]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Introduce vm_page_astate.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>           /* for curproc, pageproc */
83 #include <sys/refcount.h>
84 #include <sys/socket.h>
85 #include <sys/resourcevar.h>
86 #include <sys/refcount.h>
87 #include <sys/rwlock.h>
88 #include <sys/user.h>
89 #include <sys/vnode.h>
90 #include <sys/vmmeter.h>
91 #include <sys/sx.h>
92
93 #include <vm/vm.h>
94 #include <vm/vm_param.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_radix.h>
107 #include <vm/vm_reserv.h>
108 #include <vm/uma.h>
109
110 static int old_msync;
111 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
112     "Use old (insecure) msync behavior");
113
114 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
115                     int pagerflags, int flags, boolean_t *allclean,
116                     boolean_t *eio);
117 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
118                     boolean_t *allclean);
119 static void     vm_object_qcollapse(vm_object_t object);
120 static void     vm_object_vndeallocate(vm_object_t object);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
155     "VM object stats");
156
157 static counter_u64_t object_collapses = EARLY_COUNTER;
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static counter_u64_t object_bypasses = EARLY_COUNTER;
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static void
168 counter_startup(void)
169 {
170
171         object_collapses = counter_u64_alloc(M_WAITOK);
172         object_bypasses = counter_u64_alloc(M_WAITOK);
173 }
174 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
175
176 static uma_zone_t obj_zone;
177
178 static int vm_object_zinit(void *mem, int size, int flags);
179
180 #ifdef INVARIANTS
181 static void vm_object_zdtor(void *mem, int size, void *arg);
182
183 static void
184 vm_object_zdtor(void *mem, int size, void *arg)
185 {
186         vm_object_t object;
187
188         object = (vm_object_t)mem;
189         KASSERT(object->ref_count == 0,
190             ("object %p ref_count = %d", object, object->ref_count));
191         KASSERT(TAILQ_EMPTY(&object->memq),
192             ("object %p has resident pages in its memq", object));
193         KASSERT(vm_radix_is_empty(&object->rtree),
194             ("object %p has resident pages in its trie", object));
195 #if VM_NRESERVLEVEL > 0
196         KASSERT(LIST_EMPTY(&object->rvq),
197             ("object %p has reservations",
198             object));
199 #endif
200         KASSERT(REFCOUNT_COUNT(object->paging_in_progress) == 0,
201             ("object %p paging_in_progress = %d",
202             object, REFCOUNT_COUNT(object->paging_in_progress)));
203         KASSERT(object->busy == 0,
204             ("object %p busy = %d",
205             object, object->busy));
206         KASSERT(object->resident_page_count == 0,
207             ("object %p resident_page_count = %d",
208             object, object->resident_page_count));
209         KASSERT(object->shadow_count == 0,
210             ("object %p shadow_count = %d",
211             object, object->shadow_count));
212         KASSERT(object->type == OBJT_DEAD,
213             ("object %p has non-dead type %d",
214             object, object->type));
215 }
216 #endif
217
218 static int
219 vm_object_zinit(void *mem, int size, int flags)
220 {
221         vm_object_t object;
222
223         object = (vm_object_t)mem;
224         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
225
226         /* These are true for any object that has been freed */
227         object->type = OBJT_DEAD;
228         vm_radix_init(&object->rtree);
229         refcount_init(&object->ref_count, 0);
230         refcount_init(&object->paging_in_progress, 0);
231         refcount_init(&object->busy, 0);
232         object->resident_page_count = 0;
233         object->shadow_count = 0;
234         object->flags = OBJ_DEAD;
235
236         mtx_lock(&vm_object_list_mtx);
237         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
238         mtx_unlock(&vm_object_list_mtx);
239         return (0);
240 }
241
242 static void
243 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
244     vm_object_t object, void *handle)
245 {
246
247         TAILQ_INIT(&object->memq);
248         LIST_INIT(&object->shadow_head);
249
250         object->type = type;
251         if (type == OBJT_SWAP)
252                 pctrie_init(&object->un_pager.swp.swp_blks);
253
254         /*
255          * Ensure that swap_pager_swapoff() iteration over object_list
256          * sees up to date type and pctrie head if it observed
257          * non-dead object.
258          */
259         atomic_thread_fence_rel();
260
261         object->pg_color = 0;
262         object->flags = flags;
263         object->size = size;
264         object->domain.dr_policy = NULL;
265         object->generation = 1;
266         object->cleangeneration = 1;
267         refcount_init(&object->ref_count, 1);
268         object->memattr = VM_MEMATTR_DEFAULT;
269         object->cred = NULL;
270         object->charge = 0;
271         object->handle = handle;
272         object->backing_object = NULL;
273         object->backing_object_offset = (vm_ooffset_t) 0;
274 #if VM_NRESERVLEVEL > 0
275         LIST_INIT(&object->rvq);
276 #endif
277         umtx_shm_object_init(object);
278 }
279
280 /*
281  *      vm_object_init:
282  *
283  *      Initialize the VM objects module.
284  */
285 void
286 vm_object_init(void)
287 {
288         TAILQ_INIT(&vm_object_list);
289         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
290         
291         rw_init(&kernel_object->lock, "kernel vm object");
292         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
293             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
294 #if VM_NRESERVLEVEL > 0
295         kernel_object->flags |= OBJ_COLORED;
296         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
297 #endif
298
299         /*
300          * The lock portion of struct vm_object must be type stable due
301          * to vm_pageout_fallback_object_lock locking a vm object
302          * without holding any references to it.
303          */
304         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
305 #ifdef INVARIANTS
306             vm_object_zdtor,
307 #else
308             NULL,
309 #endif
310             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
311
312         vm_radix_zinit();
313 }
314
315 void
316 vm_object_clear_flag(vm_object_t object, u_short bits)
317 {
318
319         VM_OBJECT_ASSERT_WLOCKED(object);
320         object->flags &= ~bits;
321 }
322
323 /*
324  *      Sets the default memory attribute for the specified object.  Pages
325  *      that are allocated to this object are by default assigned this memory
326  *      attribute.
327  *
328  *      Presently, this function must be called before any pages are allocated
329  *      to the object.  In the future, this requirement may be relaxed for
330  *      "default" and "swap" objects.
331  */
332 int
333 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
334 {
335
336         VM_OBJECT_ASSERT_WLOCKED(object);
337         switch (object->type) {
338         case OBJT_DEFAULT:
339         case OBJT_DEVICE:
340         case OBJT_MGTDEVICE:
341         case OBJT_PHYS:
342         case OBJT_SG:
343         case OBJT_SWAP:
344         case OBJT_VNODE:
345                 if (!TAILQ_EMPTY(&object->memq))
346                         return (KERN_FAILURE);
347                 break;
348         case OBJT_DEAD:
349                 return (KERN_INVALID_ARGUMENT);
350         default:
351                 panic("vm_object_set_memattr: object %p is of undefined type",
352                     object);
353         }
354         object->memattr = memattr;
355         return (KERN_SUCCESS);
356 }
357
358 void
359 vm_object_pip_add(vm_object_t object, short i)
360 {
361
362         refcount_acquiren(&object->paging_in_progress, i);
363 }
364
365 void
366 vm_object_pip_wakeup(vm_object_t object)
367 {
368
369         refcount_release(&object->paging_in_progress);
370 }
371
372 void
373 vm_object_pip_wakeupn(vm_object_t object, short i)
374 {
375
376         refcount_releasen(&object->paging_in_progress, i);
377 }
378
379 void
380 vm_object_pip_wait(vm_object_t object, char *waitid)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384
385         while (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
386                 VM_OBJECT_WUNLOCK(object);
387                 refcount_wait(&object->paging_in_progress, waitid, PVM);
388                 VM_OBJECT_WLOCK(object);
389         }
390 }
391
392 void
393 vm_object_pip_wait_unlocked(vm_object_t object, char *waitid)
394 {
395
396         VM_OBJECT_ASSERT_UNLOCKED(object);
397
398         while (REFCOUNT_COUNT(object->paging_in_progress) > 0)
399                 refcount_wait(&object->paging_in_progress, waitid, PVM);
400 }
401
402 /*
403  *      vm_object_allocate:
404  *
405  *      Returns a new object with the given size.
406  */
407 vm_object_t
408 vm_object_allocate(objtype_t type, vm_pindex_t size)
409 {
410         vm_object_t object;
411         u_short flags;
412
413         switch (type) {
414         case OBJT_DEAD:
415                 panic("vm_object_allocate: can't create OBJT_DEAD");
416         case OBJT_DEFAULT:
417         case OBJT_SWAP:
418                 flags = OBJ_COLORED;
419                 break;
420         case OBJT_DEVICE:
421         case OBJT_SG:
422                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
423                 break;
424         case OBJT_MGTDEVICE:
425                 flags = OBJ_FICTITIOUS;
426                 break;
427         case OBJT_PHYS:
428                 flags = OBJ_UNMANAGED;
429                 break;
430         case OBJT_VNODE:
431                 flags = 0;
432                 break;
433         default:
434                 panic("vm_object_allocate: type %d is undefined", type);
435         }
436         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
437         _vm_object_allocate(type, size, flags, object, NULL);
438
439         return (object);
440 }
441
442 /*
443  *      vm_object_allocate_anon:
444  *
445  *      Returns a new default object of the given size and marked as
446  *      anonymous memory for special split/collapse handling.  Color
447  *      to be initialized by the caller.
448  */
449 vm_object_t
450 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
451     struct ucred *cred, vm_size_t charge)
452 {
453         vm_object_t handle, object;
454
455         if (backing_object == NULL)
456                 handle = NULL;
457         else if ((backing_object->flags & OBJ_ANON) != 0)
458                 handle = backing_object->handle;
459         else
460                 handle = backing_object;
461         object = uma_zalloc(obj_zone, M_WAITOK);
462         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
463             object, handle);
464         object->cred = cred;
465         object->charge = cred != NULL ? charge : 0;
466         return (object);
467 }
468
469
470 /*
471  *      vm_object_reference:
472  *
473  *      Gets another reference to the given object.  Note: OBJ_DEAD
474  *      objects can be referenced during final cleaning.
475  */
476 void
477 vm_object_reference(vm_object_t object)
478 {
479         struct vnode *vp;
480         u_int old;
481
482         if (object == NULL)
483                 return;
484
485         /*
486          * Many places assume exclusive access to objects with a single
487          * ref. vm_object_collapse() in particular will directly mainpulate
488          * references for objects in this state.  vnode objects only need
489          * the lock for the first ref to reference the vnode.
490          */
491         if (!refcount_acquire_if_gt(&object->ref_count,
492             object->type == OBJT_VNODE ? 0 : 1)) {
493                 VM_OBJECT_RLOCK(object);
494                 old = refcount_acquire(&object->ref_count);
495                 if (object->type == OBJT_VNODE && old == 0) {
496                         vp = object->handle;
497                         vref(vp);
498                 }
499                 VM_OBJECT_RUNLOCK(object);
500         }
501 }
502
503 /*
504  *      vm_object_reference_locked:
505  *
506  *      Gets another reference to the given object.
507  *
508  *      The object must be locked.
509  */
510 void
511 vm_object_reference_locked(vm_object_t object)
512 {
513         struct vnode *vp;
514         u_int old;
515
516         VM_OBJECT_ASSERT_LOCKED(object);
517         old = refcount_acquire(&object->ref_count);
518         if (object->type == OBJT_VNODE && old == 0) {
519                 vp = object->handle;
520                 vref(vp);
521         }
522 }
523
524 /*
525  * Handle deallocating an object of type OBJT_VNODE.
526  */
527 static void
528 vm_object_vndeallocate(vm_object_t object)
529 {
530         struct vnode *vp = (struct vnode *) object->handle;
531         bool last;
532
533         KASSERT(object->type == OBJT_VNODE,
534             ("vm_object_vndeallocate: not a vnode object"));
535         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
536
537         /* Object lock to protect handle lookup. */
538         last = refcount_release(&object->ref_count);
539         VM_OBJECT_RUNLOCK(object);
540
541         if (!last)
542                 return;
543
544         if (!umtx_shm_vnobj_persistent)
545                 umtx_shm_object_terminated(object);
546
547         /* vrele may need the vnode lock. */
548         vrele(vp);
549 }
550
551 /*
552  *      vm_object_deallocate:
553  *
554  *      Release a reference to the specified object,
555  *      gained either through a vm_object_allocate
556  *      or a vm_object_reference call.  When all references
557  *      are gone, storage associated with this object
558  *      may be relinquished.
559  *
560  *      No object may be locked.
561  */
562 void
563 vm_object_deallocate(vm_object_t object)
564 {
565         vm_object_t robject, temp;
566         bool released;
567
568         while (object != NULL) {
569                 /*
570                  * If the reference count goes to 0 we start calling
571                  * vm_object_terminate() on the object chain.  A ref count
572                  * of 1 may be a special case depending on the shadow count
573                  * being 0 or 1.  These cases require a write lock on the
574                  * object.
575                  */
576                 if ((object->flags & OBJ_ANON) == 0)
577                         released = refcount_release_if_gt(&object->ref_count, 1);
578                 else
579                         released = refcount_release_if_gt(&object->ref_count, 2);
580                 if (released)
581                         return;
582
583                 if (object->type == OBJT_VNODE) {
584                         VM_OBJECT_RLOCK(object);
585                         if (object->type == OBJT_VNODE) {
586                                 vm_object_vndeallocate(object);
587                                 return;
588                         }
589                         VM_OBJECT_RUNLOCK(object);
590                 }
591
592                 VM_OBJECT_WLOCK(object);
593                 KASSERT(object->ref_count > 0,
594                     ("vm_object_deallocate: object deallocated too many times: %d",
595                     object->type));
596
597                 if (refcount_release(&object->ref_count))
598                         goto doterm;
599                 if (object->ref_count > 1) {
600                         VM_OBJECT_WUNLOCK(object);
601                         return;
602                 } else if (object->ref_count == 1) {
603                         if (object->shadow_count == 0 &&
604                             (object->flags & OBJ_ANON) != 0) {
605                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
606                         } else if (object->shadow_count == 1) {
607                                 KASSERT((object->flags & OBJ_ANON) != 0,
608                                     ("obj %p with shadow_count > 0 is not anon",
609                                     object));
610                                 robject = LIST_FIRST(&object->shadow_head);
611                                 KASSERT(robject != NULL,
612                                     ("vm_object_deallocate: ref_count: %d, "
613                                     "shadow_count: %d", object->ref_count,
614                                     object->shadow_count));
615                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
616                                     ("shadowed tmpfs v_object %p", object));
617                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
618                                         /*
619                                          * Avoid a potential deadlock.
620                                          */
621                                         refcount_acquire(&object->ref_count);
622                                         VM_OBJECT_WUNLOCK(object);
623                                         /*
624                                          * More likely than not the thread
625                                          * holding robject's lock has lower
626                                          * priority than the current thread.
627                                          * Let the lower priority thread run.
628                                          */
629                                         pause("vmo_de", 1);
630                                         continue;
631                                 }
632                                 /*
633                                  * Collapse object into its shadow unless its
634                                  * shadow is dead.  In that case, object will
635                                  * be deallocated by the thread that is
636                                  * deallocating its shadow.
637                                  */
638                                 if ((robject->flags &
639                                     (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON) {
640
641                                         refcount_acquire(&robject->ref_count);
642 retry:
643                                         if (REFCOUNT_COUNT(robject->paging_in_progress) > 0) {
644                                                 VM_OBJECT_WUNLOCK(object);
645                                                 vm_object_pip_wait(robject,
646                                                     "objde1");
647                                                 temp = robject->backing_object;
648                                                 if (object == temp) {
649                                                         VM_OBJECT_WLOCK(object);
650                                                         goto retry;
651                                                 }
652                                         } else if (REFCOUNT_COUNT(object->paging_in_progress) > 0) {
653                                                 VM_OBJECT_WUNLOCK(robject);
654                                                 VM_OBJECT_WUNLOCK(object);
655                                                 refcount_wait(
656                                                     &object->paging_in_progress,
657                                                     "objde2", PVM);
658                                                 VM_OBJECT_WLOCK(robject);
659                                                 temp = robject->backing_object;
660                                                 if (object == temp) {
661                                                         VM_OBJECT_WLOCK(object);
662                                                         goto retry;
663                                                 }
664                                         } else
665                                                 VM_OBJECT_WUNLOCK(object);
666
667                                         if (robject->ref_count == 1) {
668                                                 refcount_release(&robject->ref_count);
669                                                 object = robject;
670                                                 goto doterm;
671                                         }
672                                         object = robject;
673                                         vm_object_collapse(object);
674                                         VM_OBJECT_WUNLOCK(object);
675                                         continue;
676                                 }
677                                 VM_OBJECT_WUNLOCK(robject);
678                         }
679                         VM_OBJECT_WUNLOCK(object);
680                         return;
681                 }
682 doterm:
683                 umtx_shm_object_terminated(object);
684                 temp = object->backing_object;
685                 if (temp != NULL) {
686                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
687                             ("shadowed tmpfs v_object 2 %p", object));
688                         vm_object_backing_remove(object);
689                 }
690                 /*
691                  * Don't double-terminate, we could be in a termination
692                  * recursion due to the terminate having to sync data
693                  * to disk.
694                  */
695                 if ((object->flags & OBJ_DEAD) == 0) {
696                         vm_object_set_flag(object, OBJ_DEAD);
697                         vm_object_terminate(object);
698                 } else
699                         VM_OBJECT_WUNLOCK(object);
700                 object = temp;
701         }
702 }
703
704 /*
705  *      vm_object_destroy removes the object from the global object list
706  *      and frees the space for the object.
707  */
708 void
709 vm_object_destroy(vm_object_t object)
710 {
711
712         /*
713          * Release the allocation charge.
714          */
715         if (object->cred != NULL) {
716                 swap_release_by_cred(object->charge, object->cred);
717                 object->charge = 0;
718                 crfree(object->cred);
719                 object->cred = NULL;
720         }
721
722         /*
723          * Free the space for the object.
724          */
725         uma_zfree(obj_zone, object);
726 }
727
728 static void
729 vm_object_backing_remove_locked(vm_object_t object)
730 {
731         vm_object_t backing_object;
732
733         backing_object = object->backing_object;
734         VM_OBJECT_ASSERT_WLOCKED(object);
735         VM_OBJECT_ASSERT_WLOCKED(backing_object);
736
737         if ((object->flags & OBJ_SHADOWLIST) != 0) {
738                 LIST_REMOVE(object, shadow_list);
739                 backing_object->shadow_count--;
740                 object->flags &= ~OBJ_SHADOWLIST;
741         }
742         object->backing_object = NULL;
743 }
744
745 static void
746 vm_object_backing_remove(vm_object_t object)
747 {
748         vm_object_t backing_object;
749
750         VM_OBJECT_ASSERT_WLOCKED(object);
751
752         if ((object->flags & OBJ_SHADOWLIST) != 0) {
753                 backing_object = object->backing_object;
754                 VM_OBJECT_WLOCK(backing_object);
755                 vm_object_backing_remove_locked(object);
756                 VM_OBJECT_WUNLOCK(backing_object);
757         } else
758                 object->backing_object = NULL;
759 }
760
761 static void
762 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
763 {
764
765         VM_OBJECT_ASSERT_WLOCKED(object);
766
767         if ((backing_object->flags & OBJ_ANON) != 0) {
768                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
769                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
770                     shadow_list);
771                 backing_object->shadow_count++;
772                 object->flags |= OBJ_SHADOWLIST;
773         }
774         object->backing_object = backing_object;
775 }
776
777 static void
778 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
779 {
780
781         VM_OBJECT_ASSERT_WLOCKED(object);
782
783         if ((backing_object->flags & OBJ_ANON) != 0) {
784                 VM_OBJECT_WLOCK(backing_object);
785                 vm_object_backing_insert_locked(object, backing_object);
786                 VM_OBJECT_WUNLOCK(backing_object);
787         } else
788                 object->backing_object = backing_object;
789 }
790
791
792 /*
793  *      vm_object_terminate_pages removes any remaining pageable pages
794  *      from the object and resets the object to an empty state.
795  */
796 static void
797 vm_object_terminate_pages(vm_object_t object)
798 {
799         vm_page_t p, p_next;
800
801         VM_OBJECT_ASSERT_WLOCKED(object);
802
803         /*
804          * Free any remaining pageable pages.  This also removes them from the
805          * paging queues.  However, don't free wired pages, just remove them
806          * from the object.  Rather than incrementally removing each page from
807          * the object, the page and object are reset to any empty state. 
808          */
809         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
810                 vm_page_assert_unbusied(p);
811                 KASSERT(p->object == object &&
812                     (p->ref_count & VPRC_OBJREF) != 0,
813                     ("vm_object_terminate_pages: page %p is inconsistent", p));
814
815                 p->object = NULL;
816                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
817                         VM_CNT_INC(v_pfree);
818                         vm_page_free(p);
819                 }
820         }
821
822         /*
823          * If the object contained any pages, then reset it to an empty state.
824          * None of the object's fields, including "resident_page_count", were
825          * modified by the preceding loop.
826          */
827         if (object->resident_page_count != 0) {
828                 vm_radix_reclaim_allnodes(&object->rtree);
829                 TAILQ_INIT(&object->memq);
830                 object->resident_page_count = 0;
831                 if (object->type == OBJT_VNODE)
832                         vdrop(object->handle);
833         }
834 }
835
836 /*
837  *      vm_object_terminate actually destroys the specified object, freeing
838  *      up all previously used resources.
839  *
840  *      The object must be locked.
841  *      This routine may block.
842  */
843 void
844 vm_object_terminate(vm_object_t object)
845 {
846         VM_OBJECT_ASSERT_WLOCKED(object);
847         KASSERT((object->flags & OBJ_DEAD) != 0,
848             ("terminating non-dead obj %p", object));
849
850         /*
851          * wait for the pageout daemon to be done with the object
852          */
853         vm_object_pip_wait(object, "objtrm");
854
855         KASSERT(!REFCOUNT_COUNT(object->paging_in_progress),
856                 ("vm_object_terminate: pageout in progress"));
857
858         KASSERT(object->ref_count == 0, 
859                 ("vm_object_terminate: object with references, ref_count=%d",
860                 object->ref_count));
861
862         if ((object->flags & OBJ_PG_DTOR) == 0)
863                 vm_object_terminate_pages(object);
864
865 #if VM_NRESERVLEVEL > 0
866         if (__predict_false(!LIST_EMPTY(&object->rvq)))
867                 vm_reserv_break_all(object);
868 #endif
869
870         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
871             object->type == OBJT_SWAP,
872             ("%s: non-swap obj %p has cred", __func__, object));
873
874         /*
875          * Let the pager know object is dead.
876          */
877         vm_pager_deallocate(object);
878         VM_OBJECT_WUNLOCK(object);
879
880         vm_object_destroy(object);
881 }
882
883 /*
884  * Make the page read-only so that we can clear the object flags.  However, if
885  * this is a nosync mmap then the object is likely to stay dirty so do not
886  * mess with the page and do not clear the object flags.  Returns TRUE if the
887  * page should be flushed, and FALSE otherwise.
888  */
889 static boolean_t
890 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
891 {
892
893         vm_page_assert_busied(p);
894
895         /*
896          * If we have been asked to skip nosync pages and this is a
897          * nosync page, skip it.  Note that the object flags were not
898          * cleared in this case so we do not have to set them.
899          */
900         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
901                 *allclean = FALSE;
902                 return (FALSE);
903         } else {
904                 pmap_remove_write(p);
905                 return (p->dirty != 0);
906         }
907 }
908
909 /*
910  *      vm_object_page_clean
911  *
912  *      Clean all dirty pages in the specified range of object.  Leaves page 
913  *      on whatever queue it is currently on.   If NOSYNC is set then do not
914  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
915  *      leaving the object dirty.
916  *
917  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
918  *      synchronous clustering mode implementation.
919  *
920  *      Odd semantics: if start == end, we clean everything.
921  *
922  *      The object must be locked.
923  *
924  *      Returns FALSE if some page from the range was not written, as
925  *      reported by the pager, and TRUE otherwise.
926  */
927 boolean_t
928 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
929     int flags)
930 {
931         vm_page_t np, p;
932         vm_pindex_t pi, tend, tstart;
933         int curgeneration, n, pagerflags;
934         boolean_t eio, res, allclean;
935
936         VM_OBJECT_ASSERT_WLOCKED(object);
937
938         if (object->type != OBJT_VNODE || !vm_object_mightbedirty(object) ||
939             object->resident_page_count == 0)
940                 return (TRUE);
941
942         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
943             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
944         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
945
946         tstart = OFF_TO_IDX(start);
947         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
948         allclean = tstart == 0 && tend >= object->size;
949         res = TRUE;
950
951 rescan:
952         curgeneration = object->generation;
953
954         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
955                 pi = p->pindex;
956                 if (pi >= tend)
957                         break;
958                 np = TAILQ_NEXT(p, listq);
959                 if (vm_page_none_valid(p))
960                         continue;
961                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
962                         if (object->generation != curgeneration &&
963                             (flags & OBJPC_SYNC) != 0)
964                                 goto rescan;
965                         np = vm_page_find_least(object, pi);
966                         continue;
967                 }
968                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
969                         vm_page_xunbusy(p);
970                         continue;
971                 }
972
973                 n = vm_object_page_collect_flush(object, p, pagerflags,
974                     flags, &allclean, &eio);
975                 if (eio) {
976                         res = FALSE;
977                         allclean = FALSE;
978                 }
979                 if (object->generation != curgeneration &&
980                     (flags & OBJPC_SYNC) != 0)
981                         goto rescan;
982
983                 /*
984                  * If the VOP_PUTPAGES() did a truncated write, so
985                  * that even the first page of the run is not fully
986                  * written, vm_pageout_flush() returns 0 as the run
987                  * length.  Since the condition that caused truncated
988                  * write may be permanent, e.g. exhausted free space,
989                  * accepting n == 0 would cause an infinite loop.
990                  *
991                  * Forwarding the iterator leaves the unwritten page
992                  * behind, but there is not much we can do there if
993                  * filesystem refuses to write it.
994                  */
995                 if (n == 0) {
996                         n = 1;
997                         allclean = FALSE;
998                 }
999                 np = vm_page_find_least(object, pi + n);
1000         }
1001 #if 0
1002         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1003 #endif
1004
1005         if (allclean)
1006                 object->cleangeneration = curgeneration;
1007         return (res);
1008 }
1009
1010 static int
1011 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1012     int flags, boolean_t *allclean, boolean_t *eio)
1013 {
1014         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1015         int count, i, mreq, runlen;
1016
1017         vm_page_lock_assert(p, MA_NOTOWNED);
1018         vm_page_assert_xbusied(p);
1019         VM_OBJECT_ASSERT_WLOCKED(object);
1020
1021         count = 1;
1022         mreq = 0;
1023
1024         for (tp = p; count < vm_pageout_page_count; count++) {
1025                 tp = vm_page_next(tp);
1026                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1027                         break;
1028                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1029                         vm_page_xunbusy(tp);
1030                         break;
1031                 }
1032         }
1033
1034         for (p_first = p; count < vm_pageout_page_count; count++) {
1035                 tp = vm_page_prev(p_first);
1036                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1037                         break;
1038                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1039                         vm_page_xunbusy(tp);
1040                         break;
1041                 }
1042                 p_first = tp;
1043                 mreq++;
1044         }
1045
1046         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1047                 ma[i] = tp;
1048
1049         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1050         return (runlen);
1051 }
1052
1053 /*
1054  * Note that there is absolutely no sense in writing out
1055  * anonymous objects, so we track down the vnode object
1056  * to write out.
1057  * We invalidate (remove) all pages from the address space
1058  * for semantic correctness.
1059  *
1060  * If the backing object is a device object with unmanaged pages, then any
1061  * mappings to the specified range of pages must be removed before this
1062  * function is called.
1063  *
1064  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1065  * may start out with a NULL object.
1066  */
1067 boolean_t
1068 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1069     boolean_t syncio, boolean_t invalidate)
1070 {
1071         vm_object_t backing_object;
1072         struct vnode *vp;
1073         struct mount *mp;
1074         int error, flags, fsync_after;
1075         boolean_t res;
1076
1077         if (object == NULL)
1078                 return (TRUE);
1079         res = TRUE;
1080         error = 0;
1081         VM_OBJECT_WLOCK(object);
1082         while ((backing_object = object->backing_object) != NULL) {
1083                 VM_OBJECT_WLOCK(backing_object);
1084                 offset += object->backing_object_offset;
1085                 VM_OBJECT_WUNLOCK(object);
1086                 object = backing_object;
1087                 if (object->size < OFF_TO_IDX(offset + size))
1088                         size = IDX_TO_OFF(object->size) - offset;
1089         }
1090         /*
1091          * Flush pages if writing is allowed, invalidate them
1092          * if invalidation requested.  Pages undergoing I/O
1093          * will be ignored by vm_object_page_remove().
1094          *
1095          * We cannot lock the vnode and then wait for paging
1096          * to complete without deadlocking against vm_fault.
1097          * Instead we simply call vm_object_page_remove() and
1098          * allow it to block internally on a page-by-page
1099          * basis when it encounters pages undergoing async
1100          * I/O.
1101          */
1102         if (object->type == OBJT_VNODE &&
1103             vm_object_mightbedirty(object) != 0 &&
1104             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1105                 VM_OBJECT_WUNLOCK(object);
1106                 (void) vn_start_write(vp, &mp, V_WAIT);
1107                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1108                 if (syncio && !invalidate && offset == 0 &&
1109                     atop(size) == object->size) {
1110                         /*
1111                          * If syncing the whole mapping of the file,
1112                          * it is faster to schedule all the writes in
1113                          * async mode, also allowing the clustering,
1114                          * and then wait for i/o to complete.
1115                          */
1116                         flags = 0;
1117                         fsync_after = TRUE;
1118                 } else {
1119                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1120                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1121                         fsync_after = FALSE;
1122                 }
1123                 VM_OBJECT_WLOCK(object);
1124                 res = vm_object_page_clean(object, offset, offset + size,
1125                     flags);
1126                 VM_OBJECT_WUNLOCK(object);
1127                 if (fsync_after)
1128                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1129                 VOP_UNLOCK(vp, 0);
1130                 vn_finished_write(mp);
1131                 if (error != 0)
1132                         res = FALSE;
1133                 VM_OBJECT_WLOCK(object);
1134         }
1135         if ((object->type == OBJT_VNODE ||
1136              object->type == OBJT_DEVICE) && invalidate) {
1137                 if (object->type == OBJT_DEVICE)
1138                         /*
1139                          * The option OBJPR_NOTMAPPED must be passed here
1140                          * because vm_object_page_remove() cannot remove
1141                          * unmanaged mappings.
1142                          */
1143                         flags = OBJPR_NOTMAPPED;
1144                 else if (old_msync)
1145                         flags = 0;
1146                 else
1147                         flags = OBJPR_CLEANONLY;
1148                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1149                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1150         }
1151         VM_OBJECT_WUNLOCK(object);
1152         return (res);
1153 }
1154
1155 /*
1156  * Determine whether the given advice can be applied to the object.  Advice is
1157  * not applied to unmanaged pages since they never belong to page queues, and
1158  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1159  * have been mapped at most once.
1160  */
1161 static bool
1162 vm_object_advice_applies(vm_object_t object, int advice)
1163 {
1164
1165         if ((object->flags & OBJ_UNMANAGED) != 0)
1166                 return (false);
1167         if (advice != MADV_FREE)
1168                 return (true);
1169         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1170             (OBJ_ONEMAPPING | OBJ_ANON));
1171 }
1172
1173 static void
1174 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1175     vm_size_t size)
1176 {
1177
1178         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1179                 swap_pager_freespace(object, pindex, size);
1180 }
1181
1182 /*
1183  *      vm_object_madvise:
1184  *
1185  *      Implements the madvise function at the object/page level.
1186  *
1187  *      MADV_WILLNEED   (any object)
1188  *
1189  *          Activate the specified pages if they are resident.
1190  *
1191  *      MADV_DONTNEED   (any object)
1192  *
1193  *          Deactivate the specified pages if they are resident.
1194  *
1195  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1196  *                       OBJ_ONEMAPPING only)
1197  *
1198  *          Deactivate and clean the specified pages if they are
1199  *          resident.  This permits the process to reuse the pages
1200  *          without faulting or the kernel to reclaim the pages
1201  *          without I/O.
1202  */
1203 void
1204 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1205     int advice)
1206 {
1207         vm_pindex_t tpindex;
1208         vm_object_t backing_object, tobject;
1209         vm_page_t m, tm;
1210
1211         if (object == NULL)
1212                 return;
1213
1214 relookup:
1215         VM_OBJECT_WLOCK(object);
1216         if (!vm_object_advice_applies(object, advice)) {
1217                 VM_OBJECT_WUNLOCK(object);
1218                 return;
1219         }
1220         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1221                 tobject = object;
1222
1223                 /*
1224                  * If the next page isn't resident in the top-level object, we
1225                  * need to search the shadow chain.  When applying MADV_FREE, we
1226                  * take care to release any swap space used to store
1227                  * non-resident pages.
1228                  */
1229                 if (m == NULL || pindex < m->pindex) {
1230                         /*
1231                          * Optimize a common case: if the top-level object has
1232                          * no backing object, we can skip over the non-resident
1233                          * range in constant time.
1234                          */
1235                         if (object->backing_object == NULL) {
1236                                 tpindex = (m != NULL && m->pindex < end) ?
1237                                     m->pindex : end;
1238                                 vm_object_madvise_freespace(object, advice,
1239                                     pindex, tpindex - pindex);
1240                                 if ((pindex = tpindex) == end)
1241                                         break;
1242                                 goto next_page;
1243                         }
1244
1245                         tpindex = pindex;
1246                         do {
1247                                 vm_object_madvise_freespace(tobject, advice,
1248                                     tpindex, 1);
1249                                 /*
1250                                  * Prepare to search the next object in the
1251                                  * chain.
1252                                  */
1253                                 backing_object = tobject->backing_object;
1254                                 if (backing_object == NULL)
1255                                         goto next_pindex;
1256                                 VM_OBJECT_WLOCK(backing_object);
1257                                 tpindex +=
1258                                     OFF_TO_IDX(tobject->backing_object_offset);
1259                                 if (tobject != object)
1260                                         VM_OBJECT_WUNLOCK(tobject);
1261                                 tobject = backing_object;
1262                                 if (!vm_object_advice_applies(tobject, advice))
1263                                         goto next_pindex;
1264                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1265                             NULL);
1266                 } else {
1267 next_page:
1268                         tm = m;
1269                         m = TAILQ_NEXT(m, listq);
1270                 }
1271
1272                 /*
1273                  * If the page is not in a normal state, skip it.  The page
1274                  * can not be invalidated while the object lock is held.
1275                  */
1276                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1277                         goto next_pindex;
1278                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1279                     ("vm_object_madvise: page %p is fictitious", tm));
1280                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1281                     ("vm_object_madvise: page %p is not managed", tm));
1282                 if (vm_page_tryxbusy(tm) == 0) {
1283                         if (object != tobject)
1284                                 VM_OBJECT_WUNLOCK(object);
1285                         if (advice == MADV_WILLNEED) {
1286                                 /*
1287                                  * Reference the page before unlocking and
1288                                  * sleeping so that the page daemon is less
1289                                  * likely to reclaim it.
1290                                  */
1291                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1292                         }
1293                         vm_page_busy_sleep(tm, "madvpo", false);
1294                         goto relookup;
1295                 }
1296                 vm_page_lock(tm);
1297                 vm_page_advise(tm, advice);
1298                 vm_page_unlock(tm);
1299                 vm_page_xunbusy(tm);
1300                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1301 next_pindex:
1302                 if (tobject != object)
1303                         VM_OBJECT_WUNLOCK(tobject);
1304         }
1305         VM_OBJECT_WUNLOCK(object);
1306 }
1307
1308 /*
1309  *      vm_object_shadow:
1310  *
1311  *      Create a new object which is backed by the
1312  *      specified existing object range.  The source
1313  *      object reference is deallocated.
1314  *
1315  *      The new object and offset into that object
1316  *      are returned in the source parameters.
1317  */
1318 void
1319 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1320     struct ucred *cred, bool shared)
1321 {
1322         vm_object_t source;
1323         vm_object_t result;
1324
1325         source = *object;
1326
1327         /*
1328          * Don't create the new object if the old object isn't shared.
1329          *
1330          * If we hold the only reference we can guarantee that it won't
1331          * increase while we have the map locked.  Otherwise the race is
1332          * harmless and we will end up with an extra shadow object that
1333          * will be collapsed later.
1334          */
1335         if (source != NULL && source->ref_count == 1 &&
1336             (source->flags & OBJ_ANON) != 0)
1337                 return;
1338
1339         /*
1340          * Allocate a new object with the given length.
1341          */
1342         result = vm_object_allocate_anon(atop(length), source, cred, length);
1343
1344         /*
1345          * Store the offset into the source object, and fix up the offset into
1346          * the new object.
1347          */
1348         result->backing_object_offset = *offset;
1349
1350         if (shared || source != NULL) {
1351                 VM_OBJECT_WLOCK(result);
1352
1353                 /*
1354                  * The new object shadows the source object, adding a
1355                  * reference to it.  Our caller changes his reference
1356                  * to point to the new object, removing a reference to
1357                  * the source object.  Net result: no change of
1358                  * reference count, unless the caller needs to add one
1359                  * more reference due to forking a shared map entry.
1360                  */
1361                 if (shared) {
1362                         vm_object_reference_locked(result);
1363                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1364                 }
1365
1366                 /*
1367                  * Try to optimize the result object's page color when
1368                  * shadowing in order to maintain page coloring
1369                  * consistency in the combined shadowed object.
1370                  */
1371                 if (source != NULL) {
1372                         vm_object_backing_insert(result, source);
1373                         result->domain = source->domain;
1374 #if VM_NRESERVLEVEL > 0
1375                         result->flags |= source->flags & OBJ_COLORED;
1376                         result->pg_color = (source->pg_color +
1377                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1378                             1)) - 1);
1379 #endif
1380                 }
1381                 VM_OBJECT_WUNLOCK(result);
1382         }
1383
1384         /*
1385          * Return the new things
1386          */
1387         *offset = 0;
1388         *object = result;
1389 }
1390
1391 /*
1392  *      vm_object_split:
1393  *
1394  * Split the pages in a map entry into a new object.  This affords
1395  * easier removal of unused pages, and keeps object inheritance from
1396  * being a negative impact on memory usage.
1397  */
1398 void
1399 vm_object_split(vm_map_entry_t entry)
1400 {
1401         vm_page_t m, m_next;
1402         vm_object_t orig_object, new_object, source;
1403         vm_pindex_t idx, offidxstart;
1404         vm_size_t size;
1405
1406         orig_object = entry->object.vm_object;
1407         if ((orig_object->flags & OBJ_ANON) == 0)
1408                 return;
1409         if (orig_object->ref_count <= 1)
1410                 return;
1411         VM_OBJECT_WUNLOCK(orig_object);
1412
1413         offidxstart = OFF_TO_IDX(entry->offset);
1414         size = atop(entry->end - entry->start);
1415
1416         /*
1417          * If swap_pager_copy() is later called, it will convert new_object
1418          * into a swap object.
1419          */
1420         new_object = vm_object_allocate_anon(size, orig_object,
1421             orig_object->cred, ptoa(size));
1422
1423         /*
1424          * At this point, the new object is still private, so the order in
1425          * which the original and new objects are locked does not matter.
1426          */
1427         VM_OBJECT_WLOCK(new_object);
1428         VM_OBJECT_WLOCK(orig_object);
1429         new_object->domain = orig_object->domain;
1430         source = orig_object->backing_object;
1431         if (source != NULL) {
1432                 if ((source->flags & (OBJ_ANON | OBJ_DEAD)) != 0) {
1433                         VM_OBJECT_WLOCK(source);
1434                         if ((source->flags & OBJ_DEAD) != 0) {
1435                                 VM_OBJECT_WUNLOCK(source);
1436                                 VM_OBJECT_WUNLOCK(orig_object);
1437                                 VM_OBJECT_WUNLOCK(new_object);
1438                                 new_object->cred = NULL;
1439                                 vm_object_deallocate(new_object);
1440                                 VM_OBJECT_WLOCK(orig_object);
1441                                 return;
1442                         }
1443                         vm_object_backing_insert_locked(new_object, source);
1444                         vm_object_reference_locked(source);     /* for new_object */
1445                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1446                         VM_OBJECT_WUNLOCK(source);
1447                 } else {
1448                         vm_object_backing_insert(new_object, source);
1449                         vm_object_reference(source);
1450                 }
1451                 new_object->backing_object_offset = 
1452                         orig_object->backing_object_offset + entry->offset;
1453         }
1454         if (orig_object->cred != NULL) {
1455                 crhold(orig_object->cred);
1456                 KASSERT(orig_object->charge >= ptoa(size),
1457                     ("orig_object->charge < 0"));
1458                 orig_object->charge -= ptoa(size);
1459         }
1460 retry:
1461         m = vm_page_find_least(orig_object, offidxstart);
1462         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1463             m = m_next) {
1464                 m_next = TAILQ_NEXT(m, listq);
1465
1466                 /*
1467                  * We must wait for pending I/O to complete before we can
1468                  * rename the page.
1469                  *
1470                  * We do not have to VM_PROT_NONE the page as mappings should
1471                  * not be changed by this operation.
1472                  */
1473                 if (vm_page_tryxbusy(m) == 0) {
1474                         VM_OBJECT_WUNLOCK(new_object);
1475                         vm_page_sleep_if_busy(m, "spltwt");
1476                         VM_OBJECT_WLOCK(new_object);
1477                         goto retry;
1478                 }
1479
1480                 /* vm_page_rename() will dirty the page. */
1481                 if (vm_page_rename(m, new_object, idx)) {
1482                         vm_page_xunbusy(m);
1483                         VM_OBJECT_WUNLOCK(new_object);
1484                         VM_OBJECT_WUNLOCK(orig_object);
1485                         vm_radix_wait();
1486                         VM_OBJECT_WLOCK(orig_object);
1487                         VM_OBJECT_WLOCK(new_object);
1488                         goto retry;
1489                 }
1490
1491 #if VM_NRESERVLEVEL > 0
1492                 /*
1493                  * If some of the reservation's allocated pages remain with
1494                  * the original object, then transferring the reservation to
1495                  * the new object is neither particularly beneficial nor
1496                  * particularly harmful as compared to leaving the reservation
1497                  * with the original object.  If, however, all of the
1498                  * reservation's allocated pages are transferred to the new
1499                  * object, then transferring the reservation is typically
1500                  * beneficial.  Determining which of these two cases applies
1501                  * would be more costly than unconditionally renaming the
1502                  * reservation.
1503                  */
1504                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1505 #endif
1506                 if (orig_object->type != OBJT_SWAP)
1507                         vm_page_xunbusy(m);
1508         }
1509         if (orig_object->type == OBJT_SWAP) {
1510                 /*
1511                  * swap_pager_copy() can sleep, in which case the orig_object's
1512                  * and new_object's locks are released and reacquired. 
1513                  */
1514                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1515                 TAILQ_FOREACH(m, &new_object->memq, listq)
1516                         vm_page_xunbusy(m);
1517         }
1518         VM_OBJECT_WUNLOCK(orig_object);
1519         VM_OBJECT_WUNLOCK(new_object);
1520         entry->object.vm_object = new_object;
1521         entry->offset = 0LL;
1522         vm_object_deallocate(orig_object);
1523         VM_OBJECT_WLOCK(new_object);
1524 }
1525
1526 #define OBSC_COLLAPSE_NOWAIT    0x0002
1527 #define OBSC_COLLAPSE_WAIT      0x0004
1528
1529 static vm_page_t
1530 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1531     int op)
1532 {
1533         vm_object_t backing_object;
1534
1535         VM_OBJECT_ASSERT_WLOCKED(object);
1536         backing_object = object->backing_object;
1537         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1538
1539         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1540             ("invalid ownership %p %p %p", p, object, backing_object));
1541         if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1542                 return (next);
1543         /* The page is only NULL when rename fails. */
1544         if (p == NULL) {
1545                 VM_OBJECT_WUNLOCK(object);
1546                 VM_OBJECT_WUNLOCK(backing_object);
1547                 vm_radix_wait();
1548         } else {
1549                 if (p->object == object)
1550                         VM_OBJECT_WUNLOCK(backing_object);
1551                 else
1552                         VM_OBJECT_WUNLOCK(object);
1553                 vm_page_busy_sleep(p, "vmocol", false);
1554         }
1555         VM_OBJECT_WLOCK(object);
1556         VM_OBJECT_WLOCK(backing_object);
1557         return (TAILQ_FIRST(&backing_object->memq));
1558 }
1559
1560 static bool
1561 vm_object_scan_all_shadowed(vm_object_t object)
1562 {
1563         vm_object_t backing_object;
1564         vm_page_t p, pp;
1565         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1566
1567         VM_OBJECT_ASSERT_WLOCKED(object);
1568         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1569
1570         backing_object = object->backing_object;
1571
1572         if ((backing_object->flags & OBJ_ANON) == 0)
1573                 return (false);
1574
1575         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1576         p = vm_page_find_least(backing_object, pi);
1577         ps = swap_pager_find_least(backing_object, pi);
1578
1579         /*
1580          * Only check pages inside the parent object's range and
1581          * inside the parent object's mapping of the backing object.
1582          */
1583         for (;; pi++) {
1584                 if (p != NULL && p->pindex < pi)
1585                         p = TAILQ_NEXT(p, listq);
1586                 if (ps < pi)
1587                         ps = swap_pager_find_least(backing_object, pi);
1588                 if (p == NULL && ps >= backing_object->size)
1589                         break;
1590                 else if (p == NULL)
1591                         pi = ps;
1592                 else
1593                         pi = MIN(p->pindex, ps);
1594
1595                 new_pindex = pi - backing_offset_index;
1596                 if (new_pindex >= object->size)
1597                         break;
1598
1599                 /*
1600                  * See if the parent has the page or if the parent's object
1601                  * pager has the page.  If the parent has the page but the page
1602                  * is not valid, the parent's object pager must have the page.
1603                  *
1604                  * If this fails, the parent does not completely shadow the
1605                  * object and we might as well give up now.
1606                  */
1607                 pp = vm_page_lookup(object, new_pindex);
1608                 /*
1609                  * The valid check here is stable due to object lock being
1610                  * required to clear valid and initiate paging.
1611                  */
1612                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1613                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1614                         return (false);
1615         }
1616         return (true);
1617 }
1618
1619 static bool
1620 vm_object_collapse_scan(vm_object_t object, int op)
1621 {
1622         vm_object_t backing_object;
1623         vm_page_t next, p, pp;
1624         vm_pindex_t backing_offset_index, new_pindex;
1625
1626         VM_OBJECT_ASSERT_WLOCKED(object);
1627         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1628
1629         backing_object = object->backing_object;
1630         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1631
1632         /*
1633          * Initial conditions
1634          */
1635         if ((op & OBSC_COLLAPSE_WAIT) != 0)
1636                 vm_object_set_flag(backing_object, OBJ_DEAD);
1637
1638         /*
1639          * Our scan
1640          */
1641         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1642                 next = TAILQ_NEXT(p, listq);
1643                 new_pindex = p->pindex - backing_offset_index;
1644
1645                 /*
1646                  * Check for busy page
1647                  */
1648                 if (vm_page_tryxbusy(p) == 0) {
1649                         next = vm_object_collapse_scan_wait(object, p, next, op);
1650                         continue;
1651                 }
1652
1653                 KASSERT(p->object == backing_object,
1654                     ("vm_object_collapse_scan: object mismatch"));
1655
1656                 if (p->pindex < backing_offset_index ||
1657                     new_pindex >= object->size) {
1658                         if (backing_object->type == OBJT_SWAP)
1659                                 swap_pager_freespace(backing_object, p->pindex,
1660                                     1);
1661
1662                         KASSERT(!pmap_page_is_mapped(p),
1663                             ("freeing mapped page %p", p));
1664                         if (vm_page_remove(p))
1665                                 vm_page_free(p);
1666                         else
1667                                 vm_page_xunbusy(p);
1668                         continue;
1669                 }
1670
1671                 pp = vm_page_lookup(object, new_pindex);
1672                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1673                         vm_page_xunbusy(p);
1674                         /*
1675                          * The page in the parent is busy and possibly not
1676                          * (yet) valid.  Until its state is finalized by the
1677                          * busy bit owner, we can't tell whether it shadows the
1678                          * original page.  Therefore, we must either skip it
1679                          * and the original (backing_object) page or wait for
1680                          * its state to be finalized.
1681                          *
1682                          * This is due to a race with vm_fault() where we must
1683                          * unbusy the original (backing_obj) page before we can
1684                          * (re)lock the parent.  Hence we can get here.
1685                          */
1686                         next = vm_object_collapse_scan_wait(object, pp, next,
1687                             op);
1688                         continue;
1689                 }
1690
1691                 KASSERT(pp == NULL || !vm_page_none_valid(pp),
1692                     ("unbusy invalid page %p", pp));
1693
1694                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1695                         NULL)) {
1696                         /*
1697                          * The page already exists in the parent OR swap exists
1698                          * for this location in the parent.  Leave the parent's
1699                          * page alone.  Destroy the original page from the
1700                          * backing object.
1701                          */
1702                         if (backing_object->type == OBJT_SWAP)
1703                                 swap_pager_freespace(backing_object, p->pindex,
1704                                     1);
1705                         KASSERT(!pmap_page_is_mapped(p),
1706                             ("freeing mapped page %p", p));
1707                         if (vm_page_remove(p))
1708                                 vm_page_free(p);
1709                         else
1710                                 vm_page_xunbusy(p);
1711                         if (pp != NULL)
1712                                 vm_page_xunbusy(pp);
1713                         continue;
1714                 }
1715
1716                 /*
1717                  * Page does not exist in parent, rename the page from the
1718                  * backing object to the main object.
1719                  *
1720                  * If the page was mapped to a process, it can remain mapped
1721                  * through the rename.  vm_page_rename() will dirty the page.
1722                  */
1723                 if (vm_page_rename(p, object, new_pindex)) {
1724                         vm_page_xunbusy(p);
1725                         if (pp != NULL)
1726                                 vm_page_xunbusy(pp);
1727                         next = vm_object_collapse_scan_wait(object, NULL, next,
1728                             op);
1729                         continue;
1730                 }
1731
1732                 /* Use the old pindex to free the right page. */
1733                 if (backing_object->type == OBJT_SWAP)
1734                         swap_pager_freespace(backing_object,
1735                             new_pindex + backing_offset_index, 1);
1736
1737 #if VM_NRESERVLEVEL > 0
1738                 /*
1739                  * Rename the reservation.
1740                  */
1741                 vm_reserv_rename(p, object, backing_object,
1742                     backing_offset_index);
1743 #endif
1744                 vm_page_xunbusy(p);
1745         }
1746         return (true);
1747 }
1748
1749
1750 /*
1751  * this version of collapse allows the operation to occur earlier and
1752  * when paging_in_progress is true for an object...  This is not a complete
1753  * operation, but should plug 99.9% of the rest of the leaks.
1754  */
1755 static void
1756 vm_object_qcollapse(vm_object_t object)
1757 {
1758         vm_object_t backing_object = object->backing_object;
1759
1760         VM_OBJECT_ASSERT_WLOCKED(object);
1761         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1762
1763         if (backing_object->ref_count != 1)
1764                 return;
1765
1766         vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1767 }
1768
1769 /*
1770  *      vm_object_collapse:
1771  *
1772  *      Collapse an object with the object backing it.
1773  *      Pages in the backing object are moved into the
1774  *      parent, and the backing object is deallocated.
1775  */
1776 void
1777 vm_object_collapse(vm_object_t object)
1778 {
1779         vm_object_t backing_object, new_backing_object;
1780
1781         VM_OBJECT_ASSERT_WLOCKED(object);
1782
1783         while (TRUE) {
1784                 /*
1785                  * Verify that the conditions are right for collapse:
1786                  *
1787                  * The object exists and the backing object exists.
1788                  */
1789                 if ((backing_object = object->backing_object) == NULL)
1790                         break;
1791
1792                 /*
1793                  * we check the backing object first, because it is most likely
1794                  * not collapsable.
1795                  */
1796                 if ((backing_object->flags & OBJ_ANON) == 0)
1797                         break;
1798                 VM_OBJECT_WLOCK(backing_object);
1799                 if ((backing_object->flags & OBJ_DEAD) != 0 ||
1800                     (object->flags & (OBJ_DEAD | OBJ_ANON)) != OBJ_ANON) {
1801                         VM_OBJECT_WUNLOCK(backing_object);
1802                         break;
1803                 }
1804
1805                 if (REFCOUNT_COUNT(object->paging_in_progress) > 0 ||
1806                     REFCOUNT_COUNT(backing_object->paging_in_progress) > 0) {
1807                         vm_object_qcollapse(object);
1808                         VM_OBJECT_WUNLOCK(backing_object);
1809                         break;
1810                 }
1811
1812                 /*
1813                  * We know that we can either collapse the backing object (if
1814                  * the parent is the only reference to it) or (perhaps) have
1815                  * the parent bypass the object if the parent happens to shadow
1816                  * all the resident pages in the entire backing object.
1817                  *
1818                  * This is ignoring pager-backed pages such as swap pages.
1819                  * vm_object_collapse_scan fails the shadowing test in this
1820                  * case.
1821                  */
1822                 if (backing_object->ref_count == 1) {
1823                         vm_object_pip_add(object, 1);
1824                         vm_object_pip_add(backing_object, 1);
1825
1826                         /*
1827                          * If there is exactly one reference to the backing
1828                          * object, we can collapse it into the parent.
1829                          */
1830                         vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1831
1832 #if VM_NRESERVLEVEL > 0
1833                         /*
1834                          * Break any reservations from backing_object.
1835                          */
1836                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1837                                 vm_reserv_break_all(backing_object);
1838 #endif
1839
1840                         /*
1841                          * Move the pager from backing_object to object.
1842                          */
1843                         if (backing_object->type == OBJT_SWAP) {
1844                                 /*
1845                                  * swap_pager_copy() can sleep, in which case
1846                                  * the backing_object's and object's locks are
1847                                  * released and reacquired.
1848                                  * Since swap_pager_copy() is being asked to
1849                                  * destroy the source, it will change the
1850                                  * backing_object's type to OBJT_DEFAULT.
1851                                  */
1852                                 swap_pager_copy(
1853                                     backing_object,
1854                                     object,
1855                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1856                         }
1857                         /*
1858                          * Object now shadows whatever backing_object did.
1859                          * Note that the reference to 
1860                          * backing_object->backing_object moves from within 
1861                          * backing_object to within object.
1862                          */
1863                         vm_object_backing_remove_locked(object);
1864                         new_backing_object = backing_object->backing_object;
1865                         if (new_backing_object != NULL) {
1866                                 VM_OBJECT_WLOCK(new_backing_object);
1867                                 vm_object_backing_remove_locked(backing_object);
1868                                 vm_object_backing_insert_locked(object,
1869                                     new_backing_object);
1870                                 VM_OBJECT_WUNLOCK(new_backing_object);
1871                         }
1872                         object->backing_object_offset +=
1873                             backing_object->backing_object_offset;
1874
1875                         /*
1876                          * Discard backing_object.
1877                          *
1878                          * Since the backing object has no pages, no pager left,
1879                          * and no object references within it, all that is
1880                          * necessary is to dispose of it.
1881                          */
1882                         KASSERT(backing_object->ref_count == 1, (
1883 "backing_object %p was somehow re-referenced during collapse!",
1884                             backing_object));
1885                         vm_object_pip_wakeup(backing_object);
1886                         backing_object->type = OBJT_DEAD;
1887                         refcount_release(&backing_object->ref_count);
1888                         VM_OBJECT_WUNLOCK(backing_object);
1889                         vm_object_destroy(backing_object);
1890
1891                         vm_object_pip_wakeup(object);
1892                         counter_u64_add(object_collapses, 1);
1893                 } else {
1894                         /*
1895                          * If we do not entirely shadow the backing object,
1896                          * there is nothing we can do so we give up.
1897                          */
1898                         if (object->resident_page_count != object->size &&
1899                             !vm_object_scan_all_shadowed(object)) {
1900                                 VM_OBJECT_WUNLOCK(backing_object);
1901                                 break;
1902                         }
1903
1904                         /*
1905                          * Make the parent shadow the next object in the
1906                          * chain.  Deallocating backing_object will not remove
1907                          * it, since its reference count is at least 2.
1908                          */
1909                         vm_object_backing_remove_locked(object);
1910
1911                         new_backing_object = backing_object->backing_object;
1912                         if (new_backing_object != NULL) {
1913                                 vm_object_backing_insert(object,
1914                                     new_backing_object);
1915                                 vm_object_reference(new_backing_object);
1916                                 object->backing_object_offset +=
1917                                         backing_object->backing_object_offset;
1918                         }
1919
1920                         /*
1921                          * Drop the reference count on backing_object. Since
1922                          * its ref_count was at least 2, it will not vanish.
1923                          */
1924                         refcount_release(&backing_object->ref_count);
1925                         VM_OBJECT_WUNLOCK(backing_object);
1926                         counter_u64_add(object_bypasses, 1);
1927                 }
1928
1929                 /*
1930                  * Try again with this object's new backing object.
1931                  */
1932         }
1933 }
1934
1935 /*
1936  *      vm_object_page_remove:
1937  *
1938  *      For the given object, either frees or invalidates each of the
1939  *      specified pages.  In general, a page is freed.  However, if a page is
1940  *      wired for any reason other than the existence of a managed, wired
1941  *      mapping, then it may be invalidated but not removed from the object.
1942  *      Pages are specified by the given range ["start", "end") and the option
1943  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1944  *      extends from "start" to the end of the object.  If the option
1945  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1946  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1947  *      specified, then the pages within the specified range must have no
1948  *      mappings.  Otherwise, if this option is not specified, any mappings to
1949  *      the specified pages are removed before the pages are freed or
1950  *      invalidated.
1951  *
1952  *      In general, this operation should only be performed on objects that
1953  *      contain managed pages.  There are, however, two exceptions.  First, it
1954  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1955  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1956  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1957  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1958  *
1959  *      The object must be locked.
1960  */
1961 void
1962 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1963     int options)
1964 {
1965         vm_page_t p, next;
1966
1967         VM_OBJECT_ASSERT_WLOCKED(object);
1968         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1969             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1970             ("vm_object_page_remove: illegal options for object %p", object));
1971         if (object->resident_page_count == 0)
1972                 return;
1973         vm_object_pip_add(object, 1);
1974 again:
1975         p = vm_page_find_least(object, start);
1976
1977         /*
1978          * Here, the variable "p" is either (1) the page with the least pindex
1979          * greater than or equal to the parameter "start" or (2) NULL. 
1980          */
1981         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1982                 next = TAILQ_NEXT(p, listq);
1983
1984                 /*
1985                  * If the page is wired for any reason besides the existence
1986                  * of managed, wired mappings, then it cannot be freed.  For
1987                  * example, fictitious pages, which represent device memory,
1988                  * are inherently wired and cannot be freed.  They can,
1989                  * however, be invalidated if the option OBJPR_CLEANONLY is
1990                  * not specified.
1991                  */
1992                 if (vm_page_tryxbusy(p) == 0) {
1993                         vm_page_sleep_if_busy(p, "vmopar");
1994                         goto again;
1995                 }
1996                 if (vm_page_wired(p)) {
1997 wired:
1998                         if ((options & OBJPR_NOTMAPPED) == 0 &&
1999                             object->ref_count != 0)
2000                                 pmap_remove_all(p);
2001                         if ((options & OBJPR_CLEANONLY) == 0) {
2002                                 vm_page_invalid(p);
2003                                 vm_page_undirty(p);
2004                         }
2005                         vm_page_xunbusy(p);
2006                         continue;
2007                 }
2008                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2009                     ("vm_object_page_remove: page %p is fictitious", p));
2010                 if ((options & OBJPR_CLEANONLY) != 0 &&
2011                     !vm_page_none_valid(p)) {
2012                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2013                             object->ref_count != 0 &&
2014                             !vm_page_try_remove_write(p))
2015                                 goto wired;
2016                         if (p->dirty != 0) {
2017                                 vm_page_xunbusy(p);
2018                                 continue;
2019                         }
2020                 }
2021                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2022                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2023                         goto wired;
2024                 vm_page_free(p);
2025         }
2026         vm_object_pip_wakeup(object);
2027 }
2028
2029 /*
2030  *      vm_object_page_noreuse:
2031  *
2032  *      For the given object, attempt to move the specified pages to
2033  *      the head of the inactive queue.  This bypasses regular LRU
2034  *      operation and allows the pages to be reused quickly under memory
2035  *      pressure.  If a page is wired for any reason, then it will not
2036  *      be queued.  Pages are specified by the range ["start", "end").
2037  *      As a special case, if "end" is zero, then the range extends from
2038  *      "start" to the end of the object.
2039  *
2040  *      This operation should only be performed on objects that
2041  *      contain non-fictitious, managed pages.
2042  *
2043  *      The object must be locked.
2044  */
2045 void
2046 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2047 {
2048         struct mtx *mtx;
2049         vm_page_t p, next;
2050
2051         VM_OBJECT_ASSERT_LOCKED(object);
2052         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2053             ("vm_object_page_noreuse: illegal object %p", object));
2054         if (object->resident_page_count == 0)
2055                 return;
2056         p = vm_page_find_least(object, start);
2057
2058         /*
2059          * Here, the variable "p" is either (1) the page with the least pindex
2060          * greater than or equal to the parameter "start" or (2) NULL. 
2061          */
2062         mtx = NULL;
2063         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2064                 next = TAILQ_NEXT(p, listq);
2065                 vm_page_change_lock(p, &mtx);
2066                 vm_page_deactivate_noreuse(p);
2067         }
2068         if (mtx != NULL)
2069                 mtx_unlock(mtx);
2070 }
2071
2072 /*
2073  *      Populate the specified range of the object with valid pages.  Returns
2074  *      TRUE if the range is successfully populated and FALSE otherwise.
2075  *
2076  *      Note: This function should be optimized to pass a larger array of
2077  *      pages to vm_pager_get_pages() before it is applied to a non-
2078  *      OBJT_DEVICE object.
2079  *
2080  *      The object must be locked.
2081  */
2082 boolean_t
2083 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2084 {
2085         vm_page_t m;
2086         vm_pindex_t pindex;
2087         int rv;
2088
2089         VM_OBJECT_ASSERT_WLOCKED(object);
2090         for (pindex = start; pindex < end; pindex++) {
2091                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2092                 if (rv != VM_PAGER_OK)
2093                         break;
2094
2095                 /*
2096                  * Keep "m" busy because a subsequent iteration may unlock
2097                  * the object.
2098                  */
2099         }
2100         if (pindex > start) {
2101                 m = vm_page_lookup(object, start);
2102                 while (m != NULL && m->pindex < pindex) {
2103                         vm_page_xunbusy(m);
2104                         m = TAILQ_NEXT(m, listq);
2105                 }
2106         }
2107         return (pindex == end);
2108 }
2109
2110 /*
2111  *      Routine:        vm_object_coalesce
2112  *      Function:       Coalesces two objects backing up adjoining
2113  *                      regions of memory into a single object.
2114  *
2115  *      returns TRUE if objects were combined.
2116  *
2117  *      NOTE:   Only works at the moment if the second object is NULL -
2118  *              if it's not, which object do we lock first?
2119  *
2120  *      Parameters:
2121  *              prev_object     First object to coalesce
2122  *              prev_offset     Offset into prev_object
2123  *              prev_size       Size of reference to prev_object
2124  *              next_size       Size of reference to the second object
2125  *              reserved        Indicator that extension region has
2126  *                              swap accounted for
2127  *
2128  *      Conditions:
2129  *      The object must *not* be locked.
2130  */
2131 boolean_t
2132 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2133     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2134 {
2135         vm_pindex_t next_pindex;
2136
2137         if (prev_object == NULL)
2138                 return (TRUE);
2139         if ((prev_object->flags & OBJ_ANON) == 0)
2140                 return (FALSE);
2141
2142         VM_OBJECT_WLOCK(prev_object);
2143         /*
2144          * Try to collapse the object first
2145          */
2146         vm_object_collapse(prev_object);
2147
2148         /*
2149          * Can't coalesce if: . more than one reference . paged out . shadows
2150          * another object . has a copy elsewhere (any of which mean that the
2151          * pages not mapped to prev_entry may be in use anyway)
2152          */
2153         if (prev_object->backing_object != NULL) {
2154                 VM_OBJECT_WUNLOCK(prev_object);
2155                 return (FALSE);
2156         }
2157
2158         prev_size >>= PAGE_SHIFT;
2159         next_size >>= PAGE_SHIFT;
2160         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2161
2162         if (prev_object->ref_count > 1 &&
2163             prev_object->size != next_pindex &&
2164             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2165                 VM_OBJECT_WUNLOCK(prev_object);
2166                 return (FALSE);
2167         }
2168
2169         /*
2170          * Account for the charge.
2171          */
2172         if (prev_object->cred != NULL) {
2173
2174                 /*
2175                  * If prev_object was charged, then this mapping,
2176                  * although not charged now, may become writable
2177                  * later. Non-NULL cred in the object would prevent
2178                  * swap reservation during enabling of the write
2179                  * access, so reserve swap now. Failed reservation
2180                  * cause allocation of the separate object for the map
2181                  * entry, and swap reservation for this entry is
2182                  * managed in appropriate time.
2183                  */
2184                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2185                     prev_object->cred)) {
2186                         VM_OBJECT_WUNLOCK(prev_object);
2187                         return (FALSE);
2188                 }
2189                 prev_object->charge += ptoa(next_size);
2190         }
2191
2192         /*
2193          * Remove any pages that may still be in the object from a previous
2194          * deallocation.
2195          */
2196         if (next_pindex < prev_object->size) {
2197                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2198                     next_size, 0);
2199                 if (prev_object->type == OBJT_SWAP)
2200                         swap_pager_freespace(prev_object,
2201                                              next_pindex, next_size);
2202 #if 0
2203                 if (prev_object->cred != NULL) {
2204                         KASSERT(prev_object->charge >=
2205                             ptoa(prev_object->size - next_pindex),
2206                             ("object %p overcharged 1 %jx %jx", prev_object,
2207                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2208                         prev_object->charge -= ptoa(prev_object->size -
2209                             next_pindex);
2210                 }
2211 #endif
2212         }
2213
2214         /*
2215          * Extend the object if necessary.
2216          */
2217         if (next_pindex + next_size > prev_object->size)
2218                 prev_object->size = next_pindex + next_size;
2219
2220         VM_OBJECT_WUNLOCK(prev_object);
2221         return (TRUE);
2222 }
2223
2224 void
2225 vm_object_set_writeable_dirty(vm_object_t object)
2226 {
2227
2228         /* Only set for vnodes & tmpfs */
2229         if (object->type != OBJT_VNODE &&
2230             (object->flags & OBJ_TMPFS_NODE) == 0)
2231                 return;
2232         atomic_add_int(&object->generation, 1);
2233 }
2234
2235 /*
2236  *      vm_object_unwire:
2237  *
2238  *      For each page offset within the specified range of the given object,
2239  *      find the highest-level page in the shadow chain and unwire it.  A page
2240  *      must exist at every page offset, and the highest-level page must be
2241  *      wired.
2242  */
2243 void
2244 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2245     uint8_t queue)
2246 {
2247         vm_object_t tobject, t1object;
2248         vm_page_t m, tm;
2249         vm_pindex_t end_pindex, pindex, tpindex;
2250         int depth, locked_depth;
2251
2252         KASSERT((offset & PAGE_MASK) == 0,
2253             ("vm_object_unwire: offset is not page aligned"));
2254         KASSERT((length & PAGE_MASK) == 0,
2255             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2256         /* The wired count of a fictitious page never changes. */
2257         if ((object->flags & OBJ_FICTITIOUS) != 0)
2258                 return;
2259         pindex = OFF_TO_IDX(offset);
2260         end_pindex = pindex + atop(length);
2261 again:
2262         locked_depth = 1;
2263         VM_OBJECT_RLOCK(object);
2264         m = vm_page_find_least(object, pindex);
2265         while (pindex < end_pindex) {
2266                 if (m == NULL || pindex < m->pindex) {
2267                         /*
2268                          * The first object in the shadow chain doesn't
2269                          * contain a page at the current index.  Therefore,
2270                          * the page must exist in a backing object.
2271                          */
2272                         tobject = object;
2273                         tpindex = pindex;
2274                         depth = 0;
2275                         do {
2276                                 tpindex +=
2277                                     OFF_TO_IDX(tobject->backing_object_offset);
2278                                 tobject = tobject->backing_object;
2279                                 KASSERT(tobject != NULL,
2280                                     ("vm_object_unwire: missing page"));
2281                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2282                                         goto next_page;
2283                                 depth++;
2284                                 if (depth == locked_depth) {
2285                                         locked_depth++;
2286                                         VM_OBJECT_RLOCK(tobject);
2287                                 }
2288                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2289                             NULL);
2290                 } else {
2291                         tm = m;
2292                         m = TAILQ_NEXT(m, listq);
2293                 }
2294                 if (vm_page_trysbusy(tm) == 0) {
2295                         for (tobject = object; locked_depth >= 1;
2296                             locked_depth--) {
2297                                 t1object = tobject->backing_object;
2298                                 if (tm->object != tobject)
2299                                         VM_OBJECT_RUNLOCK(tobject);
2300                                 tobject = t1object;
2301                         }
2302                         vm_page_busy_sleep(tm, "unwbo", true);
2303                         goto again;
2304                 }
2305                 vm_page_unwire(tm, queue);
2306                 vm_page_sunbusy(tm);
2307 next_page:
2308                 pindex++;
2309         }
2310         /* Release the accumulated object locks. */
2311         for (tobject = object; locked_depth >= 1; locked_depth--) {
2312                 t1object = tobject->backing_object;
2313                 VM_OBJECT_RUNLOCK(tobject);
2314                 tobject = t1object;
2315         }
2316 }
2317
2318 /*
2319  * Return the vnode for the given object, or NULL if none exists.
2320  * For tmpfs objects, the function may return NULL if there is
2321  * no vnode allocated at the time of the call.
2322  */
2323 struct vnode *
2324 vm_object_vnode(vm_object_t object)
2325 {
2326         struct vnode *vp;
2327
2328         VM_OBJECT_ASSERT_LOCKED(object);
2329         if (object->type == OBJT_VNODE) {
2330                 vp = object->handle;
2331                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2332         } else if (object->type == OBJT_SWAP &&
2333             (object->flags & OBJ_TMPFS) != 0) {
2334                 vp = object->un_pager.swp.swp_tmpfs;
2335                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2336         } else {
2337                 vp = NULL;
2338         }
2339         return (vp);
2340 }
2341
2342
2343 /*
2344  * Busy the vm object.  This prevents new pages belonging to the object from
2345  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2346  * for checking page state before proceeding.
2347  */
2348 void
2349 vm_object_busy(vm_object_t obj)
2350 {
2351
2352         VM_OBJECT_ASSERT_LOCKED(obj);
2353
2354         refcount_acquire(&obj->busy);
2355         /* The fence is required to order loads of page busy. */
2356         atomic_thread_fence_acq_rel();
2357 }
2358
2359 void
2360 vm_object_unbusy(vm_object_t obj)
2361 {
2362
2363
2364         refcount_release(&obj->busy);
2365 }
2366
2367 void
2368 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2369 {
2370
2371         VM_OBJECT_ASSERT_UNLOCKED(obj);
2372
2373         if (obj->busy)
2374                 refcount_sleep(&obj->busy, wmesg, PVM);
2375 }
2376
2377 /*
2378  * Return the kvme type of the given object.
2379  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2380  */
2381 int
2382 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2383 {
2384
2385         VM_OBJECT_ASSERT_LOCKED(object);
2386         if (vpp != NULL)
2387                 *vpp = vm_object_vnode(object);
2388         switch (object->type) {
2389         case OBJT_DEFAULT:
2390                 return (KVME_TYPE_DEFAULT);
2391         case OBJT_VNODE:
2392                 return (KVME_TYPE_VNODE);
2393         case OBJT_SWAP:
2394                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2395                         return (KVME_TYPE_VNODE);
2396                 return (KVME_TYPE_SWAP);
2397         case OBJT_DEVICE:
2398                 return (KVME_TYPE_DEVICE);
2399         case OBJT_PHYS:
2400                 return (KVME_TYPE_PHYS);
2401         case OBJT_DEAD:
2402                 return (KVME_TYPE_DEAD);
2403         case OBJT_SG:
2404                 return (KVME_TYPE_SG);
2405         case OBJT_MGTDEVICE:
2406                 return (KVME_TYPE_MGTDEVICE);
2407         default:
2408                 return (KVME_TYPE_UNKNOWN);
2409         }
2410 }
2411
2412 static int
2413 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2414 {
2415         struct kinfo_vmobject *kvo;
2416         char *fullpath, *freepath;
2417         struct vnode *vp;
2418         struct vattr va;
2419         vm_object_t obj;
2420         vm_page_t m;
2421         int count, error;
2422
2423         if (req->oldptr == NULL) {
2424                 /*
2425                  * If an old buffer has not been provided, generate an
2426                  * estimate of the space needed for a subsequent call.
2427                  */
2428                 mtx_lock(&vm_object_list_mtx);
2429                 count = 0;
2430                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2431                         if (obj->type == OBJT_DEAD)
2432                                 continue;
2433                         count++;
2434                 }
2435                 mtx_unlock(&vm_object_list_mtx);
2436                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2437                     count * 11 / 10));
2438         }
2439
2440         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2441         error = 0;
2442
2443         /*
2444          * VM objects are type stable and are never removed from the
2445          * list once added.  This allows us to safely read obj->object_list
2446          * after reacquiring the VM object lock.
2447          */
2448         mtx_lock(&vm_object_list_mtx);
2449         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2450                 if (obj->type == OBJT_DEAD)
2451                         continue;
2452                 VM_OBJECT_RLOCK(obj);
2453                 if (obj->type == OBJT_DEAD) {
2454                         VM_OBJECT_RUNLOCK(obj);
2455                         continue;
2456                 }
2457                 mtx_unlock(&vm_object_list_mtx);
2458                 kvo->kvo_size = ptoa(obj->size);
2459                 kvo->kvo_resident = obj->resident_page_count;
2460                 kvo->kvo_ref_count = obj->ref_count;
2461                 kvo->kvo_shadow_count = obj->shadow_count;
2462                 kvo->kvo_memattr = obj->memattr;
2463                 kvo->kvo_active = 0;
2464                 kvo->kvo_inactive = 0;
2465                 TAILQ_FOREACH(m, &obj->memq, listq) {
2466                         /*
2467                          * A page may belong to the object but be
2468                          * dequeued and set to PQ_NONE while the
2469                          * object lock is not held.  This makes the
2470                          * reads of m->queue below racy, and we do not
2471                          * count pages set to PQ_NONE.  However, this
2472                          * sysctl is only meant to give an
2473                          * approximation of the system anyway.
2474                          */
2475                         if (m->a.queue == PQ_ACTIVE)
2476                                 kvo->kvo_active++;
2477                         else if (m->a.queue == PQ_INACTIVE)
2478                                 kvo->kvo_inactive++;
2479                 }
2480
2481                 kvo->kvo_vn_fileid = 0;
2482                 kvo->kvo_vn_fsid = 0;
2483                 kvo->kvo_vn_fsid_freebsd11 = 0;
2484                 freepath = NULL;
2485                 fullpath = "";
2486                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2487                 if (vp != NULL)
2488                         vref(vp);
2489                 VM_OBJECT_RUNLOCK(obj);
2490                 if (vp != NULL) {
2491                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2492                         vn_lock(vp, LK_SHARED | LK_RETRY);
2493                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2494                                 kvo->kvo_vn_fileid = va.va_fileid;
2495                                 kvo->kvo_vn_fsid = va.va_fsid;
2496                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2497                                                                 /* truncate */
2498                         }
2499                         vput(vp);
2500                 }
2501
2502                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2503                 if (freepath != NULL)
2504                         free(freepath, M_TEMP);
2505
2506                 /* Pack record size down */
2507                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2508                     + strlen(kvo->kvo_path) + 1;
2509                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2510                     sizeof(uint64_t));
2511                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2512                 mtx_lock(&vm_object_list_mtx);
2513                 if (error)
2514                         break;
2515         }
2516         mtx_unlock(&vm_object_list_mtx);
2517         free(kvo, M_TEMP);
2518         return (error);
2519 }
2520 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2521     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2522     "List of VM objects");
2523
2524 #include "opt_ddb.h"
2525 #ifdef DDB
2526 #include <sys/kernel.h>
2527
2528 #include <sys/cons.h>
2529
2530 #include <ddb/ddb.h>
2531
2532 static int
2533 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2534 {
2535         vm_map_t tmpm;
2536         vm_map_entry_t tmpe;
2537         vm_object_t obj;
2538
2539         if (map == 0)
2540                 return 0;
2541
2542         if (entry == 0) {
2543                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2544                         if (_vm_object_in_map(map, object, tmpe)) {
2545                                 return 1;
2546                         }
2547                 }
2548         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2549                 tmpm = entry->object.sub_map;
2550                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2551                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2552                                 return 1;
2553                         }
2554                 }
2555         } else if ((obj = entry->object.vm_object) != NULL) {
2556                 for (; obj; obj = obj->backing_object)
2557                         if (obj == object) {
2558                                 return 1;
2559                         }
2560         }
2561         return 0;
2562 }
2563
2564 static int
2565 vm_object_in_map(vm_object_t object)
2566 {
2567         struct proc *p;
2568
2569         /* sx_slock(&allproc_lock); */
2570         FOREACH_PROC_IN_SYSTEM(p) {
2571                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2572                         continue;
2573                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2574                         /* sx_sunlock(&allproc_lock); */
2575                         return 1;
2576                 }
2577         }
2578         /* sx_sunlock(&allproc_lock); */
2579         if (_vm_object_in_map(kernel_map, object, 0))
2580                 return 1;
2581         return 0;
2582 }
2583
2584 DB_SHOW_COMMAND(vmochk, vm_object_check)
2585 {
2586         vm_object_t object;
2587
2588         /*
2589          * make sure that internal objs are in a map somewhere
2590          * and none have zero ref counts.
2591          */
2592         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2593                 if ((object->flags & OBJ_ANON) != 0) {
2594                         if (object->ref_count == 0) {
2595                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2596                                         (long)object->size);
2597                         }
2598                         if (!vm_object_in_map(object)) {
2599                                 db_printf(
2600                         "vmochk: internal obj is not in a map: "
2601                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2602                                     object->ref_count, (u_long)object->size, 
2603                                     (u_long)object->size,
2604                                     (void *)object->backing_object);
2605                         }
2606                 }
2607         }
2608 }
2609
2610 /*
2611  *      vm_object_print:        [ debug ]
2612  */
2613 DB_SHOW_COMMAND(object, vm_object_print_static)
2614 {
2615         /* XXX convert args. */
2616         vm_object_t object = (vm_object_t)addr;
2617         boolean_t full = have_addr;
2618
2619         vm_page_t p;
2620
2621         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2622 #define count   was_count
2623
2624         int count;
2625
2626         if (object == NULL)
2627                 return;
2628
2629         db_iprintf(
2630             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2631             object, (int)object->type, (uintmax_t)object->size,
2632             object->resident_page_count, object->ref_count, object->flags,
2633             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2634         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2635             object->shadow_count, 
2636             object->backing_object ? object->backing_object->ref_count : 0,
2637             object->backing_object, (uintmax_t)object->backing_object_offset);
2638
2639         if (!full)
2640                 return;
2641
2642         db_indent += 2;
2643         count = 0;
2644         TAILQ_FOREACH(p, &object->memq, listq) {
2645                 if (count == 0)
2646                         db_iprintf("memory:=");
2647                 else if (count == 6) {
2648                         db_printf("\n");
2649                         db_iprintf(" ...");
2650                         count = 0;
2651                 } else
2652                         db_printf(",");
2653                 count++;
2654
2655                 db_printf("(off=0x%jx,page=0x%jx)",
2656                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2657         }
2658         if (count != 0)
2659                 db_printf("\n");
2660         db_indent -= 2;
2661 }
2662
2663 /* XXX. */
2664 #undef count
2665
2666 /* XXX need this non-static entry for calling from vm_map_print. */
2667 void
2668 vm_object_print(
2669         /* db_expr_t */ long addr,
2670         boolean_t have_addr,
2671         /* db_expr_t */ long count,
2672         char *modif)
2673 {
2674         vm_object_print_static(addr, have_addr, count, modif);
2675 }
2676
2677 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2678 {
2679         vm_object_t object;
2680         vm_pindex_t fidx;
2681         vm_paddr_t pa;
2682         vm_page_t m, prev_m;
2683         int rcount, nl, c;
2684
2685         nl = 0;
2686         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2687                 db_printf("new object: %p\n", (void *)object);
2688                 if (nl > 18) {
2689                         c = cngetc();
2690                         if (c != ' ')
2691                                 return;
2692                         nl = 0;
2693                 }
2694                 nl++;
2695                 rcount = 0;
2696                 fidx = 0;
2697                 pa = -1;
2698                 TAILQ_FOREACH(m, &object->memq, listq) {
2699                         if (m->pindex > 128)
2700                                 break;
2701                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2702                             prev_m->pindex + 1 != m->pindex) {
2703                                 if (rcount) {
2704                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2705                                                 (long)fidx, rcount, (long)pa);
2706                                         if (nl > 18) {
2707                                                 c = cngetc();
2708                                                 if (c != ' ')
2709                                                         return;
2710                                                 nl = 0;
2711                                         }
2712                                         nl++;
2713                                         rcount = 0;
2714                                 }
2715                         }                               
2716                         if (rcount &&
2717                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2718                                 ++rcount;
2719                                 continue;
2720                         }
2721                         if (rcount) {
2722                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2723                                         (long)fidx, rcount, (long)pa);
2724                                 if (nl > 18) {
2725                                         c = cngetc();
2726                                         if (c != ' ')
2727                                                 return;
2728                                         nl = 0;
2729                                 }
2730                                 nl++;
2731                         }
2732                         fidx = m->pindex;
2733                         pa = VM_PAGE_TO_PHYS(m);
2734                         rcount = 1;
2735                 }
2736                 if (rcount) {
2737                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2738                                 (long)fidx, rcount, (long)pa);
2739                         if (nl > 18) {
2740                                 c = cngetc();
2741                                 if (c != ' ')
2742                                         return;
2743                                 nl = 0;
2744                         }
2745                         nl++;
2746                 }
2747         }
2748 }
2749 #endif /* DDB */