800                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
801                     ("shadowing dead anonymous object"));
802                 vm_object_reference_locked(backing_object);
803                 vm_object_backing_insert_locked(object, backing_object);
804                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
805                 VM_OBJECT_WUNLOCK(backing_object);
806         } else {
807                 vm_object_reference(backing_object);
808                 object->backing_object = backing_object;
809         }
810 }
811
812 /*
813  * Transfer a backing reference from backing_object to object.
814  */
815 static void
816 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
817 {
818         vm_object_t new_backing_object;
819
820         /*
821          * Note that the reference to backing_object->backing_object
822          * moves from within backing_object to within object.
823          */
824         vm_object_backing_remove_locked(object);
825         new_backing_object = backing_object->backing_object;
826         if (new_backing_object == NULL)
827                 return;
828         if ((new_backing_object->flags & OBJ_ANON) != 0) {
829                 VM_OBJECT_WLOCK(new_backing_object);
830                 vm_object_backing_remove_locked(backing_object);
831                 vm_object_backing_insert_locked(object, new_backing_object);
832                 VM_OBJECT_WUNLOCK(new_backing_object);
833         } else {
834                 object->backing_object = new_backing_object;
835                 backing_object->backing_object = NULL;
836         }
837 }
838
839 /*
840  * Wait for a concurrent collapse to settle.
841  */
842 static void
843 vm_object_collapse_wait(vm_object_t object)
844 {
845
846         VM_OBJECT_ASSERT_WLOCKED(object);
847
848         while ((object->flags & OBJ_COLLAPSING) != 0) {
849                 vm_object_pip_wait(object, "vmcolwait");
850                 counter_u64_add(object_collapse_waits, 1);
851         }
852 }
853
854 /*
855  * Waits for a backing object to clear a pending collapse and returns
856  * it locked if it is an ANON object.
857  */
858 static vm_object_t
859 vm_object_backing_collapse_wait(vm_object_t object)
860 {
861         vm_object_t backing_object;
862
863         VM_OBJECT_ASSERT_WLOCKED(object);
864
865         for (;;) {
866                 backing_object = object->backing_object;
867                 if (backing_object == NULL ||
868                     (backing_object->flags & OBJ_ANON) == 0)
869                         return (NULL);
870                 VM_OBJECT_WLOCK(backing_object);
871                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
872                         break;
873                 VM_OBJECT_WUNLOCK(object);
874                 vm_object_pip_sleep(backing_object, "vmbckwait");
875                 counter_u64_add(object_collapse_waits, 1);
876                 VM_OBJECT_WLOCK(object);
877         }
878         return (backing_object);
879 }
880
881 /*
882  *      vm_object_terminate_pages removes any remaining pageable pages
883  *      from the object and resets the object to an empty state.
884  */
885 static void
886 vm_object_terminate_pages(vm_object_t object)
887 {
888         vm_page_t p, p_next;
889
890         VM_OBJECT_ASSERT_WLOCKED(object);
891
892         /*
893          * Free any remaining pageable pages.  This also removes them from the
894          * paging queues.  However, don't free wired pages, just remove them
895          * from the object.  Rather than incrementally removing each page from
896          * the object, the page and object are reset to any empty state. 
897          */
898         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
899                 vm_page_assert_unbusied(p);
900                 KASSERT(p->object == object &&
901                     (p->ref_count & VPRC_OBJREF) != 0,
902                     ("vm_object_terminate_pages: page %p is inconsistent", p));
903
904                 p->object = NULL;
905                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
906                         VM_CNT_INC(v_pfree);
907                         vm_page_free(p);
908                 }
909         }
910
911         /*
912          * If the object contained any pages, then reset it to an empty state.
913          * None of the object's fields, including "resident_page_count", were
914          * modified by the preceding loop.
915          */
916         if (object->resident_page_count != 0) {
917                 vm_radix_reclaim_allnodes(&object->rtree);
918                 TAILQ_INIT(&object->memq);
919                 object->resident_page_count = 0;
920                 if (object->type == OBJT_VNODE)
921                         vdrop(object->handle);
922         }
923 }
924
925 /*
926  *      vm_object_terminate actually destroys the specified object, freeing
927  *      up all previously used resources.
928  *
929  *      The object must be locked.
930  *      This routine may block.
931  */
932 void
933 vm_object_terminate(vm_object_t object)
934 {
935
936         VM_OBJECT_ASSERT_WLOCKED(object);
937         KASSERT((object->flags & OBJ_DEAD) != 0,
938             ("terminating non-dead obj %p", object));
939         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
940             ("terminating collapsing obj %p", object));
941         KASSERT(object->backing_object == NULL,
942             ("terminating shadow obj %p", object));
943
944         /*
945          * Wait for the pageout daemon and other current users to be
946          * done with the object.  Note that new paging_in_progress
947          * users can come after this wait, but they must check
948          * OBJ_DEAD flag set (without unlocking the object), and avoid
949          * the object being terminated.
950          */
951         vm_object_pip_wait(object, "objtrm");
952
953         KASSERT(object->ref_count == 0,
954             ("vm_object_terminate: object with references, ref_count=%d",
955             object->ref_count));
956
957         if ((object->flags & OBJ_PG_DTOR) == 0)
958                 vm_object_terminate_pages(object);
959
960 #if VM_NRESERVLEVEL > 0
961         if (__predict_false(!LIST_EMPTY(&object->rvq)))
962                 vm_reserv_break_all(object);
963 #endif
964
965         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
966             (object->flags & OBJ_SWAP) != 0,
967             ("%s: non-swap obj %p has cred", __func__, object));
968
969         /*
970          * Let the pager know object is dead.
971          */
972         vm_pager_deallocate(object);
973         VM_OBJECT_WUNLOCK(object);
974
975         vm_object_destroy(object);
976 }
977
978 /*
979  * Make the page read-only so that we can clear the object flags.  However, if
980  * this is a nosync mmap then the object is likely to stay dirty so do not
981  * mess with the page and do not clear the object flags.  Returns TRUE if the
982  * page should be flushed, and FALSE otherwise.
983  */
984 static boolean_t
985 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
986 {
987
988         vm_page_assert_busied(p);
989
990         /*
991          * If we have been asked to skip nosync pages and this is a
992          * nosync page, skip it.  Note that the object flags were not
993          * cleared in this case so we do not have to set them.
994          */
995         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
996                 *allclean = FALSE;
997                 return (FALSE);
998         } else {
999                 pmap_remove_write(p);
1000                 return (p->dirty != 0);
1001         }
1002 }
1003
1004 /*
1005  *      vm_object_page_clean
1006  *
1007  *      Clean all dirty pages in the specified range of object.  Leaves page 
1008  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1009  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1010  *      leaving the object dirty.
1011  *
1012  *      For swap objects backing tmpfs regular files, do not flush anything,
1013  *      but remove write protection on the mapped pages to update mtime through
1014  *      mmaped writes.
1015  *
1016  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1017  *      synchronous clustering mode implementation.
1018  *
1019  *      Odd semantics: if start == end, we clean everything.
1020  *
1021  *      The object must be locked.
1022  *
1023  *      Returns FALSE if some page from the range was not written, as
1024  *      reported by the pager, and TRUE otherwise.
1025  */
1026 boolean_t
1027 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1028     int flags)
1029 {
1030         vm_page_t np, p;
1031         vm_pindex_t pi, tend, tstart;
1032         int curgeneration, n, pagerflags;
1033         boolean_t eio, res, allclean;
1034
1035         VM_OBJECT_ASSERT_WLOCKED(object);
1036
1037         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1038                 return (TRUE);
1039
1040         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1041             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1042         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1043
1044         tstart = OFF_TO_IDX(start);
1045         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1046         allclean = tstart == 0 && tend >= object->size;
1047         res = TRUE;
1048
1049 rescan:
1050         curgeneration = object->generation;
1051
1052         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1053                 pi = p->pindex;
1054                 if (pi >= tend)
1055                         break;
1056                 np = TAILQ_NEXT(p, listq);
1057                 if (vm_page_none_valid(p))
1058                         continue;
1059                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1060                         if (object->generation != curgeneration &&
1061                             (flags & OBJPC_SYNC) != 0)
1062                                 goto rescan;
1063                         np = vm_page_find_least(object, pi);
1064                         continue;
1065                 }
1066                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1067                         vm_page_xunbusy(p);
1068                         continue;
1069                 }
1070                 if (object->type == OBJT_VNODE) {
1071                         n = vm_object_page_collect_flush(object, p, pagerflags,
1072                             flags, &allclean, &eio);
1073                         if (eio) {
1074                                 res = FALSE;
1075                                 allclean = FALSE;
1076                         }
1077                         if (object->generation != curgeneration &&
1078                             (flags & OBJPC_SYNC) != 0)
1079                                 goto rescan;
1080
1081                         /*
1082                          * If the VOP_PUTPAGES() did a truncated write, so
1083                          * that even the first page of the run is not fully
1084                          * written, vm_pageout_flush() returns 0 as the run
1085                          * length.  Since the condition that caused truncated
1086                          * write may be permanent, e.g. exhausted free space,
1087                          * accepting n == 0 would cause an infinite loop.
1088                          *
1089                          * Forwarding the iterator leaves the unwritten page
1090                          * behind, but there is not much we can do there if
1091                          * filesystem refuses to write it.
1092                          */
1093                         if (n == 0) {
1094                                 n = 1;
1095                                 allclean = FALSE;
1096                         }
1097                 } else {
1098                         n = 1;
1099                         vm_page_xunbusy(p);
1100                 }
1101                 np = vm_page_find_least(object, pi + n);
1102         }
1103 #if 0
1104         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1105 #endif
1106
1107         /*
1108          * Leave updating cleangeneration for tmpfs objects to tmpfs
1109          * scan.  It needs to update mtime, which happens for other
1110          * filesystems during page writeouts.
1111          */
1112         if (allclean && object->type == OBJT_VNODE)
1113                 object->cleangeneration = curgeneration;
1114         return (res);
1115 }
1116
1117 static int
1118 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1119     int flags, boolean_t *allclean, boolean_t *eio)
1120 {
1121         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1122         int count, i, mreq, runlen;
1123
1124         vm_page_lock_assert(p, MA_NOTOWNED);
1125         vm_page_assert_xbusied(p);
1126         VM_OBJECT_ASSERT_WLOCKED(object);
1127
1128         count = 1;
1129         mreq = 0;
1130
1131         for (tp = p; count < vm_pageout_page_count; count++) {
1132                 tp = vm_page_next(tp);
1133                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1134                         break;
1135                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1136                         vm_page_xunbusy(tp);
1137                         break;
1138                 }
1139         }
1140
1141         for (p_first = p; count < vm_pageout_page_count; count++) {
1142                 tp = vm_page_prev(p_first);
1143                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1144                         break;
1145                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1146                         vm_page_xunbusy(tp);
1147                         break;
1148                 }
1149                 p_first = tp;
1150                 mreq++;
1151         }
1152
1153         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1154                 ma[i] = tp;
1155
1156         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1157         return (runlen);
1158 }
1159
1160 /*
1161  * Note that there is absolutely no sense in writing out
1162  * anonymous objects, so we track down the vnode object
1163  * to write out.
1164  * We invalidate (remove) all pages from the address space
1165  * for semantic correctness.
1166  *
1167  * If the backing object is a device object with unmanaged pages, then any
1168  * mappings to the specified range of pages must be removed before this
1169  * function is called.
1170  *
1171  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1172  * may start out with a NULL object.
1173  */
1174 boolean_t
1175 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1176     boolean_t syncio, boolean_t invalidate)
1177 {
1178         vm_object_t backing_object;
1179         struct vnode *vp;
1180         struct mount *mp;
1181         int error, flags, fsync_after;
1182         boolean_t res;
1183
1184         if (object == NULL)
1185                 return (TRUE);
1186         res = TRUE;
1187         error = 0;
1188         VM_OBJECT_WLOCK(object);
1189         while ((backing_object = object->backing_object) != NULL) {
1190                 VM_OBJECT_WLOCK(backing_object);
1191                 offset += object->backing_object_offset;
1192                 VM_OBJECT_WUNLOCK(object);
1193                 object = backing_object;
1194                 if (object->size < OFF_TO_IDX(offset + size))
1195                         size = IDX_TO_OFF(object->size) - offset;
1196         }
1197         /*
1198          * Flush pages if writing is allowed, invalidate them
1199          * if invalidation requested.  Pages undergoing I/O
1200          * will be ignored by vm_object_page_remove().
1201          *
1202          * We cannot lock the vnode and then wait for paging
1203          * to complete without deadlocking against vm_fault.
1204          * Instead we simply call vm_object_page_remove() and
1205          * allow it to block internally on a page-by-page
1206          * basis when it encounters pages undergoing async
1207          * I/O.
1208          */
1209         if (object->type == OBJT_VNODE &&
1210             vm_object_mightbedirty(object) != 0 &&
1211             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1212                 VM_OBJECT_WUNLOCK(object);
1213                 (void) vn_start_write(vp, &mp, V_WAIT);
1214                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1215                 if (syncio && !invalidate && offset == 0 &&
1216                     atop(size) == object->size) {
1217                         /*
1218                          * If syncing the whole mapping of the file,
1219                          * it is faster to schedule all the writes in
1220                          * async mode, also allowing the clustering,
1221                          * and then wait for i/o to complete.
1222                          */
1223                         flags = 0;
1224                         fsync_after = TRUE;
1225                 } else {
1226                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1227                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1228                         fsync_after = FALSE;
1229                 }
1230                 VM_OBJECT_WLOCK(object);
1231                 res = vm_object_page_clean(object, offset, offset + size,
1232                     flags);
1233                 VM_OBJECT_WUNLOCK(object);
1234                 if (fsync_after)
1235                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1236                 VOP_UNLOCK(vp);
1237                 vn_finished_write(mp);
1238                 if (error != 0)
1239                         res = FALSE;
1240                 VM_OBJECT_WLOCK(object);
1241         }
1242         if ((object->type == OBJT_VNODE ||
1243              object->type == OBJT_DEVICE) && invalidate) {
1244                 if (object->type == OBJT_DEVICE)
1245                         /*
1246                          * The option OBJPR_NOTMAPPED must be passed here
1247                          * because vm_object_page_remove() cannot remove
1248                          * unmanaged mappings.
1249                          */
1250                         flags = OBJPR_NOTMAPPED;
1251                 else if (old_msync)
1252                         flags = 0;
1253                 else
1254                         flags = OBJPR_CLEANONLY;
1255                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1256                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1257         }
1258         VM_OBJECT_WUNLOCK(object);
1259         return (res);
1260 }
1261
1262 /*
1263  * Determine whether the given advice can be applied to the object.  Advice is
1264  * not applied to unmanaged pages since they never belong to page queues, and
1265  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1266  * have been mapped at most once.
1267  */
1268 static bool
1269 vm_object_advice_applies(vm_object_t object, int advice)
1270 {
1271
1272         if ((object->flags & OBJ_UNMANAGED) != 0)
1273                 return (false);
1274         if (advice != MADV_FREE)
1275                 return (true);
1276         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1277             (OBJ_ONEMAPPING | OBJ_ANON));
1278 }
1279
1280 static void
1281 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1282     vm_size_t size)
1283 {
1284
1285         if (advice == MADV_FREE)
1286                 vm_pager_freespace(object, pindex, size);
1287 }
1288
1289 /*
1290  *      vm_object_madvise:
1291  *
1292  *      Implements the madvise function at the object/page level.
1293  *
1294  *      MADV_WILLNEED   (any object)
1295  *
1296  *          Activate the specified pages if they are resident.
1297  *
1298  *      MADV_DONTNEED   (any object)
1299  *
1300  *          Deactivate the specified pages if they are resident.
1301  *
1302  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1303  *                       OBJ_ONEMAPPING only)
1304  *
1305  *          Deactivate and clean the specified pages if they are
1306  *          resident.  This permits the process to reuse the pages
1307  *          without faulting or the kernel to reclaim the pages
1308  *          without I/O.
1309  */
1310 void
1311 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1312     int advice)
1313 {
1314         vm_pindex_t tpindex;
1315         vm_object_t backing_object, tobject;
1316         vm_page_t m, tm;
1317
1318         if (object == NULL)
1319                 return;
1320
1321 relookup:
1322         VM_OBJECT_WLOCK(object);
1323         if (!vm_object_advice_applies(object, advice)) {
1324                 VM_OBJECT_WUNLOCK(object);
1325                 return;
1326         }
1327         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1328                 tobject = object;
1329
1330                 /*
1331                  * If the next page isn't resident in the top-level object, we
1332                  * need to search the shadow chain.  When applying MADV_FREE, we
1333                  * take care to release any swap space used to store
1334                  * non-resident pages.
1335                  */
1336                 if (m == NULL || pindex < m->pindex) {
1337                         /*
1338                          * Optimize a common case: if the top-level object has
1339                          * no backing object, we can skip over the non-resident
1340                          * range in constant time.
1341                          */
1342                         if (object->backing_object == NULL) {
1343                                 tpindex = (m != NULL && m->pindex < end) ?
1344                                     m->pindex : end;
1345                                 vm_object_madvise_freespace(object, advice,
1346                                     pindex, tpindex - pindex);
1347                                 if ((pindex = tpindex) == end)
1348                                         break;
1349                                 goto next_page;
1350                         }
1351
1352                         tpindex = pindex;
1353                         do {
1354                                 vm_object_madvise_freespace(tobject, advice,
1355                                     tpindex, 1);
1356                                 /*
1357                                  * Prepare to search the next object in the
1358                                  * chain.
1359                                  */
1360                                 backing_object = tobject->backing_object;
1361                                 if (backing_object == NULL)
1362                                         goto next_pindex;
1363                                 VM_OBJECT_WLOCK(backing_object);
1364                                 tpindex +=
1365                                     OFF_TO_IDX(tobject->backing_object_offset);
1366                                 if (tobject != object)
1367                                         VM_OBJECT_WUNLOCK(tobject);
1368                                 tobject = backing_object;
1369                                 if (!vm_object_advice_applies(tobject, advice))
1370                                         goto next_pindex;
1371                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1372                             NULL);
1373                 } else {
1374 next_page:
1375                         tm = m;
1376                         m = TAILQ_NEXT(m, listq);
1377                 }
1378
1379                 /*
1380                  * If the page is not in a normal state, skip it.  The page
1381                  * can not be invalidated while the object lock is held.
1382                  */
1383                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1384                         goto next_pindex;
1385                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1386                     ("vm_object_madvise: page %p is fictitious", tm));
1387                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1388                     ("vm_object_madvise: page %p is not managed", tm));
1389                 if (vm_page_tryxbusy(tm) == 0) {
1390                         if (object != tobject)
1391                                 VM_OBJECT_WUNLOCK(object);
1392                         if (advice == MADV_WILLNEED) {
1393                                 /*
1394                                  * Reference the page before unlocking and
1395                                  * sleeping so that the page daemon is less
1396                                  * likely to reclaim it.
1397                                  */
1398                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1399                         }
1400                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1401                                 VM_OBJECT_WUNLOCK(tobject);
1402                         goto relookup;
1403                 }
1404                 vm_page_advise(tm, advice);
1405                 vm_page_xunbusy(tm);
1406                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1407 next_pindex:
1408                 if (tobject != object)
1409                         VM_OBJECT_WUNLOCK(tobject);
1410         }
1411         VM_OBJECT_WUNLOCK(object);
1412 }
1413
1414 /*
1415  *      vm_object_shadow:
1416  *
1417  *      Create a new object which is backed by the
1418  *      specified existing object range.  The source
1419  *      object reference is deallocated.
1420  *
1421  *      The new object and offset into that object
1422  *      are returned in the source parameters.
1423  */
1424 void
1425 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1426     struct ucred *cred, bool shared)
1427 {
1428         vm_object_t source;
1429         vm_object_t result;
1430
1431         source = *object;
1432
1433         /*
1434          * Don't create the new object if the old object isn't shared.
1435          *
1436          * If we hold the only reference we can guarantee that it won't
1437          * increase while we have the map locked.  Otherwise the race is
1438          * harmless and we will end up with an extra shadow object that
1439          * will be collapsed later.
1440          */
1441         if (source != NULL && source->ref_count == 1 &&
1442             (source->flags & OBJ_ANON) != 0)
1443                 return;
1444
1445         /*
1446          * Allocate a new object with the given length.
1447          */
1448         result = vm_object_allocate_anon(atop(length), source, cred, length);
1449
1450         /*
1451          * Store the offset into the source object, and fix up the offset into
1452          * the new object.
1453          */
1454         result->backing_object_offset = *offset;
1455
1456         if (shared || source != NULL) {
1457                 VM_OBJECT_WLOCK(result);
1458
1459                 /*
1460                  * The new object shadows the source object, adding a
1461                  * reference to it.  Our caller changes his reference
1462                  * to point to the new object, removing a reference to
1463                  * the source object.  Net result: no change of
1464                  * reference count, unless the caller needs to add one
1465                  * more reference due to forking a shared map entry.
1466                  */
1467                 if (shared) {
1468                         vm_object_reference_locked(result);
1469                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1470                 }
1471
1472                 /*
1473                  * Try to optimize the result object's page color when
1474                  * shadowing in order to maintain page coloring
1475                  * consistency in the combined shadowed object.
1476                  */
1477                 if (source != NULL) {
1478                         vm_object_backing_insert(result, source);
1479                         result->domain = source->domain;
1480 #if VM_NRESERVLEVEL > 0
1481                         result->flags |= source->flags & OBJ_COLORED;
1482                         result->pg_color = (source->pg_color +
1483                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1484                             1)) - 1);
1485 #endif
1486                 }
1487                 VM_OBJECT_WUNLOCK(result);
1488         }
1489
1490         /*
1491          * Return the new things
1492          */
1493         *offset = 0;
1494         *object = result;
1495 }
1496
1497 /*
1498  *      vm_object_split:
1499  *
1500  * Split the pages in a map entry into a new object.  This affords
1501  * easier removal of unused pages, and keeps object inheritance from
1502  * being a negative impact on memory usage.
1503  */
1504 void
1505 vm_object_split(vm_map_entry_t entry)
1506 {
1507         vm_page_t m, m_busy, m_next;
1508         vm_object_t orig_object, new_object, backing_object;
1509         vm_pindex_t idx, offidxstart;
1510         vm_size_t size;
1511
1512         orig_object = entry->object.vm_object;
1513         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1514             ("vm_object_split:  Splitting object with multiple mappings."));
1515         if ((orig_object->flags & OBJ_ANON) == 0)
1516                 return;
1517         if (orig_object->ref_count <= 1)
1518                 return;
1519         VM_OBJECT_WUNLOCK(orig_object);
1520
1521         offidxstart = OFF_TO_IDX(entry->offset);
1522         size = atop(entry->end - entry->start);
1523
1524         /*
1525          * If swap_pager_copy() is later called, it will convert new_object
1526          * into a swap object.
1527          */
1528         new_object = vm_object_allocate_anon(size, orig_object,
1529             orig_object->cred, ptoa(size));
1530
1531         /*
1532          * We must wait for the orig_object to complete any in-progress
1533          * collapse so that the swap blocks are stable below.  The
1534          * additional reference on backing_object by new object will
1535          * prevent further collapse operations until split completes.
1536          */
1537         VM_OBJECT_WLOCK(orig_object);
1538         vm_object_collapse_wait(orig_object);
1539
1540         /*
1541          * At this point, the new object is still private, so the order in
1542          * which the original and new objects are locked does not matter.
1543          */
1544         VM_OBJECT_WLOCK(new_object);
1545         new_object->domain = orig_object->domain;
1546         backing_object = orig_object->backing_object;
1547         if (backing_object != NULL) {
1548                 vm_object_backing_insert_ref(new_object, backing_object);
1549                 new_object->backing_object_offset = 
1550                     orig_object->backing_object_offset + entry->offset;
1551         }
1552         if (orig_object->cred != NULL) {
1553                 crhold(orig_object->cred);
1554                 KASSERT(orig_object->charge >= ptoa(size),
1555                     ("orig_object->charge < 0"));
1556                 orig_object->charge -= ptoa(size);
1557         }
1558
1559         /*
1560          * Mark the split operation so that swap_pager_getpages() knows
1561          * that the object is in transition.
1562          */
1563         vm_object_set_flag(orig_object, OBJ_SPLIT);
1564         m_busy = NULL;
1565 #ifdef INVARIANTS
1566         idx = 0;
1567 #endif
1568 retry:
1569         m = vm_page_find_least(orig_object, offidxstart);
1570         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1571             ("%s: object %p was repopulated", __func__, orig_object));
1572         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1573             m = m_next) {
1574                 m_next = TAILQ_NEXT(m, listq);
1575
1576                 /*
1577                  * We must wait for pending I/O to complete before we can
1578                  * rename the page.
1579                  *
1580                  * We do not have to VM_PROT_NONE the page as mappings should
1581                  * not be changed by this operation.
1582                  */
1583                 if (vm_page_tryxbusy(m) == 0) {
1584                         VM_OBJECT_WUNLOCK(new_object);
1585                         if (vm_page_busy_sleep(m, "spltwt", 0))
1586                                 VM_OBJECT_WLOCK(orig_object);
1587                         VM_OBJECT_WLOCK(new_object);
1588                         goto retry;
1589                 }
1590
1591                 /*
1592                  * The page was left invalid.  Likely placed there by
1593                  * an incomplete fault.  Just remove and ignore.
1594                  */
1595                 if (vm_page_none_valid(m)) {
1596                         if (vm_page_remove(m))
1597                                 vm_page_free(m);
1598                         continue;
1599                 }
1600
1601                 /* vm_page_rename() will dirty the page. */
1602                 if (vm_page_rename(m, new_object, idx)) {
1603                         vm_page_xunbusy(m);
1604                         VM_OBJECT_WUNLOCK(new_object);
1605                         VM_OBJECT_WUNLOCK(orig_object);
1606                         vm_radix_wait();
1607                         VM_OBJECT_WLOCK(orig_object);
1608                         VM_OBJECT_WLOCK(new_object);
1609                         goto retry;
1610                 }
1611
1612 #if VM_NRESERVLEVEL > 0
1613                 /*
1614                  * If some of the reservation's allocated pages remain with
1615                  * the original object, then transferring the reservation to
1616                  * the new object is neither particularly beneficial nor
1617                  * particularly harmful as compared to leaving the reservation
1618                  * with the original object.  If, however, all of the
1619                  * reservation's allocated pages are transferred to the new
1620                  * object, then transferring the reservation is typically
1621                  * beneficial.  Determining which of these two cases applies
1622                  * would be more costly than unconditionally renaming the
1623                  * reservation.
1624                  */
1625                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1626 #endif
1627
1628                 /*
1629                  * orig_object's type may change while sleeping, so keep track
1630                  * of the beginning of the busied range.
1631                  */
1632                 if (orig_object->type != OBJT_SWAP)
1633                         vm_page_xunbusy(m);
1634                 else if (m_busy == NULL)
1635                         m_busy = m;
1636         }
1637         if ((orig_object->flags & OBJ_SWAP) != 0) {
1638                 /*
1639                  * swap_pager_copy() can sleep, in which case the orig_object's
1640                  * and new_object's locks are released and reacquired. 
1641                  */
1642                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1643                 if (m_busy != NULL)
1644                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1645                                 vm_page_xunbusy(m_busy);
1646         }
1647         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1648         VM_OBJECT_WUNLOCK(orig_object);
1649         VM_OBJECT_WUNLOCK(new_object);
1650         entry->object.vm_object = new_object;
1651         entry->offset = 0LL;
1652         vm_object_deallocate(orig_object);
1653         VM_OBJECT_WLOCK(new_object);
1654 }
1655
1656 static vm_page_t
1657 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1658 {
1659         vm_object_t backing_object;
1660
1661         VM_OBJECT_ASSERT_WLOCKED(object);
1662         backing_object = object->backing_object;
1663         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1664
1665         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1666             ("invalid ownership %p %p %p", p, object, backing_object));
1667         /* The page is only NULL when rename fails. */
1668         if (p == NULL) {
1669                 VM_OBJECT_WUNLOCK(object);
1670                 VM_OBJECT_WUNLOCK(backing_object);
1671                 vm_radix_wait();
1672                 VM_OBJECT_WLOCK(object);
1673         } else if (p->object == object) {
1674                 VM_OBJECT_WUNLOCK(backing_object);
1675                 if (vm_page_busy_sleep(p, "vmocol", 0))
1676                         VM_OBJECT_WLOCK(object);
1677         } else {
1678                 VM_OBJECT_WUNLOCK(object);
1679                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1680                         VM_OBJECT_WUNLOCK(backing_object);
1681                 VM_OBJECT_WLOCK(object);
1682         }
1683         VM_OBJECT_WLOCK(backing_object);
1684         return (TAILQ_FIRST(&backing_object->memq));
1685 }
1686
1687 static bool
1688 vm_object_scan_all_shadowed(vm_object_t object)
1689 {
1690         vm_object_t backing_object;
1691         vm_page_t p, pp;
1692         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1693
1694         VM_OBJECT_ASSERT_WLOCKED(object);
1695         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1696
1697         backing_object = object->backing_object;
1698
1699         if ((backing_object->flags & OBJ_ANON) == 0)
1700                 return (false);
1701
1702         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1703         p = vm_page_find_least(backing_object, pi);
1704         ps = swap_pager_find_least(backing_object, pi);
1705
1706         /*
1707          * Only check pages inside the parent object's range and
1708          * inside the parent object's mapping of the backing object.
1709          */
1710         for (;; pi++) {
1711                 if (p != NULL && p->pindex < pi)
1712                         p = TAILQ_NEXT(p, listq);
1713                 if (ps < pi)
1714                         ps = swap_pager_find_least(backing_object, pi);
1715                 if (p == NULL && ps >= backing_object->size)
1716                         break;
1717                 else if (p == NULL)
1718                         pi = ps;
1719                 else
1720                         pi = MIN(p->pindex, ps);
1721
1722                 new_pindex = pi - backing_offset_index;
1723                 if (new_pindex >= object->size)
1724                         break;
1725
1726                 if (p != NULL) {
1727                         /*
1728                          * If the backing object page is busy a
1729                          * grandparent or older page may still be
1730                          * undergoing CoW.  It is not safe to collapse
1731                          * the backing object until it is quiesced.
1732                          */
1733                         if (vm_page_tryxbusy(p) == 0)
1734                                 return (false);
1735
1736                         /*
1737                          * We raced with the fault handler that left
1738                          * newly allocated invalid page on the object
1739                          * queue and retried.
1740                          */
1741                         if (!vm_page_all_valid(p))
1742                                 goto unbusy_ret;
1743                 }
1744
1745                 /*
1746                  * See if the parent has the page or if the parent's object
1747                  * pager has the page.  If the parent has the page but the page
1748                  * is not valid, the parent's object pager must have the page.
1749                  *
1750                  * If this fails, the parent does not completely shadow the
1751                  * object and we might as well give up now.
1752                  */
1753                 pp = vm_page_lookup(object, new_pindex);
1754
1755                 /*
1756                  * The valid check here is stable due to object lock
1757                  * being required to clear valid and initiate paging.
1758                  * Busy of p disallows fault handler to validate pp.
1759                  */
1760                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1761                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1762                         goto unbusy_ret;
1763                 if (p != NULL)
1764                         vm_page_xunbusy(p);
1765         }
1766         return (true);
1767
1768 unbusy_ret:
1769         if (p != NULL)
1770                 vm_page_xunbusy(p);
1771         return (false);
1772 }
1773
1774 static void
1775 vm_object_collapse_scan(vm_object_t object)
1776 {
1777         vm_object_t backing_object;
1778         vm_page_t next, p, pp;
1779         vm_pindex_t backing_offset_index, new_pindex;
1780
1781         VM_OBJECT_ASSERT_WLOCKED(object);
1782         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1783
1784         backing_object = object->backing_object;
1785         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1786
1787         /*
1788          * Our scan
1789          */
1790         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1791                 next = TAILQ_NEXT(p, listq);
1792                 new_pindex = p->pindex - backing_offset_index;
1793
1794                 /*
1795                  * Check for busy page
1796                  */
1797                 if (vm_page_tryxbusy(p) == 0) {
1798                         next = vm_object_collapse_scan_wait(object, p);
1799                         continue;
1800                 }
1801
1802                 KASSERT(object->backing_object == backing_object,
1803                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1804                     object->backing_object, backing_object));
1805                 KASSERT(p->object == backing_object,
1806                     ("vm_object_collapse_scan: object mismatch %p != %p",
1807                     p->object, backing_object));
1808
1809                 if (p->pindex < backing_offset_index ||
1810                     new_pindex >= object->size) {
1811                         vm_pager_freespace(backing_object, p->pindex, 1);
1812
1813                         KASSERT(!pmap_page_is_mapped(p),
1814                             ("freeing mapped page %p", p));
1815                         if (vm_page_remove(p))
1816                                 vm_page_free(p);
1817                         continue;
1818                 }
1819
1820                 if (!vm_page_all_valid(p)) {
1821                         KASSERT(!pmap_page_is_mapped(p),
1822                             ("freeing mapped page %p", p));
1823                         if (vm_page_remove(p))
1824                                 vm_page_free(p);
1825                         continue;
1826                 }
1827
1828                 pp = vm_page_lookup(object, new_pindex);
1829                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1830                         vm_page_xunbusy(p);
1831                         /*
1832                          * The page in the parent is busy and possibly not
1833                          * (yet) valid.  Until its state is finalized by the
1834                          * busy bit owner, we can't tell whether it shadows the
1835                          * original page.
1836                          */
1837                         next = vm_object_collapse_scan_wait(object, pp);
1838                         continue;
1839                 }
1840
1841                 if (pp != NULL && vm_page_none_valid(pp)) {
1842                         /*
1843                          * The page was invalid in the parent.  Likely placed
1844                          * there by an incomplete fault.  Just remove and
1845                          * ignore.  p can replace it.
1846                          */
1847                         if (vm_page_remove(pp))
1848                                 vm_page_free(pp);
1849                         pp = NULL;
1850                 }
1851
1852                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1853                         NULL)) {
1854                         /*
1855                          * The page already exists in the parent OR swap exists
1856                          * for this location in the parent.  Leave the parent's
1857                          * page alone.  Destroy the original page from the
1858                          * backing object.
1859                          */
1860                         vm_pager_freespace(backing_object, p->pindex, 1);
1861                         KASSERT(!pmap_page_is_mapped(p),
1862                             ("freeing mapped page %p", p));
1863                         if (vm_page_remove(p))
1864                                 vm_page_free(p);
1865                         if (pp != NULL)
1866                                 vm_page_xunbusy(pp);
1867                         continue;
1868                 }
1869
1870                 /*
1871                  * Page does not exist in parent, rename the page from the
1872                  * backing object to the main object.
1873                  *
1874                  * If the page was mapped to a process, it can remain mapped
1875                  * through the rename.  vm_page_rename() will dirty the page.
1876                  */
1877                 if (vm_page_rename(p, object, new_pindex)) {
1878                         vm_page_xunbusy(p);
1879                         next = vm_object_collapse_scan_wait(object, NULL);
1880                         continue;
1881                 }
1882
1883                 /* Use the old pindex to free the right page. */
1884                 vm_pager_freespace(backing_object, new_pindex +
1885                     backing_offset_index, 1);
1886
1887 #if VM_NRESERVLEVEL > 0
1888                 /*
1889                  * Rename the reservation.
1890                  */
1891                 vm_reserv_rename(p, object, backing_object,
1892                     backing_offset_index);
1893 #endif
1894                 vm_page_xunbusy(p);
1895         }
1896         return;
1897 }
1898
1899 /*
1900  *      vm_object_collapse:
1901  *
1902  *      Collapse an object with the object backing it.
1903  *      Pages in the backing object are moved into the
1904  *      parent, and the backing object is deallocated.
1905  */
1906 void
1907 vm_object_collapse(vm_object_t object)
1908 {
1909         vm_object_t backing_object, new_backing_object;
1910
1911         VM_OBJECT_ASSERT_WLOCKED(object);
1912
1913         while (TRUE) {
1914                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1915                     ("collapsing invalid object"));
1916
1917                 /*
1918                  * Wait for the backing_object to finish any pending
1919                  * collapse so that the caller sees the shortest possible
1920                  * shadow chain.
1921                  */
1922                 backing_object = vm_object_backing_collapse_wait(object);
1923                 if (backing_object == NULL)
1924                         return;
1925
1926                 KASSERT(object->ref_count > 0 &&
1927                     object->ref_count > object->shadow_count,
1928                     ("collapse with invalid ref %d or shadow %d count.",
1929                     object->ref_count, object->shadow_count));
1930                 KASSERT((backing_object->flags &
1931                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1932                     ("vm_object_collapse: Backing object already collapsing."));
1933                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1934                     ("vm_object_collapse: object is already collapsing."));
1935
1936                 /*
1937                  * We know that we can either collapse the backing object if
1938                  * the parent is the only reference to it, or (perhaps) have
1939                  * the parent bypass the object if the parent happens to shadow
1940                  * all the resident pages in the entire backing object.
1941                  */
1942                 if (backing_object->ref_count == 1) {
1943                         KASSERT(backing_object->shadow_count == 1,
1944                             ("vm_object_collapse: shadow_count: %d",
1945                             backing_object->shadow_count));
1946                         vm_object_pip_add(object, 1);
1947                         vm_object_set_flag(object, OBJ_COLLAPSING);
1948                         vm_object_pip_add(backing_object, 1);
1949                         vm_object_set_flag(backing_object, OBJ_DEAD);
1950
1951                         /*
1952                          * If there is exactly one reference to the backing
1953                          * object, we can collapse it into the parent.
1954                          */
1955                         vm_object_collapse_scan(object);
1956
1957 #if VM_NRESERVLEVEL > 0
1958                         /*
1959                          * Break any reservations from backing_object.
1960                          */
1961                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1962                                 vm_reserv_break_all(backing_object);
1963 #endif
1964
1965                         /*
1966                          * Move the pager from backing_object to object.
1967                          */
1968                         if ((backing_object->flags & OBJ_SWAP) != 0) {
1969                                 /*
1970                                  * swap_pager_copy() can sleep, in which case
1971                                  * the backing_object's and object's locks are
1972                                  * released and reacquired.
1973                                  * Since swap_pager_copy() is being asked to
1974                                  * destroy backing_object, it will change the
1975                                  * type to OBJT_DEFAULT.
1976                                  */
1977                                 swap_pager_copy(
1978                                     backing_object,
1979                                     object,
1980                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1981                         }
1982
1983                         /*
1984                          * Object now shadows whatever backing_object did.
1985                          */
1986                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1987                         vm_object_backing_transfer(object, backing_object);
1988                         object->backing_object_offset +=
1989                             backing_object->backing_object_offset;
1990                         VM_OBJECT_WUNLOCK(object);
1991                         vm_object_pip_wakeup(object);
1992
1993                         /*
1994                          * Discard backing_object.
1995                          *
1996                          * Since the backing object has no pages, no pager left,
1997                          * and no object references within it, all that is
1998                          * necessary is to dispose of it.
1999                          */
2000                         KASSERT(backing_object->ref_count == 1, (
2001 "backing_object %p was somehow re-referenced during collapse!",
2002                             backing_object));
2003                         vm_object_pip_wakeup(backing_object);
2004                         (void)refcount_release(&backing_object->ref_count);
2005                         vm_object_terminate(backing_object);
2006                         counter_u64_add(object_collapses, 1);
2007                         VM_OBJECT_WLOCK(object);
2008                 } else {
2009                         /*
2010                          * If we do not entirely shadow the backing object,
2011                          * there is nothing we can do so we give up.
2012                          *
2013                          * The object lock and backing_object lock must not
2014                          * be dropped during this sequence.
2015                          */
2016                         if (!vm_object_scan_all_shadowed(object)) {
2017                                 VM_OBJECT_WUNLOCK(backing_object);
2018                                 break;
2019                         }
2020
2021                         /*
2022                          * Make the parent shadow the next object in the
2023                          * chain.  Deallocating backing_object will not remove
2024                          * it, since its reference count is at least 2.
2025                          */
2026                         vm_object_backing_remove_locked(object);
2027                         new_backing_object = backing_object->backing_object;
2028                         if (new_backing_object != NULL) {
2029                                 vm_object_backing_insert_ref(object,
2030                                     new_backing_object);
2031                                 object->backing_object_offset +=
2032                                     backing_object->backing_object_offset;
2033                         }
2034
2035                         /*
2036                          * Drop the reference count on backing_object. Since
2037                          * its ref_count was at least 2, it will not vanish.
2038                          */
2039                         (void)refcount_release(&backing_object->ref_count);
2040                         KASSERT(backing_object->ref_count >= 1, (
2041 "backing_object %p was somehow dereferenced during collapse!",
2042                             backing_object));
2043                         VM_OBJECT_WUNLOCK(backing_object);
2044                         counter_u64_add(object_bypasses, 1);
2045                 }
2046
2047                 /*
2048                  * Try again with this object's new backing object.
2049                  */
2050         }
2051 }
2052
2053 /*
2054  *      vm_object_page_remove:
2055  *
2056  *      For the given object, either frees or invalidates each of the
2057  *      specified pages.  In general, a page is freed.  However, if a page is
2058  *      wired for any reason other than the existence of a managed, wired
2059  *      mapping, then it may be invalidated but not removed from the object.
2060  *      Pages are specified by the given range ["start", "end") and the option
2061  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2062  *      extends from "start" to the end of the object.  If the option
2063  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2064  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2065  *      specified, then the pages within the specified range must have no
2066  *      mappings.  Otherwise, if this option is not specified, any mappings to
2067  *      the specified pages are removed before the pages are freed or
2068  *      invalidated.
2069  *
2070  *      In general, this operation should only be performed on objects that
2071  *      contain managed pages.  There are, however, two exceptions.  First, it
2072  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2073  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2074  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2075  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2076  *
2077  *      The object must be locked.
2078  */
2079 void
2080 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2081     int options)
2082 {
2083         vm_page_t p, next;
2084
2085         VM_OBJECT_ASSERT_WLOCKED(object);
2086         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2087             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2088             ("vm_object_page_remove: illegal options for object %p", object));
2089         if (object->resident_page_count == 0)
2090                 return;
2091         vm_object_pip_add(object, 1);
2092 again:
2093         p = vm_page_find_least(object, start);
2094
2095         /*
2096          * Here, the variable "p" is either (1) the page with the least pindex
2097          * greater than or equal to the parameter "start" or (2) NULL. 
2098          */
2099         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2100                 next = TAILQ_NEXT(p, listq);
2101
2102                 /*
2103                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2104                  * the busy lock, as some consumers rely on this to avoid
2105                  * deadlocks.
2106                  *
2107                  * A thread may concurrently transition the page from invalid to
2108                  * valid using only the busy lock, so the result of this check
2109                  * is immediately stale.  It is up to consumers to handle this,
2110                  * for instance by ensuring that all invalid->valid transitions
2111                  * happen with a mutex held, as may be possible for a
2112                  * filesystem.
2113                  */
2114                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2115                         continue;
2116
2117                 /*
2118                  * If the page is wired for any reason besides the existence
2119                  * of managed, wired mappings, then it cannot be freed.  For
2120                  * example, fictitious pages, which represent device memory,
2121                  * are inherently wired and cannot be freed.  They can,
2122                  * however, be invalidated if the option OBJPR_CLEANONLY is
2123                  * not specified.
2124                  */
2125                 if (vm_page_tryxbusy(p) == 0) {
2126                         if (vm_page_busy_sleep(p, "vmopar", 0))
2127                                 VM_OBJECT_WLOCK(object);
2128                         goto again;
2129                 }
2130                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2131                         vm_page_xunbusy(p);
2132                         continue;
2133                 }
2134                 if (vm_page_wired(p)) {
2135 wired:
2136                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2137                             object->ref_count != 0)
2138                                 pmap_remove_all(p);
2139                         if ((options & OBJPR_CLEANONLY) == 0) {
2140                                 vm_page_invalid(p);
2141                                 vm_page_undirty(p);
2142                         }
2143                         vm_page_xunbusy(p);
2144                         continue;
2145                 }
2146                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2147                     ("vm_object_page_remove: page %p is fictitious", p));
2148                 if ((options & OBJPR_CLEANONLY) != 0 &&
2149                     !vm_page_none_valid(p)) {
2150                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2151                             object->ref_count != 0 &&
2152                             !vm_page_try_remove_write(p))
2153                                 goto wired;
2154                         if (p->dirty != 0) {
2155                                 vm_page_xunbusy(p);
2156                                 continue;
2157                         }
2158                 }
2159                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2160                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2161                         goto wired;
2162                 vm_page_free(p);
2163         }
2164         vm_object_pip_wakeup(object);
2165
2166         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2167             start);
2168 }
2169
2170 /*
2171  *      vm_object_page_noreuse:
2172  *
2173  *      For the given object, attempt to move the specified pages to
2174  *      the head of the inactive queue.  This bypasses regular LRU
2175  *      operation and allows the pages to be reused quickly under memory
2176  *      pressure.  If a page is wired for any reason, then it will not
2177  *      be queued.  Pages are specified by the range ["start", "end").
2178  *      As a special case, if "end" is zero, then the range extends from
2179  *      "start" to the end of the object.
2180  *
2181  *      This operation should only be performed on objects that
2182  *      contain non-fictitious, managed pages.
2183  *
2184  *      The object must be locked.
2185  */
2186 void
2187 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2188 {
2189         vm_page_t p, next;
2190
2191         VM_OBJECT_ASSERT_LOCKED(object);
2192         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2193             ("vm_object_page_noreuse: illegal object %p", object));
2194         if (object->resident_page_count == 0)
2195                 return;
2196         p = vm_page_find_least(object, start);
2197
2198         /*
2199          * Here, the variable "p" is either (1) the page with the least pindex
2200          * greater than or equal to the parameter "start" or (2) NULL. 
2201          */
2202         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2203                 next = TAILQ_NEXT(p, listq);
2204                 vm_page_deactivate_noreuse(p);
2205         }
2206 }
2207
2208 /*
2209  *      Populate the specified range of the object with valid pages.  Returns
2210  *      TRUE if the range is successfully populated and FALSE otherwise.
2211  *
2212  *      Note: This function should be optimized to pass a larger array of
2213  *      pages to vm_pager_get_pages() before it is applied to a non-
2214  *      OBJT_DEVICE object.
2215  *
2216  *      The object must be locked.
2217  */
2218 boolean_t
2219 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2220 {
2221         vm_page_t m;
2222         vm_pindex_t pindex;
2223         int rv;
2224
2225         VM_OBJECT_ASSERT_WLOCKED(object);
2226         for (pindex = start; pindex < end; pindex++) {
2227                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2228                 if (rv != VM_PAGER_OK)
2229                         break;
2230
2231                 /*
2232                  * Keep "m" busy because a subsequent iteration may unlock
2233                  * the object.
2234                  */
2235         }
2236         if (pindex > start) {
2237                 m = vm_page_lookup(object, start);
2238                 while (m != NULL && m->pindex < pindex) {
2239                         vm_page_xunbusy(m);
2240                         m = TAILQ_NEXT(m, listq);
2241                 }
2242         }
2243         return (pindex == end);
2244 }
2245
2246 /*
2247  *      Routine:        vm_object_coalesce
2248  *      Function:       Coalesces two objects backing up adjoining
2249  *                      regions of memory into a single object.
2250  *
2251  *      returns TRUE if objects were combined.
2252  *
2253  *      NOTE:   Only works at the moment if the second object is NULL -
2254  *              if it's not, which object do we lock first?
2255  *
2256  *      Parameters:
2257  *              prev_object     First object to coalesce
2258  *              prev_offset     Offset into prev_object
2259  *              prev_size       Size of reference to prev_object
2260  *              next_size       Size of reference to the second object
2261  *              reserved        Indicator that extension region has
2262  *                              swap accounted for
2263  *
2264  *      Conditions:
2265  *      The object must *not* be locked.
2266  */
2267 boolean_t
2268 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2269     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2270 {
2271         vm_pindex_t next_pindex;
2272
2273         if (prev_object == NULL)
2274                 return (TRUE);
2275         if ((prev_object->flags & OBJ_ANON) == 0)
2276                 return (FALSE);
2277
2278         VM_OBJECT_WLOCK(prev_object);
2279         /*
2280          * Try to collapse the object first.
2281          */
2282         vm_object_collapse(prev_object);
2283
2284         /*
2285          * Can't coalesce if: . more than one reference . paged out . shadows
2286          * another object . has a copy elsewhere (any of which mean that the
2287          * pages not mapped to prev_entry may be in use anyway)
2288          */
2289         if (prev_object->backing_object != NULL) {
2290                 VM_OBJECT_WUNLOCK(prev_object);
2291                 return (FALSE);
2292         }
2293
2294         prev_size >>= PAGE_SHIFT;
2295         next_size >>= PAGE_SHIFT;
2296         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2297
2298         if (prev_object->ref_count > 1 &&
2299             prev_object->size != next_pindex &&
2300             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2301                 VM_OBJECT_WUNLOCK(prev_object);
2302                 return (FALSE);
2303         }
2304
2305         /*
2306          * Account for the charge.
2307          */
2308         if (prev_object->cred != NULL) {
2309                 /*
2310                  * If prev_object was charged, then this mapping,
2311                  * although not charged now, may become writable
2312                  * later. Non-NULL cred in the object would prevent
2313                  * swap reservation during enabling of the write
2314                  * access, so reserve swap now. Failed reservation
2315                  * cause allocation of the separate object for the map
2316                  * entry, and swap reservation for this entry is
2317                  * managed in appropriate time.
2318                  */
2319                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2320                     prev_object->cred)) {
2321                         VM_OBJECT_WUNLOCK(prev_object);
2322                         return (FALSE);
2323                 }
2324                 prev_object->charge += ptoa(next_size);
2325         }
2326
2327         /*
2328          * Remove any pages that may still be in the object from a previous
2329          * deallocation.
2330          */
2331         if (next_pindex < prev_object->size) {
2332                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2333                     next_size, 0);
2334 #if 0
2335                 if (prev_object->cred != NULL) {
2336                         KASSERT(prev_object->charge >=
2337                             ptoa(prev_object->size - next_pindex),
2338                             ("object %p overcharged 1 %jx %jx", prev_object,
2339                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2340                         prev_object->charge -= ptoa(prev_object->size -
2341                             next_pindex);
2342                 }
2343 #endif
2344         }
2345
2346         /*
2347          * Extend the object if necessary.
2348          */
2349         if (next_pindex + next_size > prev_object->size)
2350                 prev_object->size = next_pindex + next_size;
2351
2352         VM_OBJECT_WUNLOCK(prev_object);
2353         return (TRUE);
2354 }
2355
2356 void
2357 vm_object_set_writeable_dirty_(vm_object_t object)
2358 {
2359         atomic_add_int(&object->generation, 1);
2360 }
2361
2362 bool
2363 vm_object_mightbedirty_(vm_object_t object)
2364 {
2365         return (object->generation != object->cleangeneration);
2366 }
2367
2368 /*
2369  *      vm_object_unwire:
2370  *
2371  *      For each page offset within the specified range of the given object,
2372  *      find the highest-level page in the shadow chain and unwire it.  A page
2373  *      must exist at every page offset, and the highest-level page must be
2374  *      wired.
2375  */
2376 void
2377 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2378     uint8_t queue)
2379 {
2380         vm_object_t tobject, t1object;
2381         vm_page_t m, tm;
2382         vm_pindex_t end_pindex, pindex, tpindex;
2383         int depth, locked_depth;
2384
2385         KASSERT((offset & PAGE_MASK) == 0,
2386             ("vm_object_unwire: offset is not page aligned"));
2387         KASSERT((length & PAGE_MASK) == 0,
2388             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2389         /* The wired count of a fictitious page never changes. */
2390         if ((object->flags & OBJ_FICTITIOUS) != 0)
2391                 return;
2392         pindex = OFF_TO_IDX(offset);
2393         end_pindex = pindex + atop(length);
2394 again:
2395         locked_depth = 1;
2396         VM_OBJECT_RLOCK(object);
2397         m = vm_page_find_least(object, pindex);
2398         while (pindex < end_pindex) {
2399                 if (m == NULL || pindex < m->pindex) {
2400                         /*
2401                          * The first object in the shadow chain doesn't
2402                          * contain a page at the current index.  Therefore,
2403                          * the page must exist in a backing object.
2404                          */
2405                         tobject = object;
2406                         tpindex = pindex;
2407                         depth = 0;
2408                         do {
2409                                 tpindex +=
2410                                     OFF_TO_IDX(tobject->backing_object_offset);
2411                                 tobject = tobject->backing_object;
2412                                 KASSERT(tobject != NULL,
2413                                     ("vm_object_unwire: missing page"));
2414                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2415                                         goto next_page;
2416                                 depth++;
2417                                 if (depth == locked_depth) {
2418                                         locked_depth++;
2419                                         VM_OBJECT_RLOCK(tobject);
2420                                 }
2421                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2422                             NULL);
2423                 } else {
2424                         tm = m;
2425                         m = TAILQ_NEXT(m, listq);
2426                 }
2427                 if (vm_page_trysbusy(tm) == 0) {
2428                         for (tobject = object; locked_depth >= 1;
2429                             locked_depth--) {
2430                                 t1object = tobject->backing_object;
2431                                 if (tm->object != tobject)
2432                                         VM_OBJECT_RUNLOCK(tobject);
2433                                 tobject = t1object;
2434                         }
2435                         tobject = tm->object;
2436                         if (!vm_page_busy_sleep(tm, "unwbo",
2437                             VM_ALLOC_IGN_SBUSY))
2438                                 VM_OBJECT_RUNLOCK(tobject);
2439                         goto again;
2440                 }
2441                 vm_page_unwire(tm, queue);
2442                 vm_page_sunbusy(tm);
2443 next_page:
2444                 pindex++;
2445         }
2446         /* Release the accumulated object locks. */
2447         for (tobject = object; locked_depth >= 1; locked_depth--) {
2448                 t1object = tobject->backing_object;
2449                 VM_OBJECT_RUNLOCK(tobject);
2450                 tobject = t1object;
2451         }
2452 }
2453
2454 /*
2455  * Return the vnode for the given object, or NULL if none exists.
2456  * For tmpfs objects, the function may return NULL if there is
2457  * no vnode allocated at the time of the call.
2458  */
2459 struct vnode *
2460 vm_object_vnode(vm_object_t object)
2461 {
2462         struct vnode *vp;
2463
2464         VM_OBJECT_ASSERT_LOCKED(object);
2465         vm_pager_getvp(object, &vp, NULL);
2466         return (vp);
2467 }
2468
2469 /*
2470  * Busy the vm object.  This prevents new pages belonging to the object from
2471  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2472  * for checking page state before proceeding.
2473  */
2474 void
2475 vm_object_busy(vm_object_t obj)
2476 {
2477
2478         VM_OBJECT_ASSERT_LOCKED(obj);
2479
2480         blockcount_acquire(&obj->busy, 1);
2481         /* The fence is required to order loads of page busy. */
2482         atomic_thread_fence_acq_rel();
2483 }
2484
2485 void
2486 vm_object_unbusy(vm_object_t obj)
2487 {
2488
2489         blockcount_release(&obj->busy, 1);
2490 }
2491
2492 void
2493 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2494 {
2495
2496         VM_OBJECT_ASSERT_UNLOCKED(obj);
2497
2498         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2499 }
2500
2501 static int
2502 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2503 {
2504         struct kinfo_vmobject *kvo;
2505         char *fullpath, *freepath;
2506         struct vnode *vp;
2507         struct vattr va;
2508         vm_object_t obj;
2509         vm_page_t m;
2510         u_long sp;
2511         int count, error;
2512
2513         if (req->oldptr == NULL) {
2514                 /*
2515                  * If an old buffer has not been provided, generate an
2516                  * estimate of the space needed for a subsequent call.
2517                  */
2518                 mtx_lock(&vm_object_list_mtx);
2519                 count = 0;
2520                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2521                         if (obj->type == OBJT_DEAD)
2522                                 continue;
2523                         count++;
2524                 }
2525                 mtx_unlock(&vm_object_list_mtx);
2526                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2527                     count * 11 / 10));
2528         }
2529
2530         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2531         error = 0;
2532
2533         /*
2534          * VM objects are type stable and are never removed from the
2535          * list once added.  This allows us to safely read obj->object_list
2536          * after reacquiring the VM object lock.
2537          */
2538         mtx_lock(&vm_object_list_mtx);
2539         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2540                 if (obj->type == OBJT_DEAD ||
2541                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2542                         continue;
2543                 VM_OBJECT_RLOCK(obj);
2544                 if (obj->type == OBJT_DEAD ||
2545                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2546                         VM_OBJECT_RUNLOCK(obj);
2547                         continue;
2548                 }
2549                 mtx_unlock(&vm_object_list_mtx);
2550                 kvo->kvo_size = ptoa(obj->size);
2551                 kvo->kvo_resident = obj->resident_page_count;
2552                 kvo->kvo_ref_count = obj->ref_count;
2553                 kvo->kvo_shadow_count = obj->shadow_count;
2554                 kvo->kvo_memattr = obj->memattr;
2555                 kvo->kvo_active = 0;
2556                 kvo->kvo_inactive = 0;
2557                 if (!swap_only) {
2558                         TAILQ_FOREACH(m, &obj->memq, listq) {
2559                                 /*
2560                                  * A page may belong to the object but be
2561                                  * dequeued and set to PQ_NONE while the
2562                                  * object lock is not held.  This makes the
2563                                  * reads of m->queue below racy, and we do not
2564                                  * count pages set to PQ_NONE.  However, this
2565                                  * sysctl is only meant to give an
2566                                  * approximation of the system anyway.
2567                                  */
2568                                 if (m->a.queue == PQ_ACTIVE)
2569                                         kvo->kvo_active++;
2570                                 else if (m->a.queue == PQ_INACTIVE)
2571                                         kvo->kvo_inactive++;
2572                         }
2573                 }
2574
2575                 kvo->kvo_vn_fileid = 0;
2576                 kvo->kvo_vn_fsid = 0;
2577                 kvo->kvo_vn_fsid_freebsd11 = 0;
2578                 freepath = NULL;
2579                 fullpath = "";
2580                 vp = NULL;
2581                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2582                 if (vp != NULL) {
2583                         vref(vp);
2584                 } else if ((obj->flags & OBJ_ANON) != 0) {
2585                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2586                             kvo->kvo_type == KVME_TYPE_SWAP);
2587                         kvo->kvo_me = (uintptr_t)obj;
2588                         /* tmpfs objs are reported as vnodes */
2589                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2590                         sp = swap_pager_swapped_pages(obj);
2591                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2592                 }
2593                 VM_OBJECT_RUNLOCK(obj);
2594                 if (vp != NULL) {
2595                         vn_fullpath(vp, &fullpath, &freepath);
2596                         vn_lock(vp, LK_SHARED | LK_RETRY);
2597                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2598                                 kvo->kvo_vn_fileid = va.va_fileid;
2599                                 kvo->kvo_vn_fsid = va.va_fsid;
2600                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2601                                                                 /* truncate */
2602                         }
2603                         vput(vp);
2604                 }
2605
2606                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2607                 if (freepath != NULL)
2608                         free(freepath, M_TEMP);
2609
2610                 /* Pack record size down */
2611                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2612                     + strlen(kvo->kvo_path) + 1;
2613                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2614                     sizeof(uint64_t));
2615                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2616                 maybe_yield();
2617                 mtx_lock(&vm_object_list_mtx);
2618                 if (error)
2619                         break;
2620         }
2621         mtx_unlock(&vm_object_list_mtx);
2622         free(kvo, M_TEMP);
2623         return (error);
2624 }
2625
2626 static int
2627 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2628 {
2629         return (vm_object_list_handler(req, false));
2630 }
2631
2632 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2633     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2634     "List of VM objects");
2635
2636 static int
2637 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2638 {
2639         return (vm_object_list_handler(req, true));
2640 }
2641
2642 /*
2643  * This sysctl returns list of the anonymous or swap objects. Intent
2644  * is to provide stripped optimized list useful to analyze swap use.
2645  * Since technically non-swap (default) objects participate in the
2646  * shadow chains, and are converted to swap type as needed by swap
2647  * pager, we must report them.
2648  */
2649 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2650     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2651     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2652     "List of swap VM objects");
2653
2654 #include "opt_ddb.h"
2655 #ifdef DDB
2656 #include <sys/kernel.h>
2657
2658 #include <sys/cons.h>
2659
2660 #include <ddb/ddb.h>
2661
2662 static int
2663 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2664 {
2665         vm_map_t tmpm;
2666         vm_map_entry_t tmpe;
2667         vm_object_t obj;
2668
2669         if (map == 0)
2670                 return 0;
2671
2672         if (entry == 0) {
2673                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2674                         if (_vm_object_in_map(map, object, tmpe)) {
2675                                 return 1;
2676                         }
2677                 }
2678         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2679                 tmpm = entry->object.sub_map;
2680                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2681                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2682                                 return 1;
2683                         }
2684                 }
2685         } else if ((obj = entry->object.vm_object) != NULL) {
2686                 for (; obj; obj = obj->backing_object)
2687                         if (obj == object) {
2688                                 return 1;
2689                         }
2690         }
2691         return 0;
2692 }
2693
2694 static int
2695 vm_object_in_map(vm_object_t object)
2696 {
2697         struct proc *p;
2698
2699         /* sx_slock(&allproc_lock); */
2700         FOREACH_PROC_IN_SYSTEM(p) {
2701                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2702                         continue;
2703                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2704                         /* sx_sunlock(&allproc_lock); */
2705                         return 1;
2706                 }
2707         }
2708         /* sx_sunlock(&allproc_lock); */
2709         if (_vm_object_in_map(kernel_map, object, 0))
2710                 return 1;
2711         return 0;
2712 }
2713
2714 DB_SHOW_COMMAND(vmochk, vm_object_check)
2715 {
2716         vm_object_t object;
2717
2718         /*
2719          * make sure that internal objs are in a map somewhere
2720          * and none have zero ref counts.
2721          */
2722         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2723                 if ((object->flags & OBJ_ANON) != 0) {
2724                         if (object->ref_count == 0) {
2725                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2726                                         (long)object->size);
2727                         }
2728                         if (!vm_object_in_map(object)) {
2729                                 db_printf(
2730                         "vmochk: internal obj is not in a map: "
2731                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2732                                     object->ref_count, (u_long)object->size, 
2733                                     (u_long)object->size,
2734                                     (void *)object->backing_object);
2735                         }
2736                 }
2737                 if (db_pager_quit)
2738                         return;
2739         }
2740 }
2741
2742 /*
2743  *      vm_object_print:        [ debug ]
2744  */
2745 DB_SHOW_COMMAND(object, vm_object_print_static)
2746 {
2747         /* XXX convert args. */
2748         vm_object_t object = (vm_object_t)addr;
2749         boolean_t full = have_addr;
2750
2751         vm_page_t p;
2752
2753         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2754 #define count   was_count
2755
2756         int count;
2757
2758         if (object == NULL)
2759                 return;
2760
2761         db_iprintf(
2762             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2763             object, (int)object->type, (uintmax_t)object->size,
2764             object->resident_page_count, object->ref_count, object->flags,
2765             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2766         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2767             object->shadow_count, 
2768             object->backing_object ? object->backing_object->ref_count : 0,
2769             object->backing_object, (uintmax_t)object->backing_object_offset);
2770
2771         if (!full)
2772                 return;
2773
2774         db_indent += 2;
2775         count = 0;
2776         TAILQ_FOREACH(p, &object->memq, listq) {
2777                 if (count == 0)
2778                         db_iprintf("memory:=");
2779                 else if (count == 6) {
2780                         db_printf("\n");
2781                         db_iprintf(" ...");
2782                         count = 0;
2783                 } else
2784                         db_printf(",");
2785                 count++;
2786
2787                 db_printf("(off=0x%jx,page=0x%jx)",
2788                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2789
2790                 if (db_pager_quit)
2791                         break;
2792         }
2793         if (count != 0)
2794                 db_printf("\n");
2795         db_indent -= 2;
2796 }
2797
2798 /* XXX. */
2799 #undef count
2800
2801 /* XXX need this non-static entry for calling from vm_map_print. */
2802 void
2803 vm_object_print(
2804         /* db_expr_t */ long addr,
2805         boolean_t have_addr,
2806         /* db_expr_t */ long count,
2807         char *modif)
2808 {
2809         vm_object_print_static(addr, have_addr, count, modif);
2810 }
2811
2812 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2813 {
2814         vm_object_t object;
2815         vm_pindex_t fidx;
2816         vm_paddr_t pa;
2817         vm_page_t m, prev_m;
2818         int rcount;
2819
2820         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2821                 db_printf("new object: %p\n", (void *)object);
2822                 if (db_pager_quit)
2823                         return;
2824
2825                 rcount = 0;
2826                 fidx = 0;
2827                 pa = -1;
2828                 TAILQ_FOREACH(m, &object->memq, listq) {
2829                         if (m->pindex > 128)
2830                                 break;
2831                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2832                             prev_m->pindex + 1 != m->pindex) {
2833                                 if (rcount) {
2834                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2835                                                 (long)fidx, rcount, (long)pa);
2836                                         if (db_pager_quit)
2837                                                 return;
2838                                         rcount = 0;
2839                                 }
2840                         }                               
2841                         if (rcount &&
2842                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2843                                 ++rcount;
2844                                 continue;
2845                         }
2846                         if (rcount) {
2847                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2848                                         (long)fidx, rcount, (long)pa);
2849                                 if (db_pager_quit)
2850                                         return;
2851                         }
2852                         fidx = m->pindex;
2853                         pa = VM_PAGE_TO_PHYS(m);
2854                         rcount = 1;
2855                 }
2856                 if (rcount) {
2857                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2858                                 (long)fidx, rcount, (long)pa);
2859                         if (db_pager_quit)
2860                                 return;
2861                 }
2862         }
2863 }
2864 #endif /* DDB */