]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
MFC r315318
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(vm_object_cache_is_empty(object),
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193         KASSERT(object->type == OBJT_DEAD,
194             ("object %p has non-dead type %d",
195             object, object->type));
196 }
197 #endif
198
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202         vm_object_t object;
203
204         object = (vm_object_t)mem;
205         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206
207         /* These are true for any object that has been freed */
208         object->type = OBJT_DEAD;
209         object->ref_count = 0;
210         object->rtree.rt_root = 0;
211         object->rtree.rt_flags = 0;
212         object->paging_in_progress = 0;
213         object->resident_page_count = 0;
214         object->shadow_count = 0;
215         object->cache.rt_root = 0;
216         object->cache.rt_flags = 0;
217
218         mtx_lock(&vm_object_list_mtx);
219         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220         mtx_unlock(&vm_object_list_mtx);
221         return (0);
222 }
223
224 static void
225 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226 {
227
228         TAILQ_INIT(&object->memq);
229         LIST_INIT(&object->shadow_head);
230
231         object->type = type;
232         switch (type) {
233         case OBJT_DEAD:
234                 panic("_vm_object_allocate: can't create OBJT_DEAD");
235         case OBJT_DEFAULT:
236         case OBJT_SWAP:
237                 object->flags = OBJ_ONEMAPPING;
238                 break;
239         case OBJT_DEVICE:
240         case OBJT_SG:
241                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242                 break;
243         case OBJT_MGTDEVICE:
244                 object->flags = OBJ_FICTITIOUS;
245                 break;
246         case OBJT_PHYS:
247                 object->flags = OBJ_UNMANAGED;
248                 break;
249         case OBJT_VNODE:
250                 object->flags = 0;
251                 break;
252         default:
253                 panic("_vm_object_allocate: type %d is undefined", type);
254         }
255         object->size = size;
256         object->generation = 1;
257         object->ref_count = 1;
258         object->memattr = VM_MEMATTR_DEFAULT;
259         object->cred = NULL;
260         object->charge = 0;
261         object->handle = NULL;
262         object->backing_object = NULL;
263         object->backing_object_offset = (vm_ooffset_t) 0;
264 #if VM_NRESERVLEVEL > 0
265         LIST_INIT(&object->rvq);
266 #endif
267         umtx_shm_object_init(object);
268 }
269
270 /*
271  *      vm_object_init:
272  *
273  *      Initialize the VM objects module.
274  */
275 void
276 vm_object_init(void)
277 {
278         TAILQ_INIT(&vm_object_list);
279         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280         
281         rw_init(&kernel_object->lock, "kernel vm object");
282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283             kernel_object);
284 #if VM_NRESERVLEVEL > 0
285         kernel_object->flags |= OBJ_COLORED;
286         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288
289         rw_init(&kmem_object->lock, "kmem vm object");
290         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291             kmem_object);
292 #if VM_NRESERVLEVEL > 0
293         kmem_object->flags |= OBJ_COLORED;
294         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296
297         /*
298          * The lock portion of struct vm_object must be type stable due
299          * to vm_pageout_fallback_object_lock locking a vm object
300          * without holding any references to it.
301          */
302         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303 #ifdef INVARIANTS
304             vm_object_zdtor,
305 #else
306             NULL,
307 #endif
308             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310         vm_radix_init();
311 }
312
313 void
314 vm_object_clear_flag(vm_object_t object, u_short bits)
315 {
316
317         VM_OBJECT_ASSERT_WLOCKED(object);
318         object->flags &= ~bits;
319 }
320
321 /*
322  *      Sets the default memory attribute for the specified object.  Pages
323  *      that are allocated to this object are by default assigned this memory
324  *      attribute.
325  *
326  *      Presently, this function must be called before any pages are allocated
327  *      to the object.  In the future, this requirement may be relaxed for
328  *      "default" and "swap" objects.
329  */
330 int
331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332 {
333
334         VM_OBJECT_ASSERT_WLOCKED(object);
335         switch (object->type) {
336         case OBJT_DEFAULT:
337         case OBJT_DEVICE:
338         case OBJT_MGTDEVICE:
339         case OBJT_PHYS:
340         case OBJT_SG:
341         case OBJT_SWAP:
342         case OBJT_VNODE:
343                 if (!TAILQ_EMPTY(&object->memq))
344                         return (KERN_FAILURE);
345                 break;
346         case OBJT_DEAD:
347                 return (KERN_INVALID_ARGUMENT);
348         default:
349                 panic("vm_object_set_memattr: object %p is of undefined type",
350                     object);
351         }
352         object->memattr = memattr;
353         return (KERN_SUCCESS);
354 }
355
356 void
357 vm_object_pip_add(vm_object_t object, short i)
358 {
359
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         object->paging_in_progress += i;
362 }
363
364 void
365 vm_object_pip_subtract(vm_object_t object, short i)
366 {
367
368         VM_OBJECT_ASSERT_WLOCKED(object);
369         object->paging_in_progress -= i;
370 }
371
372 void
373 vm_object_pip_wakeup(vm_object_t object)
374 {
375
376         VM_OBJECT_ASSERT_WLOCKED(object);
377         object->paging_in_progress--;
378         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379                 vm_object_clear_flag(object, OBJ_PIPWNT);
380                 wakeup(object);
381         }
382 }
383
384 void
385 vm_object_pip_wakeupn(vm_object_t object, short i)
386 {
387
388         VM_OBJECT_ASSERT_WLOCKED(object);
389         if (i)
390                 object->paging_in_progress -= i;
391         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392                 vm_object_clear_flag(object, OBJ_PIPWNT);
393                 wakeup(object);
394         }
395 }
396
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400
401         VM_OBJECT_ASSERT_WLOCKED(object);
402         while (object->paging_in_progress) {
403                 object->flags |= OBJ_PIPWNT;
404                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405         }
406 }
407
408 /*
409  *      vm_object_allocate:
410  *
411  *      Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416         vm_object_t object;
417
418         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419         _vm_object_allocate(type, size, object);
420         return (object);
421 }
422
423
424 /*
425  *      vm_object_reference:
426  *
427  *      Gets another reference to the given object.  Note: OBJ_DEAD
428  *      objects can be referenced during final cleaning.
429  */
430 void
431 vm_object_reference(vm_object_t object)
432 {
433         if (object == NULL)
434                 return;
435         VM_OBJECT_WLOCK(object);
436         vm_object_reference_locked(object);
437         VM_OBJECT_WUNLOCK(object);
438 }
439
440 /*
441  *      vm_object_reference_locked:
442  *
443  *      Gets another reference to the given object.
444  *
445  *      The object must be locked.
446  */
447 void
448 vm_object_reference_locked(vm_object_t object)
449 {
450         struct vnode *vp;
451
452         VM_OBJECT_ASSERT_WLOCKED(object);
453         object->ref_count++;
454         if (object->type == OBJT_VNODE) {
455                 vp = object->handle;
456                 vref(vp);
457         }
458 }
459
460 /*
461  * Handle deallocating an object of type OBJT_VNODE.
462  */
463 static void
464 vm_object_vndeallocate(vm_object_t object)
465 {
466         struct vnode *vp = (struct vnode *) object->handle;
467
468         VM_OBJECT_ASSERT_WLOCKED(object);
469         KASSERT(object->type == OBJT_VNODE,
470             ("vm_object_vndeallocate: not a vnode object"));
471         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472 #ifdef INVARIANTS
473         if (object->ref_count == 0) {
474                 vn_printf(vp, "vm_object_vndeallocate ");
475                 panic("vm_object_vndeallocate: bad object reference count");
476         }
477 #endif
478
479         if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
480                 umtx_shm_object_terminated(object);
481
482         /*
483          * The test for text of vp vnode does not need a bypass to
484          * reach right VV_TEXT there, since it is obtained from
485          * object->handle.
486          */
487         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
488                 object->ref_count--;
489                 VM_OBJECT_WUNLOCK(object);
490                 /* vrele may need the vnode lock. */
491                 vrele(vp);
492         } else {
493                 vhold(vp);
494                 VM_OBJECT_WUNLOCK(object);
495                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
496                 vdrop(vp);
497                 VM_OBJECT_WLOCK(object);
498                 object->ref_count--;
499                 if (object->type == OBJT_DEAD) {
500                         VM_OBJECT_WUNLOCK(object);
501                         VOP_UNLOCK(vp, 0);
502                 } else {
503                         if (object->ref_count == 0)
504                                 VOP_UNSET_TEXT(vp);
505                         VM_OBJECT_WUNLOCK(object);
506                         vput(vp);
507                 }
508         }
509 }
510
511 /*
512  *      vm_object_deallocate:
513  *
514  *      Release a reference to the specified object,
515  *      gained either through a vm_object_allocate
516  *      or a vm_object_reference call.  When all references
517  *      are gone, storage associated with this object
518  *      may be relinquished.
519  *
520  *      No object may be locked.
521  */
522 void
523 vm_object_deallocate(vm_object_t object)
524 {
525         vm_object_t temp;
526         struct vnode *vp;
527
528         while (object != NULL) {
529                 VM_OBJECT_WLOCK(object);
530                 if (object->type == OBJT_VNODE) {
531                         vm_object_vndeallocate(object);
532                         return;
533                 }
534
535                 KASSERT(object->ref_count != 0,
536                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
537
538                 /*
539                  * If the reference count goes to 0 we start calling
540                  * vm_object_terminate() on the object chain.
541                  * A ref count of 1 may be a special case depending on the
542                  * shadow count being 0 or 1.
543                  */
544                 object->ref_count--;
545                 if (object->ref_count > 1) {
546                         VM_OBJECT_WUNLOCK(object);
547                         return;
548                 } else if (object->ref_count == 1) {
549                         if (object->type == OBJT_SWAP &&
550                             (object->flags & OBJ_TMPFS) != 0) {
551                                 vp = object->un_pager.swp.swp_tmpfs;
552                                 vhold(vp);
553                                 VM_OBJECT_WUNLOCK(object);
554                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
555                                 VM_OBJECT_WLOCK(object);
556                                 if (object->type == OBJT_DEAD ||
557                                     object->ref_count != 1) {
558                                         VM_OBJECT_WUNLOCK(object);
559                                         VOP_UNLOCK(vp, 0);
560                                         vdrop(vp);
561                                         return;
562                                 }
563                                 if ((object->flags & OBJ_TMPFS) != 0)
564                                         VOP_UNSET_TEXT(vp);
565                                 VOP_UNLOCK(vp, 0);
566                                 vdrop(vp);
567                         }
568                         if (object->shadow_count == 0 &&
569                             object->handle == NULL &&
570                             (object->type == OBJT_DEFAULT ||
571                             (object->type == OBJT_SWAP &&
572                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
573                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
574                         } else if ((object->shadow_count == 1) &&
575                             (object->handle == NULL) &&
576                             (object->type == OBJT_DEFAULT ||
577                              object->type == OBJT_SWAP)) {
578                                 vm_object_t robject;
579
580                                 robject = LIST_FIRST(&object->shadow_head);
581                                 KASSERT(robject != NULL,
582                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
583                                          object->ref_count,
584                                          object->shadow_count));
585                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
586                                     ("shadowed tmpfs v_object %p", object));
587                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
588                                         /*
589                                          * Avoid a potential deadlock.
590                                          */
591                                         object->ref_count++;
592                                         VM_OBJECT_WUNLOCK(object);
593                                         /*
594                                          * More likely than not the thread
595                                          * holding robject's lock has lower
596                                          * priority than the current thread.
597                                          * Let the lower priority thread run.
598                                          */
599                                         pause("vmo_de", 1);
600                                         continue;
601                                 }
602                                 /*
603                                  * Collapse object into its shadow unless its
604                                  * shadow is dead.  In that case, object will
605                                  * be deallocated by the thread that is
606                                  * deallocating its shadow.
607                                  */
608                                 if ((robject->flags & OBJ_DEAD) == 0 &&
609                                     (robject->handle == NULL) &&
610                                     (robject->type == OBJT_DEFAULT ||
611                                      robject->type == OBJT_SWAP)) {
612
613                                         robject->ref_count++;
614 retry:
615                                         if (robject->paging_in_progress) {
616                                                 VM_OBJECT_WUNLOCK(object);
617                                                 vm_object_pip_wait(robject,
618                                                     "objde1");
619                                                 temp = robject->backing_object;
620                                                 if (object == temp) {
621                                                         VM_OBJECT_WLOCK(object);
622                                                         goto retry;
623                                                 }
624                                         } else if (object->paging_in_progress) {
625                                                 VM_OBJECT_WUNLOCK(robject);
626                                                 object->flags |= OBJ_PIPWNT;
627                                                 VM_OBJECT_SLEEP(object, object,
628                                                     PDROP | PVM, "objde2", 0);
629                                                 VM_OBJECT_WLOCK(robject);
630                                                 temp = robject->backing_object;
631                                                 if (object == temp) {
632                                                         VM_OBJECT_WLOCK(object);
633                                                         goto retry;
634                                                 }
635                                         } else
636                                                 VM_OBJECT_WUNLOCK(object);
637
638                                         if (robject->ref_count == 1) {
639                                                 robject->ref_count--;
640                                                 object = robject;
641                                                 goto doterm;
642                                         }
643                                         object = robject;
644                                         vm_object_collapse(object);
645                                         VM_OBJECT_WUNLOCK(object);
646                                         continue;
647                                 }
648                                 VM_OBJECT_WUNLOCK(robject);
649                         }
650                         VM_OBJECT_WUNLOCK(object);
651                         return;
652                 }
653 doterm:
654                 umtx_shm_object_terminated(object);
655                 temp = object->backing_object;
656                 if (temp != NULL) {
657                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
658                             ("shadowed tmpfs v_object 2 %p", object));
659                         VM_OBJECT_WLOCK(temp);
660                         LIST_REMOVE(object, shadow_list);
661                         temp->shadow_count--;
662                         VM_OBJECT_WUNLOCK(temp);
663                         object->backing_object = NULL;
664                 }
665                 /*
666                  * Don't double-terminate, we could be in a termination
667                  * recursion due to the terminate having to sync data
668                  * to disk.
669                  */
670                 if ((object->flags & OBJ_DEAD) == 0)
671                         vm_object_terminate(object);
672                 else
673                         VM_OBJECT_WUNLOCK(object);
674                 object = temp;
675         }
676 }
677
678 /*
679  *      vm_object_destroy removes the object from the global object list
680  *      and frees the space for the object.
681  */
682 void
683 vm_object_destroy(vm_object_t object)
684 {
685
686         /*
687          * Release the allocation charge.
688          */
689         if (object->cred != NULL) {
690                 swap_release_by_cred(object->charge, object->cred);
691                 object->charge = 0;
692                 crfree(object->cred);
693                 object->cred = NULL;
694         }
695
696         /*
697          * Free the space for the object.
698          */
699         uma_zfree(obj_zone, object);
700 }
701
702 /*
703  *      vm_object_terminate actually destroys the specified object, freeing
704  *      up all previously used resources.
705  *
706  *      The object must be locked.
707  *      This routine may block.
708  */
709 void
710 vm_object_terminate(vm_object_t object)
711 {
712         vm_page_t p, p_next;
713
714         VM_OBJECT_ASSERT_WLOCKED(object);
715
716         /*
717          * Make sure no one uses us.
718          */
719         vm_object_set_flag(object, OBJ_DEAD);
720
721         /*
722          * wait for the pageout daemon to be done with the object
723          */
724         vm_object_pip_wait(object, "objtrm");
725
726         KASSERT(!object->paging_in_progress,
727                 ("vm_object_terminate: pageout in progress"));
728
729         /*
730          * Clean and free the pages, as appropriate. All references to the
731          * object are gone, so we don't need to lock it.
732          */
733         if (object->type == OBJT_VNODE) {
734                 struct vnode *vp = (struct vnode *)object->handle;
735
736                 /*
737                  * Clean pages and flush buffers.
738                  */
739                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
740                 VM_OBJECT_WUNLOCK(object);
741
742                 vinvalbuf(vp, V_SAVE, 0, 0);
743
744                 BO_LOCK(&vp->v_bufobj);
745                 vp->v_bufobj.bo_flag |= BO_DEAD;
746                 BO_UNLOCK(&vp->v_bufobj);
747
748                 VM_OBJECT_WLOCK(object);
749         }
750
751         KASSERT(object->ref_count == 0, 
752                 ("vm_object_terminate: object with references, ref_count=%d",
753                 object->ref_count));
754
755         /*
756          * Free any remaining pageable pages.  This also removes them from the
757          * paging queues.  However, don't free wired pages, just remove them
758          * from the object.  Rather than incrementally removing each page from
759          * the object, the page and object are reset to any empty state. 
760          */
761         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
762                 vm_page_assert_unbusied(p);
763                 vm_page_lock(p);
764                 /*
765                  * Optimize the page's removal from the object by resetting
766                  * its "object" field.  Specifically, if the page is not
767                  * wired, then the effect of this assignment is that
768                  * vm_page_free()'s call to vm_page_remove() will return
769                  * immediately without modifying the page or the object.
770                  */ 
771                 p->object = NULL;
772                 if (p->wire_count == 0) {
773                         vm_page_free(p);
774                         PCPU_INC(cnt.v_pfree);
775                 }
776                 vm_page_unlock(p);
777         }
778         /*
779          * If the object contained any pages, then reset it to an empty state.
780          * None of the object's fields, including "resident_page_count", were
781          * modified by the preceding loop.
782          */
783         if (object->resident_page_count != 0) {
784                 vm_radix_reclaim_allnodes(&object->rtree);
785                 TAILQ_INIT(&object->memq);
786                 object->resident_page_count = 0;
787                 if (object->type == OBJT_VNODE)
788                         vdrop(object->handle);
789         }
790
791 #if VM_NRESERVLEVEL > 0
792         if (__predict_false(!LIST_EMPTY(&object->rvq)))
793                 vm_reserv_break_all(object);
794 #endif
795         if (__predict_false(!vm_object_cache_is_empty(object)))
796                 vm_page_cache_free(object, 0, 0);
797
798         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
799             object->type == OBJT_SWAP,
800             ("%s: non-swap obj %p has cred", __func__, object));
801
802         /*
803          * Let the pager know object is dead.
804          */
805         vm_pager_deallocate(object);
806         VM_OBJECT_WUNLOCK(object);
807
808         vm_object_destroy(object);
809 }
810
811 /*
812  * Make the page read-only so that we can clear the object flags.  However, if
813  * this is a nosync mmap then the object is likely to stay dirty so do not
814  * mess with the page and do not clear the object flags.  Returns TRUE if the
815  * page should be flushed, and FALSE otherwise.
816  */
817 static boolean_t
818 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
819 {
820
821         /*
822          * If we have been asked to skip nosync pages and this is a
823          * nosync page, skip it.  Note that the object flags were not
824          * cleared in this case so we do not have to set them.
825          */
826         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
827                 *clearobjflags = FALSE;
828                 return (FALSE);
829         } else {
830                 pmap_remove_write(p);
831                 return (p->dirty != 0);
832         }
833 }
834
835 /*
836  *      vm_object_page_clean
837  *
838  *      Clean all dirty pages in the specified range of object.  Leaves page 
839  *      on whatever queue it is currently on.   If NOSYNC is set then do not
840  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
841  *      leaving the object dirty.
842  *
843  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
844  *      synchronous clustering mode implementation.
845  *
846  *      Odd semantics: if start == end, we clean everything.
847  *
848  *      The object must be locked.
849  *
850  *      Returns FALSE if some page from the range was not written, as
851  *      reported by the pager, and TRUE otherwise.
852  */
853 boolean_t
854 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
855     int flags)
856 {
857         vm_page_t np, p;
858         vm_pindex_t pi, tend, tstart;
859         int curgeneration, n, pagerflags;
860         boolean_t clearobjflags, eio, res;
861
862         VM_OBJECT_ASSERT_WLOCKED(object);
863
864         /*
865          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
866          * objects.  The check below prevents the function from
867          * operating on non-vnode objects.
868          */
869         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
870             object->resident_page_count == 0)
871                 return (TRUE);
872
873         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
874             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
875         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
876
877         tstart = OFF_TO_IDX(start);
878         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
879         clearobjflags = tstart == 0 && tend >= object->size;
880         res = TRUE;
881
882 rescan:
883         curgeneration = object->generation;
884
885         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
886                 pi = p->pindex;
887                 if (pi >= tend)
888                         break;
889                 np = TAILQ_NEXT(p, listq);
890                 if (p->valid == 0)
891                         continue;
892                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
893                         if (object->generation != curgeneration) {
894                                 if ((flags & OBJPC_SYNC) != 0)
895                                         goto rescan;
896                                 else
897                                         clearobjflags = FALSE;
898                         }
899                         np = vm_page_find_least(object, pi);
900                         continue;
901                 }
902                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
903                         continue;
904
905                 n = vm_object_page_collect_flush(object, p, pagerflags,
906                     flags, &clearobjflags, &eio);
907                 if (eio) {
908                         res = FALSE;
909                         clearobjflags = FALSE;
910                 }
911                 if (object->generation != curgeneration) {
912                         if ((flags & OBJPC_SYNC) != 0)
913                                 goto rescan;
914                         else
915                                 clearobjflags = FALSE;
916                 }
917
918                 /*
919                  * If the VOP_PUTPAGES() did a truncated write, so
920                  * that even the first page of the run is not fully
921                  * written, vm_pageout_flush() returns 0 as the run
922                  * length.  Since the condition that caused truncated
923                  * write may be permanent, e.g. exhausted free space,
924                  * accepting n == 0 would cause an infinite loop.
925                  *
926                  * Forwarding the iterator leaves the unwritten page
927                  * behind, but there is not much we can do there if
928                  * filesystem refuses to write it.
929                  */
930                 if (n == 0) {
931                         n = 1;
932                         clearobjflags = FALSE;
933                 }
934                 np = vm_page_find_least(object, pi + n);
935         }
936 #if 0
937         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
938 #endif
939
940         if (clearobjflags)
941                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
942         return (res);
943 }
944
945 static int
946 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
947     int flags, boolean_t *clearobjflags, boolean_t *eio)
948 {
949         vm_page_t ma[vm_pageout_page_count], p_first, tp;
950         int count, i, mreq, runlen;
951
952         vm_page_lock_assert(p, MA_NOTOWNED);
953         VM_OBJECT_ASSERT_WLOCKED(object);
954
955         count = 1;
956         mreq = 0;
957
958         for (tp = p; count < vm_pageout_page_count; count++) {
959                 tp = vm_page_next(tp);
960                 if (tp == NULL || vm_page_busied(tp))
961                         break;
962                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963                         break;
964         }
965
966         for (p_first = p; count < vm_pageout_page_count; count++) {
967                 tp = vm_page_prev(p_first);
968                 if (tp == NULL || vm_page_busied(tp))
969                         break;
970                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
971                         break;
972                 p_first = tp;
973                 mreq++;
974         }
975
976         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
977                 ma[i] = tp;
978
979         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
980         return (runlen);
981 }
982
983 /*
984  * Note that there is absolutely no sense in writing out
985  * anonymous objects, so we track down the vnode object
986  * to write out.
987  * We invalidate (remove) all pages from the address space
988  * for semantic correctness.
989  *
990  * If the backing object is a device object with unmanaged pages, then any
991  * mappings to the specified range of pages must be removed before this
992  * function is called.
993  *
994  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
995  * may start out with a NULL object.
996  */
997 boolean_t
998 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
999     boolean_t syncio, boolean_t invalidate)
1000 {
1001         vm_object_t backing_object;
1002         struct vnode *vp;
1003         struct mount *mp;
1004         int error, flags, fsync_after;
1005         boolean_t res;
1006
1007         if (object == NULL)
1008                 return (TRUE);
1009         res = TRUE;
1010         error = 0;
1011         VM_OBJECT_WLOCK(object);
1012         while ((backing_object = object->backing_object) != NULL) {
1013                 VM_OBJECT_WLOCK(backing_object);
1014                 offset += object->backing_object_offset;
1015                 VM_OBJECT_WUNLOCK(object);
1016                 object = backing_object;
1017                 if (object->size < OFF_TO_IDX(offset + size))
1018                         size = IDX_TO_OFF(object->size) - offset;
1019         }
1020         /*
1021          * Flush pages if writing is allowed, invalidate them
1022          * if invalidation requested.  Pages undergoing I/O
1023          * will be ignored by vm_object_page_remove().
1024          *
1025          * We cannot lock the vnode and then wait for paging
1026          * to complete without deadlocking against vm_fault.
1027          * Instead we simply call vm_object_page_remove() and
1028          * allow it to block internally on a page-by-page
1029          * basis when it encounters pages undergoing async
1030          * I/O.
1031          */
1032         if (object->type == OBJT_VNODE &&
1033             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1034                 vp = object->handle;
1035                 VM_OBJECT_WUNLOCK(object);
1036                 (void) vn_start_write(vp, &mp, V_WAIT);
1037                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1038                 if (syncio && !invalidate && offset == 0 &&
1039                     OFF_TO_IDX(size) == object->size) {
1040                         /*
1041                          * If syncing the whole mapping of the file,
1042                          * it is faster to schedule all the writes in
1043                          * async mode, also allowing the clustering,
1044                          * and then wait for i/o to complete.
1045                          */
1046                         flags = 0;
1047                         fsync_after = TRUE;
1048                 } else {
1049                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1050                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1051                         fsync_after = FALSE;
1052                 }
1053                 VM_OBJECT_WLOCK(object);
1054                 res = vm_object_page_clean(object, offset, offset + size,
1055                     flags);
1056                 VM_OBJECT_WUNLOCK(object);
1057                 if (fsync_after)
1058                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1059                 VOP_UNLOCK(vp, 0);
1060                 vn_finished_write(mp);
1061                 if (error != 0)
1062                         res = FALSE;
1063                 VM_OBJECT_WLOCK(object);
1064         }
1065         if ((object->type == OBJT_VNODE ||
1066              object->type == OBJT_DEVICE) && invalidate) {
1067                 if (object->type == OBJT_DEVICE)
1068                         /*
1069                          * The option OBJPR_NOTMAPPED must be passed here
1070                          * because vm_object_page_remove() cannot remove
1071                          * unmanaged mappings.
1072                          */
1073                         flags = OBJPR_NOTMAPPED;
1074                 else if (old_msync)
1075                         flags = 0;
1076                 else
1077                         flags = OBJPR_CLEANONLY;
1078                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1079                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1080         }
1081         VM_OBJECT_WUNLOCK(object);
1082         return (res);
1083 }
1084
1085 /*
1086  *      vm_object_madvise:
1087  *
1088  *      Implements the madvise function at the object/page level.
1089  *
1090  *      MADV_WILLNEED   (any object)
1091  *
1092  *          Activate the specified pages if they are resident.
1093  *
1094  *      MADV_DONTNEED   (any object)
1095  *
1096  *          Deactivate the specified pages if they are resident.
1097  *
1098  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1099  *                       OBJ_ONEMAPPING only)
1100  *
1101  *          Deactivate and clean the specified pages if they are
1102  *          resident.  This permits the process to reuse the pages
1103  *          without faulting or the kernel to reclaim the pages
1104  *          without I/O.
1105  */
1106 void
1107 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1108     int advise)
1109 {
1110         vm_pindex_t tpindex;
1111         vm_object_t backing_object, tobject;
1112         vm_page_t m;
1113
1114         if (object == NULL)
1115                 return;
1116         VM_OBJECT_WLOCK(object);
1117         /*
1118          * Locate and adjust resident pages
1119          */
1120         for (; pindex < end; pindex += 1) {
1121 relookup:
1122                 tobject = object;
1123                 tpindex = pindex;
1124 shadowlookup:
1125                 /*
1126                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1127                  * and those pages must be OBJ_ONEMAPPING.
1128                  */
1129                 if (advise == MADV_FREE) {
1130                         if ((tobject->type != OBJT_DEFAULT &&
1131                              tobject->type != OBJT_SWAP) ||
1132                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1133                                 goto unlock_tobject;
1134                         }
1135                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1136                         goto unlock_tobject;
1137                 m = vm_page_lookup(tobject, tpindex);
1138                 if (m == NULL && advise == MADV_WILLNEED) {
1139                         /*
1140                          * If the page is cached, reactivate it.
1141                          */
1142                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1143                             VM_ALLOC_NOBUSY);
1144                 }
1145                 if (m == NULL) {
1146                         /*
1147                          * There may be swap even if there is no backing page
1148                          */
1149                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1150                                 swap_pager_freespace(tobject, tpindex, 1);
1151                         /*
1152                          * next object
1153                          */
1154                         backing_object = tobject->backing_object;
1155                         if (backing_object == NULL)
1156                                 goto unlock_tobject;
1157                         VM_OBJECT_WLOCK(backing_object);
1158                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1159                         if (tobject != object)
1160                                 VM_OBJECT_WUNLOCK(tobject);
1161                         tobject = backing_object;
1162                         goto shadowlookup;
1163                 } else if (m->valid != VM_PAGE_BITS_ALL)
1164                         goto unlock_tobject;
1165                 /*
1166                  * If the page is not in a normal state, skip it.
1167                  */
1168                 vm_page_lock(m);
1169                 if (m->hold_count != 0 || m->wire_count != 0) {
1170                         vm_page_unlock(m);
1171                         goto unlock_tobject;
1172                 }
1173                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1174                     ("vm_object_madvise: page %p is fictitious", m));
1175                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1176                     ("vm_object_madvise: page %p is not managed", m));
1177                 if (vm_page_busied(m)) {
1178                         if (advise == MADV_WILLNEED) {
1179                                 /*
1180                                  * Reference the page before unlocking and
1181                                  * sleeping so that the page daemon is less
1182                                  * likely to reclaim it. 
1183                                  */
1184                                 vm_page_aflag_set(m, PGA_REFERENCED);
1185                         }
1186                         if (object != tobject)
1187                                 VM_OBJECT_WUNLOCK(object);
1188                         VM_OBJECT_WUNLOCK(tobject);
1189                         vm_page_busy_sleep(m, "madvpo", false);
1190                         VM_OBJECT_WLOCK(object);
1191                         goto relookup;
1192                 }
1193                 if (advise == MADV_WILLNEED) {
1194                         vm_page_activate(m);
1195                 } else {
1196                         vm_page_advise(m, advise);
1197                 }
1198                 vm_page_unlock(m);
1199                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1200                         swap_pager_freespace(tobject, tpindex, 1);
1201 unlock_tobject:
1202                 if (tobject != object)
1203                         VM_OBJECT_WUNLOCK(tobject);
1204         }       
1205         VM_OBJECT_WUNLOCK(object);
1206 }
1207
1208 /*
1209  *      vm_object_shadow:
1210  *
1211  *      Create a new object which is backed by the
1212  *      specified existing object range.  The source
1213  *      object reference is deallocated.
1214  *
1215  *      The new object and offset into that object
1216  *      are returned in the source parameters.
1217  */
1218 void
1219 vm_object_shadow(
1220         vm_object_t *object,    /* IN/OUT */
1221         vm_ooffset_t *offset,   /* IN/OUT */
1222         vm_size_t length)
1223 {
1224         vm_object_t source;
1225         vm_object_t result;
1226
1227         source = *object;
1228
1229         /*
1230          * Don't create the new object if the old object isn't shared.
1231          */
1232         if (source != NULL) {
1233                 VM_OBJECT_WLOCK(source);
1234                 if (source->ref_count == 1 &&
1235                     source->handle == NULL &&
1236                     (source->type == OBJT_DEFAULT ||
1237                      source->type == OBJT_SWAP)) {
1238                         VM_OBJECT_WUNLOCK(source);
1239                         return;
1240                 }
1241                 VM_OBJECT_WUNLOCK(source);
1242         }
1243
1244         /*
1245          * Allocate a new object with the given length.
1246          */
1247         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1248
1249         /*
1250          * The new object shadows the source object, adding a reference to it.
1251          * Our caller changes his reference to point to the new object,
1252          * removing a reference to the source object.  Net result: no change
1253          * of reference count.
1254          *
1255          * Try to optimize the result object's page color when shadowing
1256          * in order to maintain page coloring consistency in the combined 
1257          * shadowed object.
1258          */
1259         result->backing_object = source;
1260         /*
1261          * Store the offset into the source object, and fix up the offset into
1262          * the new object.
1263          */
1264         result->backing_object_offset = *offset;
1265         if (source != NULL) {
1266                 VM_OBJECT_WLOCK(source);
1267                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1268                 source->shadow_count++;
1269 #if VM_NRESERVLEVEL > 0
1270                 result->flags |= source->flags & OBJ_COLORED;
1271                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1272                     ((1 << (VM_NFREEORDER - 1)) - 1);
1273 #endif
1274                 VM_OBJECT_WUNLOCK(source);
1275         }
1276
1277
1278         /*
1279          * Return the new things
1280          */
1281         *offset = 0;
1282         *object = result;
1283 }
1284
1285 /*
1286  *      vm_object_split:
1287  *
1288  * Split the pages in a map entry into a new object.  This affords
1289  * easier removal of unused pages, and keeps object inheritance from
1290  * being a negative impact on memory usage.
1291  */
1292 void
1293 vm_object_split(vm_map_entry_t entry)
1294 {
1295         vm_page_t m, m_next;
1296         vm_object_t orig_object, new_object, source;
1297         vm_pindex_t idx, offidxstart;
1298         vm_size_t size;
1299
1300         orig_object = entry->object.vm_object;
1301         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1302                 return;
1303         if (orig_object->ref_count <= 1)
1304                 return;
1305         VM_OBJECT_WUNLOCK(orig_object);
1306
1307         offidxstart = OFF_TO_IDX(entry->offset);
1308         size = atop(entry->end - entry->start);
1309
1310         /*
1311          * If swap_pager_copy() is later called, it will convert new_object
1312          * into a swap object.
1313          */
1314         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1315
1316         /*
1317          * At this point, the new object is still private, so the order in
1318          * which the original and new objects are locked does not matter.
1319          */
1320         VM_OBJECT_WLOCK(new_object);
1321         VM_OBJECT_WLOCK(orig_object);
1322         source = orig_object->backing_object;
1323         if (source != NULL) {
1324                 VM_OBJECT_WLOCK(source);
1325                 if ((source->flags & OBJ_DEAD) != 0) {
1326                         VM_OBJECT_WUNLOCK(source);
1327                         VM_OBJECT_WUNLOCK(orig_object);
1328                         VM_OBJECT_WUNLOCK(new_object);
1329                         vm_object_deallocate(new_object);
1330                         VM_OBJECT_WLOCK(orig_object);
1331                         return;
1332                 }
1333                 LIST_INSERT_HEAD(&source->shadow_head,
1334                                   new_object, shadow_list);
1335                 source->shadow_count++;
1336                 vm_object_reference_locked(source);     /* for new_object */
1337                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1338                 VM_OBJECT_WUNLOCK(source);
1339                 new_object->backing_object_offset = 
1340                         orig_object->backing_object_offset + entry->offset;
1341                 new_object->backing_object = source;
1342         }
1343         if (orig_object->cred != NULL) {
1344                 new_object->cred = orig_object->cred;
1345                 crhold(orig_object->cred);
1346                 new_object->charge = ptoa(size);
1347                 KASSERT(orig_object->charge >= ptoa(size),
1348                     ("orig_object->charge < 0"));
1349                 orig_object->charge -= ptoa(size);
1350         }
1351 retry:
1352         m = vm_page_find_least(orig_object, offidxstart);
1353         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1354             m = m_next) {
1355                 m_next = TAILQ_NEXT(m, listq);
1356
1357                 /*
1358                  * We must wait for pending I/O to complete before we can
1359                  * rename the page.
1360                  *
1361                  * We do not have to VM_PROT_NONE the page as mappings should
1362                  * not be changed by this operation.
1363                  */
1364                 if (vm_page_busied(m)) {
1365                         VM_OBJECT_WUNLOCK(new_object);
1366                         vm_page_lock(m);
1367                         VM_OBJECT_WUNLOCK(orig_object);
1368                         vm_page_busy_sleep(m, "spltwt", false);
1369                         VM_OBJECT_WLOCK(orig_object);
1370                         VM_OBJECT_WLOCK(new_object);
1371                         goto retry;
1372                 }
1373
1374                 /* vm_page_rename() will handle dirty and cache. */
1375                 if (vm_page_rename(m, new_object, idx)) {
1376                         VM_OBJECT_WUNLOCK(new_object);
1377                         VM_OBJECT_WUNLOCK(orig_object);
1378                         VM_WAIT;
1379                         VM_OBJECT_WLOCK(orig_object);
1380                         VM_OBJECT_WLOCK(new_object);
1381                         goto retry;
1382                 }
1383 #if VM_NRESERVLEVEL > 0
1384                 /*
1385                  * If some of the reservation's allocated pages remain with
1386                  * the original object, then transferring the reservation to
1387                  * the new object is neither particularly beneficial nor
1388                  * particularly harmful as compared to leaving the reservation
1389                  * with the original object.  If, however, all of the
1390                  * reservation's allocated pages are transferred to the new
1391                  * object, then transferring the reservation is typically
1392                  * beneficial.  Determining which of these two cases applies
1393                  * would be more costly than unconditionally renaming the
1394                  * reservation.
1395                  */
1396                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1397 #endif
1398                 if (orig_object->type == OBJT_SWAP)
1399                         vm_page_xbusy(m);
1400         }
1401         if (orig_object->type == OBJT_SWAP) {
1402                 /*
1403                  * swap_pager_copy() can sleep, in which case the orig_object's
1404                  * and new_object's locks are released and reacquired. 
1405                  */
1406                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1407                 TAILQ_FOREACH(m, &new_object->memq, listq)
1408                         vm_page_xunbusy(m);
1409
1410                 /*
1411                  * Transfer any cached pages from orig_object to new_object.
1412                  * If swap_pager_copy() found swapped out pages within the
1413                  * specified range of orig_object, then it changed
1414                  * new_object's type to OBJT_SWAP when it transferred those
1415                  * pages to new_object.  Otherwise, new_object's type
1416                  * should still be OBJT_DEFAULT and orig_object should not
1417                  * contain any cached pages within the specified range.
1418                  */
1419                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1420                         vm_page_cache_transfer(orig_object, offidxstart,
1421                             new_object);
1422         }
1423         VM_OBJECT_WUNLOCK(orig_object);
1424         VM_OBJECT_WUNLOCK(new_object);
1425         entry->object.vm_object = new_object;
1426         entry->offset = 0LL;
1427         vm_object_deallocate(orig_object);
1428         VM_OBJECT_WLOCK(new_object);
1429 }
1430
1431 #define OBSC_COLLAPSE_NOWAIT    0x0002
1432 #define OBSC_COLLAPSE_WAIT      0x0004
1433
1434 static vm_page_t
1435 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1436     int op)
1437 {
1438         vm_object_t backing_object;
1439
1440         VM_OBJECT_ASSERT_WLOCKED(object);
1441         backing_object = object->backing_object;
1442         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1443
1444         KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1445         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1446             ("invalid ownership %p %p %p", p, object, backing_object));
1447         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1448                 return (next);
1449         if (p != NULL)
1450                 vm_page_lock(p);
1451         VM_OBJECT_WUNLOCK(object);
1452         VM_OBJECT_WUNLOCK(backing_object);
1453         if (p == NULL)
1454                 VM_WAIT;
1455         else
1456                 vm_page_busy_sleep(p, "vmocol", false);
1457         VM_OBJECT_WLOCK(object);
1458         VM_OBJECT_WLOCK(backing_object);
1459         return (TAILQ_FIRST(&backing_object->memq));
1460 }
1461
1462 static bool
1463 vm_object_scan_all_shadowed(vm_object_t object)
1464 {
1465         vm_object_t backing_object;
1466         vm_page_t p, pp;
1467         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1468
1469         VM_OBJECT_ASSERT_WLOCKED(object);
1470         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1471
1472         backing_object = object->backing_object;
1473
1474         if (backing_object->type != OBJT_DEFAULT &&
1475             backing_object->type != OBJT_SWAP)
1476                 return (false);
1477
1478         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1479         p = vm_page_find_least(backing_object, pi);
1480         ps = swap_pager_find_least(backing_object, pi);
1481
1482         /*
1483          * Only check pages inside the parent object's range and
1484          * inside the parent object's mapping of the backing object.
1485          */
1486         for (;; pi++) {
1487                 if (p != NULL && p->pindex < pi)
1488                         p = TAILQ_NEXT(p, listq);
1489                 if (ps < pi)
1490                         ps = swap_pager_find_least(backing_object, pi);
1491                 if (p == NULL && ps >= backing_object->size)
1492                         break;
1493                 else if (p == NULL)
1494                         pi = ps;
1495                 else
1496                         pi = MIN(p->pindex, ps);
1497
1498                 new_pindex = pi - backing_offset_index;
1499                 if (new_pindex >= object->size)
1500                         break;
1501
1502                 /*
1503                  * See if the parent has the page or if the parent's object
1504                  * pager has the page.  If the parent has the page but the page
1505                  * is not valid, the parent's object pager must have the page.
1506                  *
1507                  * If this fails, the parent does not completely shadow the
1508                  * object and we might as well give up now.
1509                  */
1510                 pp = vm_page_lookup(object, new_pindex);
1511                 if ((pp == NULL || pp->valid == 0) &&
1512                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1513                         return (false);
1514         }
1515         return (true);
1516 }
1517
1518 static bool
1519 vm_object_collapse_scan(vm_object_t object, int op)
1520 {
1521         vm_object_t backing_object;
1522         vm_page_t next, p, pp;
1523         vm_pindex_t backing_offset_index, new_pindex;
1524
1525         VM_OBJECT_ASSERT_WLOCKED(object);
1526         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1527
1528         backing_object = object->backing_object;
1529         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1530
1531         /*
1532          * Initial conditions
1533          */
1534         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1535                 vm_object_set_flag(backing_object, OBJ_DEAD);
1536
1537         /*
1538          * Our scan
1539          */
1540         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1541                 next = TAILQ_NEXT(p, listq);
1542                 new_pindex = p->pindex - backing_offset_index;
1543
1544                 /*
1545                  * Check for busy page
1546                  */
1547                 if (vm_page_busied(p)) {
1548                         next = vm_object_collapse_scan_wait(object, p, next, op);
1549                         continue;
1550                 }
1551
1552                 KASSERT(p->object == backing_object,
1553                     ("vm_object_collapse_scan: object mismatch"));
1554
1555                 if (p->pindex < backing_offset_index ||
1556                     new_pindex >= object->size) {
1557                         if (backing_object->type == OBJT_SWAP)
1558                                 swap_pager_freespace(backing_object, p->pindex,
1559                                     1);
1560
1561                         /*
1562                          * Page is out of the parent object's range, we can
1563                          * simply destroy it.
1564                          */
1565                         vm_page_lock(p);
1566                         KASSERT(!pmap_page_is_mapped(p),
1567                             ("freeing mapped page %p", p));
1568                         if (p->wire_count == 0)
1569                                 vm_page_free(p);
1570                         else
1571                                 vm_page_remove(p);
1572                         vm_page_unlock(p);
1573                         continue;
1574                 }
1575
1576                 pp = vm_page_lookup(object, new_pindex);
1577                 if (pp != NULL && vm_page_busied(pp)) {
1578                         /*
1579                          * The page in the parent is busy and possibly not
1580                          * (yet) valid.  Until its state is finalized by the
1581                          * busy bit owner, we can't tell whether it shadows the
1582                          * original page.  Therefore, we must either skip it
1583                          * and the original (backing_object) page or wait for
1584                          * its state to be finalized.
1585                          *
1586                          * This is due to a race with vm_fault() where we must
1587                          * unbusy the original (backing_obj) page before we can
1588                          * (re)lock the parent.  Hence we can get here.
1589                          */
1590                         next = vm_object_collapse_scan_wait(object, pp, next,
1591                             op);
1592                         continue;
1593                 }
1594
1595                 KASSERT(pp == NULL || pp->valid != 0,
1596                     ("unbusy invalid page %p", pp));
1597
1598                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1599                         NULL)) {
1600                         /*
1601                          * The page already exists in the parent OR swap exists
1602                          * for this location in the parent.  Leave the parent's
1603                          * page alone.  Destroy the original page from the
1604                          * backing object.
1605                          */
1606                         if (backing_object->type == OBJT_SWAP)
1607                                 swap_pager_freespace(backing_object, p->pindex,
1608                                     1);
1609                         vm_page_lock(p);
1610                         KASSERT(!pmap_page_is_mapped(p),
1611                             ("freeing mapped page %p", p));
1612                         if (p->wire_count == 0)
1613                                 vm_page_free(p);
1614                         else
1615                                 vm_page_remove(p);
1616                         vm_page_unlock(p);
1617                         continue;
1618                 }
1619
1620                 /*
1621                  * Page does not exist in parent, rename the page from the
1622                  * backing object to the main object.
1623                  *
1624                  * If the page was mapped to a process, it can remain mapped
1625                  * through the rename.  vm_page_rename() will handle dirty and
1626                  * cache.
1627                  */
1628                 if (vm_page_rename(p, object, new_pindex)) {
1629                         next = vm_object_collapse_scan_wait(object, NULL, next,
1630                             op);
1631                         continue;
1632                 }
1633
1634                 /* Use the old pindex to free the right page. */
1635                 if (backing_object->type == OBJT_SWAP)
1636                         swap_pager_freespace(backing_object,
1637                             new_pindex + backing_offset_index, 1);
1638
1639 #if VM_NRESERVLEVEL > 0
1640                 /*
1641                  * Rename the reservation.
1642                  */
1643                 vm_reserv_rename(p, object, backing_object,
1644                     backing_offset_index);
1645 #endif
1646         }
1647         return (true);
1648 }
1649
1650
1651 /*
1652  * this version of collapse allows the operation to occur earlier and
1653  * when paging_in_progress is true for an object...  This is not a complete
1654  * operation, but should plug 99.9% of the rest of the leaks.
1655  */
1656 static void
1657 vm_object_qcollapse(vm_object_t object)
1658 {
1659         vm_object_t backing_object = object->backing_object;
1660
1661         VM_OBJECT_ASSERT_WLOCKED(object);
1662         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1663
1664         if (backing_object->ref_count != 1)
1665                 return;
1666
1667         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1668 }
1669
1670 /*
1671  *      vm_object_collapse:
1672  *
1673  *      Collapse an object with the object backing it.
1674  *      Pages in the backing object are moved into the
1675  *      parent, and the backing object is deallocated.
1676  */
1677 void
1678 vm_object_collapse(vm_object_t object)
1679 {
1680         vm_object_t backing_object, new_backing_object;
1681
1682         VM_OBJECT_ASSERT_WLOCKED(object);
1683
1684         while (TRUE) {
1685                 /*
1686                  * Verify that the conditions are right for collapse:
1687                  *
1688                  * The object exists and the backing object exists.
1689                  */
1690                 if ((backing_object = object->backing_object) == NULL)
1691                         break;
1692
1693                 /*
1694                  * we check the backing object first, because it is most likely
1695                  * not collapsable.
1696                  */
1697                 VM_OBJECT_WLOCK(backing_object);
1698                 if (backing_object->handle != NULL ||
1699                     (backing_object->type != OBJT_DEFAULT &&
1700                      backing_object->type != OBJT_SWAP) ||
1701                     (backing_object->flags & OBJ_DEAD) ||
1702                     object->handle != NULL ||
1703                     (object->type != OBJT_DEFAULT &&
1704                      object->type != OBJT_SWAP) ||
1705                     (object->flags & OBJ_DEAD)) {
1706                         VM_OBJECT_WUNLOCK(backing_object);
1707                         break;
1708                 }
1709
1710                 if (object->paging_in_progress != 0 ||
1711                     backing_object->paging_in_progress != 0) {
1712                         vm_object_qcollapse(object);
1713                         VM_OBJECT_WUNLOCK(backing_object);
1714                         break;
1715                 }
1716
1717                 /*
1718                  * We know that we can either collapse the backing object (if
1719                  * the parent is the only reference to it) or (perhaps) have
1720                  * the parent bypass the object if the parent happens to shadow
1721                  * all the resident pages in the entire backing object.
1722                  *
1723                  * This is ignoring pager-backed pages such as swap pages.
1724                  * vm_object_collapse_scan fails the shadowing test in this
1725                  * case.
1726                  */
1727                 if (backing_object->ref_count == 1) {
1728                         vm_object_pip_add(object, 1);
1729                         vm_object_pip_add(backing_object, 1);
1730
1731                         /*
1732                          * If there is exactly one reference to the backing
1733                          * object, we can collapse it into the parent.
1734                          */
1735                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1736
1737 #if VM_NRESERVLEVEL > 0
1738                         /*
1739                          * Break any reservations from backing_object.
1740                          */
1741                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1742                                 vm_reserv_break_all(backing_object);
1743 #endif
1744
1745                         /*
1746                          * Move the pager from backing_object to object.
1747                          */
1748                         if (backing_object->type == OBJT_SWAP) {
1749                                 /*
1750                                  * swap_pager_copy() can sleep, in which case
1751                                  * the backing_object's and object's locks are
1752                                  * released and reacquired.
1753                                  * Since swap_pager_copy() is being asked to
1754                                  * destroy the source, it will change the
1755                                  * backing_object's type to OBJT_DEFAULT.
1756                                  */
1757                                 swap_pager_copy(
1758                                     backing_object,
1759                                     object,
1760                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1761
1762                                 /*
1763                                  * Free any cached pages from backing_object.
1764                                  */
1765                                 if (__predict_false(
1766                                     !vm_object_cache_is_empty(backing_object)))
1767                                         vm_page_cache_free(backing_object, 0, 0);
1768                         }
1769                         /*
1770                          * Object now shadows whatever backing_object did.
1771                          * Note that the reference to 
1772                          * backing_object->backing_object moves from within 
1773                          * backing_object to within object.
1774                          */
1775                         LIST_REMOVE(object, shadow_list);
1776                         backing_object->shadow_count--;
1777                         if (backing_object->backing_object) {
1778                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1779                                 LIST_REMOVE(backing_object, shadow_list);
1780                                 LIST_INSERT_HEAD(
1781                                     &backing_object->backing_object->shadow_head,
1782                                     object, shadow_list);
1783                                 /*
1784                                  * The shadow_count has not changed.
1785                                  */
1786                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1787                         }
1788                         object->backing_object = backing_object->backing_object;
1789                         object->backing_object_offset +=
1790                             backing_object->backing_object_offset;
1791
1792                         /*
1793                          * Discard backing_object.
1794                          *
1795                          * Since the backing object has no pages, no pager left,
1796                          * and no object references within it, all that is
1797                          * necessary is to dispose of it.
1798                          */
1799                         KASSERT(backing_object->ref_count == 1, (
1800 "backing_object %p was somehow re-referenced during collapse!",
1801                             backing_object));
1802                         vm_object_pip_wakeup(backing_object);
1803                         backing_object->type = OBJT_DEAD;
1804                         backing_object->ref_count = 0;
1805                         VM_OBJECT_WUNLOCK(backing_object);
1806                         vm_object_destroy(backing_object);
1807
1808                         vm_object_pip_wakeup(object);
1809                         object_collapses++;
1810                 } else {
1811                         /*
1812                          * If we do not entirely shadow the backing object,
1813                          * there is nothing we can do so we give up.
1814                          */
1815                         if (object->resident_page_count != object->size &&
1816                             !vm_object_scan_all_shadowed(object)) {
1817                                 VM_OBJECT_WUNLOCK(backing_object);
1818                                 break;
1819                         }
1820
1821                         /*
1822                          * Make the parent shadow the next object in the
1823                          * chain.  Deallocating backing_object will not remove
1824                          * it, since its reference count is at least 2.
1825                          */
1826                         LIST_REMOVE(object, shadow_list);
1827                         backing_object->shadow_count--;
1828
1829                         new_backing_object = backing_object->backing_object;
1830                         if ((object->backing_object = new_backing_object) != NULL) {
1831                                 VM_OBJECT_WLOCK(new_backing_object);
1832                                 LIST_INSERT_HEAD(
1833                                     &new_backing_object->shadow_head,
1834                                     object,
1835                                     shadow_list
1836                                 );
1837                                 new_backing_object->shadow_count++;
1838                                 vm_object_reference_locked(new_backing_object);
1839                                 VM_OBJECT_WUNLOCK(new_backing_object);
1840                                 object->backing_object_offset +=
1841                                         backing_object->backing_object_offset;
1842                         }
1843
1844                         /*
1845                          * Drop the reference count on backing_object. Since
1846                          * its ref_count was at least 2, it will not vanish.
1847                          */
1848                         backing_object->ref_count--;
1849                         VM_OBJECT_WUNLOCK(backing_object);
1850                         object_bypasses++;
1851                 }
1852
1853                 /*
1854                  * Try again with this object's new backing object.
1855                  */
1856         }
1857 }
1858
1859 /*
1860  *      vm_object_page_remove:
1861  *
1862  *      For the given object, either frees or invalidates each of the
1863  *      specified pages.  In general, a page is freed.  However, if a page is
1864  *      wired for any reason other than the existence of a managed, wired
1865  *      mapping, then it may be invalidated but not removed from the object.
1866  *      Pages are specified by the given range ["start", "end") and the option
1867  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1868  *      extends from "start" to the end of the object.  If the option
1869  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1870  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1871  *      specified, then the pages within the specified range must have no
1872  *      mappings.  Otherwise, if this option is not specified, any mappings to
1873  *      the specified pages are removed before the pages are freed or
1874  *      invalidated.
1875  *
1876  *      In general, this operation should only be performed on objects that
1877  *      contain managed pages.  There are, however, two exceptions.  First, it
1878  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1879  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1880  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1881  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1882  *
1883  *      The object must be locked.
1884  */
1885 void
1886 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1887     int options)
1888 {
1889         vm_page_t p, next;
1890
1891         VM_OBJECT_ASSERT_WLOCKED(object);
1892         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1893             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1894             ("vm_object_page_remove: illegal options for object %p", object));
1895         if (object->resident_page_count == 0)
1896                 goto skipmemq;
1897         vm_object_pip_add(object, 1);
1898 again:
1899         p = vm_page_find_least(object, start);
1900
1901         /*
1902          * Here, the variable "p" is either (1) the page with the least pindex
1903          * greater than or equal to the parameter "start" or (2) NULL. 
1904          */
1905         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1906                 next = TAILQ_NEXT(p, listq);
1907
1908                 /*
1909                  * If the page is wired for any reason besides the existence
1910                  * of managed, wired mappings, then it cannot be freed.  For
1911                  * example, fictitious pages, which represent device memory,
1912                  * are inherently wired and cannot be freed.  They can,
1913                  * however, be invalidated if the option OBJPR_CLEANONLY is
1914                  * not specified.
1915                  */
1916                 vm_page_lock(p);
1917                 if (vm_page_xbusied(p)) {
1918                         VM_OBJECT_WUNLOCK(object);
1919                         vm_page_busy_sleep(p, "vmopax", true);
1920                         VM_OBJECT_WLOCK(object);
1921                         goto again;
1922                 }
1923                 if (p->wire_count != 0) {
1924                         if ((options & OBJPR_NOTMAPPED) == 0)
1925                                 pmap_remove_all(p);
1926                         if ((options & OBJPR_CLEANONLY) == 0) {
1927                                 p->valid = 0;
1928                                 vm_page_undirty(p);
1929                         }
1930                         goto next;
1931                 }
1932                 if (vm_page_busied(p)) {
1933                         VM_OBJECT_WUNLOCK(object);
1934                         vm_page_busy_sleep(p, "vmopar", false);
1935                         VM_OBJECT_WLOCK(object);
1936                         goto again;
1937                 }
1938                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1939                     ("vm_object_page_remove: page %p is fictitious", p));
1940                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1941                         if ((options & OBJPR_NOTMAPPED) == 0)
1942                                 pmap_remove_write(p);
1943                         if (p->dirty)
1944                                 goto next;
1945                 }
1946                 if ((options & OBJPR_NOTMAPPED) == 0)
1947                         pmap_remove_all(p);
1948                 vm_page_free(p);
1949 next:
1950                 vm_page_unlock(p);
1951         }
1952         vm_object_pip_wakeup(object);
1953 skipmemq:
1954         if (__predict_false(!vm_object_cache_is_empty(object)))
1955                 vm_page_cache_free(object, start, end);
1956 }
1957
1958 /*
1959  *      vm_object_page_noreuse:
1960  *
1961  *      For the given object, attempt to move the specified pages to
1962  *      the head of the inactive queue.  This bypasses regular LRU
1963  *      operation and allows the pages to be reused quickly under memory
1964  *      pressure.  If a page is wired for any reason, then it will not
1965  *      be queued.  Pages are specified by the range ["start", "end").
1966  *      As a special case, if "end" is zero, then the range extends from
1967  *      "start" to the end of the object.
1968  *
1969  *      This operation should only be performed on objects that
1970  *      contain non-fictitious, managed pages.
1971  *
1972  *      The object must be locked.
1973  */
1974 void
1975 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1976 {
1977         struct mtx *mtx, *new_mtx;
1978         vm_page_t p, next;
1979
1980         VM_OBJECT_ASSERT_LOCKED(object);
1981         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1982             ("vm_object_page_noreuse: illegal object %p", object));
1983         if (object->resident_page_count == 0)
1984                 return;
1985         p = vm_page_find_least(object, start);
1986
1987         /*
1988          * Here, the variable "p" is either (1) the page with the least pindex
1989          * greater than or equal to the parameter "start" or (2) NULL. 
1990          */
1991         mtx = NULL;
1992         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1993                 next = TAILQ_NEXT(p, listq);
1994
1995                 /*
1996                  * Avoid releasing and reacquiring the same page lock.
1997                  */
1998                 new_mtx = vm_page_lockptr(p);
1999                 if (mtx != new_mtx) {
2000                         if (mtx != NULL)
2001                                 mtx_unlock(mtx);
2002                         mtx = new_mtx;
2003                         mtx_lock(mtx);
2004                 }
2005                 vm_page_deactivate_noreuse(p);
2006         }
2007         if (mtx != NULL)
2008                 mtx_unlock(mtx);
2009 }
2010
2011 /*
2012  *      Populate the specified range of the object with valid pages.  Returns
2013  *      TRUE if the range is successfully populated and FALSE otherwise.
2014  *
2015  *      Note: This function should be optimized to pass a larger array of
2016  *      pages to vm_pager_get_pages() before it is applied to a non-
2017  *      OBJT_DEVICE object.
2018  *
2019  *      The object must be locked.
2020  */
2021 boolean_t
2022 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2023 {
2024         vm_page_t m;
2025         vm_pindex_t pindex;
2026         int rv;
2027
2028         VM_OBJECT_ASSERT_WLOCKED(object);
2029         for (pindex = start; pindex < end; pindex++) {
2030                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2031                 if (m->valid != VM_PAGE_BITS_ALL) {
2032                         rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2033                         if (rv != VM_PAGER_OK) {
2034                                 vm_page_lock(m);
2035                                 vm_page_free(m);
2036                                 vm_page_unlock(m);
2037                                 break;
2038                         }
2039                 }
2040                 /*
2041                  * Keep "m" busy because a subsequent iteration may unlock
2042                  * the object.
2043                  */
2044         }
2045         if (pindex > start) {
2046                 m = vm_page_lookup(object, start);
2047                 while (m != NULL && m->pindex < pindex) {
2048                         vm_page_xunbusy(m);
2049                         m = TAILQ_NEXT(m, listq);
2050                 }
2051         }
2052         return (pindex == end);
2053 }
2054
2055 /*
2056  *      Routine:        vm_object_coalesce
2057  *      Function:       Coalesces two objects backing up adjoining
2058  *                      regions of memory into a single object.
2059  *
2060  *      returns TRUE if objects were combined.
2061  *
2062  *      NOTE:   Only works at the moment if the second object is NULL -
2063  *              if it's not, which object do we lock first?
2064  *
2065  *      Parameters:
2066  *              prev_object     First object to coalesce
2067  *              prev_offset     Offset into prev_object
2068  *              prev_size       Size of reference to prev_object
2069  *              next_size       Size of reference to the second object
2070  *              reserved        Indicator that extension region has
2071  *                              swap accounted for
2072  *
2073  *      Conditions:
2074  *      The object must *not* be locked.
2075  */
2076 boolean_t
2077 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2078     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2079 {
2080         vm_pindex_t next_pindex;
2081
2082         if (prev_object == NULL)
2083                 return (TRUE);
2084         VM_OBJECT_WLOCK(prev_object);
2085         if ((prev_object->type != OBJT_DEFAULT &&
2086             prev_object->type != OBJT_SWAP) ||
2087             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2088                 VM_OBJECT_WUNLOCK(prev_object);
2089                 return (FALSE);
2090         }
2091
2092         /*
2093          * Try to collapse the object first
2094          */
2095         vm_object_collapse(prev_object);
2096
2097         /*
2098          * Can't coalesce if: . more than one reference . paged out . shadows
2099          * another object . has a copy elsewhere (any of which mean that the
2100          * pages not mapped to prev_entry may be in use anyway)
2101          */
2102         if (prev_object->backing_object != NULL) {
2103                 VM_OBJECT_WUNLOCK(prev_object);
2104                 return (FALSE);
2105         }
2106
2107         prev_size >>= PAGE_SHIFT;
2108         next_size >>= PAGE_SHIFT;
2109         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2110
2111         if ((prev_object->ref_count > 1) &&
2112             (prev_object->size != next_pindex)) {
2113                 VM_OBJECT_WUNLOCK(prev_object);
2114                 return (FALSE);
2115         }
2116
2117         /*
2118          * Account for the charge.
2119          */
2120         if (prev_object->cred != NULL) {
2121
2122                 /*
2123                  * If prev_object was charged, then this mapping,
2124                  * although not charged now, may become writable
2125                  * later. Non-NULL cred in the object would prevent
2126                  * swap reservation during enabling of the write
2127                  * access, so reserve swap now. Failed reservation
2128                  * cause allocation of the separate object for the map
2129                  * entry, and swap reservation for this entry is
2130                  * managed in appropriate time.
2131                  */
2132                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2133                     prev_object->cred)) {
2134                         VM_OBJECT_WUNLOCK(prev_object);
2135                         return (FALSE);
2136                 }
2137                 prev_object->charge += ptoa(next_size);
2138         }
2139
2140         /*
2141          * Remove any pages that may still be in the object from a previous
2142          * deallocation.
2143          */
2144         if (next_pindex < prev_object->size) {
2145                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2146                     next_size, 0);
2147                 if (prev_object->type == OBJT_SWAP)
2148                         swap_pager_freespace(prev_object,
2149                                              next_pindex, next_size);
2150 #if 0
2151                 if (prev_object->cred != NULL) {
2152                         KASSERT(prev_object->charge >=
2153                             ptoa(prev_object->size - next_pindex),
2154                             ("object %p overcharged 1 %jx %jx", prev_object,
2155                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2156                         prev_object->charge -= ptoa(prev_object->size -
2157                             next_pindex);
2158                 }
2159 #endif
2160         }
2161
2162         /*
2163          * Extend the object if necessary.
2164          */
2165         if (next_pindex + next_size > prev_object->size)
2166                 prev_object->size = next_pindex + next_size;
2167
2168         VM_OBJECT_WUNLOCK(prev_object);
2169         return (TRUE);
2170 }
2171
2172 void
2173 vm_object_set_writeable_dirty(vm_object_t object)
2174 {
2175
2176         VM_OBJECT_ASSERT_WLOCKED(object);
2177         if (object->type != OBJT_VNODE) {
2178                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2179                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2180                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2181                 }
2182                 return;
2183         }
2184         object->generation++;
2185         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2186                 return;
2187         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2188 }
2189
2190 /*
2191  *      vm_object_unwire:
2192  *
2193  *      For each page offset within the specified range of the given object,
2194  *      find the highest-level page in the shadow chain and unwire it.  A page
2195  *      must exist at every page offset, and the highest-level page must be
2196  *      wired.
2197  */
2198 void
2199 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2200     uint8_t queue)
2201 {
2202         vm_object_t tobject;
2203         vm_page_t m, tm;
2204         vm_pindex_t end_pindex, pindex, tpindex;
2205         int depth, locked_depth;
2206
2207         KASSERT((offset & PAGE_MASK) == 0,
2208             ("vm_object_unwire: offset is not page aligned"));
2209         KASSERT((length & PAGE_MASK) == 0,
2210             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2211         /* The wired count of a fictitious page never changes. */
2212         if ((object->flags & OBJ_FICTITIOUS) != 0)
2213                 return;
2214         pindex = OFF_TO_IDX(offset);
2215         end_pindex = pindex + atop(length);
2216         locked_depth = 1;
2217         VM_OBJECT_RLOCK(object);
2218         m = vm_page_find_least(object, pindex);
2219         while (pindex < end_pindex) {
2220                 if (m == NULL || pindex < m->pindex) {
2221                         /*
2222                          * The first object in the shadow chain doesn't
2223                          * contain a page at the current index.  Therefore,
2224                          * the page must exist in a backing object.
2225                          */
2226                         tobject = object;
2227                         tpindex = pindex;
2228                         depth = 0;
2229                         do {
2230                                 tpindex +=
2231                                     OFF_TO_IDX(tobject->backing_object_offset);
2232                                 tobject = tobject->backing_object;
2233                                 KASSERT(tobject != NULL,
2234                                     ("vm_object_unwire: missing page"));
2235                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2236                                         goto next_page;
2237                                 depth++;
2238                                 if (depth == locked_depth) {
2239                                         locked_depth++;
2240                                         VM_OBJECT_RLOCK(tobject);
2241                                 }
2242                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2243                             NULL);
2244                 } else {
2245                         tm = m;
2246                         m = TAILQ_NEXT(m, listq);
2247                 }
2248                 vm_page_lock(tm);
2249                 vm_page_unwire(tm, queue);
2250                 vm_page_unlock(tm);
2251 next_page:
2252                 pindex++;
2253         }
2254         /* Release the accumulated object locks. */
2255         for (depth = 0; depth < locked_depth; depth++) {
2256                 tobject = object->backing_object;
2257                 VM_OBJECT_RUNLOCK(object);
2258                 object = tobject;
2259         }
2260 }
2261
2262 struct vnode *
2263 vm_object_vnode(vm_object_t object)
2264 {
2265
2266         VM_OBJECT_ASSERT_LOCKED(object);
2267         if (object->type == OBJT_VNODE)
2268                 return (object->handle);
2269         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2270                 return (object->un_pager.swp.swp_tmpfs);
2271         return (NULL);
2272 }
2273
2274 static int
2275 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2276 {
2277         struct kinfo_vmobject kvo;
2278         char *fullpath, *freepath;
2279         struct vnode *vp;
2280         struct vattr va;
2281         vm_object_t obj;
2282         vm_page_t m;
2283         int count, error;
2284
2285         if (req->oldptr == NULL) {
2286                 /*
2287                  * If an old buffer has not been provided, generate an
2288                  * estimate of the space needed for a subsequent call.
2289                  */
2290                 mtx_lock(&vm_object_list_mtx);
2291                 count = 0;
2292                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2293                         if (obj->type == OBJT_DEAD)
2294                                 continue;
2295                         count++;
2296                 }
2297                 mtx_unlock(&vm_object_list_mtx);
2298                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2299                     count * 11 / 10));
2300         }
2301
2302         error = 0;
2303
2304         /*
2305          * VM objects are type stable and are never removed from the
2306          * list once added.  This allows us to safely read obj->object_list
2307          * after reacquiring the VM object lock.
2308          */
2309         mtx_lock(&vm_object_list_mtx);
2310         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2311                 if (obj->type == OBJT_DEAD)
2312                         continue;
2313                 VM_OBJECT_RLOCK(obj);
2314                 if (obj->type == OBJT_DEAD) {
2315                         VM_OBJECT_RUNLOCK(obj);
2316                         continue;
2317                 }
2318                 mtx_unlock(&vm_object_list_mtx);
2319                 kvo.kvo_size = ptoa(obj->size);
2320                 kvo.kvo_resident = obj->resident_page_count;
2321                 kvo.kvo_ref_count = obj->ref_count;
2322                 kvo.kvo_shadow_count = obj->shadow_count;
2323                 kvo.kvo_memattr = obj->memattr;
2324                 kvo.kvo_active = 0;
2325                 kvo.kvo_inactive = 0;
2326                 TAILQ_FOREACH(m, &obj->memq, listq) {
2327                         /*
2328                          * A page may belong to the object but be
2329                          * dequeued and set to PQ_NONE while the
2330                          * object lock is not held.  This makes the
2331                          * reads of m->queue below racy, and we do not
2332                          * count pages set to PQ_NONE.  However, this
2333                          * sysctl is only meant to give an
2334                          * approximation of the system anyway.
2335                          */
2336                         if (m->queue == PQ_ACTIVE)
2337                                 kvo.kvo_active++;
2338                         else if (m->queue == PQ_INACTIVE)
2339                                 kvo.kvo_inactive++;
2340                 }
2341
2342                 kvo.kvo_vn_fileid = 0;
2343                 kvo.kvo_vn_fsid = 0;
2344                 freepath = NULL;
2345                 fullpath = "";
2346                 vp = NULL;
2347                 switch (obj->type) {
2348                 case OBJT_DEFAULT:
2349                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2350                         break;
2351                 case OBJT_VNODE:
2352                         kvo.kvo_type = KVME_TYPE_VNODE;
2353                         vp = obj->handle;
2354                         vref(vp);
2355                         break;
2356                 case OBJT_SWAP:
2357                         kvo.kvo_type = KVME_TYPE_SWAP;
2358                         break;
2359                 case OBJT_DEVICE:
2360                         kvo.kvo_type = KVME_TYPE_DEVICE;
2361                         break;
2362                 case OBJT_PHYS:
2363                         kvo.kvo_type = KVME_TYPE_PHYS;
2364                         break;
2365                 case OBJT_DEAD:
2366                         kvo.kvo_type = KVME_TYPE_DEAD;
2367                         break;
2368                 case OBJT_SG:
2369                         kvo.kvo_type = KVME_TYPE_SG;
2370                         break;
2371                 case OBJT_MGTDEVICE:
2372                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2373                         break;
2374                 default:
2375                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2376                         break;
2377                 }
2378                 VM_OBJECT_RUNLOCK(obj);
2379                 if (vp != NULL) {
2380                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2381                         vn_lock(vp, LK_SHARED | LK_RETRY);
2382                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2383                                 kvo.kvo_vn_fileid = va.va_fileid;
2384                                 kvo.kvo_vn_fsid = va.va_fsid;
2385                         }
2386                         vput(vp);
2387                 }
2388
2389                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2390                 if (freepath != NULL)
2391                         free(freepath, M_TEMP);
2392
2393                 /* Pack record size down */
2394                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2395                     strlen(kvo.kvo_path) + 1;
2396                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2397                     sizeof(uint64_t));
2398                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2399                 mtx_lock(&vm_object_list_mtx);
2400                 if (error)
2401                         break;
2402         }
2403         mtx_unlock(&vm_object_list_mtx);
2404         return (error);
2405 }
2406 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2407     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2408     "List of VM objects");
2409
2410 #include "opt_ddb.h"
2411 #ifdef DDB
2412 #include <sys/kernel.h>
2413
2414 #include <sys/cons.h>
2415
2416 #include <ddb/ddb.h>
2417
2418 static int
2419 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2420 {
2421         vm_map_t tmpm;
2422         vm_map_entry_t tmpe;
2423         vm_object_t obj;
2424         int entcount;
2425
2426         if (map == 0)
2427                 return 0;
2428
2429         if (entry == 0) {
2430                 tmpe = map->header.next;
2431                 entcount = map->nentries;
2432                 while (entcount-- && (tmpe != &map->header)) {
2433                         if (_vm_object_in_map(map, object, tmpe)) {
2434                                 return 1;
2435                         }
2436                         tmpe = tmpe->next;
2437                 }
2438         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2439                 tmpm = entry->object.sub_map;
2440                 tmpe = tmpm->header.next;
2441                 entcount = tmpm->nentries;
2442                 while (entcount-- && tmpe != &tmpm->header) {
2443                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2444                                 return 1;
2445                         }
2446                         tmpe = tmpe->next;
2447                 }
2448         } else if ((obj = entry->object.vm_object) != NULL) {
2449                 for (; obj; obj = obj->backing_object)
2450                         if (obj == object) {
2451                                 return 1;
2452                         }
2453         }
2454         return 0;
2455 }
2456
2457 static int
2458 vm_object_in_map(vm_object_t object)
2459 {
2460         struct proc *p;
2461
2462         /* sx_slock(&allproc_lock); */
2463         FOREACH_PROC_IN_SYSTEM(p) {
2464                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2465                         continue;
2466                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2467                         /* sx_sunlock(&allproc_lock); */
2468                         return 1;
2469                 }
2470         }
2471         /* sx_sunlock(&allproc_lock); */
2472         if (_vm_object_in_map(kernel_map, object, 0))
2473                 return 1;
2474         return 0;
2475 }
2476
2477 DB_SHOW_COMMAND(vmochk, vm_object_check)
2478 {
2479         vm_object_t object;
2480
2481         /*
2482          * make sure that internal objs are in a map somewhere
2483          * and none have zero ref counts.
2484          */
2485         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2486                 if (object->handle == NULL &&
2487                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2488                         if (object->ref_count == 0) {
2489                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2490                                         (long)object->size);
2491                         }
2492                         if (!vm_object_in_map(object)) {
2493                                 db_printf(
2494                         "vmochk: internal obj is not in a map: "
2495                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2496                                     object->ref_count, (u_long)object->size, 
2497                                     (u_long)object->size,
2498                                     (void *)object->backing_object);
2499                         }
2500                 }
2501         }
2502 }
2503
2504 /*
2505  *      vm_object_print:        [ debug ]
2506  */
2507 DB_SHOW_COMMAND(object, vm_object_print_static)
2508 {
2509         /* XXX convert args. */
2510         vm_object_t object = (vm_object_t)addr;
2511         boolean_t full = have_addr;
2512
2513         vm_page_t p;
2514
2515         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2516 #define count   was_count
2517
2518         int count;
2519
2520         if (object == NULL)
2521                 return;
2522
2523         db_iprintf(
2524             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2525             object, (int)object->type, (uintmax_t)object->size,
2526             object->resident_page_count, object->ref_count, object->flags,
2527             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2528         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2529             object->shadow_count, 
2530             object->backing_object ? object->backing_object->ref_count : 0,
2531             object->backing_object, (uintmax_t)object->backing_object_offset);
2532
2533         if (!full)
2534                 return;
2535
2536         db_indent += 2;
2537         count = 0;
2538         TAILQ_FOREACH(p, &object->memq, listq) {
2539                 if (count == 0)
2540                         db_iprintf("memory:=");
2541                 else if (count == 6) {
2542                         db_printf("\n");
2543                         db_iprintf(" ...");
2544                         count = 0;
2545                 } else
2546                         db_printf(",");
2547                 count++;
2548
2549                 db_printf("(off=0x%jx,page=0x%jx)",
2550                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2551         }
2552         if (count != 0)
2553                 db_printf("\n");
2554         db_indent -= 2;
2555 }
2556
2557 /* XXX. */
2558 #undef count
2559
2560 /* XXX need this non-static entry for calling from vm_map_print. */
2561 void
2562 vm_object_print(
2563         /* db_expr_t */ long addr,
2564         boolean_t have_addr,
2565         /* db_expr_t */ long count,
2566         char *modif)
2567 {
2568         vm_object_print_static(addr, have_addr, count, modif);
2569 }
2570
2571 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2572 {
2573         vm_object_t object;
2574         vm_pindex_t fidx;
2575         vm_paddr_t pa;
2576         vm_page_t m, prev_m;
2577         int rcount, nl, c;
2578
2579         nl = 0;
2580         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2581                 db_printf("new object: %p\n", (void *)object);
2582                 if (nl > 18) {
2583                         c = cngetc();
2584                         if (c != ' ')
2585                                 return;
2586                         nl = 0;
2587                 }
2588                 nl++;
2589                 rcount = 0;
2590                 fidx = 0;
2591                 pa = -1;
2592                 TAILQ_FOREACH(m, &object->memq, listq) {
2593                         if (m->pindex > 128)
2594                                 break;
2595                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2596                             prev_m->pindex + 1 != m->pindex) {
2597                                 if (rcount) {
2598                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2599                                                 (long)fidx, rcount, (long)pa);
2600                                         if (nl > 18) {
2601                                                 c = cngetc();
2602                                                 if (c != ' ')
2603                                                         return;
2604                                                 nl = 0;
2605                                         }
2606                                         nl++;
2607                                         rcount = 0;
2608                                 }
2609                         }                               
2610                         if (rcount &&
2611                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2612                                 ++rcount;
2613                                 continue;
2614                         }
2615                         if (rcount) {
2616                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2617                                         (long)fidx, rcount, (long)pa);
2618                                 if (nl > 18) {
2619                                         c = cngetc();
2620                                         if (c != ' ')
2621                                                 return;
2622                                         nl = 0;
2623                                 }
2624                                 nl++;
2625                         }
2626                         fidx = m->pindex;
2627                         pa = VM_PAGE_TO_PHYS(m);
2628                         rcount = 1;
2629                 }
2630                 if (rcount) {
2631                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2632                                 (long)fidx, rcount, (long)pa);
2633                         if (nl > 18) {
2634                                 c = cngetc();
2635                                 if (c != ' ')
2636                                         return;
2637                                 nl = 0;
2638                         }
2639                         nl++;
2640                 }
2641         }
2642 }
2643 #endif /* DDB */