]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Revert r364310.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/lock.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/pctrie.h>
81 #include <sys/sysctl.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>           /* for curproc, pageproc */
84 #include <sys/refcount.h>
85 #include <sys/socket.h>
86 #include <sys/resourcevar.h>
87 #include <sys/refcount.h>
88 #include <sys/rwlock.h>
89 #include <sys/user.h>
90 #include <sys/vnode.h>
91 #include <sys/vmmeter.h>
92 #include <sys/sx.h>
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_radix.h>
108 #include <vm/vm_reserv.h>
109 #include <vm/uma.h>
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
116                     int pagerflags, int flags, boolean_t *allclean,
117                     boolean_t *eio);
118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
119                     boolean_t *allclean);
120 static void     vm_object_backing_remove(vm_object_t object);
121
122 /*
123  *      Virtual memory objects maintain the actual data
124  *      associated with allocated virtual memory.  A given
125  *      page of memory exists within exactly one object.
126  *
127  *      An object is only deallocated when all "references"
128  *      are given up.  Only one "reference" to a given
129  *      region of an object should be writeable.
130  *
131  *      Associated with each object is a list of all resident
132  *      memory pages belonging to that object; this list is
133  *      maintained by the "vm_page" module, and locked by the object's
134  *      lock.
135  *
136  *      Each object also records a "pager" routine which is
137  *      used to retrieve (and store) pages to the proper backing
138  *      storage.  In addition, objects may be backed by other
139  *      objects from which they were virtual-copied.
140  *
141  *      The only items within the object structure which are
142  *      modified after time of creation are:
143  *              reference count         locked by object's lock
144  *              pager routine           locked by object's lock
145  *
146  */
147
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;  /* lock for object list and count */
150
151 struct vm_object kernel_object_store;
152
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "VM object stats");
155
156 static COUNTER_U64_DEFINE_EARLY(object_collapses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165
166 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
168     &object_collapse_waits,
169     "Number of sleeps for collapse");
170
171 static uma_zone_t obj_zone;
172
173 static int vm_object_zinit(void *mem, int size, int flags);
174
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181         vm_object_t object;
182
183         object = (vm_object_t)mem;
184         KASSERT(object->ref_count == 0,
185             ("object %p ref_count = %d", object, object->ref_count));
186         KASSERT(TAILQ_EMPTY(&object->memq),
187             ("object %p has resident pages in its memq", object));
188         KASSERT(vm_radix_is_empty(&object->rtree),
189             ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191         KASSERT(LIST_EMPTY(&object->rvq),
192             ("object %p has reservations",
193             object));
194 #endif
195         KASSERT(!vm_object_busied(object),
196             ("object %p busy = %d", object, blockcount_read(&object->busy)));
197         KASSERT(object->resident_page_count == 0,
198             ("object %p resident_page_count = %d",
199             object, object->resident_page_count));
200         KASSERT(object->shadow_count == 0,
201             ("object %p shadow_count = %d",
202             object, object->shadow_count));
203         KASSERT(object->type == OBJT_DEAD,
204             ("object %p has non-dead type %d",
205             object, object->type));
206 }
207 #endif
208
209 static int
210 vm_object_zinit(void *mem, int size, int flags)
211 {
212         vm_object_t object;
213
214         object = (vm_object_t)mem;
215         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
216
217         /* These are true for any object that has been freed */
218         object->type = OBJT_DEAD;
219         vm_radix_init(&object->rtree);
220         refcount_init(&object->ref_count, 0);
221         blockcount_init(&object->paging_in_progress);
222         blockcount_init(&object->busy);
223         object->resident_page_count = 0;
224         object->shadow_count = 0;
225         object->flags = OBJ_DEAD;
226
227         mtx_lock(&vm_object_list_mtx);
228         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
229         mtx_unlock(&vm_object_list_mtx);
230         return (0);
231 }
232
233 static void
234 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
235     vm_object_t object, void *handle)
236 {
237
238         TAILQ_INIT(&object->memq);
239         LIST_INIT(&object->shadow_head);
240
241         object->type = type;
242         if (type == OBJT_SWAP)
243                 pctrie_init(&object->un_pager.swp.swp_blks);
244
245         /*
246          * Ensure that swap_pager_swapoff() iteration over object_list
247          * sees up to date type and pctrie head if it observed
248          * non-dead object.
249          */
250         atomic_thread_fence_rel();
251
252         object->pg_color = 0;
253         object->flags = flags;
254         object->size = size;
255         object->domain.dr_policy = NULL;
256         object->generation = 1;
257         object->cleangeneration = 1;
258         refcount_init(&object->ref_count, 1);
259         object->memattr = VM_MEMATTR_DEFAULT;
260         object->cred = NULL;
261         object->charge = 0;
262         object->handle = handle;
263         object->backing_object = NULL;
264         object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266         LIST_INIT(&object->rvq);
267 #endif
268         umtx_shm_object_init(object);
269 }
270
271 /*
272  *      vm_object_init:
273  *
274  *      Initialize the VM objects module.
275  */
276 void
277 vm_object_init(void)
278 {
279         TAILQ_INIT(&vm_object_list);
280         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
281         
282         rw_init(&kernel_object->lock, "kernel vm object");
283         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
284             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
285 #if VM_NRESERVLEVEL > 0
286         kernel_object->flags |= OBJ_COLORED;
287         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
288 #endif
289
290         /*
291          * The lock portion of struct vm_object must be type stable due
292          * to vm_pageout_fallback_object_lock locking a vm object
293          * without holding any references to it.
294          *
295          * paging_in_progress is valid always.  Lockless references to
296          * the objects may acquire pip and then check OBJ_DEAD.
297          */
298         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
299 #ifdef INVARIANTS
300             vm_object_zdtor,
301 #else
302             NULL,
303 #endif
304             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
305
306         vm_radix_zinit();
307 }
308
309 void
310 vm_object_clear_flag(vm_object_t object, u_short bits)
311 {
312
313         VM_OBJECT_ASSERT_WLOCKED(object);
314         object->flags &= ~bits;
315 }
316
317 /*
318  *      Sets the default memory attribute for the specified object.  Pages
319  *      that are allocated to this object are by default assigned this memory
320  *      attribute.
321  *
322  *      Presently, this function must be called before any pages are allocated
323  *      to the object.  In the future, this requirement may be relaxed for
324  *      "default" and "swap" objects.
325  */
326 int
327 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
328 {
329
330         VM_OBJECT_ASSERT_WLOCKED(object);
331         switch (object->type) {
332         case OBJT_DEFAULT:
333         case OBJT_DEVICE:
334         case OBJT_MGTDEVICE:
335         case OBJT_PHYS:
336         case OBJT_SG:
337         case OBJT_SWAP:
338         case OBJT_VNODE:
339                 if (!TAILQ_EMPTY(&object->memq))
340                         return (KERN_FAILURE);
341                 break;
342         case OBJT_DEAD:
343                 return (KERN_INVALID_ARGUMENT);
344         default:
345                 panic("vm_object_set_memattr: object %p is of undefined type",
346                     object);
347         }
348         object->memattr = memattr;
349         return (KERN_SUCCESS);
350 }
351
352 void
353 vm_object_pip_add(vm_object_t object, short i)
354 {
355
356         if (i > 0)
357                 blockcount_acquire(&object->paging_in_progress, i);
358 }
359
360 void
361 vm_object_pip_wakeup(vm_object_t object)
362 {
363
364         vm_object_pip_wakeupn(object, 1);
365 }
366
367 void
368 vm_object_pip_wakeupn(vm_object_t object, short i)
369 {
370
371         if (i > 0)
372                 blockcount_release(&object->paging_in_progress, i);
373 }
374
375 /*
376  * Atomically drop the object lock and wait for pip to drain.  This protects
377  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
378  * on return.
379  */
380 static void
381 vm_object_pip_sleep(vm_object_t object, const char *waitid)
382 {
383
384         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
385             waitid, PVM | PDROP);
386 }
387
388 void
389 vm_object_pip_wait(vm_object_t object, const char *waitid)
390 {
391
392         VM_OBJECT_ASSERT_WLOCKED(object);
393
394         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
395             PVM);
396 }
397
398 void
399 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
400 {
401
402         VM_OBJECT_ASSERT_UNLOCKED(object);
403
404         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
405 }
406
407 /*
408  *      vm_object_allocate:
409  *
410  *      Returns a new object with the given size.
411  */
412 vm_object_t
413 vm_object_allocate(objtype_t type, vm_pindex_t size)
414 {
415         vm_object_t object;
416         u_short flags;
417
418         switch (type) {
419         case OBJT_DEAD:
420                 panic("vm_object_allocate: can't create OBJT_DEAD");
421         case OBJT_DEFAULT:
422         case OBJT_SWAP:
423                 flags = OBJ_COLORED;
424                 break;
425         case OBJT_DEVICE:
426         case OBJT_SG:
427                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
428                 break;
429         case OBJT_MGTDEVICE:
430                 flags = OBJ_FICTITIOUS;
431                 break;
432         case OBJT_PHYS:
433                 flags = OBJ_UNMANAGED;
434                 break;
435         case OBJT_VNODE:
436                 flags = 0;
437                 break;
438         default:
439                 panic("vm_object_allocate: type %d is undefined", type);
440         }
441         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
442         _vm_object_allocate(type, size, flags, object, NULL);
443
444         return (object);
445 }
446
447 /*
448  *      vm_object_allocate_anon:
449  *
450  *      Returns a new default object of the given size and marked as
451  *      anonymous memory for special split/collapse handling.  Color
452  *      to be initialized by the caller.
453  */
454 vm_object_t
455 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
456     struct ucred *cred, vm_size_t charge)
457 {
458         vm_object_t handle, object;
459
460         if (backing_object == NULL)
461                 handle = NULL;
462         else if ((backing_object->flags & OBJ_ANON) != 0)
463                 handle = backing_object->handle;
464         else
465                 handle = backing_object;
466         object = uma_zalloc(obj_zone, M_WAITOK);
467         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
468             object, handle);
469         object->cred = cred;
470         object->charge = cred != NULL ? charge : 0;
471         return (object);
472 }
473
474 static void
475 vm_object_reference_vnode(vm_object_t object)
476 {
477         u_int old;
478
479         /*
480          * vnode objects need the lock for the first reference
481          * to serialize with vnode_object_deallocate().
482          */
483         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
484                 VM_OBJECT_RLOCK(object);
485                 old = refcount_acquire(&object->ref_count);
486                 if (object->type == OBJT_VNODE && old == 0)
487                         vref(object->handle);
488                 VM_OBJECT_RUNLOCK(object);
489         }
490 }
491
492 /*
493  *      vm_object_reference:
494  *
495  *      Acquires a reference to the given object.
496  */
497 void
498 vm_object_reference(vm_object_t object)
499 {
500
501         if (object == NULL)
502                 return;
503
504         if (object->type == OBJT_VNODE)
505                 vm_object_reference_vnode(object);
506         else
507                 refcount_acquire(&object->ref_count);
508         KASSERT((object->flags & OBJ_DEAD) == 0,
509             ("vm_object_reference: Referenced dead object."));
510 }
511
512 /*
513  *      vm_object_reference_locked:
514  *
515  *      Gets another reference to the given object.
516  *
517  *      The object must be locked.
518  */
519 void
520 vm_object_reference_locked(vm_object_t object)
521 {
522         u_int old;
523
524         VM_OBJECT_ASSERT_LOCKED(object);
525         old = refcount_acquire(&object->ref_count);
526         if (object->type == OBJT_VNODE && old == 0)
527                 vref(object->handle);
528         KASSERT((object->flags & OBJ_DEAD) == 0,
529             ("vm_object_reference: Referenced dead object."));
530 }
531
532 /*
533  * Handle deallocating an object of type OBJT_VNODE.
534  */
535 static void
536 vm_object_deallocate_vnode(vm_object_t object)
537 {
538         struct vnode *vp = (struct vnode *) object->handle;
539         bool last;
540
541         KASSERT(object->type == OBJT_VNODE,
542             ("vm_object_deallocate_vnode: not a vnode object"));
543         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
544
545         /* Object lock to protect handle lookup. */
546         last = refcount_release(&object->ref_count);
547         VM_OBJECT_RUNLOCK(object);
548
549         if (!last)
550                 return;
551
552         if (!umtx_shm_vnobj_persistent)
553                 umtx_shm_object_terminated(object);
554
555         /* vrele may need the vnode lock. */
556         vrele(vp);
557 }
558
559
560 /*
561  * We dropped a reference on an object and discovered that it had a
562  * single remaining shadow.  This is a sibling of the reference we
563  * dropped.  Attempt to collapse the sibling and backing object.
564  */
565 static vm_object_t
566 vm_object_deallocate_anon(vm_object_t backing_object)
567 {
568         vm_object_t object;
569
570         /* Fetch the final shadow.  */
571         object = LIST_FIRST(&backing_object->shadow_head);
572         KASSERT(object != NULL && backing_object->shadow_count == 1,
573             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
574             backing_object->ref_count, backing_object->shadow_count));
575         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
576             ("invalid shadow object %p", object));
577
578         if (!VM_OBJECT_TRYWLOCK(object)) {
579                 /*
580                  * Prevent object from disappearing since we do not have a
581                  * reference.
582                  */
583                 vm_object_pip_add(object, 1);
584                 VM_OBJECT_WUNLOCK(backing_object);
585                 VM_OBJECT_WLOCK(object);
586                 vm_object_pip_wakeup(object);
587         } else
588                 VM_OBJECT_WUNLOCK(backing_object);
589
590         /*
591          * Check for a collapse/terminate race with the last reference holder.
592          */
593         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594             !refcount_acquire_if_not_zero(&object->ref_count)) {
595                 VM_OBJECT_WUNLOCK(object);
596                 return (NULL);
597         }
598         backing_object = object->backing_object;
599         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600                 vm_object_collapse(object);
601         VM_OBJECT_WUNLOCK(object);
602
603         return (object);
604 }
605
606 /*
607  *      vm_object_deallocate:
608  *
609  *      Release a reference to the specified object,
610  *      gained either through a vm_object_allocate
611  *      or a vm_object_reference call.  When all references
612  *      are gone, storage associated with this object
613  *      may be relinquished.
614  *
615  *      No object may be locked.
616  */
617 void
618 vm_object_deallocate(vm_object_t object)
619 {
620         vm_object_t temp;
621         bool released;
622
623         while (object != NULL) {
624                 /*
625                  * If the reference count goes to 0 we start calling
626                  * vm_object_terminate() on the object chain.  A ref count
627                  * of 1 may be a special case depending on the shadow count
628                  * being 0 or 1.  These cases require a write lock on the
629                  * object.
630                  */
631                 if ((object->flags & OBJ_ANON) == 0)
632                         released = refcount_release_if_gt(&object->ref_count, 1);
633                 else
634                         released = refcount_release_if_gt(&object->ref_count, 2);
635                 if (released)
636                         return;
637
638                 if (object->type == OBJT_VNODE) {
639                         VM_OBJECT_RLOCK(object);
640                         if (object->type == OBJT_VNODE) {
641                                 vm_object_deallocate_vnode(object);
642                                 return;
643                         }
644                         VM_OBJECT_RUNLOCK(object);
645                 }
646
647                 VM_OBJECT_WLOCK(object);
648                 KASSERT(object->ref_count > 0,
649                     ("vm_object_deallocate: object deallocated too many times: %d",
650                     object->type));
651
652                 /*
653                  * If this is not the final reference to an anonymous
654                  * object we may need to collapse the shadow chain.
655                  */
656                 if (!refcount_release(&object->ref_count)) {
657                         if (object->ref_count > 1 ||
658                             object->shadow_count == 0) {
659                                 if ((object->flags & OBJ_ANON) != 0 &&
660                                     object->ref_count == 1)
661                                         vm_object_set_flag(object,
662                                             OBJ_ONEMAPPING);
663                                 VM_OBJECT_WUNLOCK(object);
664                                 return;
665                         }
666
667                         /* Handle collapsing last ref on anonymous objects. */
668                         object = vm_object_deallocate_anon(object);
669                         continue;
670                 }
671
672                 /*
673                  * Handle the final reference to an object.  We restart
674                  * the loop with the backing object to avoid recursion.
675                  */
676                 umtx_shm_object_terminated(object);
677                 temp = object->backing_object;
678                 if (temp != NULL) {
679                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
680                             ("shadowed tmpfs v_object 2 %p", object));
681                         vm_object_backing_remove(object);
682                 }
683
684                 KASSERT((object->flags & OBJ_DEAD) == 0,
685                     ("vm_object_deallocate: Terminating dead object."));
686                 vm_object_set_flag(object, OBJ_DEAD);
687                 vm_object_terminate(object);
688                 object = temp;
689         }
690 }
691
692 /*
693  *      vm_object_destroy removes the object from the global object list
694  *      and frees the space for the object.
695  */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699
700         /*
701          * Release the allocation charge.
702          */
703         if (object->cred != NULL) {
704                 swap_release_by_cred(object->charge, object->cred);
705                 object->charge = 0;
706                 crfree(object->cred);
707                 object->cred = NULL;
708         }
709
710         /*
711          * Free the space for the object.
712          */
713         uma_zfree(obj_zone, object);
714 }
715
716 static void
717 vm_object_backing_remove_locked(vm_object_t object)
718 {
719         vm_object_t backing_object;
720
721         backing_object = object->backing_object;
722         VM_OBJECT_ASSERT_WLOCKED(object);
723         VM_OBJECT_ASSERT_WLOCKED(backing_object);
724
725         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
726             ("vm_object_backing_remove: Removing collapsing object."));
727
728         if ((object->flags & OBJ_SHADOWLIST) != 0) {
729                 LIST_REMOVE(object, shadow_list);
730                 backing_object->shadow_count--;
731                 object->flags &= ~OBJ_SHADOWLIST;
732         }
733         object->backing_object = NULL;
734 }
735
736 static void
737 vm_object_backing_remove(vm_object_t object)
738 {
739         vm_object_t backing_object;
740
741         VM_OBJECT_ASSERT_WLOCKED(object);
742
743         if ((object->flags & OBJ_SHADOWLIST) != 0) {
744                 backing_object = object->backing_object;
745                 VM_OBJECT_WLOCK(backing_object);
746                 vm_object_backing_remove_locked(object);
747                 VM_OBJECT_WUNLOCK(backing_object);
748         } else
749                 object->backing_object = NULL;
750 }
751
752 static void
753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
754 {
755
756         VM_OBJECT_ASSERT_WLOCKED(object);
757
758         if ((backing_object->flags & OBJ_ANON) != 0) {
759                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
760                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
761                     shadow_list);
762                 backing_object->shadow_count++;
763                 object->flags |= OBJ_SHADOWLIST;
764         }
765         object->backing_object = backing_object;
766 }
767
768 static void
769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
770 {
771
772         VM_OBJECT_ASSERT_WLOCKED(object);
773
774         if ((backing_object->flags & OBJ_ANON) != 0) {
775                 VM_OBJECT_WLOCK(backing_object);
776                 vm_object_backing_insert_locked(object, backing_object);
777                 VM_OBJECT_WUNLOCK(backing_object);
778         } else
779                 object->backing_object = backing_object;
780 }
781
782 /*
783  * Insert an object into a backing_object's shadow list with an additional
784  * reference to the backing_object added.
785  */
786 static void
787 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
788 {
789
790         VM_OBJECT_ASSERT_WLOCKED(object);
791
792         if ((backing_object->flags & OBJ_ANON) != 0) {
793                 VM_OBJECT_WLOCK(backing_object);
794                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
795                     ("shadowing dead anonymous object"));
796                 vm_object_reference_locked(backing_object);
797                 vm_object_backing_insert_locked(object, backing_object);
798                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
799                 VM_OBJECT_WUNLOCK(backing_object);
800         } else {
801                 vm_object_reference(backing_object);
802                 object->backing_object = backing_object;
803         }
804 }
805
806 /*
807  * Transfer a backing reference from backing_object to object.
808  */
809 static void
810 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
811 {
812         vm_object_t new_backing_object;
813
814         /*
815          * Note that the reference to backing_object->backing_object
816          * moves from within backing_object to within object.
817          */
818         vm_object_backing_remove_locked(object);
819         new_backing_object = backing_object->backing_object;
820         if (new_backing_object == NULL)
821                 return;
822         if ((new_backing_object->flags & OBJ_ANON) != 0) {
823                 VM_OBJECT_WLOCK(new_backing_object);
824                 vm_object_backing_remove_locked(backing_object);
825                 vm_object_backing_insert_locked(object, new_backing_object);
826                 VM_OBJECT_WUNLOCK(new_backing_object);
827         } else {
828                 object->backing_object = new_backing_object;
829                 backing_object->backing_object = NULL;
830         }
831 }
832
833 /*
834  * Wait for a concurrent collapse to settle.
835  */
836 static void
837 vm_object_collapse_wait(vm_object_t object)
838 {
839
840         VM_OBJECT_ASSERT_WLOCKED(object);
841
842         while ((object->flags & OBJ_COLLAPSING) != 0) {
843                 vm_object_pip_wait(object, "vmcolwait");
844                 counter_u64_add(object_collapse_waits, 1);
845         }
846 }
847
848 /*
849  * Waits for a backing object to clear a pending collapse and returns
850  * it locked if it is an ANON object.
851  */
852 static vm_object_t
853 vm_object_backing_collapse_wait(vm_object_t object)
854 {
855         vm_object_t backing_object;
856
857         VM_OBJECT_ASSERT_WLOCKED(object);
858
859         for (;;) {
860                 backing_object = object->backing_object;
861                 if (backing_object == NULL ||
862                     (backing_object->flags & OBJ_ANON) == 0)
863                         return (NULL);
864                 VM_OBJECT_WLOCK(backing_object);
865                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866                         break;
867                 VM_OBJECT_WUNLOCK(object);
868                 vm_object_pip_sleep(backing_object, "vmbckwait");
869                 counter_u64_add(object_collapse_waits, 1);
870                 VM_OBJECT_WLOCK(object);
871         }
872         return (backing_object);
873 }
874
875 /*
876  *      vm_object_terminate_pages removes any remaining pageable pages
877  *      from the object and resets the object to an empty state.
878  */
879 static void
880 vm_object_terminate_pages(vm_object_t object)
881 {
882         vm_page_t p, p_next;
883
884         VM_OBJECT_ASSERT_WLOCKED(object);
885
886         /*
887          * Free any remaining pageable pages.  This also removes them from the
888          * paging queues.  However, don't free wired pages, just remove them
889          * from the object.  Rather than incrementally removing each page from
890          * the object, the page and object are reset to any empty state. 
891          */
892         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
893                 vm_page_assert_unbusied(p);
894                 KASSERT(p->object == object &&
895                     (p->ref_count & VPRC_OBJREF) != 0,
896                     ("vm_object_terminate_pages: page %p is inconsistent", p));
897
898                 p->object = NULL;
899                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
900                         VM_CNT_INC(v_pfree);
901                         vm_page_free(p);
902                 }
903         }
904
905         /*
906          * If the object contained any pages, then reset it to an empty state.
907          * None of the object's fields, including "resident_page_count", were
908          * modified by the preceding loop.
909          */
910         if (object->resident_page_count != 0) {
911                 vm_radix_reclaim_allnodes(&object->rtree);
912                 TAILQ_INIT(&object->memq);
913                 object->resident_page_count = 0;
914                 if (object->type == OBJT_VNODE)
915                         vdrop(object->handle);
916         }
917 }
918
919 /*
920  *      vm_object_terminate actually destroys the specified object, freeing
921  *      up all previously used resources.
922  *
923  *      The object must be locked.
924  *      This routine may block.
925  */
926 void
927 vm_object_terminate(vm_object_t object)
928 {
929
930         VM_OBJECT_ASSERT_WLOCKED(object);
931         KASSERT((object->flags & OBJ_DEAD) != 0,
932             ("terminating non-dead obj %p", object));
933         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
934             ("terminating collapsing obj %p", object));
935         KASSERT(object->backing_object == NULL,
936             ("terminating shadow obj %p", object));
937
938         /*
939          * Wait for the pageout daemon and other current users to be
940          * done with the object.  Note that new paging_in_progress
941          * users can come after this wait, but they must check
942          * OBJ_DEAD flag set (without unlocking the object), and avoid
943          * the object being terminated.
944          */
945         vm_object_pip_wait(object, "objtrm");
946
947         KASSERT(object->ref_count == 0,
948             ("vm_object_terminate: object with references, ref_count=%d",
949             object->ref_count));
950
951         if ((object->flags & OBJ_PG_DTOR) == 0)
952                 vm_object_terminate_pages(object);
953
954 #if VM_NRESERVLEVEL > 0
955         if (__predict_false(!LIST_EMPTY(&object->rvq)))
956                 vm_reserv_break_all(object);
957 #endif
958
959         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
960             object->type == OBJT_SWAP,
961             ("%s: non-swap obj %p has cred", __func__, object));
962
963         /*
964          * Let the pager know object is dead.
965          */
966         vm_pager_deallocate(object);
967         VM_OBJECT_WUNLOCK(object);
968
969         vm_object_destroy(object);
970 }
971
972 /*
973  * Make the page read-only so that we can clear the object flags.  However, if
974  * this is a nosync mmap then the object is likely to stay dirty so do not
975  * mess with the page and do not clear the object flags.  Returns TRUE if the
976  * page should be flushed, and FALSE otherwise.
977  */
978 static boolean_t
979 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
980 {
981
982         vm_page_assert_busied(p);
983
984         /*
985          * If we have been asked to skip nosync pages and this is a
986          * nosync page, skip it.  Note that the object flags were not
987          * cleared in this case so we do not have to set them.
988          */
989         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
990                 *allclean = FALSE;
991                 return (FALSE);
992         } else {
993                 pmap_remove_write(p);
994                 return (p->dirty != 0);
995         }
996 }
997
998 /*
999  *      vm_object_page_clean
1000  *
1001  *      Clean all dirty pages in the specified range of object.  Leaves page 
1002  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1003  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1004  *      leaving the object dirty.
1005  *
1006  *      For swap objects backing tmpfs regular files, do not flush anything,
1007  *      but remove write protection on the mapped pages to update mtime through
1008  *      mmaped writes.
1009  *
1010  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1011  *      synchronous clustering mode implementation.
1012  *
1013  *      Odd semantics: if start == end, we clean everything.
1014  *
1015  *      The object must be locked.
1016  *
1017  *      Returns FALSE if some page from the range was not written, as
1018  *      reported by the pager, and TRUE otherwise.
1019  */
1020 boolean_t
1021 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1022     int flags)
1023 {
1024         vm_page_t np, p;
1025         vm_pindex_t pi, tend, tstart;
1026         int curgeneration, n, pagerflags;
1027         boolean_t eio, res, allclean;
1028
1029         VM_OBJECT_ASSERT_WLOCKED(object);
1030
1031         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1032                 return (TRUE);
1033
1034         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1035             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1036         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1037
1038         tstart = OFF_TO_IDX(start);
1039         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1040         allclean = tstart == 0 && tend >= object->size;
1041         res = TRUE;
1042
1043 rescan:
1044         curgeneration = object->generation;
1045
1046         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1047                 pi = p->pindex;
1048                 if (pi >= tend)
1049                         break;
1050                 np = TAILQ_NEXT(p, listq);
1051                 if (vm_page_none_valid(p))
1052                         continue;
1053                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1054                         if (object->generation != curgeneration &&
1055                             (flags & OBJPC_SYNC) != 0)
1056                                 goto rescan;
1057                         np = vm_page_find_least(object, pi);
1058                         continue;
1059                 }
1060                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1061                         vm_page_xunbusy(p);
1062                         continue;
1063                 }
1064                 if (object->type == OBJT_VNODE) {
1065                         n = vm_object_page_collect_flush(object, p, pagerflags,
1066                             flags, &allclean, &eio);
1067                         if (eio) {
1068                                 res = FALSE;
1069                                 allclean = FALSE;
1070                         }
1071                         if (object->generation != curgeneration &&
1072                             (flags & OBJPC_SYNC) != 0)
1073                                 goto rescan;
1074
1075                         /*
1076                          * If the VOP_PUTPAGES() did a truncated write, so
1077                          * that even the first page of the run is not fully
1078                          * written, vm_pageout_flush() returns 0 as the run
1079                          * length.  Since the condition that caused truncated
1080                          * write may be permanent, e.g. exhausted free space,
1081                          * accepting n == 0 would cause an infinite loop.
1082                          *
1083                          * Forwarding the iterator leaves the unwritten page
1084                          * behind, but there is not much we can do there if
1085                          * filesystem refuses to write it.
1086                          */
1087                         if (n == 0) {
1088                                 n = 1;
1089                                 allclean = FALSE;
1090                         }
1091                 } else {
1092                         n = 1;
1093                         vm_page_xunbusy(p);
1094                 }
1095                 np = vm_page_find_least(object, pi + n);
1096         }
1097 #if 0
1098         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1099 #endif
1100
1101         /*
1102          * Leave updating cleangeneration for tmpfs objects to tmpfs
1103          * scan.  It needs to update mtime, which happens for other
1104          * filesystems during page writeouts.
1105          */
1106         if (allclean && object->type == OBJT_VNODE)
1107                 object->cleangeneration = curgeneration;
1108         return (res);
1109 }
1110
1111 static int
1112 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1113     int flags, boolean_t *allclean, boolean_t *eio)
1114 {
1115         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1116         int count, i, mreq, runlen;
1117
1118         vm_page_lock_assert(p, MA_NOTOWNED);
1119         vm_page_assert_xbusied(p);
1120         VM_OBJECT_ASSERT_WLOCKED(object);
1121
1122         count = 1;
1123         mreq = 0;
1124
1125         for (tp = p; count < vm_pageout_page_count; count++) {
1126                 tp = vm_page_next(tp);
1127                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1128                         break;
1129                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1130                         vm_page_xunbusy(tp);
1131                         break;
1132                 }
1133         }
1134
1135         for (p_first = p; count < vm_pageout_page_count; count++) {
1136                 tp = vm_page_prev(p_first);
1137                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1138                         break;
1139                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1140                         vm_page_xunbusy(tp);
1141                         break;
1142                 }
1143                 p_first = tp;
1144                 mreq++;
1145         }
1146
1147         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1148                 ma[i] = tp;
1149
1150         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1151         return (runlen);
1152 }
1153
1154 /*
1155  * Note that there is absolutely no sense in writing out
1156  * anonymous objects, so we track down the vnode object
1157  * to write out.
1158  * We invalidate (remove) all pages from the address space
1159  * for semantic correctness.
1160  *
1161  * If the backing object is a device object with unmanaged pages, then any
1162  * mappings to the specified range of pages must be removed before this
1163  * function is called.
1164  *
1165  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1166  * may start out with a NULL object.
1167  */
1168 boolean_t
1169 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1170     boolean_t syncio, boolean_t invalidate)
1171 {
1172         vm_object_t backing_object;
1173         struct vnode *vp;
1174         struct mount *mp;
1175         int error, flags, fsync_after;
1176         boolean_t res;
1177
1178         if (object == NULL)
1179                 return (TRUE);
1180         res = TRUE;
1181         error = 0;
1182         VM_OBJECT_WLOCK(object);
1183         while ((backing_object = object->backing_object) != NULL) {
1184                 VM_OBJECT_WLOCK(backing_object);
1185                 offset += object->backing_object_offset;
1186                 VM_OBJECT_WUNLOCK(object);
1187                 object = backing_object;
1188                 if (object->size < OFF_TO_IDX(offset + size))
1189                         size = IDX_TO_OFF(object->size) - offset;
1190         }
1191         /*
1192          * Flush pages if writing is allowed, invalidate them
1193          * if invalidation requested.  Pages undergoing I/O
1194          * will be ignored by vm_object_page_remove().
1195          *
1196          * We cannot lock the vnode and then wait for paging
1197          * to complete without deadlocking against vm_fault.
1198          * Instead we simply call vm_object_page_remove() and
1199          * allow it to block internally on a page-by-page
1200          * basis when it encounters pages undergoing async
1201          * I/O.
1202          */
1203         if (object->type == OBJT_VNODE &&
1204             vm_object_mightbedirty(object) != 0 &&
1205             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1206                 VM_OBJECT_WUNLOCK(object);
1207                 (void) vn_start_write(vp, &mp, V_WAIT);
1208                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1209                 if (syncio && !invalidate && offset == 0 &&
1210                     atop(size) == object->size) {
1211                         /*
1212                          * If syncing the whole mapping of the file,
1213                          * it is faster to schedule all the writes in
1214                          * async mode, also allowing the clustering,
1215                          * and then wait for i/o to complete.
1216                          */
1217                         flags = 0;
1218                         fsync_after = TRUE;
1219                 } else {
1220                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1221                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1222                         fsync_after = FALSE;
1223                 }
1224                 VM_OBJECT_WLOCK(object);
1225                 res = vm_object_page_clean(object, offset, offset + size,
1226                     flags);
1227                 VM_OBJECT_WUNLOCK(object);
1228                 if (fsync_after)
1229                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1230                 VOP_UNLOCK(vp);
1231                 vn_finished_write(mp);
1232                 if (error != 0)
1233                         res = FALSE;
1234                 VM_OBJECT_WLOCK(object);
1235         }
1236         if ((object->type == OBJT_VNODE ||
1237              object->type == OBJT_DEVICE) && invalidate) {
1238                 if (object->type == OBJT_DEVICE)
1239                         /*
1240                          * The option OBJPR_NOTMAPPED must be passed here
1241                          * because vm_object_page_remove() cannot remove
1242                          * unmanaged mappings.
1243                          */
1244                         flags = OBJPR_NOTMAPPED;
1245                 else if (old_msync)
1246                         flags = 0;
1247                 else
1248                         flags = OBJPR_CLEANONLY;
1249                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1250                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1251         }
1252         VM_OBJECT_WUNLOCK(object);
1253         return (res);
1254 }
1255
1256 /*
1257  * Determine whether the given advice can be applied to the object.  Advice is
1258  * not applied to unmanaged pages since they never belong to page queues, and
1259  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1260  * have been mapped at most once.
1261  */
1262 static bool
1263 vm_object_advice_applies(vm_object_t object, int advice)
1264 {
1265
1266         if ((object->flags & OBJ_UNMANAGED) != 0)
1267                 return (false);
1268         if (advice != MADV_FREE)
1269                 return (true);
1270         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1271             (OBJ_ONEMAPPING | OBJ_ANON));
1272 }
1273
1274 static void
1275 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1276     vm_size_t size)
1277 {
1278
1279         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1280                 swap_pager_freespace(object, pindex, size);
1281 }
1282
1283 /*
1284  *      vm_object_madvise:
1285  *
1286  *      Implements the madvise function at the object/page level.
1287  *
1288  *      MADV_WILLNEED   (any object)
1289  *
1290  *          Activate the specified pages if they are resident.
1291  *
1292  *      MADV_DONTNEED   (any object)
1293  *
1294  *          Deactivate the specified pages if they are resident.
1295  *
1296  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1297  *                       OBJ_ONEMAPPING only)
1298  *
1299  *          Deactivate and clean the specified pages if they are
1300  *          resident.  This permits the process to reuse the pages
1301  *          without faulting or the kernel to reclaim the pages
1302  *          without I/O.
1303  */
1304 void
1305 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1306     int advice)
1307 {
1308         vm_pindex_t tpindex;
1309         vm_object_t backing_object, tobject;
1310         vm_page_t m, tm;
1311
1312         if (object == NULL)
1313                 return;
1314
1315 relookup:
1316         VM_OBJECT_WLOCK(object);
1317         if (!vm_object_advice_applies(object, advice)) {
1318                 VM_OBJECT_WUNLOCK(object);
1319                 return;
1320         }
1321         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1322                 tobject = object;
1323
1324                 /*
1325                  * If the next page isn't resident in the top-level object, we
1326                  * need to search the shadow chain.  When applying MADV_FREE, we
1327                  * take care to release any swap space used to store
1328                  * non-resident pages.
1329                  */
1330                 if (m == NULL || pindex < m->pindex) {
1331                         /*
1332                          * Optimize a common case: if the top-level object has
1333                          * no backing object, we can skip over the non-resident
1334                          * range in constant time.
1335                          */
1336                         if (object->backing_object == NULL) {
1337                                 tpindex = (m != NULL && m->pindex < end) ?
1338                                     m->pindex : end;
1339                                 vm_object_madvise_freespace(object, advice,
1340                                     pindex, tpindex - pindex);
1341                                 if ((pindex = tpindex) == end)
1342                                         break;
1343                                 goto next_page;
1344                         }
1345
1346                         tpindex = pindex;
1347                         do {
1348                                 vm_object_madvise_freespace(tobject, advice,
1349                                     tpindex, 1);
1350                                 /*
1351                                  * Prepare to search the next object in the
1352                                  * chain.
1353                                  */
1354                                 backing_object = tobject->backing_object;
1355                                 if (backing_object == NULL)
1356                                         goto next_pindex;
1357                                 VM_OBJECT_WLOCK(backing_object);
1358                                 tpindex +=
1359                                     OFF_TO_IDX(tobject->backing_object_offset);
1360                                 if (tobject != object)
1361                                         VM_OBJECT_WUNLOCK(tobject);
1362                                 tobject = backing_object;
1363                                 if (!vm_object_advice_applies(tobject, advice))
1364                                         goto next_pindex;
1365                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1366                             NULL);
1367                 } else {
1368 next_page:
1369                         tm = m;
1370                         m = TAILQ_NEXT(m, listq);
1371                 }
1372
1373                 /*
1374                  * If the page is not in a normal state, skip it.  The page
1375                  * can not be invalidated while the object lock is held.
1376                  */
1377                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1378                         goto next_pindex;
1379                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1380                     ("vm_object_madvise: page %p is fictitious", tm));
1381                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1382                     ("vm_object_madvise: page %p is not managed", tm));
1383                 if (vm_page_tryxbusy(tm) == 0) {
1384                         if (object != tobject)
1385                                 VM_OBJECT_WUNLOCK(object);
1386                         if (advice == MADV_WILLNEED) {
1387                                 /*
1388                                  * Reference the page before unlocking and
1389                                  * sleeping so that the page daemon is less
1390                                  * likely to reclaim it.
1391                                  */
1392                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1393                         }
1394                         vm_page_busy_sleep(tm, "madvpo", false);
1395                         goto relookup;
1396                 }
1397                 vm_page_advise(tm, advice);
1398                 vm_page_xunbusy(tm);
1399                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1400 next_pindex:
1401                 if (tobject != object)
1402                         VM_OBJECT_WUNLOCK(tobject);
1403         }
1404         VM_OBJECT_WUNLOCK(object);
1405 }
1406
1407 /*
1408  *      vm_object_shadow:
1409  *
1410  *      Create a new object which is backed by the
1411  *      specified existing object range.  The source
1412  *      object reference is deallocated.
1413  *
1414  *      The new object and offset into that object
1415  *      are returned in the source parameters.
1416  */
1417 void
1418 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1419     struct ucred *cred, bool shared)
1420 {
1421         vm_object_t source;
1422         vm_object_t result;
1423
1424         source = *object;
1425
1426         /*
1427          * Don't create the new object if the old object isn't shared.
1428          *
1429          * If we hold the only reference we can guarantee that it won't
1430          * increase while we have the map locked.  Otherwise the race is
1431          * harmless and we will end up with an extra shadow object that
1432          * will be collapsed later.
1433          */
1434         if (source != NULL && source->ref_count == 1 &&
1435             (source->flags & OBJ_ANON) != 0)
1436                 return;
1437
1438         /*
1439          * Allocate a new object with the given length.
1440          */
1441         result = vm_object_allocate_anon(atop(length), source, cred, length);
1442
1443         /*
1444          * Store the offset into the source object, and fix up the offset into
1445          * the new object.
1446          */
1447         result->backing_object_offset = *offset;
1448
1449         if (shared || source != NULL) {
1450                 VM_OBJECT_WLOCK(result);
1451
1452                 /*
1453                  * The new object shadows the source object, adding a
1454                  * reference to it.  Our caller changes his reference
1455                  * to point to the new object, removing a reference to
1456                  * the source object.  Net result: no change of
1457                  * reference count, unless the caller needs to add one
1458                  * more reference due to forking a shared map entry.
1459                  */
1460                 if (shared) {
1461                         vm_object_reference_locked(result);
1462                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1463                 }
1464
1465                 /*
1466                  * Try to optimize the result object's page color when
1467                  * shadowing in order to maintain page coloring
1468                  * consistency in the combined shadowed object.
1469                  */
1470                 if (source != NULL) {
1471                         vm_object_backing_insert(result, source);
1472                         result->domain = source->domain;
1473 #if VM_NRESERVLEVEL > 0
1474                         result->flags |= source->flags & OBJ_COLORED;
1475                         result->pg_color = (source->pg_color +
1476                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1477                             1)) - 1);
1478 #endif
1479                 }
1480                 VM_OBJECT_WUNLOCK(result);
1481         }
1482
1483         /*
1484          * Return the new things
1485          */
1486         *offset = 0;
1487         *object = result;
1488 }
1489
1490 /*
1491  *      vm_object_split:
1492  *
1493  * Split the pages in a map entry into a new object.  This affords
1494  * easier removal of unused pages, and keeps object inheritance from
1495  * being a negative impact on memory usage.
1496  */
1497 void
1498 vm_object_split(vm_map_entry_t entry)
1499 {
1500         vm_page_t m, m_next;
1501         vm_object_t orig_object, new_object, backing_object;
1502         vm_pindex_t idx, offidxstart;
1503         vm_size_t size;
1504
1505         orig_object = entry->object.vm_object;
1506         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1507             ("vm_object_split:  Splitting object with multiple mappings."));
1508         if ((orig_object->flags & OBJ_ANON) == 0)
1509                 return;
1510         if (orig_object->ref_count <= 1)
1511                 return;
1512         VM_OBJECT_WUNLOCK(orig_object);
1513
1514         offidxstart = OFF_TO_IDX(entry->offset);
1515         size = atop(entry->end - entry->start);
1516
1517         /*
1518          * If swap_pager_copy() is later called, it will convert new_object
1519          * into a swap object.
1520          */
1521         new_object = vm_object_allocate_anon(size, orig_object,
1522             orig_object->cred, ptoa(size));
1523
1524         /*
1525          * We must wait for the orig_object to complete any in-progress
1526          * collapse so that the swap blocks are stable below.  The
1527          * additional reference on backing_object by new object will
1528          * prevent further collapse operations until split completes.
1529          */
1530         VM_OBJECT_WLOCK(orig_object);
1531         vm_object_collapse_wait(orig_object);
1532
1533         /*
1534          * At this point, the new object is still private, so the order in
1535          * which the original and new objects are locked does not matter.
1536          */
1537         VM_OBJECT_WLOCK(new_object);
1538         new_object->domain = orig_object->domain;
1539         backing_object = orig_object->backing_object;
1540         if (backing_object != NULL) {
1541                 vm_object_backing_insert_ref(new_object, backing_object);
1542                 new_object->backing_object_offset = 
1543                     orig_object->backing_object_offset + entry->offset;
1544         }
1545         if (orig_object->cred != NULL) {
1546                 crhold(orig_object->cred);
1547                 KASSERT(orig_object->charge >= ptoa(size),
1548                     ("orig_object->charge < 0"));
1549                 orig_object->charge -= ptoa(size);
1550         }
1551
1552         /*
1553          * Mark the split operation so that swap_pager_getpages() knows
1554          * that the object is in transition.
1555          */
1556         vm_object_set_flag(orig_object, OBJ_SPLIT);
1557 retry:
1558         m = vm_page_find_least(orig_object, offidxstart);
1559         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1560             m = m_next) {
1561                 m_next = TAILQ_NEXT(m, listq);
1562
1563                 /*
1564                  * We must wait for pending I/O to complete before we can
1565                  * rename the page.
1566                  *
1567                  * We do not have to VM_PROT_NONE the page as mappings should
1568                  * not be changed by this operation.
1569                  */
1570                 if (vm_page_tryxbusy(m) == 0) {
1571                         VM_OBJECT_WUNLOCK(new_object);
1572                         vm_page_sleep_if_busy(m, "spltwt");
1573                         VM_OBJECT_WLOCK(new_object);
1574                         goto retry;
1575                 }
1576
1577                 /*
1578                  * The page was left invalid.  Likely placed there by
1579                  * an incomplete fault.  Just remove and ignore.
1580                  */
1581                 if (vm_page_none_valid(m)) {
1582                         if (vm_page_remove(m))
1583                                 vm_page_free(m);
1584                         continue;
1585                 }
1586
1587                 /* vm_page_rename() will dirty the page. */
1588                 if (vm_page_rename(m, new_object, idx)) {
1589                         vm_page_xunbusy(m);
1590                         VM_OBJECT_WUNLOCK(new_object);
1591                         VM_OBJECT_WUNLOCK(orig_object);
1592                         vm_radix_wait();
1593                         VM_OBJECT_WLOCK(orig_object);
1594                         VM_OBJECT_WLOCK(new_object);
1595                         goto retry;
1596                 }
1597
1598 #if VM_NRESERVLEVEL > 0
1599                 /*
1600                  * If some of the reservation's allocated pages remain with
1601                  * the original object, then transferring the reservation to
1602                  * the new object is neither particularly beneficial nor
1603                  * particularly harmful as compared to leaving the reservation
1604                  * with the original object.  If, however, all of the
1605                  * reservation's allocated pages are transferred to the new
1606                  * object, then transferring the reservation is typically
1607                  * beneficial.  Determining which of these two cases applies
1608                  * would be more costly than unconditionally renaming the
1609                  * reservation.
1610                  */
1611                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1612 #endif
1613                 if (orig_object->type != OBJT_SWAP)
1614                         vm_page_xunbusy(m);
1615         }
1616         if (orig_object->type == OBJT_SWAP) {
1617                 /*
1618                  * swap_pager_copy() can sleep, in which case the orig_object's
1619                  * and new_object's locks are released and reacquired. 
1620                  */
1621                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1622                 TAILQ_FOREACH(m, &new_object->memq, listq)
1623                         vm_page_xunbusy(m);
1624         }
1625         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1626         VM_OBJECT_WUNLOCK(orig_object);
1627         VM_OBJECT_WUNLOCK(new_object);
1628         entry->object.vm_object = new_object;
1629         entry->offset = 0LL;
1630         vm_object_deallocate(orig_object);
1631         VM_OBJECT_WLOCK(new_object);
1632 }
1633
1634 static vm_page_t
1635 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1636 {
1637         vm_object_t backing_object;
1638
1639         VM_OBJECT_ASSERT_WLOCKED(object);
1640         backing_object = object->backing_object;
1641         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1642
1643         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1644             ("invalid ownership %p %p %p", p, object, backing_object));
1645         /* The page is only NULL when rename fails. */
1646         if (p == NULL) {
1647                 VM_OBJECT_WUNLOCK(object);
1648                 VM_OBJECT_WUNLOCK(backing_object);
1649                 vm_radix_wait();
1650         } else {
1651                 if (p->object == object)
1652                         VM_OBJECT_WUNLOCK(backing_object);
1653                 else
1654                         VM_OBJECT_WUNLOCK(object);
1655                 vm_page_busy_sleep(p, "vmocol", false);
1656         }
1657         VM_OBJECT_WLOCK(object);
1658         VM_OBJECT_WLOCK(backing_object);
1659         return (TAILQ_FIRST(&backing_object->memq));
1660 }
1661
1662 static bool
1663 vm_object_scan_all_shadowed(vm_object_t object)
1664 {
1665         vm_object_t backing_object;
1666         vm_page_t p, pp;
1667         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1668
1669         VM_OBJECT_ASSERT_WLOCKED(object);
1670         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1671
1672         backing_object = object->backing_object;
1673
1674         if ((backing_object->flags & OBJ_ANON) == 0)
1675                 return (false);
1676
1677         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1678         p = vm_page_find_least(backing_object, pi);
1679         ps = swap_pager_find_least(backing_object, pi);
1680
1681         /*
1682          * Only check pages inside the parent object's range and
1683          * inside the parent object's mapping of the backing object.
1684          */
1685         for (;; pi++) {
1686                 if (p != NULL && p->pindex < pi)
1687                         p = TAILQ_NEXT(p, listq);
1688                 if (ps < pi)
1689                         ps = swap_pager_find_least(backing_object, pi);
1690                 if (p == NULL && ps >= backing_object->size)
1691                         break;
1692                 else if (p == NULL)
1693                         pi = ps;
1694                 else
1695                         pi = MIN(p->pindex, ps);
1696
1697                 new_pindex = pi - backing_offset_index;
1698                 if (new_pindex >= object->size)
1699                         break;
1700
1701                 if (p != NULL) {
1702                         /*
1703                          * If the backing object page is busy a
1704                          * grandparent or older page may still be
1705                          * undergoing CoW.  It is not safe to collapse
1706                          * the backing object until it is quiesced.
1707                          */
1708                         if (vm_page_tryxbusy(p) == 0)
1709                                 return (false);
1710
1711                         /*
1712                          * We raced with the fault handler that left
1713                          * newly allocated invalid page on the object
1714                          * queue and retried.
1715                          */
1716                         if (!vm_page_all_valid(p))
1717                                 goto unbusy_ret;
1718                 }
1719
1720                 /*
1721                  * See if the parent has the page or if the parent's object
1722                  * pager has the page.  If the parent has the page but the page
1723                  * is not valid, the parent's object pager must have the page.
1724                  *
1725                  * If this fails, the parent does not completely shadow the
1726                  * object and we might as well give up now.
1727                  */
1728                 pp = vm_page_lookup(object, new_pindex);
1729
1730                 /*
1731                  * The valid check here is stable due to object lock
1732                  * being required to clear valid and initiate paging.
1733                  * Busy of p disallows fault handler to validate pp.
1734                  */
1735                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1736                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1737                         goto unbusy_ret;
1738                 if (p != NULL)
1739                         vm_page_xunbusy(p);
1740         }
1741         return (true);
1742
1743 unbusy_ret:
1744         if (p != NULL)
1745                 vm_page_xunbusy(p);
1746         return (false);
1747 }
1748
1749 static void
1750 vm_object_collapse_scan(vm_object_t object)
1751 {
1752         vm_object_t backing_object;
1753         vm_page_t next, p, pp;
1754         vm_pindex_t backing_offset_index, new_pindex;
1755
1756         VM_OBJECT_ASSERT_WLOCKED(object);
1757         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1758
1759         backing_object = object->backing_object;
1760         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1761
1762         /*
1763          * Our scan
1764          */
1765         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1766                 next = TAILQ_NEXT(p, listq);
1767                 new_pindex = p->pindex - backing_offset_index;
1768
1769                 /*
1770                  * Check for busy page
1771                  */
1772                 if (vm_page_tryxbusy(p) == 0) {
1773                         next = vm_object_collapse_scan_wait(object, p);
1774                         continue;
1775                 }
1776
1777                 KASSERT(object->backing_object == backing_object,
1778                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1779                     object->backing_object, backing_object));
1780                 KASSERT(p->object == backing_object,
1781                     ("vm_object_collapse_scan: object mismatch %p != %p",
1782                     p->object, backing_object));
1783
1784                 if (p->pindex < backing_offset_index ||
1785                     new_pindex >= object->size) {
1786                         if (backing_object->type == OBJT_SWAP)
1787                                 swap_pager_freespace(backing_object, p->pindex,
1788                                     1);
1789
1790                         KASSERT(!pmap_page_is_mapped(p),
1791                             ("freeing mapped page %p", p));
1792                         if (vm_page_remove(p))
1793                                 vm_page_free(p);
1794                         continue;
1795                 }
1796
1797                 if (!vm_page_all_valid(p)) {
1798                         KASSERT(!pmap_page_is_mapped(p),
1799                             ("freeing mapped page %p", p));
1800                         if (vm_page_remove(p))
1801                                 vm_page_free(p);
1802                         continue;
1803                 }
1804
1805                 pp = vm_page_lookup(object, new_pindex);
1806                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1807                         vm_page_xunbusy(p);
1808                         /*
1809                          * The page in the parent is busy and possibly not
1810                          * (yet) valid.  Until its state is finalized by the
1811                          * busy bit owner, we can't tell whether it shadows the
1812                          * original page.
1813                          */
1814                         next = vm_object_collapse_scan_wait(object, pp);
1815                         continue;
1816                 }
1817
1818                 if (pp != NULL && vm_page_none_valid(pp)) {
1819                         /*
1820                          * The page was invalid in the parent.  Likely placed
1821                          * there by an incomplete fault.  Just remove and
1822                          * ignore.  p can replace it.
1823                          */
1824                         if (vm_page_remove(pp))
1825                                 vm_page_free(pp);
1826                         pp = NULL;
1827                 }
1828
1829                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1830                         NULL)) {
1831                         /*
1832                          * The page already exists in the parent OR swap exists
1833                          * for this location in the parent.  Leave the parent's
1834                          * page alone.  Destroy the original page from the
1835                          * backing object.
1836                          */
1837                         if (backing_object->type == OBJT_SWAP)
1838                                 swap_pager_freespace(backing_object, p->pindex,
1839                                     1);
1840                         KASSERT(!pmap_page_is_mapped(p),
1841                             ("freeing mapped page %p", p));
1842                         if (vm_page_remove(p))
1843                                 vm_page_free(p);
1844                         if (pp != NULL)
1845                                 vm_page_xunbusy(pp);
1846                         continue;
1847                 }
1848
1849                 /*
1850                  * Page does not exist in parent, rename the page from the
1851                  * backing object to the main object.
1852                  *
1853                  * If the page was mapped to a process, it can remain mapped
1854                  * through the rename.  vm_page_rename() will dirty the page.
1855                  */
1856                 if (vm_page_rename(p, object, new_pindex)) {
1857                         vm_page_xunbusy(p);
1858                         next = vm_object_collapse_scan_wait(object, NULL);
1859                         continue;
1860                 }
1861
1862                 /* Use the old pindex to free the right page. */
1863                 if (backing_object->type == OBJT_SWAP)
1864                         swap_pager_freespace(backing_object,
1865                             new_pindex + backing_offset_index, 1);
1866
1867 #if VM_NRESERVLEVEL > 0
1868                 /*
1869                  * Rename the reservation.
1870                  */
1871                 vm_reserv_rename(p, object, backing_object,
1872                     backing_offset_index);
1873 #endif
1874                 vm_page_xunbusy(p);
1875         }
1876         return;
1877 }
1878
1879 /*
1880  *      vm_object_collapse:
1881  *
1882  *      Collapse an object with the object backing it.
1883  *      Pages in the backing object are moved into the
1884  *      parent, and the backing object is deallocated.
1885  */
1886 void
1887 vm_object_collapse(vm_object_t object)
1888 {
1889         vm_object_t backing_object, new_backing_object;
1890
1891         VM_OBJECT_ASSERT_WLOCKED(object);
1892
1893         while (TRUE) {
1894                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1895                     ("collapsing invalid object"));
1896
1897                 /*
1898                  * Wait for the backing_object to finish any pending
1899                  * collapse so that the caller sees the shortest possible
1900                  * shadow chain.
1901                  */
1902                 backing_object = vm_object_backing_collapse_wait(object);
1903                 if (backing_object == NULL)
1904                         return;
1905
1906                 KASSERT(object->ref_count > 0 &&
1907                     object->ref_count > object->shadow_count,
1908                     ("collapse with invalid ref %d or shadow %d count.",
1909                     object->ref_count, object->shadow_count));
1910                 KASSERT((backing_object->flags &
1911                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1912                     ("vm_object_collapse: Backing object already collapsing."));
1913                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1914                     ("vm_object_collapse: object is already collapsing."));
1915
1916                 /*
1917                  * We know that we can either collapse the backing object if
1918                  * the parent is the only reference to it, or (perhaps) have
1919                  * the parent bypass the object if the parent happens to shadow
1920                  * all the resident pages in the entire backing object.
1921                  */
1922                 if (backing_object->ref_count == 1) {
1923                         KASSERT(backing_object->shadow_count == 1,
1924                             ("vm_object_collapse: shadow_count: %d",
1925                             backing_object->shadow_count));
1926                         vm_object_pip_add(object, 1);
1927                         vm_object_set_flag(object, OBJ_COLLAPSING);
1928                         vm_object_pip_add(backing_object, 1);
1929                         vm_object_set_flag(backing_object, OBJ_DEAD);
1930
1931                         /*
1932                          * If there is exactly one reference to the backing
1933                          * object, we can collapse it into the parent.
1934                          */
1935                         vm_object_collapse_scan(object);
1936
1937 #if VM_NRESERVLEVEL > 0
1938                         /*
1939                          * Break any reservations from backing_object.
1940                          */
1941                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1942                                 vm_reserv_break_all(backing_object);
1943 #endif
1944
1945                         /*
1946                          * Move the pager from backing_object to object.
1947                          */
1948                         if (backing_object->type == OBJT_SWAP) {
1949                                 /*
1950                                  * swap_pager_copy() can sleep, in which case
1951                                  * the backing_object's and object's locks are
1952                                  * released and reacquired.
1953                                  * Since swap_pager_copy() is being asked to
1954                                  * destroy backing_object, it will change the
1955                                  * type to OBJT_DEFAULT.
1956                                  */
1957                                 swap_pager_copy(
1958                                     backing_object,
1959                                     object,
1960                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1961                         }
1962
1963                         /*
1964                          * Object now shadows whatever backing_object did.
1965                          */
1966                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1967                         vm_object_backing_transfer(object, backing_object);
1968                         object->backing_object_offset +=
1969                             backing_object->backing_object_offset;
1970                         VM_OBJECT_WUNLOCK(object);
1971                         vm_object_pip_wakeup(object);
1972
1973                         /*
1974                          * Discard backing_object.
1975                          *
1976                          * Since the backing object has no pages, no pager left,
1977                          * and no object references within it, all that is
1978                          * necessary is to dispose of it.
1979                          */
1980                         KASSERT(backing_object->ref_count == 1, (
1981 "backing_object %p was somehow re-referenced during collapse!",
1982                             backing_object));
1983                         vm_object_pip_wakeup(backing_object);
1984                         (void)refcount_release(&backing_object->ref_count);
1985                         vm_object_terminate(backing_object);
1986                         counter_u64_add(object_collapses, 1);
1987                         VM_OBJECT_WLOCK(object);
1988                 } else {
1989                         /*
1990                          * If we do not entirely shadow the backing object,
1991                          * there is nothing we can do so we give up.
1992                          *
1993                          * The object lock and backing_object lock must not
1994                          * be dropped during this sequence.
1995                          */
1996                         if (!vm_object_scan_all_shadowed(object)) {
1997                                 VM_OBJECT_WUNLOCK(backing_object);
1998                                 break;
1999                         }
2000
2001                         /*
2002                          * Make the parent shadow the next object in the
2003                          * chain.  Deallocating backing_object will not remove
2004                          * it, since its reference count is at least 2.
2005                          */
2006                         vm_object_backing_remove_locked(object);
2007                         new_backing_object = backing_object->backing_object;
2008                         if (new_backing_object != NULL) {
2009                                 vm_object_backing_insert_ref(object,
2010                                     new_backing_object);
2011                                 object->backing_object_offset +=
2012                                     backing_object->backing_object_offset;
2013                         }
2014
2015                         /*
2016                          * Drop the reference count on backing_object. Since
2017                          * its ref_count was at least 2, it will not vanish.
2018                          */
2019                         (void)refcount_release(&backing_object->ref_count);
2020                         KASSERT(backing_object->ref_count >= 1, (
2021 "backing_object %p was somehow dereferenced during collapse!",
2022                             backing_object));
2023                         VM_OBJECT_WUNLOCK(backing_object);
2024                         counter_u64_add(object_bypasses, 1);
2025                 }
2026
2027                 /*
2028                  * Try again with this object's new backing object.
2029                  */
2030         }
2031 }
2032
2033 /*
2034  *      vm_object_page_remove:
2035  *
2036  *      For the given object, either frees or invalidates each of the
2037  *      specified pages.  In general, a page is freed.  However, if a page is
2038  *      wired for any reason other than the existence of a managed, wired
2039  *      mapping, then it may be invalidated but not removed from the object.
2040  *      Pages are specified by the given range ["start", "end") and the option
2041  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2042  *      extends from "start" to the end of the object.  If the option
2043  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2044  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2045  *      specified, then the pages within the specified range must have no
2046  *      mappings.  Otherwise, if this option is not specified, any mappings to
2047  *      the specified pages are removed before the pages are freed or
2048  *      invalidated.
2049  *
2050  *      In general, this operation should only be performed on objects that
2051  *      contain managed pages.  There are, however, two exceptions.  First, it
2052  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2053  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2054  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2055  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2056  *
2057  *      The object must be locked.
2058  */
2059 void
2060 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2061     int options)
2062 {
2063         vm_page_t p, next;
2064
2065         VM_OBJECT_ASSERT_WLOCKED(object);
2066         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2067             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2068             ("vm_object_page_remove: illegal options for object %p", object));
2069         if (object->resident_page_count == 0)
2070                 return;
2071         vm_object_pip_add(object, 1);
2072 again:
2073         p = vm_page_find_least(object, start);
2074
2075         /*
2076          * Here, the variable "p" is either (1) the page with the least pindex
2077          * greater than or equal to the parameter "start" or (2) NULL. 
2078          */
2079         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2080                 next = TAILQ_NEXT(p, listq);
2081
2082                 /*
2083                  * If the page is wired for any reason besides the existence
2084                  * of managed, wired mappings, then it cannot be freed.  For
2085                  * example, fictitious pages, which represent device memory,
2086                  * are inherently wired and cannot be freed.  They can,
2087                  * however, be invalidated if the option OBJPR_CLEANONLY is
2088                  * not specified.
2089                  */
2090                 if (vm_page_tryxbusy(p) == 0) {
2091                         vm_page_sleep_if_busy(p, "vmopar");
2092                         goto again;
2093                 }
2094                 if (vm_page_wired(p)) {
2095 wired:
2096                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2097                             object->ref_count != 0)
2098                                 pmap_remove_all(p);
2099                         if ((options & OBJPR_CLEANONLY) == 0) {
2100                                 vm_page_invalid(p);
2101                                 vm_page_undirty(p);
2102                         }
2103                         vm_page_xunbusy(p);
2104                         continue;
2105                 }
2106                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2107                     ("vm_object_page_remove: page %p is fictitious", p));
2108                 if ((options & OBJPR_CLEANONLY) != 0 &&
2109                     !vm_page_none_valid(p)) {
2110                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2111                             object->ref_count != 0 &&
2112                             !vm_page_try_remove_write(p))
2113                                 goto wired;
2114                         if (p->dirty != 0) {
2115                                 vm_page_xunbusy(p);
2116                                 continue;
2117                         }
2118                 }
2119                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2120                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2121                         goto wired;
2122                 vm_page_free(p);
2123         }
2124         vm_object_pip_wakeup(object);
2125
2126         if (object->type == OBJT_SWAP) {
2127                 if (end == 0)
2128                         end = object->size;
2129                 swap_pager_freespace(object, start, end - start);
2130         }
2131 }
2132
2133 /*
2134  *      vm_object_page_noreuse:
2135  *
2136  *      For the given object, attempt to move the specified pages to
2137  *      the head of the inactive queue.  This bypasses regular LRU
2138  *      operation and allows the pages to be reused quickly under memory
2139  *      pressure.  If a page is wired for any reason, then it will not
2140  *      be queued.  Pages are specified by the range ["start", "end").
2141  *      As a special case, if "end" is zero, then the range extends from
2142  *      "start" to the end of the object.
2143  *
2144  *      This operation should only be performed on objects that
2145  *      contain non-fictitious, managed pages.
2146  *
2147  *      The object must be locked.
2148  */
2149 void
2150 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2151 {
2152         vm_page_t p, next;
2153
2154         VM_OBJECT_ASSERT_LOCKED(object);
2155         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2156             ("vm_object_page_noreuse: illegal object %p", object));
2157         if (object->resident_page_count == 0)
2158                 return;
2159         p = vm_page_find_least(object, start);
2160
2161         /*
2162          * Here, the variable "p" is either (1) the page with the least pindex
2163          * greater than or equal to the parameter "start" or (2) NULL. 
2164          */
2165         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2166                 next = TAILQ_NEXT(p, listq);
2167                 vm_page_deactivate_noreuse(p);
2168         }
2169 }
2170
2171 /*
2172  *      Populate the specified range of the object with valid pages.  Returns
2173  *      TRUE if the range is successfully populated and FALSE otherwise.
2174  *
2175  *      Note: This function should be optimized to pass a larger array of
2176  *      pages to vm_pager_get_pages() before it is applied to a non-
2177  *      OBJT_DEVICE object.
2178  *
2179  *      The object must be locked.
2180  */
2181 boolean_t
2182 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2183 {
2184         vm_page_t m;
2185         vm_pindex_t pindex;
2186         int rv;
2187
2188         VM_OBJECT_ASSERT_WLOCKED(object);
2189         for (pindex = start; pindex < end; pindex++) {
2190                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2191                 if (rv != VM_PAGER_OK)
2192                         break;
2193
2194                 /*
2195                  * Keep "m" busy because a subsequent iteration may unlock
2196                  * the object.
2197                  */
2198         }
2199         if (pindex > start) {
2200                 m = vm_page_lookup(object, start);
2201                 while (m != NULL && m->pindex < pindex) {
2202                         vm_page_xunbusy(m);
2203                         m = TAILQ_NEXT(m, listq);
2204                 }
2205         }
2206         return (pindex == end);
2207 }
2208
2209 /*
2210  *      Routine:        vm_object_coalesce
2211  *      Function:       Coalesces two objects backing up adjoining
2212  *                      regions of memory into a single object.
2213  *
2214  *      returns TRUE if objects were combined.
2215  *
2216  *      NOTE:   Only works at the moment if the second object is NULL -
2217  *              if it's not, which object do we lock first?
2218  *
2219  *      Parameters:
2220  *              prev_object     First object to coalesce
2221  *              prev_offset     Offset into prev_object
2222  *              prev_size       Size of reference to prev_object
2223  *              next_size       Size of reference to the second object
2224  *              reserved        Indicator that extension region has
2225  *                              swap accounted for
2226  *
2227  *      Conditions:
2228  *      The object must *not* be locked.
2229  */
2230 boolean_t
2231 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2232     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2233 {
2234         vm_pindex_t next_pindex;
2235
2236         if (prev_object == NULL)
2237                 return (TRUE);
2238         if ((prev_object->flags & OBJ_ANON) == 0)
2239                 return (FALSE);
2240
2241         VM_OBJECT_WLOCK(prev_object);
2242         /*
2243          * Try to collapse the object first.
2244          */
2245         vm_object_collapse(prev_object);
2246
2247         /*
2248          * Can't coalesce if: . more than one reference . paged out . shadows
2249          * another object . has a copy elsewhere (any of which mean that the
2250          * pages not mapped to prev_entry may be in use anyway)
2251          */
2252         if (prev_object->backing_object != NULL) {
2253                 VM_OBJECT_WUNLOCK(prev_object);
2254                 return (FALSE);
2255         }
2256
2257         prev_size >>= PAGE_SHIFT;
2258         next_size >>= PAGE_SHIFT;
2259         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2260
2261         if (prev_object->ref_count > 1 &&
2262             prev_object->size != next_pindex &&
2263             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2264                 VM_OBJECT_WUNLOCK(prev_object);
2265                 return (FALSE);
2266         }
2267
2268         /*
2269          * Account for the charge.
2270          */
2271         if (prev_object->cred != NULL) {
2272
2273                 /*
2274                  * If prev_object was charged, then this mapping,
2275                  * although not charged now, may become writable
2276                  * later. Non-NULL cred in the object would prevent
2277                  * swap reservation during enabling of the write
2278                  * access, so reserve swap now. Failed reservation
2279                  * cause allocation of the separate object for the map
2280                  * entry, and swap reservation for this entry is
2281                  * managed in appropriate time.
2282                  */
2283                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2284                     prev_object->cred)) {
2285                         VM_OBJECT_WUNLOCK(prev_object);
2286                         return (FALSE);
2287                 }
2288                 prev_object->charge += ptoa(next_size);
2289         }
2290
2291         /*
2292          * Remove any pages that may still be in the object from a previous
2293          * deallocation.
2294          */
2295         if (next_pindex < prev_object->size) {
2296                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2297                     next_size, 0);
2298 #if 0
2299                 if (prev_object->cred != NULL) {
2300                         KASSERT(prev_object->charge >=
2301                             ptoa(prev_object->size - next_pindex),
2302                             ("object %p overcharged 1 %jx %jx", prev_object,
2303                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2304                         prev_object->charge -= ptoa(prev_object->size -
2305                             next_pindex);
2306                 }
2307 #endif
2308         }
2309
2310         /*
2311          * Extend the object if necessary.
2312          */
2313         if (next_pindex + next_size > prev_object->size)
2314                 prev_object->size = next_pindex + next_size;
2315
2316         VM_OBJECT_WUNLOCK(prev_object);
2317         return (TRUE);
2318 }
2319
2320 void
2321 vm_object_set_writeable_dirty(vm_object_t object)
2322 {
2323
2324         /* Only set for vnodes & tmpfs */
2325         if (object->type != OBJT_VNODE &&
2326             (object->flags & OBJ_TMPFS_NODE) == 0)
2327                 return;
2328         atomic_add_int(&object->generation, 1);
2329 }
2330
2331 /*
2332  *      vm_object_unwire:
2333  *
2334  *      For each page offset within the specified range of the given object,
2335  *      find the highest-level page in the shadow chain and unwire it.  A page
2336  *      must exist at every page offset, and the highest-level page must be
2337  *      wired.
2338  */
2339 void
2340 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2341     uint8_t queue)
2342 {
2343         vm_object_t tobject, t1object;
2344         vm_page_t m, tm;
2345         vm_pindex_t end_pindex, pindex, tpindex;
2346         int depth, locked_depth;
2347
2348         KASSERT((offset & PAGE_MASK) == 0,
2349             ("vm_object_unwire: offset is not page aligned"));
2350         KASSERT((length & PAGE_MASK) == 0,
2351             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2352         /* The wired count of a fictitious page never changes. */
2353         if ((object->flags & OBJ_FICTITIOUS) != 0)
2354                 return;
2355         pindex = OFF_TO_IDX(offset);
2356         end_pindex = pindex + atop(length);
2357 again:
2358         locked_depth = 1;
2359         VM_OBJECT_RLOCK(object);
2360         m = vm_page_find_least(object, pindex);
2361         while (pindex < end_pindex) {
2362                 if (m == NULL || pindex < m->pindex) {
2363                         /*
2364                          * The first object in the shadow chain doesn't
2365                          * contain a page at the current index.  Therefore,
2366                          * the page must exist in a backing object.
2367                          */
2368                         tobject = object;
2369                         tpindex = pindex;
2370                         depth = 0;
2371                         do {
2372                                 tpindex +=
2373                                     OFF_TO_IDX(tobject->backing_object_offset);
2374                                 tobject = tobject->backing_object;
2375                                 KASSERT(tobject != NULL,
2376                                     ("vm_object_unwire: missing page"));
2377                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2378                                         goto next_page;
2379                                 depth++;
2380                                 if (depth == locked_depth) {
2381                                         locked_depth++;
2382                                         VM_OBJECT_RLOCK(tobject);
2383                                 }
2384                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2385                             NULL);
2386                 } else {
2387                         tm = m;
2388                         m = TAILQ_NEXT(m, listq);
2389                 }
2390                 if (vm_page_trysbusy(tm) == 0) {
2391                         for (tobject = object; locked_depth >= 1;
2392                             locked_depth--) {
2393                                 t1object = tobject->backing_object;
2394                                 if (tm->object != tobject)
2395                                         VM_OBJECT_RUNLOCK(tobject);
2396                                 tobject = t1object;
2397                         }
2398                         vm_page_busy_sleep(tm, "unwbo", true);
2399                         goto again;
2400                 }
2401                 vm_page_unwire(tm, queue);
2402                 vm_page_sunbusy(tm);
2403 next_page:
2404                 pindex++;
2405         }
2406         /* Release the accumulated object locks. */
2407         for (tobject = object; locked_depth >= 1; locked_depth--) {
2408                 t1object = tobject->backing_object;
2409                 VM_OBJECT_RUNLOCK(tobject);
2410                 tobject = t1object;
2411         }
2412 }
2413
2414 /*
2415  * Return the vnode for the given object, or NULL if none exists.
2416  * For tmpfs objects, the function may return NULL if there is
2417  * no vnode allocated at the time of the call.
2418  */
2419 struct vnode *
2420 vm_object_vnode(vm_object_t object)
2421 {
2422         struct vnode *vp;
2423
2424         VM_OBJECT_ASSERT_LOCKED(object);
2425         if (object->type == OBJT_VNODE) {
2426                 vp = object->handle;
2427                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2428         } else if (object->type == OBJT_SWAP &&
2429             (object->flags & OBJ_TMPFS) != 0) {
2430                 vp = object->un_pager.swp.swp_tmpfs;
2431                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2432         } else {
2433                 vp = NULL;
2434         }
2435         return (vp);
2436 }
2437
2438
2439 /*
2440  * Busy the vm object.  This prevents new pages belonging to the object from
2441  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2442  * for checking page state before proceeding.
2443  */
2444 void
2445 vm_object_busy(vm_object_t obj)
2446 {
2447
2448         VM_OBJECT_ASSERT_LOCKED(obj);
2449
2450         blockcount_acquire(&obj->busy, 1);
2451         /* The fence is required to order loads of page busy. */
2452         atomic_thread_fence_acq_rel();
2453 }
2454
2455 void
2456 vm_object_unbusy(vm_object_t obj)
2457 {
2458
2459         blockcount_release(&obj->busy, 1);
2460 }
2461
2462 void
2463 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2464 {
2465
2466         VM_OBJECT_ASSERT_UNLOCKED(obj);
2467
2468         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2469 }
2470
2471 /*
2472  * Return the kvme type of the given object.
2473  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2474  */
2475 int
2476 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2477 {
2478
2479         VM_OBJECT_ASSERT_LOCKED(object);
2480         if (vpp != NULL)
2481                 *vpp = vm_object_vnode(object);
2482         switch (object->type) {
2483         case OBJT_DEFAULT:
2484                 return (KVME_TYPE_DEFAULT);
2485         case OBJT_VNODE:
2486                 return (KVME_TYPE_VNODE);
2487         case OBJT_SWAP:
2488                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2489                         return (KVME_TYPE_VNODE);
2490                 return (KVME_TYPE_SWAP);
2491         case OBJT_DEVICE:
2492                 return (KVME_TYPE_DEVICE);
2493         case OBJT_PHYS:
2494                 return (KVME_TYPE_PHYS);
2495         case OBJT_DEAD:
2496                 return (KVME_TYPE_DEAD);
2497         case OBJT_SG:
2498                 return (KVME_TYPE_SG);
2499         case OBJT_MGTDEVICE:
2500                 return (KVME_TYPE_MGTDEVICE);
2501         default:
2502                 return (KVME_TYPE_UNKNOWN);
2503         }
2504 }
2505
2506 static int
2507 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2508 {
2509         struct kinfo_vmobject *kvo;
2510         char *fullpath, *freepath;
2511         struct vnode *vp;
2512         struct vattr va;
2513         vm_object_t obj;
2514         vm_page_t m;
2515         int count, error;
2516
2517         if (req->oldptr == NULL) {
2518                 /*
2519                  * If an old buffer has not been provided, generate an
2520                  * estimate of the space needed for a subsequent call.
2521                  */
2522                 mtx_lock(&vm_object_list_mtx);
2523                 count = 0;
2524                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2525                         if (obj->type == OBJT_DEAD)
2526                                 continue;
2527                         count++;
2528                 }
2529                 mtx_unlock(&vm_object_list_mtx);
2530                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2531                     count * 11 / 10));
2532         }
2533
2534         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2535         error = 0;
2536
2537         /*
2538          * VM objects are type stable and are never removed from the
2539          * list once added.  This allows us to safely read obj->object_list
2540          * after reacquiring the VM object lock.
2541          */
2542         mtx_lock(&vm_object_list_mtx);
2543         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2544                 if (obj->type == OBJT_DEAD)
2545                         continue;
2546                 VM_OBJECT_RLOCK(obj);
2547                 if (obj->type == OBJT_DEAD) {
2548                         VM_OBJECT_RUNLOCK(obj);
2549                         continue;
2550                 }
2551                 mtx_unlock(&vm_object_list_mtx);
2552                 kvo->kvo_size = ptoa(obj->size);
2553                 kvo->kvo_resident = obj->resident_page_count;
2554                 kvo->kvo_ref_count = obj->ref_count;
2555                 kvo->kvo_shadow_count = obj->shadow_count;
2556                 kvo->kvo_memattr = obj->memattr;
2557                 kvo->kvo_active = 0;
2558                 kvo->kvo_inactive = 0;
2559                 TAILQ_FOREACH(m, &obj->memq, listq) {
2560                         /*
2561                          * A page may belong to the object but be
2562                          * dequeued and set to PQ_NONE while the
2563                          * object lock is not held.  This makes the
2564                          * reads of m->queue below racy, and we do not
2565                          * count pages set to PQ_NONE.  However, this
2566                          * sysctl is only meant to give an
2567                          * approximation of the system anyway.
2568                          */
2569                         if (m->a.queue == PQ_ACTIVE)
2570                                 kvo->kvo_active++;
2571                         else if (m->a.queue == PQ_INACTIVE)
2572                                 kvo->kvo_inactive++;
2573                 }
2574
2575                 kvo->kvo_vn_fileid = 0;
2576                 kvo->kvo_vn_fsid = 0;
2577                 kvo->kvo_vn_fsid_freebsd11 = 0;
2578                 freepath = NULL;
2579                 fullpath = "";
2580                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2581                 if (vp != NULL)
2582                         vref(vp);
2583                 VM_OBJECT_RUNLOCK(obj);
2584                 if (vp != NULL) {
2585                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2586                         vn_lock(vp, LK_SHARED | LK_RETRY);
2587                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2588                                 kvo->kvo_vn_fileid = va.va_fileid;
2589                                 kvo->kvo_vn_fsid = va.va_fsid;
2590                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2591                                                                 /* truncate */
2592                         }
2593                         vput(vp);
2594                 }
2595
2596                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2597                 if (freepath != NULL)
2598                         free(freepath, M_TEMP);
2599
2600                 /* Pack record size down */
2601                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2602                     + strlen(kvo->kvo_path) + 1;
2603                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2604                     sizeof(uint64_t));
2605                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2606                 mtx_lock(&vm_object_list_mtx);
2607                 if (error)
2608                         break;
2609         }
2610         mtx_unlock(&vm_object_list_mtx);
2611         free(kvo, M_TEMP);
2612         return (error);
2613 }
2614 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2615     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2616     "List of VM objects");
2617
2618 #include "opt_ddb.h"
2619 #ifdef DDB
2620 #include <sys/kernel.h>
2621
2622 #include <sys/cons.h>
2623
2624 #include <ddb/ddb.h>
2625
2626 static int
2627 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2628 {
2629         vm_map_t tmpm;
2630         vm_map_entry_t tmpe;
2631         vm_object_t obj;
2632
2633         if (map == 0)
2634                 return 0;
2635
2636         if (entry == 0) {
2637                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2638                         if (_vm_object_in_map(map, object, tmpe)) {
2639                                 return 1;
2640                         }
2641                 }
2642         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2643                 tmpm = entry->object.sub_map;
2644                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2645                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2646                                 return 1;
2647                         }
2648                 }
2649         } else if ((obj = entry->object.vm_object) != NULL) {
2650                 for (; obj; obj = obj->backing_object)
2651                         if (obj == object) {
2652                                 return 1;
2653                         }
2654         }
2655         return 0;
2656 }
2657
2658 static int
2659 vm_object_in_map(vm_object_t object)
2660 {
2661         struct proc *p;
2662
2663         /* sx_slock(&allproc_lock); */
2664         FOREACH_PROC_IN_SYSTEM(p) {
2665                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2666                         continue;
2667                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2668                         /* sx_sunlock(&allproc_lock); */
2669                         return 1;
2670                 }
2671         }
2672         /* sx_sunlock(&allproc_lock); */
2673         if (_vm_object_in_map(kernel_map, object, 0))
2674                 return 1;
2675         return 0;
2676 }
2677
2678 DB_SHOW_COMMAND(vmochk, vm_object_check)
2679 {
2680         vm_object_t object;
2681
2682         /*
2683          * make sure that internal objs are in a map somewhere
2684          * and none have zero ref counts.
2685          */
2686         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2687                 if ((object->flags & OBJ_ANON) != 0) {
2688                         if (object->ref_count == 0) {
2689                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2690                                         (long)object->size);
2691                         }
2692                         if (!vm_object_in_map(object)) {
2693                                 db_printf(
2694                         "vmochk: internal obj is not in a map: "
2695                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2696                                     object->ref_count, (u_long)object->size, 
2697                                     (u_long)object->size,
2698                                     (void *)object->backing_object);
2699                         }
2700                 }
2701                 if (db_pager_quit)
2702                         return;
2703         }
2704 }
2705
2706 /*
2707  *      vm_object_print:        [ debug ]
2708  */
2709 DB_SHOW_COMMAND(object, vm_object_print_static)
2710 {
2711         /* XXX convert args. */
2712         vm_object_t object = (vm_object_t)addr;
2713         boolean_t full = have_addr;
2714
2715         vm_page_t p;
2716
2717         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2718 #define count   was_count
2719
2720         int count;
2721
2722         if (object == NULL)
2723                 return;
2724
2725         db_iprintf(
2726             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2727             object, (int)object->type, (uintmax_t)object->size,
2728             object->resident_page_count, object->ref_count, object->flags,
2729             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2730         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2731             object->shadow_count, 
2732             object->backing_object ? object->backing_object->ref_count : 0,
2733             object->backing_object, (uintmax_t)object->backing_object_offset);
2734
2735         if (!full)
2736                 return;
2737
2738         db_indent += 2;
2739         count = 0;
2740         TAILQ_FOREACH(p, &object->memq, listq) {
2741                 if (count == 0)
2742                         db_iprintf("memory:=");
2743                 else if (count == 6) {
2744                         db_printf("\n");
2745                         db_iprintf(" ...");
2746                         count = 0;
2747                 } else
2748                         db_printf(",");
2749                 count++;
2750
2751                 db_printf("(off=0x%jx,page=0x%jx)",
2752                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2753
2754                 if (db_pager_quit)
2755                         break;
2756         }
2757         if (count != 0)
2758                 db_printf("\n");
2759         db_indent -= 2;
2760 }
2761
2762 /* XXX. */
2763 #undef count
2764
2765 /* XXX need this non-static entry for calling from vm_map_print. */
2766 void
2767 vm_object_print(
2768         /* db_expr_t */ long addr,
2769         boolean_t have_addr,
2770         /* db_expr_t */ long count,
2771         char *modif)
2772 {
2773         vm_object_print_static(addr, have_addr, count, modif);
2774 }
2775
2776 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2777 {
2778         vm_object_t object;
2779         vm_pindex_t fidx;
2780         vm_paddr_t pa;
2781         vm_page_t m, prev_m;
2782         int rcount, nl, c;
2783
2784         nl = 0;
2785         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2786                 db_printf("new object: %p\n", (void *)object);
2787                 if (nl > 18) {
2788                         c = cngetc();
2789                         if (c != ' ')
2790                                 return;
2791                         nl = 0;
2792                 }
2793                 nl++;
2794                 rcount = 0;
2795                 fidx = 0;
2796                 pa = -1;
2797                 TAILQ_FOREACH(m, &object->memq, listq) {
2798                         if (m->pindex > 128)
2799                                 break;
2800                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2801                             prev_m->pindex + 1 != m->pindex) {
2802                                 if (rcount) {
2803                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2804                                                 (long)fidx, rcount, (long)pa);
2805                                         if (nl > 18) {
2806                                                 c = cngetc();
2807                                                 if (c != ' ')
2808                                                         return;
2809                                                 nl = 0;
2810                                         }
2811                                         nl++;
2812                                         rcount = 0;
2813                                 }
2814                         }                               
2815                         if (rcount &&
2816                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2817                                 ++rcount;
2818                                 continue;
2819                         }
2820                         if (rcount) {
2821                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2822                                         (long)fidx, rcount, (long)pa);
2823                                 if (nl > 18) {
2824                                         c = cngetc();
2825                                         if (c != ' ')
2826                                                 return;
2827                                         nl = 0;
2828                                 }
2829                                 nl++;
2830                         }
2831                         fidx = m->pindex;
2832                         pa = VM_PAGE_TO_PHYS(m);
2833                         rcount = 1;
2834                 }
2835                 if (rcount) {
2836                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2837                                 (long)fidx, rcount, (long)pa);
2838                         if (nl > 18) {
2839                                 c = cngetc();
2840                                 if (c != ' ')
2841                                         return;
2842                                 nl = 0;
2843                         }
2844                         nl++;
2845                 }
2846         }
2847 }
2848 #endif /* DDB */