]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_object.c
ssh: update to OpenSSH v8.9p1
[FreeBSD/FreeBSD.git] / sys / vm / vm_object.c
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/blockcount.h>
75 #include <sys/cpuset.h>
76 #include <sys/limits.h>
77 #include <sys/lock.h>
78 #include <sys/mman.h>
79 #include <sys/mount.h>
80 #include <sys/kernel.h>
81 #include <sys/pctrie.h>
82 #include <sys/sysctl.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>           /* for curproc, pageproc */
85 #include <sys/refcount.h>
86 #include <sys/socket.h>
87 #include <sys/resourcevar.h>
88 #include <sys/refcount.h>
89 #include <sys/rwlock.h>
90 #include <sys/user.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_phys.h>
104 #include <vm/vm_pagequeue.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_radix.h>
109 #include <vm/vm_reserv.h>
110 #include <vm/uma.h>
111
112 static int old_msync;
113 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
114     "Use old (insecure) msync behavior");
115
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
117                     int pagerflags, int flags, boolean_t *allclean,
118                     boolean_t *eio);
119 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
120                     boolean_t *allclean);
121 static void     vm_object_backing_remove(vm_object_t object);
122
123 /*
124  *      Virtual memory objects maintain the actual data
125  *      associated with allocated virtual memory.  A given
126  *      page of memory exists within exactly one object.
127  *
128  *      An object is only deallocated when all "references"
129  *      are given up.  Only one "reference" to a given
130  *      region of an object should be writeable.
131  *
132  *      Associated with each object is a list of all resident
133  *      memory pages belonging to that object; this list is
134  *      maintained by the "vm_page" module, and locked by the object's
135  *      lock.
136  *
137  *      Each object also records a "pager" routine which is
138  *      used to retrieve (and store) pages to the proper backing
139  *      storage.  In addition, objects may be backed by other
140  *      objects from which they were virtual-copied.
141  *
142  *      The only items within the object structure which are
143  *      modified after time of creation are:
144  *              reference count         locked by object's lock
145  *              pager routine           locked by object's lock
146  *
147  */
148
149 struct object_q vm_object_list;
150 struct mtx vm_object_list_mtx;  /* lock for object list and count */
151
152 struct vm_object kernel_object_store;
153
154 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
155     "VM object stats");
156
157 static COUNTER_U64_DEFINE_EARLY(object_collapses);
158 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
159     &object_collapses,
160     "VM object collapses");
161
162 static COUNTER_U64_DEFINE_EARLY(object_bypasses);
163 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
164     &object_bypasses,
165     "VM object bypasses");
166
167 static COUNTER_U64_DEFINE_EARLY(object_collapse_waits);
168 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD,
169     &object_collapse_waits,
170     "Number of sleeps for collapse");
171
172 static uma_zone_t obj_zone;
173
174 static int vm_object_zinit(void *mem, int size, int flags);
175
176 #ifdef INVARIANTS
177 static void vm_object_zdtor(void *mem, int size, void *arg);
178
179 static void
180 vm_object_zdtor(void *mem, int size, void *arg)
181 {
182         vm_object_t object;
183
184         object = (vm_object_t)mem;
185         KASSERT(object->ref_count == 0,
186             ("object %p ref_count = %d", object, object->ref_count));
187         KASSERT(TAILQ_EMPTY(&object->memq),
188             ("object %p has resident pages in its memq", object));
189         KASSERT(vm_radix_is_empty(&object->rtree),
190             ("object %p has resident pages in its trie", object));
191 #if VM_NRESERVLEVEL > 0
192         KASSERT(LIST_EMPTY(&object->rvq),
193             ("object %p has reservations",
194             object));
195 #endif
196         KASSERT(!vm_object_busied(object),
197             ("object %p busy = %d", object, blockcount_read(&object->busy)));
198         KASSERT(object->resident_page_count == 0,
199             ("object %p resident_page_count = %d",
200             object, object->resident_page_count));
201         KASSERT(atomic_load_int(&object->shadow_count) == 0,
202             ("object %p shadow_count = %d",
203             object, atomic_load_int(&object->shadow_count)));
204         KASSERT(object->type == OBJT_DEAD,
205             ("object %p has non-dead type %d",
206             object, object->type));
207 }
208 #endif
209
210 static int
211 vm_object_zinit(void *mem, int size, int flags)
212 {
213         vm_object_t object;
214
215         object = (vm_object_t)mem;
216         rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
217
218         /* These are true for any object that has been freed */
219         object->type = OBJT_DEAD;
220         vm_radix_init(&object->rtree);
221         refcount_init(&object->ref_count, 0);
222         blockcount_init(&object->paging_in_progress);
223         blockcount_init(&object->busy);
224         object->resident_page_count = 0;
225         atomic_store_int(&object->shadow_count, 0);
226         object->flags = OBJ_DEAD;
227
228         mtx_lock(&vm_object_list_mtx);
229         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
230         mtx_unlock(&vm_object_list_mtx);
231         return (0);
232 }
233
234 static void
235 _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags,
236     vm_object_t object, void *handle)
237 {
238
239         TAILQ_INIT(&object->memq);
240         LIST_INIT(&object->shadow_head);
241
242         object->type = type;
243         object->flags = flags;
244         if ((flags & OBJ_SWAP) != 0)
245                 pctrie_init(&object->un_pager.swp.swp_blks);
246
247         /*
248          * Ensure that swap_pager_swapoff() iteration over object_list
249          * sees up to date type and pctrie head if it observed
250          * non-dead object.
251          */
252         atomic_thread_fence_rel();
253
254         object->pg_color = 0;
255         object->size = size;
256         object->domain.dr_policy = NULL;
257         object->generation = 1;
258         object->cleangeneration = 1;
259         refcount_init(&object->ref_count, 1);
260         object->memattr = VM_MEMATTR_DEFAULT;
261         object->cred = NULL;
262         object->charge = 0;
263         object->handle = handle;
264         object->backing_object = NULL;
265         object->backing_object_offset = (vm_ooffset_t) 0;
266 #if VM_NRESERVLEVEL > 0
267         LIST_INIT(&object->rvq);
268 #endif
269         umtx_shm_object_init(object);
270 }
271
272 /*
273  *      vm_object_init:
274  *
275  *      Initialize the VM objects module.
276  */
277 void
278 vm_object_init(void)
279 {
280         TAILQ_INIT(&vm_object_list);
281         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
282
283         rw_init(&kernel_object->lock, "kernel vm object");
284         _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
285             VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL);
286 #if VM_NRESERVLEVEL > 0
287         kernel_object->flags |= OBJ_COLORED;
288         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
289 #endif
290         kernel_object->un_pager.phys.ops = &default_phys_pg_ops;
291
292         /*
293          * The lock portion of struct vm_object must be type stable due
294          * to vm_pageout_fallback_object_lock locking a vm object
295          * without holding any references to it.
296          *
297          * paging_in_progress is valid always.  Lockless references to
298          * the objects may acquire pip and then check OBJ_DEAD.
299          */
300         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
301 #ifdef INVARIANTS
302             vm_object_zdtor,
303 #else
304             NULL,
305 #endif
306             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307
308         vm_radix_zinit();
309 }
310
311 void
312 vm_object_clear_flag(vm_object_t object, u_short bits)
313 {
314
315         VM_OBJECT_ASSERT_WLOCKED(object);
316         object->flags &= ~bits;
317 }
318
319 /*
320  *      Sets the default memory attribute for the specified object.  Pages
321  *      that are allocated to this object are by default assigned this memory
322  *      attribute.
323  *
324  *      Presently, this function must be called before any pages are allocated
325  *      to the object.  In the future, this requirement may be relaxed for
326  *      "default" and "swap" objects.
327  */
328 int
329 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
330 {
331
332         VM_OBJECT_ASSERT_WLOCKED(object);
333
334         if (object->type == OBJT_DEAD)
335                 return (KERN_INVALID_ARGUMENT);
336         if (!TAILQ_EMPTY(&object->memq))
337                 return (KERN_FAILURE);
338
339         object->memattr = memattr;
340         return (KERN_SUCCESS);
341 }
342
343 void
344 vm_object_pip_add(vm_object_t object, short i)
345 {
346
347         if (i > 0)
348                 blockcount_acquire(&object->paging_in_progress, i);
349 }
350
351 void
352 vm_object_pip_wakeup(vm_object_t object)
353 {
354
355         vm_object_pip_wakeupn(object, 1);
356 }
357
358 void
359 vm_object_pip_wakeupn(vm_object_t object, short i)
360 {
361
362         if (i > 0)
363                 blockcount_release(&object->paging_in_progress, i);
364 }
365
366 /*
367  * Atomically drop the object lock and wait for pip to drain.  This protects
368  * from sleep/wakeup races due to identity changes.  The lock is not re-acquired
369  * on return.
370  */
371 static void
372 vm_object_pip_sleep(vm_object_t object, const char *waitid)
373 {
374
375         (void)blockcount_sleep(&object->paging_in_progress, &object->lock,
376             waitid, PVM | PDROP);
377 }
378
379 void
380 vm_object_pip_wait(vm_object_t object, const char *waitid)
381 {
382
383         VM_OBJECT_ASSERT_WLOCKED(object);
384
385         blockcount_wait(&object->paging_in_progress, &object->lock, waitid,
386             PVM);
387 }
388
389 void
390 vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid)
391 {
392
393         VM_OBJECT_ASSERT_UNLOCKED(object);
394
395         blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM);
396 }
397
398 /*
399  *      vm_object_allocate:
400  *
401  *      Returns a new object with the given size.
402  */
403 vm_object_t
404 vm_object_allocate(objtype_t type, vm_pindex_t size)
405 {
406         vm_object_t object;
407         u_short flags;
408
409         switch (type) {
410         case OBJT_DEAD:
411                 panic("vm_object_allocate: can't create OBJT_DEAD");
412         case OBJT_DEFAULT:
413                 flags = OBJ_COLORED;
414                 break;
415         case OBJT_SWAP:
416                 flags = OBJ_COLORED | OBJ_SWAP;
417                 break;
418         case OBJT_DEVICE:
419         case OBJT_SG:
420                 flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
421                 break;
422         case OBJT_MGTDEVICE:
423                 flags = OBJ_FICTITIOUS;
424                 break;
425         case OBJT_PHYS:
426                 flags = OBJ_UNMANAGED;
427                 break;
428         case OBJT_VNODE:
429                 flags = 0;
430                 break;
431         default:
432                 panic("vm_object_allocate: type %d is undefined or dynamic",
433                     type);
434         }
435         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
436         _vm_object_allocate(type, size, flags, object, NULL);
437
438         return (object);
439 }
440
441 vm_object_t
442 vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags)
443 {
444         vm_object_t object;
445
446         MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */);
447         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
448         _vm_object_allocate(dyntype, size, flags, object, NULL);
449
450         return (object);
451 }
452
453 /*
454  *      vm_object_allocate_anon:
455  *
456  *      Returns a new default object of the given size and marked as
457  *      anonymous memory for special split/collapse handling.  Color
458  *      to be initialized by the caller.
459  */
460 vm_object_t
461 vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object,
462     struct ucred *cred, vm_size_t charge)
463 {
464         vm_object_t handle, object;
465
466         if (backing_object == NULL)
467                 handle = NULL;
468         else if ((backing_object->flags & OBJ_ANON) != 0)
469                 handle = backing_object->handle;
470         else
471                 handle = backing_object;
472         object = uma_zalloc(obj_zone, M_WAITOK);
473         _vm_object_allocate(OBJT_DEFAULT, size, OBJ_ANON | OBJ_ONEMAPPING,
474             object, handle);
475         object->cred = cred;
476         object->charge = cred != NULL ? charge : 0;
477         return (object);
478 }
479
480 static void
481 vm_object_reference_vnode(vm_object_t object)
482 {
483         u_int old;
484
485         /*
486          * vnode objects need the lock for the first reference
487          * to serialize with vnode_object_deallocate().
488          */
489         if (!refcount_acquire_if_gt(&object->ref_count, 0)) {
490                 VM_OBJECT_RLOCK(object);
491                 old = refcount_acquire(&object->ref_count);
492                 if (object->type == OBJT_VNODE && old == 0)
493                         vref(object->handle);
494                 VM_OBJECT_RUNLOCK(object);
495         }
496 }
497
498 /*
499  *      vm_object_reference:
500  *
501  *      Acquires a reference to the given object.
502  */
503 void
504 vm_object_reference(vm_object_t object)
505 {
506
507         if (object == NULL)
508                 return;
509
510         if (object->type == OBJT_VNODE)
511                 vm_object_reference_vnode(object);
512         else
513                 refcount_acquire(&object->ref_count);
514         KASSERT((object->flags & OBJ_DEAD) == 0,
515             ("vm_object_reference: Referenced dead object."));
516 }
517
518 /*
519  *      vm_object_reference_locked:
520  *
521  *      Gets another reference to the given object.
522  *
523  *      The object must be locked.
524  */
525 void
526 vm_object_reference_locked(vm_object_t object)
527 {
528         u_int old;
529
530         VM_OBJECT_ASSERT_LOCKED(object);
531         old = refcount_acquire(&object->ref_count);
532         if (object->type == OBJT_VNODE && old == 0)
533                 vref(object->handle);
534         KASSERT((object->flags & OBJ_DEAD) == 0,
535             ("vm_object_reference: Referenced dead object."));
536 }
537
538 /*
539  * Handle deallocating an object of type OBJT_VNODE.
540  */
541 static void
542 vm_object_deallocate_vnode(vm_object_t object)
543 {
544         struct vnode *vp = (struct vnode *) object->handle;
545         bool last;
546
547         KASSERT(object->type == OBJT_VNODE,
548             ("vm_object_deallocate_vnode: not a vnode object"));
549         KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp"));
550
551         /* Object lock to protect handle lookup. */
552         last = refcount_release(&object->ref_count);
553         VM_OBJECT_RUNLOCK(object);
554
555         if (!last)
556                 return;
557
558         if (!umtx_shm_vnobj_persistent)
559                 umtx_shm_object_terminated(object);
560
561         /* vrele may need the vnode lock. */
562         vrele(vp);
563 }
564
565 /*
566  * We dropped a reference on an object and discovered that it had a
567  * single remaining shadow.  This is a sibling of the reference we
568  * dropped.  Attempt to collapse the sibling and backing object.
569  */
570 static vm_object_t
571 vm_object_deallocate_anon(vm_object_t backing_object)
572 {
573         vm_object_t object;
574
575         /* Fetch the final shadow.  */
576         object = LIST_FIRST(&backing_object->shadow_head);
577         KASSERT(object != NULL &&
578             atomic_load_int(&backing_object->shadow_count) == 1,
579             ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d",
580             backing_object->ref_count,
581             atomic_load_int(&backing_object->shadow_count)));
582         KASSERT((object->flags & OBJ_ANON) != 0,
583             ("invalid shadow object %p", object));
584
585         if (!VM_OBJECT_TRYWLOCK(object)) {
586                 /*
587                  * Prevent object from disappearing since we do not have a
588                  * reference.
589                  */
590                 vm_object_pip_add(object, 1);
591                 VM_OBJECT_WUNLOCK(backing_object);
592                 VM_OBJECT_WLOCK(object);
593                 vm_object_pip_wakeup(object);
594         } else
595                 VM_OBJECT_WUNLOCK(backing_object);
596
597         /*
598          * Check for a collapse/terminate race with the last reference holder.
599          */
600         if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 ||
601             !refcount_acquire_if_not_zero(&object->ref_count)) {
602                 VM_OBJECT_WUNLOCK(object);
603                 return (NULL);
604         }
605         backing_object = object->backing_object;
606         if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0)
607                 vm_object_collapse(object);
608         VM_OBJECT_WUNLOCK(object);
609
610         return (object);
611 }
612
613 /*
614  *      vm_object_deallocate:
615  *
616  *      Release a reference to the specified object,
617  *      gained either through a vm_object_allocate
618  *      or a vm_object_reference call.  When all references
619  *      are gone, storage associated with this object
620  *      may be relinquished.
621  *
622  *      No object may be locked.
623  */
624 void
625 vm_object_deallocate(vm_object_t object)
626 {
627         vm_object_t temp;
628         bool released;
629
630         while (object != NULL) {
631                 /*
632                  * If the reference count goes to 0 we start calling
633                  * vm_object_terminate() on the object chain.  A ref count
634                  * of 1 may be a special case depending on the shadow count
635                  * being 0 or 1.  These cases require a write lock on the
636                  * object.
637                  */
638                 if ((object->flags & OBJ_ANON) == 0)
639                         released = refcount_release_if_gt(&object->ref_count, 1);
640                 else
641                         released = refcount_release_if_gt(&object->ref_count, 2);
642                 if (released)
643                         return;
644
645                 if (object->type == OBJT_VNODE) {
646                         VM_OBJECT_RLOCK(object);
647                         if (object->type == OBJT_VNODE) {
648                                 vm_object_deallocate_vnode(object);
649                                 return;
650                         }
651                         VM_OBJECT_RUNLOCK(object);
652                 }
653
654                 VM_OBJECT_WLOCK(object);
655                 KASSERT(object->ref_count > 0,
656                     ("vm_object_deallocate: object deallocated too many times: %d",
657                     object->type));
658
659                 /*
660                  * If this is not the final reference to an anonymous
661                  * object we may need to collapse the shadow chain.
662                  */
663                 if (!refcount_release(&object->ref_count)) {
664                         if (object->ref_count > 1 ||
665                             atomic_load_int(&object->shadow_count) == 0) {
666                                 if ((object->flags & OBJ_ANON) != 0 &&
667                                     object->ref_count == 1)
668                                         vm_object_set_flag(object,
669                                             OBJ_ONEMAPPING);
670                                 VM_OBJECT_WUNLOCK(object);
671                                 return;
672                         }
673
674                         /* Handle collapsing last ref on anonymous objects. */
675                         object = vm_object_deallocate_anon(object);
676                         continue;
677                 }
678
679                 /*
680                  * Handle the final reference to an object.  We restart
681                  * the loop with the backing object to avoid recursion.
682                  */
683                 umtx_shm_object_terminated(object);
684                 temp = object->backing_object;
685                 if (temp != NULL) {
686                         KASSERT(object->type == OBJT_DEFAULT ||
687                             object->type == OBJT_SWAP,
688                             ("shadowed tmpfs v_object 2 %p", object));
689                         vm_object_backing_remove(object);
690                 }
691
692                 KASSERT((object->flags & OBJ_DEAD) == 0,
693                     ("vm_object_deallocate: Terminating dead object."));
694                 vm_object_set_flag(object, OBJ_DEAD);
695                 vm_object_terminate(object);
696                 object = temp;
697         }
698 }
699
700 /*
701  *      vm_object_destroy removes the object from the global object list
702  *      and frees the space for the object.
703  */
704 void
705 vm_object_destroy(vm_object_t object)
706 {
707
708         /*
709          * Release the allocation charge.
710          */
711         if (object->cred != NULL) {
712                 swap_release_by_cred(object->charge, object->cred);
713                 object->charge = 0;
714                 crfree(object->cred);
715                 object->cred = NULL;
716         }
717
718         /*
719          * Free the space for the object.
720          */
721         uma_zfree(obj_zone, object);
722 }
723
724 static void
725 vm_object_sub_shadow(vm_object_t object)
726 {
727         KASSERT(object->shadow_count >= 1,
728             ("object %p sub_shadow count zero", object));
729         atomic_subtract_int(&object->shadow_count, 1);
730 }
731
732 static void
733 vm_object_backing_remove_locked(vm_object_t object)
734 {
735         vm_object_t backing_object;
736
737         backing_object = object->backing_object;
738         VM_OBJECT_ASSERT_WLOCKED(object);
739         VM_OBJECT_ASSERT_WLOCKED(backing_object);
740
741         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
742             ("vm_object_backing_remove: Removing collapsing object."));
743
744         vm_object_sub_shadow(backing_object);
745         if ((object->flags & OBJ_SHADOWLIST) != 0) {
746                 LIST_REMOVE(object, shadow_list);
747                 object->flags &= ~OBJ_SHADOWLIST;
748         }
749         object->backing_object = NULL;
750 }
751
752 static void
753 vm_object_backing_remove(vm_object_t object)
754 {
755         vm_object_t backing_object;
756
757         VM_OBJECT_ASSERT_WLOCKED(object);
758
759         backing_object = object->backing_object;
760         if ((object->flags & OBJ_SHADOWLIST) != 0) {
761                 VM_OBJECT_WLOCK(backing_object);
762                 vm_object_backing_remove_locked(object);
763                 VM_OBJECT_WUNLOCK(backing_object);
764         } else {
765                 object->backing_object = NULL;
766                 vm_object_sub_shadow(backing_object);
767         }
768 }
769
770 static void
771 vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object)
772 {
773
774         VM_OBJECT_ASSERT_WLOCKED(object);
775
776         atomic_add_int(&backing_object->shadow_count, 1);
777         if ((backing_object->flags & OBJ_ANON) != 0) {
778                 VM_OBJECT_ASSERT_WLOCKED(backing_object);
779                 LIST_INSERT_HEAD(&backing_object->shadow_head, object,
780                     shadow_list);
781                 object->flags |= OBJ_SHADOWLIST;
782         }
783         object->backing_object = backing_object;
784 }
785
786 static void
787 vm_object_backing_insert(vm_object_t object, vm_object_t backing_object)
788 {
789
790         VM_OBJECT_ASSERT_WLOCKED(object);
791
792         if ((backing_object->flags & OBJ_ANON) != 0) {
793                 VM_OBJECT_WLOCK(backing_object);
794                 vm_object_backing_insert_locked(object, backing_object);
795                 VM_OBJECT_WUNLOCK(backing_object);
796         } else {
797                 object->backing_object = backing_object;
798                 atomic_add_int(&backing_object->shadow_count, 1);
799         }
800 }
801
802 /*
803  * Insert an object into a backing_object's shadow list with an additional
804  * reference to the backing_object added.
805  */
806 static void
807 vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object)
808 {
809
810         VM_OBJECT_ASSERT_WLOCKED(object);
811
812         if ((backing_object->flags & OBJ_ANON) != 0) {
813                 VM_OBJECT_WLOCK(backing_object);
814                 KASSERT((backing_object->flags & OBJ_DEAD) == 0,
815                     ("shadowing dead anonymous object"));
816                 vm_object_reference_locked(backing_object);
817                 vm_object_backing_insert_locked(object, backing_object);
818                 vm_object_clear_flag(backing_object, OBJ_ONEMAPPING);
819                 VM_OBJECT_WUNLOCK(backing_object);
820         } else {
821                 vm_object_reference(backing_object);
822                 atomic_add_int(&backing_object->shadow_count, 1);
823                 object->backing_object = backing_object;
824         }
825 }
826
827 /*
828  * Transfer a backing reference from backing_object to object.
829  */
830 static void
831 vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object)
832 {
833         vm_object_t new_backing_object;
834
835         /*
836          * Note that the reference to backing_object->backing_object
837          * moves from within backing_object to within object.
838          */
839         vm_object_backing_remove_locked(object);
840         new_backing_object = backing_object->backing_object;
841         if (new_backing_object == NULL)
842                 return;
843         if ((new_backing_object->flags & OBJ_ANON) != 0) {
844                 VM_OBJECT_WLOCK(new_backing_object);
845                 vm_object_backing_remove_locked(backing_object);
846                 vm_object_backing_insert_locked(object, new_backing_object);
847                 VM_OBJECT_WUNLOCK(new_backing_object);
848         } else {
849                 /*
850                  * shadow_count for new_backing_object is left
851                  * unchanged, its reference provided by backing_object
852                  * is replaced by object.
853                  */
854                 object->backing_object = new_backing_object;
855                 backing_object->backing_object = NULL;
856         }
857 }
858
859 /*
860  * Wait for a concurrent collapse to settle.
861  */
862 static void
863 vm_object_collapse_wait(vm_object_t object)
864 {
865
866         VM_OBJECT_ASSERT_WLOCKED(object);
867
868         while ((object->flags & OBJ_COLLAPSING) != 0) {
869                 vm_object_pip_wait(object, "vmcolwait");
870                 counter_u64_add(object_collapse_waits, 1);
871         }
872 }
873
874 /*
875  * Waits for a backing object to clear a pending collapse and returns
876  * it locked if it is an ANON object.
877  */
878 static vm_object_t
879 vm_object_backing_collapse_wait(vm_object_t object)
880 {
881         vm_object_t backing_object;
882
883         VM_OBJECT_ASSERT_WLOCKED(object);
884
885         for (;;) {
886                 backing_object = object->backing_object;
887                 if (backing_object == NULL ||
888                     (backing_object->flags & OBJ_ANON) == 0)
889                         return (NULL);
890                 VM_OBJECT_WLOCK(backing_object);
891                 if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0)
892                         break;
893                 VM_OBJECT_WUNLOCK(object);
894                 vm_object_pip_sleep(backing_object, "vmbckwait");
895                 counter_u64_add(object_collapse_waits, 1);
896                 VM_OBJECT_WLOCK(object);
897         }
898         return (backing_object);
899 }
900
901 /*
902  *      vm_object_terminate_pages removes any remaining pageable pages
903  *      from the object and resets the object to an empty state.
904  */
905 static void
906 vm_object_terminate_pages(vm_object_t object)
907 {
908         vm_page_t p, p_next;
909
910         VM_OBJECT_ASSERT_WLOCKED(object);
911
912         /*
913          * Free any remaining pageable pages.  This also removes them from the
914          * paging queues.  However, don't free wired pages, just remove them
915          * from the object.  Rather than incrementally removing each page from
916          * the object, the page and object are reset to any empty state. 
917          */
918         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
919                 vm_page_assert_unbusied(p);
920                 KASSERT(p->object == object &&
921                     (p->ref_count & VPRC_OBJREF) != 0,
922                     ("vm_object_terminate_pages: page %p is inconsistent", p));
923
924                 p->object = NULL;
925                 if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) {
926                         VM_CNT_INC(v_pfree);
927                         vm_page_free(p);
928                 }
929         }
930
931         /*
932          * If the object contained any pages, then reset it to an empty state.
933          * None of the object's fields, including "resident_page_count", were
934          * modified by the preceding loop.
935          */
936         if (object->resident_page_count != 0) {
937                 vm_radix_reclaim_allnodes(&object->rtree);
938                 TAILQ_INIT(&object->memq);
939                 object->resident_page_count = 0;
940                 if (object->type == OBJT_VNODE)
941                         vdrop(object->handle);
942         }
943 }
944
945 /*
946  *      vm_object_terminate actually destroys the specified object, freeing
947  *      up all previously used resources.
948  *
949  *      The object must be locked.
950  *      This routine may block.
951  */
952 void
953 vm_object_terminate(vm_object_t object)
954 {
955
956         VM_OBJECT_ASSERT_WLOCKED(object);
957         KASSERT((object->flags & OBJ_DEAD) != 0,
958             ("terminating non-dead obj %p", object));
959         KASSERT((object->flags & OBJ_COLLAPSING) == 0,
960             ("terminating collapsing obj %p", object));
961         KASSERT(object->backing_object == NULL,
962             ("terminating shadow obj %p", object));
963
964         /*
965          * Wait for the pageout daemon and other current users to be
966          * done with the object.  Note that new paging_in_progress
967          * users can come after this wait, but they must check
968          * OBJ_DEAD flag set (without unlocking the object), and avoid
969          * the object being terminated.
970          */
971         vm_object_pip_wait(object, "objtrm");
972
973         KASSERT(object->ref_count == 0,
974             ("vm_object_terminate: object with references, ref_count=%d",
975             object->ref_count));
976
977         if ((object->flags & OBJ_PG_DTOR) == 0)
978                 vm_object_terminate_pages(object);
979
980 #if VM_NRESERVLEVEL > 0
981         if (__predict_false(!LIST_EMPTY(&object->rvq)))
982                 vm_reserv_break_all(object);
983 #endif
984
985         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
986             (object->flags & OBJ_SWAP) != 0,
987             ("%s: non-swap obj %p has cred", __func__, object));
988
989         /*
990          * Let the pager know object is dead.
991          */
992         vm_pager_deallocate(object);
993         VM_OBJECT_WUNLOCK(object);
994
995         vm_object_destroy(object);
996 }
997
998 /*
999  * Make the page read-only so that we can clear the object flags.  However, if
1000  * this is a nosync mmap then the object is likely to stay dirty so do not
1001  * mess with the page and do not clear the object flags.  Returns TRUE if the
1002  * page should be flushed, and FALSE otherwise.
1003  */
1004 static boolean_t
1005 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean)
1006 {
1007
1008         vm_page_assert_busied(p);
1009
1010         /*
1011          * If we have been asked to skip nosync pages and this is a
1012          * nosync page, skip it.  Note that the object flags were not
1013          * cleared in this case so we do not have to set them.
1014          */
1015         if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) {
1016                 *allclean = FALSE;
1017                 return (FALSE);
1018         } else {
1019                 pmap_remove_write(p);
1020                 return (p->dirty != 0);
1021         }
1022 }
1023
1024 /*
1025  *      vm_object_page_clean
1026  *
1027  *      Clean all dirty pages in the specified range of object.  Leaves page 
1028  *      on whatever queue it is currently on.   If NOSYNC is set then do not
1029  *      write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC),
1030  *      leaving the object dirty.
1031  *
1032  *      For swap objects backing tmpfs regular files, do not flush anything,
1033  *      but remove write protection on the mapped pages to update mtime through
1034  *      mmaped writes.
1035  *
1036  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
1037  *      synchronous clustering mode implementation.
1038  *
1039  *      Odd semantics: if start == end, we clean everything.
1040  *
1041  *      The object must be locked.
1042  *
1043  *      Returns FALSE if some page from the range was not written, as
1044  *      reported by the pager, and TRUE otherwise.
1045  */
1046 boolean_t
1047 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
1048     int flags)
1049 {
1050         vm_page_t np, p;
1051         vm_pindex_t pi, tend, tstart;
1052         int curgeneration, n, pagerflags;
1053         boolean_t eio, res, allclean;
1054
1055         VM_OBJECT_ASSERT_WLOCKED(object);
1056
1057         if (!vm_object_mightbedirty(object) || object->resident_page_count == 0)
1058                 return (TRUE);
1059
1060         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
1061             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1062         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
1063
1064         tstart = OFF_TO_IDX(start);
1065         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
1066         allclean = tstart == 0 && tend >= object->size;
1067         res = TRUE;
1068
1069 rescan:
1070         curgeneration = object->generation;
1071
1072         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
1073                 pi = p->pindex;
1074                 if (pi >= tend)
1075                         break;
1076                 np = TAILQ_NEXT(p, listq);
1077                 if (vm_page_none_valid(p))
1078                         continue;
1079                 if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) {
1080                         if (object->generation != curgeneration &&
1081                             (flags & OBJPC_SYNC) != 0)
1082                                 goto rescan;
1083                         np = vm_page_find_least(object, pi);
1084                         continue;
1085                 }
1086                 if (!vm_object_page_remove_write(p, flags, &allclean)) {
1087                         vm_page_xunbusy(p);
1088                         continue;
1089                 }
1090                 if (object->type == OBJT_VNODE) {
1091                         n = vm_object_page_collect_flush(object, p, pagerflags,
1092                             flags, &allclean, &eio);
1093                         if (eio) {
1094                                 res = FALSE;
1095                                 allclean = FALSE;
1096                         }
1097                         if (object->generation != curgeneration &&
1098                             (flags & OBJPC_SYNC) != 0)
1099                                 goto rescan;
1100
1101                         /*
1102                          * If the VOP_PUTPAGES() did a truncated write, so
1103                          * that even the first page of the run is not fully
1104                          * written, vm_pageout_flush() returns 0 as the run
1105                          * length.  Since the condition that caused truncated
1106                          * write may be permanent, e.g. exhausted free space,
1107                          * accepting n == 0 would cause an infinite loop.
1108                          *
1109                          * Forwarding the iterator leaves the unwritten page
1110                          * behind, but there is not much we can do there if
1111                          * filesystem refuses to write it.
1112                          */
1113                         if (n == 0) {
1114                                 n = 1;
1115                                 allclean = FALSE;
1116                         }
1117                 } else {
1118                         n = 1;
1119                         vm_page_xunbusy(p);
1120                 }
1121                 np = vm_page_find_least(object, pi + n);
1122         }
1123 #if 0
1124         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
1125 #endif
1126
1127         /*
1128          * Leave updating cleangeneration for tmpfs objects to tmpfs
1129          * scan.  It needs to update mtime, which happens for other
1130          * filesystems during page writeouts.
1131          */
1132         if (allclean && object->type == OBJT_VNODE)
1133                 object->cleangeneration = curgeneration;
1134         return (res);
1135 }
1136
1137 static int
1138 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
1139     int flags, boolean_t *allclean, boolean_t *eio)
1140 {
1141         vm_page_t ma[vm_pageout_page_count], p_first, tp;
1142         int count, i, mreq, runlen;
1143
1144         vm_page_lock_assert(p, MA_NOTOWNED);
1145         vm_page_assert_xbusied(p);
1146         VM_OBJECT_ASSERT_WLOCKED(object);
1147
1148         count = 1;
1149         mreq = 0;
1150
1151         for (tp = p; count < vm_pageout_page_count; count++) {
1152                 tp = vm_page_next(tp);
1153                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1154                         break;
1155                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1156                         vm_page_xunbusy(tp);
1157                         break;
1158                 }
1159         }
1160
1161         for (p_first = p; count < vm_pageout_page_count; count++) {
1162                 tp = vm_page_prev(p_first);
1163                 if (tp == NULL || vm_page_tryxbusy(tp) == 0)
1164                         break;
1165                 if (!vm_object_page_remove_write(tp, flags, allclean)) {
1166                         vm_page_xunbusy(tp);
1167                         break;
1168                 }
1169                 p_first = tp;
1170                 mreq++;
1171         }
1172
1173         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
1174                 ma[i] = tp;
1175
1176         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
1177         return (runlen);
1178 }
1179
1180 /*
1181  * Note that there is absolutely no sense in writing out
1182  * anonymous objects, so we track down the vnode object
1183  * to write out.
1184  * We invalidate (remove) all pages from the address space
1185  * for semantic correctness.
1186  *
1187  * If the backing object is a device object with unmanaged pages, then any
1188  * mappings to the specified range of pages must be removed before this
1189  * function is called.
1190  *
1191  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1192  * may start out with a NULL object.
1193  */
1194 boolean_t
1195 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1196     boolean_t syncio, boolean_t invalidate)
1197 {
1198         vm_object_t backing_object;
1199         struct vnode *vp;
1200         struct mount *mp;
1201         int error, flags, fsync_after;
1202         boolean_t res;
1203
1204         if (object == NULL)
1205                 return (TRUE);
1206         res = TRUE;
1207         error = 0;
1208         VM_OBJECT_WLOCK(object);
1209         while ((backing_object = object->backing_object) != NULL) {
1210                 VM_OBJECT_WLOCK(backing_object);
1211                 offset += object->backing_object_offset;
1212                 VM_OBJECT_WUNLOCK(object);
1213                 object = backing_object;
1214                 if (object->size < OFF_TO_IDX(offset + size))
1215                         size = IDX_TO_OFF(object->size) - offset;
1216         }
1217         /*
1218          * Flush pages if writing is allowed, invalidate them
1219          * if invalidation requested.  Pages undergoing I/O
1220          * will be ignored by vm_object_page_remove().
1221          *
1222          * We cannot lock the vnode and then wait for paging
1223          * to complete without deadlocking against vm_fault.
1224          * Instead we simply call vm_object_page_remove() and
1225          * allow it to block internally on a page-by-page
1226          * basis when it encounters pages undergoing async
1227          * I/O.
1228          */
1229         if (object->type == OBJT_VNODE &&
1230             vm_object_mightbedirty(object) != 0 &&
1231             ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1232                 VM_OBJECT_WUNLOCK(object);
1233                 (void) vn_start_write(vp, &mp, V_WAIT);
1234                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1235                 if (syncio && !invalidate && offset == 0 &&
1236                     atop(size) == object->size) {
1237                         /*
1238                          * If syncing the whole mapping of the file,
1239                          * it is faster to schedule all the writes in
1240                          * async mode, also allowing the clustering,
1241                          * and then wait for i/o to complete.
1242                          */
1243                         flags = 0;
1244                         fsync_after = TRUE;
1245                 } else {
1246                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1247                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1248                         fsync_after = FALSE;
1249                 }
1250                 VM_OBJECT_WLOCK(object);
1251                 res = vm_object_page_clean(object, offset, offset + size,
1252                     flags);
1253                 VM_OBJECT_WUNLOCK(object);
1254                 if (fsync_after)
1255                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1256                 VOP_UNLOCK(vp);
1257                 vn_finished_write(mp);
1258                 if (error != 0)
1259                         res = FALSE;
1260                 VM_OBJECT_WLOCK(object);
1261         }
1262         if ((object->type == OBJT_VNODE ||
1263              object->type == OBJT_DEVICE) && invalidate) {
1264                 if (object->type == OBJT_DEVICE)
1265                         /*
1266                          * The option OBJPR_NOTMAPPED must be passed here
1267                          * because vm_object_page_remove() cannot remove
1268                          * unmanaged mappings.
1269                          */
1270                         flags = OBJPR_NOTMAPPED;
1271                 else if (old_msync)
1272                         flags = 0;
1273                 else
1274                         flags = OBJPR_CLEANONLY;
1275                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1276                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1277         }
1278         VM_OBJECT_WUNLOCK(object);
1279         return (res);
1280 }
1281
1282 /*
1283  * Determine whether the given advice can be applied to the object.  Advice is
1284  * not applied to unmanaged pages since they never belong to page queues, and
1285  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1286  * have been mapped at most once.
1287  */
1288 static bool
1289 vm_object_advice_applies(vm_object_t object, int advice)
1290 {
1291
1292         if ((object->flags & OBJ_UNMANAGED) != 0)
1293                 return (false);
1294         if (advice != MADV_FREE)
1295                 return (true);
1296         return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) ==
1297             (OBJ_ONEMAPPING | OBJ_ANON));
1298 }
1299
1300 static void
1301 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1302     vm_size_t size)
1303 {
1304
1305         if (advice == MADV_FREE)
1306                 vm_pager_freespace(object, pindex, size);
1307 }
1308
1309 /*
1310  *      vm_object_madvise:
1311  *
1312  *      Implements the madvise function at the object/page level.
1313  *
1314  *      MADV_WILLNEED   (any object)
1315  *
1316  *          Activate the specified pages if they are resident.
1317  *
1318  *      MADV_DONTNEED   (any object)
1319  *
1320  *          Deactivate the specified pages if they are resident.
1321  *
1322  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1323  *                       OBJ_ONEMAPPING only)
1324  *
1325  *          Deactivate and clean the specified pages if they are
1326  *          resident.  This permits the process to reuse the pages
1327  *          without faulting or the kernel to reclaim the pages
1328  *          without I/O.
1329  */
1330 void
1331 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1332     int advice)
1333 {
1334         vm_pindex_t tpindex;
1335         vm_object_t backing_object, tobject;
1336         vm_page_t m, tm;
1337
1338         if (object == NULL)
1339                 return;
1340
1341 relookup:
1342         VM_OBJECT_WLOCK(object);
1343         if (!vm_object_advice_applies(object, advice)) {
1344                 VM_OBJECT_WUNLOCK(object);
1345                 return;
1346         }
1347         for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1348                 tobject = object;
1349
1350                 /*
1351                  * If the next page isn't resident in the top-level object, we
1352                  * need to search the shadow chain.  When applying MADV_FREE, we
1353                  * take care to release any swap space used to store
1354                  * non-resident pages.
1355                  */
1356                 if (m == NULL || pindex < m->pindex) {
1357                         /*
1358                          * Optimize a common case: if the top-level object has
1359                          * no backing object, we can skip over the non-resident
1360                          * range in constant time.
1361                          */
1362                         if (object->backing_object == NULL) {
1363                                 tpindex = (m != NULL && m->pindex < end) ?
1364                                     m->pindex : end;
1365                                 vm_object_madvise_freespace(object, advice,
1366                                     pindex, tpindex - pindex);
1367                                 if ((pindex = tpindex) == end)
1368                                         break;
1369                                 goto next_page;
1370                         }
1371
1372                         tpindex = pindex;
1373                         do {
1374                                 vm_object_madvise_freespace(tobject, advice,
1375                                     tpindex, 1);
1376                                 /*
1377                                  * Prepare to search the next object in the
1378                                  * chain.
1379                                  */
1380                                 backing_object = tobject->backing_object;
1381                                 if (backing_object == NULL)
1382                                         goto next_pindex;
1383                                 VM_OBJECT_WLOCK(backing_object);
1384                                 tpindex +=
1385                                     OFF_TO_IDX(tobject->backing_object_offset);
1386                                 if (tobject != object)
1387                                         VM_OBJECT_WUNLOCK(tobject);
1388                                 tobject = backing_object;
1389                                 if (!vm_object_advice_applies(tobject, advice))
1390                                         goto next_pindex;
1391                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
1392                             NULL);
1393                 } else {
1394 next_page:
1395                         tm = m;
1396                         m = TAILQ_NEXT(m, listq);
1397                 }
1398
1399                 /*
1400                  * If the page is not in a normal state, skip it.  The page
1401                  * can not be invalidated while the object lock is held.
1402                  */
1403                 if (!vm_page_all_valid(tm) || vm_page_wired(tm))
1404                         goto next_pindex;
1405                 KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1406                     ("vm_object_madvise: page %p is fictitious", tm));
1407                 KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1408                     ("vm_object_madvise: page %p is not managed", tm));
1409                 if (vm_page_tryxbusy(tm) == 0) {
1410                         if (object != tobject)
1411                                 VM_OBJECT_WUNLOCK(object);
1412                         if (advice == MADV_WILLNEED) {
1413                                 /*
1414                                  * Reference the page before unlocking and
1415                                  * sleeping so that the page daemon is less
1416                                  * likely to reclaim it.
1417                                  */
1418                                 vm_page_aflag_set(tm, PGA_REFERENCED);
1419                         }
1420                         if (!vm_page_busy_sleep(tm, "madvpo", 0))
1421                                 VM_OBJECT_WUNLOCK(tobject);
1422                         goto relookup;
1423                 }
1424                 vm_page_advise(tm, advice);
1425                 vm_page_xunbusy(tm);
1426                 vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1427 next_pindex:
1428                 if (tobject != object)
1429                         VM_OBJECT_WUNLOCK(tobject);
1430         }
1431         VM_OBJECT_WUNLOCK(object);
1432 }
1433
1434 /*
1435  *      vm_object_shadow:
1436  *
1437  *      Create a new object which is backed by the
1438  *      specified existing object range.  The source
1439  *      object reference is deallocated.
1440  *
1441  *      The new object and offset into that object
1442  *      are returned in the source parameters.
1443  */
1444 void
1445 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length,
1446     struct ucred *cred, bool shared)
1447 {
1448         vm_object_t source;
1449         vm_object_t result;
1450
1451         source = *object;
1452
1453         /*
1454          * Don't create the new object if the old object isn't shared.
1455          *
1456          * If we hold the only reference we can guarantee that it won't
1457          * increase while we have the map locked.  Otherwise the race is
1458          * harmless and we will end up with an extra shadow object that
1459          * will be collapsed later.
1460          */
1461         if (source != NULL && source->ref_count == 1 &&
1462             (source->flags & OBJ_ANON) != 0)
1463                 return;
1464
1465         /*
1466          * Allocate a new object with the given length.
1467          */
1468         result = vm_object_allocate_anon(atop(length), source, cred, length);
1469
1470         /*
1471          * Store the offset into the source object, and fix up the offset into
1472          * the new object.
1473          */
1474         result->backing_object_offset = *offset;
1475
1476         if (shared || source != NULL) {
1477                 VM_OBJECT_WLOCK(result);
1478
1479                 /*
1480                  * The new object shadows the source object, adding a
1481                  * reference to it.  Our caller changes his reference
1482                  * to point to the new object, removing a reference to
1483                  * the source object.  Net result: no change of
1484                  * reference count, unless the caller needs to add one
1485                  * more reference due to forking a shared map entry.
1486                  */
1487                 if (shared) {
1488                         vm_object_reference_locked(result);
1489                         vm_object_clear_flag(result, OBJ_ONEMAPPING);
1490                 }
1491
1492                 /*
1493                  * Try to optimize the result object's page color when
1494                  * shadowing in order to maintain page coloring
1495                  * consistency in the combined shadowed object.
1496                  */
1497                 if (source != NULL) {
1498                         vm_object_backing_insert(result, source);
1499                         result->domain = source->domain;
1500 #if VM_NRESERVLEVEL > 0
1501                         result->flags |= source->flags & OBJ_COLORED;
1502                         result->pg_color = (source->pg_color +
1503                             OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER -
1504                             1)) - 1);
1505 #endif
1506                 }
1507                 VM_OBJECT_WUNLOCK(result);
1508         }
1509
1510         /*
1511          * Return the new things
1512          */
1513         *offset = 0;
1514         *object = result;
1515 }
1516
1517 /*
1518  *      vm_object_split:
1519  *
1520  * Split the pages in a map entry into a new object.  This affords
1521  * easier removal of unused pages, and keeps object inheritance from
1522  * being a negative impact on memory usage.
1523  */
1524 void
1525 vm_object_split(vm_map_entry_t entry)
1526 {
1527         vm_page_t m, m_busy, m_next;
1528         vm_object_t orig_object, new_object, backing_object;
1529         vm_pindex_t idx, offidxstart;
1530         vm_size_t size;
1531
1532         orig_object = entry->object.vm_object;
1533         KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0,
1534             ("vm_object_split:  Splitting object with multiple mappings."));
1535         if ((orig_object->flags & OBJ_ANON) == 0)
1536                 return;
1537         if (orig_object->ref_count <= 1)
1538                 return;
1539         VM_OBJECT_WUNLOCK(orig_object);
1540
1541         offidxstart = OFF_TO_IDX(entry->offset);
1542         size = atop(entry->end - entry->start);
1543
1544         /*
1545          * If swap_pager_copy() is later called, it will convert new_object
1546          * into a swap object.
1547          */
1548         new_object = vm_object_allocate_anon(size, orig_object,
1549             orig_object->cred, ptoa(size));
1550
1551         /*
1552          * We must wait for the orig_object to complete any in-progress
1553          * collapse so that the swap blocks are stable below.  The
1554          * additional reference on backing_object by new object will
1555          * prevent further collapse operations until split completes.
1556          */
1557         VM_OBJECT_WLOCK(orig_object);
1558         vm_object_collapse_wait(orig_object);
1559
1560         /*
1561          * At this point, the new object is still private, so the order in
1562          * which the original and new objects are locked does not matter.
1563          */
1564         VM_OBJECT_WLOCK(new_object);
1565         new_object->domain = orig_object->domain;
1566         backing_object = orig_object->backing_object;
1567         if (backing_object != NULL) {
1568                 vm_object_backing_insert_ref(new_object, backing_object);
1569                 new_object->backing_object_offset = 
1570                     orig_object->backing_object_offset + entry->offset;
1571         }
1572         if (orig_object->cred != NULL) {
1573                 crhold(orig_object->cred);
1574                 KASSERT(orig_object->charge >= ptoa(size),
1575                     ("orig_object->charge < 0"));
1576                 orig_object->charge -= ptoa(size);
1577         }
1578
1579         /*
1580          * Mark the split operation so that swap_pager_getpages() knows
1581          * that the object is in transition.
1582          */
1583         vm_object_set_flag(orig_object, OBJ_SPLIT);
1584         m_busy = NULL;
1585 #ifdef INVARIANTS
1586         idx = 0;
1587 #endif
1588 retry:
1589         m = vm_page_find_least(orig_object, offidxstart);
1590         KASSERT(m == NULL || idx <= m->pindex - offidxstart,
1591             ("%s: object %p was repopulated", __func__, orig_object));
1592         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1593             m = m_next) {
1594                 m_next = TAILQ_NEXT(m, listq);
1595
1596                 /*
1597                  * We must wait for pending I/O to complete before we can
1598                  * rename the page.
1599                  *
1600                  * We do not have to VM_PROT_NONE the page as mappings should
1601                  * not be changed by this operation.
1602                  */
1603                 if (vm_page_tryxbusy(m) == 0) {
1604                         VM_OBJECT_WUNLOCK(new_object);
1605                         if (vm_page_busy_sleep(m, "spltwt", 0))
1606                                 VM_OBJECT_WLOCK(orig_object);
1607                         VM_OBJECT_WLOCK(new_object);
1608                         goto retry;
1609                 }
1610
1611                 /*
1612                  * The page was left invalid.  Likely placed there by
1613                  * an incomplete fault.  Just remove and ignore.
1614                  */
1615                 if (vm_page_none_valid(m)) {
1616                         if (vm_page_remove(m))
1617                                 vm_page_free(m);
1618                         continue;
1619                 }
1620
1621                 /* vm_page_rename() will dirty the page. */
1622                 if (vm_page_rename(m, new_object, idx)) {
1623                         vm_page_xunbusy(m);
1624                         VM_OBJECT_WUNLOCK(new_object);
1625                         VM_OBJECT_WUNLOCK(orig_object);
1626                         vm_radix_wait();
1627                         VM_OBJECT_WLOCK(orig_object);
1628                         VM_OBJECT_WLOCK(new_object);
1629                         goto retry;
1630                 }
1631
1632 #if VM_NRESERVLEVEL > 0
1633                 /*
1634                  * If some of the reservation's allocated pages remain with
1635                  * the original object, then transferring the reservation to
1636                  * the new object is neither particularly beneficial nor
1637                  * particularly harmful as compared to leaving the reservation
1638                  * with the original object.  If, however, all of the
1639                  * reservation's allocated pages are transferred to the new
1640                  * object, then transferring the reservation is typically
1641                  * beneficial.  Determining which of these two cases applies
1642                  * would be more costly than unconditionally renaming the
1643                  * reservation.
1644                  */
1645                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1646 #endif
1647
1648                 /*
1649                  * orig_object's type may change while sleeping, so keep track
1650                  * of the beginning of the busied range.
1651                  */
1652                 if (orig_object->type != OBJT_SWAP)
1653                         vm_page_xunbusy(m);
1654                 else if (m_busy == NULL)
1655                         m_busy = m;
1656         }
1657         if ((orig_object->flags & OBJ_SWAP) != 0) {
1658                 /*
1659                  * swap_pager_copy() can sleep, in which case the orig_object's
1660                  * and new_object's locks are released and reacquired. 
1661                  */
1662                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1663                 if (m_busy != NULL)
1664                         TAILQ_FOREACH_FROM(m_busy, &new_object->memq, listq)
1665                                 vm_page_xunbusy(m_busy);
1666         }
1667         vm_object_clear_flag(orig_object, OBJ_SPLIT);
1668         VM_OBJECT_WUNLOCK(orig_object);
1669         VM_OBJECT_WUNLOCK(new_object);
1670         entry->object.vm_object = new_object;
1671         entry->offset = 0LL;
1672         vm_object_deallocate(orig_object);
1673         VM_OBJECT_WLOCK(new_object);
1674 }
1675
1676 static vm_page_t
1677 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p)
1678 {
1679         vm_object_t backing_object;
1680
1681         VM_OBJECT_ASSERT_WLOCKED(object);
1682         backing_object = object->backing_object;
1683         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1684
1685         KASSERT(p == NULL || p->object == object || p->object == backing_object,
1686             ("invalid ownership %p %p %p", p, object, backing_object));
1687         /* The page is only NULL when rename fails. */
1688         if (p == NULL) {
1689                 VM_OBJECT_WUNLOCK(object);
1690                 VM_OBJECT_WUNLOCK(backing_object);
1691                 vm_radix_wait();
1692                 VM_OBJECT_WLOCK(object);
1693         } else if (p->object == object) {
1694                 VM_OBJECT_WUNLOCK(backing_object);
1695                 if (vm_page_busy_sleep(p, "vmocol", 0))
1696                         VM_OBJECT_WLOCK(object);
1697         } else {
1698                 VM_OBJECT_WUNLOCK(object);
1699                 if (!vm_page_busy_sleep(p, "vmocol", 0))
1700                         VM_OBJECT_WUNLOCK(backing_object);
1701                 VM_OBJECT_WLOCK(object);
1702         }
1703         VM_OBJECT_WLOCK(backing_object);
1704         return (TAILQ_FIRST(&backing_object->memq));
1705 }
1706
1707 static bool
1708 vm_object_scan_all_shadowed(vm_object_t object)
1709 {
1710         vm_object_t backing_object;
1711         vm_page_t p, pp;
1712         vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1713
1714         VM_OBJECT_ASSERT_WLOCKED(object);
1715         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1716
1717         backing_object = object->backing_object;
1718
1719         if ((backing_object->flags & OBJ_ANON) == 0)
1720                 return (false);
1721
1722         pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1723         p = vm_page_find_least(backing_object, pi);
1724         ps = swap_pager_find_least(backing_object, pi);
1725
1726         /*
1727          * Only check pages inside the parent object's range and
1728          * inside the parent object's mapping of the backing object.
1729          */
1730         for (;; pi++) {
1731                 if (p != NULL && p->pindex < pi)
1732                         p = TAILQ_NEXT(p, listq);
1733                 if (ps < pi)
1734                         ps = swap_pager_find_least(backing_object, pi);
1735                 if (p == NULL && ps >= backing_object->size)
1736                         break;
1737                 else if (p == NULL)
1738                         pi = ps;
1739                 else
1740                         pi = MIN(p->pindex, ps);
1741
1742                 new_pindex = pi - backing_offset_index;
1743                 if (new_pindex >= object->size)
1744                         break;
1745
1746                 if (p != NULL) {
1747                         /*
1748                          * If the backing object page is busy a
1749                          * grandparent or older page may still be
1750                          * undergoing CoW.  It is not safe to collapse
1751                          * the backing object until it is quiesced.
1752                          */
1753                         if (vm_page_tryxbusy(p) == 0)
1754                                 return (false);
1755
1756                         /*
1757                          * We raced with the fault handler that left
1758                          * newly allocated invalid page on the object
1759                          * queue and retried.
1760                          */
1761                         if (!vm_page_all_valid(p))
1762                                 goto unbusy_ret;
1763                 }
1764
1765                 /*
1766                  * See if the parent has the page or if the parent's object
1767                  * pager has the page.  If the parent has the page but the page
1768                  * is not valid, the parent's object pager must have the page.
1769                  *
1770                  * If this fails, the parent does not completely shadow the
1771                  * object and we might as well give up now.
1772                  */
1773                 pp = vm_page_lookup(object, new_pindex);
1774
1775                 /*
1776                  * The valid check here is stable due to object lock
1777                  * being required to clear valid and initiate paging.
1778                  * Busy of p disallows fault handler to validate pp.
1779                  */
1780                 if ((pp == NULL || vm_page_none_valid(pp)) &&
1781                     !vm_pager_has_page(object, new_pindex, NULL, NULL))
1782                         goto unbusy_ret;
1783                 if (p != NULL)
1784                         vm_page_xunbusy(p);
1785         }
1786         return (true);
1787
1788 unbusy_ret:
1789         if (p != NULL)
1790                 vm_page_xunbusy(p);
1791         return (false);
1792 }
1793
1794 static void
1795 vm_object_collapse_scan(vm_object_t object)
1796 {
1797         vm_object_t backing_object;
1798         vm_page_t next, p, pp;
1799         vm_pindex_t backing_offset_index, new_pindex;
1800
1801         VM_OBJECT_ASSERT_WLOCKED(object);
1802         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1803
1804         backing_object = object->backing_object;
1805         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1806
1807         /*
1808          * Our scan
1809          */
1810         for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1811                 next = TAILQ_NEXT(p, listq);
1812                 new_pindex = p->pindex - backing_offset_index;
1813
1814                 /*
1815                  * Check for busy page
1816                  */
1817                 if (vm_page_tryxbusy(p) == 0) {
1818                         next = vm_object_collapse_scan_wait(object, p);
1819                         continue;
1820                 }
1821
1822                 KASSERT(object->backing_object == backing_object,
1823                     ("vm_object_collapse_scan: backing object mismatch %p != %p",
1824                     object->backing_object, backing_object));
1825                 KASSERT(p->object == backing_object,
1826                     ("vm_object_collapse_scan: object mismatch %p != %p",
1827                     p->object, backing_object));
1828
1829                 if (p->pindex < backing_offset_index ||
1830                     new_pindex >= object->size) {
1831                         vm_pager_freespace(backing_object, p->pindex, 1);
1832
1833                         KASSERT(!pmap_page_is_mapped(p),
1834                             ("freeing mapped page %p", p));
1835                         if (vm_page_remove(p))
1836                                 vm_page_free(p);
1837                         continue;
1838                 }
1839
1840                 if (!vm_page_all_valid(p)) {
1841                         KASSERT(!pmap_page_is_mapped(p),
1842                             ("freeing mapped page %p", p));
1843                         if (vm_page_remove(p))
1844                                 vm_page_free(p);
1845                         continue;
1846                 }
1847
1848                 pp = vm_page_lookup(object, new_pindex);
1849                 if (pp != NULL && vm_page_tryxbusy(pp) == 0) {
1850                         vm_page_xunbusy(p);
1851                         /*
1852                          * The page in the parent is busy and possibly not
1853                          * (yet) valid.  Until its state is finalized by the
1854                          * busy bit owner, we can't tell whether it shadows the
1855                          * original page.
1856                          */
1857                         next = vm_object_collapse_scan_wait(object, pp);
1858                         continue;
1859                 }
1860
1861                 if (pp != NULL && vm_page_none_valid(pp)) {
1862                         /*
1863                          * The page was invalid in the parent.  Likely placed
1864                          * there by an incomplete fault.  Just remove and
1865                          * ignore.  p can replace it.
1866                          */
1867                         if (vm_page_remove(pp))
1868                                 vm_page_free(pp);
1869                         pp = NULL;
1870                 }
1871
1872                 if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1873                         NULL)) {
1874                         /*
1875                          * The page already exists in the parent OR swap exists
1876                          * for this location in the parent.  Leave the parent's
1877                          * page alone.  Destroy the original page from the
1878                          * backing object.
1879                          */
1880                         vm_pager_freespace(backing_object, p->pindex, 1);
1881                         KASSERT(!pmap_page_is_mapped(p),
1882                             ("freeing mapped page %p", p));
1883                         if (vm_page_remove(p))
1884                                 vm_page_free(p);
1885                         if (pp != NULL)
1886                                 vm_page_xunbusy(pp);
1887                         continue;
1888                 }
1889
1890                 /*
1891                  * Page does not exist in parent, rename the page from the
1892                  * backing object to the main object.
1893                  *
1894                  * If the page was mapped to a process, it can remain mapped
1895                  * through the rename.  vm_page_rename() will dirty the page.
1896                  */
1897                 if (vm_page_rename(p, object, new_pindex)) {
1898                         vm_page_xunbusy(p);
1899                         next = vm_object_collapse_scan_wait(object, NULL);
1900                         continue;
1901                 }
1902
1903                 /* Use the old pindex to free the right page. */
1904                 vm_pager_freespace(backing_object, new_pindex +
1905                     backing_offset_index, 1);
1906
1907 #if VM_NRESERVLEVEL > 0
1908                 /*
1909                  * Rename the reservation.
1910                  */
1911                 vm_reserv_rename(p, object, backing_object,
1912                     backing_offset_index);
1913 #endif
1914                 vm_page_xunbusy(p);
1915         }
1916         return;
1917 }
1918
1919 /*
1920  *      vm_object_collapse:
1921  *
1922  *      Collapse an object with the object backing it.
1923  *      Pages in the backing object are moved into the
1924  *      parent, and the backing object is deallocated.
1925  */
1926 void
1927 vm_object_collapse(vm_object_t object)
1928 {
1929         vm_object_t backing_object, new_backing_object;
1930
1931         VM_OBJECT_ASSERT_WLOCKED(object);
1932
1933         while (TRUE) {
1934                 KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON,
1935                     ("collapsing invalid object"));
1936
1937                 /*
1938                  * Wait for the backing_object to finish any pending
1939                  * collapse so that the caller sees the shortest possible
1940                  * shadow chain.
1941                  */
1942                 backing_object = vm_object_backing_collapse_wait(object);
1943                 if (backing_object == NULL)
1944                         return;
1945
1946                 KASSERT(object->ref_count > 0 &&
1947                     object->ref_count > atomic_load_int(&object->shadow_count),
1948                     ("collapse with invalid ref %d or shadow %d count.",
1949                     object->ref_count, atomic_load_int(&object->shadow_count)));
1950                 KASSERT((backing_object->flags &
1951                     (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1952                     ("vm_object_collapse: Backing object already collapsing."));
1953                 KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0,
1954                     ("vm_object_collapse: object is already collapsing."));
1955
1956                 /*
1957                  * We know that we can either collapse the backing object if
1958                  * the parent is the only reference to it, or (perhaps) have
1959                  * the parent bypass the object if the parent happens to shadow
1960                  * all the resident pages in the entire backing object.
1961                  */
1962                 if (backing_object->ref_count == 1) {
1963                         KASSERT(atomic_load_int(&backing_object->shadow_count)
1964                             == 1,
1965                             ("vm_object_collapse: shadow_count: %d",
1966                             atomic_load_int(&backing_object->shadow_count)));
1967                         vm_object_pip_add(object, 1);
1968                         vm_object_set_flag(object, OBJ_COLLAPSING);
1969                         vm_object_pip_add(backing_object, 1);
1970                         vm_object_set_flag(backing_object, OBJ_DEAD);
1971
1972                         /*
1973                          * If there is exactly one reference to the backing
1974                          * object, we can collapse it into the parent.
1975                          */
1976                         vm_object_collapse_scan(object);
1977
1978 #if VM_NRESERVLEVEL > 0
1979                         /*
1980                          * Break any reservations from backing_object.
1981                          */
1982                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1983                                 vm_reserv_break_all(backing_object);
1984 #endif
1985
1986                         /*
1987                          * Move the pager from backing_object to object.
1988                          */
1989                         if ((backing_object->flags & OBJ_SWAP) != 0) {
1990                                 /*
1991                                  * swap_pager_copy() can sleep, in which case
1992                                  * the backing_object's and object's locks are
1993                                  * released and reacquired.
1994                                  * Since swap_pager_copy() is being asked to
1995                                  * destroy backing_object, it will change the
1996                                  * type to OBJT_DEFAULT.
1997                                  */
1998                                 swap_pager_copy(
1999                                     backing_object,
2000                                     object,
2001                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
2002                         }
2003
2004                         /*
2005                          * Object now shadows whatever backing_object did.
2006                          */
2007                         vm_object_clear_flag(object, OBJ_COLLAPSING);
2008                         vm_object_backing_transfer(object, backing_object);
2009                         object->backing_object_offset +=
2010                             backing_object->backing_object_offset;
2011                         VM_OBJECT_WUNLOCK(object);
2012                         vm_object_pip_wakeup(object);
2013
2014                         /*
2015                          * Discard backing_object.
2016                          *
2017                          * Since the backing object has no pages, no pager left,
2018                          * and no object references within it, all that is
2019                          * necessary is to dispose of it.
2020                          */
2021                         KASSERT(backing_object->ref_count == 1, (
2022 "backing_object %p was somehow re-referenced during collapse!",
2023                             backing_object));
2024                         vm_object_pip_wakeup(backing_object);
2025                         (void)refcount_release(&backing_object->ref_count);
2026                         vm_object_terminate(backing_object);
2027                         counter_u64_add(object_collapses, 1);
2028                         VM_OBJECT_WLOCK(object);
2029                 } else {
2030                         /*
2031                          * If we do not entirely shadow the backing object,
2032                          * there is nothing we can do so we give up.
2033                          *
2034                          * The object lock and backing_object lock must not
2035                          * be dropped during this sequence.
2036                          */
2037                         if (!vm_object_scan_all_shadowed(object)) {
2038                                 VM_OBJECT_WUNLOCK(backing_object);
2039                                 break;
2040                         }
2041
2042                         /*
2043                          * Make the parent shadow the next object in the
2044                          * chain.  Deallocating backing_object will not remove
2045                          * it, since its reference count is at least 2.
2046                          */
2047                         vm_object_backing_remove_locked(object);
2048                         new_backing_object = backing_object->backing_object;
2049                         if (new_backing_object != NULL) {
2050                                 vm_object_backing_insert_ref(object,
2051                                     new_backing_object);
2052                                 object->backing_object_offset +=
2053                                     backing_object->backing_object_offset;
2054                         }
2055
2056                         /*
2057                          * Drop the reference count on backing_object. Since
2058                          * its ref_count was at least 2, it will not vanish.
2059                          */
2060                         (void)refcount_release(&backing_object->ref_count);
2061                         KASSERT(backing_object->ref_count >= 1, (
2062 "backing_object %p was somehow dereferenced during collapse!",
2063                             backing_object));
2064                         VM_OBJECT_WUNLOCK(backing_object);
2065                         counter_u64_add(object_bypasses, 1);
2066                 }
2067
2068                 /*
2069                  * Try again with this object's new backing object.
2070                  */
2071         }
2072 }
2073
2074 /*
2075  *      vm_object_page_remove:
2076  *
2077  *      For the given object, either frees or invalidates each of the
2078  *      specified pages.  In general, a page is freed.  However, if a page is
2079  *      wired for any reason other than the existence of a managed, wired
2080  *      mapping, then it may be invalidated but not removed from the object.
2081  *      Pages are specified by the given range ["start", "end") and the option
2082  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
2083  *      extends from "start" to the end of the object.  If the option
2084  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
2085  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
2086  *      specified, then the pages within the specified range must have no
2087  *      mappings.  Otherwise, if this option is not specified, any mappings to
2088  *      the specified pages are removed before the pages are freed or
2089  *      invalidated.
2090  *
2091  *      In general, this operation should only be performed on objects that
2092  *      contain managed pages.  There are, however, two exceptions.  First, it
2093  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
2094  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
2095  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
2096  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
2097  *
2098  *      The object must be locked.
2099  */
2100 void
2101 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2102     int options)
2103 {
2104         vm_page_t p, next;
2105
2106         VM_OBJECT_ASSERT_WLOCKED(object);
2107         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
2108             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
2109             ("vm_object_page_remove: illegal options for object %p", object));
2110         if (object->resident_page_count == 0)
2111                 return;
2112         vm_object_pip_add(object, 1);
2113 again:
2114         p = vm_page_find_least(object, start);
2115
2116         /*
2117          * Here, the variable "p" is either (1) the page with the least pindex
2118          * greater than or equal to the parameter "start" or (2) NULL. 
2119          */
2120         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2121                 next = TAILQ_NEXT(p, listq);
2122
2123                 /*
2124                  * Skip invalid pages if asked to do so.  Try to avoid acquiring
2125                  * the busy lock, as some consumers rely on this to avoid
2126                  * deadlocks.
2127                  *
2128                  * A thread may concurrently transition the page from invalid to
2129                  * valid using only the busy lock, so the result of this check
2130                  * is immediately stale.  It is up to consumers to handle this,
2131                  * for instance by ensuring that all invalid->valid transitions
2132                  * happen with a mutex held, as may be possible for a
2133                  * filesystem.
2134                  */
2135                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p))
2136                         continue;
2137
2138                 /*
2139                  * If the page is wired for any reason besides the existence
2140                  * of managed, wired mappings, then it cannot be freed.  For
2141                  * example, fictitious pages, which represent device memory,
2142                  * are inherently wired and cannot be freed.  They can,
2143                  * however, be invalidated if the option OBJPR_CLEANONLY is
2144                  * not specified.
2145                  */
2146                 if (vm_page_tryxbusy(p) == 0) {
2147                         if (vm_page_busy_sleep(p, "vmopar", 0))
2148                                 VM_OBJECT_WLOCK(object);
2149                         goto again;
2150                 }
2151                 if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) {
2152                         vm_page_xunbusy(p);
2153                         continue;
2154                 }
2155                 if (vm_page_wired(p)) {
2156 wired:
2157                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2158                             object->ref_count != 0)
2159                                 pmap_remove_all(p);
2160                         if ((options & OBJPR_CLEANONLY) == 0) {
2161                                 vm_page_invalid(p);
2162                                 vm_page_undirty(p);
2163                         }
2164                         vm_page_xunbusy(p);
2165                         continue;
2166                 }
2167                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
2168                     ("vm_object_page_remove: page %p is fictitious", p));
2169                 if ((options & OBJPR_CLEANONLY) != 0 &&
2170                     !vm_page_none_valid(p)) {
2171                         if ((options & OBJPR_NOTMAPPED) == 0 &&
2172                             object->ref_count != 0 &&
2173                             !vm_page_try_remove_write(p))
2174                                 goto wired;
2175                         if (p->dirty != 0) {
2176                                 vm_page_xunbusy(p);
2177                                 continue;
2178                         }
2179                 }
2180                 if ((options & OBJPR_NOTMAPPED) == 0 &&
2181                     object->ref_count != 0 && !vm_page_try_remove_all(p))
2182                         goto wired;
2183                 vm_page_free(p);
2184         }
2185         vm_object_pip_wakeup(object);
2186
2187         vm_pager_freespace(object, start, (end == 0 ? object->size : end) -
2188             start);
2189 }
2190
2191 /*
2192  *      vm_object_page_noreuse:
2193  *
2194  *      For the given object, attempt to move the specified pages to
2195  *      the head of the inactive queue.  This bypasses regular LRU
2196  *      operation and allows the pages to be reused quickly under memory
2197  *      pressure.  If a page is wired for any reason, then it will not
2198  *      be queued.  Pages are specified by the range ["start", "end").
2199  *      As a special case, if "end" is zero, then the range extends from
2200  *      "start" to the end of the object.
2201  *
2202  *      This operation should only be performed on objects that
2203  *      contain non-fictitious, managed pages.
2204  *
2205  *      The object must be locked.
2206  */
2207 void
2208 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2209 {
2210         vm_page_t p, next;
2211
2212         VM_OBJECT_ASSERT_LOCKED(object);
2213         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2214             ("vm_object_page_noreuse: illegal object %p", object));
2215         if (object->resident_page_count == 0)
2216                 return;
2217         p = vm_page_find_least(object, start);
2218
2219         /*
2220          * Here, the variable "p" is either (1) the page with the least pindex
2221          * greater than or equal to the parameter "start" or (2) NULL. 
2222          */
2223         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2224                 next = TAILQ_NEXT(p, listq);
2225                 vm_page_deactivate_noreuse(p);
2226         }
2227 }
2228
2229 /*
2230  *      Populate the specified range of the object with valid pages.  Returns
2231  *      TRUE if the range is successfully populated and FALSE otherwise.
2232  *
2233  *      Note: This function should be optimized to pass a larger array of
2234  *      pages to vm_pager_get_pages() before it is applied to a non-
2235  *      OBJT_DEVICE object.
2236  *
2237  *      The object must be locked.
2238  */
2239 boolean_t
2240 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2241 {
2242         vm_page_t m;
2243         vm_pindex_t pindex;
2244         int rv;
2245
2246         VM_OBJECT_ASSERT_WLOCKED(object);
2247         for (pindex = start; pindex < end; pindex++) {
2248                 rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL);
2249                 if (rv != VM_PAGER_OK)
2250                         break;
2251
2252                 /*
2253                  * Keep "m" busy because a subsequent iteration may unlock
2254                  * the object.
2255                  */
2256         }
2257         if (pindex > start) {
2258                 m = vm_page_lookup(object, start);
2259                 while (m != NULL && m->pindex < pindex) {
2260                         vm_page_xunbusy(m);
2261                         m = TAILQ_NEXT(m, listq);
2262                 }
2263         }
2264         return (pindex == end);
2265 }
2266
2267 /*
2268  *      Routine:        vm_object_coalesce
2269  *      Function:       Coalesces two objects backing up adjoining
2270  *                      regions of memory into a single object.
2271  *
2272  *      returns TRUE if objects were combined.
2273  *
2274  *      NOTE:   Only works at the moment if the second object is NULL -
2275  *              if it's not, which object do we lock first?
2276  *
2277  *      Parameters:
2278  *              prev_object     First object to coalesce
2279  *              prev_offset     Offset into prev_object
2280  *              prev_size       Size of reference to prev_object
2281  *              next_size       Size of reference to the second object
2282  *              reserved        Indicator that extension region has
2283  *                              swap accounted for
2284  *
2285  *      Conditions:
2286  *      The object must *not* be locked.
2287  */
2288 boolean_t
2289 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2290     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2291 {
2292         vm_pindex_t next_pindex;
2293
2294         if (prev_object == NULL)
2295                 return (TRUE);
2296         if ((prev_object->flags & OBJ_ANON) == 0)
2297                 return (FALSE);
2298
2299         VM_OBJECT_WLOCK(prev_object);
2300         /*
2301          * Try to collapse the object first.
2302          */
2303         vm_object_collapse(prev_object);
2304
2305         /*
2306          * Can't coalesce if: . more than one reference . paged out . shadows
2307          * another object . has a copy elsewhere (any of which mean that the
2308          * pages not mapped to prev_entry may be in use anyway)
2309          */
2310         if (prev_object->backing_object != NULL) {
2311                 VM_OBJECT_WUNLOCK(prev_object);
2312                 return (FALSE);
2313         }
2314
2315         prev_size >>= PAGE_SHIFT;
2316         next_size >>= PAGE_SHIFT;
2317         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2318
2319         if (prev_object->ref_count > 1 &&
2320             prev_object->size != next_pindex &&
2321             (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2322                 VM_OBJECT_WUNLOCK(prev_object);
2323                 return (FALSE);
2324         }
2325
2326         /*
2327          * Account for the charge.
2328          */
2329         if (prev_object->cred != NULL) {
2330                 /*
2331                  * If prev_object was charged, then this mapping,
2332                  * although not charged now, may become writable
2333                  * later. Non-NULL cred in the object would prevent
2334                  * swap reservation during enabling of the write
2335                  * access, so reserve swap now. Failed reservation
2336                  * cause allocation of the separate object for the map
2337                  * entry, and swap reservation for this entry is
2338                  * managed in appropriate time.
2339                  */
2340                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2341                     prev_object->cred)) {
2342                         VM_OBJECT_WUNLOCK(prev_object);
2343                         return (FALSE);
2344                 }
2345                 prev_object->charge += ptoa(next_size);
2346         }
2347
2348         /*
2349          * Remove any pages that may still be in the object from a previous
2350          * deallocation.
2351          */
2352         if (next_pindex < prev_object->size) {
2353                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2354                     next_size, 0);
2355 #if 0
2356                 if (prev_object->cred != NULL) {
2357                         KASSERT(prev_object->charge >=
2358                             ptoa(prev_object->size - next_pindex),
2359                             ("object %p overcharged 1 %jx %jx", prev_object,
2360                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2361                         prev_object->charge -= ptoa(prev_object->size -
2362                             next_pindex);
2363                 }
2364 #endif
2365         }
2366
2367         /*
2368          * Extend the object if necessary.
2369          */
2370         if (next_pindex + next_size > prev_object->size)
2371                 prev_object->size = next_pindex + next_size;
2372
2373         VM_OBJECT_WUNLOCK(prev_object);
2374         return (TRUE);
2375 }
2376
2377 void
2378 vm_object_set_writeable_dirty_(vm_object_t object)
2379 {
2380         atomic_add_int(&object->generation, 1);
2381 }
2382
2383 bool
2384 vm_object_mightbedirty_(vm_object_t object)
2385 {
2386         return (object->generation != object->cleangeneration);
2387 }
2388
2389 /*
2390  *      vm_object_unwire:
2391  *
2392  *      For each page offset within the specified range of the given object,
2393  *      find the highest-level page in the shadow chain and unwire it.  A page
2394  *      must exist at every page offset, and the highest-level page must be
2395  *      wired.
2396  */
2397 void
2398 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2399     uint8_t queue)
2400 {
2401         vm_object_t tobject, t1object;
2402         vm_page_t m, tm;
2403         vm_pindex_t end_pindex, pindex, tpindex;
2404         int depth, locked_depth;
2405
2406         KASSERT((offset & PAGE_MASK) == 0,
2407             ("vm_object_unwire: offset is not page aligned"));
2408         KASSERT((length & PAGE_MASK) == 0,
2409             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2410         /* The wired count of a fictitious page never changes. */
2411         if ((object->flags & OBJ_FICTITIOUS) != 0)
2412                 return;
2413         pindex = OFF_TO_IDX(offset);
2414         end_pindex = pindex + atop(length);
2415 again:
2416         locked_depth = 1;
2417         VM_OBJECT_RLOCK(object);
2418         m = vm_page_find_least(object, pindex);
2419         while (pindex < end_pindex) {
2420                 if (m == NULL || pindex < m->pindex) {
2421                         /*
2422                          * The first object in the shadow chain doesn't
2423                          * contain a page at the current index.  Therefore,
2424                          * the page must exist in a backing object.
2425                          */
2426                         tobject = object;
2427                         tpindex = pindex;
2428                         depth = 0;
2429                         do {
2430                                 tpindex +=
2431                                     OFF_TO_IDX(tobject->backing_object_offset);
2432                                 tobject = tobject->backing_object;
2433                                 KASSERT(tobject != NULL,
2434                                     ("vm_object_unwire: missing page"));
2435                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2436                                         goto next_page;
2437                                 depth++;
2438                                 if (depth == locked_depth) {
2439                                         locked_depth++;
2440                                         VM_OBJECT_RLOCK(tobject);
2441                                 }
2442                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2443                             NULL);
2444                 } else {
2445                         tm = m;
2446                         m = TAILQ_NEXT(m, listq);
2447                 }
2448                 if (vm_page_trysbusy(tm) == 0) {
2449                         for (tobject = object; locked_depth >= 1;
2450                             locked_depth--) {
2451                                 t1object = tobject->backing_object;
2452                                 if (tm->object != tobject)
2453                                         VM_OBJECT_RUNLOCK(tobject);
2454                                 tobject = t1object;
2455                         }
2456                         tobject = tm->object;
2457                         if (!vm_page_busy_sleep(tm, "unwbo",
2458                             VM_ALLOC_IGN_SBUSY))
2459                                 VM_OBJECT_RUNLOCK(tobject);
2460                         goto again;
2461                 }
2462                 vm_page_unwire(tm, queue);
2463                 vm_page_sunbusy(tm);
2464 next_page:
2465                 pindex++;
2466         }
2467         /* Release the accumulated object locks. */
2468         for (tobject = object; locked_depth >= 1; locked_depth--) {
2469                 t1object = tobject->backing_object;
2470                 VM_OBJECT_RUNLOCK(tobject);
2471                 tobject = t1object;
2472         }
2473 }
2474
2475 /*
2476  * Return the vnode for the given object, or NULL if none exists.
2477  * For tmpfs objects, the function may return NULL if there is
2478  * no vnode allocated at the time of the call.
2479  */
2480 struct vnode *
2481 vm_object_vnode(vm_object_t object)
2482 {
2483         struct vnode *vp;
2484
2485         VM_OBJECT_ASSERT_LOCKED(object);
2486         vm_pager_getvp(object, &vp, NULL);
2487         return (vp);
2488 }
2489
2490 /*
2491  * Busy the vm object.  This prevents new pages belonging to the object from
2492  * becoming busy.  Existing pages persist as busy.  Callers are responsible
2493  * for checking page state before proceeding.
2494  */
2495 void
2496 vm_object_busy(vm_object_t obj)
2497 {
2498
2499         VM_OBJECT_ASSERT_LOCKED(obj);
2500
2501         blockcount_acquire(&obj->busy, 1);
2502         /* The fence is required to order loads of page busy. */
2503         atomic_thread_fence_acq_rel();
2504 }
2505
2506 void
2507 vm_object_unbusy(vm_object_t obj)
2508 {
2509
2510         blockcount_release(&obj->busy, 1);
2511 }
2512
2513 void
2514 vm_object_busy_wait(vm_object_t obj, const char *wmesg)
2515 {
2516
2517         VM_OBJECT_ASSERT_UNLOCKED(obj);
2518
2519         (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM);
2520 }
2521
2522 /*
2523  * This function aims to determine if the object is mapped,
2524  * specifically, if it is referenced by a vm_map_entry.  Because
2525  * objects occasionally acquire transient references that do not
2526  * represent a mapping, the method used here is inexact.  However, it
2527  * has very low overhead and is good enough for the advisory
2528  * vm.vmtotal sysctl.
2529  */
2530 bool
2531 vm_object_is_active(vm_object_t obj)
2532 {
2533
2534         return (obj->ref_count > atomic_load_int(&obj->shadow_count));
2535 }
2536
2537 static int
2538 vm_object_list_handler(struct sysctl_req *req, bool swap_only)
2539 {
2540         struct kinfo_vmobject *kvo;
2541         char *fullpath, *freepath;
2542         struct vnode *vp;
2543         struct vattr va;
2544         vm_object_t obj;
2545         vm_page_t m;
2546         u_long sp;
2547         int count, error;
2548
2549         if (req->oldptr == NULL) {
2550                 /*
2551                  * If an old buffer has not been provided, generate an
2552                  * estimate of the space needed for a subsequent call.
2553                  */
2554                 mtx_lock(&vm_object_list_mtx);
2555                 count = 0;
2556                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2557                         if (obj->type == OBJT_DEAD)
2558                                 continue;
2559                         count++;
2560                 }
2561                 mtx_unlock(&vm_object_list_mtx);
2562                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2563                     count * 11 / 10));
2564         }
2565
2566         kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2567         error = 0;
2568
2569         /*
2570          * VM objects are type stable and are never removed from the
2571          * list once added.  This allows us to safely read obj->object_list
2572          * after reacquiring the VM object lock.
2573          */
2574         mtx_lock(&vm_object_list_mtx);
2575         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2576                 if (obj->type == OBJT_DEAD ||
2577                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0))
2578                         continue;
2579                 VM_OBJECT_RLOCK(obj);
2580                 if (obj->type == OBJT_DEAD ||
2581                     (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) {
2582                         VM_OBJECT_RUNLOCK(obj);
2583                         continue;
2584                 }
2585                 mtx_unlock(&vm_object_list_mtx);
2586                 kvo->kvo_size = ptoa(obj->size);
2587                 kvo->kvo_resident = obj->resident_page_count;
2588                 kvo->kvo_ref_count = obj->ref_count;
2589                 kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count);
2590                 kvo->kvo_memattr = obj->memattr;
2591                 kvo->kvo_active = 0;
2592                 kvo->kvo_inactive = 0;
2593                 if (!swap_only) {
2594                         TAILQ_FOREACH(m, &obj->memq, listq) {
2595                                 /*
2596                                  * A page may belong to the object but be
2597                                  * dequeued and set to PQ_NONE while the
2598                                  * object lock is not held.  This makes the
2599                                  * reads of m->queue below racy, and we do not
2600                                  * count pages set to PQ_NONE.  However, this
2601                                  * sysctl is only meant to give an
2602                                  * approximation of the system anyway.
2603                                  */
2604                                 if (m->a.queue == PQ_ACTIVE)
2605                                         kvo->kvo_active++;
2606                                 else if (m->a.queue == PQ_INACTIVE)
2607                                         kvo->kvo_inactive++;
2608                         }
2609                 }
2610
2611                 kvo->kvo_vn_fileid = 0;
2612                 kvo->kvo_vn_fsid = 0;
2613                 kvo->kvo_vn_fsid_freebsd11 = 0;
2614                 freepath = NULL;
2615                 fullpath = "";
2616                 vp = NULL;
2617                 kvo->kvo_type = vm_object_kvme_type(obj, swap_only ? NULL : &vp);
2618                 if (vp != NULL) {
2619                         vref(vp);
2620                 } else if ((obj->flags & OBJ_ANON) != 0) {
2621                         MPASS(kvo->kvo_type == KVME_TYPE_DEFAULT ||
2622                             kvo->kvo_type == KVME_TYPE_SWAP);
2623                         kvo->kvo_me = (uintptr_t)obj;
2624                         /* tmpfs objs are reported as vnodes */
2625                         kvo->kvo_backing_obj = (uintptr_t)obj->backing_object;
2626                         sp = swap_pager_swapped_pages(obj);
2627                         kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp;
2628                 }
2629                 VM_OBJECT_RUNLOCK(obj);
2630                 if (vp != NULL) {
2631                         vn_fullpath(vp, &fullpath, &freepath);
2632                         vn_lock(vp, LK_SHARED | LK_RETRY);
2633                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2634                                 kvo->kvo_vn_fileid = va.va_fileid;
2635                                 kvo->kvo_vn_fsid = va.va_fsid;
2636                                 kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2637                                                                 /* truncate */
2638                         }
2639                         vput(vp);
2640                 }
2641
2642                 strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2643                 if (freepath != NULL)
2644                         free(freepath, M_TEMP);
2645
2646                 /* Pack record size down */
2647                 kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2648                     + strlen(kvo->kvo_path) + 1;
2649                 kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2650                     sizeof(uint64_t));
2651                 error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2652                 maybe_yield();
2653                 mtx_lock(&vm_object_list_mtx);
2654                 if (error)
2655                         break;
2656         }
2657         mtx_unlock(&vm_object_list_mtx);
2658         free(kvo, M_TEMP);
2659         return (error);
2660 }
2661
2662 static int
2663 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2664 {
2665         return (vm_object_list_handler(req, false));
2666 }
2667
2668 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2669     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2670     "List of VM objects");
2671
2672 static int
2673 sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS)
2674 {
2675         return (vm_object_list_handler(req, true));
2676 }
2677
2678 /*
2679  * This sysctl returns list of the anonymous or swap objects. Intent
2680  * is to provide stripped optimized list useful to analyze swap use.
2681  * Since technically non-swap (default) objects participate in the
2682  * shadow chains, and are converted to swap type as needed by swap
2683  * pager, we must report them.
2684  */
2685 SYSCTL_PROC(_vm, OID_AUTO, swap_objects,
2686     CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0,
2687     sysctl_vm_object_list_swap, "S,kinfo_vmobject",
2688     "List of swap VM objects");
2689
2690 #include "opt_ddb.h"
2691 #ifdef DDB
2692 #include <sys/kernel.h>
2693
2694 #include <sys/cons.h>
2695
2696 #include <ddb/ddb.h>
2697
2698 static int
2699 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2700 {
2701         vm_map_t tmpm;
2702         vm_map_entry_t tmpe;
2703         vm_object_t obj;
2704
2705         if (map == 0)
2706                 return 0;
2707
2708         if (entry == 0) {
2709                 VM_MAP_ENTRY_FOREACH(tmpe, map) {
2710                         if (_vm_object_in_map(map, object, tmpe)) {
2711                                 return 1;
2712                         }
2713                 }
2714         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2715                 tmpm = entry->object.sub_map;
2716                 VM_MAP_ENTRY_FOREACH(tmpe, tmpm) {
2717                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2718                                 return 1;
2719                         }
2720                 }
2721         } else if ((obj = entry->object.vm_object) != NULL) {
2722                 for (; obj; obj = obj->backing_object)
2723                         if (obj == object) {
2724                                 return 1;
2725                         }
2726         }
2727         return 0;
2728 }
2729
2730 static int
2731 vm_object_in_map(vm_object_t object)
2732 {
2733         struct proc *p;
2734
2735         /* sx_slock(&allproc_lock); */
2736         FOREACH_PROC_IN_SYSTEM(p) {
2737                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2738                         continue;
2739                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2740                         /* sx_sunlock(&allproc_lock); */
2741                         return 1;
2742                 }
2743         }
2744         /* sx_sunlock(&allproc_lock); */
2745         if (_vm_object_in_map(kernel_map, object, 0))
2746                 return 1;
2747         return 0;
2748 }
2749
2750 DB_SHOW_COMMAND(vmochk, vm_object_check)
2751 {
2752         vm_object_t object;
2753
2754         /*
2755          * make sure that internal objs are in a map somewhere
2756          * and none have zero ref counts.
2757          */
2758         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2759                 if ((object->flags & OBJ_ANON) != 0) {
2760                         if (object->ref_count == 0) {
2761                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2762                                         (long)object->size);
2763                         }
2764                         if (!vm_object_in_map(object)) {
2765                                 db_printf(
2766                         "vmochk: internal obj is not in a map: "
2767                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2768                                     object->ref_count, (u_long)object->size, 
2769                                     (u_long)object->size,
2770                                     (void *)object->backing_object);
2771                         }
2772                 }
2773                 if (db_pager_quit)
2774                         return;
2775         }
2776 }
2777
2778 /*
2779  *      vm_object_print:        [ debug ]
2780  */
2781 DB_SHOW_COMMAND(object, vm_object_print_static)
2782 {
2783         /* XXX convert args. */
2784         vm_object_t object = (vm_object_t)addr;
2785         boolean_t full = have_addr;
2786
2787         vm_page_t p;
2788
2789         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2790 #define count   was_count
2791
2792         int count;
2793
2794         if (object == NULL)
2795                 return;
2796
2797         db_iprintf(
2798             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2799             object, (int)object->type, (uintmax_t)object->size,
2800             object->resident_page_count, object->ref_count, object->flags,
2801             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2802         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2803             atomic_load_int(&object->shadow_count),
2804             object->backing_object ? object->backing_object->ref_count : 0,
2805             object->backing_object, (uintmax_t)object->backing_object_offset);
2806
2807         if (!full)
2808                 return;
2809
2810         db_indent += 2;
2811         count = 0;
2812         TAILQ_FOREACH(p, &object->memq, listq) {
2813                 if (count == 0)
2814                         db_iprintf("memory:=");
2815                 else if (count == 6) {
2816                         db_printf("\n");
2817                         db_iprintf(" ...");
2818                         count = 0;
2819                 } else
2820                         db_printf(",");
2821                 count++;
2822
2823                 db_printf("(off=0x%jx,page=0x%jx)",
2824                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2825
2826                 if (db_pager_quit)
2827                         break;
2828         }
2829         if (count != 0)
2830                 db_printf("\n");
2831         db_indent -= 2;
2832 }
2833
2834 /* XXX. */
2835 #undef count
2836
2837 /* XXX need this non-static entry for calling from vm_map_print. */
2838 void
2839 vm_object_print(
2840         /* db_expr_t */ long addr,
2841         boolean_t have_addr,
2842         /* db_expr_t */ long count,
2843         char *modif)
2844 {
2845         vm_object_print_static(addr, have_addr, count, modif);
2846 }
2847
2848 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2849 {
2850         vm_object_t object;
2851         vm_pindex_t fidx;
2852         vm_paddr_t pa;
2853         vm_page_t m, prev_m;
2854         int rcount;
2855
2856         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2857                 db_printf("new object: %p\n", (void *)object);
2858                 if (db_pager_quit)
2859                         return;
2860
2861                 rcount = 0;
2862                 fidx = 0;
2863                 pa = -1;
2864                 TAILQ_FOREACH(m, &object->memq, listq) {
2865                         if (m->pindex > 128)
2866                                 break;
2867                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2868                             prev_m->pindex + 1 != m->pindex) {
2869                                 if (rcount) {
2870                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2871                                                 (long)fidx, rcount, (long)pa);
2872                                         if (db_pager_quit)
2873                                                 return;
2874                                         rcount = 0;
2875                                 }
2876                         }                               
2877                         if (rcount &&
2878                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2879                                 ++rcount;
2880                                 continue;
2881                         }
2882                         if (rcount) {
2883                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2884                                         (long)fidx, rcount, (long)pa);
2885                                 if (db_pager_quit)
2886                                         return;
2887                         }
2888                         fidx = m->pindex;
2889                         pa = VM_PAGE_TO_PHYS(m);
2890                         rcount = 1;
2891                 }
2892                 if (rcount) {
2893                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2894                                 (long)fidx, rcount, (long)pa);
2895                         if (db_pager_quit)
2896                                 return;
2897                 }
2898         }
2899 }
2900 #endif /* DDB */