]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
Merge release 1.14 of bsnmp.
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/lock.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/pctrie.h>
81 #include <sys/sysctl.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>           /* for curproc, pageproc */
84 #include <sys/refcount.h>
85 #include <sys/socket.h>
86 #include <sys/resourcevar.h>
87 #include <sys/refcount.h>
88 #include <sys/rwlock.h>
89 #include <sys/user.h>
90 #include <sys/vnode.h>
91 #include <sys/vmmeter.h>
92 #include <sys/sx.h>
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_pager.h>
102 #include <vm/vm_phys.h>
103 #include <vm/vm_pagequeue.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_radix.h>
108 #include <vm/vm_reserv.h>
109 #include <vm/uma.h>
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114
115 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
116                     int pagerflags, int flags, boolean_t *allclean,
117                     boolean_t *eio);
118 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
119                     boolean_t *allclean);
120 static void     vm_object_backing_remove(vm_object_t object);
121
122 /*
123  *      Virtual memory objects maintain the actual data
124  *      associated with allocated virtual memory.  A given
125  *      page of memory exists within exactly one object.
126  *
127  *      An object is only deallocated when all "references"
128  *      are given up.  Only one "reference" to a given
129  *      region of an object should be writeable.
130  *
131  *      Associated with each object is a list of all resident
132  *      memory pages belonging to that object; this list is
133  *      maintained by the "vm_page" module, and locked by the object's
134  *      lock.
135  *
136  *      Each object also records a "pager" routine which is
137  *      used to retrieve (and store) pages to the proper backing
138  *      storage.  In addition, objects may be backed by other
139  *      objects from which they were virtual-copied.
140  *
141  *      The only items within the object structure which are
142  *      modified after time of creation are:
143  *              reference count         locked by object's lock
144  *              pager routine           locked by object's lock
145  *
146  */
147
148 struct object_q vm_object_list;
149 struct mtx vm_object_list_mtx;  /* lock for object list and count */
150
151 struct vm_object kernel_object_store;
152
153 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
154     "VM object stats");
155
156 static COUNTER_U64_DEFINE_EARLY(object_collapses);
157 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
158     &object_collapses,
159     "VM object collapses");
160
161 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
162 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
163     &object_bypasses,
164     "VM object bypasses");
165
166 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
167 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
168     &object_collapse_waits,
169     "Number of sleeps for collapse");
170
171 static uma_zone_t obj_zone;
172
173 static int vm_object_zinit(void *mem, int size, int flags);
174
175 #ifdef INVARIANTS
176 static void vm_object_zdtor(void *mem, int size, void *arg);
177
178 static void
179 vm_object_zdtor(void *mem, int size, void *arg)
180 {
181         vm_object_t object;
182
183         object = (vm_object_t)mem;
184         KASSERT(object->ref_count == 0,
185             ("object %p ref_count = %d", object, object->ref_count));
186         KASSERT(TAILQ_EMPTY(&object->memq),
187             ("object %p has resident pages in its memq", object));
188         KASSERT(vm_radix_is_empty(&object->rtree),
189             ("object %p has resident pages in its trie", object));
190 #if VM_NRESERVLEVEL > 0
191         KASSERT(LIST_EMPTY(&object->rvq),
192             ("object %p has reservations",
193             object));
194 #endif
195         KASSERT(blockcount_read(&object->paging_in_progress) == 0,
196             ("object %p paging_in_progress = %d",
197             object, blockcount_read(&object->paging_in_progress)));
198         KASSERT(!vm_object_busied(object),
199             ("object %p busy = %d", object, blockcount_read(&object->busy)));
200         KASSERT(object->resident_page_count == 0,
201             ("object %p resident_page_count = %d",
202             object, object->resident_page_count));
203         KASSERT(object->shadow_count == 0,
204             ("object %p shadow_count = %d",
205             object, object->shadow_count));
206         KASSERT(object->type == OBJT_DEAD,
207             ("object %p has non-dead type %d",
208             object, object->type));
209 }
210 #endif
211
212 static int
213 vm_object_zinit(void *mem, int size, int flags)
214 {
215         vm_object_t object;
216
217         object = (vm_object_t)mem;
218         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219
220         /* These are true for any object that has been freed */
221         object->type = OBJT_DEAD;
222         vm_radix_init(&object->rtree);
223         refcount_init(&object->ref_count, 0);
224         blockcount_init(&object->paging_in_progress);
225         blockcount_init(&object->busy);
226         object->resident_page_count = 0;
227         object->shadow_count = 0;
228         object->flags = OBJ_DEAD;
229
230         mtx_lock(&vm_object_list_mtx);
231         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
232         mtx_unlock(&vm_object_list_mtx);
233         return (0);
234 }
235
236 static void
237 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
238     vm_object_t object, void *handle)
239 {
240
241         TAILQ_INIT(&object->memq);
242         LIST_INIT(&object->shadow_head);
243
244         object->type = type;
245         if (type == OBJT_SWAP)
246                 pctrie_init(&object->un_pager.swp.swp_blks);
247
248         /*
249          * Ensure that swap_pager_swapoff() iteration over object_list
250          * sees up to date type and pctrie head if it observed
251          * non-dead object.
252          */
253         atomic_thread_fence_rel();
254
255         object->pg_color = 0;
256         object->flags = flags;
257         object->size = size;
258         object->domain.dr_policy = NULL;
259         object->generation = 1;
260         object->cleangeneration = 1;
261         refcount_init(&object->ref_count, 1);
262         object->memattr = VM_MEMATTR_DEFAULT;
263         object->cred = NULL;
264         object->charge = 0;
265         object->handle = handle;
266         object->backing_object = NULL;
267         object->backing_object_offset = (vm_ooffset_t) 0;
268 #if VM_NRESERVLEVEL > 0
269         LIST_INIT(&object->rvq);
270 #endif
271         umtx_shm_object_init(object);
272 }
273
274 /*
275  *      vm_object_init:
276  *
277  *      Initialize the VM objects module.
278  */
279 void
280 vm_object_init(void)
281 {
282         TAILQ_INIT(&vm_object_list);
283         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
284         
285         rw_init(&kernel_object->lock, "kernel vm object");
286         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
287             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
288 #if VM_NRESERVLEVEL > 0
289         kernel_object->flags |= OBJ_COLORED;
290         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
291 #endif
292
293         /*
294          * The lock portion of struct vm_object must be type stable due
295          * to vm_pageout_fallback_object_lock locking a vm object
296          * without holding any references to it.
297          */
298         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
299 #ifdef INVARIANTS
300             vm_object_zdtor,
301 #else
302             NULL,
303 #endif
304             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
305
306         vm_radix_zinit();
307 }
308
309 void
310 vm_object_clear_flag(vm_object_t object, u_short bits)
311 {
312
313         VM_OBJECT_ASSERT_WLOCKED(object);
314         object->flags &= ~bits;
315 }
316
317 /*
318  *      Sets the default memory attribute for the specified object.  Pages
319  *      that are allocated to this object are by default assigned this memory
320  *      attribute.
321  *
322  *      Presently, this function must be called before any pages are allocated
323  *      to the object.  In the future, this requirement may be relaxed for
324  *      "default" and "swap" objects.
325  */
326 int
327 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
328 {
329
330         VM_OBJECT_ASSERT_WLOCKED(object);
331         switch (object->type) {
332         case OBJT_DEFAULT:
333         case OBJT_DEVICE:
334         case OBJT_MGTDEVICE:
335         case OBJT_PHYS:
336         case OBJT_SG:
337         case OBJT_SWAP:
338         case OBJT_VNODE:
339                 if (!TAILQ_EMPTY(&object->memq))
340                         return (KERN_FAILURE);
341                 break;
342         case OBJT_DEAD:
343                 return (KERN_INVALID_ARGUMENT);
344         default:
345                 panic("vm_object_set_memattr: object %p is of undefined type",
346                     object);
347         }
348         object->memattr = memattr;
349         return (KERN_SUCCESS);
350 }
351
352 void
353 vm_object_pip_add(vm_object_t object, short i)
354 {
355
356         if (i > 0)
357                 blockcount_acquire(&object->paging_in_progress, i);
358 }
359
360 void
361 vm_object_pip_wakeup(vm_object_t object)
362 {
363
364         vm_object_pip_wakeupn(object, 1);
365 }
366
367 void
368 vm_object_pip_wakeupn(vm_object_t object, short i)
369 {
370
371         if (i > 0)
372                 blockcount_release(&object->paging_in_progress, i);
373 }
374
375 /*
376  * Atomically drop the object lock and wait for pip to drain.  This protects
377  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
378  * on return.
379  */
380 static void
381 vm_object_pip_sleep(vm_object_t object, const char *waitid)
382 {
383
384         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
385             waitid, PVM | PDROP);
386 }
387
388 void
389 vm_object_pip_wait(vm_object_t object, const char *waitid)
390 {
391
392         VM_OBJECT_ASSERT_WLOCKED(object);
393
394         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
395             PVM);
396 }
397
398 void
399 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
400 {
401
402         VM_OBJECT_ASSERT_UNLOCKED(object);
403
404         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
405 }
406
407 /*
408  *      vm_object_allocate:
409  *
410  *      Returns a new object with the given size.
411  */
412 vm_object_t
413 vm_object_allocate(objtype_t type, vm_pindex_t size)
414 {
415         vm_object_t object;
416         u_short flags;
417
418         switch (type) {
419         case OBJT_DEAD:
420                 panic("vm_object_allocate: can't create OBJT_DEAD");
421         case OBJT_DEFAULT:
422         case OBJT_SWAP:
423                 flags = OBJ_COLORED;
424                 break;
425         case OBJT_DEVICE:
426         case OBJT_SG:
427                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
428                 break;
429         case OBJT_MGTDEVICE:
430                 flags = OBJ_FICTITIOUS;
431                 break;
432         case OBJT_PHYS:
433                 flags = OBJ_UNMANAGED;
434                 break;
435         case OBJT_VNODE:
436                 flags = 0;
437                 break;
438         default:
439                 panic("vm_object_allocate: type %d is undefined", type);
440         }
441         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
442         _vm_object_allocate(type, size, flags, object, NULL);
443
444         return (object);
445 }
446
447 /*
448  *      vm_object_allocate_anon:
449  *
450  *      Returns a new default object of the given size and marked as
451  *      anonymous memory for special split/collapse handling.  Color
452  *      to be initialized by the caller.
453  */
454 vm_object_t
455 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
456     struct ucred *cred, vm_size_t charge)
457 {
458         vm_object_t handle, object;
459
460         if (backing_object == NULL)
461                 handle = NULL;
462         else if ((backing_object->flags & OBJ_ANON) != 0)
463                 handle = backing_object->handle;
464         else
465                 handle = backing_object;
466         object = uma_zalloc(obj_zone, M_WAITOK);
467         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
468             object, handle);
469         object->cred = cred;
470         object->charge = cred != NULL ? charge : 0;
471         return (object);
472 }
473
474 static void
475 vm_object_reference_vnode(vm_object_t object)
476 {
477         u_int old;
478
479         /*
480          * vnode objects need the lock for the first reference
481          * to serialize with vnode_object_deallocate().
482          */
483         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
484                 VM_OBJECT_RLOCK(object);
485                 old = refcount_acquire(&object->ref_count);
486                 if (object->type == OBJT_VNODE && old == 0)
487                         vref(object->handle);
488                 VM_OBJECT_RUNLOCK(object);
489         }
490 }
491
492 /*
493  *      vm_object_reference:
494  *
495  *      Acquires a reference to the given object.
496  */
497 void
498 vm_object_reference(vm_object_t object)
499 {
500
501         if (object == NULL)
502                 return;
503
504         if (object->type == OBJT_VNODE)
505                 vm_object_reference_vnode(object);
506         else
507                 refcount_acquire(&object->ref_count);
508         KASSERT((object->flags & OBJ_DEAD) == 0,
509             ("vm_object_reference: Referenced dead object."));
510 }
511
512 /*
513  *      vm_object_reference_locked:
514  *
515  *      Gets another reference to the given object.
516  *
517  *      The object must be locked.
518  */
519 void
520 vm_object_reference_locked(vm_object_t object)
521 {
522         u_int old;
523
524         VM_OBJECT_ASSERT_LOCKED(object);
525         old = refcount_acquire(&object->ref_count);
526         if (object->type == OBJT_VNODE && old == 0)
527                 vref(object->handle);
528         KASSERT((object->flags & OBJ_DEAD) == 0,
529             ("vm_object_reference: Referenced dead object."));
530 }
531
532 /*
533  * Handle deallocating an object of type OBJT_VNODE.
534  */
535 static void
536 vm_object_deallocate_vnode(vm_object_t object)
537 {
538         struct vnode *vp = (struct vnode *) object->handle;
539         bool last;
540
541         KASSERT(object->type == OBJT_VNODE,
542             ("vm_object_deallocate_vnode: not a vnode object"));
543         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
544
545         /* Object lock to protect handle lookup. */
546         last = refcount_release(&object->ref_count);
547         VM_OBJECT_RUNLOCK(object);
548
549         if (!last)
550                 return;
551
552         if (!umtx_shm_vnobj_persistent)
553                 umtx_shm_object_terminated(object);
554
555         /* vrele may need the vnode lock. */
556         vrele(vp);
557 }
558
559
560 /*
561  * We dropped a reference on an object and discovered that it had a
562  * single remaining shadow.  This is a sibling of the reference we
563  * dropped.  Attempt to collapse the sibling and backing object.
564  */
565 static vm_object_t
566 vm_object_deallocate_anon(vm_object_t backing_object)
567 {
568         vm_object_t object;
569
570         /* Fetch the final shadow.  */
571         object = LIST_FIRST(&backing_object->shadow_head);
572         KASSERT(object != NULL && backing_object->shadow_count == 1,
573             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
574             backing_object->ref_count, backing_object->shadow_count));
575         KASSERT((object->flags & (OBJ_TMPFS_NODE | OBJ_ANON)) == OBJ_ANON,
576             ("invalid shadow object %p", object));
577
578         if (!VM_OBJECT_TRYWLOCK(object)) {
579                 /*
580                  * Prevent object from disappearing since we do not have a
581                  * reference.
582                  */
583                 vm_object_pip_add(object, 1);
584                 VM_OBJECT_WUNLOCK(backing_object);
585                 VM_OBJECT_WLOCK(object);
586                 vm_object_pip_wakeup(object);
587         } else
588                 VM_OBJECT_WUNLOCK(backing_object);
589
590         /*
591          * Check for a collapse/terminate race with the last reference holder.
592          */
593         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
594             !refcount_acquire_if_not_zero(&object->ref_count)) {
595                 VM_OBJECT_WUNLOCK(object);
596                 return (NULL);
597         }
598         backing_object = object->backing_object;
599         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
600                 vm_object_collapse(object);
601         VM_OBJECT_WUNLOCK(object);
602
603         return (object);
604 }
605
606 /*
607  *      vm_object_deallocate:
608  *
609  *      Release a reference to the specified object,
610  *      gained either through a vm_object_allocate
611  *      or a vm_object_reference call.  When all references
612  *      are gone, storage associated with this object
613  *      may be relinquished.
614  *
615  *      No object may be locked.
616  */
617 void
618 vm_object_deallocate(vm_object_t object)
619 {
620         vm_object_t temp;
621         bool released;
622
623         while (object != NULL) {
624                 /*
625                  * If the reference count goes to 0 we start calling
626                  * vm_object_terminate() on the object chain.  A ref count
627                  * of 1 may be a special case depending on the shadow count
628                  * being 0 or 1.  These cases require a write lock on the
629                  * object.
630                  */
631                 if ((object->flags & OBJ_ANON) == 0)
632                         released = refcount_release_if_gt(&object->ref_count, 1);
633                 else
634                         released = refcount_release_if_gt(&object->ref_count, 2);
635                 if (released)
636                         return;
637
638                 if (object->type == OBJT_VNODE) {
639                         VM_OBJECT_RLOCK(object);
640                         if (object->type == OBJT_VNODE) {
641                                 vm_object_deallocate_vnode(object);
642                                 return;
643                         }
644                         VM_OBJECT_RUNLOCK(object);
645                 }
646
647                 VM_OBJECT_WLOCK(object);
648                 KASSERT(object->ref_count > 0,
649                     ("vm_object_deallocate: object deallocated too many times: %d",
650                     object->type));
651
652                 /*
653                  * If this is not the final reference to an anonymous
654                  * object we may need to collapse the shadow chain.
655                  */
656                 if (!refcount_release(&object->ref_count)) {
657                         if (object->ref_count > 1 ||
658                             object->shadow_count == 0) {
659                                 if ((object->flags & OBJ_ANON) != 0 &&
660                                     object->ref_count == 1)
661                                         vm_object_set_flag(object,
662                                             OBJ_ONEMAPPING);
663                                 VM_OBJECT_WUNLOCK(object);
664                                 return;
665                         }
666
667                         /* Handle collapsing last ref on anonymous objects. */
668                         object = vm_object_deallocate_anon(object);
669                         continue;
670                 }
671
672                 /*
673                  * Handle the final reference to an object.  We restart
674                  * the loop with the backing object to avoid recursion.
675                  */
676                 umtx_shm_object_terminated(object);
677                 temp = object->backing_object;
678                 if (temp != NULL) {
679                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
680                             ("shadowed tmpfs v_object 2 %p", object));
681                         vm_object_backing_remove(object);
682                 }
683
684                 KASSERT((object->flags & OBJ_DEAD) == 0,
685                     ("vm_object_deallocate: Terminating dead object."));
686                 vm_object_set_flag(object, OBJ_DEAD);
687                 vm_object_terminate(object);
688                 object = temp;
689         }
690 }
691
692 /*
693  *      vm_object_destroy removes the object from the global object list
694  *      and frees the space for the object.
695  */
696 void
697 vm_object_destroy(vm_object_t object)
698 {
699
700         /*
701          * Release the allocation charge.
702          */
703         if (object->cred != NULL) {
704                 swap_release_by_cred(object->charge, object->cred);
705                 object->charge = 0;
706                 crfree(object->cred);
707                 object->cred = NULL;
708         }
709
710         /*
711          * Free the space for the object.
712          */
713         uma_zfree(obj_zone, object);
714 }
715
716 static void
717 vm_object_backing_remove_locked(vm_object_t object)
718 {
719         vm_object_t backing_object;
720
721         backing_object = object->backing_object;
722         VM_OBJECT_ASSERT_WLOCKED(object);
723         VM_OBJECT_ASSERT_WLOCKED(backing_object);
724
725         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
726             ("vm_object_backing_remove: Removing collapsing object."));
727
728         if ((object->flags & OBJ_SHADOWLIST) != 0) {
729                 LIST_REMOVE(object, shadow_list);
730                 backing_object->shadow_count--;
731                 object->flags &= ~OBJ_SHADOWLIST;
732         }
733         object->backing_object = NULL;
734 }
735
736 static void
737 vm_object_backing_remove(vm_object_t object)
738 {
739         vm_object_t backing_object;
740
741         VM_OBJECT_ASSERT_WLOCKED(object);
742
743         if ((object->flags & OBJ_SHADOWLIST) != 0) {
744                 backing_object = object->backing_object;
745                 VM_OBJECT_WLOCK(backing_object);
746                 vm_object_backing_remove_locked(object);
747                 VM_OBJECT_WUNLOCK(backing_object);
748         } else
749                 object->backing_object = NULL;
750 }
751
752 static void
753 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
754 {
755
756         VM_OBJECT_ASSERT_WLOCKED(object);
757
758         if ((backing_object->flags & OBJ_ANON) != 0) {
759                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
760                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
761                     shadow_list);
762                 backing_object->shadow_count++;
763                 object->flags |= OBJ_SHADOWLIST;
764         }
765         object->backing_object = backing_object;
766 }
767
768 static void
769 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
770 {
771
772         VM_OBJECT_ASSERT_WLOCKED(object);
773
774         if ((backing_object->flags & OBJ_ANON) != 0) {
775                 VM_OBJECT_WLOCK(backing_object);
776                 vm_object_backing_insert_locked(object, backing_object);
777                 VM_OBJECT_WUNLOCK(backing_object);
778         } else
779                 object->backing_object = backing_object;
780 }
781
782 /*
783  * Insert an object into a backing_object's shadow list with an additional
784  * reference to the backing_object added.
785  */
786 static void
787 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
788 {
789
790         VM_OBJECT_ASSERT_WLOCKED(object);
791
792         if ((backing_object->flags & OBJ_ANON) != 0) {
793                 VM_OBJECT_WLOCK(backing_object);
794                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
795                     ("shadowing dead anonymous object"));
796                 vm_object_reference_locked(backing_object);
797                 vm_object_backing_insert_locked(object, backing_object);
798                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
799                 VM_OBJECT_WUNLOCK(backing_object);
800         } else {
801                 vm_object_reference(backing_object);
802                 object->backing_object = backing_object;
803         }
804 }
805
806 /*
807  * Transfer a backing reference from backing_object to object.
808  */
809 static void
810 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
811 {
812         vm_object_t new_backing_object;
813
814         /*
815          * Note that the reference to backing_object->backing_object
816          * moves from within backing_object to within object.
817          */
818         vm_object_backing_remove_locked(object);
819         new_backing_object = backing_object->backing_object;
820         if (new_backing_object == NULL)
821                 return;
822         if ((new_backing_object->flags & OBJ_ANON) != 0) {
823                 VM_OBJECT_WLOCK(new_backing_object);
824                 vm_object_backing_remove_locked(backing_object);
825                 vm_object_backing_insert_locked(object, new_backing_object);
826                 VM_OBJECT_WUNLOCK(new_backing_object);
827         } else {
828                 object->backing_object = new_backing_object;
829                 backing_object->backing_object = NULL;
830         }
831 }
832
833 /*
834  * Wait for a concurrent collapse to settle.
835  */
836 static void
837 vm_object_collapse_wait(vm_object_t object)
838 {
839
840         VM_OBJECT_ASSERT_WLOCKED(object);
841
842         while ((object->flags & OBJ_COLLAPSING) != 0) {
843                 vm_object_pip_wait(object, "vmcolwait");
844                 counter_u64_add(object_collapse_waits, 1);
845         }
846 }
847
848 /*
849  * Waits for a backing object to clear a pending collapse and returns
850  * it locked if it is an ANON object.
851  */
852 static vm_object_t
853 vm_object_backing_collapse_wait(vm_object_t object)
854 {
855         vm_object_t backing_object;
856
857         VM_OBJECT_ASSERT_WLOCKED(object);
858
859         for (;;) {
860                 backing_object = object->backing_object;
861                 if (backing_object == NULL ||
862                     (backing_object->flags & OBJ_ANON) == 0)
863                         return (NULL);
864                 VM_OBJECT_WLOCK(backing_object);
865                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
866                         break;
867                 VM_OBJECT_WUNLOCK(object);
868                 vm_object_pip_sleep(backing_object, "vmbckwait");
869                 counter_u64_add(object_collapse_waits, 1);
870                 VM_OBJECT_WLOCK(object);
871         }
872         return (backing_object);
873 }
874
875 /*
876  *      vm_object_terminate_pages removes any remaining pageable pages
877  *      from the object and resets the object to an empty state.
878  */
879 static void
880 vm_object_terminate_pages(vm_object_t object)
881 {
882         vm_page_t p, p_next;
883
884         VM_OBJECT_ASSERT_WLOCKED(object);
885
886         /*
887          * Free any remaining pageable pages.  This also removes them from the
888          * paging queues.  However, don't free wired pages, just remove them
889          * from the object.  Rather than incrementally removing each page from
890          * the object, the page and object are reset to any empty state. 
891          */
892         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
893                 vm_page_assert_unbusied(p);
894                 KASSERT(p->object == object &&
895                     (p->ref_count & VPRC_OBJREF) != 0,
896                     ("vm_object_terminate_pages: page %p is inconsistent", p));
897
898                 p->object = NULL;
899                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
900                         VM_CNT_INC(v_pfree);
901                         vm_page_free(p);
902                 }
903         }
904
905         /*
906          * If the object contained any pages, then reset it to an empty state.
907          * None of the object's fields, including "resident_page_count", were
908          * modified by the preceding loop.
909          */
910         if (object->resident_page_count != 0) {
911                 vm_radix_reclaim_allnodes(&object->rtree);
912                 TAILQ_INIT(&object->memq);
913                 object->resident_page_count = 0;
914                 if (object->type == OBJT_VNODE)
915                         vdrop(object->handle);
916         }
917 }
918
919 /*
920  *      vm_object_terminate actually destroys the specified object, freeing
921  *      up all previously used resources.
922  *
923  *      The object must be locked.
924  *      This routine may block.
925  */
926 void
927 vm_object_terminate(vm_object_t object)
928 {
929
930         VM_OBJECT_ASSERT_WLOCKED(object);
931         KASSERT((object->flags & OBJ_DEAD) != 0,
932             ("terminating non-dead obj %p", object));
933         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
934             ("terminating collapsing obj %p", object));
935         KASSERT(object->backing_object == NULL,
936             ("terminating shadow obj %p", object));
937
938         /*
939          * wait for the pageout daemon to be done with the object
940          */
941         vm_object_pip_wait(object, "objtrm");
942
943         KASSERT(!blockcount_read(&object->paging_in_progress),
944             ("vm_object_terminate: pageout in progress"));
945
946         KASSERT(object->ref_count == 0,
947             ("vm_object_terminate: object with references, ref_count=%d",
948             object->ref_count));
949
950         if ((object->flags & OBJ_PG_DTOR) == 0)
951                 vm_object_terminate_pages(object);
952
953 #if VM_NRESERVLEVEL > 0
954         if (__predict_false(!LIST_EMPTY(&object->rvq)))
955                 vm_reserv_break_all(object);
956 #endif
957
958         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
959             object->type == OBJT_SWAP,
960             ("%s: non-swap obj %p has cred", __func__, object));
961
962         /*
963          * Let the pager know object is dead.
964          */
965         vm_pager_deallocate(object);
966         VM_OBJECT_WUNLOCK(object);
967
968         vm_object_destroy(object);
969 }
970
971 /*
972  * Make the page read-only so that we can clear the object flags.  However, if
973  * this is a nosync mmap then the object is likely to stay dirty so do not
974  * mess with the page and do not clear the object flags.  Returns TRUE if the
975  * page should be flushed, and FALSE otherwise.
976  */
977 static boolean_t
978 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
979 {
980
981         vm_page_assert_busied(p);
982
983         /*
984          * If we have been asked to skip nosync pages and this is a
985          * nosync page, skip it.  Note that the object flags were not
986          * cleared in this case so we do not have to set them.
987          */
988         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
989                 *allclean = FALSE;
990                 return (FALSE);
991         } else {
992                 pmap_remove_write(p);
993                 return (p->dirty != 0);
994         }
995 }
996
997 /*
998  *      vm_object_page_clean
999  *
1000  *      Clean all dirty pages in the specified range of object.  Leaves page 
1001  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1002  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1003  *      leaving the object dirty.
1004  *
1005  *      For swap objects backing tmpfs regular files, do not flush anything,
1006  *      but remove write protection on the mapped pages to update mtime through
1007  *      mmaped writes.
1008  *
1009  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1010  *      synchronous clustering mode implementation.
1011  *
1012  *      Odd semantics: if start == end, we clean everything.
1013  *
1014  *      The object must be locked.
1015  *
1016  *      Returns FALSE if some page from the range was not written, as
1017  *      reported by the pager, and TRUE otherwise.
1018  */
1019 boolean_t
1020 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1021     int flags)
1022 {
1023         vm_page_t np, p;
1024         vm_pindex_t pi, tend, tstart;
1025         int curgeneration, n, pagerflags;
1026         boolean_t eio, res, allclean;
1027
1028         VM_OBJECT_ASSERT_WLOCKED(object);
1029
1030         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1031                 return (TRUE);
1032
1033         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1034             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1035         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1036
1037         tstart = OFF_TO_IDX(start);
1038         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1039         allclean = tstart == 0 && tend >= object->size;
1040         res = TRUE;
1041
1042 rescan:
1043         curgeneration = object->generation;
1044
1045         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1046                 pi = p->pindex;
1047                 if (pi >= tend)
1048                         break;
1049                 np = TAILQ_NEXT(p, listq);
1050                 if (vm_page_none_valid(p))
1051                         continue;
1052                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1053                         if (object->generation != curgeneration &&
1054                             (flags & OBJPC_SYNC) != 0)
1055                                 goto rescan;
1056                         np = vm_page_find_least(object, pi);
1057                         continue;
1058                 }
1059                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1060                         vm_page_xunbusy(p);
1061                         continue;
1062                 }
1063                 if (object->type == OBJT_VNODE) {
1064                         n = vm_object_page_collect_flush(object, p, pagerflags,
1065                             flags, &allclean, &eio);
1066                         if (eio) {
1067                                 res = FALSE;
1068                                 allclean = FALSE;
1069                         }
1070                         if (object->generation != curgeneration &&
1071                             (flags & OBJPC_SYNC) != 0)
1072                                 goto rescan;
1073
1074                         /*
1075                          * If the VOP_PUTPAGES() did a truncated write, so
1076                          * that even the first page of the run is not fully
1077                          * written, vm_pageout_flush() returns 0 as the run
1078                          * length.  Since the condition that caused truncated
1079                          * write may be permanent, e.g. exhausted free space,
1080                          * accepting n == 0 would cause an infinite loop.
1081                          *
1082                          * Forwarding the iterator leaves the unwritten page
1083                          * behind, but there is not much we can do there if
1084                          * filesystem refuses to write it.
1085                          */
1086                         if (n == 0) {
1087                                 n = 1;
1088                                 allclean = FALSE;
1089                         }
1090                 } else {
1091                         n = 1;
1092                         vm_page_xunbusy(p);
1093                 }
1094                 np = vm_page_find_least(object, pi + n);
1095         }
1096 #if 0
1097         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1098 #endif
1099
1100         /*
1101          * Leave updating cleangeneration for tmpfs objects to tmpfs
1102          * scan.  It needs to update mtime, which happens for other
1103          * filesystems during page writeouts.
1104          */
1105         if (allclean && object->type == OBJT_VNODE)
1106                 object->cleangeneration = curgeneration;
1107         return (res);
1108 }
1109
1110 static int
1111 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1112     int flags, boolean_t *allclean, boolean_t *eio)
1113 {
1114         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1115         int count, i, mreq, runlen;
1116
1117         vm_page_lock_assert(p, MA_NOTOWNED);
1118         vm_page_assert_xbusied(p);
1119         VM_OBJECT_ASSERT_WLOCKED(object);
1120
1121         count = 1;
1122         mreq = 0;
1123
1124         for (tp = p; count < vm_pageout_page_count; count++) {
1125                 tp = vm_page_next(tp);
1126                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1127                         break;
1128                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1129                         vm_page_xunbusy(tp);
1130                         break;
1131                 }
1132         }
1133
1134         for (p_first = p; count < vm_pageout_page_count; count++) {
1135                 tp = vm_page_prev(p_first);
1136                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1137                         break;
1138                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1139                         vm_page_xunbusy(tp);
1140                         break;
1141                 }
1142                 p_first = tp;
1143                 mreq++;
1144         }
1145
1146         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1147                 ma[i] = tp;
1148
1149         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1150         return (runlen);
1151 }
1152
1153 /*
1154  * Note that there is absolutely no sense in writing out
1155  * anonymous objects, so we track down the vnode object
1156  * to write out.
1157  * We invalidate (remove) all pages from the address space
1158  * for semantic correctness.
1159  *
1160  * If the backing object is a device object with unmanaged pages, then any
1161  * mappings to the specified range of pages must be removed before this
1162  * function is called.
1163  *
1164  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1165  * may start out with a NULL object.
1166  */
1167 boolean_t
1168 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1169     boolean_t syncio, boolean_t invalidate)
1170 {
1171         vm_object_t backing_object;
1172         struct vnode *vp;
1173         struct mount *mp;
1174         int error, flags, fsync_after;
1175         boolean_t res;
1176
1177         if (object == NULL)
1178                 return (TRUE);
1179         res = TRUE;
1180         error = 0;
1181         VM_OBJECT_WLOCK(object);
1182         while ((backing_object = object->backing_object) != NULL) {
1183                 VM_OBJECT_WLOCK(backing_object);
1184                 offset += object->backing_object_offset;
1185                 VM_OBJECT_WUNLOCK(object);
1186                 object = backing_object;
1187                 if (object->size < OFF_TO_IDX(offset + size))
1188                         size = IDX_TO_OFF(object->size) - offset;
1189         }
1190         /*
1191          * Flush pages if writing is allowed, invalidate them
1192          * if invalidation requested.  Pages undergoing I/O
1193          * will be ignored by vm_object_page_remove().
1194          *
1195          * We cannot lock the vnode and then wait for paging
1196          * to complete without deadlocking against vm_fault.
1197          * Instead we simply call vm_object_page_remove() and
1198          * allow it to block internally on a page-by-page
1199          * basis when it encounters pages undergoing async
1200          * I/O.
1201          */
1202         if (object->type == OBJT_VNODE &&
1203             vm_object_mightbedirty(object) != 0 &&
1204             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1205                 VM_OBJECT_WUNLOCK(object);
1206                 (void) vn_start_write(vp, &mp, V_WAIT);
1207                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1208                 if (syncio && !invalidate && offset == 0 &&
1209                     atop(size) == object->size) {
1210                         /*
1211                          * If syncing the whole mapping of the file,
1212                          * it is faster to schedule all the writes in
1213                          * async mode, also allowing the clustering,
1214                          * and then wait for i/o to complete.
1215                          */
1216                         flags = 0;
1217                         fsync_after = TRUE;
1218                 } else {
1219                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1220                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1221                         fsync_after = FALSE;
1222                 }
1223                 VM_OBJECT_WLOCK(object);
1224                 res = vm_object_page_clean(object, offset, offset + size,
1225                     flags);
1226                 VM_OBJECT_WUNLOCK(object);
1227                 if (fsync_after)
1228                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1229                 VOP_UNLOCK(vp);
1230                 vn_finished_write(mp);
1231                 if (error != 0)
1232                         res = FALSE;
1233                 VM_OBJECT_WLOCK(object);
1234         }
1235         if ((object->type == OBJT_VNODE ||
1236              object->type == OBJT_DEVICE) && invalidate) {
1237                 if (object->type == OBJT_DEVICE)
1238                         /*
1239                          * The option OBJPR_NOTMAPPED must be passed here
1240                          * because vm_object_page_remove() cannot remove
1241                          * unmanaged mappings.
1242                          */
1243                         flags = OBJPR_NOTMAPPED;
1244                 else if (old_msync)
1245                         flags = 0;
1246                 else
1247                         flags = OBJPR_CLEANONLY;
1248                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1249                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1250         }
1251         VM_OBJECT_WUNLOCK(object);
1252         return (res);
1253 }
1254
1255 /*
1256  * Determine whether the given advice can be applied to the object.  Advice is
1257  * not applied to unmanaged pages since they never belong to page queues, and
1258  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1259  * have been mapped at most once.
1260  */
1261 static bool
1262 vm_object_advice_applies(vm_object_t object, int advice)
1263 {
1264
1265         if ((object->flags & OBJ_UNMANAGED) != 0)
1266                 return (false);
1267         if (advice != MADV_FREE)
1268                 return (true);
1269         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1270             (OBJ_ONEMAPPING | OBJ_ANON));
1271 }
1272
1273 static void
1274 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1275     vm_size_t size)
1276 {
1277
1278         if (advice == MADV_FREE && object->type == OBJT_SWAP)
1279                 swap_pager_freespace(object, pindex, size);
1280 }
1281
1282 /*
1283  *      vm_object_madvise:
1284  *
1285  *      Implements the madvise function at the object/page level.
1286  *
1287  *      MADV_WILLNEED   (any object)
1288  *
1289  *          Activate the specified pages if they are resident.
1290  *
1291  *      MADV_DONTNEED   (any object)
1292  *
1293  *          Deactivate the specified pages if they are resident.
1294  *
1295  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1296  *                       OBJ_ONEMAPPING only)
1297  *
1298  *          Deactivate and clean the specified pages if they are
1299  *          resident.  This permits the process to reuse the pages
1300  *          without faulting or the kernel to reclaim the pages
1301  *          without I/O.
1302  */
1303 void
1304 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1305     int advice)
1306 {
1307         vm_pindex_t tpindex;
1308         vm_object_t backing_object, tobject;
1309         vm_page_t m, tm;
1310
1311         if (object == NULL)
1312                 return;
1313
1314 relookup:
1315         VM_OBJECT_WLOCK(object);
1316         if (!vm_object_advice_applies(object, advice)) {
1317                 VM_OBJECT_WUNLOCK(object);
1318                 return;
1319         }
1320         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1321                 tobject = object;
1322
1323                 /*
1324                  * If the next page isn't resident in the top-level object, we
1325                  * need to search the shadow chain.  When applying MADV_FREE, we
1326                  * take care to release any swap space used to store
1327                  * non-resident pages.
1328                  */
1329                 if (m == NULL || pindex < m->pindex) {
1330                         /*
1331                          * Optimize a common case: if the top-level object has
1332                          * no backing object, we can skip over the non-resident
1333                          * range in constant time.
1334                          */
1335                         if (object->backing_object == NULL) {
1336                                 tpindex = (m != NULL && m->pindex < end) ?
1337                                     m->pindex : end;
1338                                 vm_object_madvise_freespace(object, advice,
1339                                     pindex, tpindex - pindex);
1340                                 if ((pindex = tpindex) == end)
1341                                         break;
1342                                 goto next_page;
1343                         }
1344
1345                         tpindex = pindex;
1346                         do {
1347                                 vm_object_madvise_freespace(tobject, advice,
1348                                     tpindex, 1);
1349                                 /*
1350                                  * Prepare to search the next object in the
1351                                  * chain.
1352                                  */
1353                                 backing_object = tobject->backing_object;
1354                                 if (backing_object == NULL)
1355                                         goto next_pindex;
1356                                 VM_OBJECT_WLOCK(backing_object);
1357                                 tpindex +=
1358                                     OFF_TO_IDX(tobject->backing_object_offset);
1359                                 if (tobject != object)
1360                                         VM_OBJECT_WUNLOCK(tobject);
1361                                 tobject = backing_object;
1362                                 if (!vm_object_advice_applies(tobject, advice))
1363                                         goto next_pindex;
1364                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1365                             NULL);
1366                 } else {
1367 next_page:
1368                         tm = m;
1369                         m = TAILQ_NEXT(m, listq);
1370                 }
1371
1372                 /*
1373                  * If the page is not in a normal state, skip it.  The page
1374                  * can not be invalidated while the object lock is held.
1375                  */
1376                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1377                         goto next_pindex;
1378                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1379                     ("vm_object_madvise: page %p is fictitious", tm));
1380                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1381                     ("vm_object_madvise: page %p is not managed", tm));
1382                 if (vm_page_tryxbusy(tm) == 0) {
1383                         if (object != tobject)
1384                                 VM_OBJECT_WUNLOCK(object);
1385                         if (advice == MADV_WILLNEED) {
1386                                 /*
1387                                  * Reference the page before unlocking and
1388                                  * sleeping so that the page daemon is less
1389                                  * likely to reclaim it.
1390                                  */
1391                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1392                         }
1393                         vm_page_busy_sleep(tm, "madvpo", false);
1394                         goto relookup;
1395                 }
1396                 vm_page_advise(tm, advice);
1397                 vm_page_xunbusy(tm);
1398                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1399 next_pindex:
1400                 if (tobject != object)
1401                         VM_OBJECT_WUNLOCK(tobject);
1402         }
1403         VM_OBJECT_WUNLOCK(object);
1404 }
1405
1406 /*
1407  *      vm_object_shadow:
1408  *
1409  *      Create a new object which is backed by the
1410  *      specified existing object range.  The source
1411  *      object reference is deallocated.
1412  *
1413  *      The new object and offset into that object
1414  *      are returned in the source parameters.
1415  */
1416 void
1417 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1418     struct ucred *cred, bool shared)
1419 {
1420         vm_object_t source;
1421         vm_object_t result;
1422
1423         source = *object;
1424
1425         /*
1426          * Don't create the new object if the old object isn't shared.
1427          *
1428          * If we hold the only reference we can guarantee that it won't
1429          * increase while we have the map locked.  Otherwise the race is
1430          * harmless and we will end up with an extra shadow object that
1431          * will be collapsed later.
1432          */
1433         if (source != NULL && source->ref_count == 1 &&
1434             (source->flags & OBJ_ANON) != 0)
1435                 return;
1436
1437         /*
1438          * Allocate a new object with the given length.
1439          */
1440         result = vm_object_allocate_anon(atop(length), source, cred, length);
1441
1442         /*
1443          * Store the offset into the source object, and fix up the offset into
1444          * the new object.
1445          */
1446         result->backing_object_offset = *offset;
1447
1448         if (shared || source != NULL) {
1449                 VM_OBJECT_WLOCK(result);
1450
1451                 /*
1452                  * The new object shadows the source object, adding a
1453                  * reference to it.  Our caller changes his reference
1454                  * to point to the new object, removing a reference to
1455                  * the source object.  Net result: no change of
1456                  * reference count, unless the caller needs to add one
1457                  * more reference due to forking a shared map entry.
1458                  */
1459                 if (shared) {
1460                         vm_object_reference_locked(result);
1461                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1462                 }
1463
1464                 /*
1465                  * Try to optimize the result object's page color when
1466                  * shadowing in order to maintain page coloring
1467                  * consistency in the combined shadowed object.
1468                  */
1469                 if (source != NULL) {
1470                         vm_object_backing_insert(result, source);
1471                         result->domain = source->domain;
1472 #if VM_NRESERVLEVEL > 0
1473                         result->flags |= source->flags & OBJ_COLORED;
1474                         result->pg_color = (source->pg_color +
1475                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1476                             1)) - 1);
1477 #endif
1478                 }
1479                 VM_OBJECT_WUNLOCK(result);
1480         }
1481
1482         /*
1483          * Return the new things
1484          */
1485         *offset = 0;
1486         *object = result;
1487 }
1488
1489 /*
1490  *      vm_object_split:
1491  *
1492  * Split the pages in a map entry into a new object.  This affords
1493  * easier removal of unused pages, and keeps object inheritance from
1494  * being a negative impact on memory usage.
1495  */
1496 void
1497 vm_object_split(vm_map_entry_t entry)
1498 {
1499         vm_page_t m, m_next;
1500         vm_object_t orig_object, new_object, backing_object;
1501         vm_pindex_t idx, offidxstart;
1502         vm_size_t size;
1503
1504         orig_object = entry->object.vm_object;
1505         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1506             ("vm_object_split:  Splitting object with multiple mappings."));
1507         if ((orig_object->flags & OBJ_ANON) == 0)
1508                 return;
1509         if (orig_object->ref_count <= 1)
1510                 return;
1511         VM_OBJECT_WUNLOCK(orig_object);
1512
1513         offidxstart = OFF_TO_IDX(entry->offset);
1514         size = atop(entry->end - entry->start);
1515
1516         /*
1517          * If swap_pager_copy() is later called, it will convert new_object
1518          * into a swap object.
1519          */
1520         new_object = vm_object_allocate_anon(size, orig_object,
1521             orig_object->cred, ptoa(size));
1522
1523         /*
1524          * We must wait for the orig_object to complete any in-progress
1525          * collapse so that the swap blocks are stable below.  The
1526          * additional reference on backing_object by new object will
1527          * prevent further collapse operations until split completes.
1528          */
1529         VM_OBJECT_WLOCK(orig_object);
1530         vm_object_collapse_wait(orig_object);
1531
1532         /*
1533          * At this point, the new object is still private, so the order in
1534          * which the original and new objects are locked does not matter.
1535          */
1536         VM_OBJECT_WLOCK(new_object);
1537         new_object->domain = orig_object->domain;
1538         backing_object = orig_object->backing_object;
1539         if (backing_object != NULL) {
1540                 vm_object_backing_insert_ref(new_object, backing_object);
1541                 new_object->backing_object_offset = 
1542                     orig_object->backing_object_offset + entry->offset;
1543         }
1544         if (orig_object->cred != NULL) {
1545                 crhold(orig_object->cred);
1546                 KASSERT(orig_object->charge >= ptoa(size),
1547                     ("orig_object->charge < 0"));
1548                 orig_object->charge -= ptoa(size);
1549         }
1550
1551         /*
1552          * Mark the split operation so that swap_pager_getpages() knows
1553          * that the object is in transition.
1554          */
1555         vm_object_set_flag(orig_object, OBJ_SPLIT);
1556 retry:
1557         m = vm_page_find_least(orig_object, offidxstart);
1558         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1559             m = m_next) {
1560                 m_next = TAILQ_NEXT(m, listq);
1561
1562                 /*
1563                  * We must wait for pending I/O to complete before we can
1564                  * rename the page.
1565                  *
1566                  * We do not have to VM_PROT_NONE the page as mappings should
1567                  * not be changed by this operation.
1568                  */
1569                 if (vm_page_tryxbusy(m) == 0) {
1570                         VM_OBJECT_WUNLOCK(new_object);
1571                         vm_page_sleep_if_busy(m, "spltwt");
1572                         VM_OBJECT_WLOCK(new_object);
1573                         goto retry;
1574                 }
1575
1576                 /*
1577                  * The page was left invalid.  Likely placed there by
1578                  * an incomplete fault.  Just remove and ignore.
1579                  */
1580                 if (vm_page_none_valid(m)) {
1581                         if (vm_page_remove(m))
1582                                 vm_page_free(m);
1583                         continue;
1584                 }
1585
1586                 /* vm_page_rename() will dirty the page. */
1587                 if (vm_page_rename(m, new_object, idx)) {
1588                         vm_page_xunbusy(m);
1589                         VM_OBJECT_WUNLOCK(new_object);
1590                         VM_OBJECT_WUNLOCK(orig_object);
1591                         vm_radix_wait();
1592                         VM_OBJECT_WLOCK(orig_object);
1593                         VM_OBJECT_WLOCK(new_object);
1594                         goto retry;
1595                 }
1596
1597 #if VM_NRESERVLEVEL > 0
1598                 /*
1599                  * If some of the reservation's allocated pages remain with
1600                  * the original object, then transferring the reservation to
1601                  * the new object is neither particularly beneficial nor
1602                  * particularly harmful as compared to leaving the reservation
1603                  * with the original object.  If, however, all of the
1604                  * reservation's allocated pages are transferred to the new
1605                  * object, then transferring the reservation is typically
1606                  * beneficial.  Determining which of these two cases applies
1607                  * would be more costly than unconditionally renaming the
1608                  * reservation.
1609                  */
1610                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1611 #endif
1612                 if (orig_object->type != OBJT_SWAP)
1613                         vm_page_xunbusy(m);
1614         }
1615         if (orig_object->type == OBJT_SWAP) {
1616                 /*
1617                  * swap_pager_copy() can sleep, in which case the orig_object's
1618                  * and new_object's locks are released and reacquired. 
1619                  */
1620                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1621                 TAILQ_FOREACH(m, &new_object->memq, listq)
1622                         vm_page_xunbusy(m);
1623         }
1624         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1625         VM_OBJECT_WUNLOCK(orig_object);
1626         VM_OBJECT_WUNLOCK(new_object);
1627         entry->object.vm_object = new_object;
1628         entry->offset = 0LL;
1629         vm_object_deallocate(orig_object);
1630         VM_OBJECT_WLOCK(new_object);
1631 }
1632
1633 static vm_page_t
1634 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1635 {
1636         vm_object_t backing_object;
1637
1638         VM_OBJECT_ASSERT_WLOCKED(object);
1639         backing_object = object->backing_object;
1640         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1641
1642         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1643             ("invalid ownership %p %p %p", p, object, backing_object));
1644         /* The page is only NULL when rename fails. */
1645         if (p == NULL) {
1646                 VM_OBJECT_WUNLOCK(object);
1647                 VM_OBJECT_WUNLOCK(backing_object);
1648                 vm_radix_wait();
1649         } else {
1650                 if (p->object == object)
1651                         VM_OBJECT_WUNLOCK(backing_object);
1652                 else
1653                         VM_OBJECT_WUNLOCK(object);
1654                 vm_page_busy_sleep(p, "vmocol", false);
1655         }
1656         VM_OBJECT_WLOCK(object);
1657         VM_OBJECT_WLOCK(backing_object);
1658         return (TAILQ_FIRST(&backing_object->memq));
1659 }
1660
1661 static bool
1662 vm_object_scan_all_shadowed(vm_object_t object)
1663 {
1664         vm_object_t backing_object;
1665         vm_page_t p, pp;
1666         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1667
1668         VM_OBJECT_ASSERT_WLOCKED(object);
1669         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1670
1671         backing_object = object->backing_object;
1672
1673         if ((backing_object->flags & OBJ_ANON) == 0)
1674                 return (false);
1675
1676         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1677         p = vm_page_find_least(backing_object, pi);
1678         ps = swap_pager_find_least(backing_object, pi);
1679
1680         /*
1681          * Only check pages inside the parent object's range and
1682          * inside the parent object's mapping of the backing object.
1683          */
1684         for (;; pi++) {
1685                 if (p != NULL && p->pindex < pi)
1686                         p = TAILQ_NEXT(p, listq);
1687                 if (ps < pi)
1688                         ps = swap_pager_find_least(backing_object, pi);
1689                 if (p == NULL && ps >= backing_object->size)
1690                         break;
1691                 else if (p == NULL)
1692                         pi = ps;
1693                 else
1694                         pi = MIN(p->pindex, ps);
1695
1696                 new_pindex = pi - backing_offset_index;
1697                 if (new_pindex >= object->size)
1698                         break;
1699
1700                 if (p != NULL) {
1701                         /*
1702                          * If the backing object page is busy a
1703                          * grandparent or older page may still be
1704                          * undergoing CoW.  It is not safe to collapse
1705                          * the backing object until it is quiesced.
1706                          */
1707                         if (vm_page_tryxbusy(p) == 0)
1708                                 return (false);
1709
1710                         /*
1711                          * We raced with the fault handler that left
1712                          * newly allocated invalid page on the object
1713                          * queue and retried.
1714                          */
1715                         if (!vm_page_all_valid(p))
1716                                 goto unbusy_ret;
1717                 }
1718
1719                 /*
1720                  * See if the parent has the page or if the parent's object
1721                  * pager has the page.  If the parent has the page but the page
1722                  * is not valid, the parent's object pager must have the page.
1723                  *
1724                  * If this fails, the parent does not completely shadow the
1725                  * object and we might as well give up now.
1726                  */
1727                 pp = vm_page_lookup(object, new_pindex);
1728
1729                 /*
1730                  * The valid check here is stable due to object lock
1731                  * being required to clear valid and initiate paging.
1732                  * Busy of p disallows fault handler to validate pp.
1733                  */
1734                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1735                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1736                         goto unbusy_ret;
1737                 if (p != NULL)
1738                         vm_page_xunbusy(p);
1739         }
1740         return (true);
1741
1742 unbusy_ret:
1743         if (p != NULL)
1744                 vm_page_xunbusy(p);
1745         return (false);
1746 }
1747
1748 static void
1749 vm_object_collapse_scan(vm_object_t object)
1750 {
1751         vm_object_t backing_object;
1752         vm_page_t next, p, pp;
1753         vm_pindex_t backing_offset_index, new_pindex;
1754
1755         VM_OBJECT_ASSERT_WLOCKED(object);
1756         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1757
1758         backing_object = object->backing_object;
1759         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1760
1761         /*
1762          * Our scan
1763          */
1764         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1765                 next = TAILQ_NEXT(p, listq);
1766                 new_pindex = p->pindex - backing_offset_index;
1767
1768                 /*
1769                  * Check for busy page
1770                  */
1771                 if (vm_page_tryxbusy(p) == 0) {
1772                         next = vm_object_collapse_scan_wait(object, p);
1773                         continue;
1774                 }
1775
1776                 KASSERT(object->backing_object == backing_object,
1777                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1778                     object->backing_object, backing_object));
1779                 KASSERT(p->object == backing_object,
1780                     ("vm_object_collapse_scan: object mismatch %p != %p",
1781                     p->object, backing_object));
1782
1783                 if (p->pindex < backing_offset_index ||
1784                     new_pindex >= object->size) {
1785                         if (backing_object->type == OBJT_SWAP)
1786                                 swap_pager_freespace(backing_object, p->pindex,
1787                                     1);
1788
1789                         KASSERT(!pmap_page_is_mapped(p),
1790                             ("freeing mapped page %p", p));
1791                         if (vm_page_remove(p))
1792                                 vm_page_free(p);
1793                         continue;
1794                 }
1795
1796                 if (!vm_page_all_valid(p)) {
1797                         KASSERT(!pmap_page_is_mapped(p),
1798                             ("freeing mapped page %p", p));
1799                         if (vm_page_remove(p))
1800                                 vm_page_free(p);
1801                         continue;
1802                 }
1803
1804                 pp = vm_page_lookup(object, new_pindex);
1805                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1806                         vm_page_xunbusy(p);
1807                         /*
1808                          * The page in the parent is busy and possibly not
1809                          * (yet) valid.  Until its state is finalized by the
1810                          * busy bit owner, we can't tell whether it shadows the
1811                          * original page.
1812                          */
1813                         next = vm_object_collapse_scan_wait(object, pp);
1814                         continue;
1815                 }
1816
1817                 if (pp != NULL && vm_page_none_valid(pp)) {
1818                         /*
1819                          * The page was invalid in the parent.  Likely placed
1820                          * there by an incomplete fault.  Just remove and
1821                          * ignore.  p can replace it.
1822                          */
1823                         if (vm_page_remove(pp))
1824                                 vm_page_free(pp);
1825                         pp = NULL;
1826                 }
1827
1828                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1829                         NULL)) {
1830                         /*
1831                          * The page already exists in the parent OR swap exists
1832                          * for this location in the parent.  Leave the parent's
1833                          * page alone.  Destroy the original page from the
1834                          * backing object.
1835                          */
1836                         if (backing_object->type == OBJT_SWAP)
1837                                 swap_pager_freespace(backing_object, p->pindex,
1838                                     1);
1839                         KASSERT(!pmap_page_is_mapped(p),
1840                             ("freeing mapped page %p", p));
1841                         if (vm_page_remove(p))
1842                                 vm_page_free(p);
1843                         if (pp != NULL)
1844                                 vm_page_xunbusy(pp);
1845                         continue;
1846                 }
1847
1848                 /*
1849                  * Page does not exist in parent, rename the page from the
1850                  * backing object to the main object.
1851                  *
1852                  * If the page was mapped to a process, it can remain mapped
1853                  * through the rename.  vm_page_rename() will dirty the page.
1854                  */
1855                 if (vm_page_rename(p, object, new_pindex)) {
1856                         vm_page_xunbusy(p);
1857                         next = vm_object_collapse_scan_wait(object, NULL);
1858                         continue;
1859                 }
1860
1861                 /* Use the old pindex to free the right page. */
1862                 if (backing_object->type == OBJT_SWAP)
1863                         swap_pager_freespace(backing_object,
1864                             new_pindex + backing_offset_index, 1);
1865
1866 #if VM_NRESERVLEVEL > 0
1867                 /*
1868                  * Rename the reservation.
1869                  */
1870                 vm_reserv_rename(p, object, backing_object,
1871                     backing_offset_index);
1872 #endif
1873                 vm_page_xunbusy(p);
1874         }
1875         return;
1876 }
1877
1878 /*
1879  *      vm_object_collapse:
1880  *
1881  *      Collapse an object with the object backing it.
1882  *      Pages in the backing object are moved into the
1883  *      parent, and the backing object is deallocated.
1884  */
1885 void
1886 vm_object_collapse(vm_object_t object)
1887 {
1888         vm_object_t backing_object, new_backing_object;
1889
1890         VM_OBJECT_ASSERT_WLOCKED(object);
1891
1892         while (TRUE) {
1893                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1894                     ("collapsing invalid object"));
1895
1896                 /*
1897                  * Wait for the backing_object to finish any pending
1898                  * collapse so that the caller sees the shortest possible
1899                  * shadow chain.
1900                  */
1901                 backing_object = vm_object_backing_collapse_wait(object);
1902                 if (backing_object == NULL)
1903                         return;
1904
1905                 KASSERT(object->ref_count > 0 &&
1906                     object->ref_count > object->shadow_count,
1907                     ("collapse with invalid ref %d or shadow %d count.",
1908                     object->ref_count, object->shadow_count));
1909                 KASSERT((backing_object->flags &
1910                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1911                     ("vm_object_collapse: Backing object already collapsing."));
1912                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1913                     ("vm_object_collapse: object is already collapsing."));
1914
1915                 /*
1916                  * We know that we can either collapse the backing object if
1917                  * the parent is the only reference to it, or (perhaps) have
1918                  * the parent bypass the object if the parent happens to shadow
1919                  * all the resident pages in the entire backing object.
1920                  */
1921                 if (backing_object->ref_count == 1) {
1922                         KASSERT(backing_object->shadow_count == 1,
1923                             ("vm_object_collapse: shadow_count: %d",
1924                             backing_object->shadow_count));
1925                         vm_object_pip_add(object, 1);
1926                         vm_object_set_flag(object, OBJ_COLLAPSING);
1927                         vm_object_pip_add(backing_object, 1);
1928                         vm_object_set_flag(backing_object, OBJ_DEAD);
1929
1930                         /*
1931                          * If there is exactly one reference to the backing
1932                          * object, we can collapse it into the parent.
1933                          */
1934                         vm_object_collapse_scan(object);
1935
1936 #if VM_NRESERVLEVEL > 0
1937                         /*
1938                          * Break any reservations from backing_object.
1939                          */
1940                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1941                                 vm_reserv_break_all(backing_object);
1942 #endif
1943
1944                         /*
1945                          * Move the pager from backing_object to object.
1946                          */
1947                         if (backing_object->type == OBJT_SWAP) {
1948                                 /*
1949                                  * swap_pager_copy() can sleep, in which case
1950                                  * the backing_object's and object's locks are
1951                                  * released and reacquired.
1952                                  * Since swap_pager_copy() is being asked to
1953                                  * destroy backing_object, it will change the
1954                                  * type to OBJT_DEFAULT.
1955                                  */
1956                                 swap_pager_copy(
1957                                     backing_object,
1958                                     object,
1959                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1960                         }
1961
1962                         /*
1963                          * Object now shadows whatever backing_object did.
1964                          */
1965                         vm_object_clear_flag(object, OBJ_COLLAPSING);
1966                         vm_object_backing_transfer(object, backing_object);
1967                         object->backing_object_offset +=
1968                             backing_object->backing_object_offset;
1969                         VM_OBJECT_WUNLOCK(object);
1970                         vm_object_pip_wakeup(object);
1971
1972                         /*
1973                          * Discard backing_object.
1974                          *
1975                          * Since the backing object has no pages, no pager left,
1976                          * and no object references within it, all that is
1977                          * necessary is to dispose of it.
1978                          */
1979                         KASSERT(backing_object->ref_count == 1, (
1980 "backing_object %p was somehow re-referenced during collapse!",
1981                             backing_object));
1982                         vm_object_pip_wakeup(backing_object);
1983                         (void)refcount_release(&backing_object->ref_count);
1984                         vm_object_terminate(backing_object);
1985                         counter_u64_add(object_collapses, 1);
1986                         VM_OBJECT_WLOCK(object);
1987                 } else {
1988                         /*
1989                          * If we do not entirely shadow the backing object,
1990                          * there is nothing we can do so we give up.
1991                          *
1992                          * The object lock and backing_object lock must not
1993                          * be dropped during this sequence.
1994                          */
1995                         if (!vm_object_scan_all_shadowed(object)) {
1996                                 VM_OBJECT_WUNLOCK(backing_object);
1997                                 break;
1998                         }
1999
2000                         /*
2001                          * Make the parent shadow the next object in the
2002                          * chain.  Deallocating backing_object will not remove
2003                          * it, since its reference count is at least 2.
2004                          */
2005                         vm_object_backing_remove_locked(object);
2006                         new_backing_object = backing_object->backing_object;
2007                         if (new_backing_object != NULL) {
2008                                 vm_object_backing_insert_ref(object,
2009                                     new_backing_object);
2010                                 object->backing_object_offset +=
2011                                     backing_object->backing_object_offset;
2012                         }
2013
2014                         /*
2015                          * Drop the reference count on backing_object. Since
2016                          * its ref_count was at least 2, it will not vanish.
2017                          */
2018                         (void)refcount_release(&backing_object->ref_count);
2019                         KASSERT(backing_object->ref_count >= 1, (
2020 "backing_object %p was somehow dereferenced during collapse!",
2021                             backing_object));
2022                         VM_OBJECT_WUNLOCK(backing_object);
2023                         counter_u64_add(object_bypasses, 1);
2024                 }
2025
2026                 /*
2027                  * Try again with this object's new backing object.
2028                  */
2029         }
2030 }
2031
2032 /*
2033  *      vm_object_page_remove:
2034  *
2035  *      For the given object, either frees or invalidates each of the
2036  *      specified pages.  In general, a page is freed.  However, if a page is
2037  *      wired for any reason other than the existence of a managed, wired
2038  *      mapping, then it may be invalidated but not removed from the object.
2039  *      Pages are specified by the given range ["start", "end") and the option
2040  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2041  *      extends from "start" to the end of the object.  If the option
2042  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2043  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2044  *      specified, then the pages within the specified range must have no
2045  *      mappings.  Otherwise, if this option is not specified, any mappings to
2046  *      the specified pages are removed before the pages are freed or
2047  *      invalidated.
2048  *
2049  *      In general, this operation should only be performed on objects that
2050  *      contain managed pages.  There are, however, two exceptions.  First, it
2051  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2052  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2053  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2054  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2055  *
2056  *      The object must be locked.
2057  */
2058 void
2059 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2060     int options)
2061 {
2062         vm_page_t p, next;
2063
2064         VM_OBJECT_ASSERT_WLOCKED(object);
2065         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2066             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2067             ("vm_object_page_remove: illegal options for object %p", object));
2068         if (object->resident_page_count == 0)
2069                 return;
2070         vm_object_pip_add(object, 1);
2071 again:
2072         p = vm_page_find_least(object, start);
2073
2074         /*
2075          * Here, the variable "p" is either (1) the page with the least pindex
2076          * greater than or equal to the parameter "start" or (2) NULL. 
2077          */
2078         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2079                 next = TAILQ_NEXT(p, listq);
2080
2081                 /*
2082                  * If the page is wired for any reason besides the existence
2083                  * of managed, wired mappings, then it cannot be freed.  For
2084                  * example, fictitious pages, which represent device memory,
2085                  * are inherently wired and cannot be freed.  They can,
2086                  * however, be invalidated if the option OBJPR_CLEANONLY is
2087                  * not specified.
2088                  */
2089                 if (vm_page_tryxbusy(p) == 0) {
2090                         vm_page_sleep_if_busy(p, "vmopar");
2091                         goto again;
2092                 }
2093                 if (vm_page_wired(p)) {
2094 wired:
2095                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2096                             object->ref_count != 0)
2097                                 pmap_remove_all(p);
2098                         if ((options & OBJPR_CLEANONLY) == 0) {
2099                                 vm_page_invalid(p);
2100                                 vm_page_undirty(p);
2101                         }
2102                         vm_page_xunbusy(p);
2103                         continue;
2104                 }
2105                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2106                     ("vm_object_page_remove: page %p is fictitious", p));
2107                 if ((options & OBJPR_CLEANONLY) != 0 &&
2108                     !vm_page_none_valid(p)) {
2109                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2110                             object->ref_count != 0 &&
2111                             !vm_page_try_remove_write(p))
2112                                 goto wired;
2113                         if (p->dirty != 0) {
2114                                 vm_page_xunbusy(p);
2115                                 continue;
2116                         }
2117                 }
2118                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2119                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2120                         goto wired;
2121                 vm_page_free(p);
2122         }
2123         vm_object_pip_wakeup(object);
2124 }
2125
2126 /*
2127  *      vm_object_page_noreuse:
2128  *
2129  *      For the given object, attempt to move the specified pages to
2130  *      the head of the inactive queue.  This bypasses regular LRU
2131  *      operation and allows the pages to be reused quickly under memory
2132  *      pressure.  If a page is wired for any reason, then it will not
2133  *      be queued.  Pages are specified by the range ["start", "end").
2134  *      As a special case, if "end" is zero, then the range extends from
2135  *      "start" to the end of the object.
2136  *
2137  *      This operation should only be performed on objects that
2138  *      contain non-fictitious, managed pages.
2139  *
2140  *      The object must be locked.
2141  */
2142 void
2143 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2144 {
2145         vm_page_t p, next;
2146
2147         VM_OBJECT_ASSERT_LOCKED(object);
2148         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2149             ("vm_object_page_noreuse: illegal object %p", object));
2150         if (object->resident_page_count == 0)
2151                 return;
2152         p = vm_page_find_least(object, start);
2153
2154         /*
2155          * Here, the variable "p" is either (1) the page with the least pindex
2156          * greater than or equal to the parameter "start" or (2) NULL. 
2157          */
2158         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2159                 next = TAILQ_NEXT(p, listq);
2160                 vm_page_deactivate_noreuse(p);
2161         }
2162 }
2163
2164 /*
2165  *      Populate the specified range of the object with valid pages.  Returns
2166  *      TRUE if the range is successfully populated and FALSE otherwise.
2167  *
2168  *      Note: This function should be optimized to pass a larger array of
2169  *      pages to vm_pager_get_pages() before it is applied to a non-
2170  *      OBJT_DEVICE object.
2171  *
2172  *      The object must be locked.
2173  */
2174 boolean_t
2175 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2176 {
2177         vm_page_t m;
2178         vm_pindex_t pindex;
2179         int rv;
2180
2181         VM_OBJECT_ASSERT_WLOCKED(object);
2182         for (pindex = start; pindex < end; pindex++) {
2183                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2184                 if (rv != VM_PAGER_OK)
2185                         break;
2186
2187                 /*
2188                  * Keep "m" busy because a subsequent iteration may unlock
2189                  * the object.
2190                  */
2191         }
2192         if (pindex > start) {
2193                 m = vm_page_lookup(object, start);
2194                 while (m != NULL && m->pindex < pindex) {
2195                         vm_page_xunbusy(m);
2196                         m = TAILQ_NEXT(m, listq);
2197                 }
2198         }
2199         return (pindex == end);
2200 }
2201
2202 /*
2203  *      Routine:        vm_object_coalesce
2204  *      Function:       Coalesces two objects backing up adjoining
2205  *                      regions of memory into a single object.
2206  *
2207  *      returns TRUE if objects were combined.
2208  *
2209  *      NOTE:   Only works at the moment if the second object is NULL -
2210  *              if it's not, which object do we lock first?
2211  *
2212  *      Parameters:
2213  *              prev_object     First object to coalesce
2214  *              prev_offset     Offset into prev_object
2215  *              prev_size       Size of reference to prev_object
2216  *              next_size       Size of reference to the second object
2217  *              reserved        Indicator that extension region has
2218  *                              swap accounted for
2219  *
2220  *      Conditions:
2221  *      The object must *not* be locked.
2222  */
2223 boolean_t
2224 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2225     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2226 {
2227         vm_pindex_t next_pindex;
2228
2229         if (prev_object == NULL)
2230                 return (TRUE);
2231         if ((prev_object->flags & OBJ_ANON) == 0)
2232                 return (FALSE);
2233
2234         VM_OBJECT_WLOCK(prev_object);
2235         /*
2236          * Try to collapse the object first.
2237          */
2238         vm_object_collapse(prev_object);
2239
2240         /*
2241          * Can't coalesce if: . more than one reference . paged out . shadows
2242          * another object . has a copy elsewhere (any of which mean that the
2243          * pages not mapped to prev_entry may be in use anyway)
2244          */
2245         if (prev_object->backing_object != NULL) {
2246                 VM_OBJECT_WUNLOCK(prev_object);
2247                 return (FALSE);
2248         }
2249
2250         prev_size >>= PAGE_SHIFT;
2251         next_size >>= PAGE_SHIFT;
2252         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2253
2254         if (prev_object->ref_count > 1 &&
2255             prev_object->size != next_pindex &&
2256             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2257                 VM_OBJECT_WUNLOCK(prev_object);
2258                 return (FALSE);
2259         }
2260
2261         /*
2262          * Account for the charge.
2263          */
2264         if (prev_object->cred != NULL) {
2265
2266                 /*
2267                  * If prev_object was charged, then this mapping,
2268                  * although not charged now, may become writable
2269                  * later. Non-NULL cred in the object would prevent
2270                  * swap reservation during enabling of the write
2271                  * access, so reserve swap now. Failed reservation
2272                  * cause allocation of the separate object for the map
2273                  * entry, and swap reservation for this entry is
2274                  * managed in appropriate time.
2275                  */
2276                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2277                     prev_object->cred)) {
2278                         VM_OBJECT_WUNLOCK(prev_object);
2279                         return (FALSE);
2280                 }
2281                 prev_object->charge += ptoa(next_size);
2282         }
2283
2284         /*
2285          * Remove any pages that may still be in the object from a previous
2286          * deallocation.
2287          */
2288         if (next_pindex < prev_object->size) {
2289                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2290                     next_size, 0);
2291                 if (prev_object->type == OBJT_SWAP)
2292                         swap_pager_freespace(prev_object,
2293                                              next_pindex, next_size);
2294 #if 0
2295                 if (prev_object->cred != NULL) {
2296                         KASSERT(prev_object->charge >=
2297                             ptoa(prev_object->size - next_pindex),
2298                             ("object %p overcharged 1 %jx %jx", prev_object,
2299                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2300                         prev_object->charge -= ptoa(prev_object->size -
2301                             next_pindex);
2302                 }
2303 #endif
2304         }
2305
2306         /*
2307          * Extend the object if necessary.
2308          */
2309         if (next_pindex + next_size > prev_object->size)
2310                 prev_object->size = next_pindex + next_size;
2311
2312         VM_OBJECT_WUNLOCK(prev_object);
2313         return (TRUE);
2314 }
2315
2316 void
2317 vm_object_set_writeable_dirty(vm_object_t object)
2318 {
2319
2320         /* Only set for vnodes & tmpfs */
2321         if (object->type != OBJT_VNODE &&
2322             (object->flags & OBJ_TMPFS_NODE) == 0)
2323                 return;
2324         atomic_add_int(&object->generation, 1);
2325 }
2326
2327 /*
2328  *      vm_object_unwire:
2329  *
2330  *      For each page offset within the specified range of the given object,
2331  *      find the highest-level page in the shadow chain and unwire it.  A page
2332  *      must exist at every page offset, and the highest-level page must be
2333  *      wired.
2334  */
2335 void
2336 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2337     uint8_t queue)
2338 {
2339         vm_object_t tobject, t1object;
2340         vm_page_t m, tm;
2341         vm_pindex_t end_pindex, pindex, tpindex;
2342         int depth, locked_depth;
2343
2344         KASSERT((offset & PAGE_MASK) == 0,
2345             ("vm_object_unwire: offset is not page aligned"));
2346         KASSERT((length & PAGE_MASK) == 0,
2347             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2348         /* The wired count of a fictitious page never changes. */
2349         if ((object->flags & OBJ_FICTITIOUS) != 0)
2350                 return;
2351         pindex = OFF_TO_IDX(offset);
2352         end_pindex = pindex + atop(length);
2353 again:
2354         locked_depth = 1;
2355         VM_OBJECT_RLOCK(object);
2356         m = vm_page_find_least(object, pindex);
2357         while (pindex < end_pindex) {
2358                 if (m == NULL || pindex < m->pindex) {
2359                         /*
2360                          * The first object in the shadow chain doesn't
2361                          * contain a page at the current index.  Therefore,
2362                          * the page must exist in a backing object.
2363                          */
2364                         tobject = object;
2365                         tpindex = pindex;
2366                         depth = 0;
2367                         do {
2368                                 tpindex +=
2369                                     OFF_TO_IDX(tobject->backing_object_offset);
2370                                 tobject = tobject->backing_object;
2371                                 KASSERT(tobject != NULL,
2372                                     ("vm_object_unwire: missing page"));
2373                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2374                                         goto next_page;
2375                                 depth++;
2376                                 if (depth == locked_depth) {
2377                                         locked_depth++;
2378                                         VM_OBJECT_RLOCK(tobject);
2379                                 }
2380                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2381                             NULL);
2382                 } else {
2383                         tm = m;
2384                         m = TAILQ_NEXT(m, listq);
2385                 }
2386                 if (vm_page_trysbusy(tm) == 0) {
2387                         for (tobject = object; locked_depth >= 1;
2388                             locked_depth--) {
2389                                 t1object = tobject->backing_object;
2390                                 if (tm->object != tobject)
2391                                         VM_OBJECT_RUNLOCK(tobject);
2392                                 tobject = t1object;
2393                         }
2394                         vm_page_busy_sleep(tm, "unwbo", true);
2395                         goto again;
2396                 }
2397                 vm_page_unwire(tm, queue);
2398                 vm_page_sunbusy(tm);
2399 next_page:
2400                 pindex++;
2401         }
2402         /* Release the accumulated object locks. */
2403         for (tobject = object; locked_depth >= 1; locked_depth--) {
2404                 t1object = tobject->backing_object;
2405                 VM_OBJECT_RUNLOCK(tobject);
2406                 tobject = t1object;
2407         }
2408 }
2409
2410 /*
2411  * Return the vnode for the given object, or NULL if none exists.
2412  * For tmpfs objects, the function may return NULL if there is
2413  * no vnode allocated at the time of the call.
2414  */
2415 struct vnode *
2416 vm_object_vnode(vm_object_t object)
2417 {
2418         struct vnode *vp;
2419
2420         VM_OBJECT_ASSERT_LOCKED(object);
2421         if (object->type == OBJT_VNODE) {
2422                 vp = object->handle;
2423                 KASSERT(vp != NULL, ("%s: OBJT_VNODE has no vnode", __func__));
2424         } else if (object->type == OBJT_SWAP &&
2425             (object->flags & OBJ_TMPFS) != 0) {
2426                 vp = object->un_pager.swp.swp_tmpfs;
2427                 KASSERT(vp != NULL, ("%s: OBJT_TMPFS has no vnode", __func__));
2428         } else {
2429                 vp = NULL;
2430         }
2431         return (vp);
2432 }
2433
2434
2435 /*
2436  * Busy the vm object.  This prevents new pages belonging to the object from
2437  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2438  * for checking page state before proceeding.
2439  */
2440 void
2441 vm_object_busy(vm_object_t obj)
2442 {
2443
2444         VM_OBJECT_ASSERT_LOCKED(obj);
2445
2446         blockcount_acquire(&obj->busy, 1);
2447         /* The fence is required to order loads of page busy. */
2448         atomic_thread_fence_acq_rel();
2449 }
2450
2451 void
2452 vm_object_unbusy(vm_object_t obj)
2453 {
2454
2455         blockcount_release(&obj->busy, 1);
2456 }
2457
2458 void
2459 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2460 {
2461
2462         VM_OBJECT_ASSERT_UNLOCKED(obj);
2463
2464         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2465 }
2466
2467 /*
2468  * Return the kvme type of the given object.
2469  * If vpp is not NULL, set it to the object's vm_object_vnode() or NULL.
2470  */
2471 int
2472 vm_object_kvme_type(vm_object_t object, struct vnode **vpp)
2473 {
2474
2475         VM_OBJECT_ASSERT_LOCKED(object);
2476         if (vpp != NULL)
2477                 *vpp = vm_object_vnode(object);
2478         switch (object->type) {
2479         case OBJT_DEFAULT:
2480                 return (KVME_TYPE_DEFAULT);
2481         case OBJT_VNODE:
2482                 return (KVME_TYPE_VNODE);
2483         case OBJT_SWAP:
2484                 if ((object->flags & OBJ_TMPFS_NODE) != 0)
2485                         return (KVME_TYPE_VNODE);
2486                 return (KVME_TYPE_SWAP);
2487         case OBJT_DEVICE:
2488                 return (KVME_TYPE_DEVICE);
2489         case OBJT_PHYS:
2490                 return (KVME_TYPE_PHYS);
2491         case OBJT_DEAD:
2492                 return (KVME_TYPE_DEAD);
2493         case OBJT_SG:
2494                 return (KVME_TYPE_SG);
2495         case OBJT_MGTDEVICE:
2496                 return (KVME_TYPE_MGTDEVICE);
2497         default:
2498                 return (KVME_TYPE_UNKNOWN);
2499         }
2500 }
2501
2502 static int
2503 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2504 {
2505         struct kinfo_vmobject *kvo;
2506         char *fullpath, *freepath;
2507         struct vnode *vp;
2508         struct vattr va;
2509         vm_object_t obj;
2510         vm_page_t m;
2511         int count, error;
2512
2513         if (req->oldptr == NULL) {
2514                 /*
2515                  * If an old buffer has not been provided, generate an
2516                  * estimate of the space needed for a subsequent call.
2517                  */
2518                 mtx_lock(&vm_object_list_mtx);
2519                 count = 0;
2520                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2521                         if (obj->type == OBJT_DEAD)
2522                                 continue;
2523                         count++;
2524                 }
2525                 mtx_unlock(&vm_object_list_mtx);
2526                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2527                     count * 11 / 10));
2528         }
2529
2530         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2531         error = 0;
2532
2533         /*
2534          * VM objects are type stable and are never removed from the
2535          * list once added.  This allows us to safely read obj->object_list
2536          * after reacquiring the VM object lock.
2537          */
2538         mtx_lock(&vm_object_list_mtx);
2539         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2540                 if (obj->type == OBJT_DEAD)
2541                         continue;
2542                 VM_OBJECT_RLOCK(obj);
2543                 if (obj->type == OBJT_DEAD) {
2544                         VM_OBJECT_RUNLOCK(obj);
2545                         continue;
2546                 }
2547                 mtx_unlock(&vm_object_list_mtx);
2548                 kvo->kvo_size = ptoa(obj->size);
2549                 kvo->kvo_resident = obj->resident_page_count;
2550                 kvo->kvo_ref_count = obj->ref_count;
2551                 kvo->kvo_shadow_count = obj->shadow_count;
2552                 kvo->kvo_memattr = obj->memattr;
2553                 kvo->kvo_active = 0;
2554                 kvo->kvo_inactive = 0;
2555                 TAILQ_FOREACH(m, &obj->memq, listq) {
2556                         /*
2557                          * A page may belong to the object but be
2558                          * dequeued and set to PQ_NONE while the
2559                          * object lock is not held.  This makes the
2560                          * reads of m->queue below racy, and we do not
2561                          * count pages set to PQ_NONE.  However, this
2562                          * sysctl is only meant to give an
2563                          * approximation of the system anyway.
2564                          */
2565                         if (m->a.queue == PQ_ACTIVE)
2566                                 kvo->kvo_active++;
2567                         else if (m->a.queue == PQ_INACTIVE)
2568                                 kvo->kvo_inactive++;
2569                 }
2570
2571                 kvo->kvo_vn_fileid = 0;
2572                 kvo->kvo_vn_fsid = 0;
2573                 kvo->kvo_vn_fsid_freebsd11 = 0;
2574                 freepath = NULL;
2575                 fullpath = "";
2576                 kvo->kvo_type = vm_object_kvme_type(obj, &vp);
2577                 if (vp != NULL)
2578                         vref(vp);
2579                 VM_OBJECT_RUNLOCK(obj);
2580                 if (vp != NULL) {
2581                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2582                         vn_lock(vp, LK_SHARED | LK_RETRY);
2583                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2584                                 kvo->kvo_vn_fileid = va.va_fileid;
2585                                 kvo->kvo_vn_fsid = va.va_fsid;
2586                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2587                                                                 /* truncate */
2588                         }
2589                         vput(vp);
2590                 }
2591
2592                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2593                 if (freepath != NULL)
2594                         free(freepath, M_TEMP);
2595
2596                 /* Pack record size down */
2597                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2598                     + strlen(kvo->kvo_path) + 1;
2599                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2600                     sizeof(uint64_t));
2601                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2602                 mtx_lock(&vm_object_list_mtx);
2603                 if (error)
2604                         break;
2605         }
2606         mtx_unlock(&vm_object_list_mtx);
2607         free(kvo, M_TEMP);
2608         return (error);
2609 }
2610 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2611     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2612     "List of VM objects");
2613
2614 #include "opt_ddb.h"
2615 #ifdef DDB
2616 #include <sys/kernel.h>
2617
2618 #include <sys/cons.h>
2619
2620 #include <ddb/ddb.h>
2621
2622 static int
2623 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2624 {
2625         vm_map_t tmpm;
2626         vm_map_entry_t tmpe;
2627         vm_object_t obj;
2628
2629         if (map == 0)
2630                 return 0;
2631
2632         if (entry == 0) {
2633                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2634                         if (_vm_object_in_map(map, object, tmpe)) {
2635                                 return 1;
2636                         }
2637                 }
2638         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2639                 tmpm = entry->object.sub_map;
2640                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2641                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2642                                 return 1;
2643                         }
2644                 }
2645         } else if ((obj = entry->object.vm_object) != NULL) {
2646                 for (; obj; obj = obj->backing_object)
2647                         if (obj == object) {
2648                                 return 1;
2649                         }
2650         }
2651         return 0;
2652 }
2653
2654 static int
2655 vm_object_in_map(vm_object_t object)
2656 {
2657         struct proc *p;
2658
2659         /* sx_slock(&allproc_lock); */
2660         FOREACH_PROC_IN_SYSTEM(p) {
2661                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2662                         continue;
2663                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2664                         /* sx_sunlock(&allproc_lock); */
2665                         return 1;
2666                 }
2667         }
2668         /* sx_sunlock(&allproc_lock); */
2669         if (_vm_object_in_map(kernel_map, object, 0))
2670                 return 1;
2671         return 0;
2672 }
2673
2674 DB_SHOW_COMMAND(vmochk, vm_object_check)
2675 {
2676         vm_object_t object;
2677
2678         /*
2679          * make sure that internal objs are in a map somewhere
2680          * and none have zero ref counts.
2681          */
2682         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2683                 if ((object->flags & OBJ_ANON) != 0) {
2684                         if (object->ref_count == 0) {
2685                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2686                                         (long)object->size);
2687                         }
2688                         if (!vm_object_in_map(object)) {
2689                                 db_printf(
2690                         "vmochk: internal obj is not in a map: "
2691                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2692                                     object->ref_count, (u_long)object->size, 
2693                                     (u_long)object->size,
2694                                     (void *)object->backing_object);
2695                         }
2696                 }
2697         }
2698 }
2699
2700 /*
2701  *      vm_object_print:        [ debug ]
2702  */
2703 DB_SHOW_COMMAND(object, vm_object_print_static)
2704 {
2705         /* XXX convert args. */
2706         vm_object_t object = (vm_object_t)addr;
2707         boolean_t full = have_addr;
2708
2709         vm_page_t p;
2710
2711         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2712 #define count   was_count
2713
2714         int count;
2715
2716         if (object == NULL)
2717                 return;
2718
2719         db_iprintf(
2720             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2721             object, (int)object->type, (uintmax_t)object->size,
2722             object->resident_page_count, object->ref_count, object->flags,
2723             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2724         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2725             object->shadow_count, 
2726             object->backing_object ? object->backing_object->ref_count : 0,
2727             object->backing_object, (uintmax_t)object->backing_object_offset);
2728
2729         if (!full)
2730                 return;
2731
2732         db_indent += 2;
2733         count = 0;
2734         TAILQ_FOREACH(p, &object->memq, listq) {
2735                 if (count == 0)
2736                         db_iprintf("memory:=");
2737                 else if (count == 6) {
2738                         db_printf("\n");
2739                         db_iprintf(" ...");
2740                         count = 0;
2741                 } else
2742                         db_printf(",");
2743                 count++;
2744
2745                 db_printf("(off=0x%jx,page=0x%jx)",
2746                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2747         }
2748         if (count != 0)
2749                 db_printf("\n");
2750         db_indent -= 2;
2751 }
2752
2753 /* XXX. */
2754 #undef count
2755
2756 /* XXX need this non-static entry for calling from vm_map_print. */
2757 void
2758 vm_object_print(
2759         /* db_expr_t */ long addr,
2760         boolean_t have_addr,
2761         /* db_expr_t */ long count,
2762         char *modif)
2763 {
2764         vm_object_print_static(addr, have_addr, count, modif);
2765 }
2766
2767 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2768 {
2769         vm_object_t object;
2770         vm_pindex_t fidx;
2771         vm_paddr_t pa;
2772         vm_page_t m, prev_m;
2773         int rcount, nl, c;
2774
2775         nl = 0;
2776         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2777                 db_printf("new object: %p\n", (void *)object);
2778                 if (nl > 18) {
2779                         c = cngetc();
2780                         if (c != ' ')
2781                                 return;
2782                         nl = 0;
2783                 }
2784                 nl++;
2785                 rcount = 0;
2786                 fidx = 0;
2787                 pa = -1;
2788                 TAILQ_FOREACH(m, &object->memq, listq) {
2789                         if (m->pindex > 128)
2790                                 break;
2791                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2792                             prev_m->pindex + 1 != m->pindex) {
2793                                 if (rcount) {
2794                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2795                                                 (long)fidx, rcount, (long)pa);
2796                                         if (nl > 18) {
2797                                                 c = cngetc();
2798                                                 if (c != ' ')
2799                                                         return;
2800                                                 nl = 0;
2801                                         }
2802                                         nl++;
2803                                         rcount = 0;
2804                                 }
2805                         }                               
2806                         if (rcount &&
2807                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2808                                 ++rcount;
2809                                 continue;
2810                         }
2811                         if (rcount) {
2812                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2813                                         (long)fidx, rcount, (long)pa);
2814                                 if (nl > 18) {
2815                                         c = cngetc();
2816                                         if (c != ' ')
2817                                                 return;
2818                                         nl = 0;
2819                                 }
2820                                 nl++;
2821                         }
2822                         fidx = m->pindex;
2823                         pa = VM_PAGE_TO_PHYS(m);
2824                         rcount = 1;
2825                 }
2826                 if (rcount) {
2827                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2828                                 (long)fidx, rcount, (long)pa);
2829                         if (nl > 18) {
2830                                 c = cngetc();
2831                                 if (c != ' ')
2832                                         return;
2833                                 nl = 0;
2834                         }
2835                         nl++;
2836                 }
2837         }
2838 }
2839 #endif /* DDB */